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Electron teleportation and statistical transmutation in multiterminal Majorana islands
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We study a topological superconductor island with spatially separated Majorana modes coupled to multiple
normal-metal leads by single-electron tunneling in the Coulomb blockade regime. We show that low-temperature
transport in such a Majorana island is carried by an emergent charge-e boson composed of a Majorana mode and an
electronic excitation in leads. This transmutation from Fermi to Bose statistics has remarkable consequences. For
noninteracting leads, the system flows to a non-Fermi-liquid fixed point, which is stable against tunnel couplings
anisotropy or detuning away from the charge-degeneracy point. As a result, the system exhibits a universal
conductance at zero temperature, which is a fraction of the conductance quantum, and low-temperature corrections
with a universal power-law exponent. In addition, we consider Majorana islands connected to interacting one-
dimensional leads, and find different stable fixed points near and far from the charge-degeneracy point.
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Majorana modes are an unusual type of quasiparticles in
topological superconductors, consisting of localized electron
and hole excitations in an equal superposition [1–3]. The pres-
ence of spatially separated Majorana modes in a macroscopic
topological superconductor gives rise to degenerate ground
states that are locally indistinguishable and topologically pro-
tected. In a mesoscopic superconductor island with Majoranas
(a Majorana island), however, these ground states partially
split into two charge-parity sectors with the total number of
electrons being even and odd, respectively; this energy splitting
is unrelated to Majorana mode hybridization, but comes from
the charging energy and can be tuned by a gate voltage
[4,5]. This tunability enables electric control of Majoranas as
well as new schemes of braiding and quantum computation
based on mesoscopic topological superconductor devices
[6–13].

The interplay between Majorana modes and charging en-
ergy gives rise to a variety of topological quantum phenomena
at the mesoscopic scale. One example is transport through a
topological superconductor island with two spatially separated
Majorana modes, each connected to a normal-metal lead
by electron tunneling [4,14,15]. Theory [4] predicts that an
unusual resonant tunneling process involving two distant
Majoranas gives rise to a phase-coherent charge-e transport
dubbed electron teleportation, exhibiting a conductance peak
when the island is at a charge-degeneracy point. In a recent
groundbreaking experiment [16] on proximitized nanowires
under a magnetic field—a promising platform for topological
superconductivity [17–20]—1e-periodic zero-bias conduc-
tance through the superconducting island has been observed in
the Coulomb blockade regime, providing experimental support
for electron teleportation via Majorana modes.

In this paper, we study multiterminal charge transport
through a Majorana island connected with M > 2 leads, each
tunnel coupled to a Majorana zero mode, as shown in Fig. 1.
We assume these Majoranas are far apart and have vanishing
wave-function hybridization. The charge on the island is tuned
by a gate voltage. This type of Majorana island has recently
been fabricated [21,22] and attracted considerable interest.

Our paper is also motivated by recent theoretical
breakthroughs [23–36], especially the seminal works of Béri
and Cooper [23] and Altland and Egger [24], predicting a
“topological Kondo effect” in the Coulomb valley regime
where the charge of the topological superconductor island is
fixed. Under this condition, the Majorana degrees of freedom
are constrained to be in a given fermion parity sector and
collectively form a SO(N ) impurity “spin,” which interacts
with excitations in the leads. Remarkably, this interaction gives
rise to a non-Fermi-liquid fixed point without fine tuning.
However, since the Kondo temperature is exponentially
small, the intriguing phenomena associated with the
topological Kondo fixed point are only accessible at very low
temperature [29].

Our paper focuses on charge transport in multiterminal Ma-
jorana islands in the vicinity of the charge-degeneracy point. At
this point, the charge on the island fluctuates between N0 and
N0 + 1 as electrons tunnel in and out of it. Consequently, the
conductance at high temperature exhibits a Coulomb blockade
peak on resonance, and the Majorana degrees of freedom are
unconstrained but correlate with the charge parity [4,5]. Since
charging energy permits only two charge states on the island,
tunneling events at different leads are interrelated.

As we show, due to high-order tunneling processes that
build up quantum coherence, the system flows from the
unstable weak-tunneling regime to the strong-coupling regime.
We find that the strong-coupling limit of Majorana islands
connected with electron leads is described by a non-Fermi-
liquid fixed point, which is stable against gate voltage detuning
away from the charge-degeneracy point and anisotropy of
tunnel couplings between the island and the leads. The zero-
temperature conductance at this fixed point is universal and a
fraction of the conductance quantum:

Gii = −2(M − 1)e2

Mh
, Gij = 2e2

Mh
, for i �= j (1)

where Gij relates the voltage on lead j to the current
in lead i via the relation Ii = ∑M

j=1 GijVj . Furthermore,
the low-temperature correction to the conductance has a
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FIG. 1. (a) Device schematics: A topological superconductor
island with spatially separated Majorana modes coupled to M normal
leads. A gate voltage Vg tunes the charge on the island. (b) A possible
realization of our setup with M = 4 using nanowires coated with a
superconducting layer (blue). An external magnetic field drives each
proximitized wire into a topological superconductor phase hosting
two Majorana modes at the ends, which are separated from the normal
leads (orange) by a tunnel junction (black).

power-law temperature dependence with a universal exponent
2(M − 2)/M . Importantly, at the charge-degeneracy point,
the crossover from the high-temperature Coulomb blockade
regime to the universal conductance Eq. (1) occurs at a
temperature which is parametrically higher than the Kondo
temperature in the Coulomb valley regime (see Fig. 2). This
greatly facilitates experimental observation of the non-Fermi-
liquid behavior and the universal conductance associated with
electron teleportation in multiterminal Majorana islands.

The Majorana nature of zero modes in the island is essential
for the interesting physics described here. As we will show
explicitly, Majoranas bind with electrons in the leads to create a
new type of emergent particle—a charge-e boson, that governs
the conduction through the island at low temperature. Because
of this transmutation from Fermi to Bose statistics, a Majorana
island connected with electron leads becomes equivalent to a
particle interacting with bosonic reservoirs and undergoing
quantum Brownian motion (QBM). This mapping then allows
us to completely solve the problem of Majorana islands using
a known strong-weak coupling duality [37].

I. MODEL

Our multiterminal Majorana island setup, shown in Fig. 1, is
described by the Hamiltonian H = Hleads + Hisland + HT. The
superconducting island is capacitively coupled to a gate which
determines its charging energy Ec and average occupancy

FIG. 2. The conductance of multiterminal Majorana islands
(M � 3) between any two normal leads as a function of gate
voltage is plotted for various temperatures. At high temperature,
the conductance shows a Coulomb blockade peak near the charge-
degeneracy point ng = 1/2 [see Eq. (6)]. At low temperatures
T � T ∗ the conductance takes a universal form, Eq. (17), and
approaches the universal conductance 2e2

Mh
at T = 0. Conductance

curves at intermediate temperatures are interpolations between the
two limits. The inset shows the strong dependence of the crossover
temperature T ∗ on the gate voltage: it is maximal and of the order
of the level broadening � at the Coulomb peak (ng = 1/2), and
becomes exponentially small in the Coulomb valley, corresponding
to the Kondo temperature. The curve in the inset has been obtained by
interpolating between the near-to- and far-from-resonance results for
Tk(ng), while the conductance curves were calculated from Eq. (6)
for T > Tk(ng), and from Eq. (17) below Tk .

ng as

Hisland = Ec(N̂ − ng)2. (2)

Here N̂ is the electron number operator of the island, and
we assume Ec to be smaller than the superconducting gap. Im-
portantly, due to the presence of zero-energy Majorana modes,
the topological superconductor island admits an odd number of
electrons on equal footing with an even number of electrons,
without paying the energy cost of the superconducting gap
(which is assumed to be the largest energy scale). Hence, the
electron number N is allowed to be either even or odd.

The island is coupled to the leads via single-electron
tunneling described by [4,15]

HT =
M∑

j=1

tjψ
†
j (0)γje

−iθ̂/2 + H.c., (3)

where ψ
†
j (0) creates an electron at the end of lead j . γ1, . . . ,γM

are Majorana mode operators with the defining property

γ
†
j = γj , {γi,γj } = 2δij . (4)

These Majorana modes are assumed to be far apart without
direct coupling. The superconducting phase θ̂ is conjugate
to the electron number N̂ , with the commutation relation
[θ̂ ,N̂ ] = 2i, so that e±iθ̂/2 changes the number of electrons
in the island by ±1. As a single electron tunnels in (out of)
the island from (to) the leads, the tunneling operator Eq. (3)
simultaneously flips the fermion parity of the island—which
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is encoded in Majorana degrees of freedom—and changes the
charge on the island by ±e. Note that our model contains only
a single fermion species, i.e., spin-polarized electrons. Among
the two spin components that are microscopically present in
each wire, only one couples to the Majorana box via Eq. (3),
while the second one does not [38,39]. Since the second spin
component does not contribute to charge transfer between the
leads, we omit it from the effective model.

We specialize to the case where Ec dominates over both the
temperature T and the level broadening induced by coupling
to leads � = ∑

j �j = ∑
j ρt2

j , where ρ is the density of
states at the leads [40]. Then, for the range of gate voltages
corresponding to N0 < ng < N0 + 1, only two charge states
with N = N0 and N0 + 1 are relevant at low energy. We denote
these two charge states by a pseudospin σ z = ∓1, and project
the full Hamiltonian H to the low-energy Hilbert space to
obtain

H = Hleads +
M∑

j=1

(tjψ
†
j σ

−γj + H.c.) + 	gσ
z, (5)

where 2	g ≡ 2Ec(N0 − ng + 1/2) is the energy difference of
the two charge states.

At high temperatures (yet lower than Ec), the conductance
through the Majorana island exhibits a resonance peak as the
gate voltage is swept across the charge-degeneracy point 	g =
0. Near this point and to leading order in tunnel coupling,
the conductance peak is described by conventional sequential
tunneling through an impurity level [7]:

Gij = e2

h

�i(�j/� − δij )

4T cosh2(	g/T )
. (6)

Coherent tunneling processes due to the Majorana modes
manifest themselves in higher-order corrections in �/T , and
thus the crossover into the strong-coupling limit occurs at
T ∼ T ∗ ≡ � (see Fig. 2).

II. STATISTICAL TRANSMUTATION

To obtain the multiterminal conductance at low temperature
requires a nonperturbative strong-coupling analysis. First,
without loss of generality, we model the noninteracting
electrons in the semi-infinite leads as chiral fermions moving
in infinite one-dimensional wires [45]:

Hleads = 1

2π

M∑
j=1

∫ ∞

−∞
dx vψ

†
j i∂xψj , (7)

where ψ
†
j at different leads anticommute, {ψ†

i (x),ψ†
j (x ′)} =

{ψ†
i (x),ψj (x ′)} = 0 for i �= j .
We note that the tunneling operator shown in Eqs. (3) and

(5) involves a product of an electron operator (ψ†
j or ψj ) and

the self-adjoint Majorana operator γj . Such bilinear operators
defined at different leads are bosonic and mutually commuting,

[ψ†
i (x)γi,ψ

†
j (x ′)γj ] = [ψ†

i (x)γi,ψj (x ′)γj ] = 0, (8)

for i �= j . The mutually commuting property property allows
us to bosonize ψ

†
j (x)γj using M independent chiral boson

fields:

ψ
†
j (x)γj ∼ eiϕj (x), j = 1, . . . ,M. (9)

Details of this bosonization procedure can be found in
the Appendix. A similar property has been reported in
Refs. [24,25,41] for tunneling between a Majorana island
and electronic leads deep in the off-resonant regime, where
the island can be described as a spin degree of freedom. In
contrast, in our paper the island is near charge degeneracy,
and the active degrees of freedom involve both even- and
odd-fermion-parity states. Therefore, we are dealing with a
bona fide fermion system, and, as we shall show below, our
bosonization procedure solves this problem completely

After bosonization the imaginary-time action describing the
leads is given by

Sleads = 1

4π

M∑
j=1

∫ ∞

−∞
dx

∫
dτ∂xϕj (v∂xϕj − i∂τϕj ), (10)

and the tunneling term at x = 0 becomes

ST =
M∑

j=1

∫
dτ tj e

iϕj (0,τ )σ− + H.c. (11)

We have thus exactly recast the problem of electron
tunneling between a Majorana island and leads in terms of
the bosonic phase fields ϕj alone. In particular, the model
in Eqs. (10) and (11) does not contain Klein factors which
usually arise when bosonizing multispecies fermion systems.
This is enabled by the presence of Majorana modes, which bind
with the electrons to convert anticommuting fermion fields in
different leads to commuting boson fields. As a consequence,
electron exchange and transport through the multiterminal
Majorana island deviate significantly from electron tunneling
through a single-particle resonant level in a quantum dot. This
is despite the fact that in both cases the charge on the dot
fluctuates between two values that differ by a single unit of
charge. The differences between the two systems can be seen
when electron exchange between two leads is analyzed within
perturbation theory with respect to the tunneling parameters
tj . At the lowest order the amplitudes of the two exchange
processes are identical. Deviations between the two arise at the
next order, when as illustrated in Fig. 3 the exchange between
leads 1 and 3 through lead 2 is considered. For the resonant
level, the corresponding amplitude for exchange is given by
〈f |ψ†

3aa†ψ2ψ
†
1aa†ψ3ψ

†
2aa†ψ1|i〉, where |i〉 (|f 〉) is the initial

(final) state and a (a†) annihilates (creates) an electron in the
resonant level. The equivalent process through the Majorana
island is proportional to 〈f |ψ†

3γ3γ2ψ2ψ
†
1γ1γ3ψ3ψ

†
2γ2γ1ψ1|i〉.

Thus, the amplitude of this exchange process is negative for
resonant tunneling in a quantum dot as expected for a free
fermion problem. Due to the Majorana fermions, teleportation
in Majorana islands acquires an opposite sign (positive),
which reflects that the effective charge carrier here is a
boson. This comparison explains why the bosonized action
for Majorana islands, Eq. (11), does not apply to resonant
tunneling through an energy level; the latter problem involves
Klein factors necessary for keeping track of an electron’s Fermi
statistics [42]. We note that exchange processes are present
only for setups with more than two leads. Therefore, electron
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FIG. 3. A sequence of six successive tunneling events that
exchanges two electrons on leads 1 and 3 via lead 2. The amplitude of
this process is positive for electron teleportation in a Majorana island,
unlike the negative sign for resonant tunneling into a single-particle
state. This sign change demonstrates that the effective charge carrier
is bosonic rather than fermionic.

teleportation in two-terminal Majorana islands [4] is a special
case where the effect of statistical transmutation is nulled.

III. MAPPING TO QUANTUM BROWNIAN MOTION

We start the strong-coupling analysis by studying Majorana
islands at the charge-degeneracy point 	g = 0 and with equal
tunnel couplings to all leads: t1 = t2 = . . . = tM ≡ J⊥. The
bosonized action in Eqs. (10) and (11) is then equivalent to the
action of QBM of a particle in a periodic potential, as shown
by Yi and Kane [37]. To see this mapping, we integrate out the
degrees of freedom away from x = 0 in the leads to obtain a
(0 + 1)-dimensional action in terms of the boson phase fields
(ϕ1, . . . ,ϕM )|x=0 ≡ ϕ, given by S = S0 + ST where

S0 = 1

(2π )2

∫
dω|ω|| ϕ(ω)|2 (12)

describes the leads, and

ST = J⊥
∑

j

ei
√

2 ϕ· R(j )
0 σ− + H.c. (13)

describes the tunneling between the leads and the island. Here
R(j )

0 is a M-dimensional vector, where its j th component is
1√
2

and its other components are all zero, so that ϕ · R(j )
0 =

ϕj (0)/
√

2. We have included the normalization factor
√

2 in
Eq. (13) so that the scaling dimension of ST is equal to |R0|2 =
1
2 (for more details see the Appendix).

We now identify ϕ as the momentum of a particle coupled
to a dissipative bath. The number of charge carriers in the
leads (n1, . . . ,nM )—which is conjugate to ϕ—corresponds to
the particle’s coordinate r . For small J⊥, the action S describes
QBM of this particle in a strong periodic potential with minima
at

∑M
j=1 nj · (

√
2 R(j )

0 ). Specifically, S0 determines the amount
of dissipation, and ST , being a translation operator, generates

Jz

J⊥ n1 n2

n3

M
1/0 M/2

FIG. 4. Renormalization-group flow in the weak-coupling regime
showing a Toulouse-like limit at J ∗

z = 1/M . There, the bosonized
action for electron teleportation in Majorana islands Eq. (15) is
equivalent to quantum Brownian motion on the M − 1-dimensional
honeycomb lattice (shown for M = 3 in the inset), where the sites
correspond to allowed charge configurations of the leads. The flow
lines are the solutions of Eq. (14) for various initial values.

a small probability of particle hopping between two adjacent
potential minima connected by the lattice vector R0.

In our setup, the sum of all charges on the leads
∑

j nj

may only fluctuate by 1 due to charge conservation and the
restriction of two allowed charge states N0 and N0 + 1 on
the island. This implies that the Brownian particle is only
allowed to hop on two adjacent lattice planes perpendicular to
the direction R̂⊥ = 1√

M
(1,1, . . . ,1). For M = 3, the potential

minima of the Brownian particle form a corrugated honeycomb
lattice, consisting of two triangular sublattices, as illustrated
in Fig. 4. For M > 3, the particle hops on the generalization of
corrugated honeycomb lattices in M − 1 dimensions. The two
sublattices correspond to σ z = ±1, hence the particle hopping
described by Eq. (13) alternates between the two sublattices.

For noninteracting electron leads, the hopping operator
Eq. (13) has a scaling dimension given by |R0|2 = 1/2 < 1,
which is relevant at the disconnected fixed point J⊥ = 0.
Thus the strong-potential limit of QBM, described in terms of
particle hopping between deep potential minima, is unstable
and flows under the renormalization group (RG) to a different
fixed point.

To identify this new fixed point, we first note that before
integrating out degrees of freedom in the leads a new term
v
2 Jzσ

z
∑

j ∂xϕj (x)δ(x) is generated in the RG process. The
perturbative RG equations for the two coupling constants J⊥
and Jz are

dJz

dl
= J 2

⊥(1 − MJz),
(14)

dJ⊥
dl

= 1

2
J⊥ + J⊥Jz[1 − (M/2)Jz].

The resulting RG flow, plotted in Fig. 4, shows that Jz, even
with an initial value of zero, flows to a Toulouse-like point
in which J ∗

z = 1/M . At this point, a unitary transformation
U = eiσ z

∑
j ϕj (0)/(2M) eliminates the Jz term from the action,

similar to the analysis of Ref. [37]. After performing the
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transformation, the hopping operator, Eq. (13), becomes

S∗
T = J⊥

M∑
j=1

ei
√

2 ϕ· R(j )
‖ σ− + H.c., (15)

where the vectors R(1)
‖ , . . . , R(M)

‖ are all orthogonal to R̂⊥ =
1√
M

(1,1,1..) and have the length |R‖| = √
1 − 1/M|R0|. Im-

portantly, the total charge field ϕc = ϕ · R̂⊥ which corresponds
to the motion of the Brownian particle along the R̂⊥ direction
disappears from S∗

T . As a result, the motion along R̂⊥ is
decoupled from the motion in the perpendicular direction,
which is spanned by the remaining M − 1 linearly independent
vectors appearing in S∗

T . Therefore, independent of the bare
coupling constant Jz, the system flows to the Toulouse limit
with an action S0 + S∗

T that is equivalent to QBM on a
(M − 1)-dimensional honeycomb lattice.

The hopping between deep potential minima of the honey-
comb lattice has a scaling dimension given by |R‖|2, which
is smaller than 1 for all M , and thus is a relevant operator.
As a result, the hopping amplitude J⊥ grows, or equivalently
the periodic potential weakens in the RG process. Next, we
consider the limit of vanishing periodic potential, or QBM
in free space. We analyze its stability against applying a
periodic potential with the same periodicity as the original
honeycomb lattice [37]. Such a potential can be decomposed
into Fourier components: U (r) = ∑

G v Gei G·r , where G is the
reciprocal-lattice vector defined by G · R = integer for any
Bravais lattice vector R of the honeycomb lattice. The scaling
dimension of the v G component of the perturbation is given by
| G|2 (see the Appendix). The shortest reciprocal-lattice vector
G0 is of length

√
2(1 − 1/M). Therefore, the periodic potential

U (r) is marginal for M = 2, and irrelevant for M > 2. As
argued by Yi and Kane [37], the contrasting stability in the limit
of strong and weak potential U (r) implies that the periodic
potential flows to zero in the RG process, leading to QBM in
free space as the infrared fixed point.

We now turn to Majorana islands detuned away from
the charge-degeneracy point and/or having unequal coupling
to the leads. In the QBM formulation, the deviation from
	gσ

z = 0 makes the two sublattices of the honeycomb
lattice inequivalent. Unequal tunnel couplings described by∑

j δj e
iϕj (0)σ− + H.c. make the honeycomb lattice spatially

anisotropic. Both perturbations correspond to deformations
of the honeycomb lattice that lower its crystal symmetry but
do not alter its periodicity. As such, they are irrelevant at
the free QBM fixed point as shown by our stability analysis.
We thus conclude that the strong-coupling limit of Majorana
islands connected with M > 2 noninteracting electron leads
is a non-Fermi-liquid fixed point that maps to QBM in free
space and is stable against asymmetric coupling to leads and
gate voltage detuning away from the charge-degeneracy point.

IV. UNIVERSAL CONDUCTANCE AND
LOW-TEMPERATURE CORRECTIONS

The isotropy of QBM in free space implies that at the
infrared fixed point all off-diagonal components of the mul-
titerminal conductance matrix are equal: Gij = G0 for i �= j .
Current conservation then implies that Gii = −∑

j �=i Gij =

−(M − 1)G0. To determine G0, let us consider the following
setup: we apply a voltage V1 = V/2 on the first lead, V2 =
−V/2 on the second lead, and Vj = 0 for all other leads. By
definition, the resulting current is

I2 =
M∑

j=1

G2jVj = MG0V/2 = −I1, (16)

while Ij = 0 in all other leads. Finding the current I1,2 for
this particular voltage setup will then yield G0, thus the
entire matrix Gij . The voltage Vj couples to the charges on
lead nj , and hence corresponds to adding a linear potential
to the coordinate of the Brownian particle rj . The uniform
force field in the direction (1, − 1,0 . . . 0) and the coupling
to the dissipative bath give rise to a nonzero steady-state
velocity in this direction. Since QBM in free space is spatially
isotropic and direction independent, the steady-state velocity
is independent of spatial dimensionality M − 1, and hence
so is the current I1,2. For M = 2 it was shown [4] that a
Majorana island with equal tunnel couplings to two leads
maps to resonant electron tunneling, for which I2 = −I1 =
e2

h
V . Therefore, equating the known result for M = 2 and

Eq. (16) we obtain G0 = 2e2

Mh
for all M , yielding the universal

multiterminal conductance in Eq. (1). It is interesting to
note that in the limit M → ∞ the conductance Gii which
determines the total current through the island approaches
2e2/h, which is identical to the conductance from resonant
Andreev reflection from a single Majorana mode in a grounded
superconductor. This is consistent with the expectation that
coupling the island to a large number of leads makes it
effectively grounded.

At finite but low temperature, corrections to the conduc-
tance are governed by the leading irrelevant operator at the
infrared fixed point. In the QBM formulation, this operator
corresponds to adding a weak honeycomb potential, which
has the scaling dimension 	M = 2(M−1)

M
. This gives rise to

a universal power-law correction to the conductance at low
temperature:

Gi �=j = e2

h

[
2

M
− c

(
T

T ∗

)2	M−2
]
, (17)

where c is a constant of order 1. The temperature T ∗ depends
strongly on the gate voltage: near the charge-degeneracy point
T ∗ ∼ � is significantly higher than in the Kondo regime
∼ e−Ec/� . Consequently, coherence effects become important
at higher temperatures for 	g ≈ 0, and the conductance
approaches its zero-temperature universal value faster (see
Fig. 2).

V. KONDO REGIME

When the gate voltage is tuned to the Coulomb valley
(	g � T ,�), the charge on the island is fixed to an integer N0.
As a result, electrons can no longer hop into or out of the island.
Instead, virtual tunneling processes give rise to an effective
exchange interaction that transfers charge between the leads
while switching the state of Majoranas within a fermion parity
sector given by N0 mod 2. This Kondo-type interaction HK

can also be derived from our model, Eq. (5), via second-order
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perturbation theory in ti , which yields [23]

HK =
M∑

i �=j

λij (ψ†
i ψj − ψ

†
j ψi)Oij , (18)

where Oij = γiγj are SO(M) generators satisfying the Clif-
ford algebra, and the Kondo coupling is λij ∝ ti tj /	g .

As shown by Béri [25], this Kondo problem of bosonic
nature directly maps to QBM on a triangular lattice. This
mapping can also be understood in our formulation: a large 	g

adds a strong sublattice potential to the corrugated honeycomb
lattice, so that the Brownian particle hops between sites on
the low-energy sublattice via virtual transitions through the
high-energy sublattice. Importantly, the hopping operator HK

in the Kondo regime is marginally relevant and sets the
length of the triangular lattice vector to be | R| = 1. Analysis
of Majorana islands in the Kondo regime [25] reveals that
for noninteracting leads the strong-coupling fixed point also
maps to QBM in free space, which is the same as the
fixed point we found in the vicinity of 	g = 0 (see also the
Appendix). Thus, we conclude that despite having significantly
different conductance in the high-temperature Coulomb peak
and Coulomb valley regime the system exhibits the universal
conductance Eq. (1) at T = 0, independent of the gate voltage.
Our result generalizes Ref. [25] where the T = 0 conductance
was found in the Kondo regime. However, as we show below,
the Coulomb peak and Coulomb valley regime of a Majorana
island flow to different infrared fixed points for repulsive
interactions in the leads.

VI. INTERACTING LEADS

The QBM formulation provides a unified framework for
analyzing Majorana islands both in the vicinity of the charge-
degeneracy point and in the Kondo regime. Although up
to here we have considered noninteracting electron leads,
the generalization to the interacting case is straightforward.
To study interaction effects, we only need to identify the
change in the lengths of the direct and reciprocal-lattice
vectors, given by |R0| → |R0|/√g and |G| → √

g|G|, where
g is the Luttinger parameter [37]. Therefore, in the Kondo
regime (| R| = 1/

√
g), arbitrarily weak repulsive interactions

g < 1 make HK irrelevant, so that the limit of the decoupled
Majorana island and leads is stable against weak tunnel
couplings. As the couplings λi,j increase above a critical value,
the system undergoes a quantum phase transition [24,25] into
the strong-coupling fixed point (see Fig. 5).

In contrast, near the charge-degeneracy point, electron
tunneling into the Majorana island ST remains a relevant
operator over a finite range of interaction strengths. Since
| R||| = √

(M − 1)/(2Mg) and | G| = √
2g(M − 1)/M , we

obtain that for g > M
2(M−1) the system flows from the unstable

weak-tunneling to the stable strong-coupling fixed point. For
stronger repulsive interactions M−1

2M
< g < M

2(M−1) a stable
fixed point occurs at intermediate coupling strengths (see
Fig. 5). Following this work, a detailed analysis of the
intermediate fixed point has been performed in Ref. [43].

In addition to electron-electron interactions in the lead, in
realistic experimental setups we expect hybridization between

1M

2(M − 1)

(a) Kondo regime 

g

v

t

M

2(M − 1)
M − 1
2M

(b) Charge degeneracy point

1

v

t
g

FIG. 5. Phase diagrams and RG flows for a Majorana island
connected to M electron leads, in the Kondo regime (a) and near the
charge-degeneracy point (b), as a function of the Luttinger parameter
g characterizing the strength of interaction in the leads (g = 1 for
noninteracting leads). In both (a) and (b), stable (unstable) fixed points
are marked by solid (dashed) lines. The lower line corresponds to the
weak-coupling limit of the island and the leads (t → 0). The upper
line corresponds to the strong-coupling limit that maps to quantum
Brownian motion in a weak periodic potential (v → 0). In the Kondo
regime, the weak-coupling limit is stable for arbitrarily weak repulsive
interactions g < 1. In contrast, near the charge-degeneracy point
this limit is unstable: it flows to the strong-coupling fixed point
for M

2(M−1) < g < 1, and to a stable intermediate fixed point for
M−1
2M

< g < M

2(M−1) . These flow diagrams are generalizations of the
result of Ref. [37] for M = 3 to all M .

the Majorana modes due to the finite size of the island and
quasiparticles poisoning to be present. The former is analogous
to applying a Zeeman magnetic field in the Kondo problem
[27], and thus it cuts off the flow toward the strong-coupling
limit at T ∼ �, where � is the hybridization energy. In the
case of quasiparticles poisoning, for instance when there are
single-particle impurity levels in the superconductor, the parity
of the Majorana modes and the leads [σz + ∑M

j=1 Sz(0)] is
only well defined over a time scale τp. Consequently, the rise
of the conductance is expected to stop at T ∼ 1/τp before it
reaches the universal T = 0 value given in Eq. (1), similar to
the Majorana hybridization. Since near the charge-degeneracy
point Tk dramatically exceeds its far-from-resonant value, the
strong-coupling physics should be experimentally accessible
over a large window of temperatures even in the presence of
Majorana hybridization and quasiparticle poisoning.

To conclude, our paper predicts a set of remarkable
transport phenomena in multiterminal Majorana islands in
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the vicinity of the charge-degeneracy point, including a
universal fractional quantum conductance at zero temperature,
and its universal power-law correction at low temperature.
Observation of such phenomena will clearly demonstrate the
Majorana nature of zero modes in a superconductor island,
defined by the operator algebra Eq. (4) and acting as a
charge-neutral Fermi-Bose transformer.
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APPENDIX: DETAILED STUDY OF THE PHASE DIAGRAM

In the main text we described the mapping of Majorana
islands coupled to M leads onto a QBM model. Here we
elaborate on the various steps of the derivation and the analysis
of the phase diagram (Fig. 5). We start with bosonization of the
leads and integration of all degrees of freedom away from x =
0. The resulting effective action describes a particle subject
to a periodic potential, and coupled to a dissipative bath.
Within this QBM model we calculate the scaling dimensions
of various allowed perturbations, and study the weak- and
strong-tunneling limits near the charge-degeneracy point and
in the Kondo regime.

1. Bosonization

We start the bosonization procedure by mapping the model
system described above onto a spin chain. For this purpose,
we describe the leads as chains of fermions:

Hlead = J
M∑

j=1

∞∑
m=1

c
†
j,mcj,m−1 + H.c., (A1)

where the lattice constant is set to unity and the hopping
parameter J is fixed to reproduce the density of states in
the leads ρ = (2πJ )−1. The creation (annihilation) operator
at the boundary site m = 0 is identified with the boundary field
operator ψ

†
j (0) = c

†
j,0 (ψj (0) = cj,0). In general, the standard

Jordan-Wigner transformation that maps one-dimensional
fermions onto a spin chain fails for a system of M > 2
semi-infinite wires joined at a single point. When the one-
dimensional wires are coupled to the Majorana island, we
can define commuting spin operators as a product of electron
operators in the leads and the corresponding Majorana mode
operators:

S+
j,m = eiπ

∑
�<m c

†
j,�cj,� c

†
j,mγj . (A2)

Correspondingly, the Hamiltonian can be expressed in terms
of M xy-spin chains, all connected at the origin to the spin

operator of the island:

H =
M∑

j=1

[
J

∞∑
m=1

S+
j,mS−

j,m+1 + tj S
+
j,1σ

− + H.c.

]
+ 	gσ

z.

(A3)
In this description of the system, the Majorana operators
disappear from the Hamiltonian.

Next we express the spin operators in each chain in terms
of left (ϕL) and right (ϕR) moving chiral modes S+

j (x) ∼
eikF xeiϕR

j (x) + e−ikF xeiϕL
j (x), where 0 � x < ∞. However, we

find it more convenient to describe each lead as an infinite
chain −∞ < x < ∞, and express the spin operators in term
of a single chiral mode:

ϕj (x) = ϕL
j (x)θ (x) + ϕR

j (−x)θ (−x). (A4)

The chiral operators obey the commutation relations
[ϕi(x),∂xϕj (x ′)] = 2πiδ(x − x ′)δij , and the conjugate oper-
ators can be identified as the electron density operators
ρj (x) = 1

2π
∂xϕj (x). This is because eiϕj (x) changes the total

charge by 1, and similarly e2πiρj (x) shifts the phase by 2π . The
imaginary-time action of the leads, corresponding to the first
term in Eq. (A3), can be written in terms of the phase fields
ϕj (x,τ ) as

Sleads = − 1

4π

M∑
j=1

∫ β

0
dτ

×
∫

dx[ϕj (x,τ )∂x(v∂x − i∂τ )ϕj (x,τ )]. (A5)

Here, β = T −1 is the inverse temperature, and v is the Fermi
velocity. For free electrons v = 2J a where a is the lattice
constant, and using the definition of J this is seen to match the
Fermi velocity of the physical leads. For correlated electrons
the velocity is renormalized by the interactions. Since the
velocity does not affect the universal properties of the systems,
we use the same notation for the velocity in the presence and
absence of interactions.

The scaling dimension of the spin operators 	s is obtained
from the zero-temperature correlation function of the field
ϕj (x,τ ) as

〈S−
j (0,τ )S+

j (0,0)〉 = 〈e−iϕj (0,τ )eiϕj (0,0)〉
= e− 1

2 〈[ϕj (0,τ )−ϕj (0,0)]2〉 ∝ (−ivτ )−2	s .

(A6)

From the action Eq. (A5), we get that

〈[ϕj (x,τ ) − ϕj (0,0)]2〉 = 2 log (x − ivτ ) + const, (A7)

and 	s = 1
2 .

Up to here, we considered free electrons in the leads. To
generalize the derivation to interacting leads, we introduce the
Luttinger parameter g into the action:

Sleads = − g

4π

M∑
j=1

∫ β

0
dτ

×
∫

dx[ϕj (x,τ )∂x(v∂x − i∂τ )ϕj (x,τ )]. (A8)
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Here g < 1 (g > 1) corresponds to repulsive (attractive)
interactions. Consequently, the zero-temperature correlation
function

〈[ϕj (x,τ ) − ϕj (0,0)]2〉 = 2

g
log (x − ivτ ) + const, (A9)

and the scaling dimension of the spin operators is 	s = 1
2g

.
Furthermore, the definition of the conjugate fields is also
g dependent, [ϕj (x ′),∂xϕi(x)] = 2πg−1iδ(x − x ′)δij , and the
density operator becomes ρj (x) = g

2π
∂xϕj (x).

In the derivation of the action given by Eq. (A8) as well
as of the properties of ϕ(x,τ ) we followed Ref. [44]. An
alternative approach would be to perform the bosonization with
the nonchiral operators φ and θ (see, for example, Ref. [45])
and use the relations

φj (x) = ϕR
j (x) + ϕL

j (x)√
2

,

(A10)

θj (x) = ϕR
j (x) − ϕL

j (x)√
2

.

Here ϕL
j (ϕR

j ) is the left (right) chiral operator. The left- and
right-chiral fields are connected through the transformation
x → −x.

Finally, we turn to the coupling term between the leads
and the Majorana island, the second term in Eq. (A3). Using
the expressions for the spin lowering and raising operators in
terms of the chiral fields, the tunneling Hamiltonian becomes

HT =
M∑

j=1

tj e
iϕj (0)σ− + H.c. (A11)

2. Boundary action

The next step in the mapping onto QBM is to integrate out
the degrees of freedom away from x = 0. For this purpose, we
use the Fourier decomposition of the fields,

ϕj (x,τ ) = β−1
∑

n

∫
dk

2π
ei(kx+ωnτ )ϕj (k,ωn), (A12)

and the corresponding action:

S = g

4πβ

∑
j,n

∫
dk

2π
k(vk − iωn)|ϕj (k,ωn)|2. (A13)

Here, ωn = 2πnβ−1 are the Matsubara frequencies. The field
at the boundary (x = 0) is obtained by integrating over
momentum:

ϕj (ωn) =
∫

dk

2π
ϕj (k,ωn). (A14)

To find the boundary action S = 1
2

∑
j,n G−1

jj (ωn) × |ϕj (ωn)|2,
we have to calculate the correlation function Gjj =
〈ϕj (ωn)ϕj (−ωn)〉:

Gjj (ωn) = β

g

∫
dk

k(vk − iωn)
= πβ

g|ωn| . (A15)

The action for the boundary field,

S = g

2πβ

∑
n,j

|ωn||ϕj (ωn)|2, (A16)

coincides with the expression given in Eq. (12) when g = 1
and β → ∞. Equation (A16) describes a particle subject to
a classical friction term [46] (Ohmic dissipation). Thus, the
particle exhibits Brownian motion in an M-dimensional space,
where the field ϕj is its momentum along the j axis.

In the QBM framework, tunneling between the leads and
the Majorana island is encoded in terms of the form ei

√
2 ϕ(0)· R .

Therefore, to analyze the phase diagram it is important to find
the scaling dimension of such terms. Setting x = 0 in Eq. (A6),
we find the scaling dimensions of ei

√
2 ϕ(0)· R to be

	[ei
√

2 ϕ(0)· R] = | R|2
g

. (A17)

This expression is needed for the analysis of the RG flow for
the QBM in the weak-tunneling (strong periodic potential)
regime.

For the strong-tunneling limit, we need to find the scaling
dimensions of terms of the form eir· G that shift

√
2ϕj (0) by

2πGj . Previously, we saw that a shift of the phase in an infinite
lead is generated by the density operator ρj (x). On the bound-
ary, we note that the operator rj = √

2π limε→0
∫ ε

−ε
dxρj (x)

satisfies the desired commutation relations:

[
√

2ϕi(0),rj ] = 2π lim
ε→0

∫ ε

−ε

dx[ϕi(0),ρj (x)] = 2πiδi,j .

(A18)

The definition of the density operator allows us to
rewrite this operator in terms of the phase ϕ(x) as rj =
g√
2

limε→0 [ϕj (ε) − ϕj (−ε)]. We note that in the strong-
tunneling limit ϕj (0) has a finite expectation value, and corre-
spondingly limε→0 [ϕj (ε) + ϕj (−ε)] = const (for formulation
of the boundary condition in terms of the nonchiral operators
see Ref. [47]). This property reflects the fact that each electron
that comes from x = ∞ is transferred to the Majorana island.
As a result,

rj =
√

2g lim
ε→0

ϕj (ε) =
√

2gϕj (0) + const, (A19)

and we find that the scaling dimension of eir· G is

	[eir· G] = g| G|2. (A20)

3. RG flow diagram near the charge-degeneracy point

The bosonized description of a Majorana island coupled to
M leads given in Eq. (A8) and the corresponding boundary
action in Eq. (A16) allow us to analyze the phase diagram
of the system. To follow the derivation in the main text, we
assume equal coupling constants to all leads and that the gate
voltage is tuned to the charge-degeneracy point, 	g = 0. The
starting point of the calculation is the full Hamiltonian before
integrating out fluctuations away from x = 0:

H =
M∑

j=1

∫
dx

{
vg

4π
[∂xϕj (x)]2 + v

2
Jzσ

z∂xϕj (x)δ(x)

+ J⊥(eiϕj (x)σ− + H.c.)δ(x)

}
. (A21)

Although the bare Hamiltonian does not include the Jz term,
such a term is generated in the RG process. In the previous
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sections we showed that the scaling dimension of the (bare)
tunneling operator is 1

2g
; however, it is expected to change in

the RG process. To find the renormalized scaling dimension
of the tunneling term, we rewrite the above Hamiltonian in the
following form:

H =
M∑

j=1

∫
dx

{
vg

4π
[∂xϕj (x) + πg−1Jzσ

zδ(x)]2

+ J⊥(eiϕj (x)σ− + H.c.)δ(x)

}
. (A22)

The Jz term can be eliminated from the Hamiltonian by the
unitary transformation:

U = e
i
2 Jzσz

∑
j ϕj . (A23)

Under this transformation U †σ−U = σ− exp[iJz

∑
j ϕj ], and

the Hamiltonian becomes

H̃ = U †HU =
M∑

j=1

∫
dx

{
vg

4π
[∂xϕj (x)]2

+ J⊥(eiϕj (x)−iJz

∑
� ϕ�(x)σ− + H.c.)δ(x)

}
. (A24)

Specifically, for Jz = 1/M the center-of-mass boson field∑
j ϕj drops out from the tunneling term. Since the flow of Jz

stops at 1/M , the system reaches a new (Toulouse-like) fixed
point.

At the fixed point, we integrate out the degrees of freedom
away from x = 0, and write the boundary action as

S̃ = β−1
∑
n,j

{
g|ωn|

2π
|ϕj (ωn)|2 + J⊥(ei

√
2 ϕj (ωn)· R(j )

‖ + H.c.)

}
,

(A25)

where (Rj

‖ )i = 1√
2
[δij − 1

M
] is the ith component of the vector

Rj

‖ . Thus, in the Toulouse-like fixed point the action describes
QBM of a particle that is subject to a periodic potential in an
(M − 1)-dimensional space spanned by Rj

‖ . From Eq. (A17)
we find that the scaling dimension of the tunneling term is
given by

	[ei
√

2 ϕj (0)· R(j )
‖ ] = 1

2g

(
1 − 1

M

)
. (A26)

For free electrons in the leads (g = 1), the scaling dimension of
the tunneling term is relevant. Therefore, the weak-tunneling
regime is unstable, and J⊥ flows to infinity. At this fixed
point the lattice potential vanishes, and the particle can move
freely, i.e., charge strongly fluctuates between the leads.
Correspondingly, the potential for ϕ is maximal and the field
is locked to one of its minima.

To analyze the stability of this new fixed point we note that
the symmetry allowed perturbations are of the form

eir· G, (A27)

where G is a reciprocal vector of the lattice spanned by
R‖. This kind of term restores the lattice potential that

vanished in the RG flow. Equivalently, such terms describe

tunneling between minima of the potential for ϕ, and they
tend to decouple the leads from the Majorana island, i.e., to
pin the charge. The scaling dimension of the perturbation
in Eq. (A27) was calculated in the previous section [see
Eq. (A21)]. To find the reciprocal-lattice vector, we use the
relation G · R = integer for any Bravais lattice vector R. For
the (M − 1)-dimensional lattice defined by R‖, the Bravais
vectors are (R(i,j ))� = 1√

2
(δi,� − δj,�). Correspondingly, the

shortest reciprocal-lattice vectors are

(G(j ))i =
√

2

(
δi,j − 1

M

)
, (A28)

and the scaling dimension of the tunneling operator on the
reciprocal lattice is

	[eir· G] = 2g

(
1 − 1

M

)
. (A29)

Therefore, the leading perturbation is irrelevant for free leads.
For interacting leads, the tunneling term in Eq. (A26)

is relevant for g > M−1
2M

, and the periodic potential term in
Eq. (A29) is relevant for g < M

2(M−1) . Therefore, for g >
M

2(M−1) the system flows to the strong-tunneling (vanishing
potential) fixed point, while the strong-potential (decoupled
leads and island) fixed point is stable for g < M−1

2M
. As

shown in Fig. 5, a stable intermediate fixed point appears for
M−1
2M

< g < M
2(M−1) .

4. RG flow diagram in the Kondo regime

When the gate voltage is tuned far from 	g = 0, charge
fluctuations in the island are gapped. As a result, electrons can
only hop between the leads via virtual transitions through the
island, and the effective action becomes

H =
∫

dx

⎧⎨
⎩ vg

4π

M∑
j=1

[∂xϕj (x)]2

+λ
∑
i �=j

(
ei(ϕi (x)−ϕj (x)) + H.c.

)
δ(x)

⎫⎬
⎭, (A30)

where λ = |t |2
	g

. Here, no new terms are generated in the RG

process, and the center-of-mass boson
∑

j ϕj does not appear
in the tunneling term. Therefore to obtain the flow diagram
in the Kondo regime, we follow the steps introduced in the
previous section after eliminating the Jz term [starting at
Eq (A25)]. The boundary action can be written as

HK = λ
∑
i �=j

(ei
√

2 Rij · ϕ(0) + H.c.), (A31)

where (Rij )� = 1√
2
(δi,� − δj,�). From Eq. (A17), we find that

the scaling dimension of the tunneling operator is 1
g

. As
a result, the tunneling term is marginally relevant for free
leads and the system flows to the weak-potential limit. In
the presence of arbitrarily weak repulsive interactions, the
tunneling term is irrelevant [24] and, for not too strong bare
tunnel couplings, the leads decouple from the island.
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Interestingly, Rij in the Kondo limit are the Bravais
vectors of the lattice near the charge-degeneracy point [see
discussion below Eq. (A27)]. Near the charge-degeneracy
point, however, the lattice is defined by a basis vector in
addition to the Bravais vectors. This point is illustrated in
Fig. 4 where the QBM near 	g = 0 is on a honeycomb
lattice, while in the Kondo regime the QBM is confined to
a plane of constant total charge, and the periodic potential is

triangular. As a result, the reciprocal-lattice vectors in both
cases are identical, and so is the scaling dimension of the
leading operator in the strong-tunneling limit, Eq. (A29). We
conclude that for noninteracting leads the strong-tunneling
fixed points are the same in the vicinity and far from
	g = 0. However, only near the charge-degeneracy point the
fixed point remains stable in the presence of weak repulsive
interactions.
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