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Abstract

We show how to securely obfuscate conjunctions, which are functions f(x1, . . . , xn) =
∧

i∈I yi where
I ⊆ [n] and each literal yi is either just xi or ¬xi e.g., f(x1, . . . , xn) = x1 ∧ ¬x3 ∧ ¬x7 · · · ∧ xn−1.
Whereas prior work of Brakerski and Rothblum (CRYPTO 2013) showed how to achieve this using a
non-standard object called cryptographic multilinear maps, our scheme is based on an “entropic” variant
of the Ring Learning with Errors (Ring LWE) assumption. As our core tool, we prove that hardness
assumptions on the recent multilinear map construction of Gentry, Gorbunov and Halevi (TCC 2015) can
be established based on entropic Ring LWE. We view this as a first step towards proving the security of
additional multilinear map based constructions, and in particular program obfuscators, under standard
assumptions.

Our scheme satisfies virtual black box (VBB) security, meaning that the obfuscated program reveals
nothing more than black-box access to f as an oracle, at least as long as (essentially) the conjunction is
chosen from a distribution having sufficient entropy.
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1 Introduction

Program Obfuscation [6, 24, 4, 19] is a central cryptographic primitive which enables one to “encrypt”
a program in a way that preserves its input-output behavior, yet hides its inner workings. There are
several definitions of what it means to “hide the inner workings” of a program, including the virtual
black-box definition and the weaker indistinguishability obfuscation definition of Barak et al. [4]. Rather
unfortunately, Barak et al. also showed that general purpose virtual black-box obfuscation is unachievable.
Still, notwithstanding the bleak outlook projected by this result, several positive results for obfuscation have
emerged recently.

In particular, several specific and useful classes of functions have been shown to be virtual black-
box obfuscatable. This includes constructions of point function obfuscators either in the random oracle
model [6, 29] or assuming exponentially strong one-way functions [34], hyperplane obfuscators assuming
strong DDH [7], and very recently conjunction obfuscators and average-case evasive function obfuscators
under strong assumptions on multilinear maps [5, 3]. Weakening the definition of obfuscation to an
indistinguishability-based notion [4, 23] (called IO obfuscation), Garg, Gentry, Halevi, Raykova, Sahai and
Waters [19] showed how to IO-obfuscate any family of polynomial-size circuits.

In this work, we address the question of whether VBB obfuscation of advanced functionalities can be
based on standard assumptions. Our contribution is the construction of an average-case virtual black-box
obfuscator for conjunctions assuming an entropic version of the Ring learning with errors (Ring LWE)
assumption. Our construction uses the techniques of [5] and the recent multilinear map candidate of Gentry,
Gorbunov and Halevi [20]. Our main contribution is the first proof technique for a non-trivial obfuscator
under an assumption related to a standard and well-studied problem (namely, a generalization of Ring LWE
to entropic secrets).

Conjunctions. We define conjunctions as functions of the form f(x1, . . . , xn) =
∧
i∈I yi with literals yi

being either xi or ¬xi and I ⊆ [n]. Alternatively we can think of this as checking that the values xi : i ∈ I
match some fixed pattern while values outside of I can be arbitrary. Perhaps the simplest way to represent
conjunctions, which we will use by default in this work, is as a vector v ∈ {0, 1, ?}n where we define
Fv(x1, . . . , xn) = 1 iff for all i ∈ [n] we have xi = vi or vi = ?. We refer to ? as a “wildcard”.

Conjunction Obfuscation. A conjunction obfuscator takes as input a conjunction function Fv and outputs
an obfuscated program Πv such that Πv(x) = Fv(x) for all x. Our goal is to achieve virtual black box (VBB)
security which says that the code of the program Πv reveals no more information than having black-box
access to an oracle for the function Fv. We relax this requirement by considering a distributional VBB
security, where we only require the above to hold when v is chosen from a distribution that has sufficient
entropy, even when conditioned on the wildcard locations {i : vi = ?}.
Our Results and Assumption. We show how to obfuscate conjunctions with distributional VBB security
under a variant of the Ring LWE assumption, which we call entropic Ring LWE.

The Ring LWE assumption (for a ring R) says that, when s ∈ R is a random secret ring element then
(A, sA + e) is indistinguishable from uniform, where A ∈ Rm is random and e ∈ Rm is a short Gaussian
error. The entropic Ring LWE assumption says that, when s1, . . . , sn ∈ R are random (short) public ring
elements and x ∈ {0, 1}n is a secret bit-vector chosen from a high entropy distribution, then the Ring LWE
assumption holds with s =

∏
i s
xi
i as the secret. See Definition 2.7 for a precise statement.

1.1 Our Techniques

Directed Encoding. We rely on (a special case of) the construction of [20] which can be thought of as a
variant of a multilinear map, that we call a directed encoding. For public keys A,A′ ∈ Rm, we define an
encoding of a short ring element s ∈ R under A→ A′ as a short matrix R ∈ Rm×m such that

AR = sA′ + e

where e is short Gaussian error. This allows us to multiply encodings R× = R1 ·R2 so that, if R1 is an
encoding of s1 under A0 → A1 and R2 is an encoding of s2 under A1 → A2 then R× is an encoding of
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s1 · s2 under A0 → A2.
Furthermore, we can detect if a value R is an encoding of 0 under A→ A′ by checking whether AR is

short. This also allows us to check for equality of encoded values.

Conjunction Obfuscator Construction. To obfuscate a conjunction Fv with v ∈ {0, 1, ?}` we do the
following:

• Choose random short ring elements {si,b, ri,b : i ∈ [`], b ∈ {0, 1}} subject to si,0 = si,1 if vi = ?.

• Create encodings Ri,b of ri,b and encodings Si,b of ri,b · si,b under Ai−1 → Ai.

• Choose random short ring element r`+1. Create the encodings R`+1 of r`+1 and S`+1 of r`+1 ·
∏`
i=1 si,vi

where we let si,? = si,0 = si,1 when vi = ?. These encodings are under A` → A`+1.

Set the obfuscated program to be

Πv = ({Si,b, Ri,b}i∈[`],b∈{0,1}, R`+1, S`+1)

To evaluate Πv on an input x ∈ {0, 1}` we compute

S∗ =

(∏̀
i=1

Si,xi

)
R`+1 , R∗ =

(∏̀
i=1

Ri,xi

)
S`+1

If Fv(x) = 1 then both S∗ and R∗ are encodings of the same value r`+1

∏`
i=1 si,vi under A0 → A`+1 and

if Fv(x) = 0 then S∗, R∗ are extremely unlikely to encode the same value. Therefore, we can compute the
output of the program by testing for equality of encoded values.

To argue security, we rely on (entropic) Ring LWE to replace the components of the program Πv by
random elements independent of v. As an important step of the proof, we show that the encodings satisfy a
decisional Diffie Hellman (DDH) like security property: Given the encodings of ring elements r0, r0s0, r1, r1s1

under A→ A′, one cannot distinguish whether s0 = s1 or whether s0, s1 are independent.

The Directed Encoding Abstraction. In the body of the paper, we present the construction through
the abstraction of directed encoding schemes (as opposed to directly, starting from Ring LWE, as above).
As Halevi recently observed [25], we still lack a commonly accepted syntax for describing the intended
functionality of multi-linear maps as well as a succinct description of the underlying hardness assumptions,
along with a candidate that realizes the functionality and the hardness assumptions under simple and
plausible intractability assumptions. We view our abstraction of directed encodings as an important step in
that direction. We adopt the syntax and the candidate for directed encodings from [20]; the novelty of this
work lies in (i) putting forth concrete hardness assumptions about directed encodings, (ii) showing that the
functionality and these hardness assumptions for directed encodings already suffices for the application to
obfuscating conjunctions as in [5], and most importantly, (iii) demonstrating a reduction of these hardness
assumptions to standard ring LWE assumptions and a simple and plausible strengthening there-of.

1.2 Discussion

All of the known approaches for obfuscation beyond point functions rely on multi-linear maps. A crucial
theoretical limitation of these approaches is that they all rely on non-standard assumptions; we have few
candidates for multi-linear maps [18, 12, 20, 13] and the corresponding assumptions are presently poorly
understood and not extensively studied in cryptanalysis, and in many cases, broken [8, 11, 28, 9, 32, 10].
Indeed, these latter attacks highlight the importance of obtaining constructions and developing techniques
that work under standard cryptographic assumptions, as is the focus of this work.

Our work may be viewed as taking a step towards basing obfuscation on standard assumptions, starting
with conjunctions, which is an important special case of evasive functions, namely functions for which it
is hard to find an input that evaluates to 0. As articulated by Badrinarayanan et al. [2], we can hope to
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obfuscate the class of evasive functions in a way that survives “all known attacks” on the multilinear maps,
where no encodings of 0 can be created by a generic-model adversary. The reason this is meaningful is that
all of the recent attacks on candidate multi-linear maps rely crucially on the ability of the adversary to create
encodings of 0. We leave as an important open problem to extend our construction to the class of all evasive
functions.

On the Entropic Ring LWE Assumption. A few works have studied entropic variants of the LWE
assumption. Goldwasser, Kalai, Peikert and Vaikuntanathan [22] showed that, roughly speaking, LWE with
n-dimensional secrets over Zq drawn from a distribution with min-entropy k is at least as hard as LWE with
uniformly random secrets in O(k/ log q) dimensions. However, such a result is not known for Ring LWE to
the best of our knowledge. Another source of difficulty is that the min-entropy of our secrets is o(log q),
much too small for the results in [22] to be applicable, even if they do extend to the Ring LWE setting.

We view the question of understanding the entropic ring LWE assumption, both in the [22] range of
parameters (namely, k = ω(log q)) as well as our more aggressive range of parameters (namely, k = o(log q))
to be very interesting questions for future research, with many potential applications.

On Coron’s Attack. Coron [10] recently came up with an attack against the multiparty key exchange
protocol based on the GGH15 encoding scheme [20]. This attack relies on extraneous properties of the
key-agreement protocol of GGH15 (which had no security reduction) and does not seem to contain any new
insights that could be leveraged to attack the Ring-LWE assumption or its entropic variant on which our
scheme is based. In a bit more detail, Coron’s attack relies on the adversary being able to obtain many
“encodings” of 0, a “feature” that is inherent to the key exchange protocol, but not present in our scheme.
Indeed, we believe the attack only strengthens the premise of our paper, which focuses on provable security
under a (almost) standard assumption, namely an entropic variant of Ring-LWE.

Organization of the Paper. We present an abstract framework for the syntax of directed encodings and
its underlying assumptions in Section 3, and its instantiation in Section 4. In particular, the hardness
assumptions are presented in Sections 3.1 (abstract) and 4.3 (concrete). We present our conjunction
obfuscator in Section 5 relying only on our abstract framework.

2 Preliminaries

2.1 Average Min-Entropy

We use information theoretic tools similar to those in [5].

Definition 2.1 (average min-entropy [15]). Let X and Z be (possibly dependent) random variables, the
average min entropy of X conditioned on Z is:

H̃∞(X|Z) = − log

(
E

z←Z

[
2−H∞(X|Z=z)

])
.

Lemma 2.1 ([15]). Let X,Y, Z be (possibly dependent) random variables, where the support of Z is of size

≤ 2`. Then H̃∞(X|Y, Z) ≥ H̃∞(X|Y )− `.

2.2 Distributional VBB Obfuscation

The notion of obfuscation discussed in this paper is distributional (or average case) VBB [16, 27, 26, 4],
defined as follows.

Definition 2.2 (Distributional VBB). Consider a circuit family C = {Cn}n∈N with input size n and let Obf
be a p.p.t. algorithm, which takes as input a circuit C ∈ C, a security parameter λ ∈ N, and outputs a
boolean circuit Obf(1λ, C) (which is itself not necessarily in C). Let D be a class of distribution ensembles
D = {Dλ}λ∈N that sample (C, aux)← Dλ with C ∈ C.

Obf is an obfuscator for the distribution class D over the circuit family C, if it satisfies the following
properties:
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1. Preserving Functionality: There is some negligible function ν(λ) = negl(λ) such that for all circuits
C ∈ C we have Pr[∀x ∈ {0, 1}n : C(x) = Obf(1λ, C)(x)] ≥ 1− ν(λ), where the probability is over the
coin tosses of Obf.

2. Polynomial Slowdown: For every λ ∈ N and C ∈ C, the circuit Obf(1λ, C) is of size at most poly(|C|, λ).

3. Distributional Virtual Black-Box: For every (non-uniform) polynomial size adversary Adv, there exists
a (non-uniform) polynomial size simulator Sim, such that for every distribution ensemble D = {Dλ} ∈
D, and every (non-uniform) polynomial size predicate P : C → {0, 1}:∣∣∣ Pr

(C,aux)∼Dλ,Obf,Adv
[Adv(Obf(1λ, C), aux) = P (C)]− Pr

(C,aux)∼Dλ,Sim
[SimC(1λ, 1|C|, aux) = P (C)]

∣∣∣ = negl(λ)

2.3 Conjunctions and Conjunction Obfuscators

The class of conjunctions Cconj = {Cconjn }n∈N is defined as Cconjn = {Fv : {0, 1}n → {0, 1}}v∈{0,1,?}n where, for

every v = (v1, . . . , vn) ∈ {0, 1, ?}n and input x = (x1, . . . , xn) ∈ {0, 1}n

Fv(x) = 1 if and only if for all i ∈ [n], vi = ? or xi = vi

As an abuse of notation, we also use Fv denote the canonical circuit representation of the function Fv, from
which it is easy to recover the value v.

We can define the set w = {i : vi = ?} corresponding to the “wildcard locations”. The classes of
conjunctions we are able to obfuscate are those where there is sufficient entropy in v, even when w is fully
known. The following definition is adapted from [5] to also handle auxiliary input.

Definition 2.3 (Entropy Given Wildcards). Let D = {Dλ} be a distribution ensemble that samples

(Fv, aux)← Dλ with Fv ∈ Cconjn(λ) for some polynomial n(·). We say that D has α(λ) entropy given wildcards

if H̃∞(v|w, aux) ≥ α(λ) where (Fv, aux)← Dλ and w = {i : vi = ?}.
We let Dα denote the class of all efficiently samplable distribution ensembles D = {Dλ} such that D has

α(λ)-entropy given wildcards.

Definition 2.4. We say that Obf is a α(λ)-distributional VBB obfuscator for conjunctions if it is a
distributional VBB obfuscator for the class Dα consisting of all distribution ensembles D such that D has
α(λ) entropy given wildcards.

We mention an alternate definition of obfuscation security that we call α(λ)-entropic security.

Definition 2.5. A conjunction obfuscator Obf satisfies α(λ)-entropic security if there exists a polynomial-
size simulator Sim such that for all efficiently samplable distributions D ∈ Dα that have α(λ)-entropy given
wildcards, we have

(Obf(1λ, Fv), aux)
c
≈ (Sim(1λ, 1|v|), aux).

where (Fv, aux)← Dλ.

Note that, in the above definition, the simulator does not depend on the distribution D and therefore,
we can think of this definition as saying that the obfuscation hides all properties of the distribution. Also
note that the simulator here does not get any oracle access to Fv and therefore does not learn anything at
all. As such it’s clear that such a definition cannot be achieved for general circuits (where oracle access to
the circuit can provide some useful information) but it does make sense for evasive functions.

2.3.1 A Lemma on Entropic Security and Distributional VBB

Lemma 2.2. If a conjunction obfuscator Obf satisfies the functionality preserving and polynomial slowdown
properties and has α(λ)-entropic security, then it is an (α(λ) + 1)-distributional VBB obfuscator for
conjunctions.
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Proof. Let Obf be an obfuscator satisfying α(λ)-entropic security with simulator Sim′. Let D = {Dλ} be any
efficiently samplable distribution having α(λ) + 1 entropy given wildcards, meaning that for (Fv, aux)← Dλ

we have H̃∞(v|aux, w) ≥ α(λ) where w = {i : vi = ?}. Furthermore, there is some polynomial n(λ) such
that (Fv, aux)← Dλ has |v| = n(λ). For polynomial size adversary Adv, define a (non-uniform) polynomial
size simulator SimAdv(1

λ, 1n) = Adv(Sim′(1λ, 1n)).
Let P : Cconj → {0, 1} be any polynomial-size predicate. Define the efficiently samplable distribution

D′ = {D′λ} that samples (v, aux′)← D′λ by choosing (Fv, aux)← Dλ and setting aux′ = (aux, P (Fv)). Then,
by applying Lemma 2.1,

H̃∞(v|aux′, w) = H̃∞(v|aux, w, P (Fv))

≥ H̃∞(v|aux, w)− 1 ≥ α(λ).

Therefore, by α(λ)-entropic security, we have

(Obf(1λ, Fv), aux, P (Fv))
c
≈ (Sim′(1λ, 1n), aux, P (Fv))

when (v, aux′ = (aux, P (Fv)))← D′λ. In particular, this means that∣∣∣ Pr
(Fv,aux)∼Dλ

[Adv(Obf(1λ, Fv), aux) = P (Fv)]− Pr
(Fv,aux)∼Dλ

[Adv(Sim′(1λ, 1|v|), aux) = P (Fv)]
∣∣∣ = negl(λ)

by recalling that SimAdv(1
λ, 1n) = Adv(Sim′(1λ, 1n)) we get the proof of the lemma.

2.4 Lattice Preliminaries

For a vector x, we let ||x|| denote its `2 norm and ||x||∞ denote its infinity norm. For a matrix R ∈ Zm×m
we define ||R||| (resp. ||R||∞) as the `2 (resp. infinity) length of the longest column of R. Let DZm,σ be
the truncated discrete Gaussian distribution over Zm with parameter σ, that is, we replace the output by 0
whenever the || · ||∞ norm exceeds

√
m · σ (this is statistically close to the discrete Gaussian distribution

with parameter σ as long as m = ω(log λ)).

Lemma 2.3 (Lattice Trapdoors [1, 21, 31]). There is an efficient randomized algorithm TrapSamp(1n, 1m, q)
that, given any integers n ≥ 1, q ≥ 2, and sufficiently large m = Ω(n log q), outputs a matrix A ∈ Zn×mq and
a trapdoor matrix T ∈ Zm×m such that the distribution of A is negl(n)-close to uniform.

Moreover, there is an efficient algorithm GaussSamp that with overwhelming probability over all random
choices, does the following: For any u ∈ Znq , and large enough s = Ω(

√
n log q), the randomized procedure

GaussSamp(A,T,u, s) outputs a vector r ∈ Zm with norm ||r||∞ ≤ ||r||2 ≤ s
√
n (with probability 1).

Furthermore, the following distributions of the tuple (A,T,U,R) are within negl(n) statistical distance of
each other for any polynomial k ∈ N:

• (A,T)← TrapSamp(1n, 1m, q); U← Zn×kq ; R← GaussSamp(A,T,U, s).

• (A,T)← TrapSamp(1n, 1m, q); R← (DZm,s)
k; U := AR (mod q).

This also extends to the ring setting with A ∈ Rmq ,T ∈ Rm×m,U ∈ Rk,R ∈ Rm×k.

Lemma 2.4 (“Noise smudging” [14]). Let β > 0 and y ∈ Z be arbitrary. Then, the statistical distance
between the distributions DZ,β and DZ,β+y is at most |y|/βq.

The lemma below (restated from [33, Lemma 10]) states that most “small” polynomials are units in the
ring Rq = Zq[x]/(xn + 1).

Lemma 2.5. Let n ≥ 8 be a power of 2 such that xn+1 splits into n linear factors modulo prime 2n ≥ q ≥ 5.
(In particular, setting q = 1 (mod 2n) satisfies this condition). Let σ = Ω(

√
n log q log n). Then,

Pr[s← DZn,σ : s /∈ R×q ] = O(n/q)

5



2.5 The Ring Learning with Errors Problem

We start by defining a simple special case of the ring LWE problem [30]. We define the operator MakePoly
such that for all rings R, if a ∈ Rn, then MakePoly(a) ∈ R[x] is the polynomial whose coefficients are the
elements of a. If D is a distribution over Rn then MakePoly(D) is the respective distribution over R[x].

Definition 2.6. Let n be a power of 2, and let R = Z[x]/〈xn + 1〉. Let q be such that q ≡ 1 (mod 2n) and
define Rq = R/qR. Let m ∈ N and let χ be a distribution over the integers. The PLWEn,m,q,χ problem is the

problem of distinguishing {(ai, ai ·s+ei (mod xn+1, q))}i∈[m] from {(ai, ui)}i∈[m], where s
$← MakePoly(χn),

ai
$← MakePoly(Znq ), ei

$← MakePoly(χn), ui
$← MakePoly(Znq ).

The following is an immediate corollary from [17], together with a standard Hermite Normal Form
reduction, see e.g. [30].

Corollary 2.6. Let n,m, q be as in Definition 2.6 above. Then for all B ≥
√
n·(nm/ log(nm))1/4 ·ω(

√
log n),

there exists a B-bounded distribution χ such that PLWEn,m,q,χ is at least as hard as quantumly approximating

the shortest vector in worst case ideal lattice over Z[ζ2n] to within Õ
(
n · (nm/ log(nm))1/4 · (q/B)

)
factor.

We also define an entropic version of the problem as follows.

Definition 2.7 (α-entropic PLWE). Let n,m, q, χ be parameters of λ and Rq be as in Definition 2.6, and
let D = {Dλ} be an efficiently samplable distribution with (x, z)← Dλ having x ∈ {0, 1}` for some ` = `(λ)

and H̃∞(x|z) ≥ α(λ). The α-entropic PLWEn,m,q,χ problem is to distinguish(
{sj}j∈[`], z, {(ai, ai · s+ ei)}i∈[m]

)
from

(
{sj}j∈[`], z, {(ai, ui)}i∈[m]

)
,

where sj
$← MakePoly(χn), we let (x, z)

$← D and set s =
∏
j∈[`] s

xj
j , and as above ai

$← MakePoly(Znq ),

ei
$← MakePoly(χn), ui

$← MakePoly(Znq ). All operations are over the ring Rq.

3 Directed Encoding Schemes

Directed encoding schemes are a special case of graph-induced multi-linear maps of Gentry, Gorbunov and
Halevi [20], specialized to a line. Let RM be a ring. In this section, we present an abstract framework for the
syntax of directed encodings and its underlying assumptions, and we describe our instantiation in Section 4.

Definition 3.1 (Directed encoding scheme). A directed encoding scheme associated with a message space
M⊆ RM is a tuple of p.p.t. algorithms (Setup,Encode,REncode,Mult,EqualTest) which work as follows.

• Setup(1λ, 1L), on input a security parameter λ and an upper-bound L on the number of levels, generates
a public key PK and a private encoding key EK.

• EncodePK0→PK1
(EK0, s), on input a “source” key-pair (PK0,EK0), a “target” public key PK1, and a

message m ∈M, outputs an encoding c.

• REncodePK0→PK1(1λ), on input a “source” public key PK0 and a “target” public key PK1, outputs an
encoding c.

• EqualTestPK0→PK1
(c0, c1), on input two public keys PK0 and PK1, and two encodings c0, c1, outputs a

bit b (signifying accept or reject).

• Mult(c1, c2), on input two encodings c1, c2, outputs an encoding c×.

We also extend Mult to handle multiple encodings in the natural way:

Mult(c1, c2, c3, . . .) = Mult(c1,Mult(c2,Mult(c3, . . . ))).

Informally, correctness stipulates that the encodings uniquely determine the underlying message, and that
we can multiply up to L encodings.
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Figure 1: The experiments expgxdh and exprand in the SXDH security game. See Definition 1.

expgxdh(1λ, 1L): exprand(1λ, 1L):

1: (PK0,EK0)← Setup(1λ, 1L);
2: (PK1,EK1)← Setup(1λ, 1L);
3: r0, r1, s← DM ;
4: cb ← EncodePK0→PK1

(EK0, rb);
5: db ← EncodePK0→PK1(EK0, s · rb);
6: Output (PK0,PK1,EK0, c0, c1, d0, d1).

1: (PK0,EK0)← Setup(1λ, 1L);
2: (PK1,EK1)← Setup(1λ, 1L);
3:

4: cb, db ← REncodePK0→PK1
(1λ);

5:

6: Output (PK0,PK1,EK0, c0, c1, d0, d1).

Remark 3.1. We could extend this by an “addition” operation or adding a zero test capability, but we don’t
need it here.

Correctness. We write Mi = {s1s2 · · · si : s1, s2, . . . , si ∈ M}. We require the following correctness
properties from the scheme to hold with probability 1−negl(λ) over (PK0,EK0), (PK1,EK1), (PK2,EK2). For

each s ∈ML, there exists a family of sets E(1)
PK0,PK1,s

, . . . , E(L)
PK0,PK1,s

where E(1)
PK0,PK1,s

⊆ · · · ⊆ E(L)
PK0,PK1,s

such
that:

• For all s ∈M, EncodePK0→PK1
(EK0, s) ∈ E(1)

PK0,PK1,s
.

• For all s1, s2 ∈ ML and all (c1, c2) ∈ E(L)
PK0,PK1,s1

× E(L)
PK0,PK1,s2

, we have EqualTestPK0→PK1
(c1, c2) = 1

iff s1 = s2.

• For all i, j for which i + j ≤ L, for all (s1, s2) ∈ Mi ×Mj and all (c1, c2) ∈ E(i)
PK0,PK1,s1

× E(j)
PK1,PK2,s2

we have Mult(c1, c2) ∈ E(i+j)
PK0,PK2,s1s2

.

Note that there is no correctness requirement for “malformed encodings” that do not belong to some

E(L)
PK0,PK1,s

.

3.1 Security Assumptions

For the security properties, we define an efficiently samplable distribution DM over M. We require the
following security properties from the encoding scheme.

Property 1 (Graded External DH). For every polynomial L = L(λ) the following experiments expgxdh(1λ, 1L(λ))
and exprand(1λ, 1L(λ)) should produce indistinguishable outputs.

We can also define two special sub-cases of the GXDH assumption which are already useful. We define
the 2-element GXDH, denoted GXDH-2, the same way as above but modify the experiments expgxdh, exprand

to only output (PK0,PK1,EK0, c0, d0). We also define the 1-element GXDH, denoted GXDH-1, the same
way as above but modify expgxdh and exprand to only output (PK0,PK1,EK0, c0). The following is clear.

Proposition 3.1. The GXDH security property implies GXDH-2 and GXDH-1.

Our second assumption is entropic security which is similar in spirit to, but weaker than, the “GCAN”
assumption from [5]. In the GCAN assumption on multilinear maps, the adversary was given access to
the complete encoding parameters of the scheme (which roughly correspond to the encoding keys EK0 and
EK1 below). However, in our setting this assumption is seems too strong and quite possibly incorrect. We
thus notice that so long as the adversary is unable to obtain the encoding key EK1 for the “target”, we can
establish security based on entropic RLWE (see Section 4.3) and this is in fact sufficient for our construction
(see Section 5).

7



Property 2 (α-Entropic Security). For a parameter α = α(λ), we say that the encoding scheme is α-entropic
secure if for all polynomial ` = `(λ), L = L(λ) and all efficiently samplable distributions D = {Dλ}λ∈N
such that (x, z) ← Dλ contains x ∈ {0, 1}`(λ) and H̃∞(x|z) ≥ α(λ) the following two distributions are
computationally indistinguishable:(

PK0,PK1,EK0, z, s1, s2, . . . , s`, c← EncodePK0→PK1
(EK0, sx)

)
and(
PK0,PK1,EK0, z, s1, s2, . . . , s`, c← REncodePK0→PK1

(1λ)

)
,

where (PK0,EK0) ← Setup(1λ, 1L), (PK1,EK1) ← Setup(1λ, 1L), s1, s2, . . . , s` ← DM , (x, z) ← Dλ and

sx =
∏`
i=1 s

xi
i .

4 An Instantiation of a Directed Encoding Scheme

LetR be a degree-n number ring Z[x]/(f(x)) for some degree-n polynomial f(x). (We will be mostly agnostic
of the specifics of what f(x) is, but encourage the reader to think of a cyclotomic polynomial f(x) = xn + 1
where n is a power of two.) Let q be a rational prime, and Rq = R/qR be the quotient ring. Let σ ∈ R+ be
the Gaussian standard deviation parameter.

4.1 The Encoding Scheme

• Setup(1λ, 1L) runs (A,T)← TrapSamp(1λ) and outputs

(PK,EK) = (A,T) ∈ Rmq ×Rm×m.

Set
n = Θ(Lλ log(Lλ)), m = Θ(nL log q),

q = (Lλ)Θ(L), σ = Θ(
√
nL log q)

• M = {s ∈ R : ‖s‖∞ ≤ m}.

• EncodeA0→A1(s; T0), where
(A0,T0), (A1,T1)← Setup(1λ) and s ∈ R, works as follows.

– Compute b1 = sA1 + e1 ∈ Rmq , where e1 ← DRm,σ.

– Output a matrix R0→1 ← GaussSamp(A0,b1; T0;σ).

We note that R0→1 ∈ Rm×m and

A0R0→1 = b1 = sA1 + e1 (over Rq)

• REncodeA0→A1(1λ) is the public encoding procedure that simply samples a matrix R0→1 ← Dm×m
Zn,σ .

• Mult(R,R′) = RR′, where multiplication is done over Rq.

• EqualTestA0→A1
(R0,R1) outputs “yes” if

‖A0(R0 −R1)‖∞ ≤ q/8

and “no” otherwise. (Note that this procedure does not depend on A1 at all.)

As remarked above, we never use addition or extraction, in contrast to the encoding schemes of [18, 12,
13, 20].
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4.2 Correctness of the Encoding Scheme

Fix A0,A1 ∈ Rmq throughout. We define

E(i)
A0,A1,s

= {R : ‖R‖∞ ≤ 2i−1mi}

and
‖A0R− sA1‖∞ ≤ 2i−1mi}

First, it is easy to check that the output of EncodeA0→A1
(s; T0) lies in E(1)

A0,A1,s
. We then establish correctness

in the following lemmas:

Lemma 4.1 (Correctness of EqualTest). Suppose q ≥ 16LmL. Then, for any R0 ∈ E(L)
A0,A1,s0

,R1 ∈ E(L)
A0,A1,s1

,
we have

‖A0(R0 −R1)‖∞ ≤ q/8 iff s0 = s1.

Proof. The direction ⇐ is straight-forward. Now, suppose s0 6= s1. Then, we have

‖A0(R0 −R1)‖∞ ≥ ‖(s0 − s1)A1‖∞ − 2m2L > q/8

The last line holds since, with overwhelming probability over the choice of A1, it holds that for all s 6= 0,
‖sA1‖∞ > q/4.

Lemma 4.2 (Correctness of Mult). For all i, j for which i + j ≤ L, for all (s1, s2) ∈ Mi ×Mj and all

(c1, c2) ∈ E(i)
PK0,PK1,s1

× E(j)
PK1,PK2,s2

we have Mult(c1, c2) ∈ E(i+j)
PK0,PK2,s1s2

Proof. First, observe that
‖R0R1‖∞ ≤ ‖R0‖∞ ‖R1‖∞ ≤ 2i+j−1mi+j .

Now, write A0R0 = s0A1 + e0 and A1R1 = s1A1 + e1. Let us unfold the expression A0 ·R0R1:

A0 ·R0R1 = (s0A1 + e0)R1 rewriting A0R0

= s0(s1A2 + e1) + e0R1 rewriting A1R1

= s0s1A2 + e0R1 + s0e1

Hence,

‖A0 ·R0R1 − s0s1A2‖∞ = ‖e0R1 + s0e1‖∞ ≤ 2i+j−1mi+j

where we used the bounds
‖e0‖∞ ≤ 2i−1mi, ‖R1‖∞ ≤ 2j−1mj ,

‖s0‖∞ ≤ m
i, ‖e1‖∞ ≤ 2j−1mj

4.3 Security of the Encoding Scheme

We prove the security properties of our encoding scheme (see Section 3.1) under the PLWE and the entropic
PLWE assumption (see Section 2.5). These security properties are essentially analogous to the GXDH and
GCAN assumptions from the work of Brakerski and Rothblum [5]. However, the key novelty in this work is
that we are able to establish these security properties based on the hardness of problems relating to learning
with errors over rings [30].

Lemma 4.3 (Graded External Diffie-Hellman).
Let n be a power of 2, and let R = Z[x]/〈xn + 1〉. Let q = 2ω(log λ) be such that q ≡ 1 (mod 2n) and
define Rq = R/qR. Let m ∈ N and let χ be a distribution over the integers. Then, our encoding scheme
satisfies the Graded external Diffie-Hellman (GXDH) property (Property 1) assuming the hardness of the
PLWEn,m,q,χ problem (Definition 2.6).
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Proof. We first show that the distributions(
A1,r0A1 + e0, r1A1 + e1, sr0A1 + e′0, sr1A1 + e′1

)
(1)

and

(
A1,U0,U1,U

′
0,U

′
1

)
(2)

are computationally indistinguishable under PLWE, where (Ab,Tb) ← TrapSamp(1λ), eb, e
′
b ← DRm,σ,

s, r0, r1 ← RM (the message space), and Ub,U
′
b ← Rm (uniformly chosen from the ring).

We show the indistinguishability of (1) and (2) through a sequence of hybrid distributions.

Hybrid 1 is distribution (1).

Hybrid 2. This is the distribution(
A1,r0A1 + e0, r1A1 + e1, s · (r0A1 + e0) + e′0,

s · (r1A1 + e1) + e′1

)
where e1 ← DRm,σ and e′1 ← DRm,σ′ .

Hybrids 1 and 2 are statistically indistinguishable assuming that σ′ = ω(log λ) · ||s||∞ ·σ (by Lemma 2.4).
Roughly speaking, the only difference between hybrids 1 and 2 is in the noise distribution of the last two
PLWE samples, where in the former, the noise is drawn from DRm,σ′ , and in the latter, they are computed
as seb+e′b. If the magnitude of the noise terms e′b is much larger than the norm of seb, by “noise smudging”
(Lemma 2.4), these two distributions have statistical distance negl(λ).

Hybrid 3. This is the distribution (
A1,U0,U1, sU0 + e′0, sU1 + e′1

)
where e′1 ← DRm,σ′ . Hybrids 2 and 3 are computationally indistinguishable under the PLWEn,m,q,σ
assumption.

Hybrid 4 is distribution (2). That is, (
A1,U0,U1,U

′
0,U

′
1

)
Hybrids 3 and 4 are computationally indistinguishable under the PLWEn,m,q,σ′ assumption.

To finish the proof, note that the indistinguishability of distributions 1 and 2 immediately imply the
indistinguishability of the following two distributions(

A0,T0,A1,GaussSamp(A0, rbA1 + eb; T0),GaussSamp(A0, srbA1 + e′b; T0)

)
≈c
(

A0,T0,A1,GaussSamp(A0,Ub; T0),GaussSamp(A0,U
′
b; T0)

)
≈s
(

A0,T0,A1,Rb,R
′
b

)
where Rb,R

′
b ← DRm,σ. Since this is exactly the distribution generated by REncode, this establishes

GXDH.

Entropic security of our encoding scheme follows directly from the entropic PLWE assumption. We state
the lemma below.
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Lemma 4.4 (Entropic Security). Let n be a power of 2, and let R = Z[x]/〈xn+ 1〉. Let q = 2ω(log λ) be such
that q ≡ 1 (mod 2n) and define Rq = R/qR. Let m ∈ N and let χ be a distribution over the integers. Then,
for every α, our encoding scheme satisfies α-entropic security (Property 2) under the α-entropic PLWEn,m,q,χ
assumption (Definition 2.7).

5 The Conjunction Obfuscator

Let (Setup,Encode,Mult,EqualTest) be a directed encoding scheme with associated with a message space

M ⊆ RM for some ring RM , and a distribution DM over M. Given a conjunction Fv ∈ Cconj` represented
via a vector v ∈ {0, 1, ?}`, the obfuscator Πv ← Obf(1λ, Fv) proceeds as follows.

• Choose (PKi,EKi)← Setup(1λ, 1`+1)
for i ∈ {0, . . . , `+ 1}.

• Choose uniformly random si,b, ri,b ← DM for every i ∈ [`] and b ∈ {0, 1} subject to the condition that
for every i such that vi = ?, we set si,0 = si,1. For such positions i, we define si,? = si,0 = si,1.

• Compute Si,b = EncodePKi−1→PKi(EKi−1, si,bri,b) and Ri,b = EncodePKi−1→PKi(EKi−1, ri,b) for every
i ∈ [`] and b ∈ {0, 1}.

• Compute S`+1 = EncodePK`→PK`+1
(EK`, r`+1 ·

∏`
i=1 si,vi) and R`+1 = EncodePK`→PK`+1

(EK`, r`+1).

The description1 of the obfuscated program Πv consists of

Πv =

(
{PKi}i∈{0,...,`+1}, {Si,b, Ri,b}i∈[`],b∈{0,1}, S`+1, R`+1

)

The obfuscated program Πv, on input x ∈ {0, 1}`, proceeds as follows.

• Compute S∗ ← Mult(S1,x1
, S2,x2

, . . . , S`,x` , R`+1) and R∗ ← Mult(R1,x1
, R2,x2

, . . . , R`,x` , S`+1)

• Output whatever EqualTestPK0→PK`+1
(S∗, R∗) outputs.

Theorem 5.1 (Distributional virtual black-box). Based on the GXDH and the α(λ)-entropic security
properties on the directed encoding scheme, our obfuscator is an (α(λ) + 1)-distributional VBB obfuscator
for conjunctions (Definition 2.4).

We first prove that the obfuscator is functionality preserving. The polynomial slowdown property follows
directly by inspection.

Lemma 5.2 (Functionality). There is a negligible function ν(λ) such that, for every ` ∈ N and every
v ∈ {0, 1, ?}`:

Pr
[
∀x ∈ {0, 1}` : Πv(x) = Fv(x)

]
≥ 1− ν(λ).

where the probability is over Πv ← Obf(1λ, Fv).

Informally, functionality follows from the fact that with high probability,

Fv(x) = 1 ⇔ si,vi = si,xi ∀i ∈ [`] ⇔
∏
i∈[`]

si,vi =
∏
i∈[`]

si,xi

1It suffices to give out PK0,PK`+1 instead of (PK0, . . . ,PK`+1).
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Proof. Fix any ` ∈ N and v ∈ {0, 1, ?}` and x ∈ {0, 1}`. Let Πv ← Obf(1λ, Fv). During the evaluation of

the obfuscated program Πv on input x the values S∗, R∗ that are computed satisfy S∗ ∈ E(`+1)
PK0,PK`+1,s∗

and

R∗ ∈ E(`+1)
PK0,PK`+1,r∗

where

s∗ = r`+1

∏̀
i=1

si,xiri,xi and r∗ = r`+1

∏̀
i=1

si,viri,xi

The program outputs 1 iff EqualTestPK0→PK`+1
(S∗, R∗) = 1 which, by the correctness of the encoding scheme,

happens iff s∗ = r∗. This happens with probability 1 if Fv(x) = 1 and therefore correctness always holds in
this case. On the other hand, if Fv(x) = 0 then let j be some index such that vj 6= ? and xj 6= vj . We have

Pr[Fv(x) 6= Πv(x)] = Pr
{si,b,ri,b},r`+1

[r`+1

∏̀
i=1

si,xiri,xi = r`+1

∏̀
i=1

si,viri,xi ]

≤ Pr[NotInv] + Pr
sj,xj

[sj,xj = z]

where NotInv is the event that one of ri,b, si,b, r`+1 (other than sj,xj ) is non-invertible and z =
∏
i 6=j si,vi/si,xi .

By lemma 2.5, we can bound the first probability by poly(λ)/q and the second probability is ≤ 2−H∞(DM ) ≤
1/q. By our choice of q, this is ≤ 2−`ν(λ) for some negligible ν(λ). Taking a union bound over all x ∈ {0, 1}`,
we get

Pr[∀x ∈ {0, 1}` : Πv(x) = Fv(x)] ≥ 1− ν(λ)

which proves the lemma.

Next we prove that the obfuscator is secure. It suffices to prove that the obfuscator satisfies α(λ)-entropic
security (Definition 2.5), as we can then rely on Lemma 2.2 to argue that this implies (α(λ)+1)-distributional
VBB security.

Lemma 5.3 (Security). Based on the GXDH and α(λ)-entropic security properties of the directed encoding
scheme, our obfuscator satisfies α(λ)-entropic security (Definition 2.5).

Proof. The simulator Sim(1λ, 1`) chooses (PKi,EKi) ← Setup(1λ, 1`+1) for i ∈ {0, . . . , ` + 1}. It chooses

S̃i,b ← REncodePKi−1→PKi(), R̃i,b ← REncodePKi−1→PKi() for i ∈ [` + 1]. Finally it outputs the simulated

program Π̃ =
(
{PKi}i∈{0,...,`+1}, {S̃i,b, R̃i,b}i∈[`],b∈{0,1}, S̃`+1, R̃`+1

)
.

We want to show that, for any efficiently samplable distribution D = {Dλ} ∈ Dα having α(λ)-entropy

given wildcards, the real distribution (Πv, aux) is indistinguishable from the simulated (Π̃, aux) where

(Fv, aux)← Dλ, Πv ← Obf(1λ, Fv) and Π̃← Sim(1λ, 1`). We do so via a series of hybrids.

Hybrid 0. This is the real distribution (Πv, aux) consisting of:(
{PKi}i∈{0,...,`+1}, {Si,b, Ri,b}i∈[`],b∈{0,1}, S`+1, R`+1, aux

)
.

Hybrid 1. This is the distribution:(
{PKi}i∈{0,...,`+1}, {Si,b, Ri,b}i∈[`],b∈{0,1}, S̃`+1 , R`+1, aux

)
.

where everything is the same as in Hybrid 0 except that we now choose S̃`+1 ← REncodePK`→PK`+1
().

Lemma 5.4. Assuming α-entropic security of the encoding scheme, Hybrid 1 is indistinguishable from
Hybrid 0.
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Proof. Assume that a ppt adversary Adv can distinguish between Hybrid 0 and 1 with probability
ε(λ). By the α(λ)-entropic security of D we know that (Fv, aux)← Dλ satisfies H̃∞(v|aux, w) ≥ α(λ)
where w = {i : vi = ?}. Then we construct an efficiently samplable distribution D′ = {D′λ} such that

(x, z) ← D′λ satisfies H̃∞(x|z) ≥ α(λ) and a ppt adversary Adv′ that breaks entropic security of the
encoding with the distribution D′.

Define (x, z) ← D′λ where x ∈ {0, 1}2`+1 is chosen as follows. First, select (v, aux) ← Dλ and, for
i ∈ [`], set:

• x2i−1 := 1, x2i := 0 if vi = 0 or vi = ?

• x2i−1 := 0, x2i := 1 otherwise

Set x2`+1 := 1. The side information is going to be the z = (aux, w = {i : vi = ?}). Since v can be

recovered from x, z we have H̃∞(x|z) ≥ H̃∞(v|w, aux) ≥ α(λ).

The adversary Adv′ gets 2` + 1 random elements s̃1, . . . , s̃2`+1, keys PK,PK′,EK, side information
z = (aux, w) and an encoding c. It defines r`+1 = s̃2`+1 and:

• si,0 := s̃2i−1 and si,1 := s̃2i for i ∈ [`] \ w,

• si,0 := s̃2i−1, si,1 := s̃2i−1 for i ∈ w.

Note that this ensures that r`+1

∏
i∈[`] si,vi =

∏
i∈[2`+1] s̃

xi
i . The adversary Adv′ chooses (PKi,EKi)←

Setup(1λ, 1`+1) for i ∈ [`− 1] and sets PK` = PK, EK` = EK and PK`+1 = PK′. It chooses ri,b ← DM
i ∈ [`] b ∈ {0, 1} at random. It uses the above values to define Si,b, Ri,b, and R`+1 the same way as
the obfuscation scheme. Finally, it sets S`+1 := c. It then runs:

Adv

(
{PKi}i∈{0,...,`+1}, {Si,b, Ri,b}i∈[`],b∈{0,1}, S`+1, R`+1, aux

)
and outputs what it outputs.

It’s easy to see that if c← EncodePK→PK′(EK,
∏2`+1
i=1 s̃xii ) then this matches the distribution in Hybrid 0

while if c← REncodePK→PK′() then this matches the distribution of Hybrid 1. Therefore the advantage
of Adv′ in the in the entropic security game is the same as that of Adv in distinguishing Hybrids 0 and
1.

Hybrid 2. This is the distribution(
{PKi}i∈{0,...,`+1}, {Si,b, Ri,b}i∈[`],b∈{0,1}, S̃`+1, R̃`+1 , aux

)
.

where everything is the same as in Hybrid 1 except that we now choose R̃`+1 ← REncodePK`→PK`+1
().

Lemma 5.5. Hybrid 2 is indistinguishable from Hybrid 1 by GXDH-1 security of the encoding scheme.

Proof. Assume a ppt adversary Adv can distinguish Hybrids 1 and 2 with advantage ε. We construct
an adversary Adv′ that has advantage ε in the GXDH-1 security game.

The adversary Adv′(PK,PK′,EK, c) needs to distinguish between c← EncodePK→PK′(EK, r) where r ←
DM and c ← REncodePK→PK′(). It samples the distribution of Hybrid 1 by setting PK` := PK,
EK` := EK, PK`+1 := PK′ and R`+1 := c and otherwise selects the rest of the components as in Hybrid
1. Finally it runs Adv on the sampled values and outputs what it outputs.

It’s easy to see that if c← EncodePK→PK′(EK, r) where r ← DM then the above matches Hybrid 1, and
if c← REncodePK→PK′() then the above matches Hybrid 2. Therefore the advantage of Adv′ in the in
the GXDH-1 security game is the same as that of Adv in distinguishing Hybrids 1 and 2.
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Hybrid 3.j. For j ∈ {0, . . . , `} we define Hybrid 3.j as the distribution(
{PKi}i∈{0,...,`+1}, {Si,b, Ri,b}i∈[j],b∈{0,1}, {S̃i,b, R̃i,b}i∈{j+1,...,`},b∈{0,1} , S̃`+1, R̃`+1

)
where everything is the same as in Hybrid 2 except that we now choose R̃i,b, S̃i,b ← REncodePKi−1→PKi()
for i ∈ {j + 1, . . . , `}, b ∈ {0, 1}.

Note that Hybrid 3.` is the same as Hybrid 2 and Hybrid 3.0 is the same as (Π̃, aux) where Π̃ is the
simulated program . Therefore it suffices to prove the following.

Lemma 5.6. For all j ∈ [`] Hybrid 3.j is indistinguishable from Hybrid 3.(j−1) by the GXDH security
of the encoding scheme.

Proof. We first define an intermediate distribution Hybrid’ 3.j which is the same as Hybrid 3.j except
that when vj 6= ? then the values {Sj,b, Rj,b}b∈{0,1} are replaced by random {S̃j,b, R̃j,b}b∈{0,1}.
We claim that Hybrid 3.j and Hybrid’ 3.j are indistinguishable. In particular, if there is a ppt
adversary Adv that distinguishes Hybrid 3.j and Hybrid’ 3.j with advantage ε then we construct a ppt
adversary Adv′ with advantage ε in the GXDH problem. The adversary Adv′(PK,PK′,EK, c0, c1, d0, d1)
samples the distribution of Hybrid 3.j except that it sets PKj−1 := PK,EKj−1 := EK,PKj := PK′ and,
when vj 6= ?, it plugs in Rj,0 := c0, Rj,1 := c1, Sj,0 := d0, Sj,1 := d1. It then runs Adv on the sampled
distribution. It is easy to see that when Adv′ gets as input a GXDH tuple then the distribution it
samples matches Hybrid 3.j and else it matches Hybrid’ 3.j which proves the claim.

Next we define and intermediate distribution Hybrid” 3.j which is the same as Hybrid’ 3.j except that
when vj = ? then the values {Sj,0, Rj,0} are also replaced by random {S̃j,0, R̃j,0}.
We claim that Hybrid’ 3.j and Hybrid” 3.j are indistinguishable. In particular, if there is a ppt
distinguisher Adv that distinguishes Hybrid’ 3.j and Hybrid” 3.j with advantage ε then we construct a
ppt distinguisher Adv′ with advantage ε in the GXDH-2 problem. The adversary Adv′(PK,PK′,EK, c, d)
samples the distribution of Hybrid’ 3.j except that it sets PKj−1 := PK,EKj−1 := EK,PKj := PK′ and,
when vj = ?, it plugs in Rj,0 := c, Sj,0 := d. It then runs Adv on the sampled distribution. It is easy
to see that when Adv′ gets as input a GXDH tuple then the distribution it samples matches Hybrid’
3.j and else it matches Hybrid” 3.j which proves the claim.

Lastly, we claim that Hybrid” 3.j and Hybrid 3.(j − 1) are indistinguishable. The proof of this is
identical to that showing the indistinguishability of Hybrid’ 3.j and Hybrid” 3.j.

Combining the above, we get the proof of the lemma.

Combining the above we see that Hybrid 0 (obfuscated program) is indistinguishable from Hybrid 3.0
(simulated program) which proves the lemma.
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[13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. New multilinear maps over the integers.
In CRYPTO I, pages 267–286, 2015.

[14] Yevgeniy Dodis, Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan.
Public-key encryption schemes with auxiliary inputs. In TCC, pages 361–381, 2010.

[15] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM J. Comput., 38(1):97–139, 2008.

[16] Yevgeniy Dodis and Adam Smith. Correcting errors without leaking partial information. In STOC,
pages 654–663, 2005.
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