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Abstract 20 

Background. Scientific evidence suggests that diet plays a role in obesity and its 21 

comorbidities, partly via its interactions with the individual’s gut microbiota. Likewise, the 22 

individual’s microbiota influences the efficacy of dietary interventions to reduce body 23 

weight. However, we require a better understanding of the key components of the gut 24 

microbiota that are responsive to specific diets and of their effects on energy balance in 25 

order to use this information in practice. 26 

Scope and Approach. This review provides an up-to-date description of the influence  of 27 

dietary fibers and fat on gut microbiota and the mechanisms presumably mediating their 28 

effects on metabolic health.  We also discuss the main knowledge gaps and the need to gain 29 

greater understanding of the role of diet-microbe interactions in obesity and the associated 30 

comorbidities. 31 

Key Findings and Conclusions. Dietary fibers are major drivers of gut microbiota 32 

composition and function, stimulating the dominance of bacteria able to utilize these 33 

substrates as energy source, although effects vary depending on both the type of fiber and 34 

the individual’s microbiota. However, the key bacteria and the primary and secondary 35 

metabolic pathways mediating specific fiber-induced effects on the metabolic phenotype 36 

remain unclear, and this information is necessary to personalize fiber-based interventions.  37 

The literature also shows that gut microbiota contributes to the adverse consequences of 38 

high-fat diets on the metabolic phenotype; however, little is known about the effects of 39 

dietary fat type. Further progress is expected from translational approaches integrating 40 

controlled dietary intervention human trials, combining functional omics technologies and 41 

physiological/clinical endpoints, and mechanistic studies in experimental models. This will 42 
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ultimately help us to progress towards establishing informed microbiome-based dietary 43 

recommendations and interventions, which can contribute to tackling the obesity epidemic 44 

and its comorbidities.  45 

Key words: Gut microbiota, microbiome, fiber, fat, diet-related diseases, obesity.  46 

  47 
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Introduction 48 

Obesity has reached pandemic dimensions affecting a vast number of people worldwide. In 49 

2014, approximately 39% of adults (1.9 billion) were overweight and 13% of these (600 50 

million) were obese. Moreover, 42 million children under the age of 5 were reported as 51 

overweight or obese in 2013(World Health Organization, 2015). It is well known that 52 

obesity is not only associated with populations in high-income countries, but the prevalence 53 

is continuously growing in low- and mid-income countries, particularly in urban settings 54 

(World Health Organization, 2015). Obesity is a result of an unbalance between energy 55 

intake and expenditure, to which over-nutrition and a sedentary lifestyle are major 56 

contributors (Coppinger, Jeanes, Dabinett, Vogele, & Reeves, 2010). Obesity is associated 57 

with a state of chronic low-grade inflammation, which partly explains the insulin resistance 58 

phenotype observed in many obese individuals. In turn, insulin resistance is a component of 59 

the metabolic syndrome that often precedes the development of type 2 diabetes (T2D) and 60 

cardiovascular disease (CVD) (Jia, DeMarco, & Sowers, 2016). This metabolic 61 

inflammation is characterized by infiltration of macrophages and lymphocytes in peripheral 62 

tissues. This is accompanied by an increased production of pro-inflammatory cytokines, 63 

adipokines, acute-phase proteins and other immune mediators as a consequence of the 64 

activation of several signalling pathways, including the nuclear factor kappa B 65 

(NFκB)/Inhibitor of the kinase (IKK), c-jun N-terminal kinase (JNK), protein kinase R 66 

(PKR) and theToll-Like receptors (TLRs) (Gregor & Hotamisligil, 2011). Adipose tissue 67 

from obese individuals is considered to be the main contributor to obesity-related metabolic 68 

inflammation, with the highest accumulation of infiltrating macrophages and tissue 69 
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concentrations of cytokines, with similar events occurring in the liver and central nervous 70 

system, contributing to systemic insulin resistance (Johnson & Olefsky, 2013). 71 

In the last decade, an increasing number of studies have reported that obesity is associated 72 

with alterations in gut microbiota structure, suggesting that specific microbial taxa could be 73 

contributing factors to the obesity epidemic, although results are not fully consistent across 74 

human observational studies (Sanz, Rastmanesh, & Agostoni, 2013). Animal studies have 75 

provided information about the mechanisms by which gut microbiota could play a role in 76 

obesity, including contribution to nutrient digestion and absorption and to regulation of 77 

immune and neuro-endocrine functions (Moya-Perez, Neef, & Sanz, 2015). Experimental 78 

models have also demonstrated that gut microbiota can transmit the obesity-associated 79 

metabolic phenotype of its original human host when transferred to a germ-free recipient, 80 

providing a first evidence of causality (Turnbaugh, et al., 2006). Furthermore, a unique 81 

fecal transplantation study in humans has also demonstrated that the transference of feces 82 

from a lean donor into subjects with metabolic syndrome beneficially influence glucose 83 

metabolism, confirming the causal role of gut microbiota (Vrieze, et al., 2010). 84 

Nonetheless, the role of gut microbiota in obesity seems largely dependent on diet-microbe 85 

interactions due to the fact that diet is a major modifiable factor influencing gut microbiota 86 

composition and function (De Filippis, et al., 2015; Flint, Duncan, Scott, & Louis, 2015). 87 

Indeed, experimental models revealed that such interactions contribute to obesity, for 88 

example, by increasing lipid absorption or aggravating adipose tissue inflammation 89 

independently of adiposity in the context of diets rich in saturated lipids (Caesar, Tremaroli, 90 

Kovatcheva-Datchary, Cani, & Backhed, 2015; Semova, et al., 2012). Furthermore, dietary 91 

reprograming of microbiota ameliorates development of metabolic dysfunction despite 92 

susceptible genotypes (Ussar, et al., 2015). Nevertheless, our understanding of how diet-93 



 

6 
 

microbe interactions influence energy balance, eating behavior and obesity in humans is 94 

still insufficient to transform this information into practical solutions to tackle obesity-95 

associated disorders.  96 

This review discusses the most recent data regarding the potential role of dietary fiber and 97 

fat in remodeling gut microbiota composition and function and, thereby, in programming 98 

metabolic health. It also addresses the main limitations that must be overcome to progress 99 

our understanding of the microbiome’s role in the chain of events causing obesity. Only on 100 

gaining a better understanding of the above, will we be able to speed up the translation of 101 

this information into informed microbiome-based dietary interventions and 102 

recommendations. 103 

 104 

1. Impact of dietary fiber on human physiology  105 

 106 

1.1. Dietary fiber: role in metabolic health and as  main fuel for gut microbiota. 107 

Dietary fiber is generally defined as non-digestible carbohydrates plus lignin, which include 108 

structurally different components including non-starch polysaccharides, resistant 109 

oligosaccharides (e.g. fructo-oligosaccharides [FOS], galacto-oligosaccharides [GOS]) and 110 

resistant starch (EFSA NDA Panel, 2010). Prebiotics are defined as dietary fibers that 111 

modify the composition and/or metabolic activity of gut microbiota, thereby conferring a 112 

benefit to the host (G. R. Gibson, 2004; G. R. Gibson, Probert, Loo, Rastall, & Roberfroid, 113 

2004). According to this definition, a wide variety of food ingredients can be classified as 114 

prebiotics such as GOS, FOS and longer inulin-derived fructans, xylo-oligosaccharides 115 

(XOS) and arabinoxylan oligosaccharides (AXOS); however this is based mainly on their 116 

impact on gut microbiota rather than on robust evidence of their effects on health-related 117 
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endpoints (Hutkins, et al., 2016). Dietary fiber is not digested by human enzymes and thus 118 

it reaches proximal colonic regions, where it constitutes the main energy source for obligate 119 

anaerobic bacteria, whose fermentative activity leads to the generation of  organic acids 120 

(lactic, succinic acid) and short-chain fatty acids (SCFA) (acetate, propionate and butyrate). 121 

Consequently, the quantity and quality of fiber is considered to be one of the main dietary 122 

determinants of gut microbiota composition and function (Scott, Gratz, Sheridan, Flint, & 123 

Duncan, 2013). The current recommendations on dietary fiber intake (25 g per day for 124 

adults) are based on their well-known role in regulating bowel habits (frequency of 125 

defecation), including native chicory inulin considered to be prebiotic (Hutkins, et al., 126 

2016). In addition, there is evidence for a role of dietary fiber and some prebiotics (inulin 127 

and oligofructose) in the reduction of  dietary glycemic responses and glycemic load, with 128 

favorable effects on metabolic risk factors. Furthermore, consumption of fiber-rich diets 129 

with fiber intake above recommendations is associated with a reduced risk of coronary 130 

heart disease and type 2 diabetes as well as improved weight maintenance (Bes-Rastrollo, 131 

Martinez-Gonzalez, Sanchez-Villegas, de la Fuente Arrillaga, & Martinez, 2006; EFSA 132 

NDA Panel, 2010; S. Liu, et al., 2000; Ludwig, et al., 1999; Ye, Chacko, Chou, Kugizaki, 133 

& Liu, 2012). Dietary fiber is thought to positively influence metabolic health through 134 

multiple mechanisms, although effects cannot be generalized as they vary depending on the 135 

type of fiber. The mechanisms of action include direct effects related to its physicochemical 136 

and structural properties (e.g. indigestibility, viscosity, etc.) and indirect effects mediated 137 

by the individual’s gut microbiota. For example, compared to digestible carbohydrates, 138 

insoluble and soluble fibers reach distal portion of colon with no major degradation by 139 

human enzymes leading to a significant reduction in postprandial glycemic responses due 140 

to their slower digestion (EFSA, 2014). Consequently, consumption of fiber improves the 141 
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glucose metabolism as a whole, which have direct impact on satiety and tip the balance 142 

towards oxidation instead storage metabolism (reviewed in (Koh-Banerjee & Rimm, 143 

2003)). Moreover, dietary fiber is considered to be very useful for weight loss/maintenance 144 

aims given its low energetics estimated to be ~1.91 kcal/g (8 kJ/g) in comparison with other 145 

macronutrients as digestible carbohydrates, (~4.06 kcal/g), proteins (~4.06 kcal/g), and fat 146 

(~8.84 kcal/g) (Menezes, et al., 2016). Soluble viscous fibers may also exert beneficial 147 

metabolic effects by their ability to form gels that delay gastric emptying, inhibit nutrient 148 

absorption and bile acid (BA) binding; altogether this may contribute to a decreased 149 

postprandial glycemic response and a reduction in body cholesterol stores due to increased 150 

synthesis of new BAs from cholesterol in the liver (Dikeman & Fahey, 2006). In addition, 151 

dietary fiber is thought to mediate other effects (e.g. satiety and anti-inflammatory effects) 152 

through activation of the fermentative activity of gut bacteria, and the generation of 153 

potentially beneficial metabolites (e.g. SCFAs), as explained in greater detail in section 3.  154 

 155 

1.2. Evidence of the influence of dietary fiber on gut microbiota from observational studies.  156 

The role of non-digestible carbohydrates in the gut microbiota is well exemplified by the  157 

differences in the infant’s gut microbiota between breast-fed and formula-fed infants and 158 

between infant formula supplemented or not with oligosaccharides, which mainly stimulate 159 

the growth of bifidobacteria (Closa-Monasterolo, et al., 2013; Hascoet, et al., 2011). These 160 

effects have also been well-established by comparing the gut microbiota of individuals 161 

from different geographical regions that consume rural diets (Africa and South America) 162 

rich in dietary fiber or Western diets (Europe and North America) rich in animal protein 163 

and fat(De Filippo, et al., 2010; Yatsunenko, et al., 2012). Acomparison of the microbiota 164 

between European and African children, consuming a fiber-rich diet, showed that the latter 165 
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have reduced abundance of Firmicutes and increased abundance of Bacteroidetes, 166 

particularly the Prevotella and Xylanibacter genera, known to have genes specialized in 167 

cellulose and xylan utilization, with parallel increased fecal concentrations of SCFAs. In 168 

contrast, Enterobacteriaceae species (Proteobacteria) were reduced in African compared 169 

with European children (De Filippo, et al., 2010). Another large study including healthy 170 

children and adults also revealed important differences in bacterial communities and 171 

functional gene repertoires between US subjects from metropolitan areas and those from 172 

countries with a rural lifestyle (Amazonas of Venezuela and Malawi), finding the genus 173 

Prevotella to be abundant in humans with a diet rich in corn and cassava and in US children 174 

not following a full western diet (Yatsunenko, et al., 2012). A more recent study comparing 175 

African Americans and rural South Africans, found that animal protein and fat intake was 176 

2-3 times higher in Americans whereas carbohydrate and fiber (mainly resistant starch) 177 

intake was higher in Africans. The same authors also reported diet-associated microbiota 178 

and metabolite changes that were related to colon cancer risk. While the American 179 

microbiota was dominated by Bacteroides, the African microbiota was dominated by 180 

Prevotella and higher levels of starch degraders, carbohydrate fermenters, and butyrate 181 

producers. Moreover, the American microbiota had higher levels of potentially pathogenic 182 

Proteobacteria (Escherichia and Acinetobacter) and BA deconjugators (Ou, et al., 2013). A 183 

recent Dutch population-based metagenomic study involving 1,135 subjects has associated 184 

higher diversity, functional microbiome richness and abundance of Bacteroidetes with 185 

higher intake of fruits and vegetables (source of dietary fiber), higher concentrations of 186 

high-density lipoprotein (HDL) and lower concentrations of fecal chromogranin A 187 

(Zhernakova, et al., 2016).  The total amount of carbohydrates in the diet was also 188 

positively associated with Bifidobacterium but negatively associated with Lactobacillus and 189 
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microbiome diversity (Zhernakova, et al., 2016). All in all, these observational studies 190 

reveal that long-term consumption of fiber-rich diets promotes the dominance of fiber-191 

degraders of the phylum Bacteroidetes and Actinobacteria (Bifidobacteriumspp.) and, more 192 

consistently, of Prevotella spp. and reductions in Proteobacteria; nevertheless, Bacteroides 193 

spp. seem to be adapted to both fiber-rich diets and diets rich in animal protein and fat, 194 

probably due to their versatile metabolic capabilities. Notwithstanding, these observational 195 

data only provide associations but not causal relationships between specific dietary habits 196 

and the predominance of specific bacterial taxa, which limits their value in practice. 197 

Furthermore, other relevant environmental factors such as hygiene, geography, and 198 

ethnicity that could be involved in the respective gut microbiota profile observed are not 199 

well assessed. 200 

A recent experimental study in animal models also suggests that the lack of dietary fiber 201 

leads to a substantial loss in gut microbiota diversity, which influences the ability of gut 202 

bacteria to be transferred from parents to offspring. It also revealed that simply restoring 203 

fiber consumption was not enough to reverse these effects since some bacterial groups 204 

failed to return to their previous levels (Sonnenburg, et al., 2016). These results have led to 205 

hypothesize that long-term dietary changes in industrialized countries could have altered 206 

the host-microbiota partnership and microbiome functionality, with an adverse long-term 207 

impact on health that could be transmitted from generation to generation (Sonnenburg, et 208 

al., 2016). Notwithstanding, evidence from systematic studies in humans is required to 209 

confirm this hypothesis. 210 

 211 

1.3. Evidence for the influence of dietary fiber on gut microbiota from intervention studies.  212 
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A summary is given in Table 1 of recent representative human dietary interventions 213 

investigating how most common types of dietary fibers contribute to remodeling the gut 214 

microbiota. The responsiveness and effects of dietary fibers may differ depending on the 215 

individual’s gut microbiota profile (Korpela, et al., 2014), suggesting the need to work 216 

towards defining more specific and personalized dietary interventions and 217 

recommendations.    218 

 219 

1.3.1. Effects of wholegrain (WG)-rich foods. Wholegrain cereals are composed of starch-220 

rich endosperm, germ, and bran with high plant-fiber content. During harvesting and food 221 

processing, these components must preserve their relative proportions as in the intact kernel 222 

(HEALTHGRAIN Consortium - http://www.healthgrain.org). Rice, wheat, maize, oats, and 223 

barley are the main whole grains consumed worldwide and some of them have been proven 224 

to reduce the risk of certain diet-related diseases such as obesity and CVD. A controlled 225 

cross-over study showeda bifidogenic effectupon consumption of 48 g/day maize-based 226 

WG breakfast cereals during 21 days (Carvalho-Wells, et al., 2010). This effect was 227 

observed exclusively for the intervention period and not sustained after completion of the 228 

WG diet, strongly indicating that WG fiber is predominantly used by Bifidobacterium spp. 229 

(Carvalho-Wells, et al., 2010). Similar results were obtained by Costabile and coworkers 230 

who reported increased bifidobacteria and lactobacilli in feces after daily consumption of 231 

WG wheat breakfast cereals (48 g/day) in comparison with non-WG cereal (Costabile, et 232 

al., 2008). More recent results have shown that a four-week dietary intervention with 60 233 

g/day WG barley flakes in healthy adults induced a significant increase in the genus Blautia 234 

and a less pronounced increase in the abundance of the genera Roseburia, Bifidobacterium 235 

and Dialister (Martinez, et al., 2013). Additionally, this study showed that WG barley, 236 
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brown rice and specially the combination of WG barley and brown rice reduced plasma 237 

interleukin-6 (IL-6) and postprandial glucose. Interestingly, Eubacterium rectale was 238 

significantly more abundant in volunteers showing improvements in postprandial blood 239 

glucose and insulin response, whereas abundance of Dialister species was associated with 240 

the highest improvements in IL-6 levels (Martinez, et al., 2013). 241 

 242 

1.3.2. Resistant starch (RS). Starch is the major component of the plant-derived foods and 243 

comprises an important part of the human diet. The starch is referred as resistant when it  244 

cannot be hydrolyzed by digestive enzymes of the human GIT. The RS can be classified 245 

into several types (RS1 to RS5) according to the physical or chemical reasons to be 246 

indigestible. The RS1 is contained inside whole grains and is physically inaccessible for 247 

digestion; the RS2 is also native starch but remains indigestible by its compact structure; 248 

the RS3, also known as retrograde starch, is obtained by slow re-crystallization prior to heat 249 

disruption on water; the RS4 is the chemically modified starch by cross-linking or 250 

esterification; and the RS5 is a mixture of starch with lipids with high stability (Ma & 251 

Boye, 2016). Early studies about the RS impact on gut microbiota indicated that 252 

administration of controlled diet including 22 g/day RS induces changes in gut microbiota 253 

mainly in the clostridia cluster including members of the Ruminococcus genus (Abell, 254 

Cooke, Bennett, Conlon, & McOrist, 2008). Interventions with  50-60 g/day RS3 increased 255 

the abundance of several Ruminococcus spp.  and especially Ruminococcus bromii and 256 

Eubacterium rectale (Walker, et al., 2011). Similar results were obtained when 33 g/day 257 

RS2 or RS4 were administrated in baked crakers to volunteers during 3 weeks. In this case, 258 

increased proportions of Bifidobacterium adolescentis and Parabacteroides distasonis were 259 

found to be induced  particularly by RS4 intake, whereas increased proportions of 260 
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Ruminococcus bromii and Eubacterium rectale were induced by RS2 consumption 261 

(Martinez, Kim, Duffy, Schlegel, & Walter, 2010). In addition, RS intake of has been found 262 

to improve lipid metabolism in individuals with metabolic syndrome and help to control 263 

waist circumference and fat mass in non metabolic syndrome individuals (Nichenametla, et 264 

al., 2014). These beneficial effects of RS on metabolic aspects are thought to be at least 265 

partially mediated by the microbiota induced changes but direct evidence still has to be 266 

provided.  267 

1.3.3. Inulin and FOS. Inulin and FOS, also called oligofructose or oligofructans, are types 268 

of fructo-polysaccharides that consist of several -linked D-fructosyl residues with a D-269 

glucose group at end of the extended saccharide chain. These differ in the polymerization 270 

degree, which may range from 2 to 60 fructose units. FOS are usually produced by 271 

degradation of inulin obtained primarily from artichoke and chicory plants. These are used 272 

in the food industry as sweeteners, texture modifiers and fibers. A number of intervention 273 

studies have shown that the effects of inulin and FOS on gut microbiota composition can be 274 

associated with modifications on health related outcomes or subrogated biomarkers (Table 275 

1). In adults and infants, it is generally reported that inulin and FOS intake increases the 276 

number of bifidobacteria, sometimes associated with changes in metabolic products (e.g. 277 

lactate) (Closa-Monasterolo, et al., 2013; Garcia-Peris, et al., 2012; Petry, Egli, Chassard, 278 

Lacroix, & Hurrell, 2012). In some studies, inulin or FOS-induced microbiota changes have 279 

also been correlated with indicators of metabolic health. For example, a three-month 280 

double-blind placebo-controlled intervention with a mixture ofinulin/oligofructose or 281 

maltodextrin (8 g twice daily in powder to be dissolved in warm drinks) in obese women, 282 

showed increased abundances of Bifidobacterium spp. and Faecalibacterium prausnitzii, 283 
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which correlated to reduced serum LPS (lipopolysacchraide) levels. Additionally, the 284 

researchers observed reductions of Bacteroides intestinalis, Bacteroides vulgatus and 285 

Propionibacterium spp., which correlated to modest changes in fat mass. Additionally, they 286 

found reductions in plasma LPS, fecal acetate and propionate concentrations, and fasting 287 

insulinemia (Dewulf, et al., 2013; Salazar, et al., 2015). A recent study has evaluated the 288 

role of agave inulin showing a dose-dependent bifidogenic effect. The consumption of 5 or 289 

7.5 g/day agave inulin in chocolate chews, primarily promoted the presence of B. 290 

adolescentis, B. breve, B. longum, and B. pseudolongum (Holscher, et al., 2015). Positive 291 

correlations were also detected between fecal butyrate concentrations and the dose of fiber, 292 

and between fecal butyrate concentration and Faecalibacterium abundance. These effects 293 

could be explained by cross-feeding interactions disclosed between bifidobacteria and 294 

Faecalibacterium (Moens, Weckx, & De Vuyst, 2016). Interestingly, a depletion of 295 

Desulfovibrio species was also identified as a consequence of agave inulin consumption 296 

(Holscher, et al., 2015), which could be of clinical relevance because increased 297 

Desulfovibrio species have been related to obesity and the associated endotoxemia (Xiao, et 298 

al., 2014; Zhang-Sun, Augusto, Zhao, & Caroff, 2015; Zhang, et al., 2009). 299 

 300 

1.3.4. GOS 301 

GOS are mainly produced through transgalactosylation reactions mediated by -302 

galactosidases using lactose or derivatives as substrate. GOS are often used to supplement 303 

infant formula due to their chemical and structural resemblance to human milk 304 

oligosaccharides. In infant formula, GOS have been shown to exert a bifidogenic effect 305 

(Giovannini, et al., 2014). In adults, the six-week administration of 5.5 g/day GOS powder 306 
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mixture dissolved in water to subjects with metabolic syndrome has been shown to reduce 307 

levels of Clostridium histolyticum, Desulfovibrio spp. and Bacteroides spp.(Vulevic, Juric, 308 

Tzortzis, & Gibson, 2013). These changes were accompanied by increases in 309 

Bifidobacterium spp. and reductions in inflammatory markers, including fecal calprotectin 310 

and plasma C-reactive protein (CRP) and in some metabolic parameters (e.g. plasma 311 

insulin, total cholesterol and triglycerides in males). 312 

 313 

1.3.5. Xylans and arabinoxylans. Arabinoxylans (AX) from cereals are cell wall 314 

components that constitute a major part of the dietary fiber fraction of cereal grains and 315 

thus, an important fiber source in the diet (McCleary, 2003). Enzymatic hydrolysis of AX 316 

either in the production of processed foods or by bacteria in the colon yields 317 

arabinoxylanoligosaccharides (AXOS) and xylooligosaccharides (XOS), both of which are 318 

proposed to be prebiotic fibers (Broekaert, et al., 2011). Additionally to the well known 319 

bifidogenic effect of AX, a fact in which is based its prebiotic potential (reviewed in 320 

(Riviere, Selak, Lantin, Leroy, & De Vuyst, 2016)), other AX-degrading bacteria in the 321 

human colon belong to the genera Roseburia and Bacteroides and include the butyrate 322 

producing Roseburia intestinalis (Chassard, Goumy, Leclerc, Del'homme, & Bernalier-323 

Donadille, 2007). These data are of interest since a higher relative abundance of butyrate-324 

producing bacteria and Bacteroides spp. has been reported in healthy individuals compared 325 

to patients with T2D or pre-diabetic subjects in some studies (reviewed in (Sanz, Olivares, 326 

Moya-Perez, & Agostoni, 2015)). Human intervention trials have also shown increased 327 

fecal abundance of Bifidobacterium spp. following intake of 4 g/day XOS during three 328 

weeks (Chung, Hsu, Ko, & Chan, 2007) and from 2.14 to 10 g/day AXOS (Cloetens, et al., 329 

2010; Francois, et al., 2012; Maki, et al., 2012). Furthermore, a higher abundance of this 330 



 

16 
 

genus has been reported in normal weight subjects compared to obese and T2D subjects in 331 

some observational studies (Schwiertz, et al., 2010; Wu, et al., 2010). 332 

 333 

2. Microbiome components involved in the utilization of dietary fiber 334 

Dietary intake of fibers may lead to enrichment and altered expression of microbial genes 335 

which encode proteins/enzymes of metabolic pathways involved in the utilization of dietary 336 

fiber and the production of potentially beneficial metabolites (e.g. SCFAs). It is necessary 337 

to identify and characterize these pathways in order to understand the components of the 338 

microbiota and the microbiome that may underlie health effects associated with dietary 339 

fiber intake. Members of the phyla Bacteroidetes and Firmicutes are specialized in the 340 

utilization of complex carbohydrates and are the main producers of SCFAs. Butyrate and 341 

propionate are the two most thoroughly investigated SCFAs in terms of their potential role 342 

in metabolic health. The production of these SCFAs may require the participation of 343 

different bacterial genera and species via cross-feeding mechanisms. For example, 344 

Bacteroides thetaiotaomicron can directly produce propionate and acetate, which then can 345 

be used by Eubacterium halli to produce butyrate (Mahowald, et al., 2009). Similar cross-346 

feeding mechanisms have been described between some Bifidobacterium spp. and 347 

Faecalibacterium prausnitzii leading to increased butyrate production (Rios-Covian, 348 

Gueimonde, Duncan, Flint, & de los Reyes-Gavilan, 2015). Figure 1 shows the pathways 349 

identified for bacterial production of butyrate by genomic and metagenomic analysis of the 350 

human gut microbiota (Mahowald, et al., 2009; Reichardt, et al., 2014; Vital, Howe, & 351 

Tiedje, 2014). A conventional genetic signature to explore both the enrichment and 352 

variability of butyrate producers is via analyzing the butyryl-CoA:acetate CoA-transferase 353 

gene (BCoAT gene) encoding the respective enzyme responsible for the last step in butyrate 354 
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production. Quantitative approaches indicate BCoAT gene enrichment in gut microbiota 355 

from individuals with a high intake of plant fiber, which is indicative of increased colonic 356 

butyrate production (Hippe, et al., 2011; Louis, Young, Holtrop, & Flint, 2010; Remely, et 357 

al., 2014; Vital, Gao, Rizzo, Harrison, & Tiedje, 2015). 358 

Additionally to genes encoding enzymes of pathways responsible for SCFA production, the 359 

detection of other genes involved in the uptake and degradation of complex polysaccharides 360 

could be useful to define the active bacteria and their mode of action in response to fiber 361 

intake. Pioneer studies regarding characterization of proteins involved in the utilization of 362 

complex carbohydrates by anaerobe gut bacteria have revealed the essential role of 363 

polypeptides encoded by Sus genes, extensively studied in B. thetaiotaomicron (Reeves, 364 

Wang, & Salyers, 1997). The Sus products were originally described as outer membrane 365 

proteins able to bind complex starch. Notwithstanding, the genetic context of their encoding 366 

genes has enabled the inclusion of glycoside hydrolases (GH) enzymes in the Sus repertoire 367 

of proteins, which collectively work to produce small oligosaccharides that are more easily 368 

imported by bacteria. Consequently, Sus genes have become useful to detect different 369 

polysaccharide utilization loci (PULs) in other Bacteroides species by comparative 370 

genomics approaches, allowing them to be studied in response to a wide variety of complex 371 

polysaccharides (reviewed in (White, Lamed, Bayer, & Flint, 2014)). Nowadays, research 372 

on carbohydrate utilization by gut bacteria is conceived as a cornerstone to understand their 373 

physiology and potential interactions and bidirectional communication with the host in 374 

health and disease. In this regard, the Carbohydrate Active Enzymes (CAZy) database 375 

(http://www.cazy.org/) is one of the most complete repositories describing the families of 376 

structurally-related catalytic and carbohydrate-binding functional domains of enzymes that 377 

bind, degrade, modify or create glycosidic bonds (Lombard, Golaconda Ramulu, Drula, 378 
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Coutinho, & Henrissat, 2013). Hierarchical classification of CAZy comprises 4 main 379 

families such as the Glycoside Hydrolase (GH, with 135 subfamilies reported at Nov 2016), 380 

the Glycosyltransferase (GT, with 101 subfamilies), the Polysaccharide Lyase (PL, with 24 381 

subfamilies), and the Carbohydrate Esterase (CE, with 16 subfamilies) family. All GH 382 

reported are classified according to the functional modules they contain, with the aim to 383 

determine sites of action (exo or endo-acting enzymes) or type of cleavage (- or -384 

glycosilases). Members of the phyla Bacteroidetes and Firmicutes are characterized by 385 

encoding the largest set of GH in their genomes, thus exhibiting a remarkable versatility for 386 

the utilization of different polysaccharides as carbon source (White et al 2014). These 387 

features convert species of such bacterial phyla into key players for degradation of complex 388 

polysaccharides in the human colon. Proof of this can be found in the studies performed in 389 

Flint's lab with Ruminoccocus bromii in which this bacteria was observed to present a 390 

specialized extracellular polypeptide complex, known as amylosome (Ze, et al., 2015). It 391 

was also found to be an indispensable member of the human gut microbiota, having a direct 392 

effect on energy recovery from a central component of diet, i.e., RS (Ze, Duncan, Louis, & 393 

Flint, 2012). However, Bifidobacterium (Actinobacteria) species are also well-known fiber 394 

fermenters. Although Bifidobacteria have fewer GHs encoded in their genomes than 395 

Bacteroidetes, they also exhibit a great versatility for the uptake and catabolism of 396 

oligosaccharides. This versatility is well exemplified in genome-wide expression analyses, 397 

which have disclosed a wide variety of genes appearing to respond specifically to different 398 

carbon sources (Andersen, et al., 2013; O'Connell, et al., 2013). In this context, we have 399 

recently described the genome response of B. pseudocatenulatum CECT 7765, a strain 400 

isolated from breast-fed babies, during utilization of lactulose-derived oligosaccharides. An 401 
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exhaustive inventory of GH enzymes present in the genome of this species have a set of 402 

open reading frames (ORFs) that seem to control the uptake and degradation of this 403 

digestion-resistant oligosaccharide (Benitez-Paez, Moreno, Sanz, & Sanz, 2016). 404 

Although GHs and related proteins appear to be the key traits to infer versatility of gut 405 

microbes for utilization of polysaccharides and their contribution to the production of 406 

fermentation end-products such as SCFAs, little is known about the effects of fiber 407 

fermentation on secondary metabolic pathways and the generation of other nutrients (e.g. 408 

amino acids and vitamins) and bioactive compounds. Some in vitro studies have reported 409 

that oligosaccharide fermentation also increases amino acid synthesis (Benitez-Paez, et al., 410 

2016; Sulek, et al., 2014). In particular, our study revealed that the utilization of GOS by B. 411 

pseudocatenulatum CECT 7765, using bacteria cultures, increased the production and 412 

extracellular accumulation of branched-chain amino acids such as leucine (Benitez-Paez, et 413 

al., 2016). Additional studies are, however, needed to understand the effects of the interplay 414 

between dietary fiber and amino acid metabolism in the large intestine and fully understand 415 

the metabolites resulting from the activity of the gut microbiota and their potential 416 

consequences on health beyond the well-known SCFAs.  417 

 418 

3. Effects of dietary fiber on metabolic health mediated by gut microbiota 419 

There is a wealth of human intervention studies with dietary fibers, but only a few of them 420 

have assessed the relationship between microbiota-induced changes and endpoints related 421 

to physiological functions and metabolism. Further studies are also needed that directly 422 

assess the effects of fiber-induced microbiota changes on metabolic outcomes, for example 423 

via fecal transplantation or via inoculation of specific bacterial consortia from humans into 424 

animal models. Consequently, there is still a large degree of uncertainty about to what 425 
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extent the effects attributed to dietary fibers on metabolic health are mediated by gut 426 

microbiota in humans, and which are the key species involved. Nonetheless, considerable 427 

mechanistic data are available from other animal study approaches, as summarized below. 428 

 429 

3.1. Gut barrier integrity, metabolic endotoxemia and inflammation 430 

Obesity and particularly the intake of a high-fat diet (HFD) are thought to lead to a leaky 431 

gut and metabolic endotoxemia (increased serum LPS levels) in animal models and to some 432 

extent in humans. This is assumed contributing to the low-grade chronic inflammation 433 

leading to metabolic dysfunction and disease (metabolic syndrome and T2D). In fact, LPS 434 

is a potently inflammatory bacterial antigen linked to common metabolic diseases (Conlon 435 

& Bird, 2015). LPS is an endotoxin consisting of three parts; lipid A, the oligosaccharide 436 

core and the O-antigen, with the lipid A causing endotoxicity. LPS is normally present in 437 

the human gut (≥1 g) and under normal conditions it does not cause negative health effects. 438 

In healthy humans the normal/low plasma concentration of LPS is 1-200 pg/ml, but 439 

increased levels have been found in subjects with obesity and diabetes (Erridge, Attina, 440 

Spickett, & Webb, 2007; Moreira, Texeira, Ferreira, Peluzio Mdo, & Alfenas Rde, 2012). 441 

LPS binds to TLR4 via CD14 on, for example, the membrane surface of immune cells 442 

leading to activation of genes that codify pro-inflammatory cytokines (e.g. TNF-α and IL-443 

6) involved in metabolic inflammation. Experimental models of obesity have shown 444 

prebiotic-induced increases in bifidobacteria and Akkermansia spp. associated with reduced 445 

endotoxemia and systemic inflammation (Cani, et al., 2007; Schneeberger, et al., 2015). 446 

These effects can be partly explained by the ability of those bacteria to ferment glycans 447 

leading to SCFA production and promoting local decrease of pH, which may modulate gut 448 

microbiota composition and inhibit the growth of enterobacteria, which may be a source of 449 
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LPS (Delzenne, Neyrinck, & Cani, 2013; Everard, et al., 2013). This effect could also be 450 

related to the role of SCFAs in strengthening the gut barrier function, which also reduces 451 

LPS translocation via different mechanisms, including modulation of expression and 452 

localization of tight-junction proteins, induction of endocrine peptide production (GLP-2) 453 

and modification of the intestinal levels of endocannabinoids (Everard, et al., 2013). 454 

SCFAs also play an anti-inflammatory role by regulating the size and function of the 455 

colonic regulatory T cells (Treg), specifically inducing Foxp3+IL-10–producing Tregs 456 

(Smith, et al., 2013). SCFAs may also interact with peroxisome proliferator-activated 457 

receptor (PPAR) γ, thereby inhibiting pro-inflammatory signal transduction pathways (e.g. 458 

nuclear factor-kappa B [NF-κB]) leading to reduction of downstream cytokine/chemokine 459 

production (IL-6, IL-8, and MCP-1) in intestinal epithelial cells and metabolic tissues (e.g. 460 

adipose tissue) (Mastrofrancesco, et al., 2014). Activation of PPARγ also seems to be 461 

crucial in orchestrating Treg accumulation and function in the adipose tissue, which play an 462 

important role in preventing inflammation and insulin resistance (Cipolletta, Cohen, 463 

Spiegelman, Benoist, & Mathis, 2015). Butyrate as well as other SCFAs, protects against 464 

the liver inflammation process associated with steatosis by inhibiting the NF-B activation 465 

and downregulating expression of TLR4 receptor (Mattace Raso, et al., 2013). The 466 

molecular mechanisms underlying SCFA modulation of NF-κB activity have recently been 467 

disclosed as related to JNK and p38 kinases, which control NF-B activity (Haghikia, et al., 468 

2015). However, we cannot discard additional mechanisms to control NF-B function 469 

involving acetylation/deacetylation of histones and the RelA (p65) monomer itself (Davie, 470 

2003; Glozak, Sengupta, Zhang, & Seto, 2005). 471 

 472 
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3.2. Enteroendocrine secretion and appetite 473 

In obese animals fed inulin-type fructans, there is an increase in plasma anorexigenic 474 

peptides (peptide YY and glucagon-like peptide - GLP-1) and a decrease in the orexigenic 475 

peptide ghrelin, which increases satiety (reviewed in (Delzenne, et al., 2013)). In addition, 476 

supplementation with fructans in HFD-fed mice modulates neuronal activation within the 477 

arcuate nucleus, which can help to control food intake (Anastasovska, et al., 2012). These 478 

effects on anorexigenic peptide secretion could be mediated by interactions of SCFAs with 479 

G-protein receptors such as FFAR2 (GPR41) and FFAR3 (GPR43), which could explain 480 

induction of satiety and increased insulin sensitivity (Blaut, 2014). Also in humans, 481 

prebiotic interventions with fructans have led to increases in anorexigenic peptides and/or 482 

decreases in orexigenic (ghrelin) peptides (Cani, Joly, Horsmans, & Delzenne, 2006; Cani, 483 

et al., 2009; Parnell & Reimer, 2009; Verhoef, Meyer, & Westerterp, 2011), but effects on 484 

satiety have not always been consistent (Peters, Boers, Haddeman, Melnikov, & Qvyjt, 485 

2009).  486 

 487 

3.3. Adiposity, lipid and glucose metabolism 488 

Reduced adiposity in rodents due to dietary supplementation with inulin-type fructans or 489 

AX has also been attributed to the role of SCFAs in modulating PPARγ expression via 490 

interaction with the G-protein coupled receptor protein FFAR3 (Delzenne, Neyrinck, 491 

Backhed, & Cani, 2011). Interestingly, den Besten and co-workers found that SCFAs 492 

decrease PPARγ expression, thus promoting activity of the uncoupling protein 2 (UCP2) 493 

and, thereby, stimulating oxidative metabolism in liver and adipose tissue, insulin 494 

sensitivity and weight loss (den Besten, et al., 2015). Studies with inulin-type fructans have 495 

also shown they can decrease hepatic accumulation of triglycerides and/or cholesterol in 496 
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liver tissue. These effects have been associated with a decrease in sterol-response-element-497 

binding protein-dependent cholesterogenesis, lipogenesis, or changes in PPARα-driven 498 

fatty acid oxidation (reviewed in (Delzenne, et al., 2013)). The majority of studies show 499 

prebiotic administration also leads to improved fasting or postprandial glycemia due to the 500 

very low digestion rates of prebiotics compared with digestible carbohydrates (for review 501 

see (Roberfroid, et al., 2010)). In addition, SCFA-stimulation of GLP-1 secretion can also 502 

mediate an improvement in glucose metabolism, reducing obesity-related hepatic insulin 503 

resistance.  504 

In humans, intervention studies with fructans have reported modest effects on body weight 505 

and fat mass in obese adults, but simultaneous changes in microbiota were not considered 506 

to have any correlation (Genta, et al., 2009; Parnell & Reimer, 2009). Nevertheless, there 507 

are also reports of a lack of effect on body weight in obese children (Liber & Szajewska, 508 

2014).  On the other hand, a rapid improvement in glucose tolerance has been observed for 509 

individuals consuming WG barley the night prior to analysis. These results were thought to 510 

be caused by the high amount of soluble dietary fiber and resistant starch contained in 511 

barley kernels, which facilitated bacterial fermentation in the colon overnight and produced 512 

significantly higher levels of SCFAs. This was indirectly measured from breath H2 513 

excretion (Nilsson, Granfeldt, Ostman, Preston, & Bjorck, 2006). Moreover, recent results 514 

of this dietary intervention model indicate that the fiber-associated improvement of glucose 515 

metabolism is also associated with an increase in Prevotella spp. (Kovatcheva-Datchary, et 516 

al., 2015). 517 

 518 

4. Impact of dietary fat on gut microbiota and associated metabolic endpoints 519 
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Globally, an increase in dietary fat content is usually paralleled with a decrease in 520 

carbohydrates, including dietary fiber content, thus making it difficult to attribute the 521 

observed changes, at physiology or gut microbiota levels, exclusively to one of the 522 

macronutrients whose proportion is being increased. Consequently, a decreased abundance 523 

of butyrate-producing bacteria and lower fecal SCFA excretion following a HFD is most 524 

likely caused by a decrease in dietary carbohydrate intake. Therefore, major conclusions 525 

derived from future animal or human studies including HFD interventions must be 526 

addressed carefully in order to consider confounding effects regarding the proportions and 527 

energetics or other macronutrients administrated. 528 

 529 

4.1. Evidence from animal studies 530 

The role of gut microbiota in HFD-induced obesity was suggested through animal 531 

experiments involving germ-free mice fed a HFD, which were protected from obesity 532 

compared to conventionally raised mice (Rabot, et al., 2010), thus highlighting the role of 533 

microbiota in HFD-induced obesity. Furthermore, a study in mice by Hildebrandt and 534 

coworkers showed that changes in the gut microbiota composition were caused by  dietary 535 

fat content rather than the degree of obesity, suggesting that fat directly impacts on 536 

microbiota regardless of the metabolic phenotype (Hildebrandt, et al., 2009). Gut 537 

microbiota transferred to germ-free mice from conventionally raised mice resulted in 538 

weight gain and a higher relative abundance of Firmicutes and a lower abundance of 539 

Bacteroidetes when mice were fed a HFD compared to a low-fat chow diet from 16 weeks 540 

of age (Turnbaugh, Backhed, Fulton, & Gordon, 2008). Although differences established at 541 

phylum level are of limited value since each phylum comprise many different species 542 

which may potentially play many different functions, a common trait for HFD-feding 543 
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seems to be that it increases the Firmicutes:Bacteroidetes ratio (de Wit, et al., 2012; 544 

Hildebrandt, et al., 2009; Lam, et al., 2012; Turnbaugh, et al., 2008), although there is not 545 

complete consistency across studies (Lecomte, et al., 2015); this would also be due to 546 

experimental and environmental differences. A recent 16-week study in mice fed a HFD 547 

reports that the abundance of Akkermansia muciniphila was progressively and drastically 548 

decreased while other groups including Bifidobacterium spp. and Lactobacillus spp. 549 

showed a transient decrease. In contrast the abundance of Roseburia spp. and Bilophila 550 

wadsworthia increased after 12 and 16 weeks upon HFD, respectively (Schneeberger, et al., 551 

2015). Interesting, B.wadsworthia have been linked to insulin resistance and inflammation 552 

in humans (Brahe, et al., 2015). 553 

Animal studies have revealed different mechanisms by which HFDcould exert adverse 554 

effects, partly mediated by the microbiota, on the host metabolic phenotype. For example, 555 

diets rich in saturated fat may contribute to inflammation, a hallmark of metabolic 556 

dysfunction leading to metabolic syndrome and T2D, by promoting the expansion of 557 

pathobionts, reducing the proportion of protective bacteria, and promoting a leaky gut that 558 

in turn facilitates the translocation of bacterial products (e.g. LPS) causing immune 559 

activation (Caesar, et al., 2015; Delzenne, et al., 2011; Devkota, et al., 2012). In a recent 560 

study, HFD-induced microbiota changes were correlated with obesity-related inflammatory 561 

and metabolic biomarkers (Schneeberger, et al., 2015). Akkermansia muciniphila was the 562 

species showing the clearest inverse associations with inflammatory markers in the adipose 563 

tissue and also with biochemical/hormonal parameters in circulation (i.e., insulin, glucose, 564 

triglycerides and leptin). 565 

However, as the majority of the dietary fat is absorbed in the small intestine and does not 566 

serve as an energy source for gut microbes, the effect of fat on gut microbiota must be 567 
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partly mediated by indirect mechanisms. Increased fat intake also leads to increases in fat 568 

quantities and of BAs reaching the colon, and particularly the concentration and 569 

composition of BAs modulates the gut microbiota exerting antimicrobial effects (Islam, et 570 

al., 2011; Ridlon, Kang, Hylemon, & Bajaj, 2014). Primary BAs (e.g. cholic acid [CA] and 571 

chenodeoxycholic acid [CDCA] in humans and beta-muricholic acid [β-MCA] in mice) are 572 

sterol compounds synthesized from cholesterol in the liver, conjugated with taurine and 573 

glycine, and then secreted into the small intestine to emulsify lipids to facilitate their 574 

digestion and absorption. The majority of BAs are reabsorbed (enterohepatic recycling), but 575 

as increased fat intake leads to increased BA secretion, theoretically more BAs will escape 576 

enterohepatic recycling, and hence reach the large intestine. During the transit to the large 577 

intestine, primary BAs undergo deconjugation, oxidation of hydroxyl groups at C-3, C-7, 578 

andC-12, and 7α/β-dehydroxylation reactions mediated by intestinal bacterial enzymes, 579 

yielding secondary BAs such as deoxycholic acid (DCA), lithocholic acid (LCA), and β-580 

muri-deoxycholicacid. Bacterial bile salt hydrolases (BSH), e.g. produced by Clostridium 581 

spp, catalyze the first reaction on secondary BAs and this is a step necessary for the 582 

subsequent7α/β-dehydroxylation (Degirolamo, Rainaldi, Bovenga, Murzilli, & Moschetta, 583 

2014). Overall, the amount and composition of BAs are strongly influenced by gut 584 

microbiota and vice versa, and BA biotransformation has important biological 585 

consequences due to their role in dietary lipid absorption and as signaling molecules, 586 

modulating cholesterol and triglyceride metabolism and glucose and energy homeostasis 587 

(Degirolamo, et al., 2014; Staels & Prawitt, 2013). Secondary BAs have strong 588 

antimicrobial activity (e.g. damage of the bacterial cell membrane by interaction with 589 

phospholipids) due to their amphipathic properties. For example, DCA has 10 times the 590 

bactericidal activity of CA (Islam, et al., 2011), therefore an increase in the proportion of 591 
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secondary BAs following HFD very likely affects the microbiota composition. A rat study, 592 

evaluating the effect of adding CA at different doses compared with controls (no CA 593 

added), demonstrated adose-dependent increase of fecal BA and DCA (Islam, et al., 2011). 594 

Furthermore, a dose-dependent decrease in fecal SCFA concentration was observed along 595 

with a reduction in total bacterial count and an increase in Firmicutes at the expense of 596 

primarily Bacteroidetes. 597 

Dietary saturated fat compared to poly-unsaturated fatty acids (PUFAs) was also reported 598 

to favor taurine conjugation of hepatic BAs, which caused an expansion of δ-599 

Proteobacteria-type pathobionts, in particularly B. wadsworthia which is a sulfite-reducing 600 

bacterium exerting a cytotoxic effect on epithelial cells and activating Th1-type 601 

inflammatory response (Devkota, et al., 2012). 602 

Studies in rodent models of HFD-induced obesity have also shown that saturated fat 603 

reduces the mucus layer, which acts as the first barrier separating the immune system from 604 

microbial and antigen interactions that may activate an inflammatory response. This effect 605 

was parallel to a reduction in the abundance of Akkermansia spp., while administration of 606 

this bacterium reversed it, increasing mucus layer thickness, and thus suggesting a 607 

microbiota-mediated effect (Everard, et al., 2013). Other animal studies have reported 608 

correlations between HFD-induced changes in the microbiota and alterations in the 609 

expression of tight junction-related proteins, and in gut permeability. In mice a HFD has 610 

been shown to reduce the expression of the tight-junction-related protein zonula occludens 611 

(ZO)-1 mRNA (Cani, Delzenne, Amar, & Burcelin, 2008) associated leading to increased 612 

gut permeability measured by transepithelial resistance (Lam, et al., 2012). Additionally, 613 

decreased transepithelial resistance (i.e. increased gut permeability) was associated a drop 614 
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in the abundance of Lactobacillus spp. and augmented abundance of Oscillibacter spp. 615 

(Lam, et al., 2012).  616 

Animal studies also show that when a HFD is supplemented with either prebiotics (Cani, et 617 

al., 2007; Everard, et al., 2013; Serino, et al., 2012) or antibiotics (Cani, Bibiloni, et al., 618 

2008) the HFD-induced alterations in gut microbiota and metabolism are partially reversed, 619 

indicating that gut microbiota partly mediate the consequences of HF feeding.  620 

A few studies have investigated the effects of different dietary fatty acids (Lam, et al., 621 

2012; Lappi, et al., 2013; Simoes, et al., 2013). In mice, it has been shown that n-6 high fat 622 

diets do not increase insulin resistance, intestinal permeability and fat accumulation to the 623 

same degree as saturated fatty acid diets, which is possibly due to a lower increase in H2S-624 

producing bacteria (Lam, et al., 2012). Likewise, lower decreases in Bacteroidetes have 625 

been found under diets rich in n-3 or n-6, compared to diets rich in saturated fatty acids(T. 626 

Liu, Hougen, Vollmer, & Hiebert, 2012). 627 

 628 

4.2. Evidence from human studies 629 

Only a few human intervention studies have investigated the effects of HFD compared to 630 

low-fat diets(LFD) or the type of fat (saturated fat versus PUFAs) in relation to changes in 631 

gut microbiota and the metabolic consequences. As found in animal studies, total bacterial 632 

counts decrease in humans who consume a HFD (35-38 E%), compared to a LFD (23-27 633 

E%) over 24 weeks (Fava, et al., 2013). Moreover, low/moderate-fat intake appears to 634 

induce a higher abundance of Bacteroides spp. and/or Bifidobacterium spp., compared to 635 

high-fat intake in human intervention trials (Brinkworth, Noakes, Clifton, & Bird, 2009; 636 

Fava, et al., 2013). An energy-restricted HFD (58 E%), compared with an isocaloric 637 

moderate-fat diet (28 E %) was shown to increase the total number of anaerobes in the 638 



 

29 
 

moderate-fat group, but not in the high-fat group, but the ratio between anaerobe:aerobe 639 

remained unchanged in each group (Brinkworth, et al., 2009). Additionally, a study 640 

comparing high-fat and moderate-fat ad libitum diets (66 E% vs. 35 E%) over 4 weeks did 641 

not report any effect on the gut microbiota in terms of total bacterial count; however, the 642 

methodology used to study microbiota abundance was based on a limited number of 643 

species(Duncan, et al., 2007).  644 

As stated above , an increase in the intake of dietary fat is usually at expenses of  a decrease 645 

in that of simple or complex carbohydrates, making it difficult to attribute the observed 646 

effectexclusively to one of the macronutrients. O’Keefe and coworkers (O'Keefe, et al., 647 

2015) compared the effects on gut microbiota in a cross-over study with a 2-week diet 648 

period administering either African- or American-food. The switch from a rural African to 649 

an American-diet (52% fat, 21% carbohydrate, 27% protein, and 12% fiber) decreased the 650 

abundance of butyrate-producing bacteria and the production of acetate, propionate and 651 

butyrate (O'Keefe, et al., 2015). Similarly, Duncan and coworkers observeda higher 652 

abundance of Roseburia and Eubacterium and higher fecal excretion of butyrate in humans 653 

following a moderate fat diet compared to high-fat intake, with these changes in the gut 654 

microbiota and derived metabolites being positively correlated with carbohydrate intake 655 

(Duncan, et al., 2007). 656 

O’Keefe and coworkers also measured BA excretion and observed that the high-fat diet of 657 

Americans was associated with increased expression of microbial genes coding for the 658 

enzyme related to converting primary BAs to secondary BAs, whereas a dietary switch to a 659 

lower-fat diet reduced the abundance of these bacteria. Furthermore, excretion of the 660 

secondary BAs LCA and DCA was increased by the HFD. Also short-term consumption of 661 

diets composed entirely of animal (rich in fat and protein) or plant products (rich in fiber) 662 
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can rapidly alter gut microbial composition (David, et al., 2014). An animal-based diet 663 

increased the abundance of bile-tolerant microorganisms, including Alistipes, Bilophila, and 664 

Bacteroides species. By contrast this diet decreased the abundance of Firmicutes, including 665 

genus and species specialized in the utilization of polysaccharides (Roseburia, Eubacterium 666 

rectale, and Ruminococcus bromii). Furthermore, the animal-based diet increased the 667 

abundance of B. wadsworthia and secondary BAs. These findings support the observations 668 

in rodent models comparing diets rich in PUFA or saturated fat (D. L. Gibson, et al., 2015; 669 

Schneeberger, et al., 2015), suggesting similar mechanisms of action and similar metabolic 670 

effects.  671 

The relationship between PUFAs and the microbiota are even less well understood. A 672 

recent study in women with obesity and metabolic syndrome who consumed inulin-type 673 

fructans for 3 months reported that PUFA-derived metabolites were associated with 674 

Bifidobacterium spp., Eubacterium ventriosum, and Lactobacillus spp., and negatively 675 

correlated with serum cholesterol (Druart, et al., 2014). However, another human 676 

intervention study found that supplementation with n-3 fatty acids (180 mg EPA and 120 677 

mg DHA) for 6 weeks did not induce changes in the gut microbiota although it decreased 678 

insulin resistance and CRP (Rajkumar, et al., 2014). Unfortunately, amelioration of these 679 

metabolic parameters could not be directly associated with one specific fatty acid since 680 

only a mixture was tested. Therefore, further studies are needed to gain greater 681 

understanding of how the quality of dietary fat influences gut microbiota composition and 682 

function, and potential mediated effects on metabolism in humans.  683 

 684 

 Concluding remarks 685 
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Fiber is an instrumental dietary component that can be used to remodel gut microbiota 686 

composition and function to potentiate the beneficial effects of healthy diets on body 687 

weight management and metabolism. However, efforts are still needed to identify the 688 

optimal functional partnership between key bacterial species and types of fibers, 689 

considering the specificities of the individual’s microbiota. Fermentation of dietary fiber 690 

generates SCFAs, which presumably articulate beneficial effects in the context of obesity; 691 

yet many other secondary metabolic products resulting from diet-microbe interactions have 692 

yet to be discovered. Gut microbiota appears to contribute to the adverse consequences of 693 

high-fat diets on the metabolic phenotype, aggravating the associated low-grade 694 

inflammation and increasing energy absorption; however, further studies are needed to 695 

understand the potential effects of the quality of dietary fat on the gut microbiota and 696 

secondary metabolic process, such as those involving bile acids and their signaling roles. 697 

Additional efforts must be conducted to identify the specific components of the gut 698 

microbiota, at species and  strain level,  influenced by different types of dietary fibers and 699 

fats and to understand their roles and mechanisms of action in humans to facilitate the use 700 

of this information in nutritional practice. This ambitious goal is expected to be 701 

accomplished by developing translational research approaches that integrate controlled 702 

dietary interventions in humans, combining functional omics technologies and 703 

physiological/clinical endpoints, and mechanistic studies in experimental models colonized 704 

with specific dietary-driven human microbiotas.  705 
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Figure Legends 1096 
 1097 
Figure 1.The bacterial butyrate synthesis pathways (adapted from (Vital, et 1098 

al., 2014)). Vital and coworkers have reconstructed four different pathways 1099 
for butyrate synthesis through and an extensive metagenomic approach. 1100 
Protein names and major substrates are shown across the different 1101 
biosynthetic pathways. Genes/proteins responsible of the last step of 1102 
butyrate production, and frequently used as biomarkers for gut microbiota 1103 
studies, are highlighted in red. They are known as: 4Hbt, butyryl-CoA:4-1104 
hydroxybutyrate CoA transferase; But, butyryl-CoA:acetate CoA 1105 
transferase; Ato, butyryl-CoA:acetoacetate CoA transferase (α, β subunits); 1106 
and Buk, butyrate kinase. 1107 
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 1109 
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Table 1. Summary of dietary fiber interventional studies with gut microbiota assessments in humans. 
 

Fiber Study Design Subjects Time Gender Population Effects on gut microbiota1 Reference 
Maize-derived 

WG cereal 
DB, R, PC, CO 

 
32 3 weeks 

Females (21) 
Males  (11) 

European 
UK ↑Bifidobacterium (Carvalho-Wells, et al., 2010) 

WG wheat cereal DB, R, PC, CO 31 3 weeks 
Females (16) 
Males (15) 

European 
UK ↑Bifidobacterium, Lactobacillus (Costabile, et al., 2008) 

WG barley R, CO 28 4 weeks 
Females (17) 
Males (11) 

USA 

↑Blautia,Bifidobacterium, Roseburia, 
Dialister 

↔Dialister- plasma IL-6levels 

↔Eubacterium- plasmaglucose/insulin 

(Martinez, et al., 2013) 

Inulin DB, R, PC, CO 32 4 weeks Females 
European 

Switzerland ↑Bifidobacterium (Petry, et al., 2012) 

Inulin (Agave) DB, R, PC, CO 29 3 weeks NA USA 

↑Bifidobacterium 

↓Desulfovibrio 

↔Faecalibacterium - fecal butyrate  

(Holscher, et al., 2015) 

Inulin / FOS DB, R, PC 31 8 weeks Females 
European 

Spain ↑Bifidobacterium, Lactobacillus (Garcia-Peris, et al., 2012) 

Inulin-type 
fructans 

DB, R, PC 30 12weeks Females 
European 
Belgium 

↑Bifidobacterium, 
Faecalibacteriumprausnitzii 

↓Bacteroides, Propionibacterium 

↔Bifidobacterium - plasma LPS levels 

↔Faecailbacterium - plasma LPS levels 

↔Bacteroides - Fat mass 

(Salazar, et al., 2015) 

Inulin / 
Oligofructose 

DB, R, PC 22 
12 days 
(mean) 

Females (9) 
Males (13) 

European 
UK ↓Faecalibacterium, Bacteroides, Prevotella (Majid, et al., 2014) 

Inulin / 
Oligofructose 

DB, PC 30 12 weeks Females (44) 
European 
Belgium 

↑Bifidobacterium, 
Faecalibacteriumprausnitzii 

(Dewulf, et al., 2013) 

Inulin / 
Oligofructose 

DB, R, PC 252 16weeks 
Females (123) 
Males (129) 

European 
Spain ↑Bifidobacterium (Closa-Monasterolo, et al., 2013) 

B-GOS DB, R, PC, CO 45 6 weeks 
Females (29) 
Males (16) 

European 
UK 

↑Bifidobacterium 

↓Clostridium histolyticum, Desulfovibrio, 
Bacteroides 

(Vulevic, et al., 2013) 

GOS DB, R, PC, CO 31 3 weeks Females 
European 

The Netherlands ↑Bifidobacterium (Whisner, et al., 2013) 

GOS DB, R, PC 163 >16 weeks NA 
European 

Italy ↑Bifidobacterium (Giovannini, et al., 2014) 

XOS R, PC 22 3 weeks 
Females (7) 
Males (15) 

Taiwan ↑Bifidobacterium (Chung, et al., 2007) 

AXOS R, PC, CO 20 3 weeks 
Females (14) 

Males (6) 
European 
Belgium ↑Bifidobacterium (Cloetens, et al., 2010) 

AXOS DB, R, PC, CO 63 3 weeks 
Females (30) 
Males (33) 

European 
Belgium ↑Bifidobacterium (Francois, et al., 2012) 

AXOS DB, R, PC, CO 65 3 weeks 
Females (35) 
Males (30) 

USA ↑Bifidobacterium (Maki, et al., 2012) 

RS3 R, CO 14 3 weeks NA 
European 
Scotland ↑Ruminococcusbromii, Eubacteriumrectale (Walker, et al., 2011) 



2 
 

RS2, RS4 DB, CO 10 3 weeks 
Females (5) 
Males (5) 

USA 

↑ Bifidobacterium adolescentis, 
Eubacteriumrectale, Ruminococcusbromii,  
Parabacteroides distasonis 
↓ Faecalibacteriumprautsnitzii, 
Doreaformicigenerans

(Martinez, et al., 2010) 

RS R, CO 46 4 weeks 
Females (30) 
Males (16) 

Australia ↑Ruminococcusbromii (Abell, et al., 2008) 

1 Gut microbiota changes expressed in terms of abundance. ↑ indicates higher proportions of a determined bacterial genus after intervention, and ↓ indicates the 
inverse effect. ↔ indicates direct correlations among bacterial abundance and metabolic parameters studied, being negative or positive, respectively.DB= Double-
blind; Single-Blind = SB; R= randomized; PC = Placebo-controlled; CO = Cross-over; NA = No information was explicitly available for gender distribution into the 
intervention groups. 
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