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Fatty Acid Chain Shortening by a Fungal Peroxygenase
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Abstract: A recently discovered peroxygenase from the
fungus Marasmius rotula (MroUPO) is able to catalyze the

progressive one-carbon shortening of medium and long-
chain mono- and dicarboxylic acids by itself alone, in the
presence of H2O2. The mechanism, analyzed using H2

18O2,

starts with an a-oxidation catalyzed by MroUPO generat-
ing an a-hydroxy acid, which is further oxidized by the
enzyme to a reactive a-keto intermediate whose decar-
boxylation yields the one-carbon shorter fatty acid. Com-
pared with the previously characterized peroxygenase of
Agrocybe aegerita, a wider heme access channel, enabling

fatty acid positioning with the carboxylic end near the
heme cofactor (as seen in one of the crystal structures
available) could be at the origin of the unique ability of
MroUPO shortening carboxylic acid chains.

The use of biocatalysts for organic synthesis replacing tradi-

tional metal catalysts has several advantages, such as better
regio- and stereoselectivity, fewer side products, and potential-

ly lower environmental impact. Enzymes that catalyze the
transfer of an oxygen atom from peroxide to substrates are
classified as peroxygenases (EC.1.11.2). Unspecific peroxyge-

nase (UPO, EC 1.11.2.1) is the most prominent member of this
group because of its versatility for oxygen transfer reactions[1]

that makes it highly attractive as industrial biocatalyst.[2–4]

The first UPO was described in the basidiomycetous fungus
Agrocybe aegerita (AaeUPO)[5] catalyzing reactions formerly as-

signed only to P450 monooxygenases (P450s). However, unlike
P450s that are intracellular enzymes and often require a flavin-

containing auxiliary enzyme or protein domain and a source of
reducing power [NAD(P)H], UPO is a secreted protein, there-

fore far more stable, and only requires H2O2 for activation.[2]

AaeUPO was shown to catalyze oxygenation reactions on aro-
matic compounds,[6] and later, the action on aliphatic com-

pounds was demonstrated,[7,8] expanding its biotechnological
relevance.

Since then, similar UPO proteins have been purified from
other basidiomycetes and ascomycetes such as Coprinellus ra-

dians,[9] Marasmius rotula[10] and Chaetomium globosum ;[11] and

almost 3000 related sequences (from sequenced genomes and
environmental samples) are currently available in databas-
es.[1, 11] The peroxygenase from M. rotula (MroUPO) shows sev-
eral special features compared to other UPOs, for example, the

inability to oxidize halides, less pronounced capacity to oxy-
genate aromatics,[10] and the unique ability for terminal hydrox-
ylation of n-alkanes.[12]

Despite the widespread occurrence of peroxygenases and
related heme–thiolate peroxidases, only two molecular struc-

tures have been reported to date, corresponding to the classic

Figure 1. Dimeric MroUPO. A) Solvent-access surface with one of the heme
cofactors (red spheres) visible through an access channel. B) Ribbon-like
model including the C227-C’227 disulfide bond (CPK-colored spheres), the
two cofactors (red and CPK sticks), and surface glycosylation (CPK sticks).
From 5FUJ.
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ascomycete chloroperoxidase (CPO),[13] and AaeUPO.[14] Fortu-
nately, the crystal structure of MroUPO has just been made

available (PDB entries 5FUJ and 5FUK). Interestingly, although
MroUPO is a dimeric protein due to an inter-monomer disulfide

bond (Figure 1B, whereas AaeUPO and CPO are monomers),
this fact does not affect the accessibility to the heme channel

and cofactor (Figure 1A).
Here, the one-carbon shortening of carboxylic acids, a fasci-

nating reaction catalyzed by MroUPO, is revealed. This reaction

was first evidenced when a dicarboxylic acid (tetradecanedioic
acid) was tested as substrate of the enzyme, and the products

were analyzed by gas chromatography–mass spectrometry
(GC-MS) (Figures 2A,B, S1 and S2). High (93%) substrate

(0.1 mm) conversion by MroUPO (�2 mm) was attained in 24 h,
yielding a series of chain-shortened dicarboxylic acids, such as

tridecanedioic (63% of products) and dodecanedioic (13%)

acids, together with a-, b- and g-hydroxyderivatives. The reac-
tion was also studied with AaeUPO (Figure 2C), which failed to

convert the substrate.
When monocarboxylic fatty acids were studied as MroUPO

substrates, the shortening reaction seemed to be chain-length
dependent. With tetradecanoic acid, terminal and subterminal

oxygenations (forming the dicarboxylic and [w-1]-keto deriva-
tives, respectively) were predominant (Figure 3A). However,

with decanoic acid, a relevant amount of nonanoic acid was
generated (Figure 3B), although the reaction was less selective
than with dicarboxylic acids.

To explore the role of a-, b- and g-hydroxy-derivatives as in-
termediates in the chain-shortening mechanism, we studied
the reactions of a- and b-hydroxytetradecanoic acids with

MroUPO. With the a-hydroxy-derivative, tridecanoic acid was

one of the main products (Figure S3A), but no chain shorten-
ing was accomplished with the b-hydroxy-derivative (Fig-

ure S3B). This confirms that both even and odd chain fatty
acids are produced by successive removal of one carbon atom

after a-oxidation (although, under some forced reaction condi-
tions, some two-carbon shortenings of b-hydroxy acid could

be observed as well ; Figure S4).
Figure 2. GC-MS of 1 h (A) and 24 h (B) reactions of tetradecanedioic acid
(underlined) with MroUPO, and with AaeUPO after 24 h (C), showing the
shortened dicarboxylic acids, and the a-, b-, and g-hydroxylated and a-enol
derivatives (italics) (see mass spectra in Figures S1 and S2).

Figure 3. Comparison of tetradecanoic acid (A) and decanoic acid (B) reac-
tions (2 h) with MroUPO showing the remaining substrate (underlined), the
shortened monocarboxylic acids, and the a-hydroxy, (w-1)-keto and dicar-
boxylic derivatives.

Table 1. Apparent kinetic constants for tetradecanedioic acid (di-C14)
and decanoic acid (C10) reactions with MroUPO.

kcat
[min�1]

Km

[mm]
kcat/Km

[min�1mm�1]

Chain shortening[a]

di-C14 32�9 557�295 58�4
C10 293�98 703�549 420�350
Other oxygenations[b]

di-C14 7�1 239�42 28�5
C10 337�92 649�430 520�370

[a] After oxygenation at a position. [b] At b, g, w and w-1 positions.
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Despite the difficulties for GC-MS estimation of initial rates
in the above MroUPO reactions, apparent kinetic constants

could be obtained for the products: i) resulting in chain-short-

ening; and ii) of other oxygenation reactions (Table 1). Con-
cerning shortening, the MroUPO had higher catalytic efficiency

(kcat/Km) on C10 than on di-C14, due to the almost 10-fold
higher catalytic constant (kcat), although it was less selective as

shown by the ratios (0.8 and 2.0, respectively) between the
catalytic efficiencies of shortening and other reactions. The

chain-shortening of both mono- and dicarboxylic acids, and

the a-hydroxylation of carboxylic acids by a peroxygenase are
reported here for the first time.

To get additional insight into the chain shortening mecha-
nism, 18O-labeling studies with H2

18O2 (90% isotopic purity)

were performed using tetradecanedioic acid as target sub-
strate (Figures S1 and S2). Overall, our data led to the chain-
shortening mechanism depicted in Scheme 1a. The initial

product of MroUPO reaction will be the a-hydroxy acid, as
demonstrated by incorporation of H2

18O2 oxygen to form a-hy-
droxytetradecanedioic acid, whose diagnostic fragment (m/
z 373, Figure S1A, top) appeared fully (90%) 18O-labeled (m/

z 375, Figure S1A, bottom). Its oxidation will yield a gem-diol
(ketone hydrate) from a second Ca hydroxylation by MroUPO

that will be in equilibrium with the ketone by dehydration,
and then will react with excess H2O2 decarboxylating and form-
ing a new carboxyl group (chain shortening) as explained

below.
Direct evidence for involvement of H2

18O2-borne oxygen into

the gem-diol/ketone formation yielding a-ketotetradecanedioic
could not be obtained, since a-keto acids rapidly decarboxy-

late in the presence of oxidizing agents including H2O2.
[15]

However, evidence of their transient formation was obtained,
as the enolic form was detected (Figures 2A, S3A and S5A).
18O-labeling also illuminated the formation of tridecanedioic
acid after incorporation of two or one 18O-atoms (Figure S1B,

bottom). The co-existence of single and double 18O-labeling in
the carboxylic group suggests that a gem-diol, with some hy-

droxyl exchange with the water (labelling loss), may occur
prior to decarboxylation and chain shortening. This second a-

hydroxylation is clearly provoked by the enzyme and not by

the H2O2, as revealed by the negative control with a-hydroxy-
tetradecanoic acid and H2O2 in the absence of enzyme (Fig-

ure S6). However, the final reaction step can directly be pro-
duced by the H2O2 present in the UPO reaction set-up, mediat-

ed by a hydroperoxide intermediate, as reported for other a-
ketoacids.[16]

The different reactivity of MroUPO and AaeUPO regarding a-
hydroxylation could be explained by the only recently available

crystal structure of MroUPO (PDB entries 5FUJ and 5FUK) com-

pared with the previously reported AaeUPO structure.[14]

MroUPO is a smaller protein but it has a wider heme-access

channel (Figure 4A) than AaeUPO (Figure 4B), the channel of
which is flanked by several bulky phenylalanine residues (a

narrow access channel also exists in CPO). This wider heme
channel directly exposes the reactive Fe=O of H2O2-activated

Scheme 1. Comparison of fatty-acid shortening reactions: a) a-oxidation and decarboxylation by MroUPO; b) usual b-oxidation (multienzymatic) pathway;
c) a-oxidation (multienzymatic) pathway for b-methylated acids; and d) decarboxylation and alkene formation by P450; (R, H or COOH; enzymes: 1, MroUPO
2, acyl-CoA oxidase; 3, enoyl-CoA hydratase; 4, 3-hydroxyacyl-CoA dehydrogenase; 5, 3-ketoacyl-CoA thiolase; 6, phytanoyl-CoA hydroxylase; 7, 2-hydroxy-
phytanoyl-CoA lyase; 8, aldehyde dehydrogenase; and 9, P450 fatty-acid decarboxylase).

Figure 4. Different sizes of the heme-access channel in MroUPO (A) and
AaeUPO (B), and bulky phenylalanine residues (magenta) (an acetate occu-
pies the substrate-binding site). From 5FUJ (A) and 2YP1 (B).
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MroUPO (compound I) to the entering substrate, enabling oxy-

genation at the a-position of carboxylic acids.
Interestingly, one of the MroUPO crystal structures available

(5FUK) includes a bound palmitic acid molecule along the
heme access channel with one of the carboxylate oxygens at

coordination distance of the heme iron (Figure 5A) (while an

acetate occupies this position in 5FUJ, Figure 5B). Sub-terminal
oxygenation by most UPOs implies fatty-acid binding with the

carboxyl located at the channel entrance. However, the palmit-
ic acid position found in the 5FUK crystal is in agreement with

the unique chain-shortening ability reported here for MroUPO.
In summary, we show the ability of MroUPO to catalyze the

stepwise chain shortening of carboxylic acids through a

chemo-enzymatic reaction cascade (Scheme 1a). In plants,
fungi and animals, the general b-oxidation pathway, leads to

two-C shorter acids (Scheme 1b)[17] and the alternative a-oxi-
dation pathway (Scheme 1c), leading to one-C shorter fatty

acids, typically includes several steps (hydroxylation, activation,
cleavage of the C1�C2 bond and aldehyde dehydrogenation)

with several enzymes involved.[18] However, MroUPO is capable

of catalyzing all these reactions self-sufficiently (i.e. alone), in
the presence of H2O2. Bacterial P450s are also known to decar-

boxylate fatty acids, but in this case n�1 terminal alkenes
(Scheme 1d), instead of chain-shortened fatty acids, are

formed.[19]

This carbon-by-carbon chain-shortening reaction represents

a novel chemistry that may be used in biotechnological appli-

cations including the obtainment of tailor-made acids such as
odd-numbered dicarboxylic or monocarboxylic fatty acids (less

abundant in nature than the even-numbered ones). The “odd-
even” effect on the aqueous solubility of dicarboxylic acids[20]

could be used for product isolation, and in the synthesis of ad
hoc polymers.[21]

The chain-shortening reaction described here must be
added to the repertoire of reactions that versatile fungal per-

oxygenases catalyze on linear[12,22] and cyclic aliphatic com-
pounds,[23,24] in addition to aromatic compounds.[1,2] The availa-

bility of a heterologous expression system for MroUPO will
permit to improve the catalytic properties of this promising

enzyme, for example, in chain-shortening and/or alkane termi-
nal hydroxylation reactions,[12] using the protein engineering

tools recently applied to AaeUPO.[25]
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