
A Modularity-Based Random SAT Instances Generator ∗

Jesús Giráldez-Cru and Jordi Levy
IIIA - CSIC

Campus UAB, Bellaterra, Spain
{jgiraldez,levy}@iiia.csic.es

Abstract
Nowadays, many industrial SAT instances can be
solved efficiently by modern SAT solvers. How-
ever, the number of real-world instances is finite.
Therefore, the process of development and test of
SAT solving techniques can benefit of new mod-
els of random formulas that capture more realisti-
cally the features of real-world problems. In many
works, the structure of industrial instances has been
analyzed representing them as graphs and studying
some of their properties, like modularity.
In this paper, we use modularity, or commu-
nity structure, to define a new model of pseudo-
industrial random SAT instances, called Commu-
nity Attachment. We prove that the phase transition
point, if exists, is independent on the modularity.
We evaluate the adequacy of this model to real in-
dustrial problems in terms of SAT solvers perfor-
mance, and show that modern solvers do actually
exploit this community structure.

1 Introduction
The Boolean Satisfiability Problem (SAT) is one of the most
studied problems in Computer Science. It was the first known
NP-complete problem. However, many application problems
(such as cryptography, hardware and software verification,
planning, scheduling, among others) may be encoded into
SAT, and efficiently solved by modern SAT solvers.

It is accepted that random k-CNF and industrial SAT in-
stances have a distinct nature. While random formulas can be
easily generated on demand, the set of industrial instances,
which encode real-world problems, is limited. The problem
of generating realistic pseudo-industrial random instances is
stated in [Selman et al., 1997; Kautz and Selman, 2003;
Dechter, 2003] as one of the most important challenges for
the next few years. The main motivation of this challenge
is improving the process of development and test of SAT
solvers, and their possible specialization.

There exist a wide variety of works on the analysis of
the nature of industrial SAT instances. The intuition is that
∗This work is partially supported by the CSIC project

201450E045.

these formulas have some kind of structure, which is ex-
ploited by SAT solvers. In many of these works, SAT for-
mulas are represented as graphs, and some (graph) features
are studied. The classical Erdös-Rényi model has been ex-
tensively used for generating random graphs. In this model,
the arity of nodes follows a binomial distribution, with small
variability. This is exactly the case of random k-CNF for-
mulas. However, the structure of most real-world problems
cannot be described with this classical model, and there-
fore, new models have been defined. For instance, Prefer-
ential Attachment [Barabási and Albert, 1999] is used to ex-
plain the scale-free structure of some real networks, where
the arity of nodes follows a power-law distribution, with big
variability. In the context of SAT, some notions of struc-
ture have also been studied, such as the small-world prop-
erty [Walsh, 1999], the scale-free structure [Ansótegui et al.,
2009a], or the centrality [Katsirelos and Simon, 2012], or the
self-similarity [Ansótegui et al., 2014], among others.

There also exist many methods for generating industrial-
like random instances. In [Slater, 2002], it is described a
method based on the characteristic path length and cluster-
ing coefficient. In [Burg et al., 2012], it is presented a gener-
ator that combines subparts of real-world instances to create
new ones. In [Järvisalo et al., 2012], it is proposed an in-
stance generator based on finding optimal circuits of Boolean
functions. In [Ansótegui et al., 2009b], it is used the notion
of scale-free graph to generate formulas where the number of
variable occurrences follows a power-law distribution.

The inspiration of this work is [Ansótegui et al., 2012]. In
that paper, it is stated that industrial SAT formulas exhibit
a clear community structure (i.e. high modularity Q). This
means that, representing formulas as graphs, we can find a
partition of the formula into communities with many edges
between nodes of the same community, and few edges con-
necting distinct communities. This property is very charac-
teristic in real-world problems in contrast to randomly gener-
ated instances, where modularity is very low. In the context
of SAT, it has been shown that the community structure is
correlated with the runtime of CDCL SAT solvers, and the
modularity is the best predictor of this runtime to date [New-
sham et al., 2014]. Moreover, it has also been used to im-
prove the performance of some solvers [Martins et al., 2013;
Sonobe et al., 2014]. To the best of our knowledge, there
exists no SAT instance generator considering the community

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

1952

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/145228952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

structure.
In this paper, we present a new model of generation of ran-

dom CNF problems based on the community structure1. With
this new model, we can generate formulas for any given value
of modularity. For a high modularity, the resulting formula
is more adequate to model industrial problems than classical
random k-CNF. This generator allows us to isolate the ef-
fect of modularity on the performance and behavior of SAT
solvers. For instance, we show that CDCL solvers concen-
trate their decisions on variables of the same (or few) module
along time.

The rest of the paper proceeds as follows. After some pre-
liminaries on modularity of graphs in Section 2, we describe
the generation model in Section 3. In Section 4, we show that
this model works appropriately for different input values of
number of variables n and clauses m. In Section 5, we show
that, if the formulas exhibit a phase transition region SAT-
UNSAT when the ratio clause/variable is increased, then it
does not depend on the modularity. Finally, in Section 6, we
give empirical evidence that the performance of SAT solvers
is consistent with the nature of the generated formulas, i.e.
SAT solvers specialized in industrial formulas work better in
high modular instances than SAT solvers specialized in ran-
dom k-CNF, and vice versa.

2 Preliminaries

SAT is the problem of deciding if the variables of a proposi-
tional formula can be assigned in such a way that the formula
is evaluated as true. In this context, some concepts are nat-
ural: a literal is either a variable or its negation, a clause is a
disjunction of literals, a conjunctive normal form (CNF) for-
mula is a conjunction of clauses, and a k-CNF is a CNF in
which all clauses have exactly k literals.

An undirected weighted graph G is a pair G = (V,w),
where V is the set of nodes, and w : V × V → R+ is the
edge-weight function that satisfies w(x, y) = w(y, x).

The Variable Incidence Graph (VIG) of a SAT instance Γ is
the graph whose nodes represent the variables of Γ, and there
exists an edge between two variables if they both appear in a
clause cl. A clause with l literals results into

(
l
2

)
edges. Thus,

to give the same relevance to all clauses, edges have a weight
w(x, y) =

∑
cl∈Γ

x,y∈cl
1/
(|cl|

2

)
, where |cl| = l is the length of

the clause cl.
The community structure of a graph is usually measured

using the notion of modularity [Newman and Girvan, 2004].
Defined for a graph G and a partition C of its vertexes into
communities, the modularityQ (see Eq. 1) measures the frac-
tion of internal edges (edges connecting vertexes of the same
community) w.r.t. a random graph with same number of ver-
texes and same degree. This avoids that the best partition is
the one made up by an only community containing all ver-
texes.

1This modularity-based SAT generator is available in
http://www.iiia.csic.es/˜jgiraldez/software

Q(G,C) =
∑
Ci∈C

∑
x,y∈Ci

w(x, y)∑
x,y∈V

w(x, y)
−


∑
x∈Ci

deg(x))∑
x∈V

deg(x)


2

(1)

The modularity of a graph is the maximal modularity for
any possible partition: Q(G) = max{Q(G,C) | C}.

Computing the modularity of a graph is NP-hard [Brandes
et al., 2008]. Due to its complexity, instead of computing the
(exact) modularity, most of methods in the literature approx-
imate a lower-bound in the value of Q.

3 The Model
In the classical random k-SAT model, a random formula
Fk(n,m) is a set ofm clauses over n variables, where clauses
are chosen uniformly and independently among all 2k

(
n
k

)
non-trivial clauses of length k.2 In this paper we present a
new model of random formulas: the Community Attach-
ment (CA) model. This is parametric in a probability P and
a partition C of the set of variables, and it allows the genera-
tion of highly modular formulas.

Definition 1 Community Attachment. Let N be a set of
n variables, a partition C of N into c communities of the
same size s = n/c, with k ≤ c ≤ n/k, and a real value
0 ≤ P ≤ 1. A random formula Fk(n,m, c, P) is a set of
m non-trivial clauses with k literals over the n variables, se-
lected independently as follows. With probability P , choose
a clause uniformly among all c 2k

(
n/c
k

)
clauses with all lit-

erals in the same community; and with probability 1 − P , a
clause uniformly among all nk2k

ck

(
c
k

)
clauses with all literals

in distinct communities.

Notice that in the previous definition we need to impose
the restriction k ≤ c ≤ n/k to ensure that there always ex-
ists at least one possible clause to select. Notice also that for
k = 2 and P = n/c−1

n−1 we have the classical 2-SAT model:

F2(n,m) = F2(n,m, c, n/c−1n−1), but for bigger k the commu-
nity attachment model does not subsume the classical model.

Given a SAT formula Γ with n variables and m clauses,
consider the VIG G of Γ. Our model ensures a lower-bound
for the modularity of this graph.

Theorem 2 Given a formula Γ ∈ Fk(n,m, c, P), letG be its
VIG. The average modularity of G is bounded as:

E[Q] ≥ P − 1

c

PROOF: Recall that modularity is defined as the maximal
modularity for all possible partitions of the nodes into com-
munities. Here we consider the partition used to generate the
formula. For this particular partition, when we select a clause
with all variables in the same community (with probability
P), we get

(
k
2

)
internal edges. The sum of the weights of the

2A non-trivial clause of length k contains k distinct, non-
complementary literals.

1953

Algorithm 1: Community Attachment
Input: int n, m, c, k; real Q;
Output: k-CNF SAT Instance Γ

1 Γ := Ø;
2 P := Q+ 1/c;
3 for j ∈ {1, . . . ,m} do
4 if rand([0, 1]) ≤ P then // same community
5 r := rand({1, . . . , c});
6 for i ∈ {1, . . . , k} do
7 Ci := r;

8 else // distinct communities
9 for i ∈ {1, . . . , k} do

10 repeat Ci := rand({1, . . . , c});
11 until ∀i′ < i(Ci′ 6= Ci);

12 repeat
13 Cl := Ø;
14 for i ∈ {1, . . . , k} do
15 Xi := rand({b(Ci−1) n

c c+1, . . . , bCi
n
c c});

16 Cl := Cl
∨
rand({−1, 1}) ·Xi;

17 until ∀i′ < i(Xi′ 6= Xi);
18 Γ := Γ

∧
Cl;

19 return Γ;

edges generated by a single clause is always 1. Therefore, the
fraction of internal edges is, on average, P m

m . The sum of
nodes degrees is 2m, thus 2m/n is the expected node degree.
Since n/c is the number of nodes per community, the sum of
nodes degrees in one community is n

c
2m
n .

Summarizing, for this partition C, we get

E[Q(G,C)] =
Pm

m
− c

 n

c

2m

n

n
2m

n


2

= P − 1

c

that is a lower-bound for the modularity.

When P is big enough, the modularity is very close to this
lower-bound, because the partition used in the formula gen-
eration is highly modular. Therefore, we can use the previous
theorem to generate formulas with a desired modularity Q.
We simply take:

P = Q+
1

c
(2)

which ensures at least a modularity Q. In practice, as we will
see in Section 4, the formulas we obtain have a modularity
Q ≈ P − 1

c , except when P and m/n are small.
In Alg. 1, it is described in detail an implementation of a

generator of community attachment random formulas from
Fk(n,m, c, P). Using P = Q + 1

c these formulas will have
an expected modularity close to Q.

4 Validation of the Model
In order to analyze the community structure of the SAT in-
stances obtained with our model, we have generated some

sets of random formulas for different values of Q ∈
{0.9, 0.8, 0.7, 0.5, 0.3} (hence P = Q + 1/c). Remark that
the modularity Q of (real) industrial SAT instances is usu-
ally greater than 0.7, while no modularity greater than 0.3 is
found for classical random k-CNF formulas. Moreover, the
number of communities c is usually in (10, 100) [Ansótegui
et al., 2012]. In Fig. 1, we analyze their modularity Q and
their number of communities c, varying the number of vari-
ables n and the clause/variable ratio m/n (we fix m/n = 4
and n = 1000 respectively). We use the algorithm described
in [Ansótegui et al., 2012] to compute an approximation for
Q and c. In fact, this algorithm computes a lower-bound for
Q. The dispersions of the approximated Q and c are very
small, so they are not shown in the plots.

We observe that the modularity Q and the number of com-
munities c are almost unaffected by these variations of n
and m/n. In general, the approximation computed for Q is
slightly smaller than expected, and the partition into commu-
nities is also very similar to the partition used in the genera-
tion. Recall that the algorithm used to approximate Q returns
a lower-bound of it. For small values ofm/n and P , the num-
ber of clauses relating variables of the same expected com-
munity is very small. This produces the existence of some
unconnected sub-communities within each expected commu-
nity. Hence, c and Q are much greater than expected, and Q
cannot be estimated as P − 1/c. When we generate formulas
with small values of P , e.g. Q = 0.3 and c = 40, we observe
that, although the formulas have a guaranteed lower-bound of
Q ≥ 0.3, the computed approximation of Q is smaller (close
to 0.2 when n ≈ 20000). The number of communities is also
smaller than expected. In this case, this error is not produced
by our model. It is due to the greediness of the algorithm used
to approximate Q, which is not able to find a similar partition
to the one used in the generation.

5 Phase Transition
In classical random k-CNF instances, some interesting prop-
erties, as the satisfiability or the hardness, are correlated to the
clause/variable ratio m/n [Mitchell et al., 1992]. The Satis-
fiability Threshold Conjecture, which remains open, suggests
that it may exist a critical ratio r, such that below this point
all formulas are SAT (under-constrained) and above it they
are UNSAT (over-constrained) with uniformly positive prob-
ability, when n tends to infinity. Experimentally, this phase
transition point has been shown to be around r ≈ 4.26 for
k = 3. Moreover, the hardness of these instances is also
characterized by this parameter: closer to this ratio, harder
the instance.

In this section we check if this phenomenon also exists in
the random SAT instances generated with our model, and if
the new transition point, noted r′, differs from the classical
r′ 6= r. In Fig. 2, we represent the fraction of UNSAT in-
stances for some sets of random formulas with distinct Q,
varying the clause/variable ratio m/n. We observe that the
fraction of UNSAT formulas increases with m/n. Therefore,
for small (big) values of m/n, nearly all formulas are SAT
(UNSAT). When Q is small, the value r′ is close to the clas-
sical r ≈ 4.26. Recall that when P ≈ 1/c, our model is quite

1954

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000

Q

n

Q=0.9
Q=0.8
Q=0.7
Q=0.5

Q=0.3
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

Q

m/n

Q=0.9
Q=0.8
Q=0.7
Q=0.5

Q=0.3

10

20

30

40

200

300

 100

 0 5000 10000 15000 20000

c

n

Q=0.9

Q=0.8
Q=0.7
Q=0.5

Q=0.3

10

20

30

40

200

300

 100

 0 1 2 3 4 5 6 7 8 9 10

c

m/n

Q=0.9

Q=0.8
Q=0.7
Q=0.5

Q=0.3

Figure 1: Approximations of modularity Q (top) and no. of communities c (bottom) of some sets of random SAT formulas,
varying the number of variables n with m/n = 4 (left), and varying the clause/variable ratio m/n with n = 1000 (right). Each
plotted data is the mean of 50 instances. The input number of communities c is fixed to 40.

Q r′ n solver R̄ S [R]
0.9 4.06 5000 Glucose 80.86 125.28
0.8 4.11 2000 Glucose 291.87 1217.23
0.7 4.13 1200 Glucose 211.64 791.76
0.5 4.18 600 March 544.19 1051.81
0.3 4.24 600 March 3492.36 3117.23

Table 1: Phase transition point r′ of some sets of 200 random
SAT instances with k = 3, c = 40 and varying Q. We also
report the number of variables n, the solver and runtime R
(mean R̄ and standard deviation S [R]) needed to solve them.

similar to the classical random k-SAT model. However, we
also observe that, when Q increases, r′ decreases. The natu-
ral question is if this decrease in r′ is also valid for n tending
to infinity. In our experimentation we use the biggest value
of n allowing us to get a solution in less than 3 hours (see
Table 1).

In order to explain this decrease in the phase transition
point r′, and predict the behavior when n tends to infinity,
we will consider the extreme case with P = 1. In these for-
mulas, clauses only contain variables of the same commu-
nity. Therefore, the formula is composed by c unconnected

sub-formulas, and the whole formula is UNSAT if, and only
if, at least one of the sub-formulas is UNSAT. Moreover, in
this extreme case, all sub-formulas follow the classical model
Fk(n/c,m′), for somem′. On average, all sub-formulas con-
tain E[m′] = m/c clauses; and all of them contain s = n/c
variables. Hence, the average clause/variable fraction in sub-
formulas is also E[m′/s] = m/c

n/c = m/n. However, even
when the fraction m/n is smaller than the classical r (and so
the expected clause/variable ratio of the formula), with some
probability, some of the sub-formulas may get a large portion
of clausesm′ such that m′

n/c > r. This makes that sub-formula
UNSAT with high probability. This has the effect of decreas-
ing the phase transition point for finite n and c.

When n/c tends to infinity, the situation is completely dif-
ferent as the following theorem states.

Theorem 3 The set of formulas Fk(n,m, c, P) with P = 1
has a phase transition point r′ at the same clause/variable
ratio r of the classical Fk(n,m).

PROOF: Let r′ = m/n and r be the classical phase transition
point. The minimal r′ such that the probability that some of
the sub-formulas has more than r s clauses (hence it is UN-
SAT with high probability when s tends to infinity), will be

1955

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 3.7 3.75 3.8 3.85 3.9 3.95 4 4.05 4.1 4.15 4.2 4.25 4.3 4.35 4.4

P
e
rc

e
n
ta

g
e
 U

N
S

A
T

 f
o
rm

u
la

s
 (

%
)

m/n

Q = 0.9
Q = 0.8
Q = 0.7
Q = 0.5
Q = 0.3

Figure 2: Fraction of UNSAT formulas for some sets of 200
random SAT formulas with k = 3, c = 40, and varying the
clause/variable ratio m/n (see the number of variables n of
each family in Table 1).

the phase transition point for this special case P = 1 of our
model.

The probability that a given community Ci contains r s
clauses when the formulas has m clauses is

P (Ci is UNSAT) =

(
m
r s

)
(c− 1)m−r s

cm

Suppose that the formula has m = r′ n clauses. Recall also
n = c · s. We also assume that both the number of communi-
ties c and their size s tend to∞.

When m,n → ∞, and m/n → ∞, the binomials
(
m
n

)
,

may be approximated as:(
m

n

)
=

m · (m− 1) · · · (m− n+ 1)

n!
≈ (m− n/2)n√

2πn(n/e)n
=

=
mn

(
1− 1

2m/n

) 2m
n
· n

2

2m

√
2πn(n/e)n

≈ mn(1/e)n
2/2m

√
2πn(n/e)n

=

=
1√
2πn

(me

n en/2m

)n
using the middle value in the numerator, and the Stirling ap-

proximation in the denominator.
When c→∞, we can also approximate

(c− 1)m−r s = cm−r s (1− 1/c)
cm−rs

c ≈ cm−r s

e
m−rs

c

Replacing these two approximations, and m = r′ c s we
get

P (Ci UNSAT) ≈ 1√
2πrs

(
r′

r
exp

(
1− r

′

r
+

1

c
(1− r

2r′
)

))rs

For s, c → ∞, this function is dominated by the exponen-
tial factor

P (Ci UNSAT) = O
((

r′

r
exp

(
1− r

′

r

))rs)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

V
a
ri
a
b
le

Decision along time

Figure 3: Decided variables along the execution of MiniSat
on a random instance with n = 1000, m = 4200, k = 3,
c = 10 and Q = 0.8.

The base of the exponentiation is strictly smaller than one
except for r = r′. Therefore, when the number of commu-
nities and their size both tend to infinity, even in the extreme
case P = 1, the probability that the formula is UNSAT is
zero, for r′ < r, i.e. the phase transition point is the same as
for the classical random formulas.

In the case that c is finite, the approximation we have used
for the binomial is not correct. When k is constant and n →
∞, we may use(

kn

n

)
≈ 1√

2πnk−1
k

(
kk

(k − 1)k−1

)n

In this case we get

P (Ci UNSAT) = O

((
(r′

r c)
r′
r c

(r′

r c− 1)
r′
r c−1

(c− 1)
r′
r c−1

c
r′
r c

)rs)
Like in the previous case, the base of the exponentiation is
one, only when r′ = r. Therefore, the phase transition point
is just the same.

6 SAT Solvers Performance
In this section we show that industrial-specialized SAT
solvers exploit the community structure of the formula,
whereas random-specialized solvers do not.

In Fig. 3 we show which variable is decided along the ex-
ecution of MiniSat [Eén and Sörensson, 2003] on one of our
random SAT instances. Notice that our generator assigns con-
secutive numbers to all variables of the same community. We
observe that the solver is focused on only one community,
only deciding variables of this community, and it changes to
another, from time to time.

Finally, in Fig. 4 we compare the performance of the
SAT solvers Glucose [Audemard and Simon, 2009] and
March [Heule et al., 2004] over some sets of SAT formulas
generated with our model, with distinct modularity values.

1956

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100 1000 10000 100000

R
u
n
ti
m

e
 M

a
rc

h

Runtime Glucose

Q = 0.9

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100 1000 10000 100000

Runtime Glucose

Q = 0.8

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100 1000 10000 100000

Runtime Glucose

Q = 0.7

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100 1000 10000 100000

R
u

n
ti
m

e
 M

a
rc

h

Runtime Glucose

Q = 0.5

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100 1000 10000 100000

Runtime Glucose

Q = 0.3

UNSAT
SAT
f(x)=x

Figure 4: Relation between the runtimes (seconds) of Glucose and March, for some sets of 200 random SAT instances with
Q ∈ {0.9, 0.8, 0.7, 0.5, 0.3}, k = 3 and c = 40 at the phase transition point. (i.e., using families of Table 1). The timeout is set
to 3 hours.

While Glucose is a CDCL SAT solver which has been shown
very good for solving industrial problems, March is a look-
ahead SAT solver commonly used to solve random k-CNF in-
stances. For high modularities (see Q = 0.9), Glucose solves
all the instances, but March is only able to solve few UNSAT
instances. More precisely, they are the ones in which there ex-
ists a very small unsatisfiability core, composed of variables
of one or few communities. Notice that higher the modular-
ity, more likely to find these instances with small refutations.
It is also interesting to remark that Glucose also finds UN-
SAT formulas easier than SAT formulas, for high modularity.
As Q decreases, March is able to solve more instances (see
Q = 0.7), and it starts to be as fast as Glucose, if it is not
faster, when the modularity is small enough (see Q = 0.5).
Finally, when Q is very small (see Q = 0.3), March is able to
solve all the instances but Glucose only solves few of them.
The number of variables used in each set is not the same (see
Table 1). We can also conclude that high modularity makes
formulas easier to be solved by CDCL SAT solvers. This was
also shown in [Newsham et al., 2014].

7 Conclusions
In the SAT community, it is accepted that industrial problems
exhibit some kind of structure that is exploited by modern
solvers. Nowadays, one of the most intriguing problems in
this community is to better characterize this structure, with
the aim of develop random SAT instances generation models
that capture realistically the features of industrial problems,
for SAT solving testing purposes.

Recently, the notions of community structure and modu-
larity have been used with success to explain the structure
of SAT instances [Ansótegui et al., 2012], and their hard-
ness [Newsham et al., 2014]. Using these concepts, we
present a modularity-based generator, which generates ran-
dom k-CNF SAT instances of any desired modularity Q.

Industrial problems are characterized by a high modular-
ity. Therefore, our model can generate more realistic pseudo-
industrial random formulas on demand. We validate the ade-
quacy of this model checking that (i) the community structure
of the resulting formulas is the expected, (ii) if there exists
a phase transition region SAT-UNSAT characterized by the
clause/variable ratio, it is independent on the modularity, and
(iii) the SAT solvers performances are consistent to the for-
mulas of our modularity-based generator, i.e. SAT solvers

1957

specialized in industrial (random) problems perform better
in high modular (low modular) instances generated by our
model, and vice versa.

References
[Ansótegui et al., 2009a] Carlos Ansótegui, Maria Luisa

Bonet, and Jordi Levy. On the structure of industrial SAT
instances. In Proc. of CP’09, pages 127–141, 2009.

[Ansótegui et al., 2009b] Carlos Ansótegui, Maria Luisa
Bonet, and Jordi Levy. Towards industrial-like random
SAT instances. In Proc. of IJCAI’09, pages 387–392,
2009.

[Ansótegui et al., 2012] Carlos Ansótegui, Jesús Giráldez-
Cru, and Jordi Levy. The community structure of SAT
formulas. In Proc. of SAT’12, pages 410–423, 2012.

[Ansótegui et al., 2014] Carlos Ansótegui, Maria Luisa
Bonet, Jesús Giráldez-Cru, and Jordi Levy. The fractal
dimension of SAT formulas. In Proc. of IJCAR’14, pages
107–121, 2014.

[Audemard and Simon, 2009] Gilles Audemard and Laurent
Simon. Predicting learnt clauses quality in modern SAT
solvers. In Proc. of IJCAI’09, pages 399–404, 2009.

[Barabási and Albert, 1999] Albert L. Barabási and Réka Al-
bert. Emergence of scaling in random networks. Science,
286:509–512, 1999.

[Brandes et al., 2008] Ulrik Brandes, Daniel Delling, Marco
Gaertler, Robert Görke, Martin Hoefer, Zoran Nikoloski,
and Dorothea Wagner. On modularity clustering. IEEE
Trans. on Knowledge and Data Engineering, 20(2):172–
188, 2008.

[Burg et al., 2012] Sebastian Burg, Michael Kaufmann, and
Stephan Kottler. Creating industrial-like SAT instances by
clustering and reconstruction. In Proc. of SAT’12, pages
471–472, 2012.

[Dechter, 2003] Rina Dechter. Constraint Processing. Mor-
gan Kaufmann, 2003.

[Eén and Sörensson, 2003] Niklas Eén and Niklas
Sörensson. An extensible SAT-solver. In Proc. of
SAT’03, pages 502–518, 2003.

[Heule et al., 2004] Marijn J. H. Heule, Joris E. van Zwieten,
Mark Dufour, and Hans van Maaren. March eq: Imple-
menting additional reasoning into an efficient lookahead
SAT solver. In Proc. of SAT’04, pages 345–359, 2004.

[Järvisalo et al., 2012] Matti Järvisalo, Petteri Kaski, Mikko
Koivisto, and Janne H. Korhonen. Finding efficient cir-
cuits for ensemble computation. In Proc. of SAT’12, pages
369–382, 2012.

[Katsirelos and Simon, 2012] George Katsirelos and Laurent
Simon. Eigenvector centrality in industrial SAT instances.
In Proc. of CP’12, pages 348–356, 2012.

[Kautz and Selman, 2003] Henry A. Kautz and Bart Selman.
Ten challenges redux: Recent progress in propositional
reasoning and search. In Proc. of CP’03, pages 1–18,
2003.

[Martins et al., 2013] Ruben Martins, Vasco M. Manquinho,
and Inês Lynce. Community-based partitioning for maxsat
solving. In Proc. of SAT’13, pages 182–191, 2013.

[Mitchell et al., 1992] David Mitchell, Bart Selman, and
Hector Levesque. Hard and easy distributions of SAT
problems. In Proc. of AAAI’92, pages 459–465, 1992.

[Newman and Girvan, 2004] Mark E. J. Newman and
Michelle Girvan. Finding and evaluating community
structure in networks. Phys. Rev. E, 69(2):026113, 2004.

[Newsham et al., 2014] Zack Newsham, Vijay Ganesh, Se-
bastian Fischmeister, Gilles Audemard, and Laurent Si-
mon. Impact of community structure on SAT solver per-
formance. In Proc. of SAT’14, pages 252–268, 2014.

[Selman et al., 1997] Bart Selman, Henry A. Kautz, and
David A. McAllester. Ten challenges in propositional rea-
soning and search. In Proc. of IJCAI’97, pages 50–54,
1997.

[Slater, 2002] Andrew Slater. Modelling more realistic SAT
problems. In Proc. of AJCAI’02, pages 591–602, 2002.

[Sonobe et al., 2014] Tomohiro Sonobe, Shuya Kondoh, and
Mary Inaba. Community branching for parallel portfolio
SAT solvers. In Proc. of SAT’14, pages 188–196, 2014.

[Walsh, 1999] Toby Walsh. Search in a small world. In Proc.
of IJCAI’99, pages 1172–1177, 1999.

1958

