
RAPID COMMUNICATIONS

PHYSICAL REVIEW C 93, 041602(R) (2016)

Determining astrophysical three-body radiative capture reaction rates from inclusive
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A relationship between the Coulomb inclusive break-up probability and the radiative capture reaction rate for
weakly bound three-body systems is established. This direct link provides a robust procedure to estimate the
reaction rate for nuclei of astrophysical interest by measuring inclusive break-up processes at different energies
and angles. This might be an advantageous alternative to the determination of reaction rates from the measurement
of B(E1) distributions through exclusive Coulomb break-up experiments. In addition, it provides a reference
to assess the validity of different theoretical approaches that have been used to calculate reaction rates. The
procedure is applied to 11Li (9Li + n + n) and 6He (4He + n + n) three-body systems for which some data exist.
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Nucleosynthesis occurs in stellar environments, following
a complex network of reactions in which heavier nuclei
are formed by proton, neutron, or α radiative capture by
a lighter nucleus. The knowledge of these radiative capture
reaction rates is crucial for the stellar models aiming to
describe the evolution in composition, energy production,
and temperature structure of different stellar environments
(see, for example, Ref. [1] and references therein). The direct
experimental measurement of the relevant cross sections is,
in principle, possible for two-body reactions [2,3]. In many
interesting cases, however, reaction cross sections cannot be
measured directly. This may occur if the initial nucleus is
short-lived [4] or when the capture process is a three-body
reaction [5]. In this case, the inverse reaction to radiative
capture, photodissociation, could be measured [4]. Reaction
rates are then obtained by integrating the photodissociation
cross section for the compound nucleus, weighted with the
Maxwell-Boltzmann energy distribution and the relevant phase
space factors, from the corresponding energy threshold [6,7].
Direct photodissociation measurements can be done only
for stable nuclei, e.g., 12C [8], sometimes with important
discrepancies among different experiments, e.g., 9Be [5,9].
Thus, for many relevant cases this technique is not feasible
(e.g., 17Ne [10]). In addition, to obtain the reaction rate
from experimental photodissociation measurements usually
requires, for three-body systems, a sequential description of the
formation process, which is questionable at low temperatures
if the particles do not have enough energy to populate
intermediate resonances [11].

At first order, the energy distribution of the photodissoci-
ation cross section is determined by the B(E1) distribution,
of the compound nucleus, into the continuum of its fragments
[12]. Hence, an alternative to obtain this cross section, when the
nucleus is short-lived, is to perform exclusive Coulomb break-
up experiments at intermediate energies (∼100 MeV/nucleon)
on heavy targets, at very forward angles [13,14]. From the
exclusive break-up cross section, the B(E1) is extracted
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assuming Coulomb is dominant at those angles. However,
these experiments have large uncertainties precisely for the
energies close to the threshold, which are the most relevant for
the astrophysical reaction rate. The B(E1) distributions could
be also calculated, provided that a reliable few-body model
is known for the compound nucleus [7,15,16]. Nevertheless,
different models may provide different results for the same
system. Moreover, these calculations do not always agree with
the experimental B(E1) distributions.

Recently, a method to obtain B(E1) distributions close
to the break-up threshold has been proposed [17], which
consists in measuring Coulomb excitation at low energies,
i.e., around the Coulomb barrier. In this case, one has to
measure the inclusive break-up cross section, which depends
mainly on the B(E1) values close to the threshold. The
inclusive break-up probability depends on an integral over the
B(E1) distribution. That integral is weighted by an exponential
factor, which is formally equivalent to the Maxwell-Boltzmann
exponential factor in the astrophysical reaction rate. Thus,
the B(E1) distribution allows us to establish a correlation
between both observables, the break-up probability and the
reaction rate. The explicit relation is obtained in this work.
In order to show how to implement this method in the case
of three-body radiative capture, two examples are worked
out: the two-neutron radiative capture by 9Li to produce
11Li and by 4He to produce 6He. The 9Li(2n,γ )11Li reaction
could appear in the α-process in type II supernovae or in the
inhomogeneous big bang [18]. Although the 11Li formation
might not be very relevant for astrophysics, this case is chosen
to illustrate the method since reasonable experimental data on
inclusive break-up cross sections has been measured recently
at TRIUMF [17] at the angles required for the applicability
of the present procedure. As a case of more astrophysical
interest, the 4He(2n,γ )6He reaction is presented. This is
considered to be relevant for the r-process in neutron star
mergers [19]. However, the available data on the break-up
angular distribution do not reach the most appropriate angular
region. No data exist for other systems of astrophysical interest.
If inclusive Coulomb break-up experiments at low energy are
performed for these systems in the appropriate angular region,
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the method here presented will allow us to get, in addition to
other important results for nuclear physics, the reaction rate of
interest in astrophysics.

The energy-averaged reaction rate for three-body (a + b +
c → A + γ ) radiative capture processes can be calculated
from the inverse photodissociation reaction as a function of
the temperature T by the expression [6,7]

〈R3(ε)〉(T ) = C ′
3e

|εB |
kB T

(kBT )3

∫ ∞

|εB |
dεγ ε2

γ σγ (εγ )e
−εγ
kB T , (1)

where ε = εγ + εB is the initial three-body kinetic energy, εγ

is the energy of the photon emitted, and εB is the binding
energy of the compound nucleus A. Here, C ′

3 is a constant
depending on the masses and spins of the initial particles. The
photodissociation cross section σγ (εγ ) of the nucleus A can be
expanded into electric and magnetic multipoles, λ, as [12,16]

σ (λ)
γ (εγ ) = (2π )3(λ + 1)

λ[(2λ + 1)!!]2

( εγ

�c

)2λ−1 dB(Oλ)

dε
, (2)

where B(Oλ) is the order λ of electric or magnetic transition
probability (O = E,M). Hence, in leading order, the astro-
physical reaction rate is due to the dipole electric contribution
(E1) and can be written as

〈R3(ε)〉(T ) � C3e
|εB |
kB T

(kBT )3

∫ ∞

|εB |
dεγ ε3

γ

dB(E1)

dε
e

−εγ
kB T . (3)

The explicit form of the constant C3 in Eq. (3) is

C3 = ν!
�

2

c3

27π4

32(axay)3/2

gA

gagbgc

, (4)

where gi are the spin degeneracies of the particles, ν is the
number of identical particles in the three-body system, and ax

and ay are the reduced masses of the subsystems related to the
Jacobi coordinates {x, y}.

In this work we propose an alternative way to determine the
astrophysical reaction rate taking advantage of the sensitivity
to Coulomb excitation in scattering processes at low energy.
At energies around the Coulomb barrier and at very forward
angles, the break-up probability of weakly bound nuclei also
depends, in leading order, on the B(E1) distribution. In
the equivalent photon method (EPM), the reduced break-up
probability in the center-of-mass frame is written as [17]

Pr(t) = t2
∫ ∞

|εB |
dεγ εγ

dB(E1)

dε
e−tεγ , (5)

where εγ and εB have the same meaning as above and t is the
collision time, which is related to the scattering angle in the
center-of-mass frame through

t = a0

�v

(
π + 2

sin(θ/2)

)
. (6)

Here, a0 is half the classical closest approach distance and v is
the relative projectile-target velocity. With this definition, the
collision time, t , is independent of the collision parameters.
This makes t a scaling variable in such a way that experiments
at different energies can be merged together and analyzed
with a single quantity, Pr(t) [17]. Equations (3) and (5)
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FIG. 1. 11Li + 208Pb reduced break-up probability as a function
of the collision time, t . See text for details.

are formally equivalent except for a factor ε2
γ . This means

that both observables, reaction rate and break-up probability,
are strongly correlated in the range for which the EPM
holds. The EPM is valid when the semiclassical approach
is valid (η 	 1), nuclear forces are negligible (θ < θg), and
Coulomb coupling can be approximated by first order, so
that higher order Coulomb excitations are negligible. This
opens the possibility of getting reliable information on the
astrophysical reaction rate from experimental measurements
of the break-up probability. The maximum correlation between
both observables is established when the exponentials in
Eqs. (3) and (5) are equal, i.e.,

t = 1

kBT
, (7)

which, together with Eq. (6), establishes a direct correspon-
dence between the scattering angle, θ , and the temperature, T .
This relation is not unique since it depends on the bombarding
energy through the parameter a0 and the velocity v. This
fact opens the possibility of exploring different temperature
ranges of relevance in astrophysics by measuring break-up
probabilities at different energies. For smaller energies, one
gets information for the same angle on larger collision times,
which corresponds to exploring lower temperatures.

Note that Eqs. (3) and (5) can be related through

〈R3(ε)〉(T ) = C3t
3e|εB |t d2

dt2

(
1

t2
Pr (t)

)
. (8)

Equation (8) is the main result of this work. It relates directly
the reaction rate in a stellar environment at a given temperature
T with the inclusive break-up probability Pr (t) obtained in
a Coulomb scattering experiment, for certain collision times
corresponding to given scattering angles and energies.

To evaluate from a practical purpose the second derivative
in Eq. (8), it is convenient to fit a suitable function to the
experimental data. It is found (see Fig. 1) that the main t
dependence of Pr (t) is through the exponential factor e−|εB |t ,
as can be deduced from Eq. (5). Thus, without any loss of
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generality, we can express Pr (t) as an expansion,

Pr (t) � e−|εB |t (b0 + b1t + b2t
2 + · · · ). (9)

The parameters b0,b1,b2, . . . are fitted to the experimental
values of Pr (t)e|εB |t , over the range which is Coulomb
dominated. From these values, we can obtain through Eq. (8)
an expansion of the reaction rate,

〈R3(ε)〉(T ) = C3{b0[|εB |2kBT + 4|εB | + 6/(kBT )]

+ b1[|εB |2(kBT )2 + 2|εB |kBT + 2]

+ b2[|εB |2(kBT )3] + · · · }. (10)

The parameters b0,b1,b2, . . . fitted in Eq. (9) will have
some uncertainties, given by a covariance matrix. These
uncertainties can be implemented in Eq. (10) to get an error
estimate in the reaction rate.

To illustrate this method, we use recent data of 11Li break-up
on 208Pb at low energies [17]. In Fig. 1 we present the 11Li +
208Pb reduced break-up probability. We see that, in the region
from t = 5 to 15 MeV−1, data are reasonably smooth and
follow an exponential decay. We fit the product of the break-up
probability Pr (t) times e|εB |t by a second-degree polynomial,
Eq. (9), obtaining the values b0 = 7.8 e2 fm2 MeV−1, b1 =
−0.4 e2 fm2, b2 = 0.02 e2 fm2 MeV, with the corresponding
covariance matrix. In this fit, |εB | has been taken as 0.37 MeV,
the experimental two-neutron separation energy of 11Li [20].
In Fig. 1 the solid black line is the result of the quadratic fit and
the shadow region around is the 1 − σ uncertainty region. For
comparison, in Fig. 1 we also include the results obtained by
integrating directly through Eq (5): (i) the experimental B(E1)
distribution [14] (dot-dashed red line) and (ii) a theoretical
three-body B(E1) distribution [17] (dashed blue line). It
is shown that the quadratic fit reproduces fairly well the
experimental data on the break-up probability.

From the knowledge of parameters b0, b1, and b2, we can
predict the reaction rate (in the range of temperatures from
0.7 to 2.3 GK, corresponding to collision times from t = 15
to t = 5 MeV−1) for the two-neutron capture by 9Li using
Eq. (10), and propagate the 1 − σ band of uncertainty from
the fit.

In Fig. 2 we show the reaction rate as a function of
the temperature. The result from the quadratic fit and its
corresponding 1 − σ uncertainty band are shown by the
solid black line and the shaded region, respectively. In the
same figure, the results obtained from different B(E1) energy
distributions are also shown: (i) the experimental RIKEN data
[14] (dot-dashed red line), (ii) a theoretical three-body model
of 11Li which presents a dipolar resonance at 0.69 MeV [17]
(dashed blue line), and (iii) a theoretical two-body model of
11Li with a dipolar resonance at the same position [21] (dotted
green line). The result obtained from the RIKEN experimental
data includes an estimate of the uncertainty in the reaction
rate, which is due to the statistical uncertainties of the B(E1)
points and also to the uncertainty in the break-up energy. The
latter is given [14] as �E = 0.17

√
ε, with ε in MeV. This

uncertainty is especially important, in relative terms, for the
energies close to the threshold, which are the most relevant for
the reaction rate. As shown in Fig. 2, the reaction rate extracted
from the present work is significantly larger than the reaction
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FIG. 2. Reaction rate for 11Li formation as a function of temper-
ature (in GK). See text for details.

rate extracted from the RIKEN B(E1) values, although these
have considerable uncertainties. The difference is also seen
in the break-up probability (Fig. 1). This discrepancy should
be further investigated since it can be due to the validity
of EPM, used in both approaches, or the treatment of the
exclusive experimental data to obtain the B(E1) distribution.
On the other hand, it is seen in Fig. 2 that the reaction rate
obtained from the three-body B(E1) distribution in Ref. [17]
is in good agreement with the present estimate from inclusive
break-up data, for the region of temperatures corresponding to
the collision times explored in this experiment. In contrast, the
two-body calculation [21], including a resonance at the same
energy as in the three-body model, is clearly out of the values
and trend obtained by the method here presented.

The presented method can be applied to estimate the
reaction rate of the two-neutron capture on 4He to produce
6He, which has been proposed to affect the r-process nucle-
osynthesis in neutron star mergers [19]. Several estimations
of this reaction rate have been carried out [7,15,19], showing
noticeable differences between them.
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FIG. 3. 6He + Pb reduced break-up probability as a function of
the collision time, t . See text for details.
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FIG. 4. Reaction rate for 6He formation as a function of temper-
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Two sets of experimental data on 6He inclusive break-up
are available in the literature: the scattering on 208Pb at 22 MeV
[22] and the reaction on 206Pb at 18 MeV [23]. However,
none of them explore the small-angle region in which the
EPM approach is valid. Nevertheless, the present method can
be applied at the expense of introducing a systematic error,
which will be related to nuclear and higher order effects. In
Fig. 3 we present the 6He + Pb reduced break-up probability
corresponding to the two data sets. To reduce the systematic
error, we can perform the quadratic fit considering only the
data at relatively larger collision times. This is given by
parameters b0 = 2.01 e2 fm2 MeV−1, b1 = −0.03 e2 fm2, and
b2 = −0.13 e2 fm2 MeV. In this fit, |εB | has been taken as
0.975 MeV, the experimental two-neutron separation energy
of 6He [24]. In Fig. 3 the solid black line is the result of
the quadratic fit and the shadow region around is the 1 − σ
uncertainty region. We also include in Fig. 3 the result
obtained by integrating the experimental B(E1) from [13]
(dot-dashed red line) and a theoretical three-body B(E1) [15]
(dashed blue line).

The reaction rate obtained from the knowledge of param-
eters b0, b1, and b2 is shown in Fig. 4 (solid black line).
The temperature range covered by the data goes from 3.1
to 4.2 GK. The present estimate lays between the sequential
calculation from [19] (dot-dashed green line) and the full
three-body calculation in Ref. [15] (dashed blue line). As
in the case of 11Li, the estimation from the experimental
B(E1) [13] provides a smaller reaction rate in the whole
temperature range. It should be remarked that the experimental
data used for the fit cover an angular region between 40◦
and 70◦ (which, for this reaction, corresponds to collision

times between 3.74 and 2.77 MeV−1), where corrections to
the EPM are expected to change the break-up cross sections.
Experimental data on 6He break-up at larger collision times
would allow us to minimize the systematic error and to
explore lower astrophysical temperatures. As a reference, for
the reaction 6He + 206Pb at Elab = 18 MeV, if the reaction
rate is needed at around T = 1 GK break-up measurements
starting on θmin = 9.5◦ (corresponding to a collision time of
11.6 MeV−1) have to be performed.

In summary, we have established a relation between the
radiative capture reaction rate and the inclusive Coulomb
break-up probability in the region in which first-order dipole
Coulomb interaction is dominant. It should be noted that the
present formalism is worked out here for three-body systems
but its extension to two-body systems is straightforward
and will be presented elsewhere. The temperature of the
stellar environment is directly related to the collision time
of the reaction, which depends on the scattering angle and
the incident energy. This implies that detailed measurements
on inclusive break-up probabilities of these systems will
provide a direct estimation of the corresponding reaction rates
of astrophysical interest in a given range of temperatures.
This result establishes a new experimental tool to determine
astrophysical reaction rates for short-lived nuclei and provides
an additional motivation to carry out Coulomb scattering
experiments involving exotic nuclei in radioactive ion beam
facilities. There are very few experimental data on inclusive
break-up scattering at energies around the Coulomb barrier
for nuclei of astrophysical interest. Some three-body capture
processes of astrophysical interest whose reaction rates could
be estimated with the present method are α(αn,γ )9Be or
15O(2p,γ )17Ne. The present formalism implies that inclusive
Coulomb break-up measurements, in addition to the nuclear
structure information, will provide an extra impact in the
nuclear astrophysics field.
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