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Abstract 
 

The estimation of the individual loss is an important task to price insurance 

policies. The standard approach assumes independence between claim 

frequency and severity, which may not be a realistic assumption. In this text, 

the dependence between claim counts and claim sizes is explored, in a 

Generalized Linear Model framework. A Conditional severity model and a 

Copula model are presented as alternatives to model this dependence and later 

applied to a data set provided by a Portuguese insurance company. At the end, 

the comparison with the independence scenario is carried out. 

 

Keywords: Frequency; Severity; Policy Loss; Dependence; Generalized Linear Model; 

Conditional Model; Copula Model; Hurdle model 
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Resumo 

 

A estimação da perda individual é uma importante tarefa para calcular os 

preços das apólices de seguro. A abordagem padrão assume independência 

entre a frequência e a severidade dos sinistros, o que pode não ser uma 

suposição realística. Neste texto, a dependência entre números e montantes 

de sinistros é explorada, num contexto de Modelos Lineares Generalizados. 

Um modelo de severidade condicional e um modelo de Cópula são 

apresentados como alternativas para modelar esta dependência e 

posteriormente aplicados a um conjunto de dados fornecido por uma 

seguradora portuguesa. No final, a comparação com o cenário de 

independência é realizada.  

 

Palavras-chave: Frequência; Severidade; Perda por apólice; Dependência; Modelos 

Lineares Generalizados; Modelo Condicional; Modelo de Cópula; Modelo de Barreira 
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Chapter 1 

Introduction 
 

In our daily lives, we face many risks, such as car accidents, work injuries and house 

damages. And to protect ourselves from possible losses in the future, we agree to pay a 

premium to an insurer who undertakes the risk.  

 On the other side, the goal of an insurer is to charge an accurate premium to the 

policyholder, to avoid losing policies to a competitor. To accomplish this, the insurer 

should perform an adequate estimation of the individual’s expected loss. Therefore, in the 

past years, actuaries have been investigating and developing techniques to continue to 

improve the existing methods and to obtain an estimate that best reflects the reality.  

Since the individual loss is the total amount paid due to the occurrence of claims, 

then it is given by the sum of the amounts of each claim. As a result, two components are 

usually investigated when it comes to estimate it: claim frequency and claim severity. The 

first one refers to the number of claims, and the second one to the cost associated with 

each claim. Moreover, these two quantities vary from policy to policy, due to the 

characteristics of each policyholder, the characteristics of the product insured or to other 

factors. Therefore, the modeling of insurance claims is widely done using regression 

models, namely in the GLM framework.  

A common approach is to assume that claim counts and claim amounts are 

independent, which simplifies the computation of the expected loss by just being the 

product of their expected values [Klugman et al. (2008)]. As a consequence, we can model 

the severity and frequency components separately. Another approach, also under the 

independence assumption, is to use a Tweedie model. 

But is the independence assumption realistic? On the one hand, it makes the 

computation easier; on the other hand, not considering the dependence between claim 

counts and claim amounts can lead to under or over-estimation of the total loss, which 

can lead to improper pricing of insurance policies and future losses to the insurer. In fact, 

it is very likely that these two components are correlated. For instance, a negative 
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association is often found in automobile insurance, where there may be policyholders that 

have frequent claims with small amounts, if we think of a policyholder living in urban 

areas. 

Thus, a relaxation of the independence assumption seems to be needed. To 

account for dependence between claim sizes and claim numbers, some recent approaches 

have been proposed in the literature and have shown that, in fact, we can have cases where 

this dependence is significant and should not be ignored.  

The two main approaches, which are the focus of this paper, are the Conditional 

approach and the Copula regression approach. The first one uses a conditional severity 

model and allows the number of claims to enter the model as a covariate. It was 

considered by Gschlößl and Czado (2005), when developing a study about spatial 

modelling of frequency and severity, and by Garrido et al. (2016), in a ratemaking 

perspective. It was also investigated by Frees et al. (2011), to model health care 

expenditures. In all the mentioned studies, the results were improved compared to the 

independent model. The second approach uses a copula to link the marginal frequency 

and severity GLMs and to model the dependence. Czado et al. (2012) and Krämer et al. 

(2013) followed a mixed copula approach proposed by Song (2007) to estimate the total 

loss and made an application to a German car-insurance dataset, which presented a 

moderate positive dependence between the two components. The former used a Gaussian 

copula and the latter made an extension to other copula families (Clayton, Gumbel, and 

Frank), which showed that better results are obtained when the appropriate copula is 

selected.  Both approaches will be presented in this text to estimate the policy loss, 

without assuming independency between frequency and severity. 

In order to illustrate both methods, they will be applied to a car insurance data set. 

The final purpose is to compare both independent and dependent models, as to check if 

relaxing the independence assumption improves the model. Moreover, in the literature 

mentioned above, the application of the copula model was done to a truncated data set. In 

this text, a complete data set is used. To allow the inclusion of zeros, and to facilitate the 

comparison with the independent scenario, a Hurdle model will be applied to claim 

frequency, instead of the standard Poisson regression. This model also has the advantage 

of dealing with the excess of zeros, which is a common feature in non-life insurance data.  
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The outline of the text is as follows: Chapter 2 provides an overview of 

Generalized Linear Models. Chapter 3 presents the independent case between claim 

frequency and claim severity, as well as the two standard models used under this 

assumption. Chapter 4 addresses the dependence problem and presents an overview of 

two models that take it into account. First, a conditional model is discussed, and then a 

copula based model is presented. Finally, Chapter 5 studies the application of the 

dependent models to real car insurance data and compares the results with the independent 

model. 
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Chapter 2 

Generalized Linear Models 
 

To estimate the individual’s expected loss, the insurers make use of explanatory variables 

or covariates, such as the characteristics of the policyholder and of the insured products. 

This information allows the insurer to charge a fair premium to each policyholder, that is, 

to charge the amount that best reflects the expected loss transferred to the insurance 

company.  

A widely used modelling process is the Generalized Linear Models (GLM) 

approach, which allows us to model a mean’s transformation of the dependent variable 

as a linear function of the covariates. The ingredients to these models, following Ohlsson 

and Johansson (2010), are: 

1. A distribution for the dependent variable. It is assumed that each component of Y 

has a distribution from the exponential dispersion family, that is,  

𝑓𝑌
(𝑦; 𝜃, 𝜙) = exp {

𝑦𝜃−𝑏(𝜃)

𝑎(𝜙)
+ 𝑐(𝑦, 𝜙)}, 

where a(.), b(.) and c(.) are some specific functions; 𝜃 is the natural parameter; 

and 𝜙 is the dispersion parameter. Therefore, its mean and variance are given by 

𝐸[𝑌] = 𝜇 = 𝑏′(𝜃) 

and 

𝑉𝑎𝑟(𝑌) = 𝑏′′(𝜃)𝑎(∅) = 𝑉(𝜇)𝑎(∅) 

where 𝑉(𝜇) = 𝑏′′(𝜃) is called the variance function. 

It can easily be shown that distributions like Gamma and Poisson (frequently used 

to model claim sizes and claim counts, respectively), as well as the Normal 

(classical linear models), belong to this family. 

2. A linear predictor. It is a function of a set of covariates 𝑥𝑗, 

𝜂 = ∑ 𝑥𝑗𝛽𝑗
𝑝
𝑗=1 , 

where 𝛽𝑗  corresponds to the parameters that should be estimated. 



Modelling Dependence between Frequency and Severity of insurance claims        5 

 

 

 

3. A link function. It is a function g(.) which connects the linear predictor η to the 

mean response 

𝑔(𝜇) = 𝜂 . 

Each distribution has a canonical link that can be used, but other link functions 

can be considered, taking into account the possible values of 𝜇. 

 

To find the maximum likelihood estimates (MLE) of the regression parameters, 

in a GLM framework, let’s consider m independent observations. As a result, the log-

likelihood function will be 

ℓ(𝜃, 𝜙|𝒚) = ∑ {
𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)

𝑎(𝜙𝑖)
}

𝑚

𝑖=1
+ ∑ 𝑐(𝑦

𝑖
, 𝜙).

𝑚

𝑖=1
 

After some computations, we arrive at the following system of 𝑝 equations, from which 

we can obtain the desired estimates, 

∑
𝑦𝑖 − 𝜇𝑖

𝑎(𝜙𝑖)𝑉(𝜇𝑖)𝑔′(𝜇𝑖)
𝑥𝑖𝑗 = 0,   𝑗 = 1, … , 𝑝

𝑚

𝑖=1
. 

 Additionally, under general conditions, MLE are asymptotically normally 

distributed. Therefore, for large samples, we have that 

√𝑛(�̂� − 𝜷)
𝑑
→ 𝑁(𝟎, 𝑰𝜷

−𝟏), 

where 𝑰𝜷 = −𝐸[
𝜕2ℓ

𝜕2𝛽
] is the Fisher’s information matrix. 
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Chapter 3 

The independent case 
 

The aggregate loss, over a fixed period, for policyholder i (or risk cell i) can be defined 

as  

𝑆𝑖 = 𝑌𝑖0 + 𝑌𝑖1 + ⋯ + 𝑌𝑖𝑁𝑖
, 

where 𝑁𝑖  and 𝑌𝑖𝑗  (𝑗 = 0, 1, … , 𝑁𝑖), with 𝑌𝑖0 ≡ 0,  are random variables that represent the 

number of claims and the claim amounts, respectively, for the ith policyholder. Now, the 

problem is how to estimate this loss. 

 When estimating the total loss, the standard approach is to assume independence 

between frequency and severity, that is, to assume that there is no association between 

those two random variables. As presented by Klugman et al. (2008), and dropping the 

index i, the independence assumptions are given by: 

-  Conditionally on 𝑁 = 𝑛 , the individual claim sizes 𝑌1, … , 𝑌𝑛 are mutually 

independent and identically distributed (i.i.d.);  

-  Conditionally on 𝑁 = 𝑛, the common distribution of  𝑌1, … , 𝑌𝑛 doesn’t depend 

on claim numbers 𝑁; 

-  The distribution of the claim numbers 𝑁  does not depend on the values of 

𝑌1, 𝑌2, …  

 Usually, under these independence assumptions, one of the following approaches 

is chosen by the actuaries: to model the total loss directly, using Tweedie models; or to 

fit separate models to frequency and severity, and then use them to obtain the distribution 

of the total loss, as well as its moments.  

One of the advantages of the first approach is that only one model needs to be 

fitted, which means that it uses fewer parameters and that it is less time consuming, when 

compared to the second approach. On the other hand, the latter approach has the 

advantage of using a different set of covariates to explain claim sizes and claim numbers, 

or to allow for different effects, even with different directions, of the same covariate in 
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both components. For instance, the number of kilometers driven by the policyholder can 

have an effect on the claim numbers, but no influence on the claim sizes.  

 

3.1. Tweedie Models 

The Tweedie family of distributions includes distributions such as the Gamma, the 

Poisson or the Compound Poisson. They are characterized by a variance function given 

by 

𝑉(𝜇) = 𝜇𝑝, 𝑝 ∈ ℝ. 

More details can be found in Jørgensen (1997). 

When modelling the individual aggregate loss, 𝑆, as the response variable, the 

interest falls in the class of Tweedie models with 1<𝑝<2, which is defined as a Poisson 

sum of Gamma random variables, also called the compound Poisson-Gamma distribution. 

It is a mixed distribution with a positive probability at zero and a continuous distribution 

for positive real numbers. 

Furthermore, the Tweedie model belongs to the exponential dispersion models, 

and consequently it can be modelled in the context of GLMs. Therefore, 

𝐸[𝑆𝑖] = 𝑔−1(𝑥𝑖
′𝛼) 

where 𝑥𝑖 is the set of covariates and 𝛼 is the vector of regression parameters, for the ith 

policyholder. 

Jørgensen and Souza (1994) used the Tweedie models to estimate the pure 

premium, considering a Poisson process for the arrival of claims and a Gamma 

distribution for individual costs. They applied this method to a Brazilian private motor 

insurance portfolio where they found a value for 𝑝 of 1.37. 

 

3.2. Frequency-Severity model 

Although the Tweedie model gives a good approximation to the expected loss in many 

cases, the standard approach is to separate frequency and severity. By following this 

approach, we can obtain more accurate information about how the rating factors affect 

the individual loss, as previously mentioned.  
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 In fact, the expected value of the individual aggregate loss, under the 

independence assumption, can be obtained by computing the product of the expected 

claim counts and the expected claim amounts, i.e.,  

𝐸[𝑆𝑖] = 𝐸 [𝐸(∑ 𝑌𝑖𝑗
𝑁𝑖
𝑗=1 |𝑁𝑖)] = 𝐸[𝑁𝑖𝐸[𝑌𝑖]] = 𝐸[𝑁𝑖]𝐸[𝑌𝑖] = 𝜇𝑁𝑖

 . 𝜇𝑌𝑖
 

An equivalent expression can be found if we model the average claim size, 𝑌�̅� =

𝑆𝑖

𝑁𝑖
for 𝑁𝑖 > 0, instead of the individual claim size: 

𝑆𝑖 = 𝑁𝑖Yi̅  ⇒ 𝐸[𝑆𝑖] = 𝐸[𝐸(𝑁𝑖Yi̅|𝑁𝑖)] = 𝐸[𝑁𝑖]𝐸[Yi̅] = 𝜇𝑁𝑖
 . 𝜇𝑌𝑖

,              (3.1) 

where 𝐸[Yi̅] = 𝐸[𝐸[Yi̅|𝑁𝑖]] = 𝐸[𝑌𝑖] = 𝜇𝑌𝑖
. When 𝑁𝑖 = 0, 𝑌�̅� = 0 and 𝑆𝑖 = 0. 

Therefore, a regression model can be fitted to each component separately and, in 

the end, they are put together to obtain the expected loss. As regards the independent 

model, the result (3.1) will be used in this text.  

  

3.2.1. Frequency regression model 

The marginal distributions are fitted to the data considering the characteristics of the 

random variables. Furthermore, they can depend on a set of covariates. Thus a GLM is 

considered.  

For the frequency component, we can think in the Poisson GLM, which is 

appropriate to model claim counts. However, in non-life insurance, it is common to find 

an excessive number of policies that did not report any claims (excess of zeros), that is, 

the number of observed zeros can be far more than what would be expected for this 

distribution. Therefore, the use of a Hurdle model [Mullahy J (1986); Zeileis et al. 

(2008)], to accommodate this feature, appears to be appropriate. This choice is also 

motivated by the fact that it makes easier to compare the independent model with the 

dependent Copula model presented in section 4.2., which is one of the purposes of this 

text. 

The Hurdle model has two components: one for the zeros (hurdle component) and 

another for the positive counts (truncated component). As defined in Zeileis et al. (2008), 

the probability mass function is given by 
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𝑓𝑁 (𝑛𝑖;  𝑥𝑖
𝑁 ,  𝑧𝑖,  𝛽𝑁 , 𝛾) = {

𝑓𝑧𝑒𝑟𝑜(0; 𝑧𝑖, 𝛾)                                                            , 𝑛𝑖 = 0

(1 − 𝑓𝑧𝑒𝑟𝑜(0; 𝑧𝑖, 𝛾))
𝑓𝑐𝑜𝑢𝑛𝑡(𝑛𝑖;  𝑥𝑖

𝑁 , 𝛽𝑁)

1 − 𝑓𝑐𝑜𝑢𝑛𝑡(0; 𝑥𝑖
𝑁 , 𝛽𝑁)

      , 𝑛𝑖 > 0
 

where 𝑧𝑖 = (1, 𝑧𝑖1, … . , 𝑧𝑖𝑞)′ and  𝑥𝑖
𝑁 = (1, 𝑥𝑖1

𝑁 , … . , 𝑥𝑖𝑘
𝑁 )′ are the sets of explanatory 

variables; 𝛾 = (𝛾0, … , 𝛾𝑞)  and 𝛽𝑁 = (𝛽0
𝑁, … . , 𝛽𝑘

𝑁)′  are the unknown regression 

parameters; and 𝑓𝑧𝑒𝑟𝑜 and  𝑓𝑐𝑜𝑢𝑛𝑡 are the probability functions for the zero component and 

for the claim numbers (before truncation), respectively.  

 Thus, to model the claim frequency, a Binomial GLM can be implemented for the 

hurdle component and a truncated Poisson GLM can be chosen for the positive claim 

counts. A logit link and a log-link will be considered in the first and second case, 

respectively. Additionally, and because not all the policies are in force the whole year, let 

ℯ be the exposure time, in years, for each policy. Then, for policy 𝑖, 

𝜇𝑐𝑜𝑢𝑛𝑡 = 𝑒 × exp(𝑥𝑁′
𝛽𝑁)     and      1 − 𝑓𝑧𝑒𝑟𝑜(0; 𝑧, 𝛾) =

exp(𝑧′𝛾)

1+exp(𝑧′𝛾)
 ∙  

Putting it all together, we obtain the following frequency mean for policy i, 

𝜇𝑁 = 𝑒 × 𝑒𝑥𝑝 (𝑥𝑁′
𝛽𝑁

) ×
1−𝑓𝑧𝑒𝑟𝑜(0;𝑧,𝛾)

1−𝑓𝑐𝑜𝑢𝑛𝑡(0;𝑥𝑁,𝛽)
.                               (3.2) 

 

3.2.2. Severity regression model 

When the response variable is the claim size (or the average claim size), which is a 

positive continuous random variable, models like a Gamma GLM can be chosen. In this 

text, a log-link will be assumed. This is a common practice in the insurance industry, as 

it yields a multiplicative rating structure. See Ohlsson and Johansson (2010) for more 

details. 

The expected (average) claim size is given by 

  𝜇𝑌𝑖
= exp (𝑥𝑖

𝑌′𝛽𝑌 )                                               (3.3) 

where 𝑥𝑖
𝑌 = (1, 𝑥𝑖1

𝑌 , … . , 𝑥𝑖𝑝
𝑌 )′ is the set of explanatory variables for the claim severity and 

𝛽𝑌 = (𝛽0
𝑌, … . , 𝛽𝑝

𝑌)′ are the unknown regression parameters. 

 Note that, if the conditional individual claim sizes follow a Gamma distribution 

with mean 𝜇𝑌𝑖
 and scale parameter 𝜙, then, by the convolution property, the conditional 
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average claim size follows a Gamma distribution with mean 𝜇𝑌𝑖
 and scale parameter 

𝜙

𝑁𝑖
. 

Therefore, if the number of claims is included as weight in the model for the average 

claim size, it will be equivalent to the model for the individual claim sizes. 

 

3.2.3. Estimation 

As the model for frequency is fitted separately from the model for severity, the estimation 

of its parameters is also done separately. Additionally, for the frequency part, it is 

important to notice that the parameters from the hurdle component and the ones from the 

count component can, also, be estimated separately. The estimates can be found by 

maximizing each likelihood function. 

 For the claim frequency, the log-likelihood is given by 

ℓ(𝛾, 𝛽𝑁|𝒏) = ∑ log (𝑓𝑁(𝑛𝑖|𝛾, 𝛽𝑁𝑚
𝑖=1 )) = ℓ(𝛾|𝒏) + ℓ(𝛽𝑁|𝒏) , 

where  

ℓ(𝛾|𝒏) = ∑ log (𝑓𝑧𝑒𝑟𝑜(0|𝛾𝑖: 𝑛𝑖=0 )) + ∑ log (1 − 𝑓𝑧𝑒𝑟𝑜(0|𝛾) 𝑖:𝑛𝑖>0 ), 

and 

ℓ(𝛽𝑁|𝒏) =  ∑ [log (𝑓𝑐𝑜𝑢𝑛𝑡(𝑛𝑖|𝛽𝑁
𝑖:𝑛𝑖>0 )) − log(1 − 𝑓𝑐𝑜𝑢𝑛𝑡(0|𝛽𝑁)]. 

As a result, 

𝛾 = arg max
�̂�

ℓ(𝛾|𝒏) and 𝛽�̂� = arg max
𝛽�̂�

ℓ(𝛽𝑁|𝒏). 

 On the other hand, for the claim severity, 

𝛽�̂� = arg max
𝛽𝑌

ℓ(𝛽𝑌|𝒚), 

where ℓ(𝛽𝑌|𝒚) = ∑ log (𝑓𝑌(𝑦𝑖|𝛽𝑌𝑚
𝑖=1 )).   

 The computation of these maximum likelihood estimates, in a GLM framework, 

is done as presented in Chapter 2. 

    

3.2.4. Policy loss 

Putting equations (3.2) and (3.3) together, as mentioned in (3.1), we obtain the following 

individual expected loss 
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(3.5) 

𝐸[𝑆𝑖] = 𝜇𝑁𝑖
×   𝜇𝑌𝑖

=
1−𝑓𝑧𝑒𝑟𝑜(0;𝑧𝑖,𝛾)

1−𝑓𝑐𝑜𝑢𝑛𝑡(0;𝑥𝑖
𝑁,𝛽)

×  ℯ𝑖 × exp (𝑥𝑖
𝑁′𝛽𝑁  + 𝑥𝑖

𝑌′𝛽𝑌 ).       (3.4) 

 Furthermore, in the frequency-severity independent model, the variance of a 

policy aggregate loss can also be easily derived, using the iterated expectations:  

𝑉𝑎𝑟(𝑆𝑖) = 𝐸[𝑉𝑎𝑟(𝑁𝑖�̅�𝑖|𝑁𝑖)] + 𝑉𝑎𝑟(𝐸[𝑁𝑖�̅�𝑖|𝑁𝑖]) = 𝐸[𝑁𝑖
2𝑉𝑎𝑟(�̅�𝑖|𝑁𝑖)] + (𝜇𝑌𝑖

)
2

𝑉𝑎𝑟(𝑁𝑖)

= 𝜇𝑁𝑖
𝑉𝑎𝑟(𝑌𝑖) + (𝜇𝑌𝑖

)
2

𝑉𝑎𝑟(𝑁𝑖) 

If we consider m independent policyholders, with independent policy losses 

𝑆1, … , 𝑆𝑚, and define the total loss for the insurer as 

𝑆 = ∑ 𝑆𝑖
𝑚
𝑖=1  , 

then the expected total loss and its variance are, respectively,  

𝜇𝑆 = ∑ 𝐸[𝑆𝑖]
𝑚

𝑖=1
 

and 

𝜎𝑆
2 = ∑ 𝑉𝑎𝑟(𝑆𝑖)

𝑚
𝑖=1 . 

 Therefore, by applying the central limit theorem, the asymptotic distribution of 

the total loss S is normal, i.e., 

√𝑚

√𝜎𝑆
2

(𝑆 − 𝜇𝑆)
𝐷
→ 𝒩(0,1). 

 

Hurdle-Poisson model – If the claim frequency follows a Hurdle-Poisson model, that is, 

if the number of claims follows a Poisson(𝜆) distribution, with 𝜆 = 𝜇𝑐𝑜𝑢𝑛𝑡; and the hurdle 

component follows a Bernoulli (1-p) distribution, with 𝑝 = 𝑓𝑧𝑒𝑟𝑜(0), then: 

𝜇𝑁𝑖
= 𝜆𝑖

1−𝑝𝑖

1−𝑒−𝜆𝑖
  and  𝑉𝑎𝑟(𝑁𝑖) =

1−𝑝𝑖

1−𝑒−𝜆𝑖
𝜆𝑖(𝜆𝑖 + 1) − (

1−𝑝𝑖

1−𝑒−𝜆𝑖
𝜆𝑖)

2

= 𝜇𝑁𝑖
(𝜆𝑖 + 1) − (𝜇𝑁𝑖

)
2
 

On the other hand, if the average claim amount follows a Gamma(𝜇𝑌𝑖
,

∅𝑌

𝑁𝑖
) distribution, 

then 

𝑉𝑎𝑟(𝑌�̅�) =
∅𝑌

𝑁𝑖
(𝜇𝑌𝑖

)
2

. 

Therefore, the policy expected loss and variance, for this model, can be obtained by 

replacing these expressions in (3.4) and (3.5), respectively.  
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For the variance, we get: 

𝑉𝑎𝑟(𝑆𝑖) = 𝐸 [𝑁𝑖
2 ∅𝑌

𝑁𝑖
(𝜇𝑌𝑖

)
2
] + (𝜇𝑌𝑖

)
2

[𝜇𝑁𝑖
(𝜆𝑖 + 1) − (𝜇𝑁𝑖

)
2
] 

           = (𝜇𝑌𝑖
)

2
𝜇𝑁𝑖

[∅𝑌 + 𝜆𝑖 + 1 − 𝜇𝑁𝑖
] .                                                  
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Chapter 4 
 

The dependent case 

 

Although the independence assumption seems very helpful to simplify the model, it can 

lead to inaccurate results when the frequency and the severity are associated. In fact, there 

are cases where this assumption has been proved to be unrealistic and, consequently, 

models to account for dependence have been developed. 

 

4.1. Conditional model 

A good starting point to introduce this part is to enter in the conditional probability 

framework, as proposed by Gschlößl and Czado (2007) and Garrido et al. (2016), i.e, to 

consider models for the claim sizes that are conditional on the claim counts.  

  

4.1.1. Policy loss 

Without assuming independence, the expected individual aggregate loss becomes 

𝐸[𝑆𝑖] = 𝐸[𝑁𝑖�̅�𝑖] = 𝐸[𝑁𝑖𝐸[�̅�𝑖|𝑁𝑖]],                        (4.1) 

Therefore, if we do not assume that claim sizes are independent from claim numbers, we 

can no longer use the product of their expected values. The problem that arises is, then, 

how to estimate this expected value. 

 The solution developed by the aforementioned authors starts by fitting a GLM, 

with a log-link, to the conditional severity, given the frequency. In this case, a 

modification is made in the severity component, by allowing the claim numbers to enter 

the model as a covariate. As a result, the conditional mean severity will be given by 

𝐸[�̅�𝑖|𝑁𝑖] = 𝑒�̃�𝒊 ′�̃�𝑌+𝛿𝑁𝑖 = 𝑒�̃�𝒊 ′�̃�𝑌
𝑒𝛿𝑁𝑖 = 𝜇𝑌𝑖

𝑒𝛿𝑁𝑖,                         (4.2) 

where 𝛽𝑌  and 𝛿  are the regression parameters, �̃�𝒊 and 𝑁𝑖  are the respective covariates, 

and  𝜇𝑌𝑖
= 𝑒�̃�𝒊 ′𝛽�̃�

 is a modified marginal mean severity. 
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 It can be easily derived that when 𝛿 ≠ 0, the vector of the regression parameters 

𝛽 will be different from 𝛽 (independent case). This happens due to the existence of one 

more covariate (the claim numbers), which will affect the model. On the other hand, if 

𝛿 = 0, then the expected value will be reduced to the one of the independent case: 

𝐸[�̅�𝑖|𝑁𝑖] = 𝜇𝑌𝑖
 ⟹  𝐸[𝑆𝑖] = 𝜇𝑌𝑖

𝜇𝑁𝑖
 

Therefore, as in Garrido et al.(2016), we conclude that the independent model is nested 

in the dependent one. 

 By replacing (4.2) in (4.1), we get the formula for the expected individual loss, 

𝐸[𝑆𝑖] = 𝐸[𝑁𝑖𝜇𝑌𝑖
𝑒𝛿𝑁𝑖] = 𝜇𝑌𝑖

𝑀𝑁𝑖

′ (𝛿)                              (4.3) 

where 𝑀𝑁𝑖

′ (𝛿)is the derivative of the moment generating function (m.g.f.) of 𝑁𝑖, 𝑀𝑁𝑖
(𝑠), 

defined at point 𝑠 = 𝛿.  

Then, to estimate the policy loss, a three-step approach can be followed. First, fit 

a regression model to the claim counts, 𝑁𝑖, like a Hurdle model, which allows to obtain 

�̂�𝑁𝑖
 (equivalent to the frequency model under independence). Secondly, conditional on 

𝑁𝑖 > 0, fit a GLM regression model, such as a Gamma GLM, to the average claim size 

with the claim numbers as a covariate, and obtain �̂�𝑌𝑖
 and 𝛿 . Lastly, assuming that the 

dispersion parameter for the number of claims is known, the individual expected loss can 

be estimated by replacing these estimates in (4.3). 

 The variance of the policy loss is more complex. Using some computation, it can 

be proved that 

𝑉𝑎𝑟(𝑆𝑖) = 𝑉𝑎𝑟(𝑁𝑖�̅�𝑖) = 𝑉𝑎𝑟(𝐸[𝑁𝑖�̅�𝑖|𝑁𝑖]) + 𝐸[𝑉𝑎𝑟[𝑁𝑖�̅�𝑖|𝑁𝑖]]

= 𝑉𝑎𝑟(𝑁𝑖𝐸[�̅�𝑖| 𝑁𝑖]) + 𝐸 [𝑁𝑖
2𝑉𝑎𝑟[�̅�𝑖|𝑁𝑖]]

= 𝑉𝑎𝑟(𝑁𝑖𝜇𝑌𝑖
𝑒𝛿𝑁𝑖) + 𝐸 [𝑁𝑖

2 𝜙𝐷

𝑁𝑖
𝑉𝑌(�̃�𝑌𝑖

𝑒𝛿𝑁𝑖)]

= 𝜇𝑌𝑖

2 [𝐸[𝑁𝑖
2𝑒2𝛿𝑁𝑖] − (𝐸[𝑁𝑖𝑒

𝛿𝑁𝑖])
𝟐

] + 𝜙𝐷𝐸[𝑁𝑖𝑉𝑌(�̃�𝑌𝑖
𝑒𝛿𝑁𝑖)]

= 𝜇𝑌𝑖

2 [
1

4
𝑀𝑁𝑖

′′ (2𝛿) − (𝑀𝑁𝑖

′ (𝛿))
𝟐

] + 𝜙𝐷𝐸[𝑁𝑖𝑉𝑌(�̃�𝑌𝑖
𝑒𝛿𝑁𝑖)] 

where 𝜙𝐷is the severity dispersion parameter in the dependent model and 𝑀𝑁𝑖

′′ (𝑠) is the 

second derivative of the m.g.f. of 𝑁𝑖, defined at point 𝑠 = 2𝛿.  
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Hurdle-Poisson model – When the Poisson(𝜆)-Hurdle model is considered, the m.g.f. is 

given by 

𝑀𝑁𝑖
(𝛿) = 𝑝 + (1 − 𝑝)

𝑒𝜆𝑒𝛿
−1

𝑒𝜆−1
, 

and its derivatives by 

𝑀𝑁𝑖

′ (𝛿) = (1 − 𝑝)𝜆𝑒𝛿
𝑒𝜆𝑒𝛿

𝑒𝜆 − 1
= 𝜇𝑁𝑖

exp {𝜆(𝑒𝛿 − 1) + 𝛿} 

and 

𝑀𝑁𝑖

′′ (𝛿) = 𝜇𝑁𝑖
exp{𝜆(𝑒𝛿 − 1) + 𝛿} (1 + 𝜆𝑒𝛿).               

Furthermore, if a gamma distribution is considered, 𝑉𝑌(�̃�𝑌𝑖
𝑒𝛿𝑁𝑖) = (𝜇𝑌𝑖

𝑒𝛿𝑁𝑖)
2
 and 

𝐸[𝑁𝑖𝑉𝑌(�̃�𝑌𝑖
𝑒𝛿𝑁𝑖)] =

1

2
(𝜇𝑌𝑖

)
2

𝑀𝑁𝑖

′ (2𝛿). 

 Therefore, considering the conditional approach, 

𝑉𝑎𝑟(𝑆𝑖) = 𝜇𝑌𝑖

2𝜇𝑁𝑖
[𝜆 exp{𝜆(𝑒2𝛿 − 1) + 4𝛿} + (𝜙𝐷 + 1) exp{𝜆(𝑒2𝛿 − 1) + 2𝛿} −

𝜇𝑁𝑖
exp {2𝜆(𝑒𝛿 − 1) + 2𝛿}]. 

As expected (because the models are nested), if we set 𝛿 = 0 in this variance, we get the 

same result as the one of the independent case (section 3.2.4).                                                           

 

4.1.2. Estimation  

To estimate the regression parameters, a maximum-likelihood approach is usually 

followed. To perform this task, the joint distribution of frequency and severity will be 

needed. It can be decomposed by 

𝑓𝑌,̅𝑁(𝑦𝑖, 𝑛𝑖) = 𝑓�̅�|𝑁(𝑦𝑖)𝑓𝑁(𝑛𝑖) 

  Therefore, the joint likelihood and log-likelihood, considering m policyholders, 

will be, respectively,  

𝐿(𝛾, 𝛽𝑁 , 𝛽𝑌, 𝛿; 𝒚, 𝒏) = ∏ 𝑓𝑌,̅𝑁(𝑦𝑖, 𝑛𝑖|𝛾, 𝛽𝑁 , 𝛽𝑌, 𝛿) = ∏ 𝑓�̅�|𝑁(𝑦𝑖|�̃�
𝑌, 𝛿)𝑓𝑁(𝑛𝑖|𝛾, 𝛽𝑁)

𝑚

𝑖=1

𝑚

𝑖=1

 

and 

ℓ(𝛾, 𝛽𝑁 , 𝛽𝑌, 𝛿; 𝒚, 𝒏) = 𝑙𝑛𝐿(𝛾, 𝛽𝑁 , 𝛽𝑌, 𝛿; 𝒚, 𝒏) = ℓ�̅�|𝑁(𝛽𝑌, 𝛿; 𝒚|𝒏) +  ℓ𝑁(𝛾, 𝛽𝑁; 𝒏). 
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To obtain the estimates of the regression parameters, a maximization of the log-

likelihood function is done. From this formalization, it follows that the estimation of 𝛾 

and 𝛽𝑁  will only depend on the marginal log-likelihood ℓ𝑁(𝛾, 𝛽𝑁; 𝒏),  as in the 

independent model. For 𝛽𝑌  and 𝛿 , we only need the conditional log-likelihood 

ℓ�̅�|𝑁(𝛽𝑌, 𝛿; 𝒚|𝒏). Therefore, the estimation can be performed separately. Properties of 

conditional maximum likelihood estimators are discussed in Andersen (1970).  

 

4.2. Copula regression model 

Another way to allow for dependence is using a copula to construct a joint model by 

linking the marginal distributions of claim sizes and claim counts, as done by Czado et 

al. (2012) and Krämer et al. (2013). Furthermore, it allows to model also nonlinear 

correlations between them, in contrast with the conditional approach. 

There are two main steps that should be followed in this approach: first marginal 

models should be fitted to each variable; and second, a parametric copula should be 

selected. The first step is identical to the one described in sections 3.2.1. and 3.2.2. 

(independent case), where a Hurdle model can be fitted to the frequency and a Gamma 

GLM to the severity. After this step, the marginal regressions are combined using a 

bivariate copula. 

 

4.2.1. The bivariate Copula  

A Copula is a multivariate distribution function whose univariate marginal distributions 

are uniformly distributed. It is used to model the dependence structure between random 

variables. In this text, the interest relies on bivariate copulas.   

 

Definition 4.1. Bivariate Copula 

A Bivariate (2-dimensional) Copula is a function C: [0,1]2 → [0,1] with the following properties: 

(1)  ∀𝑢, 𝑣 ∈ [0,1]: 

𝐶(𝑢, 0) = 𝐶(0, 𝑣) = 0 and 𝐶(𝑢, 1) = 𝑢 and 𝐶(1, 𝑣) = 𝑣; 

(2) ∀𝑢1, 𝑢2, 𝑣1, 𝑣2, ∈ [0,1] with 𝑢1 ≤ 𝑢2 and 𝑣1 ≤ 𝑣2:  

𝐶(𝑢2, 𝑣2) − 𝐶(𝑢2, 𝑣1) − 𝐶(𝑢1, 𝑣2) + 𝐶(𝑢1, 𝑣1) ≥ 0 . 
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Nelsen (2006) is a good introduction to copulas and their properties and, Frees 

and Valdez (1998) explore their application in actuarial science. 

 One of the most important results in the theory of copulas was established by Sklar 

(1959). 

 

Theorem 4.1. (Sklar’s Theorem). Let 𝐹 be a 𝑛 -dimensional distribution function with 

univariate marginals 𝐹1, … , 𝐹𝑛. Then there exists a copula 𝐶 with uniform marginals such 

that 

𝐹(𝑥1, … , 𝑥𝑛) = 𝐶(𝐹1(𝑥1), … , 𝐹𝑛(𝑥𝑛)).                             (4.4) 

Conversely, if C is a copula and 𝐹1, … , 𝐹𝑛 are distribution functions, then the function F 

defined by (4.4) is a joint distribution function with marginals 𝐹1, … , 𝐹𝑛. ◀ 

 

Additionally, Sklar showed that, if the variables are continuous, then there is a 

unique copula representation. 

A very convenient implication of this theorem is that we can model the marginals 

and the dependence separately. 

 

4.2.2. The joint density function 

In this section we will consider, again, the claim numbers, 𝑁, and the average claim size, 

�̅�. Its joint density/probability mass function can be defined by 

𝑓𝑁,�̅� (𝑛, 𝑦|𝜃) = {
𝑓𝑧𝑒𝑟𝑜(0)                                                            , 𝑛 = 0 𝑎𝑛𝑑 𝑦 = 0

(1 − 𝑓𝑧𝑒𝑟𝑜(0)) ×  𝑓𝑁,�̅�|𝑁>0 (𝑛, 𝑦|𝜃)         , 𝑛 > 0 𝑎𝑛𝑑 𝑦 > 0
        (4.5) 

where 𝑓𝑁,�̅�|𝑁>0 (𝑛, 𝑦|𝜃) can be expressed using a copula, as done by Czado et al. (2012) 

and Krämer et al. (2013). 

Thus, considering only positive counts and amounts, with 𝐹𝑁,�̅�|𝑁>0 the joint 

distribution function, and 𝐹𝑁|𝑁>0 and 𝐹�̅� the univariate marginal distributions, according 

to Sklar’s Theorem, there exists a bivariate copula C:[0,1]x[0,1]→[0,1] such that 

𝐹𝑁,�̅�|𝑁>0(𝑛, 𝑦|𝜃) = 𝐶(𝐹𝑁|𝑁>0(𝑛), 𝐹�̅�(𝑦)|𝜃). 
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The parameter 𝜃 is the copula parameter and allows us to model de dependence between 

the variables. However, since we are dealing with discrete and continuous random 

variables, the copula C is not unique. Nonetheless, it continues to be appropriate to 

describe the dependence between them [Genest and Nešlehová (2007)].   

Keeping in mind that one of the random variables is discrete (𝐹𝑁,�̅�|𝑁>0(𝑛, 𝑦) is not 

differentiable with respect to 𝑛), 𝑓𝑁,�̅�|𝑁>0 (𝑛, 𝑦|𝜃) can be obtained by doing 

𝑓𝑁,�̅�|𝑁>0
(𝑛, 𝑦) =

𝜕

𝜕𝑦
𝑃(�̅� ≤ 𝑦, 𝑁 = 𝑛|𝑁 > 0) 

=
𝜕

𝜕𝑦
[𝑃(�̅� ≤ 𝑦, 𝑁 ≤ 𝑛|𝑁 > 0) − 𝑃(�̅� ≤ 𝑦, 𝑁 ≤ 𝑛 − 1|𝑁 > 0)].    (4.6) 

 Using the Copula formulation and letting the copula’ partial derivative, with respect to 

the first variable, be 

𝐷1(𝑢, 𝑣|𝜃) ≔
𝜕

𝜕𝑢
𝐶(𝑢, 𝑣|𝜃) , 

the joint density (4.6) is given by 

𝑓𝑁,�̅�|𝑁>0
(𝑛, 𝑦|𝜃)

=
𝜕

𝜕𝑦
[𝐶(𝐹�̅�(𝑦), 𝐹𝑁|𝑁>0(𝑛)|𝜃) − 𝐶(𝐹�̅�(𝑦), 𝐹𝑁|𝑁>0(𝑛 − 1)|𝜃)]

= 𝑓�̅�(𝑦)[ 𝐷1(𝐹�̅�(𝑦), 𝐹𝑁|𝑁>0(𝑛)|𝜃) − 𝐷1(𝐹�̅�(𝑦), 𝐹𝑁|𝑁>0(𝑛 − 1)|𝜃)] 

A wide range of bivariate copulas and their properties can be found in Nelson (2006), 

such as the Elliptical copulas (Gaussian, Student-t) or the Archimedean copulas (Frank, 

Gumbel, Clayton). Some derivatives can also be found in Schepsmeiner and Stöber 

(2014). Table 4.1 contains information about some widely used copulas.  

 
Family Copula 𝑪(𝒖, 𝒗|𝜽) Range of 𝜽 

Gauss Φ2(Φ−1(𝑢), Φ−1(𝑣)|𝜃) 𝜃 ∈] − 1,1[ 
Frank 

−
1

𝜃
log (1 +

(𝑒−𝜃𝑢 − 1)(𝑒−𝜃𝑣 − 1)

𝑒−𝜃 − 1
) 

𝜃 ∈ ℝ\{0} 

Gumbel 
exp {−((− 𝑙𝑜𝑔 𝑢)𝜃 + (− 𝑙𝑜𝑔 𝑣)𝜃)

1
𝜃} 

𝜃 ∈ [1, ∞[ 

Clayton (𝑢−𝜃 + 𝑣−𝜃 − 1)−1/𝜃 𝜃 ∈]0, ∞[ 

Table 4.1 – Characteristics of some (one-parameter) copula families 
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To identify the most appropriate copula family, we should look for their 

proprieties, such as the tail behavior, as well as for the dependence structure and choose 

the one that corresponds to the data. Once a copula’s family has been selected, the copula 

parameter must be estimated. Two copula families can also be compared, after the 

estimation, using the log-likelihood ratio test developed by Vuong (1989), which is 

appropriated to compare two non-nested models (further details in section 4.3).  

 

4.2.3. Estimation 

The estimation of the unknown parameters can be done using maximum-likelihood 

techniques. If 𝝋 = (𝛾, 𝛽𝑐
𝑁 , 𝛽𝑐

𝑌, 𝜙𝑐, 𝜃)  is the vector of unknown parameters, the log-

likelihood function will be  

ℓ(𝝋|𝒏, 𝒚) = ℓ(𝛾|𝒏) + ℓ(𝛽𝑐
𝑁 , 𝛽𝑐

𝑌, 𝜙𝑐, 𝜃|𝒏, 𝒚), 

where ℓ(𝛾|𝒏) is as defined in section 3.2.3 and  

              ℓ(𝛽𝑐
𝑁, 𝛽𝑐

𝑌, 𝜙𝑐, 𝜃|𝒏, 𝒚) = ∑ log (𝑓𝑁,�̅�|𝑁>0(𝑛𝑖 , 𝑦𝑖|𝛽𝑐
𝑁, 𝛽𝑐

𝑌, 𝜙𝑐, 𝜃)) 𝑖:𝑛𝑖>0 . 

               = ∑ log(𝑓�̅�(𝑦𝑖|𝛽𝑐
𝑌, 𝜙𝑐))𝑖:𝑛𝑖>0  . 

                                                     + ∑ log[ 𝐷1(𝐹�̅�(𝑦𝑖|𝛽𝑐
𝑌, 𝜙𝑐), 𝐹𝑁|𝑁>0(𝑛𝑖|𝛽𝑐

𝑁)|𝜃)                 −𝑖:𝑛𝑖>0

                                                     − 𝐷1(𝐹�̅�(𝑦𝑖|𝛽𝑐
𝑌, 𝜙𝑐), 𝐹𝑁|𝑁>0(𝑛𝑖 − 1|𝛽𝑐

𝑁)|𝜃)]. 

The parameters estimates will be given by 

�̂� = arg max
𝜑

ℓ(𝝋|𝒏, 𝒚). 

For 𝛾, the estimation can be done separately and the estimates will be the same as 

for the independent case. For the second term of the log-likelihood, ℓ(𝛽𝑐
𝑁 , 𝛽𝑐

𝑌, 𝜙𝑐, 𝜃|𝒏, 𝒚), 

the maximization should be done numerically and a variety of methods to do it can be 

found in the literature. Czado et al. (2012) used an algorithm based on maximization by 

parts (MBP) published in Song et al. (2005), to estimate the model parameters. Krämer 

et al. (2013) applied the BFGS optimization algorithm, which is a quasi-Newton method, 

to maximize the log-likelihood. Additionally, based on this last work, the package 
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CopulaRegression1 in R was developed to describe the joint distribution of positive 

discrete and continuous random variables using various bivariate copulas (Gauss, 

Clayton, Gumbel and Frank). In this text, we proceed with the BFGS algorithm.  

 

BFGS algorithm 

 The BFGS algorithm was published simultaneously by Broyden, Fletcher, 

Goldfarb, and Shanno in 1970. It is a quasi-Newton method used to solve nonlinear 

optimization problems without constraints. The algorithm uses the values of the objective 

function and its first and second derivatives. Furthermore, approximations of the hessian 

matrix (here denoted by H) are considered instead of the exact one. 

Let 𝑔(𝑥) = − ℓ(𝑥) , where 𝑥  is used instead of the vector (𝛽𝑐
𝑁, 𝛽𝑐

𝑌, 𝜙, 𝜃)  (to 

follow the usual notation in optimization). The problem that we seek to solve can be 

expressed as 

min
𝑥∈ℝ𝑛

𝑔(𝑥). 

 

Algorithm 4.1. (BFGS algorithm) 

Step 0: Let 𝑘 = 0. Set an initial value 𝑥(0) and 𝐻0 (usually the identity matrix); 

Step 1: If stopping criteria are met, stop. Otherwise, continue. 

Step 2: Compute the search direction, 𝑝𝑘, that satisfies 𝐻𝑘𝑝𝑘 = −∇𝑔(𝑥(𝑘));  

Step 3: Compute step length 𝛼𝑘 > 0 that minimizes 𝑔(𝑥(𝑘) + 𝛼𝑘𝑝𝑘), and set  𝑥(𝑘+1) =

𝑥(𝑘) + 𝛼𝑘𝑝𝑘 

Step 4: Compute  𝐻𝑘+1 = 𝐻𝑘 −
𝐻𝑘𝑠(𝑘)(𝑠(𝑘))

𝑇
𝐻𝑘

(𝑠(𝑘))
𝑇

𝐻𝑘𝑠(𝑘)
+

𝑦(𝑘)(𝑦(𝑘))
𝑇

(𝑦(𝑘))
𝑇

𝑠(𝑘)
 

where 𝑠(𝑘) = 𝑥(𝑘+1) − 𝑥(𝑘) and 𝑦(𝑘) = ∇𝑔(𝑥(𝑘+1)) − ∇𝑔(𝑥(𝑘))             

Step 5: Set 𝑘 = 𝑘 + 1 and return to step 1.               ▪ 

 

Further detailed information can be consulted in Nocedal and Wright (2006). 

                                                 
1 https://cran.r-project.org/web/packages/CopulaRegression/CopulaRegression.pdf 
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The estimates 𝛽�̂�, 𝛽�̂� and �̂�, obtained by fitting the marginal models, will be used 

as initial values for the BFGS algorithm. For 𝜃 , following the strategy proposed by 

Krämer et al (2013), the initial value will be the one that maximizes 

ℓ(𝜃|𝒖, 𝒗) =  ∑ log𝑚
𝑖=1 [ 𝐷1(𝑢𝑖 , 𝑣𝑖|𝜃) −  𝐷1(𝑢𝑖 , 𝑤𝑖|𝜃)] , 

where 𝑢𝑖 ≔ 𝐹�̅�(𝑦𝑖|𝛽�̂�, �̂�), 𝑣𝑖 ≔ 𝐹𝑁|𝑁>0(𝑛𝑖|𝛽�̂�) and 𝑤𝑖 ≔ 𝐹𝑁|𝑁>0(𝑛𝑖 − 1|𝛽�̂�) . 

Additionally, given that the copula parameter 𝜃 is, in general, restricted (see Table 4.1), 

a transformation ℎ: Θ → ℝ is performed. 

 After running the algorithm, the estimates for the model parameters are obtained, 

as well as an approximation to the hessian matrix, which will be used to estimate the 

standard errors. 

 

4.2.4. Dependence 

To analyze the degree of dependence between the two random variables, a measure of 

association can be used. Since copulas are invariant under monotone transformations, 

then a scale-invariant measure is more appropriate, such as Kendall’s tau and Spearman’s 

rho, instead of the usual correlation coefficient [Ohlsson and Johansson (2010)].  

 

Definition 4.2. Kendall’s tau (population version) 

Let (𝑋1, 𝑌1) and (𝑋2, 𝑌2) be i.i.d. random vectors. The population version of Kendall’s tau 

is defined as  

𝜏𝑋,𝑌 =  P{(𝑋1– 𝑋2)(𝑌1– 𝑌2) > 0} –  P{(𝑋1– 𝑋2)(𝑌1– 𝑌2) < 0}, 

i.e., as the probability of concordance minus the probability of discordance. ▪ 

 

The relationship between the copula parameter 𝜃 and Kendall’s tau, for the copula 

families mentioned in Table 4.1, can be found in Table 4.2. 

 
Copula Gauss Frank Gumbel Clayton 

𝝉 
𝜏 =

2

𝜋
𝑎𝑟𝑐𝑠𝑖𝑛 (𝜃) 1 −

4

𝜃
[1 −

1

𝜃
∫

𝑡

𝑒𝑡 − 1
𝑑𝑡

𝜃

0

 𝜏 =
𝜃 − 1

𝜃
 𝜏 =

𝜃

𝜃 + 2
 

Range of 𝝉 𝜏 ∈ ℝ 𝜏 ∈ ℝ\{0} 𝜏 ∈ [0, ∞[ 𝜏 ∈ ]0, ∞[ 
Table 4.2 – Relationship between the copula parameter, 𝜽, and Kendall’s Tau, 𝝉. 
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4.2.5. Policy loss 

In the Copula model presented in this section, there is no direct formula for the expected 

policy loss, as in the Independent model or in the Conditional model. To obtain its 

estimate, Czado et al. (2012) proceeded with the use of Monte-Carlo Estimators and 

Krämer et al (2013) proceeded with the derivation of the policy loss’ distribution (for 

positive losses). In the last case, they proved that, for policy 𝑖,  

       𝑓𝑆|𝑆>0
(𝑠|𝜃) = ∑ [𝐷1 (𝐹�̅� (

𝑠

𝑛
) , 𝐹𝑁|𝑁>0(𝑛)|𝜃) −∞

𝑛=1

                                     − 𝐷1 (𝐹�̅� (
𝑠

𝑛
) , 𝐹𝑁|𝑁>0(𝑛 − 1)|𝜃)] ×

1

𝑛
𝑓�̅� (

𝑠

𝑛
).                                           (4.7)                

 Given that the density function of 𝑆𝑖 can be written as 

𝑓𝑆
(𝑠|𝜃) = {

𝑓𝑆|𝑆>0
(𝑠|𝜃) × (1 − 𝑓𝑧𝑒𝑟𝑜

(0))

𝑓𝑧𝑒𝑟𝑜
(0)

, 𝑠 > 0 (𝑛, 𝑦 > 0) 

, 𝑠 = 0 (𝑛 = 𝑦 = 0)
  , 

and using (4.7), the required expected value can be obtained by doing 

𝐸[𝑆𝑖] = ∫ 𝑠 𝑓𝑆|𝑆>0(𝑠𝑖|𝜃)𝑑𝑠 × (1 − 𝑓𝑧𝑒𝑟𝑜(0)) 
∞

0
. 

Similarly, the variance will be 

𝑉𝑎𝑟[𝑆𝑖] =  𝐸[𝑆𝑖
2] − (𝐸[𝑆𝑖])

2
 

where 𝐸[𝑆𝑖
2] = ∫ 𝑠 2 𝑓𝑆|𝑆>0(𝑠𝑖|𝜃)𝑑𝑠

∞

0
× (1 − 𝑓𝑧𝑒𝑟𝑜(0)). 

 

4.3. Dependent vs Independent model 

After fitting both models, overall goodness-of-fit measures can be used to compare them. 

For instance, the models can be ranked according to the Akaike Information Criterion 

(AIC), where the one with the lowest value is considered the best. The AIC is defined as 

𝐴𝐼𝐶 = 2𝑘 − 2log (𝐿), 

where 𝑘  denotes the number of parameters and 𝐿 denotes the value of the maximum 

likelihood. 

Furthermore, in the conditional approach, as explained in section 4.1.1., the 

independent model can be obtained by imposing the restriction 𝛿 = 0 in the dependent 

one, that is, the latter is nested in the former. Therefore, to investigate if the dependent 

model is significant, we should test if 𝛿 = 0. This can be achieved with a two-tailed 
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hypothesis testing, where the null hypothesis is 𝐻𝑜: 𝛿 = 0 and the test statistic is given 

by: 

T=
δ̂

√Var(δ̂)

 𝑁(0,1)~
𝑎  

Alternatively, since the severity models are nested, we can compare their deviances using 

the test statistic 

𝐷(𝑦,𝜇𝑌�̂�)−𝐷(𝑦,𝜇𝑌𝑖
�̂� )

�̂�
= 2[ℓ𝑑(𝛾, 𝛽𝑁, 𝛽�̃�, 𝛿; 𝒚, 𝒏) − ℓ𝐼(𝛾, 𝛽𝑁 , 𝛽𝑌; 𝒚, 𝒏)]~𝜒𝑝𝑑−𝑝𝐼

2             (4.8) 

where ℓ𝑑(∙) and ℓ𝐼(∙) are the log-likelihood of the dependent and independent model, 

respectively; and 𝑝𝑑 − 𝑝𝐼 is the excess of parameters of the dependent model over the 

independent model (which is 1 in this case). 

 Since in the copula approach the models are not nested, then the Vuong’s test can 

be used. The test statistic is defined by 

𝑉 =
𝐿𝑅𝑚

√𝑚𝜔�̂�

 𝑁(0,1)~
𝑎  

where 𝐿𝑅𝑚 = ∑ ℓ𝑖
(1)

− ∑ ℓ𝑖
(2)𝑚

𝑖=1
𝑚
𝑖=1 , with ℓ𝑖

(𝑗)
the pointwise log-likelihood of model 𝑗 

(j=1,2); and 𝜔�̂�
2 = 𝑉𝑎�̂�(ℓ𝑖

(1)
− ℓ𝑖

(2)
) . Hence, at 5%-significance level, model 1 is 

preferred for an observed test statistic higher than 1.96, while model 2 is preferred for an 

observed value smaller than -1.96. For other values, the test is inconclusive.  This test can 

also be used to select the most appropriate copula’s family to include in the Copula model. 
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Chapter 5 

Data analysis 

 

The models presented in the previous chapters will be now applied to insurance data. 

First, the description and treatment of the data set will be performed. Then the 

independent and dependent scenarios will be analyzed and compared, to investigate the 

effect of dependence in the estimation of both the policy and total losses. For this purpose, 

the software R was used.     

 

5.1. Data description 

The data set that will be analyzed in this chapter was provided by a Portuguese insurance 

company. It contains data on a portfolio of motor own damage insurance from a period 

of the beginning of this decade. Each policy is characterized by the policy number and 

the unit of risk (each vehicle), resulting in a total of 127 571 observations and in a total 

exposure of 103 478.8. For each observation, there is information about the claim 

numbers, the total claim amount and the exposure time, as well as a set of explanatory 

variables. Besides that, a new variable, called average claim amount, was created. For 

policies with at least one claim, it is given by the total claim amount divided by the 

number of claims. For policies with no claims, the average claim amount is zero. 

The analysis of the given data revealed that most of the policies (around 94%) did 

not make any claim, and a maximum of 5 claims was registered. Furthermore, a total of 

8 072 claims was found, i.e., the average claim frequency was 0.078 per policy/year. 

Information about the absolute and relative frequency of the claim counts can be found 

in Table 5.1. 
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Number of 

claims 
0 1 2 3 4 5 

Frequency 
(number of 

observations) 

120 101 

(94.144%) 

6 943 

(5.443%) 

467   

(0.366%) 

48 

(0.038%) 

9 

(0.007%) 

3 

(0.002%) 

Frequency 
(total exposure) 

96 906.680 

(93.649%) 

6 094.222 

(5.889%) 

423.860 

(0.410%) 

42.808 

(0.041%) 

8.315 

(0.008%) 

2.915 

(0.003%) 

Table 5.1 – Claim Count distribution 

 

Given that at least one claim had occurred, the mean of the average claim amount 

was 2 684.96 m.u. (monetary units) and a total loss of 21 673 003 m.u. was registered. 

Furthermore, Table 5.2 shows the mean of the average claim amount for each claim count. 

From this table, it can be observed that, in general, as the number of claims increases, the 

average severity decreases. This is also supported by Figure 5.1, where the plot of the 

severity against frequency reveals a possible negative association between these two 

variables, reflected by the negative slope of the regression line.  

 

Number of claims 1 2 3 4 5 

Average severity per 

claim 

2 824.324 1 909.317 1 402.712 2 042.938 325.581 

Table 5.2 – Average Claim Severity for each claim count 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 – Plot of the Number of Claims (positive) against the Average Claim Size, with 

the corresponding regression line 
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 In addition, information on a total of 13 explanatory variables was available. Some 

of these variables are related to policyholder’s characteristics, namely gender, age, 

driving license’s age and his/her geographical area. However, due to a very high 

percentage of missing values for the policyholder’s age, this variable was not considered. 

Furthermore, the policyholder’s gender was also not considered due to moral reasons. 

Vehicle characteristics, such as fuel, type of vehicle, age, weight, number of seats and 

engine displacement were also given, as well as the capital insured, the deductible, and 

the bonus/malus class of the policyholder. All these covariates will enter the model as 

regressors and their significance will be evaluated. Since most of the variables were 

continuous, then a division into classes was performed for each one. Their labels, 

description, and categorization are presented in Table B.1 of appendix B.  

 

5.2. Independent Model 

To find the marginal models that best fit the data, an estimation of several generalized 

linear models was performed for the claim frequency and for the claim severity. For each 

component, first a model with all explanatory variables as main effects was considered 

and, then, the significance of the coefficients was evaluated. The final model was obtained 

by eliminating the non-significant covariates, with the help of significance and deviance 

tests. Interaction between covariates was not considered to keep the model simple. 

 

5.2.1. Poisson-Hurdle model for frequency 

A Binomial regression, with a logit link, was applied to “claims” vs “no claims” and a 

truncated Poisson regression, with a logarithmic link, was performed to the positive part 

(with at least one claim). This was done in R, using the function hurdle from the pscl2 

package. The final model can be found in Table B.2 of the appendix B, with all selected 

variables being significant, at least, at the 10% significance level. The remaining variables 

were excluded from the model and the exposure was included in the model as an offset. 

 From the estimated model, we observe that the bonus/malus classes, the insured 

capital and the deductible are statistically important for both the zero and the count part. 

                                                 
2 https://cran.r-project.org/web/packages/pscl/pscl.pdf 
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The geographical area, fuel, driver’s license’s age and type and engine displacement of 

the vehicle are only statistically significant for the first part, while the weight of the 

vehicle is significant for the second part of the frequency model. Due to problems of 

significance, and to improve the model, some levels of some factors were merged. This 

happened for the capital insured (classes 2 to 4 and classes 5 to 7), the vehicle type (classes 

“MT”, “MV” and “TT”) and the driver’s license’s age (classes 3 and 4 and classes 7 to 

11).  

 Furthermore, some conclusions about the claim experience can be taken. First, it 

is worth noticing that the intercept parameter in each model represents the value of the 

linear predictor for the reference group and that each estimated parameter represents the 

differential effect (positive or negative, depending on the sign) in the linear predictor with 

respect to that group. For the Hurdle model (as a whole), the reference group is composed 

of new drivers from the north of Portugal, in the highest level of bonus and in the lowest 

of capital insured, with no deductible and with a passenger diesel car with low weight and 

low engine displacement. Compared to this group, the claim experience is aggravated 

when the bonus class decreases or the malus class increases, or when the capital insured 

increases. On the other hand, a decrease in the reported claims is found when the 

deductible, weight or engine displacement of the vehicle or the license’s age increases, as 

well as when another geographical area, type of vehicle or fuel is considered. Some of 

these results are intuitive and expected.  

Note that the different sets of explanatory variables used for each model, in 

addition to support the choice of the Hurdle model, show that most of the factors are more 

important to explain the occurrence or not of a claim, than to explain the number of 

reported claims.  

  

5.2.2. Gamma GLM for severity 

Given the occurrence of claims, the average claim amount is a continuous, positive and 

right-skewed random variable, as supported by the histogram represented in Figure 5.2. 

Therefore, the gamma family is a justified option. Again, to obtain a multiplicative mean 

structure, a logarithmic link function was used. 
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Figure 5.2 – Histogram of Average Claim Size 

 

 

Since we are dealing with average amounts, then the claim numbers were included 

in the model as weights. Additionally, only the dataset containing positive claims was 

used to model the severity component, which comprises a total of 7 470 observations. 

Using the same strategy as the one used for frequencies, the final model was 

obtained and the parameter estimates can be found in Table B.3 of appendix B. In this 

case, the classes of capital insured, deductible, vehicle age and license’s age turned out to 

be significant at the 5% significance level. After merging the classes “MV” and “TT” of 

the variable vehicle type, as well as the classes “north” and “center” of the variable zone, 

both variables were also considered significant and were included in the model. 

 Here, the reference group is formed by new drivers from the north of Portugal, 

with capital insured up to 5000, with no deductible, and with a passenger car with 1 year 

or less. With respect to these policyholders, the average claim size increases with the 

increase of the capital insured, the deductible or the vehicle age, as well as when 
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considering a commercial car. A decrease is found for older drivers and for other zones 

and types of vehicles.   

 It is important to notice that, both in this final model and in the final model for 

frequency, no problems of multicollinearity were found among the covariates considered.  

 

5.2.3. The independent model 

After fitting the marginal models to claim frequency and claim severity, and assuming 

independence between the two, the individual expected losses can be estimated, as well 

as the total loss, as discussed in section 3.2.4. 

Therefore, the estimate of the individual expected loss is obtained by only 

computing the product, for each policyholder, of the fitted value for the frequency and 

the fitted value for the severity.  It ranged from 22.04 to 3 018 m.u.. Summing up all 

policies, an estimated total loss of 20 774 215 m.u. was found, with a standard deviation 

of  455 605.7 m.u.. Furthermore, the 98% confidence interval, for this model, is [19 714 

476, 21 833 954]. 

The log-likelihood of the whole model is given by the sum of the marginal log-

likelihoods, resulting in a total of – 100 508.1. Because the number of estimated 

parameter is 73, the AIC value is equal to 2 × 73 − 2 × (−100 508.1) = 201 162.2. 

 

5.3. Dependent Model and Comparisons 

In this section, the independence assumption will be relaxed. First, the Conditional 

approach will be discussed. Then, the Copula model will be analyzed. In each case, a 

comparison to the independent model will be performed. Additionally, a final comparison 

between both models that account for dependence will be done, in order to see which one 

best captures this feature. 

 

5.3.1. Conditional Approach 

Using the Conditional model, only the marginal regression for the severity component 

needs to be investigated. As presented before, the marginal model for frequency remains 
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the same and, to account for dependence, the Gamma GLM for severity is modified by 

including now the number of claims as a covariate. As done by Garrido et al (2016), the 

number of claims was included as a discrete variable and not as a factor like the remaining 

variables of the model.  

The estimated model is presented in Table B.3 of the appendix B. It was found 

that all the variables included in the independent case remained significant, with small 

changes in the estimated coefficients. The claim counts also turned out to be statistically 

significant, with an estimated parameter, 𝛿,  equal to -0.22716, which means that an 

increase in the number of claims decreases the average claim size. Thus, for a unit 

increase in the number of claims, the average claim size is expected to suffer a decrease 

of 20% (1 − 𝑒−0.22716 = 1 − 0.7968 = 0,2032). 

Moreover, the statistical significance of the coefficient associated with the number 

of claims shows that there is statistical evidence that the dependence parameter is different 

from zero, which means that the independent model can be improved by considering 

dependence between claim numbers and amounts. 

 Besides the individual significance test, the other tests presented in section 4.3 can 

also be performed. The severity model under independence has an AIC value of 141 449, 

while under dependence it has a value of 141 373, which shows that the dependent model 

is slightly better. Moreover, because the models are nested, a comparison of the change 

in their deviances with the 𝜒(1)
2  distribution can be done. Since the critical value at 5% of 

the 𝜒(1)
2  distribution is 3.841, which is much smaller than 82.401 [the observed value of 

the test statistic (4.8)], the change in the deviance is statistically significant, meaning that 

the dependent model is indeed an improvement over the independent one. 

 When it comes to the total loss, an estimate of 20 857 168 m.u. was obtained, with 

a standard deviation of 455 684.9 m.u. and a 98% confidence interval equal to [19 797 

245, 21 917 091]. The individual estimates ranged between 22.3 and 3 084 m.u.. These 

values are slightly higher than the ones estimated in the independent model. A possible 

explanation for this result might be the negative dependence found in the data, which 

causes an increase in the average claim size when the number of claims decreases. Thus, 

the fact that this data set is mostly constituted by a small number of claims (given the 

occurrence of claims, around 93% of the policies reported only one claim), leads to higher 
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estimates being obtained. Furthermore, when comparing the individual estimated losses, 

an average increase of 0.46% is found when dependence is considered.     

 

5.3.2. Copula Approach 

When it comes to the Copula model, the estimation is more complex. First, a copula must 

be selected. From the data analysis, and supported by the Conditional model, the 

dependence between the average claim size and the number of claims appears to be 

negative. Therefore, options like the Clayton or the Gumbel (standard) copulas are not 

appropriate, as they are not defined for negative values of Kendall’s tau. The Gaussian 

copula, however, delivers good results when applied to the data, namely the strong 

significance of the dependence parameter.  

Secondly, the truncated part of the Hurdle model and the Gamma GLM (both 

presented in section 5.2) allow us to select the covariates that will enter in the Copula 

model, as well as to obtain the parameter estimates, which are used as initial values in the 

BFGS algorithm. Note that the zero-Hurdle part remains unchanged, as its estimation is 

done separately and is already at the optimum. Therefore, only the data with at least one 

claim is needed to obtain the remaining final estimates (𝛽𝑐
�̂� , 𝛽𝑐

�̂�, 𝜙𝑐  ̂and 𝜃). This was done 

with the help of the CopulaRegression package in R, with changes in the function’s code 

to accommodate the features of our model. The function used can be found in the 

appendix C.1, which is an adaptation of the function copreg. The main change was to 

include the estimated coefficients of the independent model as input in the copula 

regression. If this change had not been done, then these initial coefficients would be 

estimated only considering the truncated data set, instead of the complete one.  Further 

details about the sub-functions used can be found in CopulaRegression and 

VineCopula3 packages.   

The final estimated model, using a gaussian copula, is presented in Table B.2 and 

Table B.3 of the appendix B. The additional parameter, 𝜃, which is the parameter that 

reflects the dependence, was estimated in - 0.233, with a standard error of 0.0231. This 

implies that the dependence is statistically significant. Additionally, it is equivalent to an 

                                                 
3 https://cran.r-project.org/web/packages/VineCopula/VineCopula.pdf 
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estimated Kendall’s tau of -0.1497, thereby implying, one more time, the existence of 

some negative dependence between the main variables. Note that, in the case of the 

gaussian copula, the dependence parameter 𝜃 is the same as the correlation coefficient.  

When compared to the marginal regressions in the independent model, the 

parameter estimates kept their signs and suffered small changes. The standard errors 

decreased and all the variables were still significant.  

The estimated total loss was 20 799 332 m.u., with a standard deviation of 386 

914.2, and the 98% confidence interval was found to be [19 899 369, 21 699 294]. For 

each policyholder, the minimum estimated loss was 21.94 m.u. while the maximum was 

3 033 m.u.. These values where obtained by first integrating the joint density function 

(4.7), after replacing its parameters by its estimates. The functions dpolicy_loss and 

epolicy_loss from CopulaRegression were used for this matter. The values obtained were 

then multiplied by 1 − 𝑓𝑧𝑒𝑟𝑜(0)̂ , as described in section 4.2.5. Additionally, under this 

approach, an average increase of 0.16% in the individual losses is observed, compared to 

the independent case.  

 Finally, to the log-likelihood of the joint part of the copula model (- 67 594.32), 

we must join the log-likelihood referent to the zero-hurdle part (- 27 740.52), which 

makes a total log-likelihood of - 95 334.84. Since the total number of parameters 

estimated in the copula model is 74, then the resulting AIC  value is 190 817.7. This value 

is smaller than the AIC of the independent model, which provides support to the Copula 

approach. 

 Besides the comparison of the AIC values, the Vuong test was performed, as the 

two models are not nested. The observed test statistic was found to be around 15.94. This 

value is much larger than the positive critical value at 5% of the standard Normal 

distribution (1.96), which means that the Copula model is an improvement over the 

independent frequency-severity model. This test was performed on R by applying the 

function testV, described in section C.2 of the appendix C. 

Additionally, the Vuong test can also be used to compare the two dependent 

models presented in this text. In this case, the test statistic had an observed value of 21.74, 

meaning that the Copula approach outperforms the Conditional approach. This is not 
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surprising, as with the conditional approach only the linear association is captured. 

Nevertheless, both methods provided significant results.      

Note that the observed total loss falls inside of all the confidence intervals. 

Furthermore, by comparing all the estimated total losses with the one observed, we can 

detect an underestimation in every model. Nonetheless, as only one observation is 

available, no conclusions can be drawn regarding under/overestimation.  

 Furthermore, in Figure 5.3 can be found the conditional density functions of the 

average claim size, given the number of claims (using the copula approach). If these 

quantities were independent, then the conditional distribution would be the same for all 

possible values of claim counts (and the same as the unconditional distribution).  

However, this is not the case. In Figure 5.3, changes in the conditional densities can be 

detected as the number of claims increases, illustrating the negative association found on 

the data. More details about the conditional density function can be consulted in sections 

A.3 and C.3 of the appendices A and C, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 – Conditional density functions of the Average Claim Size, given the number of 

claims (red: N=1; blue: N=2; green: N=3; black: N=4; gold: N=5) 
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5.3.3. Estimated Premiums: case study  

To conclude, Table 5.3. contains information on the estimated premiums, under each 

model, for four groups of policyholders. Furthermore, the absolute and relative variations 

of the dependent premiums, with respect to the independent ones, are also presented. The 

groups where chosen from a total of 44 742 risk cells, considering values around the 

independent premiums’ quintiles (20%, 40%, 60% and 80%) with a minimum total 

exposure (38.38, 39.32, 36.85 and 32.28, respectively). Their characteristics are presented 

in the appendix B.1.  

 

 

Regarding these risk cells, a change in the premiums was verified when dependence was 

considered. However, the difference between the models is not very large. Besides the 

policyholders’ group 4, where the relative difference of the dependent premium, under 

the conditional model, is almost 5%, in the remaining groups no “significant” difference 

was found. When it comes to the whole set of risk cells, the scenario is identical and there 

are only few cases where the difference is indeed significant (increase/decrease larger 

than 5%). For instance, for policyholders belonging to risk cell number 5 (appendix B.1) 

the copula’s premium was found to be 12.17% lower than the independent one (100.59 

against 114.53, respectively). This group, however, has a small total exposure.  

Nevertheless, the variation was more accentuated in the conditional dependent 

model than in the copula model, which was, in general, a common event in all the other 

risk cells of this data set. 

 

  Conditional model Copula model 

 
Independent 

model 
Premium ∆ ∆% Premium ∆ ∆% 

1 101.91 99.57 -2.34 -2.29% 100.42 -1.49 - 1.46% 

2 133.80 138.99 +5.18 +3.87% 135.46 +1.66 +1.24% 

3 170.79 172.30 +1.51 +0.88% 170.72 -0.06 - 0.04% 

4 271.57 284.76 +13.19 +4.86% 275.18 +3.60 +1.33% 

Table 5.3 – Estimated premiums under each model and the absolute (∆) and relative (∆%)  

variation with respect to the independent premium 
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Chapter 6 

Conclusions 
 

In this research, the assumption of independence between claim sizes and claim counts 

was relaxed to get more accurate premiums. In a Generalized Linear Model framework, 

two models that account for dependence were presented as alternatives to the widely used 

frequency-severity model, where the premiums are found by just computing the product 

between both components.  

 The first model considered was a conditional severity model, where the severity 

GLM was extended by including the number of claims as a covariate. This model has the 

interesting particularity of having the independent scenario as special case (the 

independent model is nested in the dependent one). Furthermore, it also has a closed form 

formula for the individual expected loss, which simplifies the computations. The 

improvement introduced by this model, in contrast with the independent scenario, was 

seen in the application made to the motor own damage insurance portfolio provided by a 

portuguese insurance company. The number of claims turned out to be highly significant 

in the severity regression and showed a negative relationship between both quantities: 

when the claim numbers increases one unit, a decrease of 20% in the average claim size 

is found.  

The second model described was a copula regression model, which linked the 

marginal distributions and provided a joint model for frequency and severity. Information 

about the degree of dependence was given by the additional estimated parameter - the 

copula parameter. In the application, a gaussian copula was chosen and a negative 

dependence was found, with an estimated correlation coefficient equal to -0.233. With 

the help of Vuong tests, the copula model revealed to be the preferred one not only when 

compared to the independent case, but also when compared to the dependent conditional 

model. This last finding can be justified by the limitation of the conditional approach, 

which only models a linear dependence.  

Both the conditional and the copula models resulted in slightly higher estimated 

total losses when compared to the independent scenario, as well as in an average increase 
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of the individual estimated losses (0.46% and 0.16%, respectively). The combination of 

a portfolio of small claim counts and the existence of negative dependence is one possible 

explanation for this finding. When it comes to the dispersion, the conclusions were very 

similar. From the analysis of the premiums, the differences between the models turned 

out to be small, with the copula model providing more conservative estimates than the 

conditional model. Although having considered dependence has improved the model, 

ignoring it does not lead to much different premiums in this portfolio.    

The copula model, however, has the disadvantage of being computationally 

demanding and more time consuming, as the estimation is done using numerical methods. 

Oppositely, the conditional approach has a much simpler application. 

 Nevertheless, the three models have a common first step of fitting a marginal 

GLM to both the frequency and severity components. Although better fittings to each 

component could be found, the Gamma GLM for severity and the Hurdle-Poisson model 

for frequency were chosen. These choices allowed the use of a complete data set 

(including the zeros), instead of a truncated one as used by the authors mentioned in this 

text, and facilitated the comparison between the final models, which was one of our goals. 

To sum up, insurance companies should question if assuming independence 

between claim counts and claim amounts is the best option when constructing tariffs, or 

if more accurate premiums could be achieved by considering the existence of dependence. 

As showed in this text, there are already models that provide good results in this field. 

This can help the insurer avoiding bigger losses in the future and becoming more 

competitive.  

 Future research could focus on analyzing more than two variables, for instance by 

including other type of coverages and considering the possibility of dependence between 

them. Additionally, other types of copulas (including copulas with more than one 

parameter) could be analyzed. The comparison between each copula would give a better 

understanding about the type of dependence of the data. Unfortunately, in the application 

made in this text only the gaussian copula provided good results, mostly due to the fact 

that the other considered copulas are only defined for positive dependence. A possible 

solution would be to make a copula rotation/transformation.  

Nevertheless, a lot of interesting topics can be pursued and extensions can be 

made to other areas, namely when it comes to copulas.   
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Appendix A 

Background 
 

A.1. Distributions 

A.1.1. Gamma distribution  

If 𝑌~𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜙), with µ the mean and ø  the dispersion parameter, then 

𝑓𝑌(𝑦|𝜇, ∅) =
1

𝑦Γ (
1
𝜙)

(
𝑦

𝜇∅
)

1
𝜙

exp (−
𝑦

𝜇∅
) , 𝑦 > 0 

and 

𝐸[𝑌] = 𝜇 and 𝑉𝑎𝑟(𝑌) = 𝜙𝜇2. 

 

A.1.2. Poisson distribution and Zero-truncated Poisson distribution 

If 𝑁~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆), then 

𝑓𝑁(𝑛|𝜆) =
𝜆𝑛

𝑛!
𝑒−𝜆, 𝑛 = 0,1,2, . .. 

and 

𝐸[𝑁] = 𝑉𝑎𝑟(𝑁) = 𝜆. 

However, if only positive values are assumed, then the zero-truncated Poisson variable 

N’ is considered, with 

𝑓𝑁′(𝑛|𝜆) =
𝑓𝑁(𝑛|𝜆)

1 − 𝑓𝑁(0|𝜆)
=

𝜆𝑛

𝑛! (1 − 𝑒−𝜆)
𝑒−𝜆, 𝑛 = 1,2, … 

and [𝑁′] =
𝜆

1−𝑒−𝜆 . 
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A.1.3. Bernoulli distribution 

If 𝑋~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝), then  

𝑓𝑋(𝑥|𝑝) = 𝑝𝑥(1 − 𝑝)1−𝑥,   𝑥 = 0,1 

and 

𝐸[𝑋] = 𝑝 and 𝑉𝑎𝑟(𝑋) = 𝑝(1 − 𝑝) 

 

A.2. Bivariate Gaussian Copula 

The partial derivative, with respect to the first variable, of the gaussian copula, as defined 

in Table 4.1., is given by 

𝐷1(𝑢, 𝑣|𝜃) = Φ (
Φ−1(𝑣) − 𝜃Φ−1(𝑢)

√1 − 𝜃2
) 

The derivation of this result can be consulted in Czado et al. (2012). 

 

A.3. Conditional density function 

The conditional density function of the average claim size, given the number of claims is 

defined in the copula approach as 

𝑓�̅�|𝑁
(𝑦|𝑛 > 0) =

𝑓𝑁,�̅�|𝑁>0
(𝑛, 𝑦)

𝑓𝑁|𝑁>0(𝑛)
 

where 𝑓𝑁,�̅�|𝑁>0
(𝑛, 𝑦) is as established in section 4.2.2. and 𝑓𝑁|𝑁>0(𝑛) is the truncated count 

density function. 
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Appendix B 

Categorization and Estimated models 
 

B.1. Categorization and description of the covariates 

Label Description 

Classcapital Class of capital insured (m.u.) 

Factor with 9 levels: 

    1 – up to 5000               4 – ]11 000, 15 000] 

    2 – ]5 000, 8 000]         5 – ]15 000, 18 000] 

    3 – ]8 000, 11 000]       6 – ]18 000, 21 000]  

 

     

    7 – ]21 000, 25 000] 

    8 – ]25 000, 35 000] 

    9 – above 35 000  

Classdeduc Class of deductible (m.u.) 

Factor with 4 levels: 

    1 – no deductible;                                  3 – deductible of 500; 

    2 – deductible of 125 or 250;                4 – deductible of 1 000 or more 

Zone Policyholder’s geographical area (Portugal) 

Factor with 3 levels: 

    1 – North (Viana do Castelo, Braga, Vila Real, Bragança, Porto, Aveiro,     

          Viseu and Guarda) 

    2 – Center (Coimbra, Castelo Branco, Leiria, Santarém, Portalegre and  

          Lisboa) 

    3 – South and Islands (Évora, Setubal, Beja, Faro, Açores and Madeira)    

classveh_age Class of the vehicle age (years) 

Factor with 5 levels: 

    1 – [0,1]                        3 – ]3,5]                              5 – above 9 

    2 – ]1,3]                        4 – ]5,9]         

Fuel Type of fuel  

Factor with 2 levels: 

    1 – Diesel                      2 – Gasoline 

Classdisplac Class of the vehicle’s engine displacement  

Factor with 4 levels: 

    1 – up to 1 600              2 – above 1600 

Numseats Class of the vehicle’s number of seats 

Factor with 2 levels: 

    1 – up to 5 seats             2 – above 5 seats 

Classweight Class of the vehicle’s weight (Kg) 

Factor with 2 levels: 

    1 – up to 1 500               2 – above 1500  

veh_cat Type of vehicle 

Factor with 4 levels: 

    LP - Passenger car                    MV - Minivan 

    MT - Commercial car               TT – Jeep 

Bm Bonus/Malus class  (discount or penalization with respect to the base premium)  

Factor with 9 levels: 

    1 – discount of 50%                                        6 – penalization of 10% 

    2 – discount above 30% and below 50%        7 – penalization of 20% 

    3 – discount of 25% or 30%                             8 – penalization of 40% 
    4 – discount of 10% or 20%                             9 – penalization above 40% 

    5 – no discount or penalization 
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Label Description 

classlic_age Policyhoder’s license age (years) class 

Factor with 11 levels: 

    1 – [0, 4]                          5 – ]16, 20]                 9 – ]32, 46] 

    2 – ]4, 8]                          6 – [20, 24]                 10 – ]36,40] 

    3 – ]8, 12]                        7 – ]24, 28]                 11 – above 40 

    4 – ]12, 16]                      8 – ]28, 32] 

Table B.1 – Categorization and description of the covariates 

 
 

  

The characteristics of the policyholders belonging to the groups presented in 

section 5.3.3. , are: 

1 – class of capital 2, class of deductible 1, center of Portugal, class of vehicle age 

4, gasoline, passenger car, class of vehicle displacement 1, class of vehicle weight 1, 

discount above 30% and below 50%, and class of license age 5; 

2 – class of capital 8, class of deductible 2, center of Portugal, class of vehicle age 

1, diesel, passenger car, class of vehicle displacement 1, class of vehicle weight 1, 50% 

discount, and class of license age 8; 

3 – class of capital 8, class of deductible 2, north of Portugal, class of vehicle age 

1, diesel, passenger car, class of vehicle displacement 1, class of vehicle weight 1, 50% 

discount, class of license age 5; 

4 – class of capital 9, class of deductible 1, north of Portugal, class of vehicle age 

1, diesel, passenger car, class of vehicle displacement 2, class of vehicle weight 2, 50% 

discount, and class of license age 11; 

5 – class of capital 4, class of deductible 2, center of Portugal, class of vehicle age 

3, diesel, minivan or jeep, class of vehicle displacement 1, class of vehicle weight 2, 50% 

discount, and class of license age 5. 
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B.2. Estimated models 

B.2.1. Estimated Frequency models 

 Zero component 

Truncated count component  

Independent Model 
Dependent Copula 

Model 

Variable 
Estimates,   

�̂� 

Standard 

error 

Estimates, 

𝛽�̂� 

Standard 

error 

Estimates, 

𝛽𝑐
�̂� 

Standard 

error 

(intercept) -2.30983 0.10085 -2.09725 0.20691 -2.02268 0.20316 

bm2 -0.06423 0.03069 0.20315 0.10650 0.21416 0.10537 

bm3 0.13012 0.04456 0.44430 0.14216 0.44061 0.14105 

bm4 0.36063 0.04262 0.25043 0.14378 0.26091 0.14279 

bm5 0.46945 0.04918 0.56556 0.15033 0.65370 0.14677 

bm6 0.97461 0.10708 0.71429 0.28117 0.72977 0.27570 

bm7 1.60320 0.10125 1.27708 0.18833 1.31180 0.18475 

bm8 1.43350 0.20342 1.32535 0.34812 1.42715 0.33590 

bm9 1.57295 0.17945 1.75772 0.24815 1.73481 0.24765 

classcapital2to4 0.09283 0.05229 0.49483 0.20413 0.42182 0.19980 

classcapital5to7 0.13153 0.05492 0.45605 0.20887 0.35555 0.20491 

classcapital8 0.14941 0.06149 0.71449 0.22349 0.59987 0.21977 

classcapital9 0.29270 0.06872 0.65766 0.25062 0.46856 0.24856 

classdeduc2 -0.43900 0.02621 -0.73629 0.09344 -0.73787 0.09231 

classdeduc3 -0.88171 0.03789 -1.17470 0.18084 -1.20707 0.18013 

classdeduc4 -1.41116 0.11044 -0.92571 0.49909 -1.04952 0.50719 

classweight2   -0.17059 0.09992 -0.17555 0.09879 

zone2 -0.16149 0.02653     

zone3 -0.14090 0.03631     

Fuelgasoline -0.10388 0.03220     

classdisplac2 -0.05402 0.02809     

veh_catMTorMVorTT -0.06123 0.03478     

classlic_age2 -0.27954 0.09620     

classlic_age3&4 -0.14755 0.08334     

classlic_age5 -0.19772 0.08563     

classlic_age6 -0.22219 0.08692     

classlic_age7to11 -0.14137 0.08170     

       

Log-likelihood -27 740.52 -2 073.329   

AIC 59 713.7   

Table B.2 – Estimated models for Frequency (Hurdle-Poisson model) 
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B.2.2. Estimated Severity models 

 Independent model 
Dependent 

Conditional model 

Dependent Copula 

model 

Variable 
Estimates, 

𝛽�̂� 

Standard 

error 

Estimates, 

�̂�and 𝛽�̂̃� 

Standard 

error 

Estimates, 

�̂�and 𝛽𝑐
�̂� 

Standard 

error 

(intercept) 6.8206 0.1286 7.0902 0.1330 6.8439 0.0989 

classcapital2 0.3643 0.0834 0.3748 0.0820 0.3661 0.0640 

classcapital3 0.6025 0.0831 0.6192 0.0816 0.6063 0.0637 

classcapital4 0.7328 0.0834 0.7467 0.0820 0.7452 0.0638 

classcapital5 0.9063 0.0887 0.9118 0.0872 0.9125 0.0673 

classcapital6 0.9451 0.0922 0.9602 0.0906 0.9579 0.0702 

classcapital7 1.1851 0.0924 1.1895 0.0908 1.1862 0.0699 

classcapital8 1.2016 0.0912 1.2204 0.0897 1.2140 0.0687 

classcapital9 1.7444 0.0983 1.7713 0.0966 1.7539 0.0741 

classdeduc2 0.3958 0.0344 0.3742 0.0341 0.3911 0.0267 

classdeduc3 0.6036 0.0512 0.5711 0.0507 0.5950 0.0397 

classdeduc4 0.8595 0.1505 0.8220 0.1480 0.8516 0.1180 

classveh_age2 0.3029 0.0449 0.2949 0.0442 0.3043 0.0344 

classveh_age3 0.5900 0.0504 0.5801 0.0495 0.5909 0.0379 

classveh_age4 0.7554 0.0532 0.7426 0.0522 0.7544 0.0393 

classveh_age5 0.8003 0.0774 0.7871 0.0761 0.7969 0.0575 

veh_catMT 0.1973 0.0820 0.2005 0.0806 0.2043 0.0632 

veh_catMVorTT -0.1705 0.0523 -0.1696 0.0514 -0.1718 0.0406 

classlic_age2 -0.3087 0.1223 -0.2983 0.1201 -0.3146 0.0947 

classlic_age3 -0.3646 0.1113 -0.3709 0.1093 -0.3859 0.0862 

classlic_age4 -0.4026 0.1071 -0.4044 0.1052 -0.4149 0.0829 

classlic_age5 -0.4807 0.1052 -0.4872 0.1034 -0.4975 0.0814 

classlic_age6 -0.5417 0.1066 -0.5480 0.1048 -0.5583 0.0824 

classlic_age7 -0.5537 0.1091 -0.5397 0.1072 -0.5571 0.0845 

classlic_age8 -0.5595 0.1090 -0.5254 0.1070 -0.5580 0.0843 

classlic_age9 -0.7333 0.1117 -0.7401 0.1098 -0.7512 0.0863 

classlic_age10 -0.6548 0.1105 -0.6395 0.1086 -0.6599 0.0855 

classlic_age11 -0.7426 0.1064 -0.7241 0.1045 -0.7344 0.0825 

zone2to3 -0.0659 0.0328 -0.0773 0.0322 -0.0714 0.0253 

numclaims,�̂� - - -0.2272 0.0330 - - 

       

Dispersion 

parameter 
1.989733 1.920036 1.184554 

Theta - - - 0.23299 0.02311 

      

Log-likelihood - 70 694.26 -70 655.74   

AIC 141 449 141 373   

Table B.3 – Estimated models for Severity (Gamma model) 
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Appendix C 

R Functions 
 

C.1. Copula Regression Function 

To run this function, the CopulaRegression and VineCopula packages are needed. 

 

Input:  

betaY:  estimated coefficients for the severity independent model, 𝛽�̂� 

betaN:  estimated coefficients of the positive count component for the frequency 

independent model, 𝛽�̂� 

delta:  estimated dispersion parameter for the severity independent model, 𝜙 ̂  

x:  𝑛 observations of the positive Gamma variable 

y:  𝑛 observation of the zero-truncated Poisson variable 

R:  𝑛 × 𝑝 matrix of covariates, for the Gamma model 

S:  𝑛 × 𝑘 matrix of covariates, for the zero-truncated Poisson model 

family:  bivariate copula family (1=Gauss, 3=Clayton, 4=Gumbel, 5=Frank) 

exposure:  exposure time for the zero-tuncated Poisson model 

 

Output: 

betaY_cop:  estimated coefficients for the severity component of the copula model, 𝛽𝑐
�̂� 

betaN_cop: estimated coefficients for the frequency positive component of the copula 

model, 𝛽𝑐
�̂� 

delta_cop:  estimated dispersion parameter for the severity component of the copula     

model, 𝜙𝑐  ̂  

theta_cop:  estimated copula (dependence) parameter, 𝜃  

tau:  estimated Kendall’s tau, �̂� 
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sd.betaY_cop:  estimated standard deviation for the severity component of the copula 

model 

sd.betaN_cop: estimated standard deviation for the frequency positive component of the   

copula model 

sd.g.theta_cop: estimated standard deviation of the copula parameter function  

loglik:   total log-likelihood  

npar:   number of estimated parameters 

ll:   log-likelihood evaluated at each observation 

 

Main-Function: 

CR<-function (betaY,betaN,delta,x, y, R, S = R, family = 1, exposure = rep(1, length(x))) { 

    mu <- as.vector(exp(R%*% betaY)) 

    lambda <- as.vector(exp(S %*% betaN)) * exposure 

    theta_initial <- BiCopEst(rank(x- mu)/(length(x) + 1), rank(y - lambda)/(length(y) + 1), 
family=family)$par  

    tau_initial = BiCopPar2Tau(par = theta_initial, family = family) 

    u <- pgam(x, mu, delta/y)  

    v <- pztp(y, lambda) 

    vv <- pztp(y - 1, lambda) 

    foo <- function(para) { 

        theta0 <- z2theta(para, family) 

        out <- (-sum(log(D_u(u, v, theta0, family) - D_u(u, vv, theta0, family)))) 

        return(out) 

    } 

    para_initial <- theta2z(theta_initial, family) 

    para.ifm <- optim(para_initial, foo, method = "BFGS")$par 

    theta.ifm <- z2theta(para.ifm, family) 

    tau.ifm <- BiCopPar2Tau(par = theta.ifm, family = family) 

    joint <- mle_joint(betaY, betaN, theta.ifm, delta, x, y, R, S, family, exposure, TRUE, TRUE) 

    betaY_cop <- joint$alpha;  

    betaN_cop<- joint$beta;  

    delta_cop <- joint$delta;  

    theta_cop <- joint$theta;     

    tau <- joint$tau 

    sd.betaY_cop <- joint$sd.alpha;  

    sd.betaN_cop <- joint$sd.beta;  

    sd.g.theta_cop<-joint$sd.g.theta 

    family <- joint$family 
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    ll <- joint$ll 

    loglik <- sum(ll) 

    npar <- length(betaY_cop) + length(betaN_cop) + 1 

    outlist <- list(betaY_cop= betaY_cop, betaN_cop = betaN_cop, delta_cop = delta_cop, theta_cop = 
theta_cop, tau = tau, sd.betaY_cop= sd.betaY_cop, sd.betaN_cop = sd.betaN_cop,  sd.g.theta_cop= 
sd.g.theta_cop, loglik = loglik, npar = npar, ll = ll) 

    class(outlist) = "copreg" 

    return(outlist) 

} 

 

Sub-functions: 

From the package CopulaRegression: 

pgam:  distribution function of a Gamma variable; 

pztp:   distribution function of a zero-truncated  Poisson variable; 

theta2z and z2theta: transformation of the copula parameter and its inverse, respectively.  

D_u:   copula partial derivative; 

mle_joint:  returns the estimated coefficients and the estimated copula parameter; 

 

From the package ´VineCopula’: 

BiCopEst:  returns the initial copula parameter; 

BiCopPar2Tau:    returns the initial kendall’s tau. 

 

Note: a change was made in the arguments of the functions pgam and dgam. Whenever 

these functions appeared, the third argument was changed from delta to delta/y.  This 

was done because �̅�𝑖|𝑁𝑖~𝑔𝑎𝑚𝑚𝑎 (𝜇𝑌𝑖
,

𝜙𝑌

𝑁𝑖
). 

 

C.2. Vuong test 

To run this function, the package nonnest24 is needed. 

 

                                                 
4 https://cran.rstudio.com/web/packages/nonnest2/nonnest2.pdf 
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Input: 

y:    𝑛 observations of the number of claims 

p: probability of making at least one claim (𝑛 × 1 vector) 

m_cop: model object returned from CR 

mH: model object returned from hurdle 

msev: model obect returned from glm (gamma independent or dependent model)  

 

Main function: 

testeV<-function(y,p,m_cop,mH,msev) 

{ 

 ll_copula<-y   

 ll_copula[y>0]=log(p[y>0])+ m_cop$ll 

 ll_copula[y==0]=log(1-p[y==0]) 

 ll_hurdle<-llcont(mH) 

 ll_gamma<-llcont(msev)  

 ll_independent=NSin   

 ll_independent[NSin>0]=ll_hurdle[NSin>0]+ll_gamma 

 ll_independent[NSin==0]=ll_hurdle[NSin==0] 

 kcopula=length(m_cop$betaN)+length(m_cop$betaY)+length(coef(mH,model="zero"))+2 

 kindep=length(coef(mH))+ length(coef(msev))+1 

 m=ll_copula-ll_independent 

 aux=sqrt(length(m)) * mean(m)/sd(m) 

 tstat=aux-((kcopula-kindep)*log(length(m))/2) 

 return(tstat)  

} 

 

Output: 

tstat:  value of the test statistic 

 

Sub-functions: 

llcont:  returns the log-likelihood evaluated at each observation. From package nonnest2 
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C.3. Conditional density function 

To run this function, the CopulaRegression package is needed. 

 

Input:  

y:  conditioning value (𝑦 = 1,2,3, …) 

x:   𝑛 observations of the positive Gamma variable 

mu:  estimated expected value of the positive gamma variable 

delta:  estimated dispersion parameter of the gamma variable 

lambda:  estimated parameter of the zero-truncated Poisson 

theta:  estimated copula parameter 

family:  bivariate copula family (1=Gauss, 3=Clayton, 4=Gumbel, 5=Frank) 

 

Output: 

out:  vector of the conditional density function 

 

Main function: 

dcond<-function (y, x, mu, delta, lambda, theta, family)  

{ 

    y <- rep(y, length(x)) 

    out<-density_joint(x, y, mu, delta, lambda, theta, family, TRUE)/dztp(y,lambda) 

    out[out < 0] = 0 

    out[out > 1] = 1 

    return(out) 

} 

 

Sub-function: 

density_joint: joint density function from CopulaRegression package 
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