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ABSTRACT 

 

Rectangular concrete-filled stainless steel tubular (CFSST) beam-columns utilized as 

supporting members for building frames may experience axial compression and biaxial 

moments. A numerical simulation considering the local buckling effects for thin-walled 

rectangular CFSST slender beam-columns has not been performed. This paper reports a 

stability modelling on the structural characteristics of rectangular CFSST slender beam-

columns accounting for different strain-hardening of stainless steel under tension and 

compression. The influences of local buckling are considered in the simulation utilizing the 

existing effective width formulations. The developed numerical model simulates the strength 

interaction and load-deflection behavior of CFSST slender beam-columns. Comparisons of 

computed results with test data provided by experimental investigations are performed to 

validate the proposed fiber model. The influences of different geometric and material property 

on ultimate strengths, ultimate pure moments, concrete contribution ratio, strength interaction 

and load-deflection responses of CFSST slender beam-columns are examined by utilizing 
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fiber model. A design formula considering strain hardening of stainless steel is derived for 

calculating the ultimate pure moment of square CFSST beam-columns.  

 

Keywords: Composite beam-columns; Fiber analysis; Local buckling; Numerical modeling; 

Progressive local buckling. 

 

1. Introduction  

 

Concrete-filled steel tubular (CFST) beam-columns have been extensively utilized as the 

compression members for electrical towers, caissons, piles and buildings in many countries 

[1]. This is attributed to the structural and constructional benefits offered by CFST slender 

beam-columns. The structural advantages include high elastic stiffness, ultimate strengths, 

ductility and large energy absorption capacity while the constructional advantages are rapid 

frame erection, significant reduction in materials, costs and section size and elimination of the 

plywood formworks [2]. The structural benefits depicted in Fig. 1 shows that the ultimate 

capacity of composite columns is higher than that of non-composite individual components. 

The use of stainless steels in CFST beam-columns provides additional advantages, including 

good corrosion resistance and aesthetic appearance [3-5]. Stainless steel has been used in 

landmark structures, such as the Hearst Tower in New York, the footbridges in Norway and 

Italy, the Stonecutters Bridge in Hong Kong and the Parliament House in Canberra [4]. 

Nevertheless, the initial high cost of stainless steels has restricted their use in general 

applications such as office or residential buildings. A life-cycle cost analysis needs to be 

utilized for the general application of concrete-filled stainless steel tubular (CFSST) beam-

columns.  
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Rectangular CFSST beam-columns may experience axial compression and biaxial moments 

when they are located at the corners in composite buildings. The combined action of biaxial 

bending may also be caused by different bending moments transferred from the connecting 

composite beams. The stainless steel plates of biaxially loaded CFSST slender beam-column 

experience a stress gradient. The thin steel tube walls buckle locally outwards remarkably 

reducing the capacity of CFST columns [6-8]. The main failure of thin-walled slender CFSST 

columns can be described by local outward buckling and overall column buckling [9]. No 

numerical models with local buckling effects have been developed for the simulation of 

rectangular CFSST beam-columns supporting axial loading or axial compression and biaxial 

bending. 

 

Extensive research studies have been devoted to the nonlinear characteristic of conventional 

CFST columns [10-16] while experimental investigations on slender CFSST beam-columns 

have been relatively limited. Previous studies by Young and Ellobody [17] showed that 

concentrically compressed rectangular CFSST short columns failed by local buckling of 

plates and concrete crushing. This test observation agrees with the experimental results 

reported by Lam and Gardner [18]. Uy et al. [9] tested twelve pin-ended rectangular and 

square CFSST slender columns under axial compression with different column slenderness 

ratios and concrete strengths to investigate their performance. As indicated, failure 

characteristic of slender columns was the global buckling with local buckling at their mid-

length. Ellobody and Ghazy [19] tested circular CFSST slender beam-columns under 

eccentric loading. It was observed that most of the columns failed with gradually increasing 

the lateral deflections at the mid-length. Tokgoz [20] tested square CFSST slender beam-

columns subjected to biaxial loads. Test results indicated that the ductility of high strength 

concrete was considerably increased due to the confinement offered by stainless steel tubes.    
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Nonlinear analysis methods have been employed to model the performance of CFST columns 

[21-32]. Nevertheless, a relatively limited number of studies have been devoted to the 

numerical simulation of CFSST beam-columns. The finite element analyses were performed 

by Ellobody and Young [33], Tao et al. [34] and Hassanein et al. [35, 36] to determine the 

deflections and strengths of square and circular CFSST short columns subjected to concentric 

loading. Although stainless steel has different strain-hardening behaviors in tension and 

compression, most of the analysis techniques employed material constitutive laws based on 

coupon tension tests to model the compressive behavior of CFSST columns. Ky et al. [37] 

developed a mathematical programming based algorithm utilizing the fiber element 

formulation and Müller’s method for the inelastic analysis of axially loaded concrete encased 

composite short and slender columns. The mathematical model was shown to give good 

predictions of the behavior of concrete encased composite columns. Patel et al. [38, 39] 

reported that the material models of stainless steel in tension incorporated in the analysis 

underestimate the strengths of axially compressed CFSST short columns. Tokgoz [20] 

employed the fiber analysis technique to analyze biaxially loaded CFSST slender beam-

columns with compact sections of stainless steel tubes.  

 

The previous research studies indicate that limited experimental studies on rectangular CFSST 

slender beam-columns with biaxial loads have been performed. There have been few 

computational analyses on biaxially loaded CFSST slender beam-columns. Local buckling 

and different strain-hardening of stainless steel under compression and tension were not 

considered in the existing studies of rectangular CFSST slender beam-columns. A fiber model 

for analyzing the strength interaction and load-deflection behaviors of CFSST slender beam-

columns is described herein. This model incorporates the influences of local buckling and 

strain-hardening of stainless steel tubes. Computational solutions are compared against test 
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data published by independent investigators. The influences of local buckling, concrete 

strengths, stainless steel strengths, depth-to-thickness ratios, slenderness ratios, eccentricity 

ratios and applied load angles on the nonlinear characteristic of CFSST beam-columns are 

discussed in detail. A simple formula is given for computing the ultimate pure moment of 

square CFSST beam-columns.  

 

2. Material stress-strain relations 

 

2.1. Concrete in compression  

 

The concrete confinement increases the overall ductility of rectangular CFSST columns 

without increasing the strength. The increased ductility in the confined concrete is considered 

to accurately capture the performance of CFSST beam-columns. The constitutive law of 

concrete is represented by the nonlinear stress-strain relationship depicted in Fig. 2. This 

relationship contains a parabolic curve up to the concrete effective compressive strength '
ccf , 

a constant portion at '
ccf , a linear descending branch beyond '

ccf  and constant residual 

strength after strain 0.015.  

 

The four-stage stress-strain relations of concrete under compression illustrated in Fig. 2 were 

proposed by Liang [7] and are expressed by 
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in which c  represents the longitudinal stress, c  denotes the strain at c , '
ccf  stands for the 

effective compressive strength, '
cc denotes the strain corresponding to '

ccf , cE  represents the 

modulus of elasticity of concrete [40], '
cf  stands for the cylinder strength of concrete in 

compression, c  denotes the factor given by Liang [7], cD  is the greater of  tB 2 and 

 tD 2 , t  stands for the thickness of stainless steel plate, B  represents the width and D  

denotes the depth of rectangular cross-section, c  stands for the strength degradation factor of 

concrete derived by Liang [7] for the post-peak characteristic of concrete, and sB is the larger 

of width B  and depth D . The geometric parameters B , D  and t  are shown in Fig. 3. The 

reduction factor c accounts for the effects of column size, concrete quality and loading rate. 

This factor does not consider the increased ductility of the confined concrete as it has been 

incorporated in the stress-strain model for the confined concrete. 
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It is noted that the parabolic ascending curve of the compressive stress-strain relationship 

depicted in Fig. 2 is modeled using formulas given by Mander et al. [41]. The three linear 

branches as illustrated in Fig. 2 are formulated by Liang [7].  

 

2.2. Concrete in tension  

 

The concrete in tension exhibits the strain-softening and tension-stiffening behavior after 

cracking. These phenomena are characterized by a reduction in stress beyond the concrete 

tensile strength with an increase in the strain. The tension-stiffening behavior of concrete 

contributes to the overall stiffness of composite members after cracking. The material 

characteristics of concrete in tension with tension-stiffening and strain-softening as shown in 

Fig. 2 are considered herein. The stress proportionally increases with an increase in strain 

until concrete cracks. After reaching the strain at concrete tensile strength ctf , the tensile 

concrete stress reduces linearly up to zero with increasing the strain. The stress in tension is 

taken as zero beyond the strain tu . The strain tu  can be calculated by multiplying the factor 

10 with the cracking strain tc . The ultimate strength ctf  can be determined by '6.0 cc f .  

 

2.3. Stainless steel in compression and tension  

 

The constitutive model for stainless steel used in the numerical analysis could have a 

considerable impact on the computed results. Rasmussen [42] proposed a stress-strain 

relationship which assumes the same strain-hardening behavior for stainless steel in 

compression and tension. Quach et al. [43] and Abdella et al. [44] included the different stain-

hardening behaviors of stainless steel under compression and tension in their three-stage 

stress-strain laws. The material laws were employed by Patel et al. [38, 39] in their 
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computational simulation of circular CFSST beam-columns. The three-stage stress-strain 

relations depicted in Fig. 4 are employed in the simulation of rectangular CFSST beam-

columns, which are expressed by 
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in which s  represents the stainless steel stress, s  denotes the strain, 0E  is the modulus of 

elasticity, r is taken as 2.0 s , 2.0  is the 0.2% proof strain which is based on the model 

given by Ramberg and Osgood [45] and is given as  
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In Eq. (7), 1C  , 2C  , 3C and 4C  are the positive parameters. These constants are 

mathematically derived by Abdella et al. [44] and expressed by  
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where 
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where n  represents the nonlinearity index proposed by Ramberg and Osgood [45] while 2.0E  

represents the tangent modulus in Eq. (16).  

 

For second stage of the stress-strain relation given in Eq. (7), 0.1  stands for the 1.0% proof 

stress and 0.1  represents the strain corresponding to the stress 0.1 . The 1.0% proof stress and 

strain in compression and tension are computed by the formula proposed by Quach et al. [43] 

as  
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The positive constants 5C , 6C , 7C  and 8C  shown in Eq. (7) are mathematically derived by 

Abdella et al. [44] and are given by 
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where the parameter 2n  is given by Quach et al. [43] as follows:  
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where 0.2  denotes the 2.0% proof stress and 0.2  stands for the strain corresponding to the 

stress 0.2 . The 2.0% proof stress and strain are proposed by Quach et al. [43] as  
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In Eq. (7), the factors *  and r* are given by Abdella et al. [44] as  

 

2.0*   s                                                                                                                            (34) 

2.0
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
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r                                                                                                                            (35) 

 

For the third stage of formulation provided in Eq. (7), the negative and positive sign 

corresponds to the compression and tension, respectively.   

 

In Eq. (7), 3A and 3B  are material constants, which are computed by 

 

  0.230.20.23 1  BA                                                                                                         (36) 
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in which the ultimate strain su and stress su  are determined by the equations presented by 

Quach et al. [43]: 

 

ut
uc 





1

1
1                                                                                                                        (38) 

  ututuc  21                                                                                                                    (39) 
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in which ut  represents the ultimate tensile strength while ut  denotes the strain at ut , which 

are written as 

 

 










2.0185

50375.01
2.0 e

n
ut                                                                                                    (40) 

ut
ut 

 2.01                                                                                                                           (41) 

 

3. Fiber analysis 

 

3.1. Basic concepts  

 

The fiber analysis is used herein for analyzing the nonlinear behavior of rectangular CFSST 

beam-columns. In the fiber analysis, the column cross-section is first divided into steel and 

concrete elements as illustrated in Fig. 3. The stresses in these elements can then be predicted 

from the constitutive laws of stainless steel and concrete. The axial load and biaxial moments 

applied on the cross-section are determined by stress integration.  

 

3.2. Simulation of cross-section under biaxial bending  

 

The nonlinear behavior of CFSST beam-columns with thin-walled cross-sections is presented 

by the outward local buckling mode. Ineffective and effective widths of a plate with stress 

gradients are illustrated in Fig. 5. After exhibiting initial local buckling, the stainless steel 

tube walls under increasing compressive stresses undergo post-local buckling until the 

ultimate limit state is attained. The buckling of a stainless steel plate takes place in a 

progressive manner. The progressive local buckling performance is analyzed by gradually 
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redistributing in-plane stresses in the plate [7]. This post-local buckling of slender stainless 

steel cross-sections must be accounted for in the inelastic simulation of rectangular CFSST 

beam-columns.  

 

The axial load-moment-curvature analysis can be utilized to compute the performance of 

biaxially loaded rectangular CFSST beam-columns. The maximum moment obtained from the 

complete moment-curvature response represents the ultimate bending strengths of the 

composite cross-section. For the given axial load with an angle    as depicted in Fig. 3, the 

moment-curvature relations are obtained through an incremental procedure in which the 

curvature is increased by steps. The moment capacity of the cross-section is solved for the 

corresponding curvature increment. The internal moments and axial forces are obtained from 

stress resultants which incorporate the influences of local buckling and different strain-

hardening of stainless steel in compression and tension. For each curvature increment, neutral 

axis parameters, namely the depth nd and orientation  , are obtained by satisfying the force 

equilibrium 0 PPa  and moment equilibrium xy MMtan , where aP   represents the 

applied axial load,   denotes the applied load angle measured at y-axis as shown in Fig. 3, 

and xM  and yM  stand for internal moments. The analysis steps for plotting moment-

curvature responses are detailed by Liang [7].  

 

Liang et al. [6] derived the effective width and strength formulas for carbon steel tubes in 

rectangular CFST columns. No study, however, is conducted on rectangular CFSST beam-

columns incorporating local buckling of plates. For the evaluation of Liang et al. [6]’s 

formulas, the numerical predictions obtained from the fiber model are compared against the 

test data given by Uy et al. [9], Young and Ellobody [17] and Lam and Gardner [18] in Table 

1, in which fib.uP  stands for the ultimate axial strength obtained from the simulation, exp.uP  
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denotes the experimental load and u  stands for the ultimate strain of CFSST short columns. 

As shown in Table 1, the fiber model employing the effective width formulas for the carbon 

steel plates reasonably predicts the ultimate loads of short CFSST columns. The predicted 

mean fib.uP -to- exp.uP  ratio is 0.97, which is close to unity and the corresponding standard 

deviation (SD) is 0.08 while the associated coefficient of variation (COV) is 0.09. The 

complete axial load-strain responses presented in Fig. 6 and Fig. 7(a) for CFSST short 

columns are also well captured by the fiber model including local buckling effects. The results 

presented herein demonstrate that the formulations given by Liang et al. [6] can be utilized for 

the simulation of rectangular CFSST columns.  

 

3.3. Simulation of axial load-deflection curves   

 

The computational algorithms given by Liang et al. [28] were used for the modeling of load-

deflection response of CFSST slender beam-columns with biaxial loads. For inelastic stability 

simulation, the mid-length deflection mu  of a pin-ended beam-column is initialized. This 

deflection is gradually increased until the deflection limit is attained or the applied axial force 

is below the predefined strength limit. The mid-length curvature m is determined from the 

mid-length deflection mu . For each curvature, the neutral axis orientation and depth within the 

beam-column section are iteratively adjusted by employing Müller’s numerical technique 

until moment equilibrium condition is attained at the mid-length of biaxially loaded columns. 

The internal axial load satisfying the moment equilibrium condition is determined as the 

applied axial load at the beam-column ends. A set of the axial loads and mid-length 

deflections obtained are utilized to define the complete axial load-deflection curve. Details on 

the theoretical formulas, equilibrium equations, and computational procedure for simulating 

axial load-deflection curves with local buckling effects are given by Liang et al. [28].  
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3.4. Simulation of load-moment interaction responses   

 

The strength interaction in terms of axial load-moment  nn MP   responses for slender 

CFSST beam-columns can be utilized to examine the capacities against the design actions of 

axial compression and bending. This strength interaction depends on local buckling of plates, 

cross-sectional analysis, depth-to-thickness  tD  ratios, eccentricity  De  ratios, 

slenderness  rL  ratios, applied load angles   , initial out-of-straightness, concrete 

compressive strengths  'cf  and stainless steel proof stress  2.0 , in which e  denotes the 

loading eccentricity, r  stands for the radius of gyration  and L  represents the length of beam-

column.  

 

For the analysis of strength interaction, the ultimate moment capacities are incrementally 

determined from given axial loads. The ultimate axial load  oaP  of the slender CFSST 

columns under axial compression needs to be computed first utilizing the computational 

procedure described in Section 3.3. The applied load  nP  is then gradually increased from 0 

to oaP9.0  with the load increment of 10oaP . For each load increment, the mid-length 

curvature  m  is progressively increased. The axial load-moment-curvature analysis 

procedure discussed in Section 3.2 is employed to compute the internal moment at the mid-

length of biaxially loaded composite beam-columns. For each curvature increment, the end 

curvature  e  is iteratively obtained using Müller’s recursive algorithm and the 

corresponding end moment  eM  is computed. For each load step, the bending strength  eM   

at the ends of the column is gradually incremented until the maximum end moment  max.eM  is 

achieved. This maximum moment  max.eM  can be found when external bending strength at 
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the mid-length  eM  reaches the moment capacity of the cross-section for the given load. The 

maximum moments  max.eM  and the axial loads can be utilized to draw the nn MP   

interaction diagram.  

 

4. Verification of the fiber model 

 

4.1. Comparison of ultimate axial strengths  

 

The test data given by Uy et al. [9] on axially loaded square and rectangular CFSST slender 

columns were utilized to verify the fiber model. The results presented by Uy et al. [9] consist 

of 12 CFSST slender columns with tD  ratios of 36 and 52. Pin-ended conditions were 

adopted for all the columns. The slender columns were constructed using the stainless steel 

hollow sections filled with concrete strength of 36.3 MPa or 75.4 MPa. The austenitic 

stainless steel with proof stress of 363.3 MPa or 390.3 MPa was used to fabricate the hollow 

columns. The experimental ultimate axial loads ( exp.uP ) and computed axial strengths ( fib.uP ) 

are compared in Table 2. The mean ratio of exp.fib. uu PP  and its SD and COV are 0.94, 0.05 and 

0.05, respectively.  

 

4.2. Comparison of load-deflection responses  

  

The predicted axial load-deflection responses for axially loaded square and rectangular 

CFSST slender column are compared against the test data published by Uy et al. [9] in Fig. 7. 

The comparison indicates that the fiber analysis yields the accurate computation of the elastic 

stiffness of axially loaded CFSST slender columns. The difference between the axial loads of 

Specimens S1-1b and S1-2b in the post-peak range is within 10%. This discrepancy is mainly 
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due to the effects of average concrete strength utilized in the simulation. The axial load of 

Specimen S1-3b obtained from the fiber analysis in the post-yield range agrees closely with 

the experimental one. The developed fiber model is further verified by comparing 

computational results with test data on biaxially loaded square CFSST slender beam-columns 

given by Tokgoz [20] in Table 3. An initial geometric imperfection of 1000L was considered 

in the numerical analyses. It should be noted that the beam-columns were not tested up to 

their ultimate strengths so Fig. 8 presents the comparisons of experimental initial stiffness 

with the complete numerical load-deflection curves. Good agreement between the 

computational and experimental load-deflection responses is obtained before the ultimate 

loads are reached. In conclusion, the fiber model accurately computes the elastic stiffness, 

ultimate axial strengths and displacement ductility of CFSST slender columns subjected to 

axial compression.   

 

5. Behavior of CFSST slender beam-columns 

 

The verified simulation procedure was employed to study the influences of local buckling, 

tD  ratio, rL  ratio, De  ratio, applied load angle  , steel strength 2.0  and concrete 

cylinder strength '
cf  on the performance of biaxially loaded beam-columns. The parametric 

investigation presented herein can be used for selecting the concrete strength '
cf  in 

combination with the geometric properties such as rL  ratio, tD  ratio and De  ratio. The 

following parametric study accounted for the imperfection in terms of out-of-straightness of 

1000L  [39].  

 

5.1. Ultimate axial strengths  
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The inelastic stability analysis was conducted on Specimen R1 given in Table 4 to simulate 

the influences of the tD  ratios, rL  ratios, De  ratios and concrete strength '
cf  on the 

ultimate axial loads. Fig. 9 illustrates the ultimate axial loads as a function of the De  ratios 

which are varied from zero to two. As presented in Fig. 9, the ultimate load decreases as rL  

ratio or De  ratio increases. Nevertheless, increasing the steel tube thickness or concrete 

strength increases the axial strengths. Increasing concrete strength '
cf  from 32 MPa to 100 

MPa does not noticeably increase the ultimate loads of CFSST beam-columns having a large 

rL  ratio or a large De  ratio when compared with CFSST short columns with a small e/D 

ratio.  

 

5.2. Ultimate pure moments  

 

The influences of various variables on the ultimate pure moments were studied using the 

developed fiber model. The Specimen R2 given in Table 4 was analyzed. The influences of 

tD  ratio on the ultimate pure moments are shown in Fig. 10, in which eZ  represents the 

elastic section modulus. As shown in Fig. 10, the ultimate pure moments decrease when the 

tD  ratio increases. This is because increasing tD  ratio reduces the steel area and plate 

buckling strength. The influences of concrete strength '
cf  changing from 20 MPa to 120 MPa 

on ultimate pure moments are demonstrated in Fig. 11, where the factor m  depends on the 

tD  ratio which is proposed in Section 6. As depicted in Fig. 11, the ultimate pure moment 

increases as concrete strength '
cf  increases. Fig. 12 presents the ultimate pure moment with 

different stainless steel proof stress 2.0 . It appears that the ultimate pure moment increases 
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when the stainless steel strength 2.0  increases. The factor c  depicted in Fig. 12 depends on 

the concrete strength '
cf  and it is defined in Section 6.  

 

5.3. Concrete contribution ratio  c  

 

The concrete strength can be selected for CFSST beam-columns using the concrete 

contribution ratio. This ratio is computed by   nsnc PPP  , in which nP  represents 

ultimate load of CFSST slender beam-columns which are loaded biaxially and sP  denotes the 

ultimate load of the stainless steel tubular beam-columns without concrete core [28]. The 

effects of De  ratio, rL  ratio and strength '
cf  on the concrete contribution ratio c  were 

examined by undertaking the fiber analysis on Specimen R3 given in Table 4. The numerical 

results presented in Fig. 13 indicate that increasing the rL  ratio or De  ratio with the same 

tD  ratio reduces the concrete contribution. A slender beam-column utilizing high strength 

concrete exhibits the most pronounced reduction in the concrete contribution. The benefits of 

high strength concrete can be achieved for CFSST beam-columns with small rL  ratios and 

De  ratios. Therefore, high strength concrete can be used in CFSST beam-columns having a 

small rL  ratio, small De  ratio and large tD  ratio.  

 

5.4. Axial load-deflection responses 

 

The effects of material and geometric parameters were examined by analyzing Specimen R4 

listed in Table 4. It is seen from Fig. 14(a) that the local buckling of slender cross-section 

considerably reduces the capacity of CFSST slender beam-columns. As illustrated in Fig. 14, 

the initial stiffness and ultimate axial load decrease when the tD  ratio, rL  ratio or De  
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ratio increases but increase with increasing the concrete strength '
cf  and stainless steel proof 

stress 2.0 .  On the other hand, the displacement ductility increases with increasing the tD  

ratio, rL  ratio or De  ratio but it decreases when the concrete strength '
cf  increases. Fig. 

14(d) shows the increasing axial load at mid-length deflection of 40 mm for the columns with 

De  ratio of 0.3. This is due to the strain-hardening of stainless steel tubes which exhibits the 

higher load than the yield load [27]. As demonstrated in Fig. 14(f), the stiffness of axial load-

deflection relation is not affected by the stainless steel strength 2.0 .  

 

5.5. Local buckling 

 

The local buckling affects the nonlinear characteristic of rectangular CFST beam-columns [7, 

8]. However, the influences of local buckling on the stiffness and axial capacity of CFSST 

beam-columns have not been reported. The fiber model was employed in the simulation of the 

Specimen R5 as provided in Table 4. The normalized ultimate axial load  oen PP  with 

varying rL  ratios is illustrated in Fig. 15(a), where oeP  represents the ultimate strength of 

eccentrically loaded composite cross-section. The influence of local buckling on ultimate load 

of beam-column having zero length is the most pronounced. However, the influence of local 

buckling is found to decrease when the rL  ratio increases as illustrated in Fig. 15(a). The 

strength reduction of the beam-column with zero length due to local buckling is 10.3%. For a 

beam-column having the rL  ratio of 200, its ultimate load is decreased by only 1.1% owing 

to local buckling. This suggests that the strength of very slender CFSST beam-columns 

having rL  ratio greater than 200 is mainly governed by the overall column buckling and the 

local buckling effects can be ignored. As presented in Fig. 15(b), the ultimate strengths are 
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reduced considerably by local buckling. In Fig. 15(b), oaP  denotes the ultimate load of axially 

loaded slender columns, while oM  is the ultimate pure moment of beam-columns.  

 

5.6. Applied load angle    

 

The influences of the applied load angle    on the strength of CFSST beam-columns were 

studied by utilizing the fiber analysis. A square CFSST slender Specimen R6 given in Table 4 

was analyzed by varying the angle   from o0  to o90 . Fig. 16 illustrates the influences of 

angle   on the ultimate load of square CFSST beam-columns. As depicted in the figure, the 

ultimate load uP  of beam-columns is normalized by the ultimate load oP  of the cross-section 

loaded axially. The ultimate strain u  was assumed as 0.04 in the analysis of axially loaded 

column section. It reveals that increasing the angle   from o0  to o45  increases the ultimate 

load. Nevertheless, when increasing angle  from o45  to o90 , the ultimate axial load 

decreases. It should be noted that the influence of angle   on the ultimate axial strength is 

not significant as depicted in Fig. 16.  

 

6. Design equation for ultimate pure moments 

 

An equation for computing the ultimate pure moment  oM  of CFST short beam-columns 

with circular section was derived by Liang and Fragomeni [46]. Their equation is extended for 

square CFSST short beam-columns including the influences of local buckling and different 

strain-hardening of stainless steel under tension and compression. The equation given by 

Liang and Fragomeni [46] is 
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2.0 escmo ZM                                                                                                                   (42) 

 

in which eZ  represents the elastic section modulus of a square CFSST beam-column, which is 

determined as 323DZe  . Eq. (42) considers the influences of tD  ratios, concrete strength 

'
cf and stainless steel strength 2.0 using factors m , c  and s , respectively. The influences 

of local buckling and strain-hardening of stainless steel are accounted for in deriving these 

factors.    

 

The results presented in Fig. 10 illustrate that the normalized strength 2.0eo ZM  is reduced 

by increasing the tD  ratio. The factor m  is proposed using a nonlinear regression analysis 

by considering the influences of tD  ratios on strength oM  of square CFSST beam-columns. 

This factor m  is expressed as  
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Fig. 11 presents the ratio of 2.0meo ZM as a function of concrete strength '
cf . A nonlinear 

regression analysis is employed to obtain the following expression for the factor c :  

 

  MPa12020for7266.0 '0668.0'  ccc ff                                                                        (44) 

 

The effects of stainless steel proof stress 2.0 on the strength oM  are illustrated in Fig. 12. It is 

mentioned, the influences of concrete strength '
cf  and tD  ratio were considered in the 
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factors c  and m  in Fig. 12, respectively. The factor s  is proposed for incorporating the 

effects of stainless steel strength 2.0 in the strength oM of square CFSST beam-columns. The 

factor s  is determined as 

 

MPa690250for
2811962.262

471.0 0.22
2.02.0

 


 s                                                     (45) 

 

The proposed design equation for the strength oM  of square CFSST beam-columns is verified 

by comparing the calculated strengths using Eq. (42) with the numerical results obtained from 

the fiber model. Various tD  ratios, concrete strengths '
cf  and stainless steel strengths 2.0  

are considered in the verification of the design equation. The strength comparison is given in 

Table 5, in which cal.oM  represents the ultimate pure moment predicted using Eq. (42) and 

ibf.oM  denotes the ultimate pure moment computed from fiber analysis. The comparison in 

Table 5 indicates that the mean value of cal.oM -to- fib.oM  ratio is 0.99 while SD and COV are 

0.02. It is demonstrated that the design equation yields an accurate estimation of the strength 

oM  of square CFSST beam-columns.  

  

7. Conclusions 

 

This paper has reported a computational simulation on the stability modelling of rectangular 

CFSST slender beam-columns with axial compression and biaxial moments. This simulation 

accounts for the influences of different strain-hardening in tension and compression for 

stainless steel and locally buckled stainless steel plates on the characteristic of CFSST slender 

beam-columns. The fiber model proposed accurately predicts the experimentally observed 
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performance of CFSST slender columns. It has been revealed that the fiber model can be used 

to simulate the behavior of rectangular CFSST slender beam-columns. The parametric study 

has been carried out to examine influences of slenderness ratios, local buckling, loading 

eccentricities, depth-to-thickness ratios, applied load angle, stainless steel strengths and 

concrete strengths on the structural characteristic of CFSST slender beam-columns. A simple 

equation for computing the ultimate pure moments of square CFSST beam-columns 

considering the local buckling and strain hardening of steel has been proposed and compared 

with the prediction of the fiber model.  

 

The numerical analysis reported in this paper leads to the following important conclusions:  

 

 The local buckling of stainless steel tubes considerably reduces the stiffness, strength and 

ductility of thin-walled rectangular CFSST beam-columns. These effects must be 

considered in the analysis and design of thin-walled CFSST beam-columns.  

 The ultimate loads of CFSST beam-columns considerably increase when the concrete 

strength increases, but remarkably decrease as the rL  ratio, tD  ratio or De  ratio 

increases.  

 For slender CFSST beam-columns with a large De  ratio or a large rL  ratio, it is 

effective to increase the steel areas or use high strength stainless steel to increase their 

ultimate axial strengths.  

 The concrete contribution ratio c  is significantly increased by increasing the concrete 

strength or tD  ratio. However, it is decreased by increasing the De  ratio or rL  ratio.  

 For CFSST beam-columns with a large De  ratio or a large rL  ratio, it is not effective 

to use high strength concrete to increase their ultimate axial strengths.  
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 When a CFSST slender beam-column having a large tD  ratio, a small rL  ratio and a 

small De  ratio, high strength concrete should be utilized to increase its ultimate axial 

strength. It means that it is more effective to utilize high strength concrete to increase the 

ultimate axial load of section or intermediate length columns rather than very slender 

columns.  

 The tD  ratio has pronounced effects on the section capacity rather than the column 

capacity.  

 The De  and rL  ratios have pronounced effects on the column axial strength rather than 

the section axial capacity.  

 The loading angle has little influence on the ultimate loads of CFSST beam-columns.  

 The proposed design equation accurately computes the ultimate pure moments of square 

CFSST beam-columns.  

 

References  

 

[1] Han LH, Li W, Bjorhovde R. Developments and advanced applications of concrete-

filled steel tubular (CFST) structures: Members. J Constr Steel Res 2014;100:211-28. 

[2] Patel VI, Liang QQ, Hadi MNS. Nonlinear analysis of concrete-filled steel tubular 

columns. Germany: Scholars’ press; 2015.  

[3] Mann AP. The structural use of stainless steel. The Structural Engineer 1993;71(4):60-

9.  

[4] Baddoo NR. Stainless steel in construction: A review of research, applications, 

challenges and opportunities. J Constr Steel Res 2008;64(11):1199-1206.   

[5] Gardner L. Aesthetics, economics and design of stainless steel structures. Adv Steel 

Constr 2008;4(2):113-22.  



Patel,	 V.	 I.,	 Liang,	 Q.	 Q.	 and	 Hadi,	 M.	 N.	 S.	 (2017).	 Nonlinear	 analysis	 of	 biaxially	 loaded	 rectangular	
concrete‐filled	stainless	steel	tubular	slender	columns,	Engineering	Structures,	140:120‐133.	

27 
 

[6] Liang QQ, Uy B, Liew JYR. Local buckling of steel plates in concrete-filled thin-

walled steel tubular beam-columns. J Constr Steel Res 2007;63(3):396-405.  

[7] Liang QQ. Performance-based analysis of concrete-filled steel tubular beam-columns, 

Part I: Theory and algorithms. J Constr Steel Res 2009;65(2):363-72.  

[8] Liang QQ. Performance-based analysis of concrete-filled steel tubular beam-columns, 

Part II: Verification and applications. J Constr Steel Res 2009;65(2):351-62. 

[9] Uy B, Tao Z, Han LH. Behaviour of short and slender concrete-filled stainless steel 

tubular columns. J Constr Steel Res 2011;67(3):360-78. 

[10] Shakir-Khalil H, Zeghiche J. Experimental behaviour of concrete-filled rolled 

rectangular hollow-section columns. The Structural Engineer 1989;67(19):346-53.  

[11] Schneider SP. Axially loaded concrete-filled steel tubes. J Struct Eng ASCE 

1998;124(10):1125-38.  

[12] Varma AH, Ricles JM, Sause R, Lu LW. Seismic behavior and modelling of high-

strength composite concrete-filled steel tube (CFT) beam-columns. J Constr Steel Res 

2002;58(5-8):725-58. 

[13] Mursi M, Uy B. Behaviour and design of fabricated high strength steel columns 

subjected to biaxial bending. Part I: Experiments. Adv Steel Constr 2006;2(4):286-315. 

[14] Liu D. Behaviour of eccentrically loaded high-strength rectangular concrete-filled steel 

tubular columns. J Constr Steel Res 2006;62(8):839-46.  

[15] Portolés JM, Romero ML, Bonet JL, Filippou FC. Experimental study of high strength 

concrete-filled circular tubular columns under eccentric loading. J Constr Steel Res 

2011;67(4):623-33. 

[16] Dundu M. Column buckling tests of hot-rolled concrete filled square hollow sections of 

mild to high strength steel. Eng Struct 2016;127:73-85.  



Patel,	 V.	 I.,	 Liang,	 Q.	 Q.	 and	 Hadi,	 M.	 N.	 S.	 (2017).	 Nonlinear	 analysis	 of	 biaxially	 loaded	 rectangular	
concrete‐filled	stainless	steel	tubular	slender	columns,	Engineering	Structures,	140:120‐133.	

28 
 

[17] Young B, Ellobody E. Experimental investigation of concrete-filled cold-formed high 

strength stainless steel tube columns. J Constr Steel Res 2006;62(5):484-92. 

[18] Lam D, Gardner L. Structural design of stainless steel concrete filled columns. J Constr 

Steel Res 2008;64(11):1275-82.  

[19] Ellobody E, Ghazy MF. Experimental investigation of eccentrically loaded fiber 

reinforced concrete-filled stainless steel tubular columns. J Constr Steel Res 

2012;76:167-76. 

[20] Tokgoz S. Tests on plain and steel fiber concrete-filled stainless steel tubular columns. J 

Constr Steel Res 2015;114:129-35.  

[21] Hajjar JF, Schiller PH, Molodan A. A distributed plasticity model for concrete-filled 

steel tube beam-columns with interlayer slip. Eng Struct 1998;20(8):663-76. 

[22] Susantha KAS, Ge HB, Usami T. Uniaxial stress-strain relationship of concrete 

confined by various shaped steel tubes. Eng Struct 2001;23(10):1331-47. 

[23] Shanmugam NE, Lakshmi B, Uy B. An analytical model for thin-walled steel box 

columns with concrete in-fill. Eng Struct 2002;24(6):825-38. 

[24] Mursi M, Uy B. Behaviour and design of fabricated high strength steel columns 

subjected to biaxial bending. Part II: Analysis and design codes. Adv Steel Constr 

2006;2(4):286-315. 

[25] Portolés JM, Romero ML, Filippou FC, Bonet JL. Simulation and design 

recommendations of eccentrically loaded slender concrete-filled tubular columns. Eng 

Struct 2011;33(5):1576-93. 

[26] Patel VI, Liang QQ, Hadi MNS. High strength thin-walled rectangular concrete-filled 

steel tubular slender beam-columns. Part I: Modeling. J Constr Steel Res 2012;70:377-

84.  



Patel,	 V.	 I.,	 Liang,	 Q.	 Q.	 and	 Hadi,	 M.	 N.	 S.	 (2017).	 Nonlinear	 analysis	 of	 biaxially	 loaded	 rectangular	
concrete‐filled	stainless	steel	tubular	slender	columns,	Engineering	Structures,	140:120‐133.	

29 
 

[27] Patel VI, Liang QQ, Hadi MNS. High strength thin-walled rectangular concrete-filled 

steel tubular slender beam-columns. Part II: Behavior. J Constr Steel Res 2012;70:368-

76.  

[28] Liang QQ, Patel VI, Hadi MNS. Biaxially loaded high-strength concrete-filled steel 

tubular slender beam-columns, Part I: Multiscale simulation. J Constr Steel Res 

2012;75:64-71.  

[29] Ellobody E. Nonlinear behaviour of eccentrically loaded FR concrete-filled stainless 

steel tubular columns. J Constr Steel Res 2013;90:1-12. 

[30] Mollazadeh MH, Wang YC. New insights into the mechanism of load introduction into 

concrete-filled steel tubular column through shear connection. Eng Struct 2014;75:139-

51. 

[31] Patel VI, Liang QQ, Hadi MNS. Biaxially loaded high-strength concrete-filled steel 

tubular slender beam-columns, Part II: Parametric study. J Constr Steel Res 

2015;110:200-07.  

[32] Lai Z, Varma AH. Effective stress-strain relationships for analysis of noncompact and 

slender filled composite (CFT) members. Eng Struct 2016;124:457-72.  

[33] Ellobody E, Young B. Design and behaviour of concrete-filled cold-formed stainless 

steel tube columns. Eng Struct 2006;28(5):716-28. 

[34] Tao Z, Uy B, Liao FY, Han LH. Nonlinear analysis of concrete-filled square stainless 

steel stub columns under axial compression. J Constr Steel Res 2011;67(11):1719-32. 

[35] Hassanein MF, Kharoob OF, Liang QQ. Behaviour of circular concrete-filled lean 

duplex stainless steel tubular short columns. Thin-Walled Struct 2013;68:113-23. 

[36] Hassanein MF, Kharoob OF, Liang QQ. Behaviour of circular concrete-filled lean 

duplex stainless steel-carbon steel tubular short columns. Eng Struct 2013;56:83-94. 



Patel,	 V.	 I.,	 Liang,	 Q.	 Q.	 and	 Hadi,	 M.	 N.	 S.	 (2017).	 Nonlinear	 analysis	 of	 biaxially	 loaded	 rectangular	
concrete‐filled	stainless	steel	tubular	slender	columns,	Engineering	Structures,	140:120‐133.	

30 
 

[37] Ky VS, Tangaramvong S, Thepchatri T. Inelastic analysis for the post-collapse behavior 

of concrete encased steel composite columns under axial compression. Steel Compos 

Struct 2015;19(5):1237-58. 

[38] Patel VI, Liang QQ, Hadi MNS. Nonlinear analysis of axially loaded circular concrete-

filled stainless steel tubular short columns. J Constr Steel Res 2014;101:9-18. 

[39] Patel VI, Liang QQ, Hadi MNS. Nonlinear analysis of circular high strength concrete-

filled stainless steel tubular slender beam-columns. Eng Struct 2017;130:1-13. 

[40] ACI Committee 363. State of the Art Report on High-Strength Concrete, ACI 

Publication 363R-92, Detroit, MI: American Concrete Institute, 1992.  

[41] Mander JB, Priestly MNJ, Park R. Theoretical stress-strain model for confined concrete. 

J Struct Eng, ASCE 1988;114(8):1804-26. 

[42] Rasmussen KJR. Full-range stress-strain curves for stainless steel alloys. J Constr Steel 

Res 2003;59(1):47-61. 

[43] Quach WM, Teng JG, Chung KF. Three-stage full-range stress-strain model for 

stainless steels. J Struct Eng, ASCE 2008;134(9):1518-27.  

[44] Abdella K, Thannon RA, Mehri AI, Alshaikh FA. Inversion of three-stage stress-strain 

relation for stainless steel in tension and compression. J Constr Steel Res 

2011;67(5):826-32. 

[45] Ramberg W, Osgood WR. Description of stress-strain relations from offset yield 

strength values. NACA Technical Note no. 927, 1944.  

[46] Liang QQ, Fragomeni S. Nonlinear analysis of circular concrete-filled steel tubular 

short columns under eccentric loading. J Constr Steel Res 2010;66(2):159-69.  

 

 

 



Patel,	 V.	 I.,	 Liang,	 Q.	 Q.	 and	 Hadi,	 M.	 N.	 S.	 (2017).	 Nonlinear	 analysis	 of	 biaxially	 loaded	 rectangular	
concrete‐filled	stainless	steel	tubular	slender	columns,	Engineering	Structures,	140:120‐133.	

31 
 

Figures and tables  

Table 1 Ultimate axial loads of rectangular CFSST short columns under axial compression.  
 

Specimens 
tDB   

(mm) 
tD

'
cf  

(MPa)
2.0   

 (MPa)
0E  

(GPa)
n  

u  
exp.uP  

(kN) 
fib.uP  

(kN) exp.

fib.

u

u

P

P Ref. 

RHS3C40 80.1 × 140.2 ×  3.1 45 46.6 486 212.0 6 0.025 1048.7 1039 0.99 
[17]RHS3C60 80.1 × 140.2 ×  3.1 45 61.9 486 212.0 6 0.025 1096.9 1184 1.08 

RHS3C80 80.0 × 140.3 ×  3.1 45 83.5 486 212.0 6 0.015 1258.8 1389 1.10 
SHS 100 × 100 ×  2 - C30 101.6 × 100.2 ×  2.2 46 30 385 202.5 12.4 0.041 534 564 1.06 

[18]
SHS 100 × 100 ×  2 - C60 99.3 × 101.3 × 2 51 53 385 202.5 12.4 0.05 687 744 1.08 

S20-50 × 2A 51 × 51 × 1.81 28 21.5 353 205.1 10.4 0.066 261 233 0.89 

[9]

S20-50 × 2B 51 × 51 × 1.81 28 21.5 353 205.1 10.4 0.064 256 231 0.90 
S30-50 × 2A 51 × 51 × 1.81 28 34.9 353 205.1 10.4 0.095 282 280 0.99 
S30-50 × 2B 51 × 51 ×  1.81 28 34.9 353 205.1 10.4 0.065 278 259 0.93 
S20-50 × 3B 51 × 51 × 2.85 18 21.5 440 207.9 8.2 0.099 417 445 1.07 

S30-100 × 3A 100 × 100 × 2.85 35 34.9 358 195.7 8.3 0.0047 765 661 0.86 
S30-100 × 3B 100 × 100 × 2.85 35 34.9 358 195.7 8.3 0.057 742 661 0.89 
S20-100 × 5A 101 × 101 × 5.05 20 21.5 435 202.1 7 0.029 1437 1288 0.90 
S20-100 × 5B 101 × 101 × 5.05 20 21.5 435 202.1 7 0.029 1449 1288 0.89 
S30-100 × 5A 101 × 101 × 5.05 20 34.9 435 202.1 7 0.054 1474 1506 1.02 
S30-100 × 5B 101 × 101 × 5.05 20 34.9 435 202.1 7 0.027 1490 1390 0.93 
S30-150 × 3A 152 × 152 × 2.85 53 34.9 268 192.6 6.8 0.0015 1074 965 0.90 
S30-150 × 3B 152 × 152 × 2.85 53 34.9 268 192.6 6.8 0.0029 1209 1082 0.89 
S20-150 × 5B 150 × 150 × 4.8 31 21.5 340 192.2 5.6 0.1 1935 2092 1.08 
S30-150 × 5A 150 × 150 × 4.8 31 34.9 340 192.2 5.6 0.066 2048 2073 1.01 

Mean  0.97  
Standard deviation (SD) 0.08  
Coefficient of variation (COV) 0.09  
 

 

Table 2 Ultimate axial loads of rectangular CFSST slender columns under axial compression. 
 

Specimens tDB   (mm) tD  L (mm) 2.0  (MPa)
0E (GPa) n '

cf (MPa)
exp.uP (kN) fib.uP  (kN) 

exp.

fib.

u

u

P

P Ref. 

S1-1a 100.3 × 100.3 × 2.76 36 440 390.3 182.0 6.7 36.3 767..6 696.4 0.91

[9]

S1-1b 100.3 × 100.3 × 2.76 36 440 390.3 182.0 6.7 75.4 1090.5 1046.4 0.96

S1-2a 100.3 × 100.3 × 2.76 36 1340 390.3 182.0 6.7 36.3 697.3 657.5 0.94

S1-2b 100.3 × 100.3 × 2.76 36 1340 390.3 182.0 6.7 75.4 1022.9 987.5 0.97

S1-3a 100.3 × 100.3 × 2.76 36 2540 390.3 182.0 6.7 36.3 622.9 529.5 0.85

S1-3b 100.3 × 100.3 × 2.76 36 2540 390.3 182.0 6.7 75.4 684.2 700.7 1.02

R1-1a 49.0 × 99.5 × 1.93 52 440 363.3 195.3 6.1 36.3 385.6 339.9 0.88

R1-1b 49.0 × 99.5 × 1.93 52 440 363.3 195.3 6.1 75.4 558.3 508.1 0.91

R1-2a 49.0 × 99.5 × 1.93 52 740 363.3 195.3 6.1 36.3 361.1 335.4 0.93

R1-2b 49.0 × 99.5 × 1.93 52 740 363.3 195.3 6.1 75.4 517.7 500.1 0.97

R1-3a 49.0 × 99.5 × 1.93 52 2540 363.3 195.3 6.1 36.3 262.8 247.7 0.94

R1-3b 49.0 × 99.5 × 1.93 52 2540 363.3 195.3 6.1 75.4 332.8 322.6 0.97

Mean 0.94  

Standard deviation (SD) 0.05

Coefficient of variation (COV) 0.05



Patel,	 V.	 I.,	 Liang,	 Q.	 Q.	 and	 Hadi,	 M.	 N.	 S.	 (2017).	 Nonlinear	 analysis	 of	 biaxially	 loaded	 rectangular	
concrete‐filled	stainless	steel	tubular	slender	columns,	Engineering	Structures,	140:120‐133.	

32 
 

Table 3 Square CFSST slender beam-columns under axial compression and biaxial bending. 
 

Specimens 
tDB   

(mm) 
tD L  

(mm)
xe  

(mm) 
ye

(mm) 

'
cf  

(MPa) 
2.0   

 (MPa) 
0E  

(GPa)
Ref. 

CFSSTC-I 
60 × 60 × 3 20 1200 30 30 40.14 650 200 

[20]

80 × 80 × 3 27 1200 40 40 40.14 650 200 

CFSSTC-II 
60 × 60 × 3 20 1200 35 35 54.32 650 200 
80 × 80 × 3 27 1200 45 45 54.32 650 200 

CFSSTC-III 
60 × 60 × 3 20 1200 45 45 58.42 650 200 

100 × 100 × 3 33 1200 65 65 58.42 650 200 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4 Material properties and geocentric details of CFSST slender beam-columns for 
parametric study. 
 

Specimens DB  (mm) tD   (o) De  rL  2.0  (MPa) 
0E (GPa) n  '

cf (MPa) 

R1 500 × 500  100 30 0.1 100 390 182 7 100 

R2 400 × 400 100 60 0.1 22 340 192 6 100 

R3 500 × 600  100 45 0.1 100 490 212 6 100 

R4 650 × 650  80 30 0.1 35 340 192 6 65 

R5 700 × 700  100 60 0.1 22 360 195 6 65 

R6 600 × 600 25 45 0.1 22 430 202 7 80 
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Table 5 Ultimate pure moments of square CFSST short beam-columns. 
 

Specimens tDB  (mm) tD  2.0 (MPa) 0E  (GPa) n
'

cf  

(MPa) cal.oM  (kNm)  fib.oM  (kNm) 
fib.

cal.

o

o

M

M

S1 300 × 300 × 5.00  60 250 200 7 20 256 259 0.99 

S2 300 × 300 × 5.00  60 250 200 7 25 260 262 0.99 

S3 300 × 300 × 5.00  60 250 200 7 32 264 266 0.99 

S4 300 × 300 × 5.00  60 250 200 7 65 277 282 0.98 

S5 300 × 300 × 5.00 60 250 200 7 80 281 288 0.97 

S6 300 × 300 × 5.00  60 250 200 7 100 285 295 0.97 

S7 300 × 300 × 5.00  60 300 200 7 80 325 329 0.99 

S8 300 × 300 × 5.00 60 400 200 7 80 399 388 1.03 

S9 300 × 300 × 5.00  60 550 200 7 80 493 511 0.96 

S10 300 × 300 × 6.00  50 250 200 7 65 327 307 1.06 

S11 300 × 300 × 4.29  70 250 200 7 65 241 247 0.97 

S12 300 × 300 × 3.75 80 250 200 7 65 213 220 0.97 

S13 300 × 300 × 3.33 90 250 200 7 65 191 199 0.96 

S14 300 × 300 × 3.00 100 250 200 7 65 174 182 0.96 

S15 500 × 500 × 10.00 50 300 200 7 20 1618 1638 0.99 

S16 500 × 500 × 10.00 50 300 200 7 25 1643 1652 0.99 

S17 500 × 500 × 10.00 50 300 200 7 32 1670 1670 1.00 

S18 500 × 500 × 10.00 50 300 200 7 40 1695 1691 1.00 

S19 500 × 500 × 10.00 50 300 200 7 50 1721 1715 1.00 

S20 500 × 500 × 10.00 50 300 200 7 80 1775 1780 1.00 

S21 500 × 500 × 10.00 50 300 200 7 100 1802 1818 0.99 

S22 500 × 500 × 10.00 50 250 200 7 100 1556 1590 0.98 

S23 500 × 500 × 10.00 50 350 200 7 100 2017 2037 0.99 

S24 500 × 500 × 10.00 50 550 200 7 100 2734 2721 1.00 

S25 500 × 500 × 8.33 60 450 200 7 50 1935 1983 0.98 

S26 500 × 500 × 7.69 65 450 200 7 50 1799 1845 0.98 

S27 500 × 500 × 6.25 80 450 200 7 50 1489 1533 0.97 

S28 500 × 500 × 5.56 90 450 200 7 50 1339 1380 0.97 

S29 500 × 500 × 5.00 100 450 200 7 50 1217 1257 0.97 

S30 600 × 600 × 10.00 60 300 200 7 80 2598 2631 0.99 

S31 700 × 700 × 10.00 70 300 200 7 80 3585 3662 0.98 

S32 800 × 800 × 10.00 80 300 200 7 80 4739 4877 0.97 

S33 900 × 900 × 10.00 90 300 200 7 80 6063 6280 0.97 

Mean 0.99 

Standard deviation (SD) 0.02 

Coefficient of variation (COV) 0.02 
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Fig. 1. Component strengths of axially loaded circular CFSST short column. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

Fig. 2. Typical stress-strain curves for concrete.  



Patel,	 V.	 I.,	 Liang,	 Q.	 Q.	 and	 Hadi,	 M.	 N.	 S.	 (2017).	 Nonlinear	 analysis	 of	 biaxially	 loaded	 rectangular	
concrete‐filled	stainless	steel	tubular	slender	columns,	Engineering	Structures,	140:120‐133.	

35 
 

 
 
 

Fig. 3. Rectangular cross-section of a CFSST beam-column with fiber elements. 
 
 
 
 
 
 
 
 

 
 
 

Fig. 4. Full-range stress-strain curves for stainless steel. 
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Fig. 5. Effective areas of webs and flanges of rectangular CFSST column section. 
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Fig. 6. Comparison of axial load-strain responses for the specimen tested by Lam et al. [18].  
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Fig. 7. Comparison of predicted and experimental reponses for specimens tested by Uy et al. 

[9]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



Patel,	 V.	 I.,	 Liang,	 Q.	 Q.	 and	 Hadi,	 M.	 N.	 S.	 (2017).	 Nonlinear	 analysis	 of	 biaxially	 loaded	 rectangular	
concrete‐filled	stainless	steel	tubular	slender	columns,	Engineering	Structures,	140:120‐133.	

38 
 

0

20

40

60

80

100

120

140

0 20 40 60 80

A
xi

al
 l

oa
d 

(k
N

)

Mid-height deflection um (mm)

Test (I-60×60×3)

Fiber element model

 

0

50

100

150

200

250

0 20 40 60 80

A
xi

al
 l

oa
d 

(k
N

)

Mid-height deflection um (mm)

Test (I-80×80×3)

Fiber element model

(a) Specimen I-60×60×3 (b) Specimen I-80×80×3 
  

0

20

40

60

80

100

120

140

0 20 40 60 80

A
xi

al
 l

oa
d 

(k
N

)

Mid-height deflection um (mm)

Test (II-60×60×3)

Fiber element model

0

50

100

150

200

250

0 20 40 60 80

A
xi

al
 l

oa
d 

(k
N

)

Mid-height deflection um (mm)

Test (II-80×80×3)

Fiber element model

(c) Specimen II-60×60×3 (d) Specimen II-80×80×3 
  

0

20

40

60

80

100

120

0 30 60 90

A
xi

al
 l

oa
d 

(k
N

)

Mid-height deflection um (mm)

Test (III-60×60×3)

Fiber element model
0

50

100

150

200

250

300

0 20 40 60 80

A
xi

al
 l

oa
d 

(k
N

)

Mid-height deflection um (mm)

Test (III-100×100×3)

Fibre element model

 
(e) Specimen III-60×60×3 (f) Specimen III-100×100×3 

  
Fig. 8. Comparison of predicted and measured load-deflection curves for specimens tested by 

Tokgoz [20]. 
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Fig. 9. Influences of geometric and material parameters on the ultimate axial loads. 
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Fig. 10. Influences of tD  ratio on the ultimate pure moment. 
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Fig. 12. Influences of stainless steel proof stress 2.0  on the ultimate pure moment. 
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Fig. 13. Influences of geometric and material parameters on the concrete contribution ratio. 
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(c) Influences of column slenderness ratio (d) Influences of end eccentricity ratio  
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Fig. 14. Load-deflection behaviour of CFSST slender beam-columns with various 
geometric and material parameters. 
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Fig. 15. Influences of local buckling on the strengths of CFSST beam-columns. 
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Fig. 16. Effects of the applied load angle on the ultimate load of CFSST beam-column. 
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