
Predicate Encryption for Circuits from LWE

Sergey Gorbunov∗

MIT
Vinod Vaikuntanathan†

MIT
Hoeteck Wee‡

ENS

Abstract

In predicate encryption, a ciphertext is associated with descriptive attribute values x in addition to
a plaintext µ, and a secret key is associated with a predicate f . Decryption returns plaintext µ if and
only if f(x) = 1. Moreover, security of predicate encryption guarantees that an adversary learns nothing
about the attribute x or the plaintext µ from a ciphertext, given arbitrary many secret keys that are not
authorized to decrypt the ciphertext individually.

We construct a leveled predicate encryption scheme for all circuits, assuming the hardness of the
subexponential learning with errors (LWE) problem. That is, for any polynomial function d = d(λ), we
construct a predicate encryption scheme for the class of all circuits with depth bounded by d(λ), where
λ is the security parameter.

∗Email: sergeyg@mit.edu. Supported in part by the Northrop Grumman Cybersecurity Research Consortium (CRC) and
by a Microsoft PhD Fellowship.
†Email: vinodv@csail.mit.edu. Research supported in part by DARPA Grant number FA8750- 11-2-0225, NSF Awards

CNS-1350619 and CNS-1413920, an Alfred P. Sloan Research Fellowship, the Northrop Grumman Cybersecurity Research
Consortium (CRC), Microsoft Faculty Fellowship, and a Steven and Renee Finn Career Development Chair from MIT.
‡E-mail: wee@di.ens.fr. CNRS, INRIA and Columbia University. Supported in part by ANR-14-CE28-0003 (EnBiD), NSF

Award CNS-1445424, ERC Project CryptoCloud (FP7/2007-2013 Grant Agreement no. 339563), the Alexander von Humboldt
Foundation and a Google Faculty Research Award.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/145230723?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Predicate encryption [BW07, SBC+07, KSW08] is a new paradigm for public-key encryption that supports
searching on encrypted data. In predicate encryption, ciphertexts are associated with descriptive attribute
values x in addition to plaintexts µ, secret keys are associated with a predicate f , and a secret key decrypts
the ciphertext to recover µ if and only if f(x) = 1. The security requirement for predicate encryption
enforces privacy of x and the plaintext even amidst multiple secret key queries: an adversary holding secret
keys for different query predicates learns nothing about the attribute x and the plaintext if none of them is
individually authorized to decrypt the ciphertext.

Motivating applications. We begin with several motivating applications for predicate encryption [BW07,
SBC+07]:

• For inspecting recorded log files for network intrusions, we would encrypt network flows labeled with a
set of attributes from the network header, such as the source and destination addresses, port numbers,
time-stamp, and protocol numbers. We could then issue auditors with restricted secret keys that can
only decrypt the network flows that fall within a particular range of IP addresses and some specific
time period.

• For credit card fraud investigation, we would encrypt credit card transactions labeled with a set of
attributes such as time, costs and zipcodes. We could then issue investigators with restricted secret
keys that decrypt transactions over $1,000 which took place in the last month and originated from a
particular range of zipcodes.

• For anti-terrorism investigation, we would encrypt travel records labeled with a set of attributes such
as travel destination and basic traveller data. We could then issue investigators with restricted secret
keys that match certain suspicious travel patterns.

• For online dating, we would encrypt personal profiles labeled with dating preferences pertaining to age,
height, weight, salary and hobbies. Secret keys are associated with specific attributes and can only
decrypt profiles for which the attributes match the dating preferences.

In all of these examples, it is important that unauthorized parties do not learn the contents of the ciphertexts,
nor of the meta-data associated with the ciphertexts, such as the network header or dating preferences. On
the other hand, it is often okay to leak the meta-data to authorized parties. We stress that privacy of the
meta-data is an additional security requirement provided by predicate encryption but not by the related
and weaker notion of attribute-based encryption (ABE) [SW05, GPSW06]; the latter only guarantees the
privacy of the plaintext µ and not the attribute x.

Utility and expressiveness. The utility of predicate encryption is intimately related to the class of
predicates for which we could create secret keys. Ideally, we would like to support the class of all circuits. Over
the past decade, substantial advances were made for the weaker primitive of ABE, culminating most recently
in schemes supporting any policy computable by general circuits [GVW13, BGG+14] under the standard
LWE assumption [Reg09]. However, the state-of-the-art for predicate encryption is largely limited to very
simple functionalities related to computing an inner product [BW07, SBC+07, KSW08, AFV11, GMW15].

1.1 Our Contributions

In this work, we substantially advance the state of the art to obtain predicate encryption for all circuits
(c.f. Figure 1):

Theorem (informal). Under the LWE assumption, there exists a predicate encryption scheme
for all circuits, with succint ciphertexts and secret keys independent of the size of the circuit.

1

Functional Encryption
[SS10, GVW12, GKP+13, GGH+13b]

Predicate Encryption
[this work]

Attribute-Based Enc
[GVW13, BGG+14]

IPE

[KSW08]

Figure 1: State of the art in functional encryption. The white region refers to functionalities for which we
have constructions under standard cryptographic assumptions like LWE or decisional problems in bilinear
groups: these functionalities include inner product encryption (IPE), attribute-based encryption for general
circuits (ABE) and predicate encryption for general circuits. The grey region refers to functionalities beyond
predicate encryption for which we only have constructions for weaker security notions like bounded collusions,
or under non-standard cryptographic assumptions like obfuscation or multilinear maps.

As with prior LWE-based ABE for circuits [GVW13, BGG+14], to support circuits of depth d, the parameters
of the scheme grow with poly(d), and we require sub-exponential nΩ(d) hardness of the LWE assumption.
In addition, the security guarantee is selective, but can be extended to adaptive security via complexity
leveraging [BB04].

Privacy guarantees. The privacy notion we achieve is a simulation-based variant of “attribute-hiding”
from the literature [SBC+07, OT10, AFV11]. That is, we guarantee privacy of the attribute x and the
plaintext µ against collusions holding secret keys for functions f such that f(x) = 0. An even stronger
requirement would be to require privacy of x even against authorized keys corresponding to functions f where
f(x) = 1; in the literature, this stronger notion is referred to as “full attribute-hiding” [BW07, KSW08].
This stronger requirement is equivalent to “full-fledged” functional encryption [BSW11], for which we cannot
hope to achieve simulation-based security for all circuits as achieved in this work [BSW11, AGVW13].

Relation to prior works. Our result subsumes all prior works on functional encryption under standard
cryptographic assumptions, apart from a few exceptions pertaining to the inner product predicate
[BW07, KSW08, OT12]. In a recent break-through work, Garg et al. [GGH+13b] gave a beautiful candidate
construction of functional encryption for general circuits; however, the construction relies on “multi-linear
maps” [GGH13a, CLT13], for which we have few candidates, along with complex intractability assumptions
which are presently poorly understood and not extensively studied in cryptanalysis. In contrast, if we consider
collusions of a priori bounded size, a weaker guarantee that is still meaningful for many applications, then it
is possible to obtain functional encryption for general circuits under a large class of standard assumptions
[SS10, GVW12, GKP+13]. See Figure 1 for a pictorial summary.

1.2 Overview of Our Construction

Our starting point is the work of Goldwasser, Kalai, Popa, Vaikuntanathan and Zeldovich [GKP+13]
who show how to convert an attribute-based encryption (ABE) scheme into a single key secure functional
encryption (FE) scheme. Recall that in an attribute-based encryption scheme [GPSW06], a ciphertext is
associated with a descriptive value (a public “attribute”) x and plaintext µ, and it hides µ, but not x. The
observation of Goldwasser et al. [GKP+13] is to hide x by encrypting it using a fully homomorphic encryption
(FHE) scheme [Gen09, BV11b], and then using the resulting FHE ciphertext as the public “attribute” in an
ABE scheme for general circuits [GVW13, BGG+14]. This has the dual benefit of guaranteeing privacy of
x, while at the same time allowing homomorphic computation of predicates f on the encryption of x.

This initial idea quickly runs into trouble. The decryptor who is given the predicate secret key for f and
a predicate encryption of (x, µ) can indeed compute an FHE encryption of f(x). However, the decryption
process is confronted with a decision, namely whether to release the message µ or not, and this decision

2

depends on whether the plaintext f(x) is 0 or 1.1 Clearly, resolving this conundrum requires obtaining f(x),
which requires knowledge of the FHE secret key. Goldwasser et al. [GKP+13] solved this by employing a
(single use) Yao garbling of the FHE decryption circuit, however this limited them to obtaining single key
secure predicate/functional encryption schemes.2

Our first key idea is to embed the FHE secret key as part of the attributes in the ABE ciphertext. That
is, in order to encrypt a plaintext µ with attributes x in the predicate encryption scheme, we first choose
a symmetric key fhe.sk for the FHE scheme, encrypt x into a FHE ciphertext x̂, and encrypt µ using the
ABE scheme with (fhe.sk, x̂) as the attributes to obtain an ABE ciphertext ct. Our predicate encryption
ciphertext is then given by

(x̂, ct)

To generate the predicate secret key for a function f , one simply generates the ABE secret key for the
function g that takes as input (fhe.sk, x̂) and computes

g(fhe.sk, x̂) = FHE.Dec(fhe.sk;FHE.Eval(f, x̂))

That is, g first homomorphically computes a FHE encryption of f(x), and then decrypts it using the FHE
secret key to output f(x).

At first glance, this idea evokes strong and conflicting emotions as it raises two problems. The first
pertains to correctness: we can no longer decrypt the ciphertext since the ABE decryption algorithm needs
to know all of the attributes (x̂ and fhe.sk), but fhe.sk is missing. The second pertains to security: the ABE
ciphertext ct is not guaranteed to protect the privacy of the attributes, and could leak all of fhe.sk which
together with x̂ would leak all of x. Solving both of these problems seems to require designing a predicate
encryption scheme from scratch!

Our next key observation is that the bulk of the computation in g, namely the homomorphic evaluation
of the function f , is performed on the public attribute x̂. The only computation performed on the secret
value fhe.sk is FHE decryption which is a fairly lightweight computation. In particular, with all known FHE
schemes [Gen09, BV11b, BV11a, BGV12, GSW13, BV14, AP14], decryption corresponds to computing an
inner product followed by a threshold function. Furthermore, we do know how to construct lattice-based
predicate encryption schemes for threshold of inner product [AFV11, GMW15]. We stress that the latter do
not correspond to FHE decryption since the inner product is computed over a vector in the ciphertext and one
in the key, whereas FHE decryption requires computing an inner product over two vectors in the ciphertext;
nonetheless, we will build upon the proof techniques in achieving attribute-hiding in [AFV11, GMW15] in
the proof of security.

In other words, if we could enhance ABE with a modicum of secrecy so that it can perform a
heavyweight computation on public attributes followed by a lightweight privacy-preserving computation
on secret attributes, we are back in business. Our first contribution is to define such an object, that we call
partially hiding predicate encryption.

Partially Hiding Predicate Encryption. We introduce the notion of partially hiding predicate
encryption (PHPE), an object that interpolates between attribute-based encryption and predicate encryption
(analogously to partial garbling in [IW14]). In PHPE, the ciphertext, encrypting message µ, is associated
with an attribute (x, y) where x is private but y is always public. The secret key is associated with a function
f , and decryption succeeds iff f(x, y) = 1. On the one extreme, considering a dummy x or functions f that

1In fact, there is a syntactic mismatch since f̂(·) is not a predicate, as it outputs an FHE ciphertext.
2A reader familiar with [GKP+13] might wonder whether replacing single-use garbled circuits in their construction with

reusable garbled circuits (also from [GKP+13]) might remove this limitation. We remark that this does not seem possible,
essentially because the construction in [GKP+13] relies crucially on the simplicity of computing garbled inputs from the
“garbling key”. In particular, in Yao’s garbled circuit scheme, the garbling key is (many) pairs of “strings” L0 and L1, and a
garbling of an input bit b is simply Lb. This fits perfectly with the semantics of ABE (rather, a variant termed two-input ABE
in [GKP+13]) that releases one of two possible “messages” L0 or L1 depending on the outcome of a computation. In contrast,
computing a garbled input in the reusable garbling scheme is a more complex and randomized function of the garbling key, and
does not seem to align well with the semantics of ABE.

3

ignore x and compute on y, we recover attribute-based encryption. On the other end, considering a dummy
y or functions f that ignore y and compute on x, we recover predicate encryption.

We will be interested in realizing PHPE for functions φ of the form φ(x, y) = g(x, h(y)) for some functions
g and h where h may perform arbitrary heavy-weight computation on the public y and g only performs light-
weight computation on the private x. Mapping back to our discussion, we would like to achieve PHPE for
the “evaluate-then-decrypt” class of functions, namely where g is the FHE decryption function, h is the FHE
evaluation function, x is the FHE secret key, and y is the FHE ciphertext. In general, we would like g to
be simple and will allow h to be complex. It turns out that we can formalize the observation above, namely
that PHPE for this class of functions gives us a predicate encryption scheme. The question now becomes:
can we construct PHPE schemes for the “evaluate-then-decrypt” class of functions?

Assuming the subexponential hardness of learning with errors (LWE), we show how to construct a
partially hiding predicate encryption for the class of functions f : Ztq × {0, 1}` → {0, 1} of the form

fγ(x,y) = IPγ(x, h(y)),

where h : {0, 1}` → {0, 1}t, γ ∈ Zq, and IPγ(x, z) = 1 iff 〈x, z〉 =

(∑
i∈[t] x[i] · z[i]

)
= γ mod q.

This is almost what we want, but not quite. Recall that FHE decryption in many recent schemes [BV11b,
BGV12, GSW13, BV14, AP14] is a function that checks whether an inner product of two vectors in Ztq (one
of which could be over {0, 1}t) lies in a certain range. Indeed, if z ∈ {0, 1}t is an encryption of 1 and x ∈ Ztq
is the secret key, we know that 〈x, z〉 ∈ [q/2−B, q/2+B] (mod q), where B is the noise range. Applying the
so-called “modulus reduction” [BV11b] transformation to all these schemes, we can assume that this range
is polynomial in size.

In other words, we will manage to construct a partially hiding PE scheme for the function

fγ(x,y) : 〈x, h(y)〉 ?
= γ (mod q)

whereas we need a partially hiding PE scheme for the FHE decryption function which is

f ′R(x,y) : 〈x, h(y)〉
?
∈ R (mod q)

where R is the polynomial size range [q/2−B, q/2 +B] from above. How do we reconcile this disparity?

The “Lazy OR” Trick. The solution, called the “lazy OR trick” [SBC+07, GMW15] is to publish secret
keys for all functions fγ for γ ∈ R := [q/2−B, q/2+B]. This will indeed allow us to test if the FHE decryption
of the evaluated ciphertext is 1 (and reveal the message µ if it is), but it is also worrying. Publishing these

predicate secret keys for the predicates fγ reveals more information than whether 〈x, h(y)〉
?
∈ R. In particular,

it reveals what 〈x, h(y)〉 is. This means that an authorized key would leak partial information about the
attribute, which we do allow for predicate encryption. On the other hand, for an unauthorized key where the
FHE decryption is 0, each of these fγ , γ ∈ R is also an unauthorized key in the PHPE and therefore leaks
no information about the attribute. This extends to the collection of keys in R since the PHPE is secure
against collusions. For simplicity, we assume in the rest of this overview that FHE decryption corresponds
to exactly to inner product.

Asymmetry to the Rescue: Constructing Partially Hiding PE. Our final contribution is the
construction of a partially hiding PE for the function class fγ(x,y) above. We will crucially exploit the
fact that fγ computes an inner product on the private attribute x. There are two challenges here: first,
we need to design a decryption algorithm that knows fγ and y but not x (this is different from decryption
in ABE where the algorithm also knows x); second, show that the ciphertext does not leak too much
information about x. We use the fully key-homomorphic encryption techniques developed by Boneh et al
[BGG+14] in the context of constructing an “arithmetic” ABE scheme. The crucial observation about the
ABE scheme of [BGG+14] is that while it was not designed to hide the attributes, it can be made to partially

4

hide them in exactly the way we want. In particular, the scheme allows us to carry out an inner product
of a public attribute vector (corresponding to the evaluated FHE ciphertext) and a private attribute vector
(corresponding to the FHE secret key fhe.sk), thanks to an inherent asymmetry in homomorphic evaluation
of a multiplication gate on ABE ciphertexts. More concretely, in the homomorphic evaluation of a ciphertext
for a multiplication gate in [BGG+14], the decryption algorithm works even if one of the attribute remains
private, and for addition gates, the decryption algorithms works even if both attributes remain private. This
addresses the first challenge of a decryption algorithm that is oblivious to x. For the second challenge of
security, we rely on techniques from inner product predicate encryption [AFV11] to prove the privacy of x
Note that in the latter, the inner product is computed over a vector in the ciphertext and one in the key,
whereas in our scheme, the inner product is computed over two vectors in the ciphertext. Interestingly, the
proof still goes through since the ciphertext in the ABE [BGG+14] has the same structure as the ciphertext
in [AFV11]. We refer the reader to Section 3.2.1 for a detailed overview of the partial hiding PE, and to
Section 4 for an overview of how we combine the partial hiding PE with FHE to obtain our main result.

Finally, we remark that exploiting asymmetry in multiplication has been used in fairly different contexts
in both FHE [GSW13, BV14] and in ABE [GVW13, GV14]. In [GSW13] and in this work, the use of
asymmetry was crucial for realizing the underlying cryptographic primitive; whereas in [GVW13, BV14,
GV14], asymmetry was used to reduce the noise growth during homomorphic evaluation, thereby leading to
quantitative improvements in the underlying assumptions and hence improved efficiency.

1.3 Discussion

Comparison with other approaches. The two main alternative approaches for realizing predicate and
functional encryption both rely on multi-linear maps either implicitly, or explicitly. The first is to use
indistinguishability obfuscation as in [GGH+13b], and the second is to extend the dual system encryption
framework to multi-linear maps [Wat09, GGHZ14]. A crucial theoretical limitation of these approaches is
that they all rely on non-standard assumptions; we have few candidates for multi-linear maps [GGH13a,
CLT13, GGH15] and the corresponding assumptions are presently poorly understood and not extensively
studied in cryptanalysis, and in some cases, broken [CHL+14]. In particular, the latest attack in [CHL+14]
highlight the importance of obtaining constructions and developing techniques that work under standard
cryptographic assumptions, as is the focus of this work.

Barriers to functional encryption from LWE. We note the two main barriers to achieving full-fledged
functional encryption from LWE using our framework. First, the lazy conjunction approach to handle
threshold inner product for FHE decryption leaks the exact inner product and therefore cannot be used to
achieve full attribute-hiding. Second, we do not currently know of a fully attribute-hiding inner product
encryption scheme under the LWE assumption, although we do know how to obtain such schemes under
standard assumptions in bilinear groups [OT12, KSW08].

2 Preliminaries

Notation. Let PPT denote probabilistic polynomial-time. For any integer q ≥ 2, we let Zq denote the
ring of integers modulo q and we represent Zq as integers in (−q/2, q/2]. We let Zn×mq denote the set of
n ×m matrices with entries in Zq. We use bold capital letters (e.g. A) to denote matrices, bold lowercase
letters (e.g. x) to denote vectors. We use x[i] to refer to i’th element of vector x. The notation AT denotes
the transpose of the matrix A.

If A1 is an n ×m matrix and A2 is an n ×m′ matrix, then [A1‖A2] denotes the n × (m + m′) matrix
formed by concatenating A1 and A2. A similar notation applies to vectors. When doing matrix-vector
multiplication we always view vectors as column vectors.

For a vector x, we let ||x|| denote its `2 norm and ||x||∞ denote its infinity norm. For a matrix R ∈ Zm×m
we define ||R||| (resp. ||R||∞) as the `2 (resp. infinity) length of the longest column of R.

5

We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use negl(n) to denote a negligible
function of n. We say f(n) is polynomial if it is O(nc) for some c > 0, and we use poly(n) to denote
a polynomial function of n. We say an event occurs with overwhelming probability if its probability is
1− negl(n). The function lg x is the base 2 logarithm of x. The notation bxe denotes the nearest integer to
x, rounding towards 0 for half-integers.

2.1 Lattice Preliminaries

2.1.1 Learning With Errors (LWE) Assumption

The LWE problem was introduced by Regev [Reg09], who showed that solving it on the average is as hard
as (quantumly) solving several standard lattice problems in the worst case.

Definition 2.1 (LWE). For an integer q = q(n) ≥ 2 and an error distribution χ = χ(n) over Zq, the learning
with errors problem dLWEn,m,q,χ is to distinguish between the following pairs of distributions:(

A,As + x
)

and
(
A,u

)
where A

$← Zn×mq , s
$← Znq ,x

$← χm,u
$← Zmq .

Connection to lattices. Let B = B(n) ∈ N. A family of distributions χ = {χn}n∈N is called B-bounded
if

Pr[χ ∈ {−B, . . . , B − 1, B}] = 1.

Regev and Peikert [Reg09, Pei09] showed that there is a B-bounded distribution χ such that solving
dLWEn,m,q,χ is as hard as (quantumly) approximating certain worst case lattice problems to a factor of

Õ(n · q/B). These lattices problems are believed to be hard to approximate even when q/B is 2n
ε

for some
fixed 0 < ε < 1/2. Thus, the hardness of dLWE depends on the modulus-to-noise ratio q/B – the smaller
the ratio, the harder the problem. Throughout this paper, the parameter m = poly(n), in which case we
will shorten the notation slightly to LWEn,q,χ. We refer to [Pei09] for a detailed account of the worst-case to
average-case connection for LWE.

2.2 Lattice Algorithms

Gaussian distributions. Let DZm,σ be the truncated discrete Gaussian distribution over Zm with
parameter σ, that is, we replace the output by 0 whenever the || · ||∞ norm exceeds

√
m · σ. Note that

DZm,σ is
√
m · σ-bounded.

Lemma 2.1 (Lattice Trapdoors [Ajt99, GPV08, MP12]). There is an efficient randomized algorithm
TrapSamp(1n, 1m, q) that, given any integers n ≥ 1, q ≥ 2, and sufficiently large m = Ω(n log q), outputs
a matrix A ∈ Zn×mq and a trapdoor matrix T ∈ Zm×m such that the distribution of A is negl(n)-close to
uniform.

Moreover, there is an efficient algorithm SampleD that with overwhelming probability over all random
choices, does the following: For any u ∈ Znq , and large enough s = Ω(

√
n log q), the randomized algorithm

SampleD(A,T,u, s) outputs a vector r ∈ Zm with norm ||r||∞ ≤ ||r||2 ≤ s
√
n (with probability 1).

Furthermore, the following distributions of the tuple (A,T,U,R) are within negl(n) statistical distance of
each other for any polynomial k ∈ N:

• (A,T)← TrapSamp(1n, 1m, q); U← Zn×kq ; R← SampleD(A,T,U, s).

• (A,T)← TrapSamp(1n, 1m, q); R← (DZm,s)
k; U := AR (mod q).

Lemma 2.2. Suppose that m ≥ (n + 1) log q + ω(log n) and that q ≥ 2 is square free. Let R be an m × k
matrix chosen uniformly from {−1, 1}m×k mod q where k = k(n) is polynomial in n. Let A and B be
matrices chosen uniformly in Zn×m and Zn×k respectively. Then for all vectors w ∈ Zm, the distribution
(A,AR,RTw) is statistically close to distribution (A,B,RTw).

6

We will use the following algorithms to sample short vectors from specific lattices. Looking ahead, the
algorithm SampleLeft [ABB10, CHKP12] will be used to sample keys in the real system, while the algorithm
SampleRight [ABB10] will be used to sample keys in the simulation.

Algorithm SampleLeft(A,B,TA,u, α):

Inputs: a full rank matrix A in Zn×mq , a “short” basis TA of Λ⊥q (A),

a matrix B in Zn×m1
q , a vector u ∈ Znq , and a Gaussian parameter α. (1)

Output: Let F := (A ‖B). The algorithm outputs a vector e ∈ Zm+m1

in the coset ΛF+u.

Theorem 2.3 ([ABB10, Theorem 17], [CHKP12, Lemma 3.2]). Let q > 2, m > n and α > ‖T̃A‖ ·
ω(
√

log(m+m1)). Then SampleLeft(A,B,TA,u, α) taking inputs as in (1) outputs a vector e ∈ Zm+m1

distributed statistically close to DΛF+u,α, where F := (A ‖ B).

Where ‖T̃‖ refers to the norm of Gram-Schmidt orthogonalisation of T. We refer the readers to [ABB10]
for more details.

Algorithm SampleRight(A,B,R,TB,u, α):

Inputs: matrices A in Zn×kq and R in Zk×m, a full rank matrix B in

Zn×mq , a “short” basis TB of Λ⊥q (B), a vector u ∈ Znq , and a Gaussian
parameter α.

(2)

Output: Let F := (A ‖ AR + B). The algorithm outputs a vector
e ∈ Zm+k in the coset ΛF+u.

Often the matrix R given to the algorithm as input will be a random matrix in {1,−1}m×m. Let Sm be the
m-sphere {x ∈ Rm+1 : ‖x‖ = 1}. We define sR := ‖R‖ := supx∈Sm−1 ‖R · x‖.

Theorem 2.4 ([ABB10, Theorem 19]). Let q > 2,m > n and α > ‖T̃B‖ · sR · ω(
√

logm). Then
SampleRight(A,B,R,TB,u, α) taking inputs as in (2) outputs a vector e ∈ Zm+k distributed statistically
close to DΛF+u,α, where F := (A ‖ AR + B).

2.2.1 Primitive matrix

We use the primitive matrix G ∈ Zn×mq defined in [MP12]. This matrix has a trapdoor TG such that

‖TG‖∞ = 2. We also define an algorithm G−1 : Zn×mq → Zm×mq which deterministically derives a short

pre-image Ã satisfying G · Ã = A; the algorithm corresponds to bit decomposition.

2.3 Fully-Homomorphic Encryption

We present a fairly minimal definition of fully homomorphic encryption (FHE) which is sufficient for
our constructions. A leveled homomorphic encryption scheme is a tuple of polynomial-time algorithms
(HE.KeyGen,HE.Enc,HE.Eval,HE.Dec):

• Key generation. HE.KeyGen(1λ, 1d, 1k) is a probablistic algorithm that takes as input the security
parameter λ, a depth bound d and message length k and outputs a secret key sk.

• Encryption. HE.Enc(sk, µ) is a probabilistic algorithm that takes as input sk and a message µ ∈ {0, 1}k
and outputs a ciphertext ct.

• Homomorphic evaluation. HE.Eval(f, ct) is a deterministic algorithm that takes as input a boolean
circuit C : {0, 1}k → {0, 1} of depth at most d and a ciphertext ct and outputs another ciphertext ct′.

• Decryption. HE.Dec(sk, ct′) is a deterministic algorithm that takes as input sk and ciphertext ct′ and
outputs a bit.

7

Correctness. We require perfect decryption correctness with respect to homomorphically evaluated
ciphertexts: namely for all λ, d, k and all sk ← HE.KeyGen(1λ, 1d, 1k), all µ ∈ {0, 1}k and for all boolean
circuits C : {0, 1}k → {0, 1} of depth at most d:

Pr
[
HE.Dec(sk, HE.Eval(C, HE.Enc(sk, µ))) = C(µ)

]
= 1

where the probablity is taken over HE.Enc and HE.KeyGen.

Security. We require semantic security for a single ciphertext: namely for every stateful p.p.t. adversary
A and for all d, k = poly(λ), the following quantity

Pr

b = b′ :

sk← Setup(1λ, 1d, 1k);
(µ0, µ1)← A(1λ, 1d, 1k);

b
$← {0, 1};

ct← Enc(sk, µb);
b′ ← A(ct)

− 1

2

is negligible in λ.

2.3.1 FHE from LWE

We will rely on an instantiation of FHE from the LWE assumption:

Theorem 2.5 (FHE from LWE [BV11b, BGV12, GSW13, BV14, AP14]). There is a FHE scheme
HE.KeyGen,HE.Enc,HE.Eval,HE.Dec that works for any q with q ≥ O(λ2) with the following properties:

• HE.KeyGen outputs a secret key sk ∈ Ztq where t = poly(λ);

• HE.Enc outputs a ciphertext ct ∈ {0, 1}` where ` = poly(k, d, λ, log q);

• HE.Eval outputs a ciphertext ct′ ∈ {0, 1}t;

• for any boolean circuit of depth d, HE.Eval(C, ·) is computed by a boolean circuit of depth poly(d, λ, log q).

• HE.Dec on input sk, ct′ outputs a bit b ∈ {0, 1}. If ct′ is an encryption of 1 then

t∑
i=1

sk[i] · ct′[i] ∈ [bq/2c −B, bq/2c+B]

for some fixed B = poly(λ). Otherwise, if ct′ is an encryption of 0, then

t∑
i=1

sk[i] · ct′[i] /∈ [bq/2c −B, bq/2c+B];

• security relies on dLWEΘ(t),q,χ.

We highlight several properties of the above scheme: (1) the ciphertext is a bit-string, (2) the bound B
is a polynomial independent of q (here, we crucially exploit the new results in [BV14] together with the use
of leveled bootstrapping)3, (3) the size of normal ciphertexts is independent of the size of the circuit (this is
the typical compactness requirement).

3Recall that no circular security assumption needs to be made for leveled bootstrapping.

8

3 Partially Hiding Predicate Encryption

3.1 Definitions

We introduce the notation of partially hiding predicate encryption (PHPE), which interpolates attribute-
based encryption and predicate encryption (analogously to partial garbling in [IW14]). In PHPE, the
ciphertext, encrypting message µ, is associated with an attribute (x, y) where x is private but y is always
public. The secret key is associated with a predicate C, and decryption succeeds iff C(x, y) = 1. The
requirement is that a collusion learns nothing about (x, µ) if none of them is individually authorized to
decrypt the ciphertext. Attribute-based encryption corresponds to the setting where x is empty, and predicate
encryption corresponds to the setting where y is empty. We refer the reader to Section A for the standard
notion of predicate encryption.

Looking ahead to our construction, we show how to:

• construct PHPE for a restricted class of circuits that is “low complexity” with respect to x and allows
arbitrarily polynomial-time computation on y;

• bootstrap this PHPE using FHE to obtain PE for all circuits.

Syntax. A Partially-Hiding Predicate Encryption scheme PHPE for a pair of input-universes X ,Y, a
predicate universe C, a message spaceM, consists of four algorithms (PH.Setup,PH.Enc, PH.Keygen,PH.Dec):

PH.Setup(1λ,X ,Y, C,M) → (ph.mpk, ph.msk). The setup algorithm gets as input the security parameter
λ and a description of (X ,Y, C,M) and outputs the public parameter ph.mpk, and the master key
ph.msk.

PH.Enc(ph.mpk, (x, y), µ)→ cty. The encryption algorithm gets as input ph.mpk, an attribute (x, y) ∈ X×Y
and a message µ ∈M. It outputs a ciphertext cty.

PH.Keygen(ph.msk, C) → skC . The key generation algorithm gets as input ph.msk and a predicate C ∈ C.
It outputs a secret key skC .

PH.Dec((skC , C), (cty, y))→ µ. The decryption algorithm gets as input the secret key skC , a predicate C,
and a ciphertext cty and the public part of the attribute y. It outputs a message µ ∈M or ⊥.

Correctness. We require that for all PH.Setup(1λ,X ,Y, C,M) → (ph.mpk, ph.msk), for all (x, y, C) ∈
X × Y × C, for all µ ∈M,

• if C(x, y) = 1,

Pr

[
PH.Dec((skC , C), (cty, y)) = µ

]
≥ 1− negl(λ),

• if C(x, y) = 0,

Pr

[
PH.Dec((skC , C), (cty, y)) =⊥

]
≥ 1− negl(λ),

where the probabilities are taken over skC ← PH.Keygen(ph.msk, C), cty ← PH.Enc(ph.mpk, (x, y), µ) and
coins of PH.Setup.

Definition 3.1 (PHPE Attribute-Hiding). Fix (PH.Setup,PH.Enc,PH.Keygen,PH.Dec). For every stateful
p.p.t. adversary Adv, and a p.p.t. simulator Sim, consider the following two experiments:

9

expreal
PHPE,Adv(1λ): expideal

PHPE,Sim(1λ):

1: (x, y)← Adv(1λ,X ,Y, C,M)
2: (ph.mpk, ph.msk)← PH.Setup(1λ,X ,Y, C,M)

3: µ← AdvPH.Keygen(msk,·)(ph.mpk)
4: cty ← PH.Enc(ph.mpk, (x, y), µ)

5: α← AdvPH.Keygen(ph.msk,·)(cty)
6: Output (x, y, µ, α)

1: (x, y)← Adv(1λ,X ,Y, C,M)
2: (ph.mpk, ph.msk)← PH.Setup(1λ,X ,Y, C,M)

3: µ← AdvPH.Keygen(ph.msk,·)(ph.mpk)
4: cty ← Sim(mpk, y, 1|x|, 1|µ|)

5: α← AdvPH.Keygen(msk,·)(cty)
6: Output (x, y, µ, α)

We say an adversary Adv is admissible if all oracle queries that it makes C ∈ C satisfy C(x, y) = 0.
The Partially-Hiding Predicate Encryption scheme PHPE is then said to be attribute-hiding if there is a
p.p.t. simulator Sim such that for every stateful p.p.t. adversary Adv, the following two distributions are
computationally indistinguishable:{

expreal
PHPE,Adv(1λ)

}
λ∈N

c
≈

{
expideal
PHPE,Sim(1λ)

}
λ∈N

Remarks. We point out some remarks of our definition (SIM-AH) when treated as a regular predicate
encryption (i.e. the setting where y is empty; see Definition A.1 for completeness) and how it compares to
other definitions in the literature.

• We note the simulator for the challenge ciphertext gets y but not x; this captures the fact that y is
public whereas x is private. In addition, the simulator is not allowed to program the public parameters
or the secret keys. In the ideal experiment, the simulator does not explicitly learn any information
about x (apart from its length); nonetheless, there is implicit leakage about x from the key queries
made by an admissible adversary. Finally, we note that we can efficiently check whether an adversary
is admissible.

• Our security notion is “selective”, in that the adversary “commits” to (x, y) before it sees ph.mpk. It
is possible to bootstrap selectively-secure scheme to full security using standard complexity leveraging
arguments [BB04, GVW13], at the price of a 2|x| loss in the security reduction.

• Our definition refers to a single challenge message, but the definition extends readily to a setting
with multiple challenge messages. Moreover, our definition composes in that security for a single
message implies security with multiple messages (see Section A.2). The following remarks refer to
many messages setting.

• We distinguish between two notions of indistinguishability-based (IND) definitions used in the
literature: attribute-hiding (IND-AH)4 and strong attribute-hiding (IND-SAH)5 [BW07, SBC+07,
KSW08, AFV11]. In the IND-AH, the adversary should not be able to distinguish between two pairs of
attributes/messages given that it is restricted to queries which do not decrypt the challenge ciphertext
(See Section A.3). It is easy to see that our SIM-AH definition is stronger than IND-AH. Furthermore,
IND-SAH also ensures that adversary cannot distinguish between the attributes even when it is allowed
to ask for queries that decrypt the messages (in this case, it must output µ0 = µ1). Our SIM-AH
definition is weaker than IND-SAH, since we explicitly restrict the adversary to queries that do not
decrypt the challenge ciphertext.

• In the context of arbitrary predicates, strong variants of definitions (that is, IND-SAH and SIM-SAH)
are equivalent to security notions for functional encryption (the simulation definition must be adjusted

4Sometimes also referred as weak attribute-hiding.
5Sometimes also referred as full attribute-hiding.

10

to give the simulated the outputs of the queries). However, the strong variant of notion (SIM-SAH)
is impossible to realize for many messages [BSW11, AGVW13]. We refer the reader to Section A.2
for a sketch of the impossibility. Hence, SIM-AH is the best-possible simulation security for predicate
encryption which we realize in this work. The only problem which we leave open is to realize IND-SAH
from standard LWE.

3.2 Our Construction

3.2.1 Overview

We construct a partially hiding predicate encryption for the class of predicate circuits C : Ztq×{0, 1}` → {0, 1}
of the form Ĉ ◦ IPγ where Ĉ : {0, 1}` → {0, 1}t is a boolean circuit of depth d, γ ∈ Zq, and

(Ĉ ◦ IPγ)(x,y) = IPγ(x, Ĉ(y)),

where IPγ(x, z) = 1 iff 〈x, z〉 =

(∑
i∈[t] x[i] · z[i]

)
= γ mod q. We refer to circuit IP as the generic inner-

product circuit of two vectors.
Looking ahead, Ĉ corresponds to FHE evaluation of an arbitrary circuit C, whereas IPγ corresponds to

roughly to FHE decryption; in the language of the introduction in Section 1, Ĉ corresponds to heavy-weight
computation h, whereas IPγ corresponds to light-weight computation g.

The scheme. The public parameters are matrices(
A, A1, . . . ,A`, B1, . . . ,Bt

)
An encryption corresponding to the attribute (x,y) ∈ Ztq × {0, 1}` is a GPV ciphertext (an LWE sample)
corresponding to the matrix[

A | A1 + y[1] ·G | · · · | A` + y[`] ·G | B1 + x[1] ·G | · · · | Bt + x[t] ·G
]

To decrypt the ciphertext given y and a key for Ĉ ◦ IPγ , we apply the BGGHNSVV algorithm to first
transform the first part of the ciphertext into a GPV ciphertext corresponding to the matrix[

A | AĈ1
+ z[1] ·G | · · · | AĈt

+ z[t] ·G
]

where Ĉi is the circuit computing the i’th bit of Ĉ and z = Ĉ(y) ∈ {0, 1}t. Next, observe that

−
(

(AĈi
+ z[i] ·G) ·G−1(Bi)

)
+ z[i] ·

(
Bi + x[i] ·G

)
= −AĈi

G−1(Bi) + x[i] · z[i] ·G.

Summing over i, we have∑̀
i=1

−
(

(AĈi
+ z[i] ·G) ·G−1(Bi)

)
+ z[i] ·

(
Bi + x[i] ·G

)
= AĈ ◦ IP + 〈x, z〉 ·G

where
AĈ ◦ IP := −

(
AĈ1

G−1(B1) + · · ·+ AĈt
G−1(Bt)

)
.

Therefore, given only the public matrices and y (but not x), we may transform the ciphertext into a GPV
ciphertext corresponding to the matrix [

A | AĈ ◦ IP + 〈x, z〉 ·G
]
.

The secret key corresponding to Ĉ ◦ IPγ is essentially a “short basis” for the matrix[
A | AĈ ◦ IP + γ ·G

]
which can be sampled using a short trapdoor T of the matrix A.

11

Proof strategy. There are two main components to the proof. Fix the selective challenge attribute x,y.
First, we will simulate the secret keys without knowing the trapdoor for the matrix A: here, we rely on the
simulated key generation for the ABE [BGG+14]. Roughly speaking, we will need to generate a short basis
for the matrix [

A | ARĈ ◦ IP + (γ − Ĉ ◦ IP(x,y)) ·G
]

where RĈ ◦ IP is a small-norm matrix known to the simulator. Now, whenever Ĉ ◦ IP(x,y) 6= γ as is the
case for admissible adversaries, we will be able to simultae secret keys using the puncturing techniques in
[ABB10, AFV11, MP12]

Next, we will show that the attribute x is hidden in the challenge ciphertext. Here, we adopt the proof
strategy for attribute-hiding inner product encryption in [AFV11, GMW15]. In the proof, we simulate the
matrices A,B1, . . . ,Bt using

A,AR′1 − x[1]G, . . . ,AR′t − x[t]G

where R′1, . . . ,R
′
t

$← {±1}m×m. In addition, we simulate the corresponding terms in the challenge ciphertext
by:

c, cTR′1, . . . , c
TR′t

where c is a uniformly random vector, which we switched from ATs + e using the LWE assumption. Here
we crucially rely on the fact that switched to simulation of secret keys without knowing the trapdoor of
A. Going further, once c is random, we can switch back to simulating secret keys using the trapdoor T.
Hence, the secret keys now do not leak any information about R′1, . . . ,R

′
t. Therefore, we may then invoke

the left-over hash lemma to argue that x is information-theoretically hidden.

3.2.2 Auxiliary evaluation algorithms

In order to formally describe our scheme, we first need to recall two algorithms (Evalpk,Evalct) from the
BGGHNSVV14 ABE [BGG+14], which we may use as a “black box” and then extend to our setting. Given
a boolean predicate C : {0, 1}` → {0, 1} and y ∈ {0, 1}`, the algorithm Evalct transforms a GPV ciphertext
for the matrix [

A1 + y[1] ·G | · · · | A` + y[`] ·G
]

into one for the matrix [
AC + C(y) ·G

]
,

where the matrix AC is deterministically derived from (C,A1, . . . ,A`) via Evalpk. We then extend

Evalpk,Evalct to handle circuits Ĉ ◦ IP as outlined above, with the additional property that Evalct is oblivious
to x. We exploit the fact that for a multiplication gate, Evalct works even if one of the attribute remains
private, and for addition gates, Evalct works even if both attributes remain private. Concretely, Evalct
transforms a GPV ciphertext for the matrix[

A1 + y[1] ·G | · · · | A` + y[`] ·G | B1 + x[1] ·G | · · · | Bt + x[t] ·G
]

into one for the matrix [
AĈ ◦ IP + (Ĉ ◦ IP)(x,y) ·G

]
,

where the matrix AĈ ◦ IP is deterministically derived from (Ĉ,A1, . . . ,A`,B1, . . . ,Bt) via Evalpk, and where
Evalct gets y but not x.

Two basic algorithms. The BGGHNSVV14 ABE provides two deterministic algorithms Evalpk,Evalct
with the following properties:

• Evalpk takes as input ` matrices A1, . . . ,A` ∈ Zn×mq and a predicate C : {0, 1}` → {0, 1}, outputs a
matrix AC ∈ Zn×mq ;

12

• Evalct takes as input A1, . . . ,A` and C as before, along with y ∈ {0, 1}` and ` vectors u1, . . . ,u` ∈ Zmq ,
outputs a vector uC ∈ Zmq .

The algorithms satisfy the following properties:

• if (u1, . . . ,u`) ≈
(
(A1 + y[1] ·G)Ts, . . . , (A` + y[`] ·G)Ts)

)
, then uC ≈ (AC + C(y) ·G)Ts.

• if (A1, . . . ,A`) = (AR1−y[1] ·G, . . . ,AR`−y[`] ·G) where R1, . . . ,R` are small-norm matrices, then
we have

AC = ARC − C(y) ·G

where RC is also a small-norm matrix with a roughly n2d multiplicative blow-up.

These two properties are formalized quantitatively in the following lemma:

Lemma 3.1 (properties of Evalpk,Evalct [BGG+14]). The algorithms Evalpk,Evalct satisfy the following
properties. For all A1, . . . ,A` ∈ Zn×mq , all y ∈ {0, 1}`, all boolean predicate C of depth d, let AC :=
Evalpk(A1, . . . ,A`, C). Then,

• for all u1, . . . ,u` ∈ Zmq and all s ∈ Znq ,

‖uC − (AC + C(y) ·G)Ts‖∞ ≤ O(`n log q)O(d) ·max
i∈[`]

{
‖ui − (Ai + y[i] ·G)Ts‖∞

}
where uC := Evalct(A1, . . . ,A`,u1, . . . ,u`,y, C).

• if (A1, . . . ,A`) = (AR1 − y[1] ·G, . . . ,AR` − y[`] ·G) where R1, . . . ,R` ∈ Zm×mq , then we have

AC = ARC − C(y) ·G

where RC is efficiently computable given (C,A,R1, . . . ,R`) and

‖RC‖∞ ≤ O(`n log q)O(d) ·max{‖R1‖∞ , . . . , ‖R`‖∞}

Extension to Ĉ ◦ IP. We extend the above algorithms to obtain the circuits of the form Ĉ ◦ IP. Let Ĉi
denote the circuit computing the i’th bit of Ĉ.

• Evalpk takes as input `+t matrices A1, . . . ,A`,B1, . . . ,Bt ∈ Zn×mq and a circuit Ĉ ◦ IP : {0, 1}`×Ztq →
Zq, outputs a matrix AĈ ◦ IP ∈ Zn×mq computed as follows:

1. For i = 1, . . . , t, compute AĈi
:= Evalpk(A1, . . . ,A`, Ĉi);

2. Output AĈ ◦ IP := −
(
AĈ1

G−1(B1) + · · ·+ AĈt
G−1(Bt)

)
.

• Evalct takes as input A1, . . . ,A`,B1, . . . ,Bt and Ĉ ◦ IP as before, along with y ∈ {0, 1}` and ` + t
vectors u1, . . . ,u`,v1, . . . ,vt ∈ Zmq , outputs a vector uĈ ◦ IP ∈ Zmq computed as follows:

1. For i = 1, . . . , t, compute u′
Ĉi

:= Evalct(A1, . . . ,A`,u1, . . . ,u`,y, Ĉi);

2. Output uT

Ĉ ◦ IP
:=
(

(z[1] ·v1−G−1(B1)T ·u′1)+ · · ·+(z[t] ·vt−G−1(Bt)
T ·u′

Ĉi
)
)

, where z = Ĉ(y).

We stress that Evalct does not get x. We obtain the following extension of Lemma 3.1:

Lemma 3.2 (properties of extended Evalpk,Evalct). The algorithms Evalpk,Evalct satisfy the following

properties. For all A1, . . . ,A`,B1, . . . ,Bt ∈ Zn×mq , all (x,y) ∈ Ztq × {0, 1}`, all boolean circuits Ĉ of

depth d, let AĈ ◦ IP := Evalpk(A1, . . . ,A`,B1, . . . ,Bt, Ĉ ◦ IP). Then,

13

• for all u1, . . . ,u`,v1, . . . ,vt ∈ Zmq and all s ∈ Znq ,∥∥∥uĈ ◦ IP − (AĈ ◦ IP + 〈x, Ĉ(y)〉 ·G)Ts
∥∥∥
∞
≤ O(`n log q)O(d) ·max

i∈[`]

{
‖ui − (Ai + y[i] ·G)Ts‖∞ ,

}
where uĈ ◦ IP := Evalct(A1, . . . ,A`,B1, . . . ,Bt,u1, . . . ,u`,v1, . . . ,vt,y, Ĉ ◦ IP).

• if (A1, . . . ,A`) = (AR1−y[1] ·G, . . . ,AR`−y[`] ·G) and (B1, . . . ,Bt) = (BR′1−x[1] ·G, . . . ,BR′`−
x[t] ·G), where R1, . . . ,R`,R

′
1, . . . ,R

′
t ∈ Zm×mq , then we have

AĈ ◦ IP = ARĈ ◦ IP + 〈x, Ĉ(y)〉G

where RĈ ◦ IP is efficiently computable and∥∥RĈ ◦ IP
∥∥
∞ ≤ O(`n log q)O(d) ·max{‖R1‖∞ , . . . , ‖R`‖∞ , ‖R′1‖∞ , . . . , ‖R′t‖∞}

Proof. The proof follows readily from Lemma 3.1, along with the calculation

RĈ ◦ IP := RĈ1
G−1(B1) + · · ·+ RĈt

G−1(Bt)−
(
ŷ[1]R′1 + · · ·+ ŷ[t]R′t

)
.

3.3 Our PHPE scheme

For simplicity, we present our scheme for 1-bit message spaces.

• PH.Setup
(
1λ, 1t, 1`, 1d

)
: The setup algorithm takes the security parameter λ, the length of the secret

attribute t, the length of the public attribute `, and the circuit depth bound d. Define the lattice
parameters n = n(λ),m = m(n, d), q = q(n, d), χ = χ(n) as per Section 3.6.

1. Choose random matrices Ai ∈ Zn×mq for i = 1, . . . , `, Bi ∈ Zn×mq for i = 1, . . . , t and P ∈ Zn×mq .6

2. Sample a matrix with associated trapdoor:(
A,T

)
← TrapGen(1m, 1n, q)

3. Let G ∈ Zn×mq be the powers-of-two matrix with a public trapdoor basis TG.

4. Output the master public key ph.mpk :=
(
{Ai}, {Bi},A,P) and the master secret key as

ph.msk := (mpk,T).

• PH.Keygen
(
ph.msk, Ĉ ◦ IPγ

)
: The key-generation algorithms takes as input the master secret key msk,

a circuit Ĉ ◦ IPγ . It outputs a secret key skĈ ◦ IPγ computed as follows.

1. Let
AĈ ◦ IP ← Evalpk

(
{Ai}, {Bi}, Ĉ ◦ IP

)
be the homomorphically computed “public key” as per the evaluation algorithm in Section 3.2.2.

2. Sample a matrix R ∈ Z2m×m
q such that [A|AĈ ◦ IP + γ ·G] ·R = P mod q, where

R← SampleLeft(A,AĈ ◦ IP + γ ·G,T,P, s)

3. Output the secret key skĈ ◦ IPγ := (R).

6To simplify notation, we always denote the collections {Ai} := {Ai}i∈[`] and {Bi} = {Bi}i∈[t].

14

• PH.Enc
(
ph.mpk, (x,y), µ

)
: The encryption algorithm takes as input the public key ph.mpk, attribute

vectors x ∈ Ztq, y ∈ {0, 1}` and a message µ ∈ {0, 1}. It computes ciphertext cty as follows.

1. Choose a secret vector s← (χ)n and error terms e, e′ ← (χ)m.

2. Let b =
[
0, . . . , 0, dq/2eµ

]T ∈ Zmq . Compute encodings

β0 = (A)Ts + e and β1 = PTs + e′ + b

3. For all i = 1, . . . , ` compute an encoding

ui = (Ai + y[i] ·G)Ts + RT

ie

where Ri ← {−1, 1}m×m.

4. For all i = 1, . . . , t compute an encoding

vi =
(
Bi + x[i] ·G

)T
s + (R′i)

Tei

where R′i ← {−1, 1}m×m.

5. Output the ciphertext

cty :=

(
{ui}i∈[`], {vi}i∈[t], β0, β1

)
• PH.Dec((skĈ ◦ IPγ , Ĉ ◦ IPγ), (cty,y)) : The decryption algorithm takes as input the secret key skĈ ◦ IPγ

for a circuit Ĉ ◦ IPγ and the ciphertext cty along with the public attribute y. It proceeds as follows.

1. Using {ui}, {vi} and y, apply the encoding evaluation algorithm (See Section 3.2.2) to obtain a
ciphertext

uĈ ◦ IP ← Evalct
(
{Ai,ui}, {Bi,vi}, Ĉ ◦ IP,y

)
where uĈ ◦ IP ≈ (AĈ ◦ IP + ρ ·G)Ts + e for some ρ ∈ Zq.

2. Now, compute

η = β1 −RT ·
[

β0

uĈ ◦ IP

]
∈ Zmq

Output µ = Round(η[m]) if
[
Round(η[1]), . . . ,Round(η[m− 1])

]
= 0, where

Round(c) =

{
0 if |c| < q/4
1 otherwise

Otherwise, output ⊥.

3.4 Analysis and Correctness

Lemma 3.3. Let C be a family of circuits bounded by depth d and let PHPE be our scheme defined above.
Assume that for LWE dimension n = n(λ), the parameters are instantiated as follows:

χ = DZ,
√
n

q = Õ(tnd)O(d)

m = O(n log q)

B = B(n)

s = O(tn log q)O(d)

Then, the scheme is correct according to Definition 3.1.

15

Proof. We proceed proving correctness of the scheme in two steps. First, we bound the error term e in the
final homomorphically computed encoding uĈ ◦ IP. By Lemma 3.2, the error in uĈ ◦ IP satisfies∥∥∥uĈ ◦ IP − (AĈ ◦ IP + 〈x, Ĉ(y)〉 ·G)Ts

∥∥∥
∞
≤ O(tB ·O(n log q)O(d+1)).

Recall that [A | AĈ ◦ IP + γ ·G] ·R = P mod q and ‖RT‖∞ ≤ s
√
m. After multiplying by RT, we obtain

the final error bound of O(tB ·O(n log q)O(d+1)). We then consider two cases:

• if 〈x, Ĉ(y)〉 = γ mod q, then

||η = β1 −RT ·
[

β0

uĈ ◦ IP

]
||∞ = O(tB ·O(n log q)O(d+1)) ≤ q/4

in the first m − 1 entries for sufficiently large q = Õ(tnd)O(d). Hence, the message µ is recovered
correctly.

• Otherwise, say 〈x, Ĉ(y)〉 = γ′ 6= γ mod q and γ′ = γ + γ∗. Then, then multiplying by RT = [R1,R2]
we obtain

η = β1 −RT ·
[

β0

uĈ ◦ IP

]
= RT

2 · γ∗ ·G + e∗

for some error vector e∗. Hence, with all but negligible probability all first m− 1 coefficients of η will
be below q/4.

This concludes the correctness proof.

3.5 Security

Theorem 3.4. Let PHPE be our partially-hiding predicate encryption scheme. Then, it is secure according
to Definition 3.1 assuming hardness of Learning With Errors problem.

Proof. We describe a p.p.t. simulator Sim algorithm and then claim that the output of the ideal experiment
is indistinguishable from real via a series of hybrids.

• Sim(ph.mpk,y): samples β0, β1,ui,vi randomly and independently from Zmq and outputs the ciphertext

ct :=

(
{ui}i∈[`], {vi}i∈[t],y, β0, β1

)
Hybrid Sequence. We now claim that security of our scheme scheme via a series of hybrids, where Hybrid
0 corresponds to the real experiment and Hybrid 6 corresponds to the simulated experiment using algorithms
Sim.

• Hybrid 0: The real experiment.

• Hybrid 1: The real game algorithms PH.Setup,PH.Enc are replaced with PH.Setup∗1,PH.Enc
∗
1 defined

below. Informally, these algorithms use the knowledge of x,y to setup the public parameters in a
special form.

• Hybrid 2: The real game PH.Keygen is replaced with PH.Keygen∗1, where instead of using the trapdoor
T of the matrix A, the secret keys are sampled using the public trapdoor TG along with the trapdoor
information generated using PH.Setup∗1.

• Hybrid 3: Same as above, except the PH.Enc∗1 is replaced with PH.Enc∗2 defined below.

• Hybrid 4: Same as above, except PH.Keygen∗1 is replaced with real key-generation PH.Keygen.

16

• Hybrid 5: Same as above, except PH.Enc∗2 is replaced with PH.Enc∗3 define below, which informally
replaces all ciphertext components with random elements.

• Hybrid 6: The simulated experiment, that is, same as above, except PH.Setup∗1 is replaced with
PH.Setup.

Auxiliary Algorithms. We now define the auxiliary algorithms similar to those in [AFV11, GMW15]
and then argue that the hybrids are either statistically or computationally indistinguishable.

• PH.Setup∗1
(
1λ, 1d,x,y

)
: In addition to the system parameters, the setup algorithms use the knowledge

of the challenge attribute vectors (x,y). Define the lattice parameters n = n(λ),m = m(n, d), q =
q(n, d), χ = χ(n) (See Section 3.6).

1. Sample a matrix with associated trapdoor:(
A,T

)
← TrapGen(1m, 1n, q)

Let G be the powers-of-two matrix with a public trapdoor TG.

2. Let Ai = A ·Ri − y[i] ·G ∈ Zn×mq for i = 1, . . . , ` where Ri
$← {−1, 1}m×m.

3. Let Bi = A ·R′i − x[i] ·G ∈ Zn×mq for i = 1, . . . , t where R′i
$← {−1, 1}m×m.

4. Choose a random matrix P ∈ Zn×mq .

5. Output the master public key ph.mpk :=
(
{Ai}, {Bi},A,P) and the master secret key as

ph.msk := (mpk,T, {Ri}, {R′i}).

In Hybrids 1, 4, 5, we will generate secret keys using PH.Keygen, which requires knowing T. In Hybrids
2 and 3, we will generate secret keys using PH.Keygen∗1, which does not require knowing T.

• PH.Keygen∗1
(
ph.msk, Ĉ ◦ IPγ

)
: The key-generation algorithms takes as input the master secret key

ph.msk, a pair of circuits C, IPγ . It outputs a secret key skĈ ◦ IPγ computed as follows.

1. Let
AĈ ◦ IP ← Evalpk

(
{Ai}, {Bi}, Ĉ ◦ IP

)
be the homomorphically computed “public key” as per the evaluation algorithm in Section 3.2.2.

2. By Lemma 3.2, AĈ ◦ IP = A ·RĈ ◦ IP−〈x, Ĉ(y)〉 ·G. Now, an admissible adversary is restricted to

queries on circuits Ĉ ◦ IPγ such that 〈x, Ĉ(y)〉 6= γ. Hence, we can sample R ∈ Z2m×m
q such that

[A | AĈ ◦ IP + γ ·G] ·R = [A | ARĈ ◦ IP + (γ − 〈x, Ĉ(y)〉) ·G] ·R = P mod q,

using
R← SampleRight(A, (γ − 〈x, Ĉ(y)〉) ·G,RĈ ◦ IP,TG,P, s)

3. Output the secret key skĈ ◦ IPγ := (R).

• PH.Enc∗1
(
ph.mpk, (x,y), µ

)
: The encryption algorithm takes as input the public key ph.mpk, challenge

vectors x ∈ Ztq, y ∈ Z`q and a message µ. It computes ciphertext cty as follows.

1. Choose a vector s ∈ (χ)n and compute encodings

β0 = (A)Ts + e and β1 = PTs + e′ + b

where b = [0, . . . , 0, dq/2eµ]T ∈ Zmq .

17

2. For all i = 1, . . . , ` compute an encoding

ui = RT

i · β0

= (A ·Ri)
Ts + RT

i · e
= (Ai + y[i] ·G)Ts + RT

i · e

3. For all i = 1, . . . , t compute an encoding

vi = (R′i)
T · β0

= (A ·R′i)Ts + (R′i)
T · e

= (Bi + x[i] ·G)Ts + (R′i)
T · e

4. Output the ciphertext

ct :=

(
{ui}i∈[`], {vi}i∈[t],y, β0, β1

)
• PH.Enc∗2

(
ph.mpk, (x,y), µ

)
:

1. Choose random elements β0, β1 from Zmq .

2. For all i = 1, . . . , ` compute an encoding ui = RT
i · β0.

3. For all i = 1, . . . , t compute an encoding vi = (R′i)
T · β0.

4. Output the ciphertext

ct :=

(
{ui}i∈[`], {vi}i∈[t],y, β0, β1

)
• PH.Enc∗3

(
ph.mpk, (x,y), µ

)
: The final auxiliary encryption algorithm computes ciphertext cty as a

collection of random encodings. That is, β0, β1,ui,vi are all randomly and independently chosen from
Zmq . Output the ciphertext

ct :=

(
{ui}i∈[`], {vi}i∈[t],y, β0, β1

)
Lemma 3.5. The output of Hybrid 0 is statistically indistinguishable from the output of Hybrid 1.

Proof. The proof follows closely to [AFV11, Lemma 4.3]. For completeness, we first summarize the difference
between the two hybrids:

1. In Hybrid 0, matrices Ai,Bi are uniformly chosen in Zn×mq . However, in Hybrid 1, Ai = A·Ri−y[i]·G
and Bi = A ·R′i − x[i] ·G.

2. In Hybrid 0, the ciphertext encodings are computed as

ui = (Ai + y[i] ·G)Ts + RT

ie and vi = (Ai + x[i] ·G)Ts + (R′i)
Te

whereas in Hybrid 1 it is computed as

ui = RT

iβ0 and vi = (R′i)
Tβ0

where β0 = (A)Ts + e.

We now argue that the joint distribution of the public parameters, the ciphertext and the secret keys(
A, {Ai}, {Bi}, {ui}, {vi}, {skĈ ◦ IP}

)

18

is statistically indistinguishable between the two hybrids. Note that the secret keys are produced in both
using trapdoor T and the public matrices. Now, observe that by Lemma 2.2,(

A,A ·Ri − y[i] ·G,RT

ie,T
) s
≈
(
A,Ai,R

T

ie,T
)
.

This holds for matrices Bi as well. And since for all i, Ri (resp. R′i) is randomly and independently chosen,
it follows that(

A,
{
Ai

}
,
{
Bi

}
,
{
RT

ie
}
,
{

(R′i)
Te
}
,T

)
s
≈
(

A,
{
AiRi − y[i] ·G

}
,
{
BiR

′
i − x[i] ·G

}
,
{
RT

ie
}
,
{

(R′i)
Te
}
,T

)
.

The ciphertext components ui and vi are derived simply by adding (Ai + y[i] ·G)Ts and (Bi + x[i] ·G)Ts
to RT

ie and (R′i)
Te, respectively. And the secret keys are generated from the matrices and the trapdoor

T. Since applying a function to two statistically indistinguishable distributions produces two statistically
indistinguishable distributions, this shows that the public parameters, the ciphertext and the secret keys are
statistically close in both hybrids.

Lemma 3.6. The output of Hybrid 1 is statistically indistinguishable from the output of Hybrid 2.

Proof. From Hybrid 1 to Hybrid 2, we switch between between Keygen and PH.Keygen∗. Fix a secret key
query Ĉ ◦ IPγ made by an admissible adversary:

• In Hybrid 1, the secret key is sampled using SampleLeft with trapdoor T, and its distribution only
depends on the public matrices in ph.mpk by Theorem 2.3 (provided the parameter s is sufficiently
large);

• In Hybrid 2, the secret key is sampled using SampleRight with trapdoor TG along with Ri,R
′
i (which

we can do since the adversary is admissible) and its distribution only depends on the public matrices
in ph.mpk by Theorem 2.4 (again, provided s is sufficiently large).

In particular, in both hybrids, the distribution of the secret key only depends on the matrices A,AĈ ◦ IP +
γ ·G,P and are in turn completely determined by ph.mpk. Since ph.mpk has exactly the same distribution
in Hybrids 1 and 2, it follows that the output of both hybrids are statistically indistinguishable.

Lemma 3.7. The output of Hybrid 2 is computationally indistinguishable from the output of Hybrid 3, under
the LWE assumption.

Proof. We show how to break the security of LWE given an adversary that distinguishes between the two
hybrids. We are given matrices (A,P) ∈ Zn×mq ×Zn×mq and samples u,w ∈ Zmq ×Zmq which are either LWE
samples for some secret vector s or randomly chosen. We simulate the experiments as follows.

• Runs PH.Setup∗1,PH.Keygen
∗
1 algorithms using the matrices A,P from the challenge.

• To simulate the ciphertext encodings, let β0 = u and β1 = w + b, where b =
[
0, . . . , 0, dq/2eµ

]T ∈ Zmq .
The ciphertext encodings ui,vi are computed using Ri,R

′
i as

ui = RT

iβ0 and vi = (R′i)
Tβ0

Output

ct :=

(
{ui}i∈[`], {vi}i∈[t],y, β0, β1

)
Now clearly, if u = ATs + e and w = PTs + e′, then the simulation is identical to Hybrid 2. Otherwise, if
u,w are random elements then the experiment corresponds exactly to Hybrid 3. Hence, given an adversary
that distinguishes between Hybrids 2 and 3, we can break the security of the standard LWE problem.

Lemma 3.8. The output of Hybrid 3 is statistically indistinguishable from the output of Hybrid 4.

19

Proof. The proof follows similarly to that of Lemma 3.6, where we switch between PH.Keygen∗ and Keygen.

Lemma 3.9. The output of Hybrid 4 is statistically indistinguishable from the output of Hybrid 5.

Proof. In Hybrid 4, the ciphertext encodings are computed as ui = RT
i · β0 and vi = (R′i)

T · β0. However,
in Hybrid 5 these are randomly chosen from the encoding space. The indistinguishability of two hybrids
follows from the standard leftover hash lemma, since:

• the secret keys are generated using PH.Keygen, which do not use any information about Ri,R
′
i;

• the only additional leakage on Ri,R
′
i comes from (ARi,BR′i) in ph.mpk.

Therefore, for all A,B, β0 and for all i,(
A,B, β0, {ARi,R

T

i · β0}, {BR′i, (R
′
i)

T · β0}
)

s
≈
(

A,B, β0, {ARi,ui}, {BR′i,vi}
)

for randomly chosen Ri,R
′
i,ui,vi and sufficiently large m = O(n log q).

Lemma 3.10. The output of Hybrid 5 is statistically indistinguishable from the output of Hybrid 6.

Proof. The proof follows similarly to that of Lemma 3.5, where we switch between PH.Setup∗1 and PH.Setup.

This completes the security proof.

3.6 Parameters Selection

We must set the parameters to satisfy correctness and security of the scheme. For correctness, we must
ensure that the magnitude of the final error e is below q/4. For security, we must ensure the statistical
indistingushability of matrix A from uniform and indistinguishability of SampleLeft and SampleRight
algorithms by setting parameter s large enough. We start by setting LWE dimension n = n(λ), the error
distribution χ = χ(n) = DZ,

√
n and the error bound B = B(n) = O(n). We set the modulus q = Õ(tnd)O(d)

and lattice dimension m = O(n log q) to apply Lemma 2.1. Finally, we set s = O(tn log q)O(d) to apply
Lemmas 2.3, 2.4. As shown in Section 3.4, these parameters also satisfy the correctness requirements of
the scheme. That is, the master public key, ciphertext and secret keys all have size poly(λ, t, `, d) where
(1λ, 1t, 1`, 1d) is the input to PH.Setup and we achieve security under LWEn,q,χ where q = Õ(tnd)O(d) and

the modulus-to-noise ratio is Õ(tnd)O(d).

4 Predicate Encryption for Circuits

In this section, we present our main construction of predicate encryption for circuits by bootstrapping on
top of the partially-hiding predicate encryption. That is,

• We construct a Predicate Encryption scheme PE = (Setup,Keygen,Enc,Dec) for boolean predicate
family C bounded by depth d over k bit inputs.

starting from

• an FHE scheme FHE = (HE.KeyGen,HE.Enc,HE.Dec,HE.Eval) with properties as described in
Section 2.3. Define ` as the size of the initial ciphertext encrypting k bit messages, and t as the
size of the FHE secret key and evaluated ciphertext vectors;

20

• a partially-hiding predicate encryption scheme PHPE = (PH.Setup,PH.Keygen,PH.Enc,PH.Dec) for
the class CPHPE of predicates bounded by some depth parameter d′ = poly(d, λ, log q). Recall that

(Ĉ ◦ IPγ)(x ∈ Ztq,y ∈ {0, 1}t) = 1 iff

(∑
i∈[t]

x[i] · Ĉ(y)[i]

)
= γ mod q

where Ĉ : {0, 1}` → {0, 1}t is a circuit of depth at most d′.

Overview. At a high level, the construction proceeds as follows:

• the PE ciphertext corresponding to an attribute a ∈ {0, 1}k is a PHPE ciphertext corresponding to

an attribute (fhe.sk, fhe.ct) where fhe.sk
$← Ztq is private and fhe.ct := HE.Enc(a) ∈ {0, 1}` is public;

• the PE secret key for a predicate C : {0, 1}k → {0, 1} ∈ C is a collection of 2B + 1 PHPE secret keys

for the predicates {Ĉ ◦ IPγ : Ztq × {0, 1}` → {0, 1}}γ=bq/2c−B,...,bq/2c+B where Ĉ : {0, 1}` → {0, 1} is
the circuit:

Ĉ(fhe.ct) := HE.Eval(fhe.ct, C),

so Ĉ is a circuit of depth at most d′ = poly(d, λ, log q);

• decryption works by trying all possible 2B + 1 secret keys.

Note that the construction relies crucially on the fact that B (the bound on the noise in the FHE evaluated
ciphertexts) is polynomial. For correctness, observe that for all C,a:

C(a) = 1

⇔ HE.Dec(fhe.sk,HE.Eval(C, fhe.ct)) = 1

⇔ ∃ γ ∈ [bq/2c −B, bq/2c+B] such that

(∑
i∈[t]

fhe.sk[i] · fhe.ct[i]
)

= γ mod q

⇔ ∃ γ ∈ [bq/2c −B, bq/2c+B] such that (Ĉ ◦ IPγ)(fhe.sk, fhe.ct) = 1

where fhe.sk, fhe.ct, Ĉ are derived from C,a as in our construction.

4.1 Our Predicate Encryption scheme

Our construction proceeds as follows:

• Setup(1λ, 1k, 1d): The setup algorithm takes the security parameter λ, the attribute length k and the
predicate depth bound d.

1. Run the partially-hiding PE scheme for family CPHPE to obtain a pair of master public and secret
keys:

(ph.mpk, ph.msk)← PH.Setup(1λ, 1t, 1`, 1d
′
)

where for k-bit messages and depth d circuits: t is the length of FHE secret key, ` is the bit-length
of the initial FHE ciphertext and d′ is the bound on FHE evaluation circuit (as described at the
beginning of this section).

2. Output (mpk := ph.mpk,msk := ph.msk).

• Keygen(msk, C): The key-generation algorithms takes as input the master secret key msk and a
predicate C. It outputs a secret key skC computed as follows.

1. Let Ĉ(·) := HE.Eval(·, C) and let (Ĉ ◦ IPγ) be the predicates for γ = bq/2c −B, . . . , bq/2c+B.

21

2. For all γ = bq/2c −B, . . . , bq/2c+B, compute

skĈ ◦ IPγ ← PH.Keygen
(
ph.msk, Ĉ ◦ IPγ

)
3. Output the secret key as skC :=

(
{skĈ ◦ IP}γ=bq/2c−B,...,bq/2c+B

)
.

• Enc(mpk,a, µ): The encryption algorithm takes as input the public key mpk, the input attribute vector
a ∈ {0, 1}k and message µ ∈ {0, 1}. It proceeds as follow.

1. Samples a fresh FHE secret key fhe.sk ∈ Ztq by running HE.KeyGen(1λ, 1d
′
, 1k).

2. Encrypt the input to obtain

fhe.ct← HE.Enc(fhe.sk,a) ∈ {0, 1}`

3. Compute
ctfhe.ct ← PH.Enc

(
mpk, (fhe.sk, fhe.ct), µ

)
Note that the fhe.sk corresponds to the hidden attribute and fhe.ct corresponds to the public
attribute.

4. Output the ciphertext ct = (ctfhe.ct, fhe.ct).

• Dec((skC , C), ct) : The decryption algorithm takes as input the secret key skC with corresponding
predicate C and the ciphertext ct. If there exists γ = bq/2c −B, . . . , bq/2c+B such that

PH.Dec((skĈ ◦ IPγ , Ĉ ◦ IPγ), (ctfhe.ct, fhe.ct)) = µ 6=⊥

then output µ. Otherwise, output ⊥.

4.2 Correctness

Lemma 4.1. Let C be a family of predicates bounded by depth d and let PHPE be the partially-hiding PE
and FHE be a fully-homomorphic encryption as per scheme description. Then, our predicate encryption
scheme PE is correct according to Definition A. Moreover, the size of each secret key is poly(d, λ) and the
size of each ciphertext is poly(d, λ, k).

Proof. Fix an arbitrary attribute vector a and a predicate C.

• If C(a) = 1, we claim that decryption returns µ with all but negligible probability. By the correctness
of FHE decryption, we have

〈fhe.sk,HE.Eval(fhe.ct, C)〉 = ρ mod q

for some scalar ρ in range [bq/2c −B, bq/2c+B]. Hence,

PH.Dec((skĈ ◦ IPγ , Ĉ ◦ IPγ), (ctfhe.ct, fhe.ct)) =

{
µ if γ = ρ

⊥ otherwise

by the correctness of partially-hiding scheme.

• If C(a) = 0, then by the correctness of FHE decryption

〈fhe.sk,HE.Eval(fhe.ct, C)〉 = ρ mod q

for a scalar ρ outside of range [bq/2c −B, bq/2c+B]. Hence, for all γ = bq/2c −B, . . . , bq/2c+B,

PH.Dec((skĈ ◦ IPγ , Ĉ ◦ IPγ), (ctfhe.ct, fhe.ct)) =⊥

The correctness of the scheme follows.

22

4.3 Security

Theorem 4.2. Let C be a family of predicates bounded by depth d and let PHPE be the secure partially-hiding
PE and FHE be the secure fully-homomorphic encryption as per scheme description. Then, our predicate
encryption scheme PE is secure according to Definition A.1

Proof. We define p.p.t. simulator algorithms EncSim and argue that its output is indistinguishable from
the output of the real experiment. Let PH.EncSim be the p.p.t. simulator for partially-hiding predicate
encryption scheme.

• EncSim(mpk, 1|a|, 1|µ|): To compute the encryption, the simulator does the following. It samples FHE
secret key fhe.sk by running HE.KeyGen(1λ, 1d

′
, 1k). It encrypts a zero-string fhe.ct← HE.Enc(fhe.sk,0).

It runs PH.EncSim(mpk, fhe.ct, 1|fhe.sk|, 1|µ|) to obtain ctfhe.ct.

We now argue via a series of hybrids that the output of the ideal experiment.

• Hybrid 0: The real experiment.

• Hybrid 1: The real encryption algorithm is replaced with Enc∗, where Enc∗ is an auxiliary algorithm
defined below. On the high level, Enc∗ computes the FHE ciphertext honestly by sampling a secret
key and using the knowledge of a. It then invokes PH.EncSim on the honestly generated ciphertext.

• Hybrid 2: The simulated experiment.

Auxiliary Algorithms. We define the auxiliary algorithm Enc∗ used in Hybrid 1.

• Enc∗(a, 1|µ|): The auxiliary encryption algorithm takes as input the attribute vector a and message
length.

1. Sample a fresh FHE secret key fhe.sk by running HE.KeyGen(1λ, 1d
′
, 1k).

2. Encrypt the input attribute vector to obtain a ciphertext

fhe.ct← HE.Enc(fhe.sk,a) ∈ {0, 1}`

3. Run PH.EncSim on input (mpk, fhe.ct, 1|fhe.sk|, 1|µ|) to obtain the ciphertext ctfhe.ct.

Lemma 4.3. The output of Hybrid 0 is computationally indistinguishable from the Hybrid 1, assuming
security of Partially-Hiding Predicate Encryption.

Proof. Assume there is an adversary Adv and a distinguisher D that distinguishes the output (a, µ, α)
produced in either of the two hybrids. We construct an adversary Adv′ and a distinguisher D′ that break
the security of the Partially-Hiding Predicate Encryption. The adversary Adv′ does the following.

1. Invoke the adversary Adv to obtain an attribute vector a.

2. Sample a fresh FHE secret key fhe.sk using HE.KeyGen(1λ, 1d
′
, 1k). Encrypt the attribute vector

fhe.ct← HE.Enc(fhe.sk,a)

and output the pair (fhe.sk, fhe.ct) as the “selective” challenge attribute.

3. Upon receiving mpk, it forwards it to Adv.

4. For each oracle query C that Adv makes, Adv′ uses its oracle to obtain secret keys skĈ ◦ IPγ for

γ = bq/2c −B, . . . , bq/2c+B. It outputs skC =
(
{skĈ ◦ IPγ}γ=bq/2c−B,...,bq/2c+B

)
.

23

5. It outputs message µ that Adv produces, obtains a ciphertext ctfhe.ct and sends ct = (ctfhe.ct, fhe.ct)
back to Adv to obtain α.

We note that given Adv that is admissible, Adv′ is also admissible. That is, for all queries Ĉ ◦ IPγ that Adv′

makes satisfies (Ĉ ◦ IPγ)(fhe.sk, fhe.ct) = 0 since 〈fhe.sk, Ĉ(fhe.ct)〉 6= γ for γ = bq/2c − B, . . . , bq/2c + B
by the correctness of FHE 2.3. Finally, the distinguisher D′ on input (fhe.sk, fhe.ct, µ, α) invokes D and
outputs whatever it outputs. Now, in Hybrid 0 the algorithms used as PH.Setup,PH.Keygen,PH.Enc which
corresponds exactly to the real security game of PHPE. However, in Hybrid 1 the algorithms correspond
exactly to the simulated security game. Hence, we can distinguish between the real and simulated experiments
contradicting the security of PHPE scheme.

Lemma 4.4. The output of Hybrid 1 and Hybrid 2 are computationally indistinguishable, assuming semantic
security of Fully-Homomorphic Encryption Scheme.

Proof. The only difference in Hybrids 1 and 2 is how the FHE ciphertext is produced. In one experiment,
it is computed honestly by encrypting the attribute vector a, while in the other experiment it is always
an encryption of 0. Hence, we can readily construct an FHE adversary that distinguishes encryption of
a from encryption of 0. The FHE adversary invokes the admissible PE adversary to obtain an attribute
vector a. It then runs the honest PH.Setup and PH.Keygen algorithms replying to every query C such that
C(a) = 0 with a corresponding secret key skC . To simulate the ciphertext, it first forwards a pair (a,0) to
the FHE challenger to obtain a ciphertext fhe.ct. It then runs PH.EncSim(mpk, fhe.ct, 1|fhe.sk|, 1µ) to obtain a
ciphertext ctfhe.ct which it forwards to PE adversary. Finally, it runs the PE distinguisher on input (a, µ, α)
and outputs its guess.

This completes the proof of the security of the scheme.

4.4 Parameters Selection

We summarize the lattice parameters selection for our construction. First, we set the LWE dimension
n = poly(λ) and the error distribution χ = χ(n) = DZ,

√
n. Now, we set FHE secret key size t = poly(λ) and

modulo q = Õ(tnd)O(d). To encrypt k-bit attribute vector and support FHE evaluation of arbitrary depth-d
circuits, we set ` = poly(k, d, λ, log q) and d′ = poly(d, λ, log q). That is, the master public key, ciphertext
and secret keys all have size poly(λ, k, d) and we achieve security under LWEn,q,χ where q = 2poly(d,n,log k)

and the modulus-to-noise ratio is 2poly(d,n,log k).

References

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard model.
In EUROCRYPT, pages 553–572, 2010.

[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional encryption
for inner product predicates from learning with errors. In ASIACRYPT, pages 21–40, 2011.

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional
encryption: New perspectives and lower bounds. In Ran Canetti and Juan A. Garay, editors,
Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part II, volume 8043 of Lecture Notes in Computer
Science, pages 500–518. Springer, 2013.

[Ajt99] Miklós Ajtai. Generating hard instances of the short basis problem. In ICALP, pages 1–9, 1999.

[AP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error. In
CRYPTO (I), pages 297–314, 2014.

24

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryption without
random oracles. In Advances in Cryptology—EUROCRYPT 2004, volume 3027 of Lecture Notes
in Computer Science, pages 223–238. Berlin: Springer-Verlag, 2004.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev,
Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption,
arithmetic circuit ABE and compact garbled circuits. In EUROCRYPT, pages 533–556, 2014.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. In ITCS, pages 309–325, 2012.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges.
In TCC, pages 253–273, 2011.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In CRYPTO, pages 505–524, 2011.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In FOCS, pages 97–106, 2011.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE. In ITCS,
pages 1–12, 2014.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data. In
TCC, pages 535–554, 2007.

[CHKP12] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate
a lattice basis. J. Cryptology, 25(4):601–639, 2012.

[CHL+14] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé.
Cryptanalysis of the multilinear map over the integers. Cryptology ePrint Archive, Report
2014/906, 2014. http://eprint.iacr.org/.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear maps over
the integers. In CRYPTO (1), pages 476–493, 2013.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178,
2009.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices.
In EUROCRYPT, pages 1–17, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In FOCS,
pages 40–49, 2013. Also, Cryptology ePrint Archive, Report 2013/451.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from lattices.
In TCC, 2015. Also, Cryptology ePrint Archive, Report 2014/645.

[GGHZ14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure functional encryption
without obfuscation. Cryptology ePrint Archive, Report 2014/666, 2014.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. Reusable garbled circuits and succinct functional encryption. In STOC, pages 555–
564, 2013.

25

http://eprint.iacr.org/

[GMW15] Romain Gay, Pierrick Méaux, and Hoeteck Wee. Predicate encryption for multi-dimensional
range queries from lattices. In Public Key Cryptography, 2015. Also, Cryptology ePrint Archive,
Report 2014/965.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In ACM CCS, pages 89–98, 2006.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In STOC, pages 197–206, 2008.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO (1), pages
75–92, 2013.

[GV14] Sergey Gorbunov and Dhinakaran Vinayagamurthy. Riding on asymmetry: Efficient ABE for
branching programs. Cryptology ePrint Archive, Report 2014/819, 2014. http://eprint.

iacr.org/.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with
bounded collusions via multi-party computation. In CRYPTO, pages 162–179, 2012.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for
circuits. In STOC, pages 545–554, 2013. Also, Cryptology ePrint Archive, Report 2013/337.

[IW14] Yuval Ishai and Hoeteck Wee. Partial garbling schemes and their applications. In ICALP (1),
pages 650–662, 2014.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In EUROCRYPT, pages 146–162, 2008.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
In EUROCRYPT, pages 700–718, 2012.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with general
relations from the decisional linear assumption. In CRYPTO, pages 191–208, 2010.

[OT12] Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding (hierarchical) inner
product encryption. In EUROCRYPT, pages 591–608, 2012. Also, Cryptology ePrint Archive,
Report 2011/543.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In STOC,
pages 333–342, 2009.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,
56(6), 2009.

[SBC+07] Elaine Shi, John Bethencourt, Hubert T.-H. Chan, Dawn Xiaodong Song, and Adrian Perrig.
Multi-Dimensional Range Query over Encrypted Data. In IEEE Symposium on Security and
Privacy, pages 350–364, 2007.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with public
keys. In ACM Conference on Computer and Communications Security, pages 463–472, 2010.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages 457–
473, 2005.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple
assumptions. In CRYPTO, pages 619–636, 2009.

26

http://eprint.iacr.org/
http://eprint.iacr.org/

A Predicate Encryption

We present the definitions of predicate encryption for general circuits [BW07, KSW08, AFV11]. A predicate
encryption scheme PE with respect to an attribute universe A, predicate universe C and a message universe
M consists of four algorithms (Setup,Enc,KeyGen,Dec):

Setup(1λ,A, C,M)→ (mpk,msk). The setup algorithm gets as input the security parameter λ and outputs
the public parameter mpk, and the master key msk.

Enc(mpk, a, µ) → ct. The encryption algorithm gets as input mpk, an attribute a ∈ A and a message
µ ∈M. It outputs a ciphertext ct.

KeyGen(msk, C)→ skC . The key generation algorithm gets as input msk and a predicate C ∈ C. It outputs
a secret key skC .

Dec((skC , C), ct) → µ. The decryption algorithm gets as input skC and a ciphertext ct. It outputs a
message µ.

Correctness. We require that for all (a,C) ∈ A× C such that C(a) = 1 and all µ ∈M,

Pr

[
skC ← KeyGen(msk, C), ct← Enc(mpk, a, µ);Dec((skC , C), ct) = µ

]
≥ 1− negl(λ)

And for all (a,C) ∈ A× C such that C(a) = 0 and all µ ∈M,

Pr

[
skC ← KeyGen(msk, C), ct← Enc(mpk, a, µ);Dec((skC , C), ct) =⊥

]
≥ 1− negl(λ)

where the probability is taken over (mpk,msk)← Setup(1λ) and the coins of Enc,KeyGen.

A.1 Security Model

Definition A.1 (SIM-AH). For every stateful p.p.t. adversary Adv, and a p.p.t. simulator Sim, consider
the following two experiments:

expreal
PE,Adv(1λ): expideal

PE,Sim(1λ):

1: a←Adv(1λ)
2: (mpk,msk)← Setup(1λ)

3: µ←AdvKeyGen(msk,·)(mpk)
4: ct← Enc(mpk, a, µ)

5: α← AdvKeyGen(msk,·)(ct)
6: Output (a, µ, α)

1: a←Adv(1λ)
2: (mpk,msk)← Setup(1λ)

3: µ←AdvKeyGen(msk,·)(mpk)
4: ct← Sim(mpk, 1|a|, 1|µ|)

5: α←AdvKeyGen(msk,·)(ct)
6: Output (a, µ, α)

We say an adversary Adv is admissible if for all oracle queries that it makes C ∈ C, C(a) = 0. The
Predicate Encryption scheme PE is then said to be simulation-based attribute-hiding (SIM-AH) if there is
a p.p.t. simulator Sim such that for every stateful p.p.t. adversary Adv, the following two distributions are
computationally indistinguishable:{

expreal
PE,Adv(1λ)

}
λ∈N

c
≈

{
expideal
PE,Sim(1λ)

}
λ∈N

27

A.2 Relations to Other Security Models

Single Message Implies Many Message Security. We point out a simple composition result for our
definition. The definition for many message security remains virtually identical, except the adversary declares
a list of tuples (ai, µi) for which it sees either real or simulated ciphertexts. Given a one-message simulator
Sim1, we can construct a many message simulator Simm which just invokes the one-message simulator to
simulate each ciphertext independently. The security follows via the standard hybrid argument and crucially
relies on the fact that the adversary is restricted to queries that do not allow to decrypt. Similar result
follows for partially hiding predicate encryption.

Impossibility of Strong-Simulation Security We point out the many-messages strong-simulation
security is impossible to realize. In the strong-simulation security, the adversary is allowed to query for
secret keys that allow to decrypt. The simulator is given the result oracle access to functionality that returns
the outputs of the predicates.

Definition A.2 (Many-Messages SIM-SHA). For every stateful p.p.t. adversary Adv, and a p.p.t. simulator
Sim, consider the following two experiments:

expreal
PE,Adv(1λ): expideal

PE,Sim(1λ):

1:
−→a←Adv(1λ)

2: (mpk,msk)← Setup(1λ)

3:
−→µ←AdvKeyGen(msk,·)(mpk)

4:
−→
ct ← Enc(mpk,−→a ,−→µ)

5: α← AdvKeyGen(msk,·)(
−→
ct)

6: Output (−→a ,−→µ , α)

1:
−→a←Adv(1λ)

2: (mpk,msk)← Setup(1λ)

3:
−→µ←AdvKeyGen(msk,·)(mpk)

4:
−→
ct ← SimO(·)(mpk, 1|ai|, 1|µi|)

5: α←AdvO
′(msk,·)(

−→
ct)

6: Output (−→a ,−→µ , α)

Where the oracles are defines as:

• O(C): returns a list (C(ai), bi) (for all i ∈ |−→a |) where bi = µi if C(ai) = 1 and bi =⊥ otherwise. In
words, it returns the results of the decryption queries that the adversary should learn by the correctness
of the scheme.

• O′(msk, C): is the second stage of the simulator, namely SimO(·)(msk). It is given access to the same
oracle that returns results of the decryption queries that must be satisfied by the correctness.

We say the simulator is admissible if it queries its oracle O(·) on the identical ordered set of queries issued
by Adv. The Predicate Encryption scheme PE is then said to be simulation-based strong attribute-hiding for
many-messages if there is an admissible stateful p.p.t. simulator Sim such that for every admissible stateful
p.p.t. adversary Adv, the following two distributions are computationally indistinguishable:{

expreal
PE,Adv(1λ)

}
λ∈N

c
≈

{
expideal
PE,Sim(1λ)

}
λ∈N

The impossibility of this notion follows from the compression arguments of [BSW11, AGVW13]. In
particular, consider an adversary that outputs a random list of messages −→µ and arbitrary identities −→a . It
sets the lengths of these lists to be much greater than the length of secret keys of the scheme. Then, upon
receiving the challenge ciphertext, it asks for a query that allows to decrypt all messages. The simulator, on
the other side, must first commit to a long string

−→
ct and then later fake a short secret key that must decrypt

the entire ciphertext correctly, which is impossible by the standard information theoretic argument.

28

A.3 Indistinguishability Security of PE

For comparison, we include here the indistinguishability-based formulation of selective, weakly attribute-
hiding predicate encryption.

Definition A.3 (IND-AH). For a stateful adversary A, we define the advantage function

AdvPEA (λ) := Pr

β = β′ :

(x0, x1)← A(1λ);

β
$← {0, 1};

(mpk,msk)← Setup(1n,X ,Y,M);
(µ0, µ1)← AKeyGen(msk,·)(mpk);
ct← Enc(mpk, xβ , µβ);
β′ ← AKeyGen(msk,·)(ct)

−
1

2

with the restriction that all queries C that A makes to KeyGen(msk, ·) satisfies C(x0) = C(x1) = 0 (that is,
skC does not decrypt ct). A predicate encryption scheme is selectively secure if for all PPT adversaries A,
the advantage AdvPEA (λ) is a negligible function in λ.

29

	Introduction
	Our Contributions
	Overview of Our Construction
	Discussion

	Preliminaries
	Lattice Preliminaries
	Learning With Errors (LWE) Assumption

	Lattice Algorithms
	Primitive matrix

	Fully-Homomorphic Encryption
	FHE from LWE

	Partially Hiding Predicate Encryption
	Definitions
	Our Construction
	Overview
	Auxiliary evaluation algorithms

	Our PHPE scheme
	Analysis and Correctness
	Security
	Parameters Selection

	Predicate Encryption for Circuits
	Our Predicate Encryption scheme
	Correctness
	Security
	Parameters Selection

	Predicate Encryption
	Security Model
	Relations to Other Security Models
	Indistinguishability Security of PE

