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Deutsche Zusammenfassung

In Kapitel 1 diskutieren wir einige wichtige Aspekte der Quantenchromodynamik (QCD) und

führen das chirale Kondensat als Ordnungsparameter für den chiralen Phasenübergang ein.

Der Schwerpunkt liegt dabei auf dem Konzept der Universalität und den Argumenten, weshalb

das O(4) Modell in die gleiche Universalitätsklasse fällt wie die effektive Theorie für den Ord-

nungsparameter der (masselosen) Zwei-Flavor QCD. Kapitel 2 erklärt den CJT-Formalismus auf

pädagogische Weise und befasst sich mit der WKB-Methode. In Kapitel 3 und Kapitel 4 wird

der CJT-Formalismus auf ein einfaches Z2-symmetrisches Modell angewendet. In Kapitel 4 sind

spontane Symmetriebrechung und der Tunneleffekt von Relevanz. Wie auch im Falle aller an-

deren Modelle, die innerhalb dieser Arbeit diskutiert werden, untersuchen wir das Verhalten bei

endlicher Temperatur. Dies geschieht sowohl in 1+3 Dimensionen als auch in 1+0 Dimensionen.

Im letzteren Fall ist es möglich, das effektive Potential am globalen Minimum (also den nega-

tiven Druck) mit dem Resultat aus der WKB-Näherung zu vergleichen. Unser Hauptinteresse

gilt jedoch dem O(2) Modell, wobei die Felder als Polarkoordinaten behandelt werden. Dieses

Modell ist der erste Schritt in Richtung des O(4) Modells in vierdimensionalen Polarkoordinaten.

Obwohl im Prinzip autonom, sind alle Inhalte dieser Arbeit direkt mit Fragestellungen verbun-

den, die im Zuge der Untersuchung dieses Modells auftreten. In Kapitel 5 gehen wir direkt vom

erzeugenden Funktional in kartesischen Koordinaten aus und wechseln zu Polarkoordinaten. Im

folgenden sind wir mit der Frage beschäftigt, unter welchen Umständen es möglich ist, die gleichen

Feynman-Regeln wie im Falle von kartesischen Koordinaten zu verwenden. Unter Annahme der

gewohnten Feynman-Regeln wenden wir sodann den CJT-Formalismus auf das polare O(2) Mo-

dell an. Ursprünglich war die Untersuchung in 1+0 Dimensionen dazu gedacht, den Wechsel zu

Polarkoordinaten besser zu verstehen. Es stellte sich jedoch heraus, dass Infrarot-Divergenzen die

Untersuchung erschweren. Dieses Problem erfordert besondere Aufmerksamkeit und motiviert die

Untersuchung eines masselosen Feldes unter topologischen Zwangsbedingungen in Kapitel 8. In

Kapitel 7 untersuchen wir das kartesische O(2) Modell in 1+0 Dimensionen. Wir vergleichen das

effektive Potential am globalen Minimum, berechnet innerhalb des CJT-Formalismus und mittels

der WKB-Näherung. In Anhang B besprechen wir die Herleitung herkömmlicher thermischer In-

tegrale in 1+0 und 1+3 Dimensionen, welche die Grundlage für unsere CJT-Rechnungen sowie

für die Diskussion der Infrarot-Divergenzen bilden. In Kapitel 9 diskutieren wir den sogenannten

Pfadintegral-Kollaps und schlagen eine Lösung für das Problem vor. In Kapitel 10 präsentieren

wir unsere Schlussfolgerungen sowie einen Ausblick. Da wir unsere Darstellung im Rahmen einer

Diplomarbeit so pädagogisch wie möglich halten wollten, haben wir uns entschieden, ausgiebigen

Gebrauch von Anhängen zu machen. Die Anhänge A-H sind für Studierende gedacht, die mit

gewissen Konzepten nicht vertraut sind. Wir verweisen innerhalb der Arbeit explizit auf diese

Anhänge, um die Verbindung zwischen unserer Arbeit und dem zugrundeliegenden Hintergrund

herzustellen.
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Preface

Outline

Chapter 1 contains the general background of our work. We briefly discuss important aspects of

quantum chromodynamics (QCD) and introduce the concept of the chiral condensate as an order

parameter for the chiral phase transition. Our focus is on the concept of universality and the

arguments why the O(4) model should fall into the same universality class as the effective La-

grangian for the order parameter of (massless) two-flavor QCD. Chapter 2 pedagogically explains

the CJT formalism and is concerned with the WKB method. In chapter 3 the CJT formalism is

then applied to a simple Z2 symmetric toy model featuring a one-minimum classical potential.

As for all other models we are concerned with in this thesis, we study the behavior at nonzero

temperature. This is done in 1+3 dimensions as well as in 1+0 dimensions. In the latter case we

are able to compare the effective potential at its global minimum (which is minus the pressure)

with our result from the WKB approximation. In chapter 4 this program is also carried out

for the toy model with a double-well classical potential, which allows for spontaneous symmetry

breaking and tunneling. Our major interest however is in the O(2) model with the fields treated

as polar coordinates. This model can be regarded as the first step towards the O(4) model in

four-dimensional polar coordinates. Although in principle independent, all subjects discussed

in this thesis are directly related to questions arising from the investigation of this particular

model. In chapter 5 we start from the generating functional in cartesian coordinates and carry

out the transition to polar coordinates. Then we are concerned with the question under which

circumstances it is allowed to use the same Feynman rules in polar coordinates as in cartesian

coordinates. This question turns out to be non-trivial. On the basis of the common Feynman

rules we apply the CJT formalism in chapter 6 to the polar O(2) model. The case of 1+0 di-

mensions was intended to be a toy model on the basis of which one could more easily explore the

transition to polar coordinates. However, it turns out that we are faced with an additional com-

plication in this case, the infrared divergence of thermal integrals. This problem requires special

attention and motivates the explicit study of a massless field under topological constraints in

chapter 8. In chapter 7 we investigate the cartesian O(2) model in 1+0 dimensions. We compare
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the effective potential at its global minimum calculated in the CJT formalism and via the WKB

approximation. Appendix B reviews the derivation of standard thermal integrals in 1+0 and

1+3 dimensions and constitutes the basis for our CJT calculations and the discussion of infrared

divergences. In chapter 9 we discuss the so-called path integral collapse and propose a solution of

this problem. In chapter 10 we present our conclusions and an outlook. Since we were interested

in organizing our work as pedagogical as possible within the narrow scope of a diploma thesis,

we decided to make extensive use of appendices. Appendices A-H are intended for students who

are not familiar with several important concepts we are concerned with. We will refer to them

explicitly to establish the connection between our work and the general context in which it is

settled.

Of central importance in the whole thesis is the concept of the generating functional and the

partition function, respectively. In appendix A.1 we present the general context in which the

partition function appears and its general definition within the operator formalism of second

quantization. Alternatively, this definition can be rewritten via the path integral formalism. We

restrict ourselves to scalar fields in this case. Furthermore, the understanding of the CJT formal-

ism is based on knowledge about n-point functions (connected or disconnected, in the presence

or in the absence of sources) and the context in which they arise. In appendix A.2 we give their

definition taking account of the different modifications in which these quantities occur in this

thesis, i.e., scalar field theory at zero or at nonzero temperature, respectively. From a didactic

point of view, we believe that it is helpful if one can establish a relation between special cases and

a general framework. Therefore, in appendix A.3 we want to keep an eye on the overall picture.

We discuss the general concept of the generating functional for correlation functions, which also

covers the partition function. We also briefly comment on the general concept of Feynman rules

and we clarify the meaning of the terms Green’s function and propagator.

Notation

Sometimes we abbreviate Quantum Field Theory as QFT and Statistical Quantum Field Theory

as SQFT.

In all vacuum expectation values, we assume the fields to be time ordered (Euclidean time or-

dered), so that we can omit the time order operator T̂ .

In analogy to “space-time”, we occasionally use the term “space-inverse temperature” in SQFT.

We refer to the field variables as internal degrees of freedom, whereas to space-time resp. space-

inverse temperature as external degrees of freedom.

We speak of 1 +D dimensions, where D is the number of spatial dimensions and the 1 refers to

time or, respectively, to temperature.

We use natural units where ~ = c = kB = 1. However, sometimes we write out ~ explicitly to

indicate where it enters.

Ω denotes either spatial volume (to avoid confusion with the effective potential V ) or the grand-

canonical potential (which however appears only few times). In appendix G, spatial volume is

exclusively denoted by V and the grandcanonical potential by Ω.

In the discretized version of path integrals, we use square brackets to divide the expression for

the path integral into individual products. A product sign in such a bracket refers to the indices
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in this bracket only.

At nonzero temperature we work in the imaginary-time formalism (Matsubara formalism) and

use both, the Euclidean as well as the pseudo-Minkowskian notation. We explain our notation

in great detail in section 2.2, appendix B and appendix E.

In the case of the path-integral representation for the partition function, we use the symbol
∮

to remind of the periodic boundary condition and the additional integration in the discretized

version of the path integral.
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Laß den Anfang mit dem Ende sich in

Eins zusammenzieh’n.

(Johann Wolfgang von Goethe)

Chapter 1

Introduction

Preliminaries

The focus of this diploma thesis is on the O (N) model, which is an effective theory of QCD.

Effective theories of QCD have their origin in the general theory of the strong interaction, Quan-

tum chromodynamics (QCD), which describes quarks and gluons and the particles built out of

the latter, the hadrons. Whereas appendix H summarizes the mathematical steps leading to the

perturbative expansion of QCD (Perturbative QCD) and SQCD (Statistical Quantum chromo-

dynamics, i.e., QCD at nonzero temperature), this introduction will present important facts on

a less detailed level. The section on QCD, SQCD and lattice QCD reviews asymptotic freedom

of QCD on a rather intuitive level in order to motivate the necessity of effective theories for

the nonperturbative regime. We will also point out the reason for the different behavior of the

renormalized coupling constant of QCD and QED (Quantum electrodynamics, i.e., the theory

describing electrically charged particles and photons). To put it in a nutshell, QCD is too com-

plicated to be solved. Instead, approaches for the nonperturbative regime have been developed,

which can be divided into two main classes. On the one hand we have lattice QCD, on the

other hand effective theories of QCD (as for example Chiral Perturbation Theory or the Nambu-

Jona-Lasinio model). The latter treat hadrons as effective particles, whose inner structure is not

evident.

Throughout this work, the notion of vacuum will play an important role. Let us give the definition

in Quantum Field Theory (at nonzero temperature):

definition 1.1 (vacuum) The vacuum, at a certain temperature T, is the state of lowest

energy. If there exist more states of lowest energy, the system has accordingly many different

vacua, which are said to be degenerate.

Note that the vacuum state changes with rising temperature. The explanation is that, the

higher the temperature, the higher the probability for vacuum fluctuations, i.e., particle and

anti-particle are produced and immediately annihilated. Also note that the vacuum state |Ω〉
of a theory with interactions differs from the vacuum state of the free theory, which is usually

denoted by |0〉. Although there might exist degenerate vacua, one has to choose one of them as

the real vacuum if one wants to apply perturbation theory. In principle, all vacua could be equally
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suited to describe physics. Similarly, gauge transformations leave physics invariant. However, in

order to make quantitative predictions one has to fix the gauge. In our models, the vacua are

identified with the global minima of the effective potential, a quantity which will be introduced

later. Identifying the degrees of freedom with physical particles, the choice for the real vacuum is

dictated by the quantum numbers of the vacuum (JPC = 0++, i.e., total spin J is zero, whereas

parity P and C-parity C are positive).

QCD, SQCD and lattice QCD

Asymptotic freedom

The higher the energies one reaches in accelerators, the higher the square of the four-momentum

transfer Q2 in scattering processes, and therefore the smaller the length scale one is able to re-

solve. For instance,
√
Q2 has to be large compared with ~/R in order to see the constituents of

a nucleon with radius R. Perturbative QCD only makes sense at very high energy scales (in the

so-called perturbative regime), because for small momentum transfers or large distances (in the

nonperturbative regime) the coupling constant in which we expand becomes large. Apart from

the number of colors, Nc, and the number of flavors, Nf , the coupling constant is the only free

parameter of the theory, i.e., has to be measured by experiment. However, before we can measure

anything, QCD has to be renormalized. This leads from the bare coupling constant, gS, to the

renormalized coupling constant, gS,R(Q). The renormalized coupling constant can be measured

in experiments and depends on the four-momentum transfer or, respectively, on the energy scale

µ.

The so-called Feynman rules prescribe how to write a Feynman diagram in terms of an explicit

analytical expression, and how to express quantities in terms of Feynman diagrams. The tech-

nique of Feynman diagrams can simply be regarded as a method how to handle perturbative

expansions in a convenient way. Moreover, each diagram has a specified physical interpretation.

The external lines can be interpreted as the observable ingoing and outgoing particles, whereas

the internal lines can be imagined as virtual particles. Where lines meet in a vertex an interaction

occurs. The internal (virtual) structure of a Feynman diagram determines a specific way how the

process defined by the external lines can take place. For example, the diagram

can be regarded as a single gluon exchange (internal line) between two quarks (two incoming

external lines and two outgoing external lines). An important quantity is the Lorentz-invariant

amplitude M, from which in turn all other quantities of interest (decay rates, cross sections,

and so forth) could be derived. In the case of the physical process of two quarks interacting

with each other, to lowest order in the coupling, M is given by the aforementioned diagram

(translated with the Feynman rules of QCD). The principle how to construct M is easy to re-

member. First, we have to draw all diagrams with external lines describing the physical process

under consideration, i.e., we have a diagram for each way the interaction might take place. M
is then nothing else but the sum of all diagrams (each translated with the Feynman rules). Note

that this picture coincides with the path integral approach. So to speak, all information about

a process is included in its Lorentz-invariant amplitude, which is a superposition due to the

Feynman rules of all possible ways the process can take place. Likewise, the expression for the
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generating functional can be regarded as a sum over the weight of all possible paths the system

is allowed to follow. For higher-order diagrams, the internal structure becomes more and more

complicated. Some of them only yield negligible contributions to M, however others are infinite

and require renormalization. An important role is played by diagrams with gluon loops, as for

example . Each of them can be imagined as gluon exchange between

quarks, in which the gluon gives rise to the production of virtual gluons (gluon loops) from the

vacuum. Those graphs result from the gluonic self-interaction vertices and are responsible that

(for 11Nc > 2Nf ) the measured renormalized coupling constant will decrease with increasing

momentum transfer or smaller distance scale, as one can see from equation (1.3) below. This

effect is known as asymptotic freedom of QCD.1 In contrast to that, the renormalized coupling

constant for QED increases with momentum transfer. This can be explained by the fact that

photons do not interact with each other in contrast to gluons. Whereas the gauge-field contribu-

tion − 1
4FµνF

µν in QED, where Fµν = ∂µAν − ∂νAµ is the electromagnetic field-strength tensor,

does not contain a self-interaction term for the gauge boson, this is the case in QCD. In general,

a non-Abelian gauge symmetry with commutation relations
[
ta, tb

]
= ifabctc for its generators

yields an additional term in the field-strength tensor,

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gSf

abcAb
µA

c
ν ,

allowing the gluons to interact with each other via a 3-gluon-vertex and a 4-gluon-vertex. Quarks

interact with each other only via a 2-quark-1-gluon-vertex, i.e., their interaction is mediated by

gluons. We will return to the discussion about the role of the gluonic self-interaction immediately

after some general remarks on renormalization.

Consider a certain Lagrangian before renormalization. It involves bare parameters, usually bare

masses and bare couplings. In the case of quantum field theories, one notices that some quantities

of interest calculated from the bare Lagrangian turn out to be infinite. The idea of renormaliza-

tion is to absorb these infinities, arising from divergent Feynman diagrams, into a redefinition

of the parameters. Let us first state the result of the renormalization procedure in general: the

Feynman rules have the same form before and after renormalization, only that one has to replace

the bare parameters by the measurable renormalized ones. For example, the Feynman rules for

QED have the same form before and after renormalization, but the bare coupling constant ge and

the bare mass me have to be replaced by the renormalized coupling constant ge,R and the renor-

malized mass me,R respectively. Of course the explicit calculation of diagrams is different after

renormalization, since the divergences have been absorbed. The rules how to treat the divergent

terms in a diagram can be derived from the renormalization approach. Let us explain in principle

how it works. We want to keep the discussion as abstract as possible. For a concrete example,

QCD, we refer for instance to Ref. [2]. Consider a Lagrangian L involving several bare fields and

bare parameters {p}. First, each of them is multiplied by its own renormalization factor (usually

1D.J.Gross, F.Wilczek and H.D.Politzer were able to show that Yang-Mills Theory is asymptotically free and

can be used to describe the theory of the strong interaction. Also A.Zee searched for asymptotic freedom. Two

months before Gross, Wilczek and Politzer published their work on asymptotic freedom, which was awarded with

the Nobel prize in 2004, A.Zee conjectured on the basis of representation theory of Lie algebras that there are

no asymptotically free quantum field theories in four dimensional space-time [1]. At that time he had not yet

examined Yang-Mills Theory, which he, however, planned to analyze next.
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denoted by the letter Z) to formally obtain the parameters {pR}, which one calls renormalized

parameters. Let us denote the Lagrangian one obtains by replacing in L the bare parameters

and bare fields by the new ones as LR. Carrying out the renormalization, the renormalized

parameters become functions of the four-momentum transfer Q, which will be explained later in

this section in the context of cut-off regularization. As we already discussed, the dependence on

Q, i.e., {pR(Q)}, is equivalent to a dependence on the energy scale µ, i.e., {pR(µ)}. Before we can

renormalize a theory, it needs to be regularized via a regularization scheme. The regularization

scheme does not affect the results after the renormalization has been carried out. For example,

in a cut-off regularization scheme one restricts the range of integration by introducing a cut-off,

which makes divergent integrals (divergent Feynman diagrams) finite. In the momentum-space

representation the cut-off is the upper limit for the absolute value of four-momentum transfer and

will be denoted by M in the following. Another possibility is to change the space-time dimension,

d = 4 − ǫ, which has the same effect. This scheme is known as dimensional regularization. In

the course of renormalization the original dimension will be recovered, i.e., ǫ → 0. So far we

basically discussed the formal framework, now comes the nontrivial part, which we only want to

sketch. The above mentioned renormalization factors can be calculated perturbatively in gR and

depend on ǫ. One can define an appropriate counter term Lagrangian LC , which consists of the

same terms as LR, only that in front of each term there is some function of the renormalization

factors. Let us denote the regularized version of LR by L
ǫ
R and the regularized version of LC

by L ǫ
C . LC is chosen such that

LR = lim
ǫ→0

(L ǫ
R + L

ǫ
C) , (1.1)

i.e., such that the infinite diagrams arising from limǫ→0 L
ǫ
R are exactly canceled by the diagrams

from limǫ→0 L ǫ
C . For dimensional reasons, performing the cancellation is inevitably accompanied

by introducing a renormalization scale, which can be interpreted as the physical scale to which

LR applies. With the dependence on the physical scale the renormalization group comes into

play, which is suited to encode the renormalization process in so-called renormalization group

equations for the renormalized parameters. We will comment on the renormalization group in a

separate paragraph.

Let us come back to the discussion of the gluonic self-interaction. In QED, the divergent di-

agrams containing electron-positron-loops enforce the introduction of a renormalized coupling

constant. Although the diagrams with quark-antiquark loops in QCD have the same effect as

those containing electron-positron loops within QED, the coupling constant for QCD does not

increase with momentum transfer. Instead it decreases due to the diagrams with gluon loops.

However, the way how the renormalized coupling is introduced is similar to QED, but one has

to take into account the graphs arising from the gluonic self-interaction. Even though we used a

special process (two quarks interacting with each other) to illustrate our discussion, also in gen-

eral the gluonic self-interaction causes the asymptotic freedom of QCD. As already mentioned,

the principal idea of renormalization is to absorb infinite contributions from diagrams into a

redefinition of the coupling constant. For each individual process in QCD, one is able to show

that exactly those diagrams (describing the process) which arise from the gluonic self-interaction

assure asymptotic freedom, i.e., that the renormalized coupling constant (1.3), see below, de-

creases with higher momentum transfer. How to absorb infinite contributions from diagrams
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into a redefinition of bare quantities can be understood representatively for a special case in

QED, electron-muon scattering. David Griffiths explains in chapters 7.9 and 9.4 of his book [3],

how to introduce a relation2 between ge, the cut-off M and ge,R as well as a formula for the

dependence of ge,R on Q, such that divergent contributions are absorbed into the redefinition.

In contrast to the aforementioned relation, the formula for the dependence on Q is in principle

generally valid in QED at every order in ge. Griffiths only neglects small contributions from

certain diagrams. In this so-called “leading logarithm approximation“ the dependence is given

by

αe,R(Q) =
αe,R(0)

1 − (αe,R(0)/3π) ln
(
Q2/m2

e,R

) , αe,R =
g2

e,R

4π
, αe,R(0) = αe =

1

137
=
g2

e

4π
. (1.2)

However, there is a way how to obtain the formula for the momentum dependence of the renormal-

ized coupling constant in a straightforward manner. So to speak, the intention of the discussion

above was to point out how virtual quantum fluctuations lead to a screening of the bare cou-

pling strength in the QED case, and to an antiscreening of the bare coupling strength in the

QCD case. As already suggested above, the general derivation uses the renormalization group

and is for example presented by Ryder in chapter 9.8 of his textbook [4]. We briefly discussed

that in the course of renormalizing QCD the bare coupling constant gS is replaced by gS,R(Q).

The dependence on Q results from the renormalization procedure itself and is determined by the

renormalization group equation Q2 ∂gS,R(Q)
∂Q2 = β (gS,R(Q)), i.e., if gS,R is measured at a certain

value for Q2, the values for all other points are predicted by this equation. Namely

αS,R(Q) =
αS,R(Q0)

1 + (αS,R(Q0)/12π)(11Nc − 2Nf) ln(Q2/Q2
0)
, αS,R =

g2
S,R

4π
. (1.3)

Note that we have αS,R(Q0) instead of αS,R(0), because αS,R(0) would be large, whereas we

have to refer to a point Q0 at which a perturbative expansion is justified. Only for those values

of Q2 where a perturbative expansion in gS,R(Q) is justified (1.3) is meaningful. This is because

the calculation is based on a perturbative expansion in the coupling constant, which breaks

down for large values. This means that in the infrared regime, i.e., small Q2, QCD in its most

general form cannot be examined via perturbative renormalization group methods. αS,R can be

measured for different four-momentum transfers or, respectively, for different energy-scales on

the basis of various processes, for which one is able to calculate certain observables depending on

αS,R. For a detailed review see [5]. The right panel of fig.1.1 shows results for a measurement of

αS,R at different centre-of-mass energies
√
s of a hadronic system which is produced in a decay

Z → hadrons+ γ. We can observe that the smaller
√
s, the larger αS,R =

g2
S,R

4π .

Lattice QCD

Note that although effective theories of QCD apply to the nonperturbative regime, perturbative

techniques are employed in these theories. Lattice QCD however, is a completely nonperturbative

technique established by Wilson [6]. All quantities of interest can be derived from the generat-

ing functional, so the idea is to compute the generating functional numerically on a Euclidean

2This relation defines the renormalized coupling constant. So to speak, the divergence hiding in the cut-off M

is absorbed into this definition. M → ∞ corresponds to ǫ→ 0 in dimensional regularization.
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space-time lattice. Note that one generally works in Euclidean space-time because in that case

no imaginary values have to be considered, which simplifies numerical calculations. If one wants

to consider the system at nonzero temperature T one has to replace L3 × τmax by L3 × 1/T .

The generating functional is a path integral, which is defined as continuum limit of its discretized

version. The continuous Euclidean space-time L3×τmax is replaced by a discretized lattice, which

consists of a finite number N3 ·Nτ of points (also called lattice sites) xµ = (aτ · l, a · i, a · j, a · k),
where a ≡ L/N is the distance between two lattice sites (also called lattice spacing) in a spatial

direction, and aτ ≡ τmax/Nτ the lattice spacing in the Euclidean time direction. In order to

obtain a discretized version of a path integral, the integrand is rewritten in discretized form,

such that the continuum limit (aτ → 0, a → 0) yields the continuous version of the integrand.

However, note that the discretized version is not unique.

Although the Lattice idea arises almost naturally from the definition of the path integral, the

details are highly nontrivial. Particularly, one has to figure out how to handle infinities which

would require renormalization in the continuum limit. Fortunately, the discrete lattice serves

as a nonperturbative regularization scheme. The ultraviolet cut-off regulating ultraviolet diver-

gences can be identified with the maximum momentum scale which is given by the inverse of

the smallest length-scale inherent to the system, the inverse lattice spacing a−1. The inverse

of the largest length-scale, (a · N)−1, in turn determines the minimum momentum scale, i.e.,

the infrared cut-off. In principle, in the perturbative regime, usual perturbation theory can be

applied using the lattice regularization. An advantage of lattice QCD is that we can start from

the Euclidean version of the generating functional (H.12), since in its discretized version we have

a finite number of gauge-field integrations. Hence, no ghost and gauge fixing terms have to be

introduced. On the other hand, one has to worry about what to do with the Grassmann valued

fermion fields. Fortunately, it is not necessary to do numerical calculations on the lattice with

Grassmann variables. The integrations over the fermionic fields can be carried out, so that no

Grassmann-valued fields remain. Another problem is that replacing derivatives by simple dif-

ference quotients costs much computation time. Apart from this, one should ensure that gauge

invariance is respected by the Lattice formulation. Wilson accounted for both difficulties by

associating gauge-fields with links connecting lattice sites. For details we refer to Ref. [7].

In practice, the Monte Carlo simulation, a numerical integration method based on probability,

is employed. Hereby different algorithms can be used (e.g. Metropolis algorithm, Lagevin al-

gorithm, Microcanonical algorithm) to improve the procedure. Nevertheless, these simulations

have statistical errors in addition to the systematic errors arising from the lattice discretization.

Recall that all thermodynamical quantities can be calculated from the Euclidean generating func-

tional at nonzero temperature (the partition function). Of particular interest are the quantities

related to the phase transition. A typical Lattice calculation, indicating a phase transition from

a confined to a gas-like state at a critical temperature Tc, is shown on the left in figure 1.1.
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Figure 1.1: left: energy density against temperature, taken from [8]; right: the data points H are

experimental results for the running renormalized fine structure constant αS,R =
g2

S,R

4π at different

centre-of-mass energies
√
s of a hadronic system which is produced in a decay Z → hadrons+ γ,

taken from [9].

Condensates and chiral symmetry

We now turn to a nontrivial observation, which has not been yet completely understood. Let

us first introduce an important quantity, the so-called quark condensate3. It can be defined as

the correctly normalized 2-point function for ψp and ψq, where q and p are flavor indices. In the

case of QCD, the quark condensate in the absence of sources is given by 〈ψpψq〉0, where for the

definition of 〈 〉0 we refer to appendix H, that is to (H.24). Absence of sources corresponds to

vacuum. We have to distinguish the quark condensate in the presence of sources, 〈ψpψq〉, where

we do not set the sources to zero. Note that the term “vacuum expectation value in the presence

of sources” is somehow misleading, a better suited name would be “expectation value away from

the vacuum”. Note that in the case of SQCD we simply have to perform a Wick rotation,

t −→ t = −iτ , and to impose periodic (antiperiodic) boundary conditions on the (fermionic)

fields. The quark condensate, now depending on temperature, can be calculated, for example

in lattice QCD, as outlined above. The interesting point is that it vanishes around a critical

temperature, which corresponds to Tc as found in lattice calculations of the kind presented in

the left of figure 1.1). Furthermore, the critical temperature is closely related to Spontaneous

Symmetry Breaking (SSB) of chiral symmetry, which will be discussed in the following.

In the case of vanishing quark masses4, m = 0, the QCD Lagrangian possesses, apart from the

3The quark condensate is an example of a fermionic condensate, which is similar to the Bose-Einstein conden-

sate.
4As soon as m 6= 0, chiral symmetry is explicitly broken. More precisely, if all quark masses are equal,

mpq = mδpq , there is only a SU(Nf )V symmetry left (omitting the vector subgroup U(1)V , which does not

affect chiral dynamics, and assuming the axial U(1)A symmetry is broken explicitly by instantons). Whereas, if
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local SU(Nc) gauge symmetry, a global symmetry, the so-called chiral symmetry, which is given

by the chiral group U(Nf )r×U(Nf )l. That is, the Lagrangian is invariant under transformations

ψr,l −→ U r,lψr,l , U r,l ≡ exp


i

N2
f−1∑

a=0

αa
r,lTa


 ∈ U(Nf ) , (1.4)

where U r,l acts on ψr,l, given by

ψr,l ≡ P r,lψ , P r,l ≡ 1 + γ5

2
, ψ = ψr + ψl , (1.5)

i.e., L (ψr, ψl) = L (U rψr, U lψl). The T a denote the generators of U(Nf).5

Chiral symmetry is spontaneously broken by a nonvanishing quark condensate 〈ψpψq〉0 6= 0.

Spontaneous symmetry breaking means that, whereas the Lagrangian has a certain symmetry

(here U(Nf )r × U(Nf )l), the vacuum has not. This implies that if the expectation value of an

oberservable in the vacuum state (here 〈ψpψq〉0) is not invariant under the same symmetry, it

is spontaneously broken. Due to ψψ = ψ
l
ψr + ψ

r
ψl we can rewrite the quark condensate as

〈ψpψq〉0 = 〈ψl

pψ
r
q〉0 + 〈ψr

pψ
l
q〉0. In the literature the term “chiral condensate” can refer to both,

either to the quark condensate 〈ψpψq〉0 or to 〈ψl

pψ
r
q〉0. In the following however, we will call

Φpq ∼ 〈ψl

pψ
r
q〉 chiral condensate (in the presence of sources) and Φ0

pq ∼ 〈ψl

pψ
r
q〉0 chiral conden-

sate (in the absence of sources) respectively. Obviously, a (non-)vanishing quark condensate is

equivalent to a (non-)vanishing chiral condensate, so that both are equally suited to describe

the chiral phase transition, which explains the confusion of names in the literature. Note that

if we are in the chiral limit, m = 0, all quark flavors are equivalent, and therefore Φ0
pq = ϕδpq.

The chiral condensate still has a U(Nf )V symmetry6, Φ0 −→ UV Φ0UV † = Φ0, but is no longer

invariant under axial transformations, Φ0 −→ UAΦ0UA† 6= Φ0. Chiral symmetry is therefore

spontaneously broken by a nonvanishing Φ0.

Phase transitions

The order of a phase transition

Phase transitions can be divided into three categories. A phase transition can either be first-

order, crossover or second-order, which is the border case between first-order and crossover. In

this work, the aim of numerical calculations is to determine masses and condensate, as well as

the so-called effective potential at nonzero temperature. From the evolution of the effective po-

tential and the condensate with temperature, we are able to determine the order of the phase

transition. The theory of phase transitions is discussed in a large amount of textbooks: some

mu ≃ md ≪ mi (where i = s, c, t, b), what remains is the approximate SU(2)V isospin symmetry.
5For Nf = 2 the generators are given by the unit matrix and the Pauli matrices.
6U(Nf )r × U(Nf )l is isomorphic to U(Nf )V × U(Nf )A. Note that the group elements UV = exp

`

iαa
V Ta

´

resp. UA = exp
`

iγ5αb
ATb

´

do not act on independent “vector” resp. “axial” parts, as one might misinterpret the

notation. Instead: ψ −→ exp
`

iαa
V Ta

´

exp
`

iγ5αb
ATb

´

ψ, where αa
A ≡ (αa

r − αa
l )/2 and αa

V ≡ (αa
r + αa

l )/2. Since

ψ
l
= ψl†γ0 −→ ψl†UV †γ0 = ψ

l
UV †, we conclude that the matrix Φ0 transforms as Φ0 −→ UV Φ0UV †.
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of them deal with classical thermodynamics, others with advanced topics in condensed matter

or Statistical Quantum Field Theory. Since the relations between thermodynamic quantities are

universally valid (for details see appendix A.1), also the classification of phase transitions used in

SQFT is the same as in statistical mechanics. However, note that the thermodynamic potentials,

namely the internal energy U(S, V, {Qi}), the Helmholtz free energy F (T, V, {Qi}), the enthalpy

H(S, p, {Qi}), the free enthalpy G(T, p, {Qi}) and the grandcanonical potential Ω(T, V, {µi}),
depend on conserved charges Qi or on the associated chemical potentials µi. Whereas in the case

of statistical mechanics the Qi can be identified with particle numbers, the charges represent

conserved quantum numbers in SQFT. Different phases are distinguished from each other by the

criterion that certain observables (called order parameters) have different values across the phase

transition. Density is an example for the distinction between gas, fluid and solid, whereas mag-

netization is one for the differentiation of para- and ferromagnetism. The classification of phase

transitions goes back to Ehrenfest. The order n of a phase transition is defined as the lowest

order partial derivative of a thermodynamic potential with respect to its natural variables, where

at least one of the derivatives is discontinuous at the phase transition.

Figure 1.2: Compare with [10].

According to what one knows about phase transitions, it is safe to say that there is a rare feature,

which clearly distinguishes second from first order: self-similarity. Consider the liquid-gas phase

transition of boiling water. At low temperature and pressure it is of first order, but at very high

temperature and pressure there is no distinction between gas and liquid. This means that the

critical line ends in a critical point where the phase transition is of second order. Let us quote

John Baez [11]: Right at the critical point, something very cool happens: the system transforms

in a simple way under scaling! What does this mean? Well, if you get some water right at the

critical point, it looks “opalescent” like a moonstone. If you stare at it carefully, you’ll see a

bunch of liquid water droplets of all different sizes floating around in steam. However, if you

look closely at any of these droplets, you see it’s full of little droplets of liquid! It’s like a random

fractal: no matter how closely you look, you see the same thing. You can’t tell if you’re looking

at water droplets in steam or bubbles of steam in water, and there is no distinguished length
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scale...at least until you get down to the scale of atoms, that is.

The so-called correlation length ξ is a measure of the range over which behavior in one part of

the system influences behavior in another part. In the above example ξ can be regarded as the

maximum size of droplets. Accordingly, if a system undergoes a second-order phase transition,

its correlation length diverges at the critical point.

In the vacuum, for homogeneous systems (i.e., ∂
∂V ≡ 1

V ) and for vanishing chemical potentials,

the effective potential Veff (which we introduce later in chapter 2.1) is related to thermodynamics

via Veff = Ω
V = F

V = −p, where p is the pressure. T is a natural variable on which Veff depends.

As we will show in section 2.1, we are able to identify the order parameter (the condensate Φ)

with the global minimum of the effective potential Veff (φ). Note that in case of a first-order

phase transition the entropy S = −
(

∂F
∂T

)
V,{Qi} has a discontinuity at the critical temperature Tc.

Accordingly, due to Veff ∼ F , we can conclude from the shape of the effective potential about

Tc to the order of the phase transition. In the case of a first-order phase transition, Φ(T ) has a

discontinuity at Tc. Figure 1.2 shows examples for a 1st order and a crossover phase transition.

The characteristic feature of a crossover is the continuous transition of the global minimum Φ

from a nonzero value to zero. In the case of a first-order phase transition, we have a discontinuous

jump from some nonzero value to zero.

After about a month of work I was

ordered to write up my results, as a result

of which I swore to myself that I would

choose a subject for research where it

would take at least five years before I had

anything worth writing about.

(Kenneth G. Wilson [12])

The renormalization group

The domain of applicability for the renormalization group is a wide one. The method in general

allows to study a system at different distance scales and energy scales, respectively. All results

derived from a renormalized theory depend on the energy scale µ at which the measurement

takes place. Consider for example (1.3), which follows from a renormalization group study and

describes how the renormalized QCD coupling constant depends on the scale. In this sense a

renormalized theory can be compared to an object examined under a microscope.

Note that the term renormalization refers to the approach of how to handle divergences arising

in quantum field theories. The method was developed initially for QED in the 1940’s and was

generalized later to other theories. The renormalization procedure is inevitably accompanied by

the introduction of an energy scale µ at which the cancellation of the divergences is performed.

The renormalized Lagrangian for this energy scale describes the system at µ. Quantum field

theories are usually plagued with ultraviolet divergences arising at high energy scales, hence the

renormalization group treats the ultraviolet behavior in this case. Regarding critical phenomena

and universality, which will be discussed in the following paragraph, the renormalization group
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is concerned with the infrared behavior. The general framework however, established by Wilson,

is the same. The abstract formulation of the renormalization group merges two concepts, which

were treated independent from each other until Wilson recognized their relation. The first one

we already discussed: there is a set of transformations describing the dependence of the renor-

malized parameters on µ, arising naturally from the renormalization of quantum field theories.

This concept constitutes the renormalization group in a field-theoretical context. The second

concept was established by Kadanoff. Initially, one tried to explain the empirical phenomenon

of universality with the help of mean-field theory. In the course of these studies, Kadanoff devel-

oped a prototype of the renormalization group, the so-called block-spin renormalization group. It

originally referred to a simple model, the Ising model, which involves spin variables taking values

±1 on a spatial lattice. This approach was suitable to describe the Ising model at large distance

scales and was a first step towards explaining universality. The close relationship between critical

phenomena and Quantum Field Theory can be understood from the fact that partition functions

of classical statistical physics in four spatial dimensions have basically the same mathematical

form as generating functionals of Euclidean Quantum Field Theory. By means of a perturbative

expansion in the coupling constant(s) and ε, defined by D = 4 − ε, one is able to obtain the

physical case of three spatial dimensions by setting ε to 1 at the end of the calculation, where one

should not confuse this ε with the ǫ = 4 − d from dimensional regularization. This explains why

it is possible to use renormalization group methods from Quantum Field Theory also in classical

statistical physics, even though both theories have different physical content.

Let us now discuss the renormalization group in its abstract form, which is necessary to under-

stand what universality has to do with the renormalization group. For further details we refer

to [12], [13], [14] and [15].

Consider a system at length scale L0, described by the Lagrangian L0 or, equivalently, by the

Hamiltonian H0. Let the operator Rb describe how the Hamiltonian changes, when we increase

or decrease the intrinsic length scale L0 by a factor b, i.e., L0 → L0 · b ≡ Lb:

RbH0 = Hb . (1.6)

The Hamiltonian Hb characterizes the system at length scale Lb. Note that decreasing the length

scale corresponds to increasing the energy scale. The set of all Rb’s constitutes the so-called

renormalization group:

{Rb , 0 < b <∞} . (1.7)

Of course, it would be difficult to specify Rb for arbitrary b. Therefore the idea is to perform

such a transformation in infinitely many infinitesimal steps:

H0 −→ H1 −→ · · · −→ HN−1 −→ Hb , N → ∞ . (1.8)

Since infinitely many infinitesimal steps yield the same result as a single transformation, the

operators Rb are indeed group elements of a continuously connected group. Because the Hamil-

tonian changes not much under an infinitesimal change of scale (the how is of course important),

in principle one is able to take account of this change quantitatively to obtain a continuous renor-

malization group flow among Hamiltonians with different intrinsic length scales. Abstractly, one

can consider a space S consisting of all kinds of Hamiltonians H . In general there will be points
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(a) Qualitative example of an infrared fixed point, parameter

space, p1-p2 plane.

(b) Qualitative example of an infrared

fixed point.

Figure 1.3: Renormalization group flow.

in S which are continuously connected with others via renormalization group transformations.

Of course, regarding explicit calculations one has to parametrize the Hamiltonians in S. For the

moment however, we want to keep the discussion general.

If the Hamiltonian H converges towards H ∗ when lowering the energy scale µ, the Hamiltonian

H ∗ is called an infrared fixed point Hamiltonian or only infrared fixed point. Similarly, an ultra-

violet fixed point is a fixed point when increasing the energy scale. A fixed point can either be

stable or unstable. Consider the space S consisting of all possible Hamiltonians as depicted in

figure 1.3(b). Changing the energy scale, a Hamiltonian HA corresponding to a system at some

scale will move along a flow line. If all flow lines in the neighborhood of a point H ∗ converge

in this point, while all Hamiltonians in the neighborhood flow towards H ∗ when lowering the

energy scale µ, then H ∗ is called a infrared stable fixed point. However, there are degrees of

stability and instability, respectively. One can imagine cases where this defining condition is

violated in certain directions, consider for instance H2 in figure 1.3(b). Whereas it is stable in

some directions, it is not in others. One can classify the degrees of instability of a fixed point

via the number of its so-called relevant operators (see below). More precisely, one defines an

n-unstable fixed point as a fixed point with n relevant operators. Consider a Hamiltonian which

is very close to H ∗, i.e.,

H = H
∗ + ∆H . (1.9)

If one defines a linear operator L∗ via

∂

∂t
∆H ≡ L∗(∆H ) +O(∆H

2) , t ≡ − lnµ , (1.10)

one can expand ∆H in terms of the eigenoperators O of L∗:

∆H =
∑

n

hnOn . (1.11)
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The eigenoperators which correspond to eigenvalues ln with positive real part are called relevant

operators. Of course, the larger the space S one considers, the more complicated the flow structure

or renormalization group flow. In principle there can exist arbitrarily many fixed points and

arbitrarily complicated flow patterns. In practice one constrains the space of consideration to a

sensible subspace of Hamiltonians.

Now consider a concrete Hamiltonian H or Lagrangian L , such as for instance (1.42) or (1.21)

below, instead of abstract points in some topological space. The abstract space S is now the set

of all Lagrangians which are parametrized by L . For example, the Lagrangians parametrized by

(1.42) constitute a subspace of the set of Lagrangians parametrized by (1.31). Let the Lagrangian

L contain a set of parameters {p} = (p1, p2, ..., pl). The renormalization group flow depicted in

figure 1.3(b) of course implies a renormalization group flow in the parameter space, as illustrated

in figure 1.3(a) for the p1-p2 plane. The renormalization group approach indeed implies a coupled

system of continuous renormalization group equations for the set of parameters {p}:

βi({p}) = µ
∂pi

∂µ
, i = 1, ..., q , (1.12)

γi({p}) ∼
µ

pi

∂pi

∂µ
, i = q + 1, ..., l , (1.13)

where we divided the set of parameters into coupling constants, p1, · · · , pq, and others, usually

field renormalization factors and masses, pq+1, · · · , pl. The letter β is usually reserved for renor-

malization group functions corresponding to coupling constants, and the system of equations

for the βi’s can be solved separately. Each γi is usually called anomalous dimension for the

parameter pi. If an infrared fixed point H ∗ (or L ∗ respectively) exists, the set of parameters

will flow into the corresponding infrared fixed point {p∗} in parameter space when decreasing

µ continuously. Hence, infrared fixed points are determined by βi
!
= 0 (and γi

!
= 0). This is

illustrated in figure 1.3(a) for the p1-p2 plane. If all parameters p∗i are zero, one speaks of a

trivial infrared fixed point. Inserting {p∗} into the ansatz L yields the Lagrangian describing

the system at the critical point.

In principle one can study the renormalization group flow for every renormalizable Lagrangian.

The parameters determined by the renormalization group equations (1.12)-(1.13) at some scale

µ are the physical (renormalized) parameters. Inserting them into the ansatz L from which one

has derived the equations (1.12)-(1.13), one obtains the physical (renormalized) Lagrangian de-

scribing the system at the scale µ. The information how to treat divergences arising in quantum

field theories is encoded in (1.12)-(1.13). It is important to understand that temperature T and

energy scale are two different concepts. Consider for example a nucleus with a diameter of about

10−14m. To measure the diameter one has to use electrons of about 100MeV , i.e., the energy

scale is high. However, the temperature of a nucleus in its non-excited state (ground state) is

always zero. For statistical systems, a flow pattern such as depicted in figure 1.3(a) looks different

for different values of T . Consider again (1.8). We have not discussed how to construct such

transformations. Loosely speaking, step by step one integrates out the short-range fluctuations in

the partition function or, respectively, in the generating functional. Because the partition func-

tion depends on T , the flow pattern also does. In the context of critical behavior, it was Wilson’s

idea that the critical temperature Tc is determined by the appearance of an infrared fixed point.

This becomes plausible from the picture we gave of a second-order phase transition. Right at Tc

23



the system becomes scale invariant, i.e., the Lagrangian which describes the system at Tc does

not change if we further decrease µ. This corresponds to βi
!
= 0 (and γi

!
= 0). Of course, there is

a maximal value for µ up to which the system looks scale invariant. Beyond this maximal value

the length scale is so small that one resolves the microscopical structure of the system. In fact,

a whole “universality class” of microscopic structures is suited to generate the same picture at

large enough length scales. In the context of critical behavior all Lagrangians which flow into the

same infrared fixed point are therefore believed to belong to the same universality class. In this

sense the parameter sets (p1, p2) shown in figure 1.3(a) define Lagrangians which belong to the

same universality class. The original, phenomenological definition of the term universality class

will be introduced in the following section.

Universality

In this thesis we consider systems in local thermal equilibrium and, accordingly, the static critical

behavior. When we speak in the following of universality classes, we refer to static universality

classes. Dynamical universality classes apply to systems in nonequilibrium systems, which we do

not discuss.

It is an empirical fact that in case of second-order phase transitions the temperature dependence

of many thermodynamic observables becomes very simple near the critical temperature Tc and

depends only on general properties of the system. For example, near Tc, certain thermodynamic

observables A often behave like

A (ǫ) ∼ ǫp , ǫ ≡ T − Tc

Tc
. (1.14)

The dependence on T is “universally” characterized by the “critical exponent” p. There exist sev-

eral relations involving critical exponents, characterizing the behavior of certain thermodynamic

quantities around Tc. We want to state some important ones related to standard universality

classes in the most common notation:

C ∼ (−ǫ)−α
, for T

<−→ Tc , (1.15)

χT ∼ (−ǫ)−γ
, for T

<−→ Tc , (1.16)

ξ ∼ |ǫ|−ν , for T ≈ Tc , (1.17)

φ ∼ (−ǫ)−β , for T
>−→ Tc . (1.18)

where C is the specific heat, χT the transverse susceptibility, ξ the correlation length, and φ an

order parameter for the phase transition. The critical exponents are related via

α+ 2β + γ = 2 , (1.19)

α = 2 −Dν , (1.20)

where D is the number of spatial degrees of freedom. For more differentiated presentations we

refer to [15], [16], [17]. The astonishing observation is that the values of the critical exponents

are equal for a large class of systems, which share certain general properties. Although the phe-

nomenon itself was known earlier (see [18] for a review), Griffiths was the first to specify these

properties. Griffiths basically looked at several simple (quantum) statistical mechanical models,
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such as for example the Ising model or the Heisenberg model. These models have in common

that they are defined on a D-dimensional spatial lattice. The comparison of theoretical esti-

mates for critical exponents led Griffiths to the conclusion that these predominantly depend on

1) the lattice dimensionality, 2) the range of interaction and 3) symmetry properties of the order

parameter for the phase transition [19]. This postulate is the prototype of the so-called “univer-

sality hypothesis” and refers exclusively to second-order phase transitions. Generally speaking

it states that certain characteristics of a system (not necessarily defined on a lattice, although it

is always possible to discretize space-time) near a second-order phase transition only depend on

few properties7. Systems or quantities which possess the same critical exponents are said to be

in the same universality class. Ten years later it became clear that at least four properties, in the

following referred to as essential, qualitative features (E.Q.F.’s), are necessary (not sufficient!)

to characterize a universality class: 1) the spatial dimensionality D of the system, 2) the number

of components of the order parameter, 3) the range and angular dependence of the interaction

and 4) the symmetry properties of the order parameter. Meanwhile, the connection between

critical phenomena and the renormalization group had been found, allowing an explanation of

universality [20] (compare with the later review [12]). However, as Bruce points out, it was not

possible so far to rigorously prove the universality hypothesis with the help of the renormaliza-

tion group [21]. The above criteria 1)-4) were formulated in [21] by Bruce (also compare with

the formulation by Amit in [22]) and have the character of inductive generalizations. Apart

from a few topological considerations (see for instance [20]), only a restricted class of models

was taken into account regarding their derivation. Nevertheless, their above presented abstract

formulation has survived subsequent investigations of more advanced models, and nowadays it

is believed that all systems in nature should belong to one of a comparatively small number of

universality classes. According to [23] two specific Hamiltonians are enough to comprise these

universality classes, namely the so-called Q-state Potts model and the n-vector model. The Ising

model, the XY-model and the Heisenberg model are for example special cases of the n-vector

model. Both models are defined on a lattice, however in principle field theory is included via

the continuum limit. The further specification of the E.Q.F.’s in a general context is still on-

going work. In particular, consider a field-theoretical model, which in first place is defined in

continuous space-time. We can discretize space-time to obtain its lattice version, but there is

at least one problem relevant regarding universality: the continuous symmetry of the system is

in general broken on the lattice. For example, one does not have a really satisfactory lattice

formulation of QCD that is chirally symmetric in the chiral limit (vanishing quark masses) [7].

Therefore also lattice results regarding the justification of the O(4)-model as an effective theory

have to be justified with precaution. Particularly condition 3) has not been further specified from

a rigorous standpoint, although it is widely believed that in case of continuous symmetries only

infinitesimal symmetry transformations of the order parameter play a role regarding universality.

This point of view implies that only the Lie algebra (the group elements infinitesimally close to

the identity) corresponding to the symmetry of the Lagrangian is important.

Using the renormalization group as a tool, it is possible to calculate critical exponents (see for

example chapter 10 of [17]). Generally speaking, the critical exponents follow from the investi-

gation of the renormalization group flow near the infrared fixed point which corresponds to the

7Note that in general the critical temperature is different for two models in the same universality class.
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critical temperature Tc. In principle, one can now calculate critical exponents for different kinds

of Lagrangians, in order to find out how their values are related to general properties of the

Lagrangians. Moreover, one could analyze the topological structure of the renormalization group

flow to find out to what extent the critical exponents depend on it. Hence, the renormalization

group approach allows to check and to improve the universality hypothesis. Using the words of

Bruce, it is a conjecture largely substantiated by explicit calculation that two systems fall into

the same universality class, if they both approach the same infrared fixed point. Furthermore,

it is suggested from such calculations that the above listed E.Q.F.’s predominantly determine

the renormalization group flow. In order to decide on the basis of (1.12)-(1.13) whether two

Lagrangians LA and LB fall into the same universality class, one has to analyze (1.12)-(1.13)

for a Lagrangian L which completely parametrizes both LA and LB. If exactly one stable

infrared fixed point exists in the parameter space of L , and LA as well as LB lie on a flow

line leading towards this point, then both fall necessarily into the same universality class. It is

possible to determine the stability properties of an infrared fixed point by looking at the eigen-

values of the stability matrix ∂βi

∂pj
. Again, these conclusions are restricted to those directions

in the renormalization group flow which are parametrized by the Lagrangian under considera-

tion. Recall that universality refers to second-order phase transitions. For a long time it has

been taken for granted that the absence of a nontrivial infrared stable fixed point implies a

first-order phase transition, and conversely that the existence of a nontrivial infrared stable fixed

point implies a second-order phase transition. Meyer-Ortmanns objects that there may be re-

gions in the coupling parameter space where flow lines do not lead to the infrared fixed point [24].

Effective models for the QCD order parameter

In principle, there is no strict regulation whether a model can be regarded as a reasonable

candidate for an effective theory of QCD or not. Some models are proposed more or less ad hoc,

on grounds of properties they have in common with QCD. The question is which properties of

QCD are crucial for the results one intends to obtain. If one is interested in the behavior of the

QCD chiral condensate in the region where a phase transition from spontaneously broken chiral

symmetry to the restored phase takes place, the search for an effective Lagrangian for this order

parameter is principally limited to candidates featuring spontaneous symmetry breaking. As

already discussed, chiral symmetry is spontaneously broken by a nonvanishing chiral condensate

Φ0. It has been shown that certain pairs of hadrons (named chiral partners) should have the

same mass, if both vacuum and Lagrangian are chirally symmetric. Being this not the case

at low temperature, at high enough temperature and density one expects a restoration of chiral

symmetry (i.e., the chiral condensate should vanish), taking place at the transition from hadronic

matter to a gas-like state (quark-gluon plasma). In that way it is possible that the hot early

universe is symmetric, whereas variety in nature emerges from cooling the system below the

critical temperature. From Goldstone’s theorem8 we expect massless Goldstone bosons in the

8Goldstone’s theorem states that if a continuous and global symmetry is spontaneously broken, there have to

be massless particles in the spontaneously broken theory, exactly as many as there are broken generators. In the

case of a spontaneously broken continuous gauge (i.e., local) symmetry one has to be careful. Higgs’ theorem
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spontaneously broken phase. However, note that there is an ongoing discussion concerning the

question if the phase transition from confinement to deconfinement is really accompanied by a

chiral phase transition and at which temperature they take place (see for instance [25]).

According to Wilson, there is a more rigorous point of view. In the early days of renormalization

the cut-off regularization was more or less regarded as a formal approach. As already mentioned,

the cut-off M is sent to infinity in the course of renormalization. Wilson’s interpretation of the

renormalization group equations allows for a physical interpretation of M . There is an upper

limit for the energy scale µ of a renormalized theory, beyond which the renormalized Lagrangian

is not suited to describe physics. As already discussed, this corresponds to an upper limit M

for the absolute value of four-momentum transfer. In the case of theories which are part of the

Standard Model, M is extremely large. This explains why it is possible to renormalize a theory in

the limit M → ∞. However, in the context of Wilson’s approach M remains finite. Performing

a Fourier decomposition of the fields, the partition function can be expressed as a path integral

over the Fourier modes of the fields, which are functions of the four-momentum K. Wilson’s idea

was to integrate out the modes with aM <
√
K2 < M , where 0 < a < 1. One obtains an effective

partition function with an effective Lagrangian, which is suited to describe physics for absolute

values of four-momentum transfers smaller than the effective cut-off Meff = aM . Choosing a

infinitesimally small, one can integrate out the fluctuations at high energy scales step by step,

which finally leads to the continuous renormalization group equations.

Chiral linear sigma model

The chirally invariant linear sigma model for 2 flavors, Nf = 2, is an effective model for the

QCD order parameter (i.e., the chiral condensate) of 2-flavor QCD. Assuming a very heavy

gluon mass, it can be obtained from QCD in a straightforward manner. This approach, called

“hadronization”, was proposed by Kleinert [26]. It leads to the Lagrangian

LΦ′ = Tr(∂µΦ′†)(∂µΦ′) +m2TrΦ′†Φ′ + λ1(TrΦ
′†Φ′)2 + λ2Tr(Φ

′†Φ′)2 , (1.21)

where Φ′ is the matrix with components Φ′
pq ∼ 〈ψl

pψ
r
q〉. Note that Φ′ differs from the later used

Φ simply by a trivial factor of
√

2 due to notation.

Furthermore one identifies:

Φ′ = (σ + iη)t0 + (~a0 + i~π)~t , Φ′† = (σ − iη)t0 + (~a0 − i~π)~t , (1.22)

where the ti are the generators of U(2), i.e., t0 is half the 2× 2 unit matrix, and the components

of ~t are half the Pauli matrices. Hence, we obtain for example

TrΦ′†Φ′ =
1

2

(
σ2 + η2 + ~a2

0 + ~π2
)
. (1.23)

The fields σ, a+
0 , a0

0, a
−
0 are identified with the scalar mesons, whereas the fields η, π+, π0, π−

are identified with the pseudoscalar mesons.

says: if a gauge symmetry is spontaneously broken, the gauge-field becomes massive and “eats up” the would-be

Goldstone boson.
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Alternatively, one can derive the Lagrangian LΦ′ in a less rigorous manner using a clever argu-

ment. Consider Φ′ as a complex Nf × Nf matrix. As already discussed, the QCD Lagrangian

for Nf flavors and vanishing quark masses is invariant under the chiral symmetry group

Gch ≡ U(Nf )r × U(Nf )l . (1.24)

LΦ′ is simply the most general renormalizable Lagrangian for a complex matrix field Φ′ invariant

under Gch [27].

Due to the isomorphisms

U(N)r ≃ U(1)r × [SU(N)/Z(N)]r , U(N)l ≃ U(1)l × [SU(N)/Z(N)]l , (1.25)

U(1)l × U(1)r ≃ U(1)V × U(1)A , (1.26)

we obtain the isomorphism

Gch ≃ U(1)V × U(1)A × [SU(Nf)/Z(Nf )]l × [SU(Nf )/Z(Nf)]r . (1.27)

The vector subgroup U(1)V corresponds to quark number conservation. It should not affect

the chiral phase transition, since it is not broken in the phase of spontaneously broken chiral

symmetry. Since Gch is a continuous symmetry, one believes that only its Lie algebra is important

regarding universality. Therefore the two discrete Z(Nf) symmetry groups can be omitted, so

that we are left with the subgroup of Gch which is relevant for the chiral phase transition:

Gf = U(1)A × SU(Nf )l × SU(Nf)r . (1.28)

Instantons explicitly break down the axial U(1)A symmetry to a discrete axial ZA(Nf ) symmetry.

Accordingly Gf boils down to

G
′
f ≡ Z(Nf )A × SU(Nf)l × SU(Nf )r , (1.29)

and accordingly, since Z(Nf)A is discrete, we are left with the symmetry group

Gr ≡ SU(Nf)l × SU(Nf )r (1.30)

relevant for the chiral phase transition in presence of the anomaly. According to [28], in four

dimensions the most general renormalizable U(Nf)l ×U(Nf )r Lagrangian for Nf > 3 is given by

LΦ =
1

2
Tr(∂µΦ†)(∂µΦ) +

1

2
m2TrΦ†Φ +

π2

3
g1(TrΦ

†Φ)2 +
π2

3
g2Tr(Φ

†Φ)2 , (Nf > 3) , (1.31)

whereas the most general renormalizable SU(2)l×SU(2)r invariant Lagrangian in the irreducible

parametrization for Φ is given by

LP =
1

2
Tr(∂µΦ†)(∂µΦ) +

1

2
m2TrΦ†Φ +

π2

3
g1(TrΦ

†Φ)2 , (Nf = 2) . (1.32)

This is a crucial point. In presence of the anomaly the group U(Nf)l × U(Nf )r would be too

large. One can use the [2, 2] representation of SU(2)l × SU(2)r to restrict the model to Gr. In

this case an irreducible parametrization of Φ is provided by

Φ = (σI2 + i~π · ~τ ) , (1.33)
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where I2 is the 2 × 2-unit matrix, ~τ are the Pauli matrices, and σ as well as ~π are real-valued.

In this case

Φ†Φ = (σ2 + ~π2)I2 ,

and therefore

(TrΦ†Φ)2 = Tr(Φ†Φ)2 .

According to Paterson [28], the renormalization group equations in parameter space within the

ε-expansion read

β1 = −εg1 +

[
1

3
(N2

f + 4)g2
1 +

4

3
Nfg1g2 + g2

2

]
, (1.34)

β2 = −εg2 +

[
2g1g2 +

2

3
Nfg

2
2

]
. (1.35)

Note that the factor 1/8π2 appears in Paterson’s equations (3.14) and (3.15) simply because he

uses a different notation. π2

3 gi in our notation corresponds to 1
4!ui in Paterson’s notation.

Paterson calculated the fixed points in parameter space for LΦ in case of Nf > 3 within the

ε-expansion:

~g∗triv ≡ (g∗1 , g
∗
2) = (0, 0) , (1.36)

~g∗H ≡ (g∗1 , g
∗
2) = (6ε/(2N2

f + 8), 0) . (1.37)

The latter one, ~g∗H , is infrared unstable and coincides with the infrared fixed point which one

encounters for the usual O(M = 2N2
f )-model

LO(M) =
1

2

M∑

i=1

∂µφi∂µφi +
1

4!
u

(
M∑

i=1

φ2
i

)2

. (1.38)

The corresponding infrared fixed point for LO(M) was calculated by Amit in [22] within the

ε-expansion:

u∗ =
6

M + 8
ε . (1.39)

In the case of LP for Nf = 2, however, Paterson argues that LP is equivalent to LO(M) with

M = 4, i.e., the usual O(4)-model. He also points out that the phase transition in the O(4)-model

is known to be of second order in 4 − ε (ε > 0) dimensions.

Note that in [29] Pisarski and Stein reproduce Paterson’s results (1.34) and (1.35) as well as

(1.36) and (1.37). They state that LΦ is the most general renormalizable Lagrangian also for

Nf ≤ 2 and that (1.37) becomes infrared stable when

Nf <
√

2 . (1.40)

In [27] Wilczek and Pisarski discuss the same system of equations, i.e., (1.34) and (1.35). We

want to point out a typo. They state that the infrared fixed point is stable for 0 < Nf <
√

2

with O(2Nf ) critical exponents, and they interpret the absence of infrared stable fixed points for
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Nf >
√

3 in the sense that the phase transition is of first order. For Nf = 1 this is indeed not

in contradiction with [22], since O(2N2
f ) = O(2Nf ) in this case. Note that LΦ as well as the

O(2)-model have indeed an order parameter with two components (for Nf = 1 Φ is a complex

number). Hence, the E.Q.F. which states that the number of components for the order parameter

has to be equal for two models in the same universality class is fulfilled. In [27] the equations

(5) correspond to (3) where Φ is a complex Nf ×Nf matrix. In this case, according to Paterson,

one has O(2N2
f ) instead of O(2Nf ). The authors do not state explicitly9 that LP for Nf = 2

is the most general renormalizable, irreducible Lagrangian with O(4) critical exponents. Also

if there exists an infrared stable fixed point for LΦ in case of Nf = 2, the above mentioned

E.Q.F. would not allow that it has O(2Nf ) critical exponents. Simply because for Nf = 2 LΦ

has an order parameter with 8 components, since Φ is a complex 2× 2-matrix. The 8 degrees of

freedom correspond to the 4 scalar and the 4 pseudoscalar mesons. The O(4)-model instead has

an order parameter with 4 components, where the 4 degrees of freedom are identified with the

chiral partners σ and ~π. Wilczek and Pisarski take account of this so-called U(1)A-anomaly by

adding the term

L
′
Φ = c

(
detΦ + detΦ†) (1.41)

to the Lagrangian, which ensures the explicit symmetry breaking. This implies that the system

of equations (1.34) and (1.35) is no longer valid. The authors however do not write down the

equations for this case, i.e., La ≡ LΦ + L ′
Φ. They discuss the influence of the anomaly on

a qualitative level. All their conclusions were summarized by Meyer-Ortmanns in [24]. Meyer-

Ortmanns also emphasizes that these conclusions are based a) on the assumption that the absence

of a stable infrared fixed point implies a first-order phase transition, and b) on the extrapolation

of the ε-expansion to ε = 1.10 Wilczek and Pisarski state that in presence of the anomaly, the case

of two massless flavors is special. Considering a temperature dependent anomaly strength, the

authors argue that since the η degree of freedom remains massive about the critical temperature,

the phase transition can be of second order with O(4) critical exponents, i.e., the O(4) model

can fall into the same universality class as LΦ + L ′
Φ. The argument itself is incomplete. Also

the ~a0 has to remain massive in order to fulfill the above mentioned E.Q.F. Only if all these 4

particles remain massive, the order parameter undergoes long-range fluctuations in only 4 of its

components. The massive 4 degrees of freedom could only undergo small fluctuations and are

not important regarding universality.

Let us sum up. Assume QCD for vanishing quark masses and in presence of the U(1)A-anomaly.

Then

1. the O(4) model, i.e., LO(4), falls into the same universality class as the Lagrangian describ-

ing the 2-flavor QCD chiral condensate,

2. the O(2) model, i.e., LO(2), falls into the same universality class as the Lagrangian describ-

ing the 1-flavor QCD chiral condensate,

if the QCD phase transition is of second order.

9Wilczek did that later in [30].
10In [31] Butti, Pelissetto and Vicari justify the extrapolation within a perturbative framework in which D is

fixed to the physical value, i.e., D = 3. The β-functions are computed to six loops.
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The O(N) model

We already motivated the investigation of the O(N) model. Now we want to focus on the model

itself.

Let us begin the discussion of the O(4) model with some important facts. First of all, let us

recall the definition of the orthogonal group:

definition 1.2 (orthogonal matrix and symmetry group O(N))

• A matrix Q ∈ RN×N with orthonormal column vectors (u∗1, ..., u∗N) is said to be orthogo-

nal.

• The set of all orthogonal (N ×N)-matrices Q is a representation of the orthogonal group

O(N).

Group elements Q ∈ O(N) have the following properties:

• Q−1 = QT , |detQ| = 1 , where T denotes the transpose.

• The Euclidean product of vectors is invariant: (Q~u) · (Q~v) = ~u · ~v .

• The Euclidean norm is invariant: |Q~u| = |u| .

The group O(N) is actually larger than necessary to cover all rotations in N -dimensional Eu-

clidean space uniquely. The set of all group elements with determinant +1 are sufficient for this

and form a group, the special orthogonal group SO(N).

Regarding the discussion of the O(4)-model in the literature, there is a certain confusion concern-

ing isomorphy. SU(2) × SU(2) is only homomorphic to SO(4), but locally isomorphic because

the generators are the same. Instead, an isomorphism is given by SU(2)×SU(2)/Z(2) ≃ SO(4)

(see page 232 of [32]). Accordingly we have the isomorphism Z(2) × SU(2) × SU(2) ≃ Z(2) ×
SO(4) × Z(2). Note that Z(2) × SO(4) × Z(2) is not isomorphic to O(4), since the centers of

both groups are not isomorphic. Also Z(2) × SO(4) is not isomorphic to O(4) due to the same

reason. We only have local isomorphy of SU(2) × SU(2) and O(4).

Note that there is a representation of O(4)-transformations acting on a four-component scalar

vector ~φ in the fourdimensional internal symmetry space. Because in the case of vanishing quark

masses all components of the chiral condensate are equal, Φ0
pq = ϕδpq, it is isomorphic to a single

scalar field. Accordingly, the absolute value of the O(4)-vector, φ ≡ |~φ|, is the most natural

candidate for the chiral condensate. The most general renormalizable Lagrangian for D = 3

spatial dimensions, in case of an N -component scalar vector field ~φ, invariant under O(N), is

given by

L =
1

2
∂µ
~φ∂µ~φ+ µ2~φ2 − λ

N
~φ4. (1.42)

To prove this, first note that in 1+3 dimensions [L ] = MeV 4 ⇒ [∂µ
~φ∂µ~φ] = MeV 4 ⇒ [φi] =

MeV . Now consider all O(N)-symmetric terms, namely a1|~φ|, a2
~φ2, a3|~φ|3, a4

~φ4, a5|~φ|5, (· · · ).
The dimension of the couplings is obviously of the form [ai] = MeV n. Since n ≥ 0 only for

i = 1, . . . , 4, all other terms are non-renormalizable. The terms involving the absolute value are

non-renormalizable due to a more sophisticated argument. To show this, we use the fact that a
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quadratically integrable function f(x) can be rewritten as a polynomial in x which has an infinite

number of terms. Consider the quadratically integrable function f(x) =
√
x and the Laguerre

polynomials Lk(x) = ex dk

dxk (xke−x). Because the Laguerre functions uk(x) = 1
k!e

−x/2Lk(x) form

a complete orthonormal system in L2(0,∞), we can expand
√
x as follows:

√
x =

∑∞
k=1 akuk(x).

The exponential functions appearing in uk(x) can be expanded into a usual Taylor series, so that

we indeed end up with a polynomial. Accordingly |~φ| =

√
~φ2 =

√
φ2

1 + . . . φ2
N can be rewritten

as a polynomial in ~φ2 with an infinite number of terms. Consequently a1|~φ| and a3|~φ|3 are non-

renormalizable along the lines of our first argument.

As we assumed Nf = 2 flavors and vanishing quark masses, our effective model is valid for the

lightest scalar and pseudoscalar mesons, which can be constructed from the light quark flavors u

and d. Regarding the sigma particle and the three pions as chiral partners, this is a reasonable

choice. One can add the most natural term to the Lagrangian which breaks the O(N)-symmetry

explicitly and which leads to an analog of the so-called Gell-Mann-Oakes-Renner relation. This

term is given by LH ≡ Hφ1 and takes account of nonvanishing quark masses. However, we do

not want to elaborate on this further.

As already mentioned, φ = |~φ| plays the role of the chiral condensate. In the following chapters

we denote by φ0 ≡ Φ the condensate in the absence of sources, i.e., at the global minimum. The

extrema of the effective potential we denote by ϕ. If the Lagrangian (1.42) is an appropriate

choice, we expect to observe spontaneous symmetry breaking in the O(4)-model, as in QCD.

Whereas in QCD, Φ0 is merely SU(2)V - instead of SU(2)V × SU(2)A ×Z(2)A-symmetric in the

spontaneously broken phase, we should find ϕ O(4)-symmetric resp. O(3)-symmetric (O(3) is

isomorphic to SU(2)) in the spontaneously restored resp. broken phase. This is indeed the case.

Finally, let us prove that the O(4) model fulfills the E.Q.F.’s which are necessary to fall into the

same universality as the effective Lagrangian for the QCD order parameter in case of 2 massless

flavors. The E.Q.F.’s are fulfilled, which one can justify largely independent of the above discus-

sion:
The dimensionality of the system is the same in both models. Both are defined in 1+D

dimensional Euclidean space-time where D = 3 is the number of spatial degrees of freedom, i.e.,

we have ε = 1 in D = 4 − ε.

The number of components of the order parameter is the same since the η-particle and

the ~a0 remain massive about T ∗ if one assumes that Φ is a complex 2 × 2 matrix, i.e., it has 8

components. Since long-range fluctuations of light particles dominate the behavior at the critical

point, the 4 degrees of freedom corresponding to η and ~a0 can be neglected. Hence we are left

with 4 components, as in case of the O(4) order parameter ~φ. On the other hand, if one argues

that in presence of the anomaly the relevant symmetry is SU(2) × SU(2) and a renormalizable

Lagrangian is equivalent to that of the O(4) model, this condition is trivially fulfilled.

The relevant symmetry properties of the order parameter are also the same. Note that

the group U(1)V does not affect the chiral dynamics and that in presence of the anomaly the

remaining continuous symmetry is locally isomorphic to O(4). Note that one has to assume that

only infinitesimal symmetry transformations of the order parameter are important regarding

universality in a field-theoretical model.

Fortunately, lattice QCD for Nf = 2 indicates a second-order phase transition for QCD [33],
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which is the basis for universality arguments11. Since a system which undergoes a second-order

phase transition is scale invariant at the critical temperature T ∗, one would expect the O(4)-

model to become scale invariant at T ∗. This would correspond to vanishing sigma and pion

masses. However, approximations might ruin scale invariance.

Furthermore, one can derive that the phase transition in the O(4)-model is of second-order, and

that the critical exponents are pretty close to those from lattice calculations [34].

In the following chapters, we focus on the implications arising from application of the CJT

formalism. We investigate whether the Goldstone theorem is respected or not, and we exam-

ine what kind of phase transition can be observed, if there is one at all. Experimental pa-

rameters are the masses for the f0(600) (or σ) resonance, which is listed with mass mf0 =

400 − 1200 MeV in the Particle Data Booklet [5], and the masses for the pions, listed with

mπ± = 139.57018± 0.00035MeV and mπ0 = 134.9766± 0.0006MeV .

Further remarks on universality

Whereas quantities as the specific heat C or the transverse susceptibility χT can be directly

measured, the order parameter is a theoretical quantity which has to be identified with a physical

observable. In the case of the chiral O(4) model for example we have φ ≡ |~φ| which we identify

with the chiral condensate. A ferromagnetic n-vector model involves the magnetization as order

parameter, i.e., φ ≡ | ~M | = M . What about other relations like (1.15)-(1.18)? In the most

general sense, two Lagrangians LA and LB can only fall into the same universality class if there

exists a Lagrangian L which parametrizes both, i.e., such that LA and LB are special cases of

L . Otherwise there obviously would be no common reference system wherein critical exponents

are defined. Consider for example a relation which is related to N-component scalar field theory,

where ~φ = (φ1, · · · , φN ), in the absence of sources:

G(~x) ∼ 1

rD+η−2
, r ≡ |~x| . (1.43)

This is a relation for the 2-point function in the absence of sources

G(~x− ~y) ≡ 〈φ(~x)φ(~y)〉|J=K=0 , (compare with definition A.11) , (1.44)

which involves a new critical exponent with specific values for each universality class in N-

component scalar field theories. It turns out that it is related to the above critical exponents

via

η =
2D(β − 1 + α/2) − 2α+ 4

2 − α
, (1.45)

which again is a remarkable phenomenon [17]. On the other hand consider for instance QCD in

the large-Nf limit, which was investigated by Gracey in [35]. Gracey derives critical exponents

for the quark and the gluon fields, which obviously have no meaning in the Ising model for

instance. Regarding these specific critical exponents both models have no common framework.

11For first-order phase transitions universality does not exist, because the correlation length remains finite

(compare with p.520 of [14]).
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In this sense every universality class can in principle have its own set of universal relations and

critical exponents, such that different kinds of universality classes are not distinguished only by

the value of some universal critical exponents. According to Gracey, at leading order in 1/Nf ,

QCD should fall into the same universality class as the so-called non-Abelian Thirring model.

The gluonic self-interaction diagrams, responsible for the increase of the renormalized coupling

constant for small energy scales, are absent in the large-Nf limit, i.e., QCD at leading order

in 1/Nf becomes similar to QED. In general, however, the philosophy is of course to keep the

number of universality classes as small and elementary as possible.

(a) Brief summary. (b) quark-mass diagram, taken from [36]

Figure 1.4: An overview.

Note that the chiral O(4) model or the chiral linear sigma model are not parametrized by the

QCD Lagrangian, as they are effective theories for the order parameter. However, via the above

quoted technique of hadronization one is able to derive the chiral linear sigma model more or

less directly from the QCD Lagrangian. Figure 1.4(a) overviews the models we discussed so far

regarding QCD. We motivated at length the general background why to investigate the O(4)

and the O(2) model. Although the O(2) model should fall into the same universality class

as one-flavor QCD, if the chiral phase transition is of second order, we are interested in this

model mainly because it is the first step towards the O(4) model in four-dimensional polar

coordinates. Although physically not true, we also term the fields in the O(2) model sigma and

pion, having in mind the generalization to O(4). The appropriate interpretation of the polar O(2)

model regarding one-flavor QCD is still ongoing work. Figure 1.4(b) summarizes considerations

regarding the expected order of the QCD phase transition. For a detailed explanation we refer to

Ref. [36]. We merely want to point out that along the critical lines (except for the mq = 0 axes)

where the phase transition is expected to be of second order, the phase transition should fall into

the same universality class as the Z(2) symmetric (D = 3-dimensional) Ising model. This would

motivate the study of the system determined by the Lagrangian (3.1) with m2 < 0 (compare with

section 1.2. of [15] and page 295 of [22]). Within the scope of this thesis, however, we restrict

ourselves to the model with a one-minimum potential as a mere toy model (see section 3.1).
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Chapter 2

CJT formalism and WKB method

2.1 A resummation scheme: CJT formalism

Outline

In this section we want to explain the CJT formalism, which was established in 1974 by Cornwall,

Jackiw and Tomboulis as a method to compute the effective action of a theory [37]. In principle

the approach is not limited to scalar field theory. Already in the original work it is applied to

an Abelian gauge theory of fermions and vector mesons. However, we restrict our discussion of

the CJT formalism to scalar field theories, since we are not concerned with anything else in this

thesis.

For those readers who are not familiar with the context in which the effective potential appears,

we refer to appendix D which reviews the effective potential in scalar field theory with a single

source J at nonzero temperature. The characteristic feature of the CJT formalism is to introduce

a second, bilocal source K. Technically, the effective potential becomes a functional of the

(connected) one-point function and the full connected two-point function in the presence of

sources J and K. However, the case with physical meaning is J = K = 0. All physical quantities

(the physical masses and the condensate) are defined at the global minimum. Note that for

translationally invariant systems, which we assume in all our numerical simulations, the effective

action is proportional to the effective potential1. In the first subsection, we will show that the

common effective action based on a single source J is the same quantity as the effective action

based on sources J and K, in case we set K = 0. Of course, the explicit expressions are different,

since in the latter case the effective action explicitly depends on the connected two-point function.

Nevertheless, the quantity itself remains the same. In the second subsection, we explain why the

CJT formalism is a resummation scheme and what is actually resummed. In the third subsection

we present the stationarity conditions which determine the condensate and the full connected

propagator. The fourth subsection illustrates the role of the sources and establishes a connection

with section 2.2.

1Compare with (D.28).
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The effective action in the presence of sources J and K

Consider for simplicity a theory defined by the Minkowskian Lagrangian

L =
1

2
∂µφ∂µφ− U(φ) , (2.1)

where U(φ) is the classical potential. If we want to study the theory at nonzero temperature

(SQFT), we have to use the Euclidean version of the Lagrangian (see appendices A and E), i.e.,

LE =
1

2

(
∂φ

∂τ ′

)2

+
1

2

(
∂φ

∂x′

)2

+
1

2

(
∂φ

∂y′

)2

+
1

2

(
∂φ

∂z′

)2

+ U (φ) . (2.2)

In this case the generating functional is given by

Z [J,K] = N eW [J,K] = N
∮

Dφe−SE [φ]+φJ+ 1
2φKφ , (2.3)

SE (φ) =

∫
dτ ′
∫
d3 ~x′

[
1

2

(
∂φ

∂τ ′

)2

+
1

2

(
∂φ

∂x′

)2

+
1

2

(
∂φ

∂y′

)2

+
1

2

(
∂φ

∂z′

)2

+ U (φ)

]
≡
∫

X′

[T + U ]

where φ = φ(τ ′, ~x′) , φJ ≡
∫

X′
φ (X ′)J (X ′) and φKφ ≡

∫
X′,X′′

φ (X ′)K (X ′, X ′′)φ (X ′′) . We use

the symbol
∮

to remind of the periodic boundary condition and the additional integration in the

discretized version of the path integral. For further details we refer to appendix A.

In this section we use primes to avoid confusion with the points appearing in the 1-point resp. in

the 2-point function. However, in principle it does not play any role which symbol one chooses

for internal integration variables.

According to definition (A.11), the thermal one-point function in the presence of sources, correctly

normalized, is given by

〈φ (X)〉 =

∮
Dφ e−SE [φ]+φJ+ 1

2 φKφφ (X)∮
Dφ e−SE[φ]+φJ+ 1

2φKφ
, (2.4)

and the thermal two-point function (synonymous: thermal propagator) in the presence of sources,

correctly normalized, is given by

〈φ (X1)φ (X2)〉 =

∮
Dφ e−SE[φ]+φJ+ 1

2φKφφ (X1)φ (X2)∮
Dφ e−SE[φ]+φJ+ 1

2φKφ
. (2.5)

From expression (2.3) we deduce

δW

δJ (X)
=

1∮
Dφ e−SE [φ]+φJ+ 1

2φKφ

∮
Dφ e−SE [φ]+φJ+ 1

2 φKφφ (X) = 〈φ (X)〉 , (2.6)

δW

δK (X1, X2)
=

1∮
Dφ e−SE[φ]+φJ+ 1

2φKφ

∮
Dφ e−SE [φ]+φJ+ 1

2φKφ 1

2
φ (X1)φ (X2)

=
1

2
〈φ (X1)φ (X2)〉 . (2.7)

From the construction rules (D.24) we know how to express n-point functions in the presence of

a source J in terms of the connected n-point functions in the presence of a source J . Cornwall,

Jackiw and Tomboulis used this as a guide when they defined:
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definition 2.1 (the connected thermal ... in the presence of sources)

• ... one-point function ... , GK (X),

δW

δJ (X)
= 〈φ (X)〉 ≡ GK (X) . (2.8)

• ... two-point function ..., GK (X1, X2),

δW
δK(X1,X2)

= 1
2 〈φ (X1)φ (X2)〉 ≡ 1

2

[
GK (X1, X2) +GK (X1)GK (X2)

]
. (2.9)

Using the above relations as definitions is based on the intuition that GK (X) resp. GK (X1, X2)

play the same role in the theory containing the bilocal source as the functions G (X) resp.

G (X1, X2) (compare with definition D.1) do in the theory using the conventional generating

functional.

We want to emphasize an important fact:

• The definitions D.1 are, mathematically speaking, an embedding in the generalized defini-

tions 2.1.

• proof : GK (X) |K=0 = G (X) as well as GK (X) |J=0,K=0 = G (X). With that follows

〈φ (X1)φ (X2)〉|K=0 = GK (X1, X2) |K=0 + G (X1)G (X2). 〈φ (X1)φ (X2)〉|K=0 is nothing

else but 〈φ (X1)φ (X2)〉�K , the thermal propagator in the presence of a source J , which

is defined for the conventional generating functional via (D.1). Hence, comparison with

formula (D.25) leads to GK (X1, X2) |K=0 = G (X1, X2).

In complete analogy to the theory with a single source J , we define the effective action in

the presence of the sources J and K as double Legendre transform. But let us first discuss

the generalization of the double Legendre transform to functionals, which is not trivial. What

plays the same role as the double Legendre transform for functions, in the case of function-

als? Let us just motivate the result, using intuition instead of rigorous functional analysis.

It is absolutely plausible that the double Legendre transform of W [J,K] has the same form

as in the case of functions, namely W −
∫
X

δW
δJ J −

∫
X

∫
Y

δW
δK K, regarding the integrals as sums

over variables with continuous indices. Plugging in the expressions from definition 2.1 yields

W −
∫
X

G(1)J −
∫
X

∫
Y

1
2G

(2)
K K −

∫
X

∫
Y

1
2G

(1)
K G

(1)
K K. How to choose the arguments for G

(2)
K ? Re-

garding GK (A,B) and K (C,D) as matrices with continuous indices, the simplest operation

leading to a functional with no explicit dependence on space-inverse temperature is the follow-

ing: first a matrix multiplication
∑

X2
GK (A,X2)K (X2, C), then taking the trace of the result,

i.e.,
∑

X1

∑
X2
GK (X1, X2)K (X2, X1). Hence, we have

∫
X1

∫
X2

GK (X1, X2)K (X2, X1).

Now we can define the effective action in our theory with two sources2:

2If the reader wants to compare with formula (2.13) of the original work [37], we want to note that the authors

abbreviate
R

X1

R

X2

GK (X1,X2)K (X2,X1) as TrGKK.
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definition 2.2 (effective action)

Γ
[
G

(1)
K , G

(2)
K

]
≡W [J,K] −

∫

X1

J (X1)GK (X1) −
1

2

∫

X1

∫

X2

GK (X1)K (X1, X2)GK (X2)

−1

2

∫

X1

∫

X2

GK (X1, X2)K (X2, X1) .

Also the generalized definition 2.2 of the effective action covers the conventional effective action

defined in (D.2) as a special case:

Γ
[
G(1), G(2)

]
= W [J ] −

∫

X1

J (X1)G (X1) = Γ
[
G(1)

]
(2.10)

proof : Γ
[
G

(1)
K , G

(2)
K

]
|K=0 = Γ

[
G(1), G(2)

]
and W [J,K] |K=0 = W [J ]. With definition 2.2

this implies Γ
[
G(1), G(2)

]
= W [J ] −

∫
X1

J (X1)G (X1). The right hand side is nothing else but

Γ
[
G(1)

]
.

This is a crucial point. The common effective action based on a single source J is the same

quantity as the effective action based on sources J and K, in case we set K = 0. Although the

explicit expressions are different, since in the latter case the effective action is explicitly depen-

dent on the connected two-point function, the quantity itself remains the same. Hence, we found

an alternative expression for the conventional effective action, which depends not only on the

conventional G (X) but also on the conventional G (X1, X2).

From

δΓ

δGK (X)
= −J (X) −

∫

X2

K (X1, X2)φ (X2) (2.11)

and

δΓ

δGK (X1, X2)
= −1

2
K (X1, X2) (2.12)

we see that G (X) is determined (in consistence with the conventional theory) by

δΓ

δG (X)
= −J (X) , (2.13)

whereas G (X1, X2) has to fulfill

δΓ

δG (X1, X2)
= 0 . (2.14)

The effective potential in the CJT formalism

We now want to derive an explicit expression for the effective potential, which implies the re-

summed Dyson-Schwinger equation (D.23). Let us make the following ansatz for the effective
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action:

Γ
(
G

(1)
K , G

(2)
K

)
≡ −SE

(
G

(1)
K

)
− 1

2
ln
(
G

(2)
K

)−1

− 1

2

[
D−1

K

(
G

(1)
K

)
G

(2)
K − 1

]
+ Γ2

(
G

(1)
K , G

(2)
K

)
+ C.

(2.15)

This ansatz is straightforward. The effective action is expected to be proportional to the clas-

sical action plus quantum corrections. This corresponds to the fact that the effective poten-

tial is the classical potential plus quantum corrections (compare with appendix D). The terms

− 1
2 ln
(
G

(2)
K

)−1

and − 1
2

[
D−1

K

(
G

(1)
K

)
G

(2)
K − 1

]
are suggested by the form of the Dyson-Schwinger

equation. In the following we will determine Γ2 such that the ansatz implies the resummed Dyson-

Schwinger equation (D.23). The constant C can be chosen such that the effective potential has

the correct T = 0 value.

From the ansatz follows immediately

δΓ
(
G

(1)
K , G

(2)
K

)

δG
(2)
K

=
δΓ2

(
G

(1)
K , G

(2)
K

)

δG
(2)
K

− 1

2

1
(
G

(2)
K

)−1

(
−
(
G

(2)
K

)−2
)
− 1

2
D−1

K

(
G

(1)
K

)
.

Together with equation (2.12) we have

−1

2
K =

1

2

(
G

(2)
K

)−1

− 1

2
D−1

K +
δΓ2

(
G

(1)
K , G

(2)
K

)

δG
(2)
K

,

hence

0 =
1

2

(
G(2)

)−1

− 1

2
D−1 +

δΓ2

(
G(1), G(2)

)

δG(2)
. (2.16)

From comparison of equation (2.16) with (D.23) we finally determine

2
δΓ2

(
G(1), G(2)

)

δG(2)
= Σ′ , D = ∆ .

Therefore one has to conclude that Γ2 is the sum of all 2PI vacuum3 graphs. We want to prove

this for Γ2 up to three-loop order in the case of a three-point and a four-point interaction vertex:

Up to prefactors, this is indeed Σ′ up to two-loop order (see page 168). Three-point vertices can

arise for example if one studies fluctuations around the vacuum (see section 2.2).

Note that the HTL approximation (see page 168) corresponds to taking into account only those

3Vacuum means no external lines.
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diagrams (the double-bubble and the sunset diagram) in Γ2 which yield Σ′ to one-loop order. In

the so-called Hartree approximation only the double-bubble diagram is taken into account, i.e.,

the sunset diagram in Γ2 is neglected.

Let us now consider translationally invariant systems. For G(1) independent of space-inverse

temperature (i.e., ∂µG
(1)∂µG(1) = 0), and for homogeneous systems (i.e.,

∫
dτdx3 −→ Ω/T ) we

can conclude from formulas (2.10) and (D.28):

Veff

[
G(1), G(2)

]
= −T

Ω
Γ
[
G(1), G(2)

]
. (2.17)

With this, we obtain4

result 2.1 (effective potential in the CJT formalism)

Veff = U
(
G(1) (k)

)
+

1

2

∫

k

ln
(
G(2) (k)

)−1

+
1

2

∫

k

[
D−1

(
G(1), k

)
G(2) (k)

]
+ Γ2

(
G(1) (k) , G(2) (k)

)
+ c .

Systems of equations

Conditions (2.13) and (2.14) play an important role. First consider J = 0, which says that

we are at the vacuum (synonymous: ground state). In this context we want to mention that

one refers to the expectation value in the absence of sources also as vacuum expectation value.

Also note that the vacuum is different at different temperatures. This is why we speak of a

thermal vacuum expectation value. In the vacuum, the full connected propagator at nonzero

temperature, G (X1, X2), and the vacuum expectation value of the field at nonzero temperature,

〈φ(X)〉|J=0,K=0, are determined by the following system of equations:

δΓ

δG(X)

∣∣∣∣
J=0

= 0 , (2.18)

δΓ

δG (X1, X2)

∣∣∣∣
J=0

= 0 . (2.19)

For simplicity, let us consider translationally invariant systems, i.e., G(X) ≡ G and G(X1, X2) ≡
G(X1 − X2). In this case the effective action is proportional to the effective potential, so we

are allowed to replace Γ by Veff in the above conditions. Then (2.18) can be identified with

the condition necessary for local extrema of the effective potential. In this thesis we refer to

〈φ(X)〉|K=0 ≡ φ as “arbitrary point” φ. Accordingly the effective potential is a functional of

φ and G, and we speak of the effective potential at an arbitrary point. In case we are at an

extremum, we denote φ by ϕ and G by G. The global minimum in turn we denote by Φ. In

absence of sources the connected propagator is the same as the propagator. With this in mind

(D.16) shall serve as a motivation why we are able to choose the ansatz

G ≡ 1

−k2 +M2
=

1

ω2
n + k2 +M2

(2.20)

4−SE = −
R

dτ
R

d3xL = −Ω
T

L = −Ω
T
U , where in the last step we used ∂µφ = 0 for φ independent of

space-inverse temperature. Then −T
Ω

(−SE) = U .
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for the full propagator in momentum space. M is the full mass, i.e., the physical mass.

Putting all together, the system of equations determining the extrema ϕ as well as the physical

mass at the extrema is given by

result 2.2 (CJT system of equations at the extrema)

δVeff (φ,G)

δφ
|φ=ϕ,G=G = 0 ,

δVeff (φ,G)

δG
|φ=ϕ,G=G = 0 .

Regarding the interpretation in our models, we refer to the global minimum Φ also as condensate.

The effective potential at the global minimum, is related to the pressure p as follows:

Veff [ϕ,G] = −p . (2.21)

In the now following proof, we use the symbol Ω for the grandcanonical potential (according to

appendix G), whereas the symbol V refers to spatial volume (usually we use Ω instead). For

homogeneous systems relation (G.6) is valid: p = T
V lnZ. Together with formula (G.22) this

yields Ω = −T lnZ. Z can be expressed within the path integral formulation and is related to W

via Z = eW , therefore Ω = −TW . At the global minimum, definition 2.2 reduces to Γ [ϕ,G] = W ,

where we have to set the sources to zero in W . Consequently, at the global minimum, this yields

Ω = −TΓ [ϕ,G], and with relation (2.17) we arrive at Ω = V Veff . So finally, we end up with

Veff = Ω
V = −p. q.e.d.

However, one is not only interested in the global minimum, although all physical quantities

(masses, thermodynamical quantities like the pressure, the condensate etc.) correspond to the

vacuum. Consider an arbitrary point 〈φ(X)〉|K=0 ≡ φ. The nonvanishing source J deflects

the expectation value for the field away from the vacuum. In theories featuring spontaneous

symmetry breaking, also the effective potential at an arbitrary point φ is of interest.5 In this

case we are left with condition (2.14), since J is not specified any further, so that (2.13) is

not a constraint. From (2.14) we obtain the condition which, together with the ansatz (2.20),

determines the “mass at an arbitrary point φ”:

result 2.3 (CJT gap equation at an arbitrary point)

δVeff (φ,G)

δG
= 0 .

The role of the sources

Let us explain the role of the sources qualitatively. The generating functional contains all the

physical information about the system, which is gained by a weighting of all possible paths φ (X ′)

the system may take. Such a path is illustrated qualitatively in fig.2.1, which requires further

5For exemplification consider a ferromagnet. From a heuristic point of view, the effective potential at an

arbitrary point can be imagined as the free energy at a certain magnetization.
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Figure 2.1: illustration of a path; the cutting plane in the front shows a potential that has the

shape of U .

explanation. 〈φ (X)〉 is a functional depending on the functions J and K. Instead of

−SE ≡ −
∫

X′

[T + U ] ,

we have

∫

X′


−T − U + φ (X ′)J (X ′) +

∫

X′′

1

2
φ (X ′)K (X ′, X ′′)φ (X ′′)


 .

So, instead of U , we have a “classical potential in the presence of sources”

UJ,K ≡ U [φ (X ′)] − φ (X ′)J (X ′) −
∫

X′′

1

2
φ (X ′)K (X ′, X ′′)φ (X ′′) ≡ U [φ (X ′)] + US [φ (X ′)] .

This means, for each point X ′, the shape of the potential in which a path is considered, differs

from that one of U in a characteristic way. For fixed X ′, the shape of US depends on how one

chooses the functions J and K.

First consider (2.4) for vanishing sources, i.e., the vacuum expectation value for φ at nonzero

temperature 〈φ (X)〉|J=0,K=0 =
R

Dφ e−SE [φ]φ(X)
R

Dφ e−SE [φ] . Although it depends on temperature (the τ ′-

integration over the Lagrangian runs from 0 to 1/T ), only the classical potential enters the

weighting: UJ,K |J=0,K=0 = U at each point X ′.

As already mentioned in the previous subsection, 〈φ (X)〉|J=0,K=0 ≡ Φ is equal to the global min-

imum of the effective potential Veff (given by result 2.1). It also became clear that 〈φ (X)〉|K=0

is simply an “arbitrary point φ” as depicted in figure 2.2. In the context of section 2.2, a non-

vanishing source J effects that one does not fluctuate around the global minimum but around
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an arbitrary point. The fact that the source J does not need to be specified further is mirrored

in the fact that we consider an arbitrary point. For vanishing sources instead, one fluctuates

around the global minimum. Of course also the bilocal source K does not need to be specified

further. We showed that the introduction of K is simply a mathematical trick in order to make

Veff dependent on the connected two-point function.

2.2 Fluctuating around the vacuum

Throughout this work, the CJT formalism will be applied to a Lagrangian where the fields have

undergone a shift. This is nothing but a redefinition of the fields, which is widely used in field

theory and completely independent from the CJT formalism. Shifting the fields means choosing

fixed points for the fields around which we fluctuate. If we choose the field configuration which

corresponds to the vacuum (the global minimum), this corresponds to the picture that particles

are excitations of the vacuum, since the fluctuations are related to particles.

Figure (2.2) shows the classical potential U (φ) = ±m2

2 φ
2 + λ

N φ
4, where +/− corresponds to the

left/right picture.

Figure 2.2: Classical potential for the Z2 models, H = 0

A word on our notation first, in order to avoid confusion. As one usually learns QM and QFT

before SQFT, one is usually more familiar with Minkowskian Lagrangians, as for example

L =
1

2
∂µφ∂

µφ− m2

2
φ2 − λ

N
φ4 . (2.22)

From a Lagrangian one can read off the tree-level propagators and the vertex factors, which belong

to the so-called Feynman rules for the theory. We will comment on the concept of Feynman rules

in a general context briefly in appendix A.3. Here we are only concerned with technicalities.

The Lagrangian (2.22) is given in position space. To obtain the Feynman rules and the tree-level

quantities in momentum space, one should in principle first derive them in position space from

(2.22) and then go over to momentum space via Fourier transformation. Since we are interested

in the result only, we just want to give a mnemonic how to obtain the tree-level quantities in

momentum space from (2.22). First note that ∂µφ∂
µφ = ∂µ(φ∂µφ) − φ�φ. Since ∂µ(φ∂µφ)
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vanishes when we integrate to obtain the action,6 we can neglect this term. Hence we are left

with

L = −1

2
φ�φ− m2

2
φ2 − λ

N
φ4 . (2.23)

Since � goes over into −k2 in momentum space, we can write down the following mnemonic7:

“L =
1

2
k2φ2 − m2

2
φ2 − λ

N
φ4 ” . (2.24)

Every Minkowskian Lagrangian has a corresponding Euclidean form which is used in SQFT.

We discuss the transition from QFT to SQFT in appendix E. From result E.1 we read off the

Euclidean version of the Lagrangian:

LE =
1

2
∂µ,Eφ∂

µ
Eφ+

m2

2
φ2 +

λ

N
φ4 , (2.25)

where we indicate the use of the Euclidean metric by the subscript “E”. In complete analogy

to the above we can neglect the term ∂µ,E(φ∂µ
Eφ) in ∂µ,Eφ∂

µ
Eφ = ∂µ,E(φ∂µ

Eφ) − φ�Eφ, and we

obtain

LE = −1

2
φ�Eφ+

m2

2
φ2 +

λ

N
φ4 . (2.26)

Recall that the transition from the Minkowskian version to the Euclidean version is based on the

Wick rotations

k2 = k2
0 − k2 k0→ip4−−−−−→= −p2

4 − k2 ≡ −p2 , (2.27)

� =
∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2

t→−iτ−−−−→ − ∂2

∂τ2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
≡ −�E . (2.28)

Since � goes over to −k2 in momentum space, the Euclidean d’Alembert operator, �E , goes over

into −p2 in Euclidean momentum space. Accordingly the Euclidean version of our mnemonic

(2.24) reads:

“LE =
1

2
p2φ2 +

m2

2
φ2 +

λ

N
φ4 ” . (2.29)

In the case of QFT, the inverse tree-level propagator8 is the prefactor in front of φ2/2 in our

mnemonic (2.24):

D−1 = k2 −m2, (2.30)

which is nothing but the inverse Feynman propagator in momentum space, if one compares with

(E.19).

6The contribution can be rewritten as a 4-dimensional surface integral, which is zero, if we assume that φ

vanishes on a surface lying at infinity.
7For instruction how to really write down the Lagrangian in momentum space we refer for example to [22].
8Again a remark on conventions: some textbooks prefer to use the symbol D for k2 −m2 instead of 1

D
.
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Accordingly, the Euclidean tree-level propagator (which one uses in SQFT) is the prefactor in

front of φ2/2 in (2.29):

D−1
E = p2 +m2

t

m2
t = m2,

which is the inverse Euclidean Feynman propagator in momentum space appearing in (E.21).

Note that the term “tree-level” is justified. The tree-level mass mt is equal to the bare mass

(compare with appendix A), i.e., the mass without any loop corrections. The quartic term yields

a 4-vertex with the vertex factor − λ
N .

We come to the same result if we read off the pseudo-Minkowskian tree-level propagator and the

tree-level mass mt from our mnemonic (2.24). The pseudo-Minkowskian tree-level propagator is

now the negative prefactor in front of φ2/2:

D−1 = −k2 +m2
t (2.31)

m2
t = m2 . (2.32)

Note that (2.31) relates to Euclidean field theory, although the tree-level propagator D (and

correspondingly the ansatz for the full connected propagator G which we will make later) is given

in a pseudo-Minkowskian notation. The terms “Euclidean” and “pseudo-Minkowskian” only

indicate the kind of notation one uses, and in fact, a quantity in Euclidean notation is the same

as in pseudo-Minkowskian notation. The −k2 actually stands for −
[
(ip4)

2 − k2
]

= p2
4 +k2 = p2,

i.e., one refers to the Minkowskian metric using ip4 as zeroth component. We do not really

like this notation, since the non-Euclidean zeroth component k0 has to be replaced by ip4 when

changing to Euclidean field theory (compare with appendix E), i.e., k0 → k0 = ip4, and is not

equal to it, i.e., k0 6= ip4. Nevertheless we will use this notation, since it is often employed in

literature.

We now pick an arbitrary point φ, which is by definition independent of τ and ~x (we keep the

same symbol φ) and fluctuate around it:

φ (τ, ~x) = φ+ σ (τ, ~x) . (2.33)

This yields, using ∂µ(φ+ σ)∂µ(φ+ σ) = ∂µσ∂
µσ,

“L =
1

2
k2σ2 − m2

2
(φ + σ)2 − λ

N
(φ+ σ)4 ” .

Again, we are only interested in terms quadratic and quartic in σ (we do not need the cubic

terms in the Hartree approximation). We read off the following tree-level mass and vertex factor:

D−1(φ) = −k2 +m2
t , (2.34)

m2
t ≡ m2 +

12λ

N
φ2 , (2.35)

− λ
N σ

4 −→
Note that the derivation of these quantities is absolutely independent from the CJT formalism.
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We will simply use them in the CJT formalism.

Look at result 2.1. G(1)(k) is the connected thermal one-point function in the absence of source

K, expressed in momentum space, i.e., 〈φ(k)〉|K=0. We can identify this expectation value with

the arbitrary point φ, around which we fluctuate. For J = 0, this point is an extremum ϕ of the

effective potential. The extremum we are interested in is the global minimum Φ.

Figure 2.3: Top: U (φ1, φ2) = +m2

2
~φ2 + λ

N
~φ4 − Hφ1, H 6= 0, m2 > 0. Bottom: Mexican hat

potential, U (φ1, φ2) = −m2

2
~φ2 + λ

N
~φ4 −Hφ1, H 6= 0, m2 > 0.

In case of more particles and different Lagrangians, we proceed in the same way. We will

come back to this in the later chapters. For the rest of this section, we only want to dis-

cuss some general features of the potentials we use in our models. The classical potential

U (φ1, φ2) = +m2

2
~φ2 + λ

N
~φ4 −Hφ1 has in principle the shape shown at the top of fig.2.3. Note

that H is chosen relatively large, for H = 0 the potential would be symmetric with the minimum

at zero. If we choose a minus sign in front of m2, i.e., U (φ1, φ2) = −m2

2
~φ2 + λ

N
~φ4 − Hφ1, we

obtain the well-known mexican hat potential, shown at bottom in fig.2.3. The effective potential

Veff in statistical field theory for T = 0 should be equal to the classical potential U (compare

with appendix D). As the temperature grows, the shape of Veff continuously changes, as one

can see for example in fig.4.2.

In cartesian coordinates, the scalar field φ1 corresponds to a particle, and φ2 to another one.

Particles are excitations of the vacuum. Having this in mind, it becomes plausible why we treat

particles at temperature T mathematically as fluctuations around the global minimum of the

effective potential. More precisely, the sigma particle is treated as a fluctuation in φ1-direction,

and the pion as a fluctuation in φ2-direction. Independent from the direction of the fluctuations,
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we choose the potential in a certain direction, as in fig.2.3 for example the φ1-direction (as dis-

cussed on p.112, due to the negative parity of the pion this is the only choice for us). Now pick

any point for φ ≡ ±|~φ| = ±
√
φ2

1 + φ2
2 you like, and allow fluctuations σ (pointing in φ1-direction)

and π (pointing in φ2-direction, not shown in the figure because it is directed into the drawing

plane) around that point.

2.3 Quantum Field Theory in 1+0 dimensions

2.3.1 Introductory remark

QFT resp. SQFT in 1+0 dimensions means spatial degrees of freedom do not exist and the

generating functional E.1 resp. E.2 boils down to

Z =

∫
Dφ (t) eiS , (2.36)

with S =

∫
dt

(
1

2

(
∂φ

∂t

)2

− U (φ (t))

)
, (2.37)

resp.

Z =

∮
Dφ (τ) e−SE , (2.38)

with SE =

∫
dτ

(
1

2

(
∂φ

∂τ

)2

+ U (φ (τ))

)
, (2.39)

where one has to bear in mind the periodic boundary condition φ(τ)
!
= φ(τ +

1

T
) .

If we replace φ(t) resp. φ(τ) by x(t) resp. x(τ), and the 1
2 in front of the kinetic term by m

2 , we

obtain the generating functional for Quantum Mechanics resp. Statistical Quantum Mechanics.

Therefore, the mathematical structure of (S)QFT in 1+0 dimensions and (S)QM is the same,

and consequently we are able to use the WKB approximation to calculate the energy eigenvalues.

These we can use with (A.1) to calculate Z, which is the same quantity as (2.38):

Z = Tr
(
e−βĤ

) {|En>}
=

∑

n

e−βEn . (2.40)

First, note that Z =
∑

n e
−βEn is true only at the global minimum (J = K = 0). To calculate

the generating functional in the presence of sources, we would have to include source terms in

Ĥ . Furthermore, note that in (S)QFT, Ĥ in formula (A.1) depends on φ.

From the proof of (2.21), we know how to calculate the effective potential at its global minimum:

V (Φ) = −T ln

(
∑

n

e−En/T

)
, (2.41)

where we used that there is no spatial volume in 1 + 0 dimensions, i.e., V = LD = L0 = 1.
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2.3.2 WKB method, N = 1

This section outlines the derivation of the WKB equation, from which the energy eigenvalues can

be computed. For details we refer to Ref. [38].

The WKB method, introduced in 1926 by Wentzel, Kramers, and Brillouin, is an approach to

find approximate solutions of the stationary Schrödinger equation

d2u(x)

dx2
+ k2(x)u(x) = 0 , k2(x) =

2m

~2
(E − U(x)) . (2.42)

According to the introductory remark, this quantum mechanical equation has its quantum field-

theoretical analogon

d2u(φ)

dφ2
+ k2(φ)u(φ) = 0 , k2(φ) =

2

~2
(E − U(φ)) , (2.43)

where U(φ) is the classical potential of the system under consideration. Although ~ = 1 in

natural units, we keep it in the derivation of the WKB method, since the approach is basically

an expansion in order of ~. Later we will set it to 1 again. In the following we review the

derivation of the WKB equation in Quantum Mechanics, however in each step one is able to

switch to the notation of Quantum Field Theory.

Starting from the ansatz

u(x) = Ce
i
~

W (x) , (2.44)

one expands W (x) in powers of (i~):

W (x) =

∞∑

n=0

(i~)nWn(x) = W0(x) + i~W1(x) − ~
2W2(x) +O(~3) . (2.45)

Insertion into (2.42) yields

0 = ~
0(W ′

0
2 − k2

~
2) + i~(2W ′

0W
′
1 −W

′′
0 ) + ~

2(−2W ′
0W

′
2 −W ′

1
2

+W
′′
1 ) +O(~3) , (2.46)

where we denote the derivative with respect to x by a prime.

Equation (2.46) is solved order by order in ~:

~
0 : W ′

0
2
(x) = k2

~
2 ⇒ W0 = ±~

x∫

c1

k(ρ)dρ , (2.47)

~
0 and ~

1 : W ′
1 =

W
′′
0

2W ′
0

. (2.48)

Using (2.47) we obtain

W
′′
0

2W ′
0

=
1

2

±~k′

±~k
=

(
1

2
ln k

)′
⇒ W1 = ln

√
k , (2.49)

~
0 and ~

1 and ~
2 : W ′

1
2

+ 2W ′
0W

′
2 −W

′′
1 = 0 ⇔ W ′

2 =
W

′′
1 −W ′

1
2

2W ′
0

. (2.50)
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Using (2.47) and (2.49) we obtain

W2 = ± 1

4~

x∫

c2

(
k′′(ρ)
k2(ρ)

− 3

2

k′2(ρ)
k3(ρ)

)
dρ . (2.51)

Inserting the expressions for W0 and W1 into the ansatz (2.44), we obtain two special, linearly

independent solutions:

u± = C · e− ln
√

k · exp


±i

x∫

c1

k(ρ)dρ


 , (2.52)

where the WKB approximation consist of neglecting all terms of order O(~2) in (2.45).

The general solution û is then given as a linear combination of u+ and u−:

result 2.4 (general solution, WKB approximation)

û = c+
1√
k

exp


+i

x∫

d+

k(ρ)dρ


+ c−

1√
k

exp


−i

x∫

d−

k(ρ)dρ


 , (2.53)

where the constants c± and d± have to be determined by the boundary conditions. Note that

only two of the constants are independent because (2.42) is a differential equation of second

order. One can show that the approximation is good if one is sufficiently far away from classical

turning points of the potential U(x). Result 2.4 is also valid in the classically forbidden region,

Figure 2.4: Illustration of classical turning points, the classically allowed region (U < E) and

classically forbidden region (U > E). We distinguish between left turning points x∗ and right

turning points x∗. The right picture shows the special case of a bound state.

however, here k is imaginary:

E < U ⇒ k2(x) =
2m

~2
(E − U)︸ ︷︷ ︸

<0

⇒ k(x) = i

√
2m

~

√
|E − U | ≡ iκ(x).

Thus, we can write the solution in the classically forbidden region as

û =
c+/

√
i√

κ
exp


−

x∫

d+

√
2m

~

√
|E − U | dρ


+

c−/
√
i√

κ
exp




x∫

d−

√
2m

~

√
|E − U | dρ


 . (2.54)
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Remember that the WKB approximation does not hold at the turning points. However, one

of the two independent parameters can be chosen such that the turning points are removable

discontinuities, so that one parameter is left for normalization. This procedure is known as

Langer’s method. One obtains two expressions for û near each kind of turning point (left and

right), one for the classically forbidden and one for the classically allowed region. In the following

we only need the results for the classically allowed region:

right turning point, U < E : û(x) = a

√
6

π

1√
k

cos




x∗∫

x

k(ρ)dρ− π

4


 , (2.55)

left turning point, U < E : û(x) = a

√
6

π

1√
k

cos




x∫

x∗

k(ρ)dρ− π

4


 , (2.56)

which enable us to set up the WKB equation for a bound state as illustrated in the right picture

of figure 2.4. From the condition that expressions (2.55) and (2.56) have to be equal, we obtain:

± cos




x∗∫

x

k(ρ)dρ− π

4


 = cos




x∫

x∗

k(ρ)dρ− π

4


 . (2.57)

This can be rewritten in a form known as WKB equation:

x∗∫

x∗

kdx =

(
1

2
+ n

)
π . (2.58)

From the introductory remark, we can conclude that the field-theoretical analogue for the WKB

equation reads

result 2.5 (WKB equation)

φ∗∫

φ
∗

√
2 (E − U(φ) ) dφ = (

1

2
+ n)π .

To find the solutions En of this equation, the energy eigenvalues, we have to express φ∗ and φ∗

as functions of E and solve the integral equation numerically for each n = 0, 1, ....

Note that (2.58) as well as result 2.5 is only correct as long as E > Emax (see figure 2.4).

Otherwise there exists a probability for tunneling and the right-hand side of the WKB equation

needs to be modified. For details we refer to Ref. [39] and to section 4.1.2.

2.3.3 Radial WKB method, N = 2

For two scalar field variables, the WKB method is a bit more difficult. We do not want to use

the version for cartesian field coordinates, since in the case of potentials which only depend on

the radial degree of freedom, r =
√
φ2

1 + φ2
2, i.e., U(φ1, φ2) = U(r), there exists a radial WKB

equation which is simpler. In later chapters, we will compare cartesian and polar CJT results
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with those in this radial WKB approximation.

Starting from the stationary Schrödinger equation in polar coordinates,
(
−~

2

2
∆ + U(r)

)
ψ(r, ϕ) = Eψ(r, ϕ) , with ∆ =

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ϕ2
, (2.59)

we make the separation ansatz ψ ≡ R(r)Ym(ϕ), where R(r) ≡ u(r)√
r

and Ym(ϕ) ≡ eimϕ, to deduce

the stationary radial Schrödinger equation:

~
2

2

d2u(r)

dr2
+ (E − Um(r)) u(r) = 0 , with Um(r) ≡ U(r) +

~
2

2

(m2 − 1
4 )

r2
. (2.60)

Do not confuse the quantum number m with the bare mass m!

However, there is a problem with the equation in this form, which anticipates the derivation of

a WKB equation. Simply because Um=0 = U(r) − ~
2

8r2

r→0−−−→ −∞, which means that there is no

global minimum, and above a certain critical energy E no left turning point. The solution is a

conformal mapping r = eρ, as proposed in [40] and [41], which will be discussed in the following.

Application of the chain rule for the second derivative,

d2u(r)

dr2
=
d2u(ρ)

dρ2

(
dρ

dr

)2

+
du(ρ)

dρ

d2ρ

dr2
, (2.61)

yields

d2u(r)

dr2
=
d2u(ρ)

dρ2

1

r2
− du(ρ)

dρ

1

r2
. (2.62)

In order to deduce an equation of the same form as (2.60), we have to perform a second trans-

formation:

u(ρ) = e
ρ
2χ(ρ). (2.63)

From (2.62) we obtain

d2u(r)

dr2
=

1

r2
e

ρ
2

[
d2χ

dρ2
− 1

4
χ

]
, (2.64)

which we insert together with u(ρ) = e
ρ
2χ(ρ) into equation (2.60), to obtain:

d2χ

dρ2
+

2

~2
e2ρ

(
E − U(ρ) − ~

2

2

m2

r2

)
χ(ρ) = 0. (2.65)

The spurious − 1
4 has disappeared, and we are able to derive the radial WKB equation, following

the same steps which led to equation (2.5):

ρ∗∫

ρ∗

√
2

~2
e2ρ

(
E − U(ρ) − ~2

2

m2

e2ρ

)
dρ = (

1

2
+ n)π . (2.66)

Having gained equation (2.66), we can transform back to r:

result 2.6 (radial WKB equation)

r∗∫

r∗

√
2

~2

(
E − U(r) − ~2

2

m2

r2

)
dr = (

1

2
+ n)π.
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Chapter 3

Z2-symmetric one-minimum

potential

In this chapter we study the system determined in 1+3 dimensions by the Lagrangian (3.1), and

in 1+0 dimensions by the Lagrange function (3.9) respectively. Both are symmetric under the

change of sign φ −→ −φ, which constitutes a Z2 symmetry. We will examine the behavior of the

system for nonzero temperature (compare with the comments in section 2.2).

Though we keep the variable N general, for numerical calculations we set N = 1. Note that

this chapter (as well as the following ones) requires knowledge about thermal integrals, which we

introduce in appendix B.

3.1 1+3 dimensions

In this section we study the system determined by the Lagrangian

L =
1

2
∂µφ∂

µφ− m2

2
φ2 − λ

N
φ4 , m2 > 0 . (3.1)

After having shifted the field, φ (τ, ~x) = φ+σ (τ, ~x), we obtain the pseudo-Minkowskian tree-level

propagator and the vertex factor according to section 2.2:

D−1(φ) = −k2 +m2
t , (3.2)

m2
t ≡ m2 +

12λ

N
φ2 , (3.3)

− λ
N σ

4 −→
The effective potential in the CJT formalism is given by result 2.1:

V [φ,G] =
m2

2
φ2 +

λ

N
φ4 +

1

2

∫

k

lnG−1 +
1

2

∫

k

(
D−1(φ)G− 1

)
+ V2 [φ,G] , (3.4)

with V2 = −


−3

λ

N
[
∫

k

G]2


 . (3.5)
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The mass at the arbitrary point φ is determined by result 2.3:

δV

δG
= 0 ⇔ −1

2

1

G−1
G−2 +

1

2
D−1 + 6

λ

N

∫

k

G = 0

⇔ G−1 = D−1 + 12
λ

N

∫

k

G . (3.6)

Since the tree-level propagator is given by D−1(φ) = −k2 +m2
t , and 12 λ

N

∫
k

G is independent of

k, we are able to make the following ansatz for the connected thermal 2-point function in the

presence of a source J , expressed in momentum space:

G ≡ 1

−k2 +M2
. (3.7)

This leads to the so-called gap equation for the mass at an arbitrary point φ:

result 3.1 (gap equation)

M2 = m2 + 12
λ

N
φ2 + 12

λ

N

∫

k

G .

The condition which tells us that we are at an extremum ϕ is given by the first equation of result

2.2:

δV

δφ
|φ=ϕ;G=G = 0 ⇔ m2ϕ+ 4

λ

N
ϕ3 + 12

λ

N
ϕ

∫

k

G = 0 . (3.8)

Since M2 = m2 + 12 λ
N ϕ

2 + 12 λ
N

∫
k

G, substracting 0 = 3m2 + 12 λ
N ϕ

2 + 36 λ
N

∫
k G

yields M2 = −2m2 − 24 λ
N

∫
k G < 0  , and we conclude that ϕ(T ) = 0 always.

As a result, the system of equations determiningM and φ at the extrema (here only one extremum

exists, the global minimum) is given by:

result 3.2 (conditions determining mass and condensate at the global minimum)

ϕ(T ) = 0 ,

M2 = m2 + 12
λ

N

∫

k

G .

We will discuss the numerical solutions using
∫
k

G = 1
2π2

∞∫
0

dk k2

ǫk

1
eǫk/T −1

, compare with (B.10),

i.e., we drop the contribution Qµ which would require renormalization.

At T = 0 result 3.2 yields

result 3.3 (T = 0)

M2
0 = m2 ,

λ remains independent.
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Since we dropped Qµ, we also have to drop Rµ in result B.6. Using expression (B.12), we obtain
∫
k

ln
(
G−1

)
= 4π 1

(2π)3

∞∫
0

dkk22T ln
(
1 − e−

ǫk
T

)
.

Therefore the effective potential (3.4) reads

result 3.4 (effective potential)

V [φ,G] =
m2

2
φ2 +

λ

N
φ4 +

T

2π2

∞∫

0

dkk2 ln
(
1 − e−

ǫk
T

)

+
1

2

(
m2 + 12

λ

N
φ2 −M2

)
1

2π2

∞∫

0

dk
k2

ǫk

1

eǫk/T − 1
+ 3

λ

N


 1

2π2

∞∫

0

dk
k2

ǫk

1

eǫk/T − 1




2

,

where we have to use result 3.1 to determine M for each point φ.

Figure 3.1 shows the numerical results of interest.

Figure 3.1: left: effective potential for T = 0.01MeV (resp. classical potential) and T = 350MeV ;

right: mass at the global minimum.

3.2 1+0 dimensions

In 1+0 dimensions, the above Lagrangian becomes the Lagrange function

L =
1

2
∂0φ∂

0φ− m2

2
φ2 − λ

N
φ4 , m2 > 0 . (3.9)

3.2.1 CJT

Basically, the equations are the same as in section 3.1, provided that we replace
∫
k

G by
∫
k0

G and

∫
k

lnG−1 by
∫
k0

lnG−1. In 1+0 dimensions, the contributions corresponding to the terms Qµ resp.
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Rµ are finite. Therefore, we are not allowed to drop them. Hence:

∫

k0

G =
1

M

(
1

eM/T − 1
+

1

2

)
, (3.10)

∫

k0

lnG−1 = M + 2T ln
(
1 − e−M/T

)
. (3.11)

However, in 1+0 dimensions, we have to be careful with the dimension of our quantities, which

are not the same as in 1+3 dimensions. Let us express all quantities in multiples of m. We know

that

SE =

∫
dτLE , LE =

1

2

∂φ

∂τ

∂φ

∂τ
+
m2

2
φ2 +

λ

N
φ4 , [τ ] = MeV −1 , [LE ] = MeV.

Defining LE = L̃E ·m, where the twiddle means that L̃E is dimensionless, we conclude:

φ = φ̃ ·m− 1
2 , λ = λ̃ ·m3 , τ = τ̃ ·m−1. (3.12)

Having expressed the above quantities in multiples of m, we now obtain the following results

(with M = M̃ ·m and T = T̃ ·m). For simplicity, the twiddle will be omitted.

D−1(φ) = −k2 +m2
t , (3.13)

m2
t ≡ 1 +

12λ

N
φ2 . (3.14)

result 3.5 (gap equation)

M2 = 1 + 12
λ

N
φ2 + 12

λ

N

∫

k0

G .

result 3.6 (conditions determining mass and condensate at the global minimum)

ϕ(T ) = 0 ,

M2 = 1 + 12
λ

N

∫

k0

G .

result 3.7 (T = 0)

M2
0 = 1 + 12

λ

N

1

2M0
,

λ remains independent.

result 3.8 (effective potential)

V [φ,G] =
1

2
φ2 +

λ

N
φ4 +

1

2

(
M + 2T ln

(
1 − e−M/T

))

+
1

2

(
1 + 12

λ

N
φ2 −M2

)
1

M

(
1

eM/T − 1
+

1

2

)
+ 3

λ

N

[
1

M

(
1

eM/T − 1
+

1

2

)]2
.
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3.2.2 WKB

Method

In 1+0 dimensions it is possible to calculate the effective potential at its global minimum in the

WKB approximation. For this purpose we use the relation (2.41):

V (Φ) = −T ln

(
∑

n

e−En/T

)
, (3.15)

and the WKB equation (2.5)

φ∗∫

φ
∗

√
2 (E − U(φ) ) dφ = (

1

2
+ n)π. (3.16)

Since the potential U = 1
2φ

2 + λ
N φ

4 is symmetric, and only two turning points,

φ∗ = +

√

−N

4λ
+

√
N2

16λ2
+ E

N

λ
and φ

∗
= −

√

−N

4λ
+

√
N2

16λ2
+ E

N

λ
(3.17)

exist, the latter can be rewritten as

2

φ∗∫

0

√
2 (E − U(φ) ) dφ = (

1

2
+ n)π. (3.18)

This equation can be solved numerically for En which are in multiples of m.

For T = 0, expression (3.15) contains only the lowest energy eigenvalue:

V (Φ) = −T ln


e−E0/T


1 + e

(E0 − E1)︸ ︷︷ ︸
<0

/T

+ . . .





 T→0−−−→ −T ln e−E0/T = E0 . (3.19)

Analytic comparison between CJT and WKB for λ = 0

In the case of the quantum mechanical harmonic oscillator Lh = 1
2mhẋ

2 − 1
2mhω

2x2, the WKB

method is exact, i.e., it yields the correct eigenvalues En = ~ω(n + 1
2 ). From comparison of

U = m2

2 φ
2 and Uh = 1

2mhω
2x2, we conclude that U will lead to the eigenvalues

En = ~m(n+
1

2
). (3.20)

Together with M2
0

λ=0
= m2 and the limit (3.19), we conclude:

V0(Φ) = ~
1

2
m = ~

1

2
M0 , (3.21)
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where V0 is short for V (T = 0).

The same follows from the CJT result 3.8 for λ = 0,

V [Φ,G] =
1

2

(
M + 2T ln

(
1 − e−M/T

))
+

1

2

(
m2 −m2

) 1

M

(
1

eM/T − 1
+

1

2

)
, (3.22)

which, for T = 0, yields 1
2M0, too. The ~ is missing simply because we worked with ~ = 1 in the

CJT formalism.

3.3 Numerical results

Figure 3.2 shows the effective potential for different temperatures (top: λ = 10m3, bottom:

λ = 1 · 103m3).

In figure 3.4, we show the comparison of the effective potential at its global minimum, calculated

within CJT and WKB. All quantities are expressed in multiples of m. To find out how many

eigenvalues to consider we proceed as explained in the following. Tg denotes the temperature up

to which the result is within the required accuracy, and we neglect eigenvalues above the energy

Eg. We choose Eg such that ln e−E0/Tg equals ln
(
e−E0/Tg + e−Eg/Tg

)
within five significant

digits. Then we can expect that including the next larger eigenvalue would change the result

(−T ln
(∑

n e
−En/T

)
) at the utmost in the fifth significant digit. We also practically checked this

approach by comparing to results with at least twice as many eigenvalues taken into account.

For the comparison shown in figure 3.4 we chose Tg = 50m, which is high enough to reveal a

difference between CJT and WKB. As explained above, it is safe to say that this difference does

not stem from insufficient accuracy. For the required accuracy one needs the first 92 eigenvalues

in case of λ = 10m3, the first 27 eigenvalues in case of λ = 1 · 103m3 and the first 8 eigenvalues

in case of λ = 1 · 105m3 respectively. We observe that the larger λ the larger the difference at

T = 0. Although the difference between both curves (CJT resp. WKB) becomes larger with

increasing temperature, the ratio goes to one. This becomes obvious if we shift by a constant,

such that both curves coincide at T = 0 and start just below the T -axis. Figure 3.3 shows the

ratio after the shift. It does not seem to depend significantly on λ.
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Figure 3.2: effective potential at φ, and mass at the global minimum.

Figure 3.3: quantitative comparison between WKB and CJT.
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Figure 3.4: effective potential at its global minimum against temperature. blue: CJT, orange:

WKB.
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Chapter 4

Z2-symmetric double-well

potential

4.1 1+0 dimensions

In this chapter we want to restrict the discussion to 1+0 dimensions, since our major interest is

the comparison between the CJT formalism and the WKB method. The system we are concerned

with is determined by the Lagrange function

L =
1

2
∂0φ∂

0φ+
m2

2
φ2 − λ

N
φ4 , m2 > 0 . (4.1)

Again, we will study the behavior of the system at nonzero temperature.

4.1.1 CJT

A couple of equations we can borrow from section 3.2 by changing the sign in front of m2. Let

us list them explicitly.

result 4.1 (tree-level mass)

m2
σ = −m2 + 12

λ

N
φ2 .

Therefore, in pseudo-Minkowskian notation, we have the inverse tree-level propagator

D−1
σ = −k2

0 −m2 + 12
λ

N
φ2 . (4.2)

result 4.2 (contribution from two-particle irreducible diagrams)

V2 = 3

(
λ

N

)

∫

k0

Gσ (k0)




2

.
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result 4.3 (effective potential)

V [φ] = −m
2

2
φ2 +

λ

N
φ4 +

1

2

∫

k0

lnG−1
σ (k0) +

1

2

∫

k0

[
D−1

σ (k0)Gσ (k0) − 1
]
+ V2 .

result 4.4 (gap equation for sigma particle)

M2
σ = −m2 + 12

λ

N
φ2 +

12λ

N

∫

k0

Gσ .

However, in contrast to result 3.6, the extrema are nontrivial:

result 4.5 (stationarity condition for the field)

−m2ϕ+ 4
λ

N
ϕ3 + 12

λ

N
ϕ

∫

k0

Gσ = 0 .

First, let us examine Mσ and φ at the extrema of the effective potential. We will find that there

exists a critical value λcr for the coupling constant, from which on the only extremum is a global

minimum at φ = 0 for all temperatures. In this case, the effective potential for T = 0 does not

reproduce the classical potential.

The system of equations given by results (4.4) and (4.5), with all quantities expressed in multiples

of m, reads

M2
σ = −1 + 12 λ

N ϕ
2 + 12λ

N

∫
k0

Gσ , (4.3)

−ϕ+ 4 λ
N ϕ

3 + 12 λ
Nϕ

∫
k0

Gσ = 0 . (4.4)

It can be rewritten, distinguishing between two cases:

�

�

�

�

ϕ 6= 0

M2
σ = 2 − 24 λ

N

∫
k0

Gσ (4.5)

M2
σ = 8 λ

Nϕ
2 (4.6)

�

�

�

�
ϕ = 0

M2
σ = −1 + 12 λ

N

∫
k0

Gσ (4.7)

In the following, we use result B.1 for
∫
k0

Gσ (we will see that always Mσ 6= 0). At T = 0 this

reduces to 1
2Mσ

.

Eliminating λ from equations (4.5) and (4.6), we obtainM (T = 0) ≡M0 by choosing the positive

solution:

M0 =
−3 +

√
9 + 32f4

4f2
, (ϕ 6= 0) (4.8)

with the notation ϕ (T = 0) ≡ f .

In the same way, we can eliminate f and deduce, apart from a meaningless negative solution,

two positive-real ones:

M>
0 =

3√2
“

3√6N2+(
√

729N4λ2−6N6−27N2λ)
2/3
”

32/3N
3
√√

729N4λ2−6N6−27N2λ
, (ϕ 6= 0) (4.9)

M<
0 =

(−6)2/3N2− 3
√−6(

√
729N4λ2−6N6−27N2λ)

2/3

3N
3
√√

729N4λ2−6N6−27N2λ
, (ϕ 6= 0) (4.10)
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Likewise, we can express f by M0:

f = ±
√

3M0

4 − 2M2
0

, (ϕ 6= 0) (4.11)

Equation (4.7) has, apart from two meaningless complex solutions, a positive-real one:

M0 =
3
√

27λN2 +
√

3
√
N6 + 243λ2N4

32/3N
− N

3
√

81λN2 + 3
√

3
√
N6 + 243λ2N4

, (ϕ = 0)(4.12)

Now we should check under which circumstances the two cases ϕ 6= 0 resp. ϕ = 0 hold. Therefore

we assume that equation (4.5) holds true (i.e., ϕ 6= 0), M > 0, T > 0 and last but not least

λ > 0. The Mathematica-function Reduce yields an equivalent system of conditions:

0 < M <
√

2 (4.13)

∧ 0 < λ < 1
12

(
2MN −M3N

)
(4.14)

∧ T = M

ln
“

NM3−2NM−12λ

NM3−2NM+12λ

” = M

ln
“

1− 24λ
−2MN+M3N+12λ

” . (4.15)

There is a little subtlety hidden in the above assumptions: we have not specified that there are

upper and lower boundaries for M , therefore the assumption M > 0 (and consequently also

the system of conditions we derived with Reduce) includes too many solutions. Nevertheless,

we can calculate the maximal value λcr for the coupling constant, which is possible within

the assumptions. It is nothing else but the maximum of 1
12

(
2MN −M3N

)
in the interval

0 < M <
√

2:

λcr = max
0<M<

√
2

[
1

12

(
2MN −M3N

)]
.

In a next step, we feed Reduce with the condition 24λ
−2MN+M3N+12λ < 0, which is equivalent to

T > 0 ∧ M > 0 ∧ λ > 0 as one can see from (4.15). Reduce offers the equivalent conditions

0 < 4λ
N < 4

9

√
2
3

∧ Mmin < M < Mmax ,

where Mmin/Mmax is the smaller/larger positive solution of the equation 12 λ
N − 2Mmin/max +

M3
min/max = 0. One can directly see that this is nothing else but equation (4.5) for T = 0, if we

assume M > 0. From this we easily conclude that Mmax = M>
0 and Mmin = M<

0 . Additionally,

we gained an explicit expression for λcr:

λcr =
N

9

√
2

3
. (4.16)
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Figure 4.1: M and φ at the extrema of the effective potential (solid lines correspond to ϕ 6= 0,

dotted lines to ϕ = 0).

Relation (4.15) allows us to plot T (M) for ϕ 6= 0, and also T (ϕ) for ϕ 6= 0 if we employ (4.6).

One can observe from fig.4.1 what happens when λ is sent to λcr. The maximum (4.9) and

minimum (4.10) approach each other more and more, until at λcr only that M (T = 0) is left,

which follows from equation (4.7). Let us turn to the effective potential. Just for computational

convenience, we add a constant to the effective potential (that does not change the physics), such

that the minima of the classical potential touch the φ-axis. Remember, the symbol f stands for

all extrema at zero temperature, whereas F refers to the right minimum at zero temperature

alone. Then, with F =
√

Nm2

4λ and U (F ) = − λ
N F

4, we find the shifted classical potential to be

U = λ
N

(
φ2 − F 2

)2
.

Result 4.3, using U , yields

Veff = λ
N

(
φ2 − F 2

)2
+ 1

2

(
M + 2T ln

(
1 − e−M/T

))

+ 1
2

(
m2

σ −M2
)

1
M

(
1

eM/T −1
+ 1

2

)
+ 3

N λ
[

1
M

(
1

eM/T −1
+ 1

2

)]2
, (4.17)

where we neglected the addend T (1 − 2 ln(e− 1)), which would contribute a relatively small,

φ-independent constant. Also note that for simplicity we keep the same symbol for the shifted

effective potential.

When we want to plot the effective potential against φ at temperature T , we have to solve

equation (4.3) at T for M (φ). Figure (4.2) shows the typical evolution for the case λ < λcr.

We have a phase transition at temperature T ∗, when the right minimum at φ = ϕR and the

minimum at φ = 0 are at the same height, i.e., the global minimum Φ changes from ϕR to zero.

In accordance with fig.4.1, one can see in fig.4.3 that for λcr the minimum and the maximum

are replaced by a saddle-point at T = 0. Figure (4.4) illustrates that even for λ < λcr

the classical potential is not reproduced for T = 0, due to 1
M

(
1

eM/T −1
+ 1

2

)
T→0−−−→ 1

2M and
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Figure 4.2: shifted effective potential for different temperatures, λ = 0.1λcr.
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Figure 4.3: shifted effective potential for different temperatures, λ = 0.99λcr.

1
2

(
M + 2T ln

(
1 − e−M/T

)) T→0−−−→ M
2 . Even if λ = 0, although in this case the contribution from

V2 is zero and M2
0 (φ) = −m2 + 12 λ

N φ
2 + 12 λ

N
1

2M

λ=0
= m2

σ, the vacuum energy (synonymous:

zero-point energy) M
2 is still left.

For 0 < λ < λcr, a right minimum exists at T = 0, however it is global only until λ reaches the

value λ∗ at which T ∗ = 0. This means there is no T ∗, i.e., no phase transition if λ > λ∗, because

the global minimum is always zero. Figure (4.5) shows the critical temperature T ∗ vs. λ in

multiples of λcr. It was numerically obtained by minimizing the difference between the effective

potential at φ = ϕR and at φ = 0. Of particular interest is the effective potential at the global

minimum Φ, which is shown in fig.4.6 for various λ.

Figure 4.4: comparison between the classical potential (orange) and the effective potential for

small T .
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Figure 4.5: top-down, from left to right: critical temperature at which the phase transition occurs;

effective potential for λ = 0.001λcr at T ∗ = 338.46m ; effective potential for λ = 0.885λcr ≃ λ∗

at T = 0.01.

Figure 4.6: effective potential at its global minimum Φ; black: λ = 0.1λcr, green: λ = 0.2λcr,

cyan: λ = 0.4λcr, dark blue: λ = 0.8λcr, red: λ = λcr, orange: λ = 4λcr; the curves for λ < λcr

each range from T = 0.01 to T = 2T ∗.
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4.1.2 WKB

As in the section before, we use the shifted classical potential U = λ
N (φ2−F 2)2 for computational

convenience. The minima of the potential are given by

f1/2 = ±F = ±
√
Nm2

4λ
, (4.18)

and the turning points by

φ1 = +

√

−
√
NE

λ
+ F 2 , φ2 = +

√

+

√
NE

λ
+ F 2 , (4.19)

φ3 = −

√

+

√
NE

λ
+ F 2 , φ4 = −

√

−
√
NE

λ
+ F 2 . (4.20)

One now has to distinguish two cases (see figure 4.7). For E < Emax, where Emax = λ
N F

4,

Figure 4.7: shifted classical potential.

we have two bound states and, as already mentioned in section 2.3.2, a certain probability for

tunneling. Therefore one has to modify the WKB equation. According to [39] the eigenvalues

are determined by the following modified WKB equations:

φ2(E)∫

φ1(E)

dφ
√

2 [E − U(φ)] =

(
n+

1

2

)
π +

1

2
e−L , (4.21)

φ2(E)∫

φ1(E)

dφ
√

2 [E − U(φ)] =

(
n+

1

2

)
π − 1

2
e−L , (4.22)

with L =

φ1(E)∫

φ4(E)

dφ
√

2 [U(φ) − E] , (4.23)
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where we used the equality

φ2(E)∫

φ1(E)

dφ
√

2 [E − U(φ)] =

φ4(E)∫

φ3(E)

dφ
√

2 [E − U(φ)] . (4.24)

From (4.21) follow the eigenvalues E+
n and from (4.22) the eigenvalues E−

n . These are the

eigenvalues which lie below Emax.

For E ≥ Emax we have the ordinary WKB equation

φ2(E)∫

φ3(E)

dφ
√

2 [E − U(φ)] =

(
n+

1

2

)
π , (4.25)

from which the eigenvalues Eup
n are determined, i.e., the eigenvalues which lie above Emax.

The sum in the partition function

Z =
∑

n

e−En/T (4.26)

runs over all eigenvalues Eup
n , E+

n and E−
n .

The effective potential at its global minimum is given by

V (Φ) = −T lnZ = −T ln

(
∑

n

e−En/T

)
. (4.27)

In order to find out how many eigenvalues have to be included in the calculation, we proceed

similarly to section 3.3. The comparison between the WKB method and the CJT formalism is

shown in figures 4.8-4.10. We observe that the larger λ, the more both curves deviate from each

other at T = 0, while their shape become more equal. For large λ and T < Tg, the curves are

identical, up to an offset.

Figure 4.8: comparison of the effective potential at its global minimum for WKB (solid line) and

CJT (dots), λ = 0.4λcr. Both curves are almost equal at T = 0.
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Figure 4.9: comparison of the effective potential at its global minimum for WKB (solid line) and

CJT (dots), λ = λcr. VWKB(T = 0) ≃ 0.521m, VCJT ≃ 0.582m.

0.5 1.0 1.5 2.0 2.5 3.0
T @mD

-2.5

-2.0

-1.5

-1.0

-0.5

0.5

VHFL @mD

Figure 4.10: comparison of the effective potential at its global minimum for WKB (solid line)

and CJT (dots), λ = 4λcr. VWKB(T = 0) ≃ 0.293m, VCJT ≃ 0.443m.
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Chapter 5

The generating functional in

polar coordinates

So far we have discussed models for a single field (N = 1). The later chapters will proceed

with N = 2, expressing the field variables (usually referred to as internal degrees of freedom)

either in cartesian or in polar coordinates. In this chapter we refer to 1+0 dimensional SQFT.

Except for section 5.2.3, we were able to generalize all our results presented in this chapter to

1+3 dimensions. For simplicity, and because the verification of certain marginal (but interesting)

issues in 1+3 dimensions is still ongoing work, we will restrict ourselves to 1+0 dimensions.

Note that we use natural units where ~ = 1.

For cartesian coordinates, the starting point is the generating functional (E.7). In the case we

are not at the global minimum, source terms are present:

Z =




N+1∏

n=1

∞∫

−∞

dφ1,n√
2π~ε






N+1∏

n=1

∞∫

−∞

dφ2,n√
2π~ε


 e− 1

~
AE+sourceterms , (5.1)

where φ1,a = φ1,b and φ2,a = φ2,b , (5.2)

with the Euclidean action AE = ε
N+1∑

n=1


1

2

(
~φn − ~φn−1

ε

)2

+ U(~φn,−iτn)


 , and with (5.3)

sourceterms = ε

N+1∑

n=1

[
φ1,nJ1,n + φ2,nJ2,n +

N+1∑

m=1

[
1

2
φ1,nK1,nmφ1,m +

1

2
φ2,nK2,nmφ2,m

]]
.

(5.4)

Note that in the case of SQFT one has to bear in mind the periodic boundary condition

~φ(τ, ~x)
!
= ~φ(τ + 1/T, ~x) . (5.5)

In the following, we set the sources to zero, which means we are at the global minimum.

According to chapter 8 of Kleinert’s textbook [42], we have to change to polar coordinates in

this sliced version, which is not equivalent to performing the coordinate transformation in the
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continuous form of Z. The transformation is given by

φ1,j = rj cosϕj , φ2,j = rj sinϕj , (5.6)

with the Jacobian detFj =

∣∣∣∣∣

∂φ1,j

∂rj

∂φ1,j

∂ϕj
∂φ2,j

∂rj

∂φ2,j

∂ϕj

∣∣∣∣∣ =

∣∣∣∣∣
cosϕj −rj sinϕj

sinϕj rj cosϕj

∣∣∣∣∣ = rj .

The kinetic term becomes

exp


−1

2

N+1∑

j=1

ε

(
~φj − ~φj−1

)2

ε2


 =

N+1∏

j=1

e−
1
2ε (~φj−~φj−1)

2

=

N+1∏

j=1

e−
1
2ε [r2

j+r2
j−1−2rjrj−1 cos(ϕj−ϕj−1)] .

In the following, we assume a potential that depends on the radial degree of freedom only, for

instance

U(~φj) =
m2

2
~φ2

j +
λ

N

(
~φj · ~φj

)2

=
m2

2
r2j +

λ

N
r4j . (5.7)

With the above, the expression for the generating functional (5.1) merges into its representation

in polar coordinates

Z =




N+1∏

j=1

∞∫

0

drjrj√
2πε






N+1∏

j=1

2π∫

0

dϕj√
2πε


 e−AE , (5.8)

where rb = ra and ϕb = ϕa ,

with AE [rj , ϕj ; ε] =
1

2

N+1∑

j=1

ε

(
r2j + r2j−1 − 2rjrj−1 cos(ϕj − ϕj−1)

ε2

)
+

N+1∑

j=1

εU(rj) . (5.9)

With

r2j + r2j−1 − 2rjrj−1 cos(ϕj − ϕj−1) = (rj cosϕj − rj−1 cosϕj−1)
2 + (rj sinϕj − rj−1 sinϕj−1)

2 ,

we obtain



N∏

j=1

∞∫

0

drjrj√
2πε






N∏

j=1

2π∫

0

dϕj√
2πε


 e−AE =




N+1∏

j=1

∞∫

0

drjrj






N+1∏

j=1

2π∫

0

dϕj


× (5.10)

× exp


−1

2

N+1∑

j=1

ε

(
(rj cosϕj − rj−1 cosϕj−1)

2

ε2
+

(rj sinϕj − rj−1 sinϕj−1)
2

ε2

)
−

N+1∑

j=1

εU(rj)


 .

With

(rj cosϕj − rj−1 cosϕj−1)
2

ε2
ε→0−−−→

(
∂

∂τ
(r cosϕ)|τ=τj

)2

,

N+1∑

j=1

ε
ε→0−−−→

1/T∫

0

dτ , where 0 ≡ τ0 and 1/T ≡ τN+1 ,

lim
ε→0

AE ≡ SE
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and since SE =
∫
dτ(L + U), we read off

LE(r, ϕ) =
1

2

∂

∂τ
(r cosϕ)

∂

∂τ
(r cosϕ) +

1

2

∂

∂τ
(r sinϕ)

∂

∂τ
(r sinϕ) + U(r) , (5.11)

which is consistent with applying the transformations (5.6) to LE(φ1, φ2). With

(ṙ cosϕ− rϕ̇ sinϕ)2 = ṙ2 cos2 ϕ− 2ṙ cosϕrϕ̇ sinϕ+ r2ϕ̇2 sin2 ϕ,

(ṙ sinϕ+ rϕ̇ cosϕ)2 = ṙ2 sin2 ϕ+ 2ṙ cosϕrϕ̇ sinϕ+ r2ϕ̇2 cos2 ϕ,

we arrive at

LE(r, ϕ) =
1

2
ṙ2 +

1

2
r2ϕ̇2 + U(r) . (5.12)

Hence, in the continuum limit ε→ 0, we can abbreviate (5.8) by

Z =

∞∮

0

Drr
2π∮

0

Dϕe−
R

dτLE(r,ϕ). (5.13)

But beware! We are not allowed to apply the CJT formalism to LE(r, ϕ) a priori. We have to

take care of three issues

• the Jacobian r which appears in the integration measure,

• the integration over r runs from 0 to ∞,

• the integration over ϕ runs from 0 to 2π.

We cannot assume in the first place that perturbation theory for such a path integral is the

same as for the cartesian generating functional (5.1). In his textbook [43], Anthony Zee outlines

the main steps which lead to the Feynman rules in the case of cartesian coordinates. He begins

with a neat toy model (called “baby problem”), Z =
∞∫

−∞
dqe−

1
2aq2− λ

N q4+Jq , which is suited to

convince oneself that the Feynman rules for (5.13) differ from the well-known cartesian. Namely,

their derivation is based on the Gaussian integral

∞∫

−∞

dq e−
1
2aq2+Jq =

(
2π

a

) 1
2

e
J2

2a . (5.14)

One possibility would be to derive the Feynman rules for (5.13), in a similar way presented by

Zee. A much more elegant way is to do perturbation theory in general curvilinear coordinates,

as Kleinert discusses it in chapter 10 of his textbook [42] for QM and SQM. Since Euclidean

QM with a periodic boundary condition (Statistical Quantum Mechanics) has mathematically

the same structure as SQFT in 1+0 dimensions (compare with appendix E), his results are of

high interest for us. His discussion of SQM in chapter 10.11 has not been examined with respect

to all implications for our work, yet. In this thesis, we focus on his considerations concerning

the Jacobian, which we want to discuss in section 5.2.3. In section 10.6.1, Kleinert begins with

the discussion with a relatively general case in Euclidean QM. This section is valid for path

integrals at T ≥ 0, in arbitrary curvilinear coordinates (the coordinate transformation only
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needs to be holonomic), which contain the commonly used action (U 6= 0). In the following

sections 10.7-10.10, Kleinert shows for the special case T = 0 together with U = ω2x2 that

the Jacobian does not have an effect on perturbation theory. At each order in a perturbative

expansion, the terms containing δ(0) are canceled by other terms. In sections 10.11.2/10.11.4 he

proceeds with the proof for T 6= 0 together with U = 0 on the basis of holonomic coordinate

transformations, whereas in sections 10.11.5/10.11.6 he broadens the scope to non-holonomic

coordinate transformations. However, at the end of section 10.6.1, Kleinert predicts that the δ(0)-

terms will be canceled also in the general case, since this is what one expects due to consistency

with δ(0) = 0 in dimensional regularization (compare with section 5.2.2). So one of our three

problems is solved. In chapter 9 we also want to present an alternative attempt to cope with the

problem.

The problem of the integration intervals is still left. In section 5.3 we examine the integration

over ϕ, whereas section 5.4 is dedicated to the integration over r. Both problems are solved. In

the latter case, the solution is again dimensional regularization.

5.1 Integrating out the angular degrees of freedom

If the classical potential U does not depend on ϕ, i.e., U = U(r), we are able to perform the

integrations over ϕn. With the help of the modified Bessel functions, Iν(z), expression (5.8) can

be rewritten as

Z =




N+1∏

n=1

∞∫

0

drnrn√
2πε






N+1∏

n=1

2π∫

0

dϕn√
2πε



[

N+1∏

n=1

e−ε 1
2

r2
n+r2

n−1

ε2

]
×

×
[

N+1∏

n=1

exp

(
ε
1

2

2rnrn−1 cos(ϕn − ϕn−1)

ε2

)]

︸ ︷︷ ︸
=[
QN+1

n=1

P∞
mn=−∞ Imn(

rnrn−1
ε )eimn(ϕn−ϕn−1)]

[
N+1∏

n=1

e−εU(rn)

]
. (5.15)

Let us begin with collecting all factors depending on ϕN and integrating this expression over ϕN :

2π∫

0

dϕN

( ∞∑

mN=−∞
ImN

(rN rN−1

ε

)
eimN (ϕN−ϕN−1)

)


∞∑

mN+1=−∞
ImN+1

(rN+1rN
ε

)
eimN+1(ϕN+1−ϕN )




=
∑

mN

∑

mN+1

ImN

(rNrN−1

ε

)
ImN+1

(rN+1rN
ε

)
eimN+1ϕN+1−imN ϕN−1

2π∫

0

dϕNe
iϕN (mN−mN+1)

= 2π
∑

mN+1

ImN+1

(rNrN−1

ε

)
ImN+1

(rN+1rN
ε

)
eimN+1ϕN+1−imN+1ϕN−1 , (5.16)

where we used

2π∫

0

dϕNe
iϕN (mN−mN+1) = − i

(
−1 + e2πi(mN−mN+1)

)

mN −mN+1
=





0 for mN+1,mN ∈ Z and mN+1 6= mN

2π for mN+1 = mN

= 2πδmN+1,mN . (5.17)
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We continue with the integration over ϕN−1. We collect all factors depending on ϕN−1 and

perform the integration. With (5.16) we have:

2π∫

0

dϕN−1

∑

mN−1

ImN−1

(rN−1rN−2

ε

)
eimN−1(ϕN−1−ϕN−2)×

×2π
∑

mN+1

ImN+1

(rNrN−1

ε

)
ImN+1

(rN+1rN
ε

)
eimN+1ϕN+1−imN+1ϕN−1

=
∑

mN+1

∑

mN−1

ImN−1

(rN−1rN−2

ε

)
ImN+1

(rNrN−1

ε

)
ImN+1

(rN+1rN
ε

)
eimN+1ϕN+1−imN−1ϕN−2×

2π

2π∫

0

dϕN−1e
iϕN−1(mN−1−mN+1)

︸ ︷︷ ︸
2πδmN−1,mN+1

=
∑

mN+1

ImN+1

(rN−1rN−2

ε

)
ImN+1

(rNrN−1

ε

)
ImN+1

(rN+1rN
ε

)
eimN+1ϕN+1−imN+1ϕN−2(2π)2 .

(5.18)

It is obvious that we are able to proceed in the same manner, which leads to

∑

mN+1

[
N+1∏

n=2

ImN+1

(rnrn−1

ε

)]
eimN+1ϕN+1−imN+1ϕ1(2π)N−1 (5.19)

after having performed the
2π∫
0

dϕ2 -integration. With (5.19) the partition function reads:

Z =




N+1∏

n=1

∞∫

0

drnrn√
2πε




2π∫

0

dϕ1√
2πε

2π∫

0

dϕN+1√
2πε

[
N+1∏

n=1

e−ε 1
2

r2
n+r2

n−1

ε2

]
×

× 1

(
√

2πε)N−1


 ∑

mN+1

[
N+1∏

n=2

ImN+1

(rnrn−1

ε

)]
eimN+1ϕN+1−imN+1ϕ1(2π)N−1


×

[
N+1∏

n=1

e−εU(rn,−iτn)

](
∑

m1

Im1

(r1r0
ε

)
eim1(ϕ1−ϕ0)

)
. (5.20)

A last time we proceed as before:

∑

mN+1

∑

m1

[
N+1∏

n=2

ImN+1

(rnrn−1

ε

)]
Im1

(r1r0
ε

)
eimN+1ϕN+1−im1ϕ0(2π)N−1

2π∫

0

dϕ1e
iϕ1(m1−mN+1)

=
∑

mN+1

[
N+1∏

n=1

ImN+1

(rnrn−1

ε

)]
eimN+1(ϕN+1−ϕ0)(2π)N , (5.21)
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and therefore

Z =




N+1∏

n=1

∞∫

0

drnrn√
2πε




2π∫

0

dϕN+1√
2πε

[
N+1∏

n=1

e−ε 1
2

r2
n+r2

n−1

ε2

]
1

(
√

2πε)N

[
N+1∏

n=1

e−εU(rn,−iτn)

]
×

×
(
∑

m

[
N+1∏

n=1

Im

(rnrn−1

ε

)]
eim(ϕN+1−ϕ0)(2π)N

)
. (5.22)

Because of ϕN+1 = ϕ0, the integration over ϕN+1 simply yields a factor 2π, so that we obtain

Z =
∞∑

m=−∞
(2π)N+1

(
1√
2πε

)2N+2



N+1∏

n=1

∞∫

0

drn



[

N+1∏

n=1

e−εU(rn,−iτn)

]
×

×
[

N+1∏

n=1

Im

(rnrn−1

ε

)
e−ε 1

2

r2
n+r2

n−1

ε2 rn

]
. (5.23)

The latter factor we want to rewrite as follows:

[
N+1∏

n=1

Im

(rnrn−1

ε

)
e−ε 1

2

r2
n+r2

n−1

ε2 rn

]
=

[
N+1∏

n=1

Im

(rnrn−1

ε

)
e−

rnrn−1
ε rn

][
N+1∏

n=1

e−
1
2ε (rn−rn−1)

2

]
,

due to e−ε 1
2

r2
n+r2

n−1

ε2 = e−
1
2ε [(rn−rn−1)

2+2rnrn−1].

Since

N+1∏

n=1

rn =
√
rN+1

√
rN+1rN

√
rNrN−1 · · ·

√
r2r1

√
r1

rN+1=r0
=

[
N+1∏

n=1

√
rnrn−1

]
, (5.24)

we have

[
N+1∏

n=1

Im

(rnrn−1

ε

)
e−

rnrn−1
ε rn

]
=

[
N+1∏

n=1

Im

(rnrn−1

ε

)
e−

rnrn−1
ε

√
2π
rnrn−1

ε

]
(
√
ε)N+1 1

(
√

2π)N+1
,

and so we end up with

Z =

∞∑

m=−∞




N+1∏

n=1

∞∫

0

drn√
2πε



[

N+1∏

n=1

e−εU(rn,−iτn)

][
N+1∏

n=1

e−
1
2ε (rn−rn−1)

2

]
×

×
[

N+1∏

n=1

Im

(rnrn−1

ε

)
e−

rnrn−1
ε

√
2π
rnrn−1

ε

]
. (5.25)

We refer to Ĩm (z) ≡ Im
( rnrn−1

ε

)
e−z

√
2πz as the slightly modified Besselfunctions, and so we

write

result 5.1 (polar generating functional in case of U = U(r))

Z =

∞∑

m=−∞




N+1∏

n=1

∞∫

0

drn√
2πε



[

N+1∏

n=1

e−εU(rn,−iτn)

][
N+1∏

n=1

e−
1
2ε (rn−rn−1)

2

] [
N+1∏

n=1

Ĩm

(rnrn−1

ε

)]
.

76



5.2 Jacobian

5.2.1 Cut-off approach

Our first attempt was to handle the Jacobian by introducing a cut-off. Let us discuss this at the

example of (5.13). We rewrite the Jacobian such that it can be included in the exponential:1

Z =




N+1∏

j=1

∞∫

0

drje
ln rj

√
2πε




2π∮

0

Dϕe−
R

dτLE(r,ϕ) =




N+1∏

j=1

∞∫

0

drj√
2πε




2π∮

0

Dϕe−
R

dτLE(r,ϕ)+
PN+1

j=1 ln rj .

(5.26)

For simplicity, we use a rather suggestive notation, where we write only the parts of interest in

a sliced form. Understood, one should write the whole expression either in the sliced or in the

continuous version.

We can generate an effective Lagrange function, L ≡ LE + LΛ, by rewriting

N+1∑

j=1

ln rj =
1

ε
ε

N+1∑

j=1

ln rj ,

which becomes an integral in the continuum limit:

1

ε
ε

N+1∑

j=1

ln rj
ε→0−−−→

[
lim

ε→∞
1

ε

]
·

1/T∫

0

dτ ln r .

We now introduce a cut-off by simply replacing
[
limε→∞ 1

ε

]
by Λ:

Z =

∞∮

0

Dr
2π∮

0

Dϕe−
R

dτ [LE(r,ϕ)−Λ ln r] . (5.27)

The above expression can be generalized to 1+3 dimensions:

Z =

∞∮

0

Dr
2π∮

0

Dϕe−
R

dτd3
x[LE(r,ϕ)−ΛτΛx ln r] . (5.28)

We applied the CJT formalism to L = LE − ΛτΛx ln r, with

LE =
1

2
ṙ2 +

1

2
r2ϕ̇2 − m2

2
r2 +

λ

2
r4 −Hr cosϕ ,

and verified that the condensate, as well as the masses, behave more and more pathological, as

we increase the value of Λ ≡ ΛτΛx. The results are shown in figures 5.1 and 5.2. For Λ = 0 the

results for section 6.1.1 are reproduced. As Λ increases, the weak first-order phase transition,

encountered in section 6.1.1, seems to become crossover for increasing Λ. However, the (physical)

pion mass vanishes long before the condensate becomes zero. For larger Λ it becomes obvious

that the condensate even increases before the pion mass vanishes at a certain temperature. These

1Note that one can easily make the argument of the logarithm dimensionless by inserting ( 1
r0

)N+1rN+1
0 , using

the first factors in order to obtain ln
rj

r0
, and absorbing the latter into a normalization constant.
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numerical results show that the limit Λ → ∞ is completely incapable of outweighing the infinity

arising from the terms with ϕ in the denominator. Quite the contrary!

This kind of behavior is not a surprise, since Λ = δ4(0)
DR−−→ 0 in dimensional regularization

(compare with result 5.2).

Figure 5.1: condensate; left: Λ = 0 and Λ = 140MeV , right: Λ = 300MeV .

Figure 5.2: pion mass; left: Λ = 140MeV , right: Λ = 300MeV .
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5.2.2 General solution: dimensional regularization

A comprehensible introduction into dimensional regularization was given by Leibbrandt [44]. In

part II of his review, he discusses the technique of dimensional regularization for an ultraviolet

divergent, Euclidean, four-dimensional integral of the form

I(q) =

∞∫

−∞

dp4

2π

∞∫

−∞

d3k

(2π)3
J(p2, p · q) , (5.29)

where J(p2, p · q) is an arbitrary function of the Euclidean scalar products p2 = p2
4 + k2 and

p · q = p4q4 + k · q .

As the procedure is described in detail by Leibbrandt, we restrict ourselves to summarizing the

technique. Usually the integral I(q) will contain propagators and therefore the masses of the

fields in our theory. In a first step, all propagators are to be replaced by

1

p2 +M2
=

∞∫

0

dα exp
[
−α(p2 +M2)

]
. (5.30)

Secondly, one has to analytically continue the vectors p, q to 2ω-dimensional vectors, with com-

plex ω. Accordingly the integrations have to be replaced by
∞∫

−∞
dp4

2π

∞∫
−∞

d3k
(2π)3 →

∞∫
−∞

d2ωp
(2π)2ω .2 Since

we are only interested in the technique, we can regard the analytically continued expression just

from a formal point of view.3 With help of the formula

∞∫

−∞

d2ωp

(2π)2ω
e−xp2+2p·b =





(π/x)ω

(2π)2ω e
b2/x for M > 0

(4πx)−ωeb2/x−xf(ω) for M = 0
, (5.31)

where b is a 2ω-dimensional Euclidean vector, x > 0 and f(ω) is not unique, but an arbitrary

function satisfying certain conditions, we obtain an expression which merely contains an inte-

gration over α. Performing this integration usually leads to a result containing the Gamma

function

Γ (g(ω)) =

∞∫

0

dt tg(ω)−1e−t , where g is some function with Re (g(ω)) > 0 , (5.32)

as this special function arises naturally from the computation of Gaussian integrals. As one wants

ω to be defined on the whole complex plane, one analytically continues the definition (5.32) to

2This is done because the analytically continued expression I2ω(q) is not divergent anymore. After the terms

responsible for the divergence at ω = 2 have been removed from I2ω(q), so that we are left with I′2ω(q), the limit

limω→2 I′2ω(q) will be taken, yielding the finite renormalized result.
3However, from a more rigorous point of view, we are able to understand the nature of this analytic continuation.

∞
R

−∞

d4p
(2π)4

e−x(p2
0+p2

x+p2
y+p2

z)+2(p0b0+pxbx+pyby+pzbz) = 1
(2π)4

π2

x2 e
b2/x, which is obtained by carrying out the four

integrations. This reveals the dependence of the result on the dimension r, which one should be able to prove

in principal:
∞
R

−∞

d2rp
(2π)2r e

−xp2+2p·b = 1
(2π)2r

`

π
x

´r
eb2/x. The analytic continuation now consists of nothing more

than defining
∞
R

−∞

d2ωp
(2π)2ω e

−xp2+2p·b ≡ 1
(2π)2ω

`

π
x

´ω
eb2/x, which is in this sense simply a suggestive abbreviation.

All other analytically continued expressions can be understood in this sense, however we owe a rigorous proof.
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the entire complex plane (except the points ω = 0,−1,−2, · · · ):

ΓW (g(ω)) =

∞∑

n=0

(−1)n

n!(n+ g(ω))
+

∞∫

1

dt tg(ω)−1e−t , (5.33)

which is known as Weierstrass’s representation of the Gamma function. For Re (g(ω)) > 0 one

recovers Γ(g(ω)). After having replaced Γ(g(ω)) by ΓW (g(ω)), one has to expand the result in a

Laurent series about the point ω = 2, which reveals the origin of the divergence. The divergent

terms show up as addends with singularities at ω = 2. Dropping these addends, one obtains the

renormalized result for I(q) by taking the limit ω → 2.

Although the above recipe is formulated such that it is most easily applied to I’s appearing in

perturbative calculations, it can be applied to any I of the above form, at least if the variables

p4 and k have the right dimension. As we will see, such integrals do not exclusively appear in

Euclidean QFT, but also in SQFT.

We now come to the point of interest, which can be found in [44], too: I ≡ δ4(0).

Let us first rewrite δ4(0), such that it has the appropriate form to apply the above recipe.

δ4(0) =
1

(2π)4

∫
d4p ei p·0 =

1

(2π)4

∫
d4p 1 =

1

(2π)4

∫
d4p

p2

p2
. (5.34)

Using formula (5.30), we obtain

δ4(0) =
1

(2π)4

∫
d4p p2

∞∫

0

dαe−αp2

. (5.35)

Analytically continuing (5.35) to a 2ω-dimensional vector space results

δ4(0) → 1

(2π)2ω

∫
d2ωp p2

∞∫

0

dαe−αp2

. (5.36)

Using a similar formula as (5.31) for M = 0, namely
∫
d2ωp p2

(2π)2ω
e−xp2

= (4π)−ω
[
ωx−(1+ω) + x−ωf(ω)

]
e−xf(ω) , (5.37)

we obtain

1

(2π)2ω

∫
d2ωp p2

∞∫

0

dαe−αp2

=

∞∫

0

dα
(
(4π)−ω

[
ωα−(1+ω) + α−ωf(ω)

]
e−αf(ω)

)

= ω(4π)−ω

∞∫

0

dα α−(1+ω)e−αf(ω) + f(ω)(4π)−ω

∞∫

0

dα α−ωe−αf(ω). (5.38)

The integrals can be evaluated with the help of Mathematica:

∞∫

0

dα α−(1+ω)e−αf(ω) = (f(ω))ω Γ(−ω) , if Re (f(ω)) > 0 and Re(ω) < 0 , (5.39)

∞∫

0

dα α−ωe−αf(ω) = (f(ω))−1+ω Γ(1 − ω) , if Re (f(ω)) > 0 and Re(ω) < 1 . (5.40)
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Therefore, using the analytic continuation (5.33) of the Gamma function, we are able to write

ω(4π)−ω

∞∫

0

dα α−(1+ω)e−αf(ω) + f(ω)(4π)−ω

∞∫

0

dα α−ωe−αf(ω)

= (f(ω))
ω

(4π)−ω [ωΓW (−ω) + ΓW (1 − ω)] . (5.41)

Finally, since limω→2 ΓW (g(ω)) = Γ (g(2)), we end up with

lim
ω→2

(f(ω))
ω

(4π)−ω [ωΓW (−ω) + ΓW (1 − ω)] = 0 . (5.42)

We have derived an important result, namely

result 5.2 (In dimensional regularization)

δ4(0)
DR−−→ 0 .

Note that result 5.2 also holds true for the delta function at the origin in 1+0 dimensions. As

Kleinert mentions in chapter 10 of his textbook [42], the vanishing of the delta function at the

origin in dimensional regularization is consistent with Veltman’s rule, which in turn is discussed

in another of his books [17].

Although results should not depend on the regularization scheme used, we have to employ only

one scheme in calculations, due to consistency. In appendix B, we already discussed how to

renormalize the divergent contribution Qµ in the CT-scheme. However, all numerical results

presented in this thesis are for Qµ = 0, since the shape of the masses and the extrema ϕ, plotted

against temperature T , for this case are not much different from those achieved by taking into

account Qµ in the CT-scheme. As one is able to perceive the shape of the effective potential just

from ϕ(T ), we claim that setting Rµ = 0 will not change its shape significantly, in comparison

with taking into account Rµ in the CT-scheme. If we are able to show that δ4(0) = 0 also in

the CT-scheme, the numerical results are significant. If not, one would be obliged to check, if

accounting for Qµ and Rµ has an important effect on the results. This is still ongoing work.

Here, we just want to present our preliminary result for Qµ in dimensional regularization (which

needs to be checked).

According to [45], we are able to rewrite Qµ as

Qµ =

∞∫

−∞

d4p

(2π)4
1

p2 +M2
, with p = (p0,p) and p2 = p2

0 + p2 , (5.43)

due to
∞∫

−∞
dp0

2π
1

p2
0+x

= 1
2

1√
x
.

Instead of applying the CT-scheme, which was done in the aforementioned work, we employ the

above recipe.

Using

1

p2
0 + p2 +M2

=

∞∫

0

dα e−α(p2
0+p2+M2) , (5.44)
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we obtain

Qµ =

∞∫

0

dα

∞∫

−∞

d4p

(2π)4
e−α(p2

0+p2+M2). (5.45)

Analytically continuing p to a 2ω-dimensional vector, we obtain with help of formula (5.31) for

M > 0:

Qµ →
∞∫

0

dα

∫
d2ωp

(2π)2ω
e−α(p2+M2) =

∞∫

0

dα
1

(2π)2ω

(π
α

)ω

e−αM2

. (5.46)

With the help of Mathematica, we deduce

∞∫

0

dα
1

(2π)2ω

(π
α

)ω

e−αM2

=
1

(2π)2ω
(M2)−1+ωπωΓ(1 − ω) , if Re(ω) < 1 . (5.47)

Using the analytic continuation (5.33) of the Gamma function, we are able to write

∞∫

0

dα
1

(2π)2ω

(π
α

)ω

e−αM2

=
1

(2π)2ω
(M2)−1+ωπωΓW (1 − ω) . (5.48)

Using the explicit form (5.33) and expanding the above expression in a Laurent series about

ω = 2 (again with the help of Mathematica), we isolate the term which is singular at ω = 2:
M2

16π2(ω−2) . Taking the limit ω → 2, we end up with the result (which needs to be checked)

result 5.3 (In dimensional regularization)

Qµ
DR−−→

M2
(
−1 + γ + ln M2

4π

)

16π2
,

where γ ≃ 0.577216 is Euler’s constant.

5.2.3 Diagrammatic expansion

As shown in the previous section, the Jacobian has no influence on the results. This is mirrored

in the perturbative expansion of the generating functional. We want to show this on the basis

of the toy model S(φ) = 1
2

∫
dτ
[
φ̇2 +m2φ2

]
,4 which was discussed by Kleinert and Chervyakov

[46].

In this section, we will omit the subscript E, which indicates the Euclidean form.

Z =

∞∮

−∞

Dφe−S(φ) =




N+1∏

n=1

∞∫

−∞

dφn√
2πε


 e−A(φn). (5.49)

A coordinate transformation of the form

φ = f(q) , (5.50)

4Note that with the replacements x → φ, ω2 → m2 and M → 1, this corresponds to the harmonic oscillator in

Euclidean QM.
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which is obviously holonomic, yields the generating functional

Z =

[
N+1∏

n=1

∫
dqn√
2πε

][
N+1∏

n=1

df(qn)

dqn

]
e−A(qn) =

∮
Dq df(q)

dq
e−S(q)

=

[
N+1∏

n=1

∫
dqn√
2πε

]
e−A(qn)+ 1

ε ǫ
PN

n=1 ln[ df(qn)
dqn

] . (5.51)

Note that we can keep the argument of the logarithm dimensionless, since the latter expression

is equal to

[
N+1∏

n=1

∫
dqn√
2πε

df(q0)

dq0

]
e
−A(qn)+ 1

ε ǫ
PN

n=1 ln
h

( df(qn)
dqn

)/
“

df(q0)
dq0

”i

. (5.52)

Let us abbreviate the Jacobian: df(qn)
dqn

≡ J(qn).

In the continuum limit ε→ 0 we obtain

Z =

∮
Dqe−S(q)+δ(0)

R

dτ ln J(q) . (5.53)

We consider fluctuations around q = 0,

q → 0 + δq , (5.54)

but we will keep the symbol q for the fluctuation δq.

The physical meaning of the fluctuation is the same as in section 2.2. Our potential U(φ) = m2

2 φ
2

has its global minimum at φ = 0. Assuming that U(q) has its global minimum correspondingly

at q = 0, our particle is described by a fluctuation about the vacuum.

We now want to make the coordinate transformation explicit:

φ = f(q) ≡ q − g

3
q3 +

g2

5
aq5 − · · · (5.55)

⇒ φ̇ = q̇ − gq2q̇ + g2aq4q̇ − · · · , (5.56)

hence

φ̇2 = q̇2 − gq2q̇2 + g2aq4q̇2 − gq2q̇2 + g2q4q̇2 + g2aq4q̇2 +O(g3) (5.57)

and

m2φ2 = m2

(
q2 − g

q4

3
+ g2a

q6

5
− g

q4

3
+ g2 q

6

9
+ g2a

q6

5
+O(g3)

)
(5.58)

yield

S(q) =
1

2

∫
dτ

(
−2gq2q̇2 − g

2m2

3
q4 + g2(2a+ 1)q̇2q4 + g2m2

(
2

5
a+

1

9

)
q6 + q̇2 +m2q2 +O(g3)

)
.

(5.59)

With

J(q) =
df(q)

dq
= 1 − gq2 + g2aq4 − · · · (5.60)
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and

ln
(
1 − gq2 + g2aq4

)
≃ −gq2 + g2aq4 − 1

2
g2q4 +O(g3) , (5.61)

we deduce

Z =

∮
Dq exp

{
−S(q) + δ(0)

∫
dτ lnJ(q)

}

=

∮
Dq exp

{
−S0 − Sint − SJ +O(g3)

}
, (5.62)

where we defined

S0 ≡ 1

2

∫
dτ
[
q̇2 +m2q2

]
, (5.63)

Sint ≡ 1

2

∫
dτ

[
−2gq2q̇2 − g

2m2

3
q4 + g2(2a+ 1)q̇2q4 + g2m2

(
2

5
a+

1

9

)
q6
]
, (5.64)

SJ ≡ −δ(0)

∫
dτ

[
−gq2 + g2(a− 1

2
)q4
]
. (5.65)

Using another abbreviation, Sint
tot ≡ Sint + SJ , we rewrite the generating functional as

Z =

∮
Dqe−S0

e−Sint
tot . (5.66)

Taylor expanding the interaction part,

e−Sint
tot = 1 − Sint

tot +
1

2!
Sint

tot

2 − 1

3!
Sint

tot

3
+ · · · , (5.67)

we obtain

Z =

∮
Dqe−S0 −

∮
Dqe−S0

Sint
tot +

1

2!

∮
Dqe−S0

Sint
tot

2 − · · · (5.68)

With the abbreviations
∮

Dqe−S0 ≡ Z0 , (5.69)

〈· · · 〉0 ≡ 1

Z0

∮
Dqe−S0

(· · · ) , (5.70)

we can write

Z = Z0

[
1 − 〈Sint

tot 〉0 +
1

2!
〈Sint

tot
2〉0 − · · ·

]
. (5.71)

Accordingly, the effective potential at its global minimum reads:

V = −T lnZ = −T lnZ0︸ ︷︷ ︸
V0

−T
[
−〈Sint

tot 〉0 +
1

2!
〈Sint

tot

2〉0 − · · ·
]
. (5.72)

The expectation values appearing in (5.72) can be rewritten due to 〈a+ b〉0 = 〈a〉0 + 〈b〉0:

〈Sint
tot 〉0 = 〈Sint + SJ〉0 =

∫
dτ〈−gq2q̇2〉0 +

∫
dτ〈−gm

2

3
q4〉0 +

∫
dτ〈g2(a+

1

2
)q̇2q4〉0

+

∫
dτ〈g2m2

(
a

5
+

1

18

)
q6〉0 +

∫
dτ〈gδ(0)q2〉0 +

∫
dτ〈−g2δ(0)

(
a− 1

2

)
q4〉0 +O(g3) , (5.73)
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〈Sint
tot

2〉0 = g2

∫
dτ

∫
dτ ′[〈q2(τ)q̇2(τ)q2(τ ′)q̇2(τ ′)〉0 + 〈m

2

3
q2(τ)q̇2(τ)q4(τ ′)〉0

+〈−q2(τ)q̇2(τ)δ(0)q2(τ ′)〉0 + 〈m
2

3
q4(τ)q2(τ ′)q̇2(τ ′)〉0 + 〈m

4

9
q4(τ)q4(τ ′)〉0

+〈−m
2

3
δ(0)q4(τ)q2(τ ′)〉0 + 〈δ(0)q2(τ)q2(τ ′)q̇2(τ ′)〉0

+〈−δ(0)
m2

3
q2(τ)q4(τ ′)〉0 + 〈δ2(0)q2(τ)q2(τ ′)〉0] . (5.74)

To each of the expectation values, we can apply Wick’s rule

〈a1a2 · · · ar〉0 =
∑

all pairs

〈⊔⊔〉0 · · · 〈⊔⊔〉0 (for even r). (5.75)

For example:

〈q2(τ)q̇2(τ)q2(τ ′)〉0 = 〈q(τ)q(τ ′)〉0〈q(τ)q(τ ′)〉0〈q̇(τ)q̇(τ)〉0
+〈q(τ)q(τ ′)〉0〈q̇(τ)q(τ ′)〉0〈q(τ)q̇(τ)〉0 + 〈q̇(τ)q(τ ′)〉0〈q̇(τ)q(τ ′)〉0〈q(τ)q(τ)〉0 , (5.76)

so that, up to combinatorial prefactors,

where we used the abbreviations

for the propagators.

At T = 0, expression (F.12) is valid:

〈q(τ)q(τ ′)〉0 =
1

2m
e−m|τ−τ ′| , (5.77)

from which we obtain

〈q̇(τ)q(τ ′)〉0 = ∂τ 〈q(τ)q(τ ′)〉0 = −1

2
ǫ(τ − τ ′)e−m|τ−τ ′| , (5.78)

with ǫ(τ − τ ′) ≡ −1 + 2

τ∫

−∞

dτ ′′δ(τ ′′ − τ ′) (5.79)

and

〈q̇(τ)q̇(τ ′)〉0 = ∂τ∂τ ′〈q(τ)q(τ ′)〉0 = δ(τ − τ ′) − m

2
e−m|τ−τ ′|. (5.80)

Although Kleinert does not mention it, the above expressions were derived for a path integral of

the form (5.51), with the integration over q running from −∞ to ∞. However, for an arbitrary
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transformation φ = f(q), the integration interval is not necessarily of this kind (consider for

example φ = ln q). However, we discuss in chapters 5.3 and 5.4 that we are able to extend the

integration intervals in the case of polar coordinates from [0,∞] resp. [0, 2π) to [−∞,∞], at

least in special cases. For each coordinate transformation this should be checked, when using the

above expressions for the propagators.

Treating all expectation values in the same way as in the example above and taking care about

the correct combinatorial prefactors, one ends up with

Note that diagrams containing factors 〈q̇(τ)q(τ)〉0 vanish, since 〈q̇(τ)q(τ)〉0 = 0 due to formula

(5.78). The calculated loop diagrams can be found in section 10.8 of [42]. However, one does not

need these explicit results for proving that, at each order in g, the graphs with δ(0) resp. δ2(0)

in front cancel only against terms from the other diagrams.

Let us examine this at order g:

〈q̇(τ)q̇(τ ′)〉0 = δ(τ − τ ′) − m

2
e−m|τ−τ ′|

︸ ︷︷ ︸
=m2〈q(τ)q(τ ′)〉0

⇒
∫
dτ〈q(τ)q(τ)〉0〈q̇(τ)q̇(τ)〉0 =

∫
dτδ(0)〈q(τ)q(τ)〉0 −

∫
dτ m2〈q(τ)q(τ)〉0〈q(τ)q(τ)〉0

86



The cancellation takes place because of the δ(τ − τ ′) in 〈q̇(τ)q̇(τ ′)〉0. So all diagrams containing

this factor are involved.

5.3 Integration over angular degree of freedom

The aim of this section is to justify the extension of the integration interval from [0, 2π) to

[−∞,∞]. After some pre-discussion, section 5.3.2 presents the proof for potentials which exclu-

sively depend on the radial degree of freedom (as is the case for our polar models in the chiral

limit) and its generalization to 2π-periodic potentials U(r, ϕ) = U(r, ϕ+ 2π).

5.3.1 A faulty justification

Let us start with a very suggestive, but incorrect, line of arguments.

Since we may choose each interval of length 2π, which we denote by I, the calculation leading to

formula (8.12), is the same for the intervals

. . . , [−4π,−2π), [−2π, 0), [0, 2π), [2π, 4π), . . . .

All lead to the same partition function:

1

2

(
−1 + ϑ3

(
0, e−

2
T

π2

d2

))
= · · · = Z[−4π,−2π) = Z[−2π,0) = Z[0,2π) = Z[2π,4π) . . . , (5.81)

where ϑ3 denotes the elliptic theta function. Each of the ZI ’s can be expressed within the path

integral formalism via

ZI =

∮

I

Dϕ e−SE , with SE =

∫
dτ [

1

2
(
∂ϕ

∂τ
)2] . (5.82)

Therefore we have, where N is a countably infinite constant,

Z ≡
∑

I

ZI =

∞∮

−∞

Dϕ e−SE = N 1

2

(
−1 + ϑ3

(
0, e−

2
T

π2

d2

))
, (5.83)

which is illustrated by

This Z is the partition function (at the global minimum) for a scalar SQFT in 1+0 dimensions,

describing a massless particle. N , although countably infinite, simply plays the role of a nor-

malization constant. Since it is related to the effective potential via Veff = −T lnZ, without

appropriate normalization the effective potential is −∞. Since the integration runs from −∞ to

∞ the common Feynman rules can be applied to Z.
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5.3.2 A proof for potentials independent of the angular degree of free-

dom and for 2π-periodic potentials

What is wrong in the above consideration? The crucial point is formula (5.83), which is not valid

for path integrals. Consider for instance:

∏

i

2π∫

0

dϕ(τi)




︸ ︷︷ ︸
=

"

2π
R

0

dϕ(τ1)

#

·
"

2π
R

0

dϕ(τ2)

#

···

e−S +


∏

i

4π∫

2π

dϕ(τi)




︸ ︷︷ ︸
=

"

4π
R

2π

dϕ(τ1)

#

·
"

4π
R

2π

dϕ(τ2)

#

···

e−S ,

which is not equal to

∏

i




2π∫

0

dϕ(τi) +

4π∫

2π

dϕ(τi)






︸ ︷︷ ︸
=

 "

2π
R

0

dϕ(τ1)

#

+

"

4π
R

2π

dϕ(τ1)

#!

·
 "

2π
R

0

dϕ(τ2)

#

+

"

4π
R

2π

dϕ(τ2)

#!

···

e−S .

Decomposing the integration interval, as known from common integration, is therefore not pos-

sible for path integrals. The intuitive reason for this property is that for [−∞,∞] the particle is

allowed to take paths which were forbidden before.

Physical information, the constraint due to the infinite wall on the circle, has disappeared.

However, we are able to proceed in a different manner.

Actually, we just have to ask to what extent result 5.1 is altered, if we extend the range of the

integrations from
2π∫
0

to
∞∫

−∞
.

Because

b∫

a

dϕNe
iϕN (mN−mN+1) =

2π∫

0

dϕNe
iϕN (mN−mN+1) (5.84)

for each of the intervals [a, b] = · · · , [−4π,−2π], [−2π, 0], [0, 2π], [2π, 4π], [4π, 6π], · · · , we

have

∞∫

−∞

dϕNe
iϕN (mN−mN+1) =





0 for mN+1,mN ∈ Z and mN+1 6= mN

M2π for mN+1 = mN

= M2πδmN+1,mN (5.85)
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instead of (5.17). M is a countably infinite constant. Accordingly, we simply have (M2π)N

instead of (2π)N in equation (5.22):

Z =




N+1∏

n=1

∞∫

0

drnrn√
2πε




∞∫

−∞

dϕN+1√
2πε

[
N+1∏

n=1

e−ε 1
2

r2
n+r2

n−1

ε2

]
1

(
√

2πε)N

[
N+1∏

n=1

e−εU(rn,−iτn)

]
×

×
(
∑

m

[
N+1∏

n=1

Im

(rnrn−1

ε

)]
eim(ϕN+1−ϕ0)(M2π)N

)
.

The last integration over ϕN+1 correspondingly yields a factor ∞ instead of 2π because of the

constraint ϕN+1 = ϕ0. Therefore, the result 5.1 is simply altered by an overall factor ∞
π MN ,

which can be absorbed into a normalization constant. Hence

result 5.4 (intermediate result, proven in case of U = U(r))

Z ∼
∞∮

0

Drr
∞∮

−∞

Dϕe−
R

dτLE(r,ϕ)

is equivalent to expression (5.13).

Now consider a 2π-periodic potential U(r, ϕ) = U(r, ϕ + 2π) in (5.15). Again, one can pull the

integrations over the ϕn in front of factors depending on ϕn. All these factors have the same

form (note that ϕN+1 = ϕ0):

2π∫

0

dϕne
iϕnl−εU(rn,ϕn) , where l ∈ Z.

For U(rn, ϕn + 2π) = U(rn, ϕn) we have (since ei2πl = 1)

b∫

a

dϕne
iϕnl−εU(rn,ϕn) =

2π∫

0

dϕne
iϕnl−εU(rn,ϕn)

for each of the intervals [a, b] = · · · , [−4π,−2π], [−2π, 0], [0, 2π], [2π, 4π], [4π, 6π], · · · . Hence

result 5.5 (generalization)

Z ∼
∞∮

0

Drr
∞∮

−∞

Dϕe−
R

dτLE(r,ϕ)

is equivalent to expression (5.13) in the case of 2π-periodic potentials U(r, ϕ).

5.4 Integration over radial degree of freedom

In this section we want to examine if the integration over r can be extended from [0,∞] to

[−∞,∞]. Note that, as already discussed, decomposing the integration interval, as known from

ordinary integration, is not allowed in case of path integrals. The first idea is to proceed similarly

to section 5.3.2, namely to examine to what extent Z changes when we change the integration
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interval. We follow this idea in section 5.4.1. Unfortunately, this will not answer our question.

The difficulty is that we are not able to perform the integrations over the rn, hence the most

simple basis for our considerations is expression (5.23):

Z =
∞∑

m=−∞
(2π)N+1

(
1√
2πε

)2N+2



N+1∏

n=1

∞∫

0

drn



[

N+1∏

n=1

e−εU(rn,−iτn)

]
×

×
[

N+1∏

n=1

Im

(rnrn−1

ε

)
e−ε 1

2

r2
n+r2

n−1

ε2 rn

]
.

We present the solution in section 5.4.2, which consists of a few lines due to dimensional regular-

ization. For a special case, a free scalar field, we confirm this result in section 8.2.2 by examining

the scalar field constrained to a half space and without constraint.

5.4.1 An impasse

We begin with writing out the rN+1-integration over all factors in expression (5.23), which depend

on rN+1:

∞∫

0

drN+1e
−εU(rN+1,−iτN+1)Im

(rN+1rN
ε

)
e−ε 1

2

r2
N+1+r2

N

ε2 rN+1 . (5.86)

Due to

• Im
( rN+1rN

ε

)
= I−m

( rN+1rN

ε

)
,

• Im
( rN+1rN

ε

)
= (−1)mIm

(
−rN+1rN

ε

)
,

• e−ε 1
2

r2
N+1+r2

N

ε2 is symmetric in rN+1 ,

• rN+1 = −(−rN+1) ,

• the integrand vanishes at rN+1 = 0 ,

and if e−εU(rN+1,−iτN+1) is symmetric in rN+1 (as this is the case in the chiral limit),

expression (5.86) is equal to

(−1)m+1

0∫

−∞

drN+1e
−εU(rN+1,−iτN+1)Im

(rN+1rN
ε

)
e−ε 1

2

r2
N+1+r2

N

ε2 rN+1 . (5.87)

Each of the other integrations yields such a factor (−1)m+1,

∞∫

0

drNe
−εU(rN ,−iτN )Im

(rNrN−1

ε

)
e−ε 1

2

r2
N+r2

N−1

ε2 rN×

×(−1)m+1

0∫

−∞

drN+1e
−εU(rN+1,−iτN+1)Im

(rN+1rN
ε

)
e−ε 1

2

r2
N+1+r2

N

ε2 rN+1
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and so forth.

We can split the sum into sums over even and odd m:

Z ≡
∑

m

Zm =
∑

m even

Zm +
∑

m odd

Zm . (5.88)

Let us denote

Z ′ ≡
∞∑

m=−∞
(2π)N+1

(
1√
2πε

)2N+2



N+1∏

n=1

∞∫

−∞

drn



[

N+1∏

n=1

e−εU(rn,−iτn)

]
×

×
[

N+1∏

n=1

Im

(rnrn−1

ε

)
e−ε 1

2

r2
n+r2

n−1

ε2 rn

]
.

Of course the same is possible with Z ′:

Z ′ ≡
∑

m

Z ′
m =

∑

m even

Z ′
m +

∑

m odd

Z ′
m . (5.89)

The sum over odd m is no problem, the prefactors from all integrations are (−1)m+1 = 1.

Therefore:

∑

m odd

Zm =

(
1

2

)N+1 ∑

m odd

Z ′
m . (5.90)

However, the even m spoil the proof. The prefactors are in this case (−1)m+1 = −1, which means

∑

m even

Z ′
m = 0 , (5.91)

and since Zm ≥ 0, the sum
∑

m even Zm does not vanish.

Note that we have not proven the opposite of what we intended to show. Z ∼ Z ′ does not con-

tradict the above considerations, as we expect an infinite proportionality constant. Furthermore

in the continuum limit also
(

1
2

)N+1
is infinite.

5.4.2 Dimensional regularization again

We now present the proof for potentials U(r, ϕ).

We are able to rewrite the path integral (5.8) with the help of a modified Heaviside step function.

Defining

θf(ε)(x) ≡





1 for x > 0

f(ε) for x ≤ 0
, with any function satisfying lim

ε→0
f(ε) = 0 , (5.92)

we can write

Z = lim
ε→0




N+1∏

n=1

∞∫

−∞

drnrn√
2πε

θf(ε)(rn)






N+1∏

n=1

2π∫

0

dϕn√
2πε


 e−AE (5.93)

= lim
ε→0




N+1∏

n=1

∞∫

−∞

drnrn√
2πε






N+1∏

n=1

2π∫

0

dϕn√
2πε


 e−AE+ 1

ε ε
PN+1

n=1 ln θf(ε)(rn) . (5.94)
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The exponent becomes in the continuum limit

lim
ε→0

(
−AE +

1

ε
ε

N+1∑

n=1

ln θf(ε)(rn)

)
= −SE +

[
lim
ε→0

1

ε

][
lim
ε→0

ε

N+1∑

n=1

ln θf(ε)(rn)

]
. (5.95)

For rn > 0 we have

[
lim
ε→0

1

ε

] [
lim
ε→0

ε

N+1∑

n=1

ln θf(ε)(rn)

]
=

[
lim
ε→0

1

ε

] [
lim
ε→0

ε

N+1∑

n=1

ln 1

]
= δ(0) · 0 . (5.96)

Since δ(0) = 0 in dimensional regularization, expression (5.96) vanishes.

Imagining the integrals
∞∫

−∞
drn as sums over addends with continuous indices rn, we see from the

representation (5.93) that the addends rn = 0 vanish. Hence, we are left with rn < 0 to check.

In this case we have

[
lim
ε→0

1

ε

] [
lim
ε→0

ε

N+1∑

n=1

ln θf(ε)(rn)

]
=

[
lim
ε→0

1

ε

] [
lim
ε→0

ε

N+1∑

n=1

ln f(ε)

]
. (5.97)

Choosing f(ε) ≡ e−1/ε, we obtain:

[
lim
ε→0

1

ε

][
lim
ε→0

ε

N+1∑

n=1

(
−1

ε

)]
ε→0−−−→ δ(0)


−

1/T∫

0

δ(0)dτ


 = − 1

T
δ(0)2 , (5.98)

which vanishes in dimensional regularization. Hence

Z =

∞∮

−∞

Drr
2π∮

0

dϕe−SE , (5.99)

and so we end up with the result

result 5.6 (In dimensional regularization)

Z =

∞∮

−∞

Drr
2π∮

0

dϕe−SE (5.100)

is equivalent to expression (5.13), where U can depend on r and ϕ.
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Chapter 6

O(2)-symmetric double-well

potential, polar coordinates

6.1 1+3 dimensions

Whereas the systems discussed in the previous sections were more or less toy models, the one

described in this section has a physical meaning. We discuss an O(2)-symmetric linear sigma

model in polar coordinates, regarding the fluctuation in radial direction as the sigma particle

and the angular fluctuation as the pion.

Motivation for this model is the violation of Goldstone’s theorem encountered in the chiral limit

using cartesian coordinates [45] (see chapter 7.1). According to experience, polar coordinates are

better suited for problems with rotational symmetry. In particular, there exists a similar problem

with the Abelian Higgs theory. Tye and Vtorov-Karevsky [47] pointed out that the would-be

Goldstone bosons have non-zero masses, if one expresses the Higgs field in cartesian coordinates,

i.e., φ = (φ1, φ2). They were able to show (at least for T = 0) that this problem is cured when

using polar coordinates instead, i.e., Φ = φ1 + iφ2 = ρeiχ.

For the free case, we showed in section 5.4 that
∞∫
0

Dr →
∞∫

−∞
Dr is possible without effects on the

Lagrangian to which we apply the Feynman rules. After having applied the Feynman rules, we

restrict ourselves to r > 0 again.

For
2π∫
0

Dϕ →
∞∫

−∞
Dϕ, the corresponding proof, given in section 5.3.2, is valid for potentials of

the form U(r) and for 2π-periodic potentials U(r, ϕ). Hence, the proof covers the potential

U = −m2

2 r
2 + λ

2 r
4 − Hr cosϕ, which we will use in the following. After application of the

Feynman rules, we only consider ϕ ∈ [0, 2π).

According to section 5.2, the Jacobian of the coordinate transformation does not have any effect

in dimensional regularization.1

1Correspondingly, if one wants to include the contributions to the thermal integrals requiring renormalization,

one has to use dimensional regularization, too. This is still ongoing work, but we can already present the results

neglecting these terms.
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As in cartesian coordinates, we will plot the effective potential in φ1-direction, i.e., φ2 = 0.

|~φ| =
√
φ2

1 + φ2
2

φ2=0
= |φ1| = r , φ1 =




r for φ1 > 0

−r for φ1 < 0
.

For simplicity, we will use the symbol φ instead of φ1. At the global minimum, φ is the condensate

Φ. At any extremum, we denote φ by ϕ instead.

Our system is determined by the Lagrangian

L =
1

2
∂µ
~φ∂µ~φ+

m2

2
~φ~φ− λ

2
(~φ~φ)2 +Hφ1 . (6.1)

We already found the Lagrangian for polar coordinates in the correct way, namely by changing

to polar coordinates in the sliced version of the action, which lead to formula (5.12). For the sake

of completeness, we will point out in the following that the same result follows from applying the

coordinate transformation to the continuous Lagrangian 6.1.

φ1 = r cosϕ , φ2 = r sinϕ , (6.2)

∂µ
~φ(τ, ~x)∂µ~φ(τ, ~x) =

(
∂µ(r cosϕ)

∂µ(r sinϕ)

)(
∂µ(r cosϕ)

∂µ(r sinϕ)

)

= [(∂µr) cosϕ− (∂µϕ)r sinϕ] [(∂µr) cosϕ− (∂µϕ)r sinϕ]

+ [(∂µr) sinϕ+ (∂µϕ)r cosϕ] [(∂µr) sinϕ+ (∂µϕ)r cosϕ]

= ∂µr∂
µr
(
cos2 ϕ+ sin2 ϕ

)
+ r2∂µϕ∂

µϕ
(
sin2 ϕ+ cos2 ϕ

)
= ∂µr∂

µr + r2∂µϕ∂
µϕ ,

where we used ∂µ cosϕ = ∂ cos ϕ
∂t + ∂ cos ϕ

∂x + ∂ cos ϕ
∂y + ∂ cos ϕ

∂z = −(∂µϕ) sinϕ ,

and ∂µ cosϕ = −(∂µϕ) sinϕ respectively.

⇒ L =
1

2
∂µr∂

µr +
1

2
r2∂µϕ∂

µϕ+
m2

2
r2 − λ

2
r4 +Hr cosϕ . (6.3)

We now perform a shift, exactly as shown in figure 2.3. The radial fluctuation in φ1-direction

around φ =




r for φ1 > 0

−r for φ1 < 0
is denoted by σ, since we identify it with the sigma particle.

The angular degree of freedom corresponds to the pion. Since we deal with the potential in

φ1-direction only, we fluctuate around ϕ = 0. We normalize the angular fluctuation to φ, so that

we describe the pion field by π
φ . This yields the shifted Lagrangian

L =
1

2
∂µσ∂

µσ +
1

2

(σ + φ)2

φ2
∂µπ∂

µπ +
m2

2
(σ + φ)2 − λ

2
(σ + φ)4 +H(σ + φ) cos

π

φ
. (6.4)

Since ∂µσ∂
µσ = ∂µ(σ∂µσ) − σ�σ, ∂µ(σ∂µσ) vanishes in momentum space and � becomes −k2

in momentum space, we obtain in complete analogy to section 2.2 the following mnemonic:

“L =
1

2
k2σ2 +

1

2
k2 (σ + φ)2

φ2
π2 +

m2

2
(σ + φ)2 − λ

2
(σ + φ)4 +H(σ + φ) cos

π

φ
”. (6.5)
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Note that we will study the behavior of the system at nonzero temperature (compare the com-

ments in section 2.2).

After removing the parentheses and expanding the cosine in a Taylor series around zero, cos π
φ =

1 − 1
2

π2

φ2 + 1
4!

π4

φ4 , the quadratic terms (∼ σ2 resp. ∼ π2) offer the tree-level masses and the tree-

level propagators. The other terms involving the fields σ resp. π, are interaction terms, from

which we read off the vertex factors for each interaction vertex.

We have −(−m2

2 + 6λ
2 φ

2)σ2 and −
(
− H

2φπ
2
)
. Hence, the tree-level masses, mσ and mπ, are given

by

result 6.1 (tree-level masses)

m2
σ = −m2 + 6λφ2 , m2

π =
H

φ
.

The inverse tree-level propagators in pseudo-Minkowskian notation read

result 6.2 (tree-level propagators)

D−1
σ (k, φ) = −k2 +m2

σ = −k2 −m2 + 6λφ2 , (6.6)

D−1
π (k, φ) = −k2 +

H

φ
. (6.7)

Using Veff = −T
ΩΓ = Vσ + Vπ = −T

Ω (Γσ + Γπ) with result 2.1 and

we obtain the polar effective potential in the CJT formalism:

result 6.3 (effective potential)

Veff = −m
2

2
φ2 +

λ

2
φ4 −Hφ+

1

2

∫

k

lnG−1
σ +

1

2

∫

k

lnG−1
π +

1

2

∫

k

[
D−1

σ Gσ − 1
]

+
1

2

∫

k

[
D−1

π Gπ − 1
]
+

3

2
λ



∫

k

Gσ




2

− H

8φ3



∫

k

Gπ




2

− 1

2φ2



∫

k

Gσ





∫

k

k2Gπ


 . (6.8)

Note that we use the notation of appendix B. 1
−k2+M2 → 1

p2+M2 → 1
ω2

n+k2+M2 , but we denote the

thermal integral T
∑∞

n=−∞
∫

d3k

(2π)3
1

ω2
n+k2+M2 by

∫
k

1
−k2+M2 ≡ T

∑∞
n=−∞

∫
d3k

(2π)3
1

ω2
n+k2+M2 , which

is usually found in literature. The symbol
∫
k

stands exclusively for the right-hand side expression,

and not for a 4-dimensional integral. We hope that this way of notation avoids confusion, since

Euclidean QFT is not exactly SQFT (compare with appendix B as well as appendices E and F).

6.1.1 Explicitly broken symmetry, H 6= 0

Condition 2.3 yields

δVeff

δGσ
= 0 ,

δVeff

δGπ
= 0 . (6.9)
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Making the ansatz

G−1
σ ≡ −k2 +M2

σ , (6.10)

G−1
π ≡ −Z2k2 +M2

π , (6.11)

we deduce from (6.9) the gap equations for the masses at an arbitrary point φ, i.e., not necessarily

at the extrema:

result 6.4 (At φ)

M2
σ = −m2 + 6λφ2 + 6λ



∫

k

Gσ


− 1

φ2



∫

k

k2Gπ


 , (6.12)

M2
π =

H

φ
− H

2φ3



∫

k

Gπ


 , (6.13)

Z2 = 1 +
1

φ2



∫

k

Gσ


 . (6.14)

At any extremum (where J = 0), result 2.2 implies

δVeff

δφ
|φ=ϕ;Gσ=Gσ ;Gπ=Gπ

= 0 . (6.15)

This equation constitutes an additional equation, the stationarity condition for the field. Together

with the gap equations at ϕ, we have a system of equations determining ϕ as well as Mσ, Mπ

and Z at the extrema:

result 6.5 (At the extrema)

m2ϕ− 2λϕ3 +H = 6λϕ



∫

k

Gσ


− H

2ϕ2



∫

k

Gπ


+

3H

8ϕ4



∫

k

Gπ




2

+
1

ϕ3



∫

k

Gσ





∫

k

k2Gπ


 ,

(6.16)

M2
σ = −m2 + 6λϕ2 + 6λ



∫

k

Gσ


− 1

ϕ2



∫

k

k2Gπ


 , (6.17)

M2
π =

H

ϕ
− H

2ϕ3



∫

k

Gπ


 , (6.18)

Z2 = 1 +
1

ϕ2



∫

k

Gσ


 . (6.19)

At T = 0 the system of equations 6.5 determines all constants:
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result 6.6 (T=0)

mσ(ϕ) = Mσ(T = 0) , (6.20)

mπ(ϕ) = Mπ(T = 0) , (6.21)

H = m2
πϕ , (6.22)

λ =
m2

σ −m2
π

4ϕ2
, (6.23)

m2 =
m2

σ − 3m2
π

2
. (6.24)

At the global minimum Φ, we set ϕ equal the pion decay constant fπ. The masses at zero

temperature are chosen according to the Particle Data Booklet.

6.1.2 Chiral limit, H = 0

In the case H = 0, equation (6.18) yields

M2
π = 0 . (6.25)

Z 6= 0 according to equation (6.19), hence:
∫

k

k2Gπ
Mπ=0

=
M2

π

Z4

1

(4π)2
[ M

2
π

Z2
ln

M2
π

Z2µ2

︸ ︷︷ ︸
−−−−→

Mπ→0
0

−M
2
π

Z2
+ µ2] +

M2
π

Z4

T 2

12
= 0 . (6.26)

One might be tempted to set
∫
k

k2Gπ to zero from the beginning, i.e., in Veff . This would imply

Z2 = 1 ,

because 1
φ2

∫
k

Gσ arises from − 1
2φ2

[∫
k

Gσ

] [∫
k

k2Gπ

]
. But it is not allowed. When deriving the

gap equation for the pion one differentiates with respect to Gπ before one concludes from the

system of equations that Mπ = 0.

Therefore we arrive at the results:

result 6.7 (H = 0, at extrema)

m2ϕ− 2λϕ3 = 6λϕ



∫

k

Gσ


 , (6.27)

M2
σ = −m2 + 6λϕ2 + 6λ



∫

k

Gσ


 , (6.28)

Z2 = 1 +
1

ϕ2



∫

k

Gσ


 , (6.29)

M2
π = 0 . (6.30)

Note that equations (6.27) and (6.28) are independent of Z and Mπ and can therefore be solved

separately. At T = 0 one obtains:
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result 6.8 (H = 0, T = 0)

H = mπ = 0 , (6.31)

λ =
m2

σ

4ϕ2
, (6.32)

m2 =
m2

σ

2
, (6.33)

Mσ(T = 0) = mσ . (6.34)

At the global minimum Φ, we set ϕ equal the pion decay constant fπ. The sigma mass at zero

temperature is chosen according to the Particle Data Booklet.

The masses at an arbitrary point φ, i.e., not necessarily at the extrema, are determined by the

system of equations

result 6.9 (H = 0, at φ)

M2
σ = −m2 + 6λφ2 + 6λ



∫

k

Gσ


 , (6.35)

Z2 = 1 +
1

φ2



∫

k

Gσ


 , (6.36)

M2
π = 0 . (6.37)

6.1.3 Results

We want to list the thermal integrals which were used for numerical calculations. Their deriva-

tion can be found in appendix B. In the numerical results presented in this section, we neglected

the contributions from renormalization, i.e., Qµ ≡ 0 as well as Rµ ≡ 0.

QT (M/Z) =
1

2π2

∞∫

0

dk
k2

√
k2 + (M

Z )2

1

e
√

k2+( M
Z )2/T − 1

, (6.38)

which in case of M = 0 and Z 6= 0 simplifies to QT (0) =
T 2

12
. (6.39)

∫

k

Gσ = Qµ(Mσ) +QT (Mσ) , (6.40)

∫

k

Gπ =
1

Z2

[
Qµ(

Mπ

Z
) +QT (

Mπ

Z
)

]
, (6.41)

∫

k

k2Gπ =
M2

π

Z4

[
Qµ(

Mπ

Z
) +QT (

Mπ

Z
)

]
. (6.42)
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For the effective potential we need in addition:

RT (M/Z) =
T

π2

∞∫

0

dkk2 ln

(
1 − e−

r

k2+ M2

Z2

T

)
, (6.43)

which in the case M = 0 and Z 6= 0 simplifies to RT (0) = −T
4π2

45
. (6.44)

1

2

∫

k

[
D−1

σ Gσ − 1
]

=
1

2

∫

k

[
(−k2 +m2

σ)
1

−k2 +M2
σ

− −k2 +M2
σ

−k2 +M2
σ

]

=
1

2
(m2

σ −M2
σ)

∫

k

1

−k2 +M2
σ

=
1

2
(m2

σ −M2
σ) [Qµ(Mσ) +QT (Mσ)] , (6.45)

1

2

∫

k

[
D−1

π Gπ − 1
]

=
1

2

∫

k

[
(−k2 +m2

π)
1

−Z2k2 +M2
π

− −Z2k2 +M2
π

−Z2k2 +M2
π

]

=
1

2
(m2

π −M2
π)

1

Z2

[
Qµ

(
Mπ

Z

)
+QT

(
Mπ

Z

)]
+

1

2
(Z2 − 1)

M2
π

Z4

[
Qµ

(
Mπ

Z

)
+QT

(
Mπ

Z

)]
.

(6.46)

1

2

∫

k

lnG−1
σ =

1

2
Rµ(Mσ) +

1

2
RT (Mσ) , (6.47)

1

2

∫

k

lnG−1
π =

1

2
Rµ

(
Mπ

Z

)
+

1

2
RT

(
Mπ

Z

)
. (6.48)

Our results are shown in figures 6.1-6.13. For a better understanding we will briefly comment

on them in the following. Compare with our conclusions presented in chapter 10. Let us begin

with the chiral limit H = 0. Below the temperature T< = 2fπ (which is determined analytically

from Mσ ≡ 0) no solutions for ϕ = 0 exist. Below T< there is a region around φ = 0 where the

effective potential is not defined, until at T< a maximum at φ = 0 arises. Above T< there are

three extrema ϕ ≥ 0: a minimum at φ = 0, another minimum and a maximum. At the critical

temperature T ∗ = 2.787fπ both minima are at the same level and the global minimum jumps

from Φ 6= 0 to Φ = 0, i.e., a first-order phase transition takes place. Note that Goldstone’s the-

orem is respected in the phase of spontaneously broken symmetry since the pion mass is always

zero, however the pion and the sigma mass do not become degenerate above T ∗. The easiest

way to understand the case of explicit symmetry breaking (H 6= 0) is to look at the results for

the effective potential first. Note that there is a region around the origin where the effective

potential is not defined due to an imaginary solution for the sigma mass or, respectively, the pion

mass. Due to the spurious terms with powers of ϕ in the denominator there is no extremum at

the origin. At low temperature there is only a global minimum at φ > 0. At a certain temper-

ature a second minimum and a maximum occur. At T ∗ = 279.617MeV both are at the same

level. Above a certain temperature only one minimum is left, which moves closer and closer to

the origin. Above a certain temperature Tmax no physical solutions exist. Figure 6.3 shows the

extrema of the effective potential vs. temperature. The green points are solutions of the system
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of equations. Therefore one would expect them to be saddle points of the effective potential.

In fact they are not. The blue points exactly describe all the extrema of the effective potential

(compare fig.6.3 with fig.6.9). Note that the global minimum (the condensate) never becomes

zero, i.e., no phase transition occurs (compare the discussion in chapter 10).

Figure 6.1: H 6= 0, physical pion mass at the extrema, positive φ1-direction.
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Figure 6.2: H 6= 0, wave renormalization factor at the extrema, positive φ1-direction.

Figure 6.3: H 6= 0, ϕ, positive φ1-direction.

Figure 6.4: H 6= 0, sigma mass at the extrema, positive φ1-direction.
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Figure 6.5: H 6= 0; T = 0.1MeV ; effective potential, masses and wave renormalization factor

at φ; positive φ1-direction. We observe that the sigma mass becomes zero at a certain φcr. For

φ < φ
(r)
cr only imaginary solutions for the sigma mass exist. It shall be mentioned that at some

φ
(l)
cr < 0, the sigma mass obtain real values again.
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Figure 6.6: H 6= 0; T = 270MeV ; effective potential, masses and wave renormalization factor at

φ; positive φ1-direction. The pion mass vanishes at some point φcr. Now it is the pion which

takes imaginary values from that point on, until it becomes real again at some point on the

negative φ-axis. This is already the case below T = 270MeV .

Figure 6.7: H 6= 0; T = 278.91MeV ; effective potential at φ; positive φ1-direction. Around this

temperature, the second minimum evolves. We have a turning point. The masses and the wave

renormalization factor do not differ much from those for T = 270MeV .
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Figure 6.8: H 6= 0; We are at the critical temperature T ∗ = 279.617MeV ; effective potential

at φ; positive φ1-direction. The masses and the wave renormalization factor do not differ much

from those for T = 270MeV .

Figure 6.9: H 6= 0; left: T = 285MeV , right: T = 296MeV ; effective potential at φ; positive

φ1-direction. The masses and the wave renormalization factor still look very similar to those for

T = 270MeV .
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Figure 6.10: H = 0, extrema ϕ of the effective potential, sigma mass at the extrema, and the

wave renormalization factor vs. temperature. Note that Z = ∞ for ϕ = 0.

Figure 6.11: H = 0, effective potential at φ for the temperatures: 0.1MeV , 0.999 · 2fπ, 2.25fπ

(from above).
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Figure 6.12: H = 0, effective potential at φ for the temperatures: 2.75fπ, T ∗ = 2.787fπ, 2.87fπ

(from above).

Figure 6.13: H = 0, sigma mass at φ for the temperatures: 0.1MeV , 1.5fπ, 0.999 · 2fπ, T ∗ =

2.787fπ (from outer to inner).
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6.2 1+0 dimensions

Usually radius r means the absolute value |~φ| =
√
φ2

1 + φ2
2 , nevertheless we want to distinguish

between “left from origin” (negative direction) and “right from origin” (positive direction), which

is necessary for non-symmetrical potentials. A convenient notation is therefore r ≡ ±|~φ| ≡ φ =

±
√
φ2

1 + φ2
2, where +/− stands for the case in which ~φ points into positive/negative direction.

So we can use φ and r synonymously. We are interested in the radial φ1-direction only, i.e.,

r ≡ ±|~φ| ≡ φ = ±
√
φ2

1, where the classical mexican-hat potential, known from fig.2.3, can have

three different shapes (see figure 6.14), depending on the values of λ and H . Same procedure as

Figure 6.14: tree-level shapes of the classical potential.

usual: we choose an arbitrary point φ and fluctuate around it. The fluctuation in radial direction

is denoted by σ. The angular fluctuation is directed orthogonal to the drawing plane, therefore

not sketched in fig.6.14. Using the notation φ1 = r cosϕ, φ2 = r sinϕ, we fluctuate around ϕ = 0

(remember, we look at radial φ1-direction). Normalizing the fluctuation by φ, we denote it by π
φ .

From the Lagrange function

L =
1

2
σ̇2 +

1

2
(σ + φ)2

π̇2

φ2
+
m2

2
(σ + φ)2 − λ

N
(σ + φ)4 +H (σ + φ) cos

π

φ

we read off, analogously to the previous sections, the tree-level masses and the vertex factors:

result 6.10 (tree-level masses)

m2
σ = −m2 + 12

λ

N
φ2 , m2

π =
H

φ
.

Therefore, in the pseudo-Minkowskian notation, we have the inverse tree-level propagatorsD−1
σ =

−k2
0 −m2 + 12 λ

N φ
2 , for the sigma, and D−1

π = −k2
0 + H

φ , for the pion.

result 6.11 (vertex factors)

− λ
N σ

4 −→

+Hφ 1
4!

π4

φ4 −→
1
2σ

2 1
φ2 ∂0π∂

0π︸ ︷︷ ︸
=−k2

0π2

−→
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Employing result 6.11, we gain V2:

result 6.12 (contribution from two-particle irreducible diagrams)

V2 = −3
(
− λ

N

)
[
∫
k0

Gσ (k0)

]2

− 3
(
+ H

4!φ3

)[∫
k0

Gπ (k0)

]2

−
(
+ 1

2φ2

)[∫
k0

Gσ (k0)

] [
∫
k0

k2
0Gπ (k0)

]
.

The effective potential reads

result 6.13 (effective potential)

V [φ] = −m2

2 φ
2 + λ

N φ
4 −Hφ cos (0) + 1

2

∫
k0

lnG−1
σ (k0) + 1

2

∫
k0

lnG−1
π (k0)

+ 1
2

∫
k0

[
D−1

σ (k0)Gσ (k0) − 1
]
+ 1

2

∫
k0

[
D−1

π (k0)Gπ (k0) − 1
]
+ V2 .

(We have cos (0) , because we fluctuate around 0).

The gap equation for the sigma follows from δV
δGσ

= 0. With the effective potential (6.13) we

obtain:

1

2

1

G−1
σ

(−1)G−2
σ +

1

2
D−1

σ (k0, φ) +
3λ

N
2



∫

k0

Gσ


− 1

2φ2



∫

k0

k2
0Gπ


 = 0 . (6.49)

The gap equation for the pion follows from δV
δGπ

= 0, so we have:

1

2

1

G−1
π

(−1)G−2
π +

1

2
D−1

π (k0, φ) − 3H

4!φ3
2



∫

k0

Gπ


− 1

2φ2
k2
0



∫

k0

Gσ


 = 0 . (6.50)

Making the Ansatz G−1
σ = −k2

0 +M2
σ resp. G−1

π = −Z2k2
0 +M2

π we are able to proceed with

the calculation.

Equation (6.49) yields

result 6.14 (gap equation for sigma particle)

M2
σ = −m2 + 12

λ

N
φ2 +

12λ

N

∫

k0

Gσ − 1

φ2

∫

k0

k2
0Gπ ,

whereas equation (6.50) leads to

Z2k2
0 −M2

π +
(
−k2

0 +m2
π

)
− 12H

4!φ3

∫

k0

Gπ − k2
0

φ2

∫

k0

Gσ .

Separation of k0-dependant and independent terms yields
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result 6.15 (gap equations for pion)

y2 = H
φZ2 − H

2φ3
1

Z2

∫
k0

Gπ ,

Z2 = 1 + 1
φ2

∫
k0

Gσ ,

where y ≡Mπ/Z denotes the physical pion mass.

Equations (6.49) and (6.50) hold at each point φ, also at the extrema ϕ. If we consider the

equations at an extremum, we indicate this by writing G instead of G.

The stationarity condition for the field (which means that we are at an extremum),
δV
δφ |φ=ϕ,G=G = 0, leads to:

result 6.16 (stationarity condition for the field)

−m2ϕ+ 4 λ
Nϕ

3 −H + 12 λ
Nϕ

∫
k0

Gσ − H
2ϕ2

∫
k0

Gπ

+ 9H
4! ϕ

−4

(
∫
k0

Gπ

)2

+ ϕ−3
∫
k0

Gσ

∫
k0

k2
0Gπ = 0 .

Moreover, using the ansatz and the expressions for the tree-level propagators, the effective po-

tential (result 6.13) can be rewritten:

V [φ] = −m2

2 φ
2 + λ

N φ
4 −Hφ cos (0) + 1

2

(
m2

σ −M2
σ

) ∫
k0

Gσ (k0) + 1
2

(
Z2 − 1

) ∫
k0

k2
0Gπ (k0)

+ 1
2

(
m2

π −M2
π

) ∫
k0

1
−Z2k2

0+M2
π

+ 1
2

∫
k0

lnG−1
σ (k0) + 1

2

∫
k0

lnG−1
π (k0) + V2 . (6.51)

The case H 6= 0

If we want to calculate the effective potential (6.13) for arbitrary values φ at nonzero temperature,

we first have to solve the non-linear system of equations (6.14,6.15) numerically for the masses

Mσ,Mπ and the wave renormalization factor Z at given temperature T and field φ.

At first, let us assume Mσ > 0 and Mπ > 0. Using results B.1 and B.2, the thermal integrals are

given by

∫
k0

Gσ = 1
M

(
1

eM/T −1
+ 1

2

)
,

∫
k0

Gπ = 1
Z2

1
y

(
1

ey/T −1
+ 1

2

)
,

∫
k0

k2
0Gπ = M

Z3

(
1

eM/ZT −1
+ 1

2

)
,

where we used
∫
k0

1
−Z2k2

0+M2
π

= 1
Z2

∫
k0

1
−k2

0+M2
π/Z2 = 1

Z2
1
y

(
1

ey/T −1
+ 1

2

)
for the second one.

For practical calculations, we express all the quantities in multiples of m.

Numerical calculations show that we are confronted with the same problem as in 1+3 dimensions.

If one calculates the effective potential at an arbitrary point φ, there is a region in which the

effective potential is ill-defined due to imaginary solutions of the gap equations. Figure 6.15 shows

the typical case where the pion mass Mπ(φ) becomes imaginary at a certain point φkrit > 0.
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The larger T the larger φkrit. Since the condensate (i.e., the global minimum of the effective

potential) decreases with increasing temperature, it reaches the ill-defined region at some critical

value Tmax, which rules out a phase transition. Furthermore, numerical calculations indicate

that the smaller the explicit symmetry breaking the larger φkrit and the smaller Mπ(φ)/Z. More

precisely: Mπ(φ)/Z → 0 for H → 0. This has to do with the fact that results B.1 and B.4 diverge

in the limit M → 0. Hence, until one is able to understand the chiral limit, it does not make

sense to investigate the case of explicitly broken symmetry any further.

Figure 6.15: T = 0.1m, λ = 0.1m3, H = 0.1m
3
2 .

The case H = 0 (chiral limit)

From 6.15 we conclude that for H = 0, the physical pion mass y (as well as the pion mass Mπ) is

zero for all temperatures.
∫
k0

Gσ is positive definite, therefore Z > 1. With that, we can exclude

that for given φ 6= 0 the limit H → 0 leads to a y > 0. Note that this is completely consistent

with what we found out from numerical calculations for H → 0.

Now that y = 0, we have to worry about what to do with the thermal integrals for the pion,

because the results B.1 and B.4 diverge in the limit M → 0. So far we were not able to resolve

the problem completely, yet we present our intermediate results in section 8.2.3.
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Chapter 7

O(2)-symmetric double-well

potential, cartesian coordinates

7.1 1+3 dimensions

In this section we are concerned with the O(2) model in cartesian coordinates, which is determined

by the Lagrangian density

L =
1

2

(
∂µ
~φ (X) ∂µ~φ (X) +m2~φ (X)2

)
− λ

N

(
~φ (X)

2
)2

+Hφ1 . (7.1)

~φ (X) =
(
φ1 (X) , φ2 (X)

)
is a vector with real components.

Since we are interested in spontaneous symmetry breaking, we assume m2 > 0.

The O(4)-model is of particular interest as we pointed out in great detail in chapter 1. The O(N)-

model has been discussed by several authors. Therefore we just want to give a short summary

of this theory for N = 2 at nonzero temperature. Everywhere in this section where an explicit

N appears, it stands for N = 2. It makes comparison with the case N > 2 easier.

We choose a fixed (i.e., independent of X) arbitrary point
(
φ1, φ2

)
in the φ1φ2-plane and

fluctuate around it:

L =
1

2

(
∂µ [φ1 + σ] ∂µ [φ1 + σ] + ∂µ [φ2 + π] ∂µ [φ2 + π] +m2

[
(φ1 + σ)

2
+ (φ2 + π)

2
])

−
λ

N

(
(φ1 + σ)

2
+ (φ2 + π)

2
)2

+H (φ1 + σ)

⇔ L =
1

2

(
∂µσ∂

µσ + ∂µπ∂
µπ +m2

[
φ1

2 + 2σφ1 + σ2 + φ2
2 + 2πφ2 + π2

])
−

λ

N

(
φ1

2 + φ2
2 + 2φ1σ + 2φ2π + σ2 + π2

)2
+H (φ1 + σ) .

The only informations we need from the above are the prefactors of the quadratic and the quartic

term in σ resp. π:
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−
(
−m

2

2
+ 6

λ

N
φ1

2 + 2φ2
2

)
σ2 ,

−
(
−m

2

2
+ 6

λ

N
φ2

2 + 2φ1
2

)
π2 ,

− λ

N
σ4 ,

− λ

N
π4 .

The quadratic terms specify the tree-level propagators. In pseudo-Minkowskian notation they

are given by:

Dσ
−1 = −k2 −m2 + 12

λ

N
φ1

2 + 4
λ

N
φ2

2 ,

Dπ
−1 = −k2 −m2 + 12

λ

N
φ2

2 + 4
λ

N
φ1

2 .

The quartic terms will be needed for the vertex factors when we calculate Feynman diagrams.

Imagine how the mexican hat potential (see fig.2.3) would look like for H = 0. There is an

infinite number of states (φ1, φ2) for which the potential is minimal. All of them lie on a circle.

If the particles described by our theory would both have positive parity, the vacuum would be

the circle as a whole. Transforming ~φ under U(1) means rotating on a circle in the (φ1, φ2)-pane.

Consequently the vacuum would be U(1)-invariant, such as the Lagrangian, and we would have

no spontaneous symmetry breaking for such a theory. However, we want to describe a σ-particle

and a pion with our theory. Pions have negative parity, because of that there can be no pions in

the vacuum (compare with definition 1.1 of the vacuum). If we describe the σ-particle by φ1 and

the pion by φ2, this corresponds to the condition φ2|vac ≡ ϕ2 = 0, i.e., φ2 at the vacuum is zero.

One can see later that this has to be the case at nonzero temperature, too. Consequently we have

to choose (ϕ1, 0) as vacuum. Together with the origin, this determines the φ1-direction (φ2 = 0)

as the direction of our interest. By this constraint, the vacuum is no longer U(1)-invariant: a

rotation leads to a state with negative parity. That means our U(1)-symmetry is spontaneously

broken.

For the case where the U(1)-symmetry is explicitly broken by the Hφ1-term, the minimum on

the right is lower than that one on the left, so it is a global minimum. One can show that it has

positive parity i.e ϕ2 = 0, too. This is easy to see only at tree-level: the conditions ∂U
∂φ1,2

!
= 0

lead to the equations −2m2 + 4
(
φ1

2 + φ2
2
)

= 0 and −2m2 + 4
(
φ1

2 + φ2
2
)
− H

φ1
, which cannot

be fullfilled for φ1 6= 0, φ2 6= 0, H 6= 0.

The above expressions for the tree-level propagators reduce to:

result 7.1 (tree-level propagators)

Dσ
−1 = −k2 −m2 + 12

λ

N
φ2 , (7.2)

Dπ
−1 = −k2 −m2 + 4

λ

N
φ2 . (7.3)
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Making the following ansatz for the inverse connected thermal 2-point functions in the presence

of a source J :

G−1
π ≡ −k2 +M2

π resp. G−1
σ ≡ −k2 +M2

σ , (7.4)

the stationarity condition for the field leads to equation (7.5) and the gap equations (at the

extrema) to equations (7.6) and (7.7):

result 7.2 (system of equations at the extrema)

H = ϕ


−m2 +

4λ

2
ϕ2 +

12λ

2

∫

k

Gσ +
4λ

2

∫

k

Gπ


 , (7.5)

Mσ
2 = −m2 +

4λ

2


3ϕ2 + 3

∫

k

Gσ +

∫

k

Gπ


 , (7.6)

Mπ
2 = −m2 +

4λ

2


ϕ2 +

∫

k

Gσ + 3

∫

k

Gπ


 . (7.7)

The solution to these equations can be found in [45]. One observes that in the chiral limit,

H = mπ = 0, Goldstone’s theorem is violated (except for large N) due to the nonvanishing mass

of the pions in the phase of spontaneously broken symmetry, since the system of equations (result

7.2) implies for H = 0, if ϕ 6= 0:

M2
σ =

√
8λ

N
ϕ 6= 0 , (7.8)

M2
π =

8λ

N



∫

k

Gπ −
∫

k

Gσ


 , (7.9)

which means that Mπ = 0 is not a solution.

A solution to the problem was proposed by Nemoto, Naito, and Oka [48]. They improved the

above procedure by an O(N)-symmetric ansatz for G−1
π and G−1

σ :

G−1
π ≡ −k2 +M2

π with M2
π = −m2 +

X(φ2)

N
φ2 , (7.10)

G−1
σ ≡ −k2 +M2

σ with M2
σ = −m2 +

X(φ2) + Y (φ2)

N
φ2, (7.11)

whereMπ andMσ are regarded as unphysical quantities, determined from the system of equations

(result 7.2). The physical masses at an arbitrary point (σ, π), Mπ and Mσ, are given by the

definitions

M
2

π ≡ d2Veff

dπ2
and M

2

σ ≡ d2Veff

dσ2
, (7.12)

which are usually restricted to tree-level, whereas the physical mass is defined as the pole in the

propagator.

Since the effective potential Veff depends on Mπ and Mσ, the physical masses will depend on

them, too. According to Nemoto, Naito, and Oka, Goldstone’s theorem is respected even for

finite values of N .
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7.2 1+0 dimensions

7.2.1 Condensate and masses at the global minimum

Replacing
∫
k

G by
∫
k0

G and
∫
k

lnG−1 by
∫
k0

lnG−1, where

∫

k0

G =
1

M

(
1

eM/T − 1
+

1

2

)
, (7.13)

∫

k0

lnG−1 = M + 2T ln
(
1 − e−M/T

)
, (7.14)

and expressing all quantities in multiples of m, i.e.,

φ = φ̃ ·m− 1
2 , λ = λ̃ ·m3 , τ = τ̃ ·m−1 , H = H̃ ·m 3

2 , M = M̃ ·m , T = T̃ ·m , (7.15)

we obtain from (7.1) resp. (7.2):

result 7.3 (tree-level propagators)

Dσ
−1 = −k2

0 − 1 + 12
λ

N
φ2 , (7.16)

Dπ
−1 = −k2

0 − 1 + 4
λ

N
φ2 . (7.17)

result 7.4 (system of equations at the extrema)

H = ϕ


−1 +

4λ

N
ϕ2 +

12λ

N

∫

k0

Gσ +
4λ(N − 1)

N

∫

k0

Gπ


 , (7.18)

Mσ
2 = −1 +

4λ

N


3ϕ2 + 3

∫

k0

Gσ + (N − 1)

∫

k0

Gπ


 , (7.19)

Mπ
2 = −1 +

4λ

N


ϕ2 +

∫

k0

Gσ + (N + 1)

∫

k0

Gπ


 . (7.20)

where the twiddle has been omitted for simplicity.

We have to distinguish between two cases, ϕ = 0 and ϕ 6= 0. Note that for H 6= 0 we always

have ϕ 6= 0 due to equation (7.18), whereas H = 0 allows ϕ 6= 0 as well as ϕ = 0 (however it will

turn out that the case ϕ 6= 0 only exists for λ < λmax ).

114



I) ϕ = 0

result 7.5 (system of equations at the extrema, ϕ = 0 )

H = 0 , (7.21)

Mσ
2 = −1 +

4λ

N


3

∫

k0

Gσ + (N − 1)

∫

k0

Gπ


 , (7.22)

Mπ
2 = −1 +

4λ

N



∫

k0

Gσ + (N + 1)

∫

k0

Gπ


 . (7.23)

Let us assume Mσ 6= 0 and Mπ 6= 0 (which turns out to be true later). At T = 0, the gap

equations read

M0
σ

2
= −1 +

4λ

N

(
3

2M0
σ

+
N − 1

2M0
π

)
, (7.24)

M0
π

2
= −1 +

4λ

N

(
1

2M0
σ

+
N + 1

2M0
π

)
, (7.25)

from which we conclude

M0
π

2
+

4λ

M0
σN

= M0
σ

2
+

4λ

M0
πN

⇒ M0
π = M0

σ is solution for arbitrary λ. (7.26)

Equations (7.24),(7.25), and (7.26) yield

M0
π/σ

2
= −1 +

4λ

N

(
2 +N

2M0
π/σ

)
. (7.27)

Since M0
π/σ > 0, we find

result 7.6 (Masses at T = 0, ϕ = 0 )

M0
π/σ =

−32/3N2 + 3
1
3

(
9N2(2 +N)λ+

√
3N6 + 81N4(2 +N)2λ2

) 2
3

3N
(
9N2(2 +N)λ+

√
3N6 + 81N4(2 +N)2λ2

) 1
3

.

Result 7.6 can be used as initial value, when solving the system of equations numerically.
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II) ϕ 6= 0

Equations (7.19) and (7.18) and, respectively, (7.20) and (7.19) and, respectively, (7.19) and

(7.20) result in

result 7.7 (system of equations at the extrema, ϕ 6= 0 )

M2
σ =

8λ

N
ϕ2 +

H

ϕ
, (7.28)

M2
π =

H

ϕ
− 8λ

N

∫

k0

Gσ +
8λ

N

∫

k0

Gπ , (7.29)

M2
σ − 3M2

π = 2 − 8λ

N
(N + 2)

∫

k0

Gπ . (7.30)

At T = 0, denoting ϕ(T = 0) by f , equations (7.28) resp. (7.29) read

M0
σ

2
=

8λ

N
f2 +

H

f
, (7.31)

M0
π

2
=
H

f
+

8λ

N

(
1

2M0
π

− 1

2M0
σ

)
, (7.32)

which in turn yield

M0
π

2
= M0

σ
2

+
8λ

N

(
1

2M0
π

− 1

2M0
σ

− f2

)
(7.33)

⇔ λ =
N(M0

π
2 −M0

σ
2
)

8
(

1
2M0

π
− 1

2M0
σ
− f2

)

⇔ f = ±
√
N

8λ
(M0

σ
2 −M0

π
2) +

1

2M0
π

− 1

2M0
σ

,

whereas equation (7.30) reads

M0
σ

2 − 3M0
π

2
= 2 − 4λ

N

(
N

M0
π

+
2

M0
π

)
. (7.34)

Since N , λ, and H are given, we are in principle able to determine M0
π ,M0

σ , and f from relations

(7.31),(7.32) and (7.34) numerically, which in turn serve as starting values when solving the sys-

tem of equations (7.7) numerically.

Figures (7.1) and (7.2) show the results in presence of the explicit symmetry breaking term,

i.e., H 6= 0 (where we always have ϕ 6= 0). Solving the system of equations (7.7) numerically for

small λ, we observe that the masses Mπ(T ) and Mσ(T ) become more and more equal with larger

λ. Now we know from equations (7.28) and (7.29) that, as soon as Mπ = Mσ, we have 8λ
N ϕ2 = 0,

i.e., φ = 0  . Moreover, the pion mass cannot become larger than that for the sigma, because

Mπ > Mσ (which implies
∫
k0

Gπ <
∫
k0

Gσ) would result in M2
π < H

ϕ , due to relation (7.29). To-

gether with relation (7.28), which says M2
σ >

H
ϕ , we end up with the contradiction Mσ > Mπ  .

Therefore, we conclude (since there are no solutions in the case ϕ = 0):
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There is a value λc for the coupling constant λ, above which no solutions exist for the

case H 6= 0. It can be calculated numerically: in the case N = 2 and H = 0.1 we find

λc ≃ 0.24m3.

However, this is not the only critical value for λ. There is another one in the case H = 0.

Consider the system of equations (7.7) in the chiral limit H = 0. For T = 0, equations (7.29)

and, respectively, (7.30) yield

M0
π

2
=

8λ

N

(
1

2M0
π

− 1

2M0
σ

)
(7.35)

and M0
σ

2 − 3M0
π

2
= 2 − 8λ

N
(N + 2)

1

2M0
π

, respectively. (7.36)

For given λ and N , this system of equations can be solved numerically for M0
π and M0

σ . We find

that only for λ < λmax real solutions exist. That means:

Presuming H = 0, there is a value λmax for the coupling constant λ, above which no

solutions for ϕ 6= 0 exist, i.e., we have solutions for ϕ = 0 only. It can be calculated

numerically: for N = 2 we find λmax ≃ 0.115m3.

The numerical solutions for the case H = 0 are shown in figure 7.3.

Figure 7.1: H = 0.1m
3
2 . Top: condensate and masses at the global minimum for λ = 0.15m3;

Bottom: condensate and masses at the global minimum for λ = 0.191m3.

117



Figure 7.2: Illustration of the influence of H . Here we show H = 1m
3
2 . Condensate and masses

at the global minimum for λ = 0.15m3.

Figure 7.3: H = 0. Condensate and masses at the global minimum for λ = 0.1m3. Since

0.1m3 < λmax, we have solutions for ϕ = 0 and ϕ 6= 0. As one can see, the pion and the sigma

mass become degenerate (i.e., become equal) for ϕ = 0.
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7.2.2 Effective potential

As known from the sections before, we need the masses at a point φ if we want to calculate the

effective potential. These are determined by relations (7.19) and (7.20), replacing ϕ by φ:

result 7.8 (gap equations for the sigma and the pion mass)

Mσ
2 = −1 +

4λ

N


3φ2 + 3

∫

k0

Gσ + (N − 1)

∫

k0

Gπ


 , (7.37)

Mπ
2 = −1 +

4λ

N


φ2 +

∫

k0

Gσ + (N + 1)

∫

k0

Gπ


 . (7.38)

The effective potential is given by

result 7.9 (effective potential)

V (φ) = U(φ) +
1

2

(
Mσ + 2T ln

(
1 − e−Mσ/T

))
+

(N − 1)

2

(
Mπ + 2T ln

(
1 − e−Mπ/T

))

+
1

2

(
m2

σ −M2
σ

) ∫

k0

Gσ +
(N − 1)

2

(
m2

π −M2
π

) ∫

k0

Gπ

+3
λ

N



∫

k0

Gσ




2

+ (N + 1)(N − 1)
λ

N



∫

k0

Gπ




2

+ 2(N − 1)
λ

N



∫

k0

Gσ





∫

k0

Gπ


 .

Figure (7.4) shows the results in the chiral limit H = 0 for λ = 10m3. To calculate the effective

Figure 7.4: H = 0, effective potential and masses for temperature T = 0.01m resp. T = 300m.

Since λ = 10m3 > λmax, the global minimum is always at φ = 0, also for T = 0, and therefore

the effective potential at T = 0 does not coincide with U(T = 0).

potential at its global minimum in the chiral limit H = 0, we simply have to set φ to zero

in result (7.9). As already mentioned, we can determine it alternatively via the radial WKB

method. From the radial WKB equation (2.6), we obtain the eigenvalues Emn. These we use in

V (Φ) = −T ln

(
∑

m,n

e−Emn/T

)
, (7.39)
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which follows from

Z[J = K = 0] = Tr
(
e−β ˆH(J=K=0)

) {|Emn>}
=

∑

m,n

e−βEmn and V (Φ) = −T lnZ[J = K = 0] .

We begin with the calculation of the lowest eigenvalue, which we obtain for m = n = 0. From

this one, we can determine what is the upper energy bound, above which eigenvalues can be

neglected, up to a given temperature. For λ = 10m3, N = 2, H = 0 and a maximal temperature

of Tg = 5m, we can stop at m = 11, where the lowest energy eigenvalue is Em=11,n=0 ≃ 52.588m.

Figure (7.5) shows the comparison between CJT and radial WKB in the chiral limit.

Figure 7.5: comparison of radial WKB and CJT, λ = 10m3, N = 2, H = 0. orange: WKB,

blue: CJT, dashed line: blue line shifted by a constant. We cannot compare with CJT in polar

coordinates, yet. For an explanation see page 110.
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Zweifel und Überzeugung sind heimlich

alte Freunde. Nachts im Traum erwischt

man sie schon mal beim Würfeln.

(Peter Horton)

Chapter 8

Critical remarks and the problem

of infrared divergences

8.1 Free point particle...

8.1.1 ... in a box

Let us examine a simple special case, to understand the origin for the infrared divergence, namely

a free point particle in a box. The classical potential is given by

Ubox =





0 for x ∈ [− d
2 ,

d
2 ]

∞ otherwise
(8.1)

Let us begin with Quantum Mechanics (QM), for which the Lagrange function reads

L =
1

2
mẋ2 + Ubox . (8.2)

In chapter 6 of his textbook [42], Kleinert derives the formula (6.63) for the time-evolution

amplitude:

〈xbtb|xata〉box =
2

d

∞∑

ν=1

sin kνxb sin kνxae
−i

k2
ν

2m (tb−ta) , (8.3)
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where kν = 2πν
d .

From the time-evolution amplitude we calculate:

Tr
(
e−i(tb−ta)Ĥ/~

)
=

d/2∫

−d/2

〈xatb|xata〉boxdxa

=
2

d

∞∑

ν=1

d/2∫

−d/2

(
sin2 2πν

d
xa

)
dxa

︸ ︷︷ ︸
=d/2

e−i (2πν)2

2md2 (tb−ta) =

∞∑

ν=1

e−i( 2π
d )

2 ν2

2m (tb−ta) . (8.4)

The transition to Statistical Quantum Field Theory (SQFT) in 1+0 dimensions is

straightforward:

the replacements −itb + ita → −τb + τa = −1/T , x(t) → φ(τ) and m → 1 yield the partition

function

Zbox =

∞∑

ν=1

e−( 2π
d )2 ν2

2T =
1

2

(
−1 + ϑ3

(
0, e−

2π2

Td2

))
, (8.5)

where ϑ3 denotes the elliptic theta function. Alternatively, we can express Zbox as a path integral.

In the case d→ ∞, i.e., [− d
2 ,

d
2 ] → [−∞,∞], the path integral is given by

lim
d→∞

Zbox = lim
d→∞

d/2∮

−d/2

Dφe−
R

dτ( 1
2 φ̇2+Ubox) , (8.6)

from which it becomes obvious that d→ ∞ corresponds to the limit M → 0 in 1+0 dimensional

SQFT. Do not confuse m (which denotes the mass of a quantum mechanical particle) with the

mass of a particle described via Quantum Field Theory, which we denote by M .

The effective potential for (8.6) is given in the CJT formalism by

Veff =
1

2

∫

k0

lnG−1 +
1

2

∫

k0

[D−1G− 1] =
1

2

∫

k0

lnG−1 + const , (8.7)

with

∫

k0

lnG−1 = lim
M→0

[
M + 2T ln

(
1 − e−

M
T

)]
= −∞ , (8.8)

where we used result B.4 and

0
!
=
δVeff

δG
= −1

2
G−1 +

1

2
D−1 ⇒ D = G . (8.9)

Note that

Veff = −T ln

(
lim

d→∞
Zbox

)
= −T lim

d→∞
ln

[
1

2

(
−1 + ϑ3

(
0, e−

2π2

T d2

))]
= −∞ (8.10)

is consistent with (8.7).
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8.1.2 ...on a circle with an infinite wall

Our potential Ubox can be deformed to a circle of circumference d, with an infinite wall at d:

The angle ϕ lies in a finite interval: ϕ ∈ [0, d).

Again, we begin with Quantum Mechanics (QM). According to topology:

d∫

0

〈ϕatb|ϕata〉walldϕa =

d∫

0

〈ϕatb|ϕata〉boxdϕa

=
2

d

∞∑

ν=1

d∫

0

(
sin2 2πν

d
ϕa

)
dϕa

︸ ︷︷ ︸
=d/2

e−i (2πν)2

2md2 (tb−ta) =

∞∑

ν=1

e−i( 2π
d )

2 ν2

2m (tb−ta) . (8.11)

Therefore we obtain the partition function

Zwall =

∞∑

ν=1

e−( 2π
d )2 ν2

2T =
1

2

(
−1 + ϑ3

(
0, e−

2
T

π2

d2

))
= Zbox (8.12)

in the case of SQFT in 1+0 dimensions. ϑ3 denotes the elliptic theta function.

Due to the infinite wall at d, the particle moves in the interval [0, d). Starting at 0, it hits

the wall at d, which it cannot cross. Therefore values ϕ + nd (where n = 1, 2, . . . ) are not al-

lowed. As well forbidden are values ϕ− nd, since it cannot pass through the wall from the other

side either. The constraint ϕ ∈ [0, 2π) is known from the definition of polar coordinates. In

order to have a unique mapping from cartesian to polar coordinates, ϕ is limited to an interval

of length 2π, for instance [0, 2π). The interval is open, because ϕ = 0 and ϕ = 2π are identical

points. Although one is tended to link polar coordinates to the circle with an infinite wall, this is

not correct. The point 2π is missing in polar coordinates, but the periodicity remains. Therefore

we have to consider a third case.

8.1.3 ...on a circle with periodicity

Consider a free particle on a circle without a wall. ϕ ∈ [0, 2π), but values ϕ + 2πn are allowed

too where ϕ and ϕ+ 2πn are indistinguishable.
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We can use Kleinert’s [42] formula (6.24), which refers to QM, to calculate

2π∫

0

〈ϕatb|ϕata〉cirdϕa =

∞∑

l=−∞

2π∫

0

1√
2πi(tb − ta)/m

e
i
2m (ϕa−ϕa+2πl)2

tb−ta dϕa

= 2π

∞∑

l=−∞

1√
2πi(tb − ta)/m

e
i
2 m (2πl)2

tb−ta =

√
2πm

i(tb − ta)
ϑ3

(
0, e

− 2π2m
i(tb−ta)

)
, (8.13)

which yields the partition function in SQFT in 1+0 dimensions:

Zcir =
√

2πTϑ3

(
0, e−2π2T

)
. (8.14)

Alternatively we could use Kleinert’s formula (6.23) to calculate

2π∫

0

〈ϕatb|ϕata〉cirdϕa =
1

2π

∞∑

l=−∞

2π∫

0

exp

[
il(ϕa − ϕa) − i

l2

2m
(tb − ta)

]
(8.15)

=
∞∑

l=−∞
e−

l2

2m i(tb−ta) = ϑ3

(
0, e−

i(tb−ta)

2m

)
(8.16)

and

Zcir = ϑ3

(
0, e−

1
2T

)
, (8.17)

respectively. The expressions (8.14) and (8.17) are equal due to1

ϑ3(z, q) =

√
iπ

−i ln q e
z2

ln q

(
1 + 2

∞∑

k=1

e
k2π2

ln q cosh

(
2kπz

ln q

))
(8.18)

⇒ ϑ3

(
0, e−

1
a

)
=

√
πa

(
1 + 2

∞∑

k=1

e−ak2π2

)
=

√
πaϑ3

(
0, e−π2a

)
. (8.19)

Note that result 5.4 is not in contradiction with the fact that (8.17) is finite, since it only refers

to polar coordinates i.e to the Lagrange function (5.12), which is different from LE = 1
2 ϕ̇

2.

8.2 Problems with M = 0

8.2.1 An unsolved question

Let us turn to a free point particle on a circle with periodicity, as described in section 8.1.3.

In their textbooks [42, 49], Kleinert resp. Chaichian derive the time-evolution amplitude in

this case. They start with the bra-ket definition 〈ϕbtb|ϕata〉cir, rewrite it in the standard way,

involving the time-evolution operator and after some manipulations they derive the expression

〈ϕbtb|ϕata〉cir =




N∏

j=1

2π∫

0

dϕj






N+1∏

j=1

∞∑

mn=−∞

1

2π


 exp

(
i

N+1∑

n=1

[
mn(ϕn − ϕn−1) −

ǫ

~
H(~n, ϕn)

])
,

(8.20)

1Compare with wolfram.com, EllipticTheta[3,z,q], Series representations, Other
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which plays the role of a path integral in phase-space representation. The integration over

momentum has turned into a discrete sum, which has its origin in the periodicity ϕ = ϕ + 2πl.

However, there exists a form in which the sum is turned into a continuous integration over an

auxiliary variable. Apart from a Kronecker delta and a sum over l, this form - (8.21) - has the

same shape as the ordinary path integral for the particle on a line in phase-space representation.

Kleinert presents it in formula (6.16) resp. Chaichian in formula (2.4.44):

〈ϕbtb|ϕata〉cir =

∞∑

l=−∞




N∏

j=1

∞∫

−∞

dϕj






N+1∏

j=1

∞∫

−∞

dpj

2π~


×

× exp


 i

~

N+1∑

j=1

[pj(ϕj + 2πlδj,N+1 − ϕj−1) − ǫH(pj , ϕj)]


 , (8.21)

which we can rewrite as configuration-space path integral (compare with appendix C):

〈ϕbtb|ϕata〉cir =

∞∑

l=−∞

1√
2π~iǫ/m




N∏

j=1

∞∫

−∞

dϕj√
2π~iǫ/m


×

× exp


 i

~
ǫ

N+1∑

j=1

[
m

2

(
ϕj + 2πlδj,N+1 − ϕj−1

ǫ

)2

− U(ϕj , tj)

]
 . (8.22)

Staring at relation (8.22), we may ask, how far away

∞∫

−∞

〈ϕatb|ϕata〉line , (8.23)

where 〈ϕatb|ϕata〉line ≡ 1√
2π~iǫ/m




N∏

j=1

∞∫

−∞

dϕj√
2π~iǫ/m


×

× exp


 i

~
ǫ

N+1∑

j=1

[
m

2

(
ϕj − ϕj−1

ǫ

)2

− U(ϕj , tj)

]
 has exactly (8.24)

the same form as the time-evolution amplitude

for a particle on a line,

is from the expression

2π∫

0

〈ϕatb|ϕata〉cir . (8.25)

We can check that for the free case, where the time-evolution amplitudes are given by Chaichians

formulas (2.4.48) and (2.4.49):

〈ϕbtb|ϕata〉line =
1√

2π~i(tb − ta)/m
exp

(
−m

2~

(ϕb − ϕa)2

i(tb − ta)

)
, (8.26)

〈ϕbtb|ϕata〉circle =

∞∑

l=−∞

1√
2π~i(tb − ta)/m

exp

(
−m

2~

(ϕb + 2πl− ϕa)2

i(tb − ta)

)
. (8.27)
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From this we calculate (denoting t ≡ tb − ta)

∞∫

−∞

〈ϕatb|ϕata〉linedϕa = 2∞ 1√
2π~it

≡ N 1√
2π~it

, (8.28)

2π∫

0

〈ϕatb|ϕata〉circledϕa = 2π

∞∑

l=−∞

1√
2π~it

exp

(
−m

2~

(2πl)2

it

)
. (8.29)

Via it → τ = 1/T , ϕ(t) → ϕ(τ) (the angle becomes a field) and m → 1, we obtain the partition

functions in SQFT in 1+0 dimensions

Zask = N 1√
2π 1

T

, (8.30)

Zcir =
√

2πTϑ3

(
0, e−2π2T

)
= ϑ3

(
0, e−

1
2T

)
, (8.31)

where we used the formula2

ϑ3 (0, e−πx)

ϑ3

(
0, e−

π
x

) =
1√
x

(8.32)

to rewrite the elliptic theta function ϑ3. Note that we have set ~ ≡ 1. Zcir is the correct partition

function for the field constrained to a circle with periodicity, and we ask how far away Zask is

from Zcir.

Note that in the case T → ∞ we obtain

lim
T→∞

Zcir = lim
T→∞

√
2πT , (8.33)

due to ϑ3 (0, 0) = 1. Hence, if we choose the normalization constant as N ≡ 2π, both partition

functions are equal in this limit:

lim
T→∞

Zask|N≡2π = lim
T→∞

Zcir . (8.34)

Although this is an interesting observation, for nonzero T both partition functions are different

from each other. This is surprising because, according to result 5.4, one would guess that both

partition functions should be equal if one chooses a certain finite value for N . However, the fact

that this is not the case is not in contradiction with result 5.4 so far. Our explanation is that

starting directly from the generating functional for a periodic field, which takes values on a finite

interval, is in principle different than going over to polar coordinates starting from cartesian

coordinates. This becomes obvious by looking at (5.12) and (5.13). Furthermore, the case of

M = 0 is exceptional due to the infrared divergence of the thermal integrals for M → 0 (for

the discussion we refer to section 8.2.3). We believe that the solution to this question requires

further investigation of these divergences, as well as knowledge about the Feynman rules for path

integrals with topological constraints.

2Compare with wolfram.com/JacobiThetaFunctions.html
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8.2.2 A problem and its solution

In this section we want to discuss the analogon to the question raised in section 8.2.1 in case of

the radial degree of freedom.

We can regard (5.13) as a path integral on a space with the topological constraint rn ∈ [0,∞].

Note that we can restrict the interval to rn ∈ (0,∞], as the integrand vanishes for rn = 0.

Now consider a free particle on a half space in QM.

Uhs =




∞ for x = 0

0 otherwise

x > 0

According to Kleinert (formula (6.46) of [42]) or Chaichian (formula (2.4.31) of [49]), in this case

the time-evolution amplitude is given by

〈xbtb|xata〉hs =
1√

2πi~(tb − ta)/m

[
exp

(
−m

2~

(xb − xa)2

i(tb − ta)

)
− exp

(
−m

2~

(xb + xa)2

i(tb − ta)

)]
. (8.35)

From (8.35) we obtain the partition function in SQM:

Zhs =




∞∫

(0)

〈x tb|x ta〉hs dx




tb−ta→−i~/T

. (8.36)

With

∞∫

(0)

〈x tb|x ta〉hs dx =

√
m

2πi~(tb − ta)

∞∫

(0)

[
1 − e

i
~
2m x2

(tb−ta)

]
dx ,

we receive

Zhs =

√
mT

2π~2

(
∞−

√
~2π

8mT

)
= ∞

√
mT

2π~2
− 1

4
√
m

. (8.37)

Let us compare this result with the partition function of a free particle without constraints (i.e.,

on the line), which is given by

Z0 =




∞∫

(0)

〈x tb|x ta〉0 dx




tb−ta→−i~/T

=

∞∫

−∞

√
mT

2π~2
dx = ∞

√
mT

2π~2
, (8.38)

where we inserted the time-transition amplitude for the free particle on the line,

〈xbtb|xata〉0 =
1√

2πi~(tb − ta)/m
exp

(
−m

2~

(xb − xa)2

i(tb − ta)

)
, (8.39)
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which is the same as (8.26), we simply took account of the notation by changing ϕ to x.

Since

1

4
√
m

≪ ∞
√

mT

2π~2
, (8.40)

we can identify Zhs with Z0. Since (0,∞] is homeomorphic to the real numbers R, our conclusion

is at first sight not in contradiction with topology.

Setting m = 1 in (8.37) and (8.38), we obtain the partition function for massless scalar SQFT

in 1+0 dimensions where the field is constrained to the interval (0,∞] and, respectively, where

the field is not constrained. Let us summarize our conclusion in the context of massless scalar

SQFT in 1+0 dimensions:

If we want to extend the integration interval in the constrained partition function

Zhs =

∞∮

(0)

Dφe
−

1/T
R

0

dτ 1
2 φ̇2

(8.41)

from (0,∞] to [−∞,∞], we have to add a topological correction term Stop,E to the Euclidean

action S0,E =
1/T∫
0

dτ 1
2 φ̇

2 (compare formula (2.4.30) of [49]):

Zhs =

∞∮

−∞

Dφe−S0,E−Stop,E =

∞∮

−∞

Dφe
−

1/T
R

0

dτ 1
2 φ̇2 −

1/T
R

0

dτ [−iπ ∂
∂τ θ(−φ)]

, (8.42)

where θ is the Heaviside step function. Due to (8.40), we conclude that Stop,E can be neglected.

This conclusion can be applied to result 5.1, which reads for U = 0:

Z =

∞∑

m=−∞




N+1∏

n=1

∞∫

(0)

drn√
2πε



[

N+1∏

n=1

e−
1
2ε (rn−rn−1)

2

]
exp

(
δ(0)ε

N+1∑

n=1

ln Ĩm

(rnrn−1

ε

))
,

where we used that it is possible to take the zero out of the integration interval. As discussed in

section 5.2, the delta function vanishes in dimensional regularization, δ(0) = 0, so that all terms

are independent of m, and we can do the sum:

Z ∼




N+1∏

n=1

∞∫

(0)

drn√
2πε


 e−ε

PN+1
n=1

1
2

(rn−rn−1)2

ε2 , (8.43)

with an infinite proportionality constant. As we have shown above, it is possible to extend the

range of integration to the full real line, since the topological correction term can be neglected:

Z ∼




N+1∏

n=1

∞∫

−∞

drn√
2πε


 e−ε

PN+1
n=1

1
2

(rn−rn−1)2

ε2 . (8.44)

This affirms result 5.6.
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8.2.3 Speculations about how to cope with M = 0 in 1+0 dimensions

The question is how to deal with

∫

k0

1

−Z2k2
0

= T

∞∑

n=−∞

1

Z2(2πn)2T 2
, (8.45)

∫

k0

k2
0

−Z2k2
0

=
1

Z2
T

∞∑

n=−∞

−ω2
n

ω2
n

(8.46)

and
∫

k0

ln
(
−Z2k2

0

)
= T

∞∑

n=−∞
ln
(
Z2 (2πn)

2
T 2
)
. (8.47)

Section 8.1.1 shows that for M → 0 the infrared divergence of result B.4 is real and does not

require special handling. However, this does not exclude that
∫
k0

lnG−1 is finite for M = 0. Note

that the derivation of results B.1 and B.4 is only valid for M 6= 0. Even in 1+3 dimensions

the problem of handling massless fields is problematic in certain cases. For a discussion of

inconsistencies arising in the extension of the method of dimensional regularization to massless

fields, we refer to Ref. [44]. Regarding the chiral limit for polar coordinates in 1+0 dimensions

(see page 110) we need to know whether such a finite expression exists or not, and how it looks

like. Therefore consider the partition function

Z =

∞∮

−∞

Dφe−
R

dτ 1
2 φ̇2

.

The effective potential for Z is given in the CJT formalism by

Veff =
1

2

∫

k0

lnG−1 +
1

2

∫

k0

[D−1G− 1] =
1

2

∫

k0

lnG−1 + const , (8.48)

where we used

0
!
=
δVeff

δG
= −1

2
G−1 +

1

2
D−1 ⇒ D = G .

On the other hand we know from (8.30) that Z can be written as (we simply have to rename ϕ

by φ)

Z = N
√

T

2π
,

from which follows

Veff = −T lnZ = −T ln

(
N
√

T

2π

)
. (8.49)

Comparing (8.48) and (8.49), the only possibility for
∫
k0

lnG−1 to be finite is to choose a non-

infinite normalization constant N ≡ N0. The question is then, if there is a reasonable procedure
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how to obtain −T ln
(
N0

√
T/2π

)
from 1

2

∫
k0

lnG−1 = 1
2T
∑∞

n=−∞ ln
[
(2πn)2T 2

]
.

Note that if one wants to derive results B.1 and B.4, one is forced to drop addends which are

independent of M . Hence, one could argue that one should proceed in the same way in the

case of M = 0. This means dropping all addends which do not depend on M , i.e., setting

(8.45),(8.46), and (8.47) equal zero. One might ask why the massless pions occurring in the

chiral limit for polar coordinates in 1+0 dimensions (see page 110) would not contribute to the

effective potential, which is irritating since the lightest particles should dominate. One could

insist that in 1+0 dimensions one should not identify massless modes with observable particles.

8.3 Remarks on the use of Veltman’s rule

When using Veltman’s rule one has to be careful. It would be a mistake to assume that one

could get rid of everything in front of the exponential in a generating functional. Consider a

general generating functional with an integrand of the form A exp
(
−
∫

X S
)
. If we want to argue

that A has no influence in perturbation theory, due to the trick A = exp (lnA) and δ(0) ≡ 0 in

dimensional regularization, according to our understanding one has to take care of two important

points. First, one should ensure that δ(0)
∫

X
lnA written in the discretized version (lattice

version) vanishes in the continuum limit ε→ 0. This is what we did for example in case of section

5.4.2, where the role of A is played by a modified Heavyside step function. Second, one should

assure oneself that dimensional regularization is applicable. To give an example, dimensional

regularization is problematic in gauge theories involving chiral transformations [44, 50]. Consider

for example SU(2) gauge theory. In 1981 Weiss discussed the SU(2) gauge theory without

fermions and the influence of the invariant measure. The invariant measure of a group, also known

as Haar measure or Hurwitz measure, appears in the generating functional of a gauge-field theory.

Due to gauge invariance and the hence resulting redundant information when integrating over

gauge-equivalent gauge-fields, the invariant measure comes into play. In the above notation, this

measure plays the role of A. Using the trick A = exp (lnA), Weiss came to the conclusion that the

contribution of A is canceled by terms regarded as gauge artifacts [51]. In 1995, Sailer, Schäfer

and Greiner argued that this cancellation does not take place in second order of the coupling

[52]. However, in 1997, Borisenko and Bohác̆ik relativized this drastic statement by reviewing the

controversial subject. They conclude that at least in dimensional regularization, the invariant

measure does not contribute to the generating functional and can be omitted from the very

beginning [53]. However, we want to point out a dilemma: chiral symmetry is not restored at

high temperatures within Chiral Perturbation Theory in the mean-field approximation, if the

invariant measure is neglected [54].

We suspect that, one day, one might be able to prove that ghost contributions cancel with

gauge-fixing contributions by the help of dimensional regularization, which would correspond

to the fact that a gauge transformation should not change physics. However, the method of

dimensional regularization has to be developed further for this purpose, as revealed for example

by the difficulties with chiral fermions.
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Chapter 9

The path integral collapse

The path integral in polar coordinates, or more precisely the radial path integral, kept people

occupied for a long time. And still, there seem to exist different views towards the subject.

Just recently (November 2007) a paper was published by Jackiw [55], which assumes that the

resolution of the problem was given by Edwards and Gulyaev [56]. However, Kleinert already

criticized the use of the asymptotic expansion for the slightly modified Bessel function in the

edition of his textbook published in 1993 [57]. According to Steiner [58], Langguth and Inomata

were the first to realize that the asymptotic expansion used by Edwards and Gulyaev is problem-

atic. They recognized that the expansion is applicable only if Re[z] > 0, which is not fullfilled

for the Minkowskian path integral. They solved the problem by an analytic continuation of the

particle mass m→ m+ iη. In turn, Steiner recognized that one simply has to use the Euclidean

form of the path integral, as the Wick rotation t → −iτ yields z ∈ R as well. However, accord-

ing to Steiner, Grosche [59], and Kleinert, there is another problem left, which was ignored by

Langguth and Inomata, which is known as path integral collapse. According to these authors,

the path integral collapse is a consequence of misusing the asymptotic expansion (9.2).

In the following, we want to put a more optimistic view of the problem up to discussion. Our mo-

tivation was the question: Why should the correct centrifugal barrier come out of the asymptotic

expansion, if one is not allowed to use it? Note that the discussion on the basis of the transition

amplitude is completely analogous to that for the generating functional (compare with appendix

A).

We should mention that the statements in this appendix should be regarded as interim results

which are still under examination, not the least because (9.2) resp. (9.15) only show asymptotic

behavior.

Usual asymptotic expansion

The starting point is result 5.1:

Z =
∞∑

m=−∞




N+1∏

n=1

∞∫

0

drn√
2πε



[

N+1∏

n=1

e−εU(rn,−iτn)

][
N+1∏

n=1

e−
1
2ε (rn−rn−1)

2

] [
N+1∏

n=1

Ĩm

(rnrn−1

ε

)]
.

131



We can easily switch to its Minkowskian version by the inverse Wick rotation τ → it, i.e., ε→ iǫ:

Z =

∞∑

m=−∞




N+1∏

n=1

∞∫

0

drn√
2πiǫ



[

N+1∏

n=1

e−iǫU(rn,tn)

] [
N+1∏

n=1

ei 1
2ǫ (rn−rn−1)

2

] [
N+1∏

n=1

Ĩm

(rnrn−1

iǫ

)]
.

(9.1)

This is the version encountered in QFT1 in the first place. In SQFT (resp. SQM) on the other

hand, we would naturally start with the Euclidean version. Nevertheless, using the Euclidean

version instead of the Minkowskian does not necessarily mean considering a statistical theory.

Using (9.1) in QFT (resp. QM) is nothing but a mathematical trick. After having obtained a

certain result, one is usually allowed to apply the inverse Wick rotation to the result, in order

to obtain the quantum-field theoretical outcome. However, we have to be careful with this

statement in our case, since the asymptotic expansion breaks down because of Re[ rnrn−1

iǫ ] = 0.

As we are interested in the Euclidean path integral only, we do not have to investigate this

question further.

The crucial point is the asymptotic expansion of the slightly modified Bessel functions (see

formula 9.7.1 of [60]):

Ĩm (z) ≡ Im (z) e−z
√

2πz ∼ 1 − m2 − 1
4

2z
+

(m2 − 1
4 )(m2 − 9

4 )

2!4z2
− · · · (9.2)

has asymptotic behavior for |arg(z)| < 1

2
π (⇔ Re(z) > 0) and large |z|. (9.3)

As one can see, we cannot apply (9.2) to Ĩm
( rnrn−1

iǫ

)
, since Re

[ rnrn−1

iǫ

]
= 0. For Ĩm

( rnrn−1

ε

)
in

contrast, this is possible, if |rnrn−1/ε| is large. Since ε → 0, this is fulfilled for rj 6= 0 ∀ j. As

the zero is part of the integration interval [0,∞], Grosche, Kleinert, and Steiner conclude that

the asymptotic expansion breaks down, because there exist paths with rj = 0.

Although this is true, looking at (5.15),

Z =




N+1∏

n=1

∞∫

0

drnrn√
2πε






N+1∏

n=1

2π∫

0

dϕn√
2πε



[

N+1∏

n=1

e−ε 1
2

r2
n+r2

n−1

ε2

]
×

×
[

N+1∏

n=1

exp

(
ε
1

2

2rnrn−1 cos(ϕn − ϕn−1)

ε2

)][N+1∏

n=1

e−εU(rn)

]
,

reveals that we are able to take the zero out of the integration interval, i.e., [0,∞] → (0,∞]. To

make this clear, let us write the above expression in the abstract form

Z =

∞∫

0

dr0r0√
2πε

· · ·
∞∫

0

drjrj√
2πε

· · ·
∞∫

0

drN+1rN+1√
2πε

F (r1, · · · , rj , · · · , rN+1, ε). (9.4)

Due to the improper integral

∞∫

a

f(x) dx ≡ lim
b→∞

b∫

a

f(x) dx , (9.5)

1or QM respectively, if we replace 1 → m, φ → x.
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and2

lim
rj→0

F (r1, · · · , rj , · · · , rN+1, ε) is finite for finite rk 6=j and ε 6= 0 ,

we are able to change the integration interval to (0,∞]. Since (9.5) is only a limit, one exact

zero, rj = 0, is enough for the integrand to vanish, due to the rj in (9.4).

Now, having eliminated 0 from the integration intervals, we are allowed to use the asymptotic

expansion (9.2). Proceeding as usual,

Ĩm (z) ≡ Im (z) e−z
√

2πz ∼ 1 − m2 − 1
4

2z
+ · · · ≃ e−

m2− 1
4

2z + · · · , (9.6)

we obtain the criticized version of the radial path integral:

Z =

∞∑

m=−∞




N+1∏

n=1

∞∫

(0)

drn√
2πε



[

N+1∏

n=1

e−εU(rn,−iτn)

][
N+1∏

n=1

e−
1
2ε (rn−rn−1)

2

][
N+1∏

n=1

e
− 1

2 ε
m2− 1

4
rnrn−1

]

⇔

Z =

∞∑

m=−∞




N+1∏

n=1

∞∫

(0)

drn√
2πε


 exp

{
−ε

N+1∑

n=1

[
1

2

(rn − rn−1)
2

ε2
+ U(rn,−iτn) +

1

2

m2 − 1
4

rnrn−1

]}
, (9.7)

which becomes

Z =

∞∑

m=−∞

∞∮

(0)

Dr exp



−

τb∫

τa

dτ

[
1

2
ṙ2 + U(r,−iτ) +

1

2

m2 − 1
4

r2

]
 ≡

∑

m

Zm (9.8)

in the continuum limit ε→ 0. In the case of SQFT, we have τa = 0 and τb = 1/T .

The fact that Zm=0 = ∞ (due to + 1
2

1/4
r2 → ∞, for r → 0) is known as path integral collapse.

Note that expression (9.8) is not in conflict with

Z =
∞∑

m=−∞




N+1∏

n=1

∞∫

(0)

drn√
2πε



[

N+1∏

n=1

e−εU(rn,−iτn)

][
N+1∏

n=1

e−
1
2ε (rn−rn−1)

2

] [
N+1∏

n=1

Ĩm

(rnrn−1

ε

)]
,

(9.9)

which we want to explain in the following.

Because of

Ĩm (0) = Im (0)
√

2π · 0 e−0 = 0 , (9.10)

lim
z→∞

Ĩm (z) = 1 (9.11)

and

lim
ε→0

rnrn−1

ε
= ∞ ∀rn, rn−1 ∈ (0,∞] , (9.12)

2assuming that U(0) is not −∞.
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we are able to rewrite (9.9) as follows:

Z =

∞∑

m=−∞




N+1∏

n=1

∞∫

0

drn√
2πε



[

N+1∏

n=1

e−εU(rn,−iτn)− 1
2ε (rn−rn−1)

2

]

= N




N+1∏

n=1

∞∫

0

drn√
2πε



[

N+1∏

n=1

e−εU(rn,−iτn)− 1
2ε (rn−rn−1)

2

]
, (9.13)

where N is a countably infinite constant. Since both, (9.8) as well as (9.13), are infinite, there is

no contradiction so far.

Another asymptotic expansion

Last but not least, we want to present an alternative approach, which is consistent with (9.13).

The difficulties with m = 0 are circumvented by using an alternative asymptotic series expansion

instead of (9.2), namely:3

Im(z) ∼ ez + eiπm−z

√
2πz

,
−π
2

< arg[z] ≤ π

2
, |z| → ∞. (9.14)

Using (9.10) and

ez + eiπm−z

√
2πz

·
√

2πz e−z = 1 + ieiπme−2z = 1 + i(−1)me−2z ,

we obtain

Ĩm (z)





= 0 for z = 0

∼ 1 + i(−1)me−2z for −π
2 < arg[z] ≤ π

2 , |z| → ∞ .
(9.15)

Since z = rnrn−1

ε ∈ R in our case, we are allowed to use (9.15). Note that the larger z ∈ R, the

smaller the spurious imaginary part. The starting point is again result 5.1. Let us consider the

product of the slightly modified Bessel functions in this expression. Because of

lim
ε→0

rnrn−1

ε
=





0 if rn = 0 ∨ rn−1 = 0

∞ if rn 6= 0 ∧ rn−1 6= 0 ,
(9.16)

we conclude that either the whole product vanishes, namely if at least one of the points r0, r1, · · · , rN+1

is zero, or we are allowed to apply the case |z| → ∞ in (9.15) to each of the N + 1 factors:
[

N+1∏

n=1

Ĩm

(rnrn−1

ε

)]
ε→0
=





0 if at least one point zero[
1 + i(−1)me−2

r1r0
ε

]
· · ·
[
1 + i(−1)me−2

rN+1rN
ε

]
else

.

With

lim
ε→0

[
1 + i(−1)me−2

rnrn−1
ε

]
= 1 for rn 6= 0 ∧ rn−1 6= 0 , (9.17)

3Compare with http://functions.wolfram.com/Bessel-TypeFunctions/BesselI/06/02/02/02/
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we finally conclude

lim
ε→0

[
N+1∏

n=1

Ĩm

(rnrn−1

ε

)]
=





0 if at least one point zero

1 else
.

Accordingly, the integrand in result 5.1 either vanishes, namely for paths (r0, r1, · · · , rN+1) where

at least one of the points is zero (see fig.9.1), or the integrand is simply

[
N+1∏

n=1

e−εU(rn,−iτn)

] [
N+1∏

n=1

e−
1
2ε (rn−rn−1)

2

]
,

since the slightly modified Bessel functions yield a factor of 1 in the continuum limit. So again,

we end up exactly with (9.13).

Figure 9.1: Illustration of two paths in the discussed path integral. The path which touches the

τ -axis at one of its points does not contribute to the path integral.
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Wer einmal nicht mehr irrt, der hat auch

zu arbeiten aufgehört.

(Max Planck)

Chapter 10

Conclusions and Outlook

Conclusions

In this thesis, we studied several models at nonzero temperature. In particular, we examined a

Z2-symmetric toy model and the O(2) model as well as questions arising from these studies. Our

CJT calculations are in Hartree approximation, i.e., only double-bubble diagrams are taken into

account in V2.

In the case of our Z2-symmetric toy model with the one-minimum classical potential no phase

transition occurs, both in 1+3 dimensions as well as in 1+0 dimensions. In the latter case, we

compared the effective potential at its global minimum (the negative pressure) calculated in the

CJT formalism and via the WKB method. Whereas the difference between the WKB and the

CJT result increases continuously with temperature T , the ratio is nearly one and gets even

closer to one at high temperature. The offset at T = 0 gets larger with increasing coupling

constant λ, which we can trace back to the terms in the thermal integrals which would require

renormalization in 1+3 dimensions. In 1+0 dimensions they are finite and cannot be dropped, as

the analytic comparison between CJT and WKB for the harmonic oscillator-like potential shows.

This is also verified in further numerical comparison between WKB and CJT. We analyzed a

large range in the coupling, from very small to very high, and we ensured that we took enough

eigenvalues into account in the WKB method.

In case of the double-well classical potential, we encounter a first-order phase transition in 1+0

dimensions. It is an interesting observation that the CJT tree-level potential differs from the

classical potential the larger the coupling λ. The terms in the thermal integrals which would

require renormalization in 1+3 dimensions are responsible for this. Whereas for example the

coupling λ in case of the O(2) model in 1+3 dimensions can be fixed by identifying the tree-

level masses with the observed vacuum masses of the sigma and the pion respectively, in 1+0

dimensions it is a free parameter. We find that above the critical value λcr = N
9

√
2
3 the tree-level

potential (the effective potential for T → 0) is completely deformed to a one-minimum potential

without other extrema. Accordingly, the critical temperature at which the phase transition

takes place decreases until it becomes zero at about λcr ≃ 0.885λcr. We calculated the effective

potential at its global minimum for different values of λ. The comparison between CJT and

WKB is complicated by tunneling. Although we took into account the tunneling in our WKB
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calculation, we used an approximation which is problematic if there exist energy eigenvalues near

Emax. However, in the case where all eigenvalues are far enough away from Emax, the agreement

between WKB and CJT is just as good as in the case of the one-minimum potential.

Regarding the cartesian 1+0 dimensional O(2) model in case of the double-well potential, in

contrast to 1+3 dimensions we can vary λ and H independently from each other. In the case of

explicitly broken symmetry, H 6= 0, we find that no solutions exist at all above some critical value

for λ. In the chiral limit, H = 0, we still have solutions, but we observe a behavior similar to the

case of the Z2-symmetric double-well potential. Above another critical value for the coupling, the

tree-level potential is deformed to a one-minimum potential without other extrema, and no phase

transition can occur. Although this behavior seems to be pathologic at first look, the effective

potential at its global minimum calculated via CJT is again in good agreement with the result

from radial WKB. The behavior of the global minimum (i.e., the condensate) strongly depends on

the choice for the values of H and λ. Although we only found crossover phase transitions so far,

we believe that for other choices we should be able to obtain a second-order phase transition. In

accordance with the results in 1+3 dimensions [45], the masses of the sigma and the pion become

closer and closer for decreasing condensate. In the chiral limit, H = 0, the phase transition is of

first order and the masses are degenerate at the critical temperature.

Note that we performed our CJT calculations in the Hartree approximation, which is nearly a

HTL approximation (up to neglected sunset diagrams in V2), i.e., nearly a complete one-loop

calculation. The loop expansion is equivalent to an expansion in powers of ~, and accordingly

the WKB approximation corresponds to one-loop order. From our comparison of the effective

potential at its global minimum in the CJT formalism and the WKB approximation, we conclude

that not only the HTL approximation is meaningful in the high-temperature limit but also the

Hartree approximation.

Our major interest was in the O(2) model with the fields treated as polar coordinates. In 1+3

dimensions we dropped the terms in the thermal integrals which would require renormalization,

since the results for the cartesian case suggest that these terms do not influence the results

significantly. We applied the CJT formalism in 1+3 dimensions as well as in 1+0 dimensions

using the same Feynman rules as known from cartesian coordinates and neglecting the Jacobian

from the beginning. Let us first summarize the results for 1+3 dimensions. We calculated

the pion mass, the sigma mass, the chiral condensate and the effective potential at the global

minimum (in the vacuum) as well as the “masses” and the effective potential away from the

global minimum, i.e., at an arbitrary value for the “order parameter in the presence of a source

J”, |~φ|, in radial φ1-direction. Although the results for H 6= 0 look like a weak first-order phase

transition at first glance, they do not describe a phase transition at all, since the condensate does

not vanish. Instead, there is a maximal temperature Tmax above which no physical solutions exist.

To be more precise, near the would-be critical temperature, there is a region about the origin

where the pion “mass” becomes imaginary. As the global minimum of the effective potential (the

condensate) decreases, it hits this region at Tmax. This situation is illustrated in figure 10.1, and

we trace the reason back to the terms

1

2

σ2

φ2
∂µπ∂

µπ and Hσ cos
π

φ
(10.1)
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(a) The global minimum approaches the ill-defined region. (b) The situation at Tmax.

Figure 10.1: Why no physical solutions exist above Tmax.

appearing in the Lagrangian (6.4). As the explicit CJT calculation verifies, the divergence arising

from φ → 0 is pathological. In the chiral limit however, the pion mass is always zero and all

spurious terms in the system of equations vanish. We obtained a first-order phase transition at

T ∗ = 2.787fπ. Goldstone’s theorem is respected in the phase of spontaneously broken symmetry

since the pion mass is always zero, however the pion and the sigma mass do not become degen-

erate above T ∗.

We thought that an analysis of the polar O(2) model in 1+0 dimensions could help to understand

the origin of the spurious behavior, since in 1+0 dimensions the thermal integrals become simple

algebraic expressions. Indeed, for H 6= 0 the same problem occurs as in 1+3 dimensions. In

1+0 dimensions it makes no sense to identify the tree-level masses with the physical masses for

the sigma and the pion respectively, hence H and λ are not fixed. We studied the limit H → 0

and found that the “pion” mass has to be zero in the chiral limit. In 1+0 dimensions we are

then faced with an additional problem, namely the infrared divergence (M → 0) of the algebraic

expressions for the thermal integrals. To learn more about the nature of the infrared divergence,

we examined massless scalar field theory, for which one can calculate the partition function and

the effective potential analytically, i.e., independent of thermal integrals. We considered the case

where the field variable underlies no constraints and runs from −∞ to ∞, which corresponds to

a cartesian coordinate, and we also investigated the influence of topological constraints corre-

sponding to a radial coordinate and a periodically constrained variable (like the angular variable

in polar coordinates). Indeed, in accordance with the CJT formalism, the effective potential in

absence of constraints (cartesian coordinates) is −∞ in the limit M → 0. In the case of a peri-

odically constrained variable however, the effective potential is finite. Comparing the analytical

results for the partition functions for the periodically constrained variable and the unconstrained

cartesian one, we found that they are equal up to an overall countably infinite constant. Note

that the derivation of the infrared-divergent algebraic expressions is only valid for M 6= 0, and

one cannot exclude that the limit M → 0 is different from M = 0. A massless particle is some-

thing special, it has to move with speed of light and might be treated in a special way. We came

to the conclusion that this particular question can only be clarified, if we derive the Feynman

rules for a periodically constrained coordinate, or for polar coordinates respectively.

Since we do not know the Feynman rules for polar coordinates, we were concerned with the ques-
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tion if the use of the common Feynman rules for cartesian coordinates can be justified. Although

the last word is not spoken yet, we argued why this should be possible. In case of the angu-

lar variable, we showed that extending the range of integration from [0, 2π) to [−∞,∞] simply

yields a countably infinite constant in front of the partition function, which can be absorbed

into the normalization. Regarding the radial variable, we justified the extension from [0,∞] to

[−∞,∞] in dimensional regularization. We also investigated if the Jacobian of the coordinate

transformation from cartesian to polar coordinates has an influence on the results. Following

the discussion of Kleinert, we convinced ourselves that it does not in dimensional regularization.

Due to Veltman’s rule it can indeed be omitted from the beginning. Additionally, we made sure

that changing to polar coordinates in the discretized version of the path integral yields the same

Lagrange function as if we directly change to polar coordinates in the continuous version of the

Lagrange function. We carried out the calculations explicitly in 1+0 dimensions, however, we

also checked that the conclusions are valid also in 1+3 dimensions. For a toy model in 1+0

dimensions one can confirm the observation that the Jacobian does not affect the results via

expanding the effective potential at its global minimum perturbatively, treating δ(0) as finite.

This was done by Kleinert and Chervyakov and was reviewed in our discussion.

The fact that the polar generating functional requires renormalization, due to the infinite contri-

bution ∼ δ(0) of the Jacobian, allows for a new understanding of the path integral collapse (see

chapter 9). The asymptotic expansion of the slightly modified Bessel functions, which yields the

centrifugal barrier, therefore remains plausible. The observation that the generating functional

is infinite, due to m = 0 (what is called path integral collapse), can be explained by the fact

that the generating functional requires renormalization. Furthermore, we argued that the use of

another asymptotic expansion yields the same result for the generating functional as dimensional

regularization, up to a countably infinite constant.

Outlook

So far, we discussed 1+3 dimensional models neglecting terms in the thermal integrals which

require renormalization. In cartesian coordinates they do not alter the results significantly. In

polar coordinates, however, they might have an influence. Technically, the problem is that the

pion mass becomes zero before the condensate can become zero. Since the omitted terms would

have prefactors with powers of the condensate in the denominator, this might strongly affect

the behavior of the equations in the limit ϕ → 0. Due to consistency, one should perform

the renormalization procedure in dimensional regularization. An alternative explanation for

the spurious behavior would be that one cannot use the cartesian Feynman rules, although we

offered a justification why this should be possible. Whereas the extension of the integration

interval for a cyclic variable (polar angle) alone would be questionable, since a circle is not

topologically equivalent to a straight line, the simultaneous extension of the integration intervals

for the radial and the angular variable are at first sight not in contradiction with topology. Polar

coordinates and cartesian coordinates are equally suited to describe a two-dimensional space.

However, further verification of our conclusions would be as complicated as the search for the

polar Feynman rules, which is a task for the future.

It is also of interest to generalize the present study to 4-dimensional polar coordinates, which

140



would correspond to the polar O(4) model. The polar O(4) model has the advantage that 3

degrees of freedom can be identified with the three pions, π0 and π±, and the remaining one with

their chiral partner, the sigma particle. In this context we want to mention a subtle issue. It is

believed that only the local isomorphy of symmetry groups is important regarding universality,

although this has not been rigorously proven. As we pointed out, SU(2) × SU(2) is locally

isomorphic to O(4), but an exact isomorphism is given by SU(2)×SU(2)/Z(2) ≃ SO(4). Hence

it would be even more reliable to consider a quaternionic prescription of SO(4) (since SU(2) can

be represented by unit norm quaternions, there has to be a quaternionic representation of SO(4),

too).

In this thesis we were concerned with effective theories for the chiral condensate. Figure 1.4(a)

recapitulates how these models come into play. However, we believe that there should be an

accessible way to study the properties of QCD near a critical point referring to a second-order

phase transition. A system at the critical temperature of a second-order phase transition becomes

very simple: the correlation length diverges and the system becomes self-similar (scale-invariant).

This is mirrored in a very simple power-law behavior for thermodynamic quantities and gives

rise to the phenomenon of universality. Accordingly, one should expect that the complicated

theory of QCD should drastically simplify at the critical point. More precisely, the effective

Lagrangian describing QCD at the critical temperature should be scale invariant. In the classical

limit massless QCD is scale invariant, however, at the quantum level loop corrections spoil scale

invariance, which is known as scale anomaly. Similarly, massless φ4 theory is scale-invariant

at the classical level but not at the quantum level. The corresponding anomaly in the Ward

identity is the origin of the nontrivial critical exponents as they appear in the O(N) model [17].

The running coupling constant of QCD at finite temperature depends both on the scale and on

temperature. According to [61], we speculate that a perturbative renormalization group study

in the context of critical behavior might be possible, if the critical temperature is large enough.
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Willst du dich am Ganzen erquicken,

So mußt du das Ganze im Kleinsten

erblicken.

(Johann Wolfgang von Goethe)

Appendix A

Basics

Introductory remark

As already mentioned in the preface of our thesis, in this appendix we give some important

definitions. Furthermore it shall serve as a guide how to embed these rather special definitions

into the general framework constituted by literature. To be more precise, we are concerned with

the following concepts: generating functionals, partition functions, expectation values, n-point

functions, propagators, and Green’s functions. While these quantities belong to the standard

repertoire of theoretical physics, it is hard to review all the modifications in which they appear.

However, we believe that the facts presented in the following are crucial for a broad understanding

of these concepts. For further details we refer to literature in general, which should be accessible

with the help of appendix A.3. Nonetheless, we want to give some specific recommendations.

For Quantum Mechanics and Quantum Mechanics at zero as well as at nonzero temperature

(Quantum Field Theory in 1+0 dimensions and Quantum Field Theory in 1+0 dimensions at

zero temperature as well as at nonzero temperature) we refer to [42] or [57]. These books also

provide an excellent introduction to the concept of path integrals. Regarding scalar Quantum

Field Theory in 1+3 dimensions at zero temperature, we recommend [62], and for the discussion

of the φ4-theory at nonzero temperature [17]. However, note that in general our notation dif-

fers from the above mentioned publications. For the path-integral representation of the classical

partition function, which we do not discuss explicitly in the following, we refer to chapter 1 of [63].

A.1 Partition function

The concept of the partition function has its origin in Statistical Mechanics, and also in general

it usually refers to theories at nonzero temperature. The term generating functional however is

used both in theories at zero temperature and in theories at nonzero temperature. Basically, all

information about a system is encoded in its partition function or in its generating functional,

respectively. In general, the generating functional is a functional of sources, and functional dif-

ferentiation with respect to these sources yields the (disconnected) n-point functions. Similarly,
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the logarithm of the generating functional generates the connected n-point functions. Appendix

D covers the thermal n-point functions as they appear in perturbative φ4-theory at nonzero tem-

perature. In the case of vanishing sources, the thermal generating functional (i.e., the partition

function in the presence of sources) equals the partition function. In the limit T → 0 the thermal

generating functional is proportional to the Euclidean non-thermal generating functional.

The theory which provides the justification of thermodynamics on a microscopical level is called

statistical physics. In the following we will discuss theories at nonzero temperature in ther-

mal equilibrium. Consider any kind of system, statistical mechanical, quantum statistical or

quantum-field statistical. The most general case of consideration is a system ΣGC where energy

E and conserved charges Qi (conserved quantum numbers as for example baryon number) can be

exchanged with the surrounding medium Σ. Fixed quantities in the system ΣGC are only the vol-

ume V , the chemical potentials µi and the temperature T , i.e., we assume that the system Σ is a

so-called heat bath for our system ΣGC . In statistical physics the system ΣGC is described within

the theoretical concept of the grand canonical ensemble. All thermodynamic quantities can be

determined from the so-called grand canonical partition function Z(T, V, {µi}). Of course, these

“microscopic” definitions for thermodynamic quantities imply relations between them, which in

turn can be used to derive measuring methods for them. These relations are the same in all

of the three statistical ensembles (microcanonical ensemble, canonical ensemble, grand canonical

ensemble). The most important ones we want to list in appendix G. In case of macroscopic,

asymptotically large systems (i.e., sufficiently many particles of each species), there is another

important issue. In this case also the microscopic definitions which are of course different in the

three ensembles, are consistent with each other. One simply has to identify the grand canonical

average for the charges, 〈Qi〉, with the fixed values Qi in the canonical ensemble. However, we

can only refer to [16] for the explicit proof in the case of Statistical Mechanics where the only

charge is the number of particles, i.e., Q ≡ N .

Any theory at nonzero temperature is described by the grand canonical partition function

definition A.1 (grand canonical partition function)

Z = Tre−β(Ĥ−µiQ̂i) , β ≡ 1

T
,

where Ĥ is the Hamilton operator of the system.

The grand canonical thermal expectation value of any physical observable Â is given by

definition A.2 (grand canonical thermal expectation value)

〈Â〉 =
1

Z Tr
(
e−β(Ĥ−µiQ̂i)Â

)
.

For µi = 0 one can use the canonical ensemble instead. The partition function is given by

definition A.3 (partition function)

Z = Tre−βĤ .

We can perform the trace in the basis {|En〉} constituted by the energy eigenstates |En〉:

Z = Tre−βĤ =
∑

n

e−βEn . (A.1)

144



The thermal expectation value is given by

definition A.4 (thermal expectation value)

〈Â〉 =
1

Z
Tr
(
e−βĤÂ

)
.

Note that definitions A.1-A.4 refer to the vacuum because no source terms occur. Also note that

for ~ → 0 these definitions boil down to those of classical statistical physics.

The trace can be computed in any basis of orthonormal eigenstates. Alternatively one can use the

path integral formalism to rewrite these quantities. In the following we will restrict ourselves to

scalar fields. For the transition from Quantum Mechanics to Quantum Field Theory to Statistical

Quantum Field Theory see appendix E. Note that we work in natural units where ~ ≡ 1. For

simplicity, we will first discuss a single scalar field in 1+0 dimensions, since the generalization to

M scalar fields, treated as cartesian coordinates, is then not very complicated. Also the transition

to 1+3 dimensions is straightforward, so we do not state it explicitly. Here we use the letter M

instead of N to avoid confusion with the lattice label N .

Let us begin with introducing the Euclidean time-evolution operator from Euclidean time τa ∈ R
to τb ∈ R:

definition A.5 (Euclidean time-evolution operator)

ÛE(τb, τa) = e−(τb−τa)Ĥ .

Single scalar field, 1+0 dimensions

The Euclidean time-evolution amplitude (or Euclidean kernel)

definition A.6 (Euclidean time-evolution amplitude)

(φb, τb|φa, τa) ≡ 〈φb|ÛE(τb, τa)|φa〉

is called amplitude, because |(φb, τb|φa, τa)|2 is the probability that the field has the value φa

at Euclidean time τa and the value φb at Euclidean time τb. For each of the variables φa,φb,τa

and τb we can choose every value we like. So far this is simply Euclidean field theory which is

equivalent to the usual Minkowskian version. The additional features which come into play at

nonzero temperature are the following:

• one has to identify τb ≡ 1
T and τa ≡ 0 ,

• one has to impose the periodic boundary condition φ(τ)
!
= φ(τ + 1

T ) .

Identifying τb ≡ 1
T and τa ≡ 0, we obtain

definition A.7 (nonzero temperature evolution operator)

ÛE(β, 0) = e−Ĥ/T ,
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definition A.8 (thermal evolution amplitude)

(φb, β|φa, 0) ≡ 〈φb|ÛE(β, 0)|φa〉 .

From definitions A.3 and A.7 we obtain

Z = TrÛE(β, 0) =

∫∑

a

〈φa|e−βĤ |φa〉 =

∫
dφa (φa, β|φa, 0) , (A.2)

where {|φa〉} constitutes a complete orthonormal system.

result A.1 (alternative expression for the partition function)

Z =

∫
dφa (φa, β|φa, 0) .

Definition A.6 can be rewritten as a path integral:

result A.2 (Euclidean time-evolution amplitude, lattice version)

(φb, τb|φa, τa) ≃ 1√
2πε

[
N∏

n=1

∫
dφn√
2πε

]
e−AE ,

with AE = ε
N+1∑

n=1

[
1

2

(
φn − φn−1

ε

)2

+ U(φn,−iτn)

]
,

φN+1 ≡ φb , φ0 ≡ φa , τN+1 ≡ τb and τ0 ≡ τa .

The above expression is called the discretized, or lattice, version. In the continuum limit, N → ∞
and ε→ 0, this defines a so-called path integral, which one denotes by

(φb, τb|φa, τa) =

∫
Dφ e−SE , (A.3)

where SE = limε→0 AE is the Euclidean action

SE =

∫
dτ

[
1

2

(
∂φ

∂τ

)2

+ U(φ,−iτ)
]
. (A.4)

The symbol U denotes the classical potential of the system. The function U is the same in

Minkowskian and Euclidean field theory. We only have to bear in mind that we performed a

Wick rotation t→ −iτ , which we indicate suggestively by U(φ,−iτ).
In case of the partition function Z, one has to set φN+1 = φ0, and there is an extra integration

over φN+1 = φ0. This corresponds to taking the trace. Furthermore, one has to set τN+1 = 1/T

and τ0 = 0 as well as to impose the periodic boundary condition φ(τ)
!
= φ(τ + β). Hence, from

result A.2 we obtain

result A.3 (partition function, lattice version)

Z ≃
[

N+1∏

n=1

∫
dφn√
2πε

]
e−AE ,

where φN+1 = φ0 .
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In the continuum limit, N → ∞ and ε → 0, this defines the path-integral representation of the

partition function:

Z =

∮
Dφe−SE . (A.5)

Note that in comparison with the generating functional in QFT (see for example [62]), there is

the constraint φN+1 = φ0 and the additional integration over φN+1 in the discretized version

A.3. We use the symbol
∮

to remind of this fact.

M scalar fields, 1+0 dimensions

Let us generalize the above discussion to M scalar fields, φi, which are the cartesian components

of the vector ~φ = (φ1, · · · , φM ).

definition A.9 (Euclidean time-evolution amplitude)

(~φb, τb|~φa, τa) ≡ 〈φ1,b , · · · , φM,b|ÛE(τb, τa)|φ1,a , · · · , φM,a〉 .

result A.4 (alternative expression for the partition function)

Z =

∫
dφ1,a · · ·

∫
dφM,a (~φa, β|~φa, 0) .

result A.5 (Euclidean time-evolution amplitude, lattice version)

(~φb, τb|~φa, τa) ≃
(

1√
2πε

)M
[

N∏

n=1

∫
dφ1,n√

2πε

]
· · ·
[

N∏

n=1

∫
dφM,n√

2πε

]
e−AE ,

with AE = ε

N+1∑

n=1


1

2

(
~φn − ~φn−1

ε

)2

+ U(~φn,−iτn)


 ,

~φN+1 ≡ ~φb , ~φ0 ≡ ~φa , τN+1 ≡ τb and τ0 ≡ τa .

result A.6 (partition function, lattice version)

Z ≃
[

N+1∏

n=1

∫
dφ1,n√

2πε

]
· · ·
[

N+1∏

n=1

∫
dφM,n√

2πε

]
e−AE ,

where ~φN+1 = ~φ0 .

In the continuum limit, N → ∞ and ε → 0, this defines the path-integral representation of the

partition function:

Z =

∮
D~φe−SE . (A.6)
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A.2 N-point functions

definition A.10 (correctly normalized n-point function...) syn.: correctly normalized

vacuum expectation value for φ (X1) ...φ (Xn)...

• ...in the presence of sources:

〈φ (X1) · · ·φ (Xn)〉(T=0) =

∫
Dφ eiS[φ]+φJ+ 1

2 φKφφ (X1) ... φ (Xn)∫
Dφ eiS[φ]+φJ+ 1

2 φKφ

• ...(in the absence of sources):

〈φ (X1) · · ·φ (Xn)〉(T=0)|J=0,K=0 =

∫
Dφ eiS[φ]+φJ+ 1

2φKφφ (X1) ... φ (Xn)∫
Dφ eiS[φ]+φJ+ 1

2φKφ

∣∣∣∣∣
J=0,K=0

where φ = φ(t, ~x) , S [φ] =
∫
dt
∫
d3~x L (φ) , φJ ≡ i

∫
dt
∫
d3~x J(t, ~x)φ(t, ~x)

and φKφ ≡ i
∫
dt
∫
d3~x i

∫
dt′
∫
d3~x′ φ(t, ~x)K(t, ~x, t′, ~x′)φ(t′, ~x′).

definition A.11 (correctly normalized thermal n-point function...) syn.: correctly

normalized thermal vacuum expectation value for φ (X1) ...φ (Xn)...

• ...in the presence of sources:

〈φ (X1) · · ·φ (Xn)〉 =

∮
Dφ e−SE[φ]+φJ+ 1

2φKφφ (X1) ... φ (Xn)∮
Dφ e−SE[φ]+φJ+ 1

2φKφ

• ...(in the absence of sources):

〈φ (X1) · · ·φ (Xn)〉|J=0,K=0 =

∮
Dφ e−SE[φ]+φJ+ 1

2φKφφ (X1) ... φ (Xn)∮
Dφ e−SE[φ]+φJ+ 1

2φKφ

∣∣∣∣∣
J=0,K=0

where φ = φ(τ, ~x) , SE [φ] =
∫
dτ
∫
d3~x LE(φ) , φJ ≡

∫
dτ
∫
d3~x J(τ, ~x)φ(τ, ~x)

and φKφ ≡
∫
dτ
∫
d3~x

∫
dτ ′
∫
d3~x′ φ(τ, ~x)K(τ, ~x, τ ′, ~x′)φ(τ ′, ~x′).

Appendix D covers the thermal n-point functions as they appear in perturbative φ4-theory at

nonzero temperature. Connected thermal n-point functions we determine via definitions D.1 and

2.1.

A.3 The big picture

In the following we refer to textbooks in general. We believe that a major difficulty lies in

establishing the connection between definitions given in different publications. Often quantities

occur in different modifications, special cases or different contexts, which complicates a uniform

nomenclature, although they are in principle closely related or even equal in some cases. Examples

are the generating functional and the partition function, as well as the 2-point function, the

Green’s function, and the propagator. In the following we want to present some crucial facts, of

which we believe that they are essential for the understanding of these concepts.
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definition A.12 (Meaning of the term generating functional)

If the functional F [g(x)] of the function g(x) can be expanded into a functional power series

F [g(x)] =
∑

n

Fn[g(x)] , Fn[g(x)] = (n!)−1/2

∫
fn(x1, ..., xn)g(x1) · · · g(xn)dx1 · · · dxn ,

then F [g(x)] is called a generating functional for the functions fn(x1, ..., xn) .

Generating functionals as a method were established in 1928 by Fock [64]. Step by step, the con-

cept of the generating functional captured a central role in Quantum Field Theory. In Quantum

Field Theory one calls g(x) a source and fn(x1, ..., xn) n-point correlation functions or n-point

functions. Note that the definition A.12 (taken from [65]) covers the expressions (D.6), (D.17)

and (D.26). However, it can be generalized to more sources. Consider for example two sources

JA(x) and JB(y), which correspond to two different species of fields or particles, respectively.

If the functional F [JA(x), JB(y)] of the functions JA(x) and JB(y) can be expanded

into a functional power series F [JA(x), JB(y)] =

∞∑

n=0

∞∑

m=0

Fn,m[JA(x), JB(y)] ,

Fn,m[JA(x), JB(y)] ∼
∫
fn,m(x1, ..., xn; y1, ..., ym)×

×JA(x1) · · · JA(xn)JB(y1) · · ·JB(ym)dx1 · · ·dxndy1 · · · dym ,

then F [JA(x), JB(y)] is called a generating functional for the functions fn,m(x1, ..., xn; y1, ..., ym) .

Note that f0,m ≡ f0,m(y1, ..., ym) and fn,0 ≡ fn,0(x1, ..., xn) .

Within the literature there is no uniform nomenclature, usually one names the functions fn,m

according to the corresponding particles. So to speak they are “m-n-point functions”. Obviously,

this concept can be easily generalized to an arbitrary number of sources to define the generating

functional for “l−m−n−(· · · )-point functions”. As a concrete example consider the 2-Fermion-

2Boson-function within Yukawa theory (see page 499 of [62]):

G
(4)
FB(x1, x2; y;x) ∼

δZ[η, η, J ]

δJ(x1)δJ(x2)δη(x)δη(y)

∣∣∣∣
J=η=η=0

.

Furthermore, the concept could be generalized to sources which depend on more than one space-

time point. Consider for example an additional bilocal source K(y, z):

If the functional F [J(x),K(y, z)] of the functions J(x) and K(y, z) can be expanded

into a functional power series F [J(x),K(y, z)] =

∞∑

n=0

∞∑

k=0

Fn,2k[J(x),K(y, z)] ,

Fn,2k[J(x),K(y, z)] ∼
∫
fn,2k(x1, ..., xn; y1, ..., yk, z1, ..., zk)×

×J(x1) · · · J(xn)K(y1, z1) · · ·K(yk, zk)dx1 · · · dxndy1 · · · dykdz1 · · · dzk ,

then F [J(x),K(y, z)] is called a generating functional

for the functions fn,2k(x1, ..., xn; y1, ..., yk, z1, ..., zk) .

Note that f0,2k ≡ f0,2k(y1, ..., yk, z1, ..., zk) and fn,0 ≡ fn,0(x1, ..., xn) .
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Again this can be generalized to an arbitrary number of sources of all kinds (such as L(x, y, z)

etc.).

All these kinds of correlation functions can be obtained from their generating functional via

functional differentiation with respect to sources. Note that a theory can be studied either at

zero or nonzero temperature. For further details see appendix E. Generically speaking, the

generating functional, usually denoted by Z (or by Z for vanishing chemical potentials or zero

temperature), is a functional of sources and has the form

Z[sources] ∼
∫

D⊔1 · · ·
∫

D⊔n eA+sourceterms+other , (A.7)

where the symbols ⊔i are replacement characters, A is the action of the theory (up to a constant

prefactor) and other stands for contributions arising for example from gauge invariance (ghost

and gaugefixing terms) or from the Jacobian of a coordinate transformation. Note that in the

case of nonzero temperature we should write
∮

(which throughout the rest of this work reminds of

the periodic boundary condition) instead of
∫

in order to be consistent with our usual notation.

For simplicity we use only the sign
∫

in this section. One can split A + other into a free part

Aall
0 ≡ A0 + other0, which contains all terms quadratic resp. bilinear in the fields, and the

interaction part Aall
I ≡ AI + otherI , which covers the rest. Factorizing,

eA+sourceterms+other = eAall
0 +sourceterms+Aall

I = eAall
0 +sourceterms · eAall

I , (A.8)

expanding the interaction part into a Taylor series,

eAall
I = 1 +Aall

I +
1

2!

(
Aall

I

)2
+ · · · , (A.9)

and abbreviating

Z0[sources] ≡
∫

D⊔1 · · ·
∫

D⊔n eAall
0 +sourceterms (A.10)

〈· · · 〉sources
0 ≡ 1

Z0[sources]

∫
D⊔1 · · ·

∫
D⊔n eAall

0 +sourceterms(· · · ) , (A.11)

we obtain

Z[sources] = Z0[sources]

[
1 + 〈Aall

I 〉sources
0 +

1

2!
〈(Aall

I )2〉sources
0 + · · ·

]

︸ ︷︷ ︸
≡ZI [sources]

. (A.12)

In any theory, one is allowed to expand Z[sources] perturbatively, if the interaction is sufficiently

weak. Compare for example (D.8) or (H.14).

For every theory there exists a set of so-called Feynman rules, which prescribe a) how to write a

Feynman diagram in terms of an explicit analytical expression, and b) how to express quantities

in terms of Feynman diagrams. Whereas the rules themselves are usually well-arranged, their

derivation is of course complicated. Regarding the technical question how to use Feynman rules,

we recommend Griffith’s pedagogical discussion for a toy model [3], from which more advanced

Feynman rules become easier to comprehend.

Now we are prepared for an important remark:
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• For any theory ZI [sources] is the sum of all Feynman diagrams (with their combinatorial

prefactors) that can be constructed from the Feynman rules.

• For any theory ZI [0] is the sum of all vacuum Feynman diagrams (with their combinatorial

prefactors) that can be constructed from the Feynman rules. A vacuum diagram is a

diagram without external legs.

• For any theory lnZI [0] is the sum of all connected vacuum Feynman diagrams (with their

combinatorial prefactors) that can be constructed from the Feynman rules. Note that

lnZI [sources] can, however, include disconnected diagrams.

In most cases one is interested in quantities in the vacuum and in vacuum expectation val-

ues of observables. In principle all can be derived from Z[0]. Note that Z[0] = Z0[0]ZI [0],

where Z0[0] is a constant. In general Z[0] is a series of infinitely many diagrams, and divergent

diagrams can occur. Accordingly, this will be the case also for quantities one derives from Z[0].

Resummation techniques are methods how to handle series of infinitely many diagrams, whereas

renormalization is an approach how to handle divergent diagrams. These procedures yield re-

summed and renormalized quantities, respectively.

Our final remark refers to the (thermal) n-point functions generated by Z, which can be defined

either in the path-integral formulation, or alternatively within the operator formalism of second

quantization as vacuum expectation values of (Euclidean) time-ordered products of field opera-

tors. Up to a constant prefactor both definitions are equal. A special case is the (thermal) free

2-point function which is also called (thermal) Green’s function or (thermal) propagator. Note

that this is misleading, since the (thermal) 2-point function is not in every theory a Green’s

function in the mathematical sense. Mathematically speaking, a Green’s function Gr(x, y) of a

linear differential operator L is any solution of the equation

L Gr(x, y) = δ(x − y) , (A.13)

In scalar field theory for example, the free (thermal) 2-point function indeed is proportional to

a special Green’s function for the (thermal) Klein-Gordon operator, the so-called free (thermal)

Feynman propagator. For further details, see appendix F and [62]. The (thermal) Feynman

propagator is defined by (E.19) and (E.24), respectively.
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Appendix B

Thermal integrals

The Feynman rules for statistical theories, i.e., theories at nonzero temperature (see for example

λφ4-theory in 1+3 dimensions in momentum space: e.g. p.35 in Kapusta’s textbook [66]) contain

so called “thermal integrals”. Using the imaginary-time formalism they look as follows:

for theories in 1+3 dimensions
∫

k

f (k) ≡ T

∞∑

n=−∞

∫
d3k

(2π)
3 f (2πinT,k) , (B.1)

and for theories in 1+0 dimensions
∫

k0

f (k0) ≡ T

∞∑

n=−∞
f (2πinT ) . (B.2)

Note that the integral sign
∫
k

on the left-hand side is nothing more than an abbreviation. We

will explain the meaning of the right side in the following.

When calculating thermal integrals, we have to consider a subtlety, namely the periodic boundary

condition, which turns the integration over the Euclidean zeroth component into a sum. Simply

carrying out the Wick rotation t → t = −iτ resp. k0 → k0 = ip4 is not enough. This is only

the first step on the way to a thermal integral. The integrals, appearing within the perturbative

expansion in QFT, are rotated in Euclidean QFT:

i

∞∫

−∞

dk0

2π

∞∫

−∞

d3k

(2π)3
1

k2 −M2

k0→ip4−−−−−→
∞∫

−∞

dp4

2π

∞∫

−∞

d3k

(2π)3
1

p2 +M2
, (B.3)

where we have the Minkowskian scalar product k2 = k2
0 − k2 and the Euclidean scalar product

p2 = p2
4 + k2.

The transition to SQFT is made by imposing a periodic boundary condition on the propagator,

which yields

∞∫

−∞

dp4

2π

∞∫

−∞

d3k

(2π)3
1

p2 +M2

p4→ωn−−−−−→ T

∞∑

n=−∞

∞∫

−∞

d3k

(2π)3
1

ω2
n + k2 +M2

, (B.4)

where ωn = 2πnT ∈ R denote the Matsubara frequencies for bosons.
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B.1 Thermal integrals in 1+0 dimensions

B.1.1 Thermal integral over propagator

Let us first compute the thermal integral over the propagator G (k0) = 1
−k2

0+M2 :

∫

k0

1

−k2
0 +M2

k0=iωn= T
∞∑

n=−∞

1

ω2
n +M2

. (B.5)

A short reminder from complex function theory: if f1(z) has a pole of first order at z = a, while

f2(z) is holomorphic at a, then follows Resa (f1f2) = f2 (a)Resaf1 . In our case f1 (k0) = coth k0

2T

has poles of first order in k0 = iωn , therefore Resf1 (k0) = 2T . f2 (k0) = 1
−k2

0+M2 has no poles

on imaginary axis if M 6= 0 . Therefore, using the residue theorem:

T

∞∑

n=−∞

1

ω2
n +M2

= T
1

2πi

∫

C

dz
1

−z2 +M2

1

2T
coth

z

2T
, (B.6)

where C is a contour in the complex plane, which encloses all of the poles. Note that for

application of the residue theorem, we analytically continued k0 to the complex plane in the

above formula, i.e., we write z. The simplest way to choose our contour is the following:

T
1

2πi

∫

C

dz
1

−z2 +M2

1

2T
coth

z

2T

=
1

2

[
1

2πi

−i∞−ǫ∫

i∞−ǫ

dz
1

−z2 +M2
coth

z

2T
+

1

2πi

i∞+ǫ∫

−i∞+ǫ

dz
1

−z2 +M2
coth

z

2T

]

=
1

2πi

−i∞−ǫ∫

i∞−ǫ

dz
1

−z2 +M2

(
−1

2
− 1

e−z/T − 1

)

︸ ︷︷ ︸
=−

i∞+ǫ
R

−i∞+ǫ

dz 1
−(−z)2+M2

“

− 1
2− 1

ez/T −1

”

+
1

2πi

i∞+ǫ∫

−i∞+ǫ

dz
1

−z2 +M2

(
1

2
+

1

ez/T − 1

)
,

where we used coth z
2T = ±1 ± 2

ez/T−1
in the last step,

=
1

2πi

i∞+ǫ∫

−i∞+ǫ

dz
1

2

(
1

−z2 +M2
+

1

−(−z2) +M2

)

+
1

2πi

i∞+ǫ∫

−i∞+ǫ

dz
1

ez/T − 1

(
1

−z2 +M2
+

1

−(−z2) +M2

)
.

Now we use that −z2 +M2 > 0 for all imaginary values of z, thus we can set ǫ = 0 in the first

integral:

=
1

2πi

i∞∫

−i∞

dz
1

−z2 +M2

︸ ︷︷ ︸
≡Q0

µ

+
1

2πi

i∞+ǫ∫

−i∞+ǫ

dz
1

ez/T − 1

2

−z2 +M2

︸ ︷︷ ︸
≡Q0

T

.
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Q0
µ

x≡iz
=

1

2πi

−∞∫

∞

dx

i

1

− (−ix)2 +M2
=

∞∫

−∞

dx

2π

1

x2 +M2

MM
=

1

2M
.

We again apply the residue theorem to Q0
T . The contour D encloses the only pole of the integrand

in the right half-plane, which lies at z = M and is of first order. It goes straight upwards from

−i∞ + ǫ to i∞ + ǫ , back to −i∞ + ǫ over a half-circle with radius |z| → ∞. The integral over

the half-circle contributes zero, because the integrand goes to zero for |z| → ∞ .

Q0
T =

1

2πi

∫

D

dz
1

ez/T − 1

2

−z2 +M2
=

1

2πi
(−2πi)Resz=M

(
1

ez/T − 1

2

−z2 +M2

)
.

Note that the minus sign comes in, because we have winding number −1 for closing clockwise.

Resz=M

(
1

ez/T − 1

2

−z2 +M2

)
= lim

z→M

[
(z −M)

1

ez/T − 1

2

−z2 +M2

]

= lim
z→M

z −M(
ez/T − 1

) (−z2+M2

2

) .

We can use L’Hospital’s rule to calculate the limit:

= lim
z→M

1
1
T ez/T

(−z2+M2

2

)
− z

(
ez/T − 1

) =
1

M −M eM/T
.

So we conclude

result B.1 (M 6= 0)

∫

k0

1

−k2
0 +M2

=
1

2M
− 1

M

(
1

1 − eM/T

)
=

1

M

(
1

eM/T − 1
+

1

2

)
.

One can deduce B.1 alternatively by carrying out a simple sum:
∫

k0

1

−k2
0 +M2

k0=iωn= T

∞∑

n=−∞

1

ω2
n +M2

MM
=

1

2M
coth

M

2T
=

1

M

(
1

eM/T − 1
+

1

2

)
.

However the detailed derivation above shows the correspondence between Q0
µ resp. Q0

T and Qµ

resp. QT , which will be defined in section B.2. This is also where we remind of the fact that

QT (the analogue to Q0
T ) is T 2

12 for M = 0 . So far, we only discussed the case M 6= 0. It is

interesting that the result B.1 goes to infinity for M → 0 . More precisely, not only Q0
µ but Q0

T

as well.

B.1.2 Thermal integral over propagator times k
2
0

∫

k0

k2
0

−Z2k2
0 +M2

=
1

Z2

∫

k0

k2
0

−k2
0 +M2/Z2

=
1

Z2
T

∞∑

n=−∞

−ω2
n

ω2
n +M2/Z2

=
1

Z2
T

∞∑

n=−∞
−1

︸ ︷︷ ︸
divergent part (drop)

+
1

Z2
T

∞∑

n=−∞

M2/Z2

(2πnT )2 +M2/Z2

︸ ︷︷ ︸
MM
= M2

Z2
Z

2T M coth (M/2TZ)

drop
=

M

Z3

1

2
coth (M/2TZ) =

M

Z3

(
1

eM/ZT − 1
+

1

2

)
.
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result B.2 (M 6= 0)

∫

k0

k2
0

−Z2k2
0 +M2

=
M

Z3

(
1

eM/ZT − 1
+

1

2

)
.

For M → 0 this yields:

result B.3 (M → 0)

∫

k0

k2
0

−Z2k2
0 +M2

M→0−−−−→ T

Z2
.

B.1.3 Thermal integral over logarithmic inverse propagator

We now want to compute

∫

k0

ln
(
−Z2k2

0 +M2
) k0=iωn= T

∞∑

n=−∞
ln
(
Z2 (2πn)

2
T 2 +M2

)
. (B.7)

The sum

v ≡
∞∑

n=−∞
ln
(
Z2(2πn)2T 2 +M2

)

is clearly divergent, so that we will have to drop infinite unphysical terms. More precisely, we

will drop those addends which are independent of M . For this purpose we first take the partial

derivative with respect to M :

∂v

∂M
=

∞∑

n=−∞

2M

Z2(2πn)2T 2 +M2
=

2M

M2
+ 2

∞∑

n=1

2M

Z2(2πn)2T 2 +M2

=
2

M
+ 4

1

Z2πT

∞∑

n=1

M/(Z2πT )

n2 +M2/(Z2πT )2

︸ ︷︷ ︸
=− 1

2
Z2πT

M + 1
2π coth M

Z2T

=
1

ZT
coth

M

Z2T
= 2

1

ZT

(
1

2
+

1

e
M
ZT − 1

)
.

Now, having performed the Matsubara sum, we integrate to receive back v up to a constant

which may depend on T and Z:

v + const(Z, T ) =

∫
∂v

∂M
dM =

∫
2

ZT

(
1

2
+

1

e
M
ZT − 1

)
dM

=
2

ZT

(
−M

2
+ ZT ln

(
−1 + e

M
ZT

))
=

2

ZT

(
M

2
− ZT ln e

M
ZT − ZT ln

1

e
M
ZT − 1

)

=
2

ZT

(
M

2
+ ZT ln

(
1 − e−

M
ZT

))
.

Dropping T · const(Z, T ) we obtain:

result B.4 (M 6= 0)

∫

k0

ln
(
−Z2k2

0 +M2
)

=
M

Z
+ 2T ln

(
1 − e−

M
T Z

)
.
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Note that there is a good reason why we are able to drop addends which are independent of M .

To derive the corresponding thermal integral in 1+3 dimensions, namely result B.6, we will have

to replace M2 by k2 +M2 and integrate over momentum k. Hence, addends independent of M

correspond to addends independent of M and k in 1+3 dimensions. The momentum-integration

makes these addends divergent. Following Dolan and Jackiw [67], one is allowed to drop such

divergent terms, even though they depend on temperature (explicitly and/or implicitly). Intu-

itively, since these addends do not play any role in 1+3 dimensions, the same should be true in

1+0 dimensions. Let us verify this statement by comparing the effective potential at its global

minimum calculated via WKB and via CJT in case of the harmonic oscillator-like potential

U = 1
2φ

2, i.e., the model from section 3.2 at λ = 0:

From result 3.6 we know that the CJT formalism yields M(T ) = 1. Note that we work in units

of m, i.e., m ≡ 1. Accordingly, the effective potential at its global minimum, using result B.4, is

given by

VCJT (T ) =
1

2

∫

k0

lnG−1 =
1

2

(
1 + 2T ln

(
1 − e−1/T

))
. (B.8)

We now insert the above potential and the turning points φ∗1/2 = ±
√

2E into the WKB equation:

2

√
2E∫

0

√
2(E − 1

2
φ2) dφ =

(
1

2
+ n

)
π .

Performing the integral yields the eigenvalues

En =
1

2
+ n ,

which in turn we insert into expression (3.15) to calculate the effective potential at its global

minimum via WKB:

VWKB(T ) = −T ln

( ∞∑

n=0

e−(1/2+n)/T

)
= −T ln

(
1

2
csch

1

2T

)

= −T ln

(
1

2 sinh 1
2T

)
= T ln

(
e

1
2T − e−

1
2T

)
=

1

2
+ T ln

(
1 − e−1/T

)
,

which equals VCJT (T ). As a matter of fact, there should be no additional temperature-dependent

addend in (B.8), as the expression for
∫
k0

lnG−1 does not explicitly depend on λ.

As a last argument, we compute the Matsubara sum in an alternative way by using the formula

[66]

ln
(
a2 + b2

)
=

a2∫

1

1

θ + b2
dθ + ln(1 + b2) =

a∫

1

2θ

θ2 + b2
dθ + ln(1 + b2) . (B.9)

As one will see, different addends (which again may depend explicitly or implicitly on T or Z)

will be dropped and nevertheless we will end up with the same result B.4.
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We can proceed as follows:

∞∑

n=−∞
ln
(
Z2 (2πn)2 T 2 +M2

)
=
∑

n

ln
(
Z2T 2

)

︸ ︷︷ ︸
drop

+
∑

n

ln

(
(2πn)2 +

M2

Z2T 2

)

=

M2

Z2T2∫

1

∑

n

1

θ + (2πn)2

︸ ︷︷ ︸
= coth(

√
θ/2)

2
√

θ

dθ +
∑

n

ln
(
1 + (2πn)2

)

︸ ︷︷ ︸
drop

= 2 ln

[
csch

(
1

2

)
sinh

(
M

2TZ

)]

= 1 − 2 ln(e− 1)︸ ︷︷ ︸
drop

− M

TZ
+ 2 ln

(
e

M
T Z − 1

)
=

M

TZ
− 2 ln e

M
TZ + 2 ln

(
e

M
T Z − 1

)
=

M

TZ
+ 2 ln

(
1 − e

M
T Z

)
,

or slightly differently:

∞∑

n=−∞
ln
(
Z2 (2πn)

2
T 2 +M2

)
=

∞∑

n=−∞
lnT 2

︸ ︷︷ ︸
drop

+

∞∑

n=−∞

M2/T 2∫

1

dθ

θ + (2πn)
2
Z2

+

∞∑

n=−∞
ln
(
1 + (2πn)

2
Z2
)

︸ ︷︷ ︸
drop

=

M2/T 2∫

1

dθ

∞∑

n=−∞

1

θ + (2πn)
2
Z2

︸ ︷︷ ︸
coth (

√
θ/2Z)

2Z
√

θ
=

1+ 2

e
√

θ/Z−1

2Z
√

θ

=

M2/T 2∫

1

dθ
1

2Z
√
θ

(
1 +

2

e
√

θ/Z − 1

)
u≡

√
θ

=

M/T∫

1

du
1

Z

(
1 +

2

eu/Z − 1

)

=
1

Z
− M

ZT
− 2 ln

(
e1/Z − 1

)
+ 2 ln

(
e

M
TZ − 1

)
=

1

Z
− 2 ln

(
e1/Z − 1

)

︸ ︷︷ ︸
drop

+
M

ZT
− 2

M

ZT
− 2 ln

(
1

e
M
T Z − 1

)

=
M

ZT
+ 2 ln

(
e

M
T Z − 1

e
M
T Z

)
=

M

ZT
+ 2 ln

(
1 − e−

M
T Z

)
.

B.2 Thermal integrals in 1+3 dimensions

Now k = (k0,k) , of course k ∈ R3 , k2 = k2
0−k2 with the imaginary zeroth component k0 = iωn.

B.2.1 Thermal integral over propagator

Again let us begin with the thermal integral over the propagator G (k) = 1
−k2+M2 . From result

B.1 obviously follows:

∫

k0

1

−k2
0 + k2 + M2

=
1

ǫk (M)

(
1

eǫk(M)/T − 1
+

1

2

)

with ǫk (M) ≡
√

k2 + M2 .

Then, due to
∫
k

1
−k2+M2 =

∫
d3k

(2π)3

∫
k0

1
−k2

0+k2+M2 , we have:
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result B.5 (thermal integral over propagator in 1+3 dimensions)

∫

k

1

−k2 +M2
=

∫
d3k

(2π)3
1

ǫk (M)

1

eǫk(M)/T − 1
︸ ︷︷ ︸

≡QT (M)

+

∫
d3k

(2π)3
1

2ǫk︸ ︷︷ ︸
≡Qµ(M)

where the integrations over spatial momenta k run from −∞ to ∞ . QT can be expressed as an

integral over solid angle using
∫
d3k =

4π∫
0

dΩ
∞∫
0

k2 (where k = |k| ) :

QT (M) =
1

2π2

∞∫

0

dk
k2

√
k2 +M2

1

e
√

k2+M2/T − 1
. (B.10)

Note that for M = 0 this integral gives the well-known result QT (M = 0)
MM
= T 2

12 .

However, Qµ is divergent and requires renormalization. In the CT renormalization scheme,

counter terms are introduced to substract the UV divergences (compare with [45]) and one

obtains:

Qµ (M) =
1

(4π)
2

[
M2 ln

M2

µ2
−M2 + µ2

]
. (B.11)

The renormalization scale µ is an additional parameter and will be chosen later.

B.2.2 Thermal integral over logarithmic inverse propagator

From result B.4 and
∫
k

lnG−1 =
∫

d3k

(2π)3

∫
k0

lnG−1 directly follows :

result B.6 (M 6= 0)

∫

k

lnG−1 =

∫
d3k

(2π)3

[√
M2 + Z2k2

Z
+ 2T ln

(
1 − e−

√
M2+Z2k2

T Z

)]

=

∫
d3k

(2π)3
ǫk(M/Z)

︸ ︷︷ ︸
≡Rµ

+

∫
d3k

(2π)3
2T ln

(
1 − e−

ǫk(M/Z)

T

)

︸ ︷︷ ︸
≡RT

where ǫk(M/Z) ≡
√

k2 + M2

Z2 .

RT can be expressed as an integral over solid angle:

RT =

4π∫

0

dΩ2

∞∫

0

dkk2

(2π)3
2T ln

(
1 − e−

r

k2+ M2

Z2

T

)
= 4π

1

(2π)3

∞∫

0

dkk22T ln

(
1 − e−

r

k2+ M2

Z2

T

)
.

(B.12)

In the case M = 0 and Z 6= 0 this simplifies to

RT = −T
4π2

45
. (B.13)
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Appendix C

Path integrals in phase space and

configuration space

Let us consider Quantum Mechanics with a Hamilton function of the formH(p, x, t) = T (p, t)+

U(x, t) = p2

2m + U(x, t). We want to show in the following that the path-integral representation

of the time-evolution amplitude1 in configuration space,

(xb, tb|xa, ta) =
1√

2π~iǫ/m




N∏

n=1

∞∫

−∞

dxn√
2π~iǫ/m


 e i

~
A (C.1)

with A ≡ ǫ

N+1∑

n=1

[
m

2

(
xn − xn−1

ǫ

)2

− U(xn, tn)

]
, (C.2)

is equal to its representation in phase space,

(xb, tb|xa, ta) =




N∏

n=1

∞∫

−∞

dxn






N+1∏

n=1

∞∫

−∞

dpn

2π~


 e i

~
A (C.3)

with A =
N+1∑

n=1

[pn(xn − xn−1) − ǫH(pn, xn, tn)] . (C.4)

The proof goes as follows:

A =

N+1∑

n=1

[ ǫ

2m
2mpn

(xn − xn−1)

ǫ
− ǫ

2m
p2

n

− ǫ

2m

m2

ǫ2
(xn − xn−1)

2 +
ǫ

2m

m2

ǫ2
(xn − xn−1)

2 − ǫU(xn, tn)]

=

N+1∑

n=1

[− ǫ

2m

(
pn − m

ǫ
(xn − xn−1)

)2

+ ǫ
m

2

(
xn − xn−1

ǫ

)2

− ǫU(xn, tn)] . (C.5)

1The quantity is called amplitude, because |(xb, tb|xa, ta)|2 is the probability that a particle at position xa and

time ta, can be found at time tb at position xb. For each of the variables xa,xb,ta and tb, we can choose every

value we like.
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The Fresnel integral formula,

∞∫

−∞

dq√
2π
e−i a

2 q2

=
1√
|a|




×
√
i if a < 0

× 1√
i

if a > 0
, (C.6)

can be rewritten with q ≡ (pn −mxn−xn−1

ǫ ) and dq
dpn

= 1:

1√
2π~

∞∫

−∞

dpn√
2π
e−i

( ǫ
~m

)

2 (pn−m
xn−xn−1

ǫ )2 =
1√
2π~

1√∣∣ ǫ
~m

∣∣
1√
i

=
1√

2π~iǫ/m
. (C.7)

Inserting (C.5) into (C.3) yields:



N∏

n=1

∞∫

−∞

dxn






N+1∏

n=1

∞∫

−∞

dpn

2π~
e−i

( ǫ
~m

)

2 (pn−m
xn−xn−1

ǫ )2




︸ ︷︷ ︸
=

„

1√
2π~iǫ/m

«N+1

e
i
~

PN+1
n=1 [ǫ m

2

“

xn−xn−1
ǫ

”2
−ǫU(xn,tn)]

. (C.8)

q.e.d.

The Euclidean time amplitude in Euclidean Quantum Field Theory in 1+0 dimensions

follows immediately from the above via Wick rotation. Compare appendix E for details. Due to

x→ φ and m→ 1, the momentum p = mẋ has to be replaced by the conjugate field, p→ φ̇ ≡ π.

Hence:

the Euclidean time-evolution amplitude is given by

(φb, τb|φa, τa) =
1√

2π~ε




N∏

n=1

∞∫

−∞

dφn√
2π~ε


 e− 1

~
AE (C.9)

with AE ≡ ε
N+1∑

n=1

[
1

2

(
φn − φn−1

ε

)2

+ U(φn,−iτn)

]
, (C.10)

as well as by

(φb, τb|φa, τa) =




N∏

n=1

∞∫

−∞

dφn






N+1∏

n=1

∞∫

−∞

dπn

2π~


 e− 1

~
AE (C.11)

with AE =

N+1∑

n=1

[−iπn(φn − φn−1) + εH(πn, φn,−iτn)] . (C.12)

In Statistical Quantum Field Theory in 1+0 dimensions, the partition function in momentum-

space representation is then given by

Z =

∞∫

−∞

(φa,
1

T
|φa, 0)dφa =




N+1∏

n=1

∞∫

−∞

dφn






N+1∏

n=1

∞∫

−∞

dπn

2π~


 e− 1

~
AE , (C.13)

with the periodic boundary condition φ(τ)
!
= φ(τ + 1/T ) .
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Appendix D

The effective potential in theories

with a single source J

Preliminary remarks

In this appendix we define the effective potential for scalar φ4-theory with a single source J at

nonzero temperature. We review the context in which the effective potential appears, which

allows for an adequate understanding of this widely used quantity. We introduce the effective

potential in three consecutive steps. In the first step we clarify how the generating functional

Z is calculated perturbatively with the help of n-point functions. In a second step we introduce

the advantageous concept of connected n-point functions, which in turn allow for a perturbative

expansion of lnZ containing only connected Feynman diagrams. We discuss relations between

n-point functions, which are essential for the comprehension of the CJT formalism. Finally, in a

third step, we present yet another concept which simplifies perturbative calculations. Working

with the Legendre transform of lnZ and irreducible n-point functions, one gets by with 1-Particle-

Irreducible diagrams. We end up with the conclusions that the effective potential is effectively

the classical potential of the system plus quantum corrections, and that its global minimum is

determined by the vacuum expectation value of the field.

We refer to the definition A.11 for K = 0, whereas we denote the correctly normalized thermal

n-point function...

• ...in the presence of a single source J by:

〈φ (X1) · · ·φ (Xn)〉
�K

≡
∮
Dφ e−SE[φ]+φJφ (X1) ... φ (Xn)∮

Dφ e−SE[φ]+φJ
, (D.1)

• ...(in the absence of source) by:

〈φ (X1) · · ·φ (Xn)〉
�K
|J=0 ≡

∮
Dφ e−SE [φ]+φJφ (X1) ... φ (Xn)∮

Dφ e−SE [φ]+φJ

∣∣∣∣∣
J=0

. (D.2)

Although this notation is not very elegant, we think it is convenient regarding the discussion in

chapter 2.
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Introducing the effective potential

First step

δZ [J ]

δJ (X)
= N

∮
Dφ φ (X) exp

(
−SE [φ] +

∫

X1

φ (X1) J (X1)

)
= Z [J ] 〈φ (X)〉

�K
, (D.3)

δZ [J ]

δJ (X1) δJ (X2)
= N

∮
Dφ φ (X1)φ (X2) exp

(
−SE [φ] +

∫

X

φ (X) J (X)

)

= Z [J ] 〈φ (X1)φ (X2)〉�K . (D.4)

In case of the thermal n-point function (in absence of a source), this generalizes with the nor-

malization convention Z [0] ≡ 1 to

〈φ (X1) · · ·φ (Xn)〉
�K
|J=0 =

δZ [J ]

δJ (X1) ... δJ (Xn)

∣∣∣∣
J=0

. (D.5)

The right-hand side expression provides us with the coefficients of a Taylor expansion generalized

to the continuous case, so that the generating functional can be constructed from the n-point

functions via

Z [J ] =
∞∑

n=0

∫

X1

...

∫

Xn

1

n!
〈φ (X1) · · ·φ (Xn)〉

�K
|J=0 J (X1) ... J (Xn) . (D.6)

Perturbation theory for a generating functional of the form Z [J ] can be found in common text-

books (compare with Greiner’s and Reinhardt’s textbook [62], note, however, that this treatment

is at zero temperature, whereas we are at nonzero temperature). The perturbation series for the

generating functional

Z [J ] = N
∮

Dφ exp

(
−SE [φ] +

∫

X1

φ (X1)J (X1)

)

= N e

R

X

UI( δ
δJ(X) )

∮
Dφ exp

(
−SE,0 [φ] +

∫

X1

φ (X1)J (X1)

)

︸ ︷︷ ︸
≡Z0[J]

(D.7)

reads, using the normalization condition Z [0] ≡ 1:

Z [J ] = Z0 [J ]
1 + λu1 [J ] + λ2u2 [J ] + ...

1 + λu1 [0] + λ2u2 [0] + ...

= 1 + λ (u1 [J ] − u1 [0]) + λ2 (u2 [J ] − u2 [0]) + λ2u1 [0] (u1 [0] − u1 [J ]) + ... (D.8)

with u1 [J ] = Z−1
0 [J ]



∫

X

UI

(
δ

δJ (X)

)
 Z0 [J ] , (D.9)

and u2 [J ] = Z−1
0 [J ]



∫

X

UI

(
δ

δJ (X)

)



∫

Y

UI

(
δ

δJ (Y )

)
 Z0 [J ] . (D.10)
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The generating functional for the free theory, Z0 [J ], can be expressed analytically as

Z0 [J ] = exp


1

2

∫

X′

∫

X

J (X ′)∆ (X ′ −X)J (X)


 . (D.11)

For U = m2

2 φ
2 + λ

N φ
4 = m2

2 φ
2 + UI , we obtain (up to prefactors), performing four functional

derivatives with respect to J (Y ),

δ4

δJ (Y )4
Z0 [J ] = Z0 [J ]

[
∆(0)2 + ∆(0)



∫

X

∆(Y −X)J (X)




2

+



∫

X

∆(Y −X)J (X)




4]
,

(D.12)

and further

We introduced a few simple translation rules (which are called the Feynman rules in position

space, and can be recognized by just looking at the example we translated) and the following

elementary abbreviations:

where ∆ (X) stands for the thermal Feynman propagator in position space 1

∆(X) = T
∞∑

n=−∞

∫
d3k

(2π)3
e−i(ωnτ−kx) 1

ω2
n + k2 + m2

︸ ︷︷ ︸
≡∆(ωn,k)

. (D.13)

m is called bare mass, because in the free case (U = m2

2 , i.e., no interaction) we have

〈φ (X1)φ (X2)〉�K |J=0 ∼ ∆(X1 −X2) , (D.14)

whereas interaction terms lead to a dressed (synonymous: full) propagator containing the dressed

mass, as we will see in the following.

Up to prefactors, we have:

Note that, together with expression (D.3), one can see that 〈φ (X)〉
�K

will include disconnected

Feynman graphs.

One more functional derivative yields:

1The (thermal) Feynman propagator is the most important representative from the collection of functions

(called the Greens functions for the Klein-Gordon operator), which solve the (thermal) inhomogeneous Klein-

Gordon equation with the four-dimensional delta function as inhomogeneity.
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With Z0 [J ] = 1 and the normalization convention Z [J ] ≡ 1, only two diagrams survive for J = 0.

So we obtain from expression (D.4) the thermal propagator to order g (up to prefactors):

We can observe that, to order λ, the interaction term λ
N φ

4 changes the formula (D.14) to the

above one. One can bring it into the following form:

〈φ (X1)φ (X2)〉�K |J=0 ∼ T

∞∑

n=−∞

∫
d3k

(2π)
3 e

−i(ωnτ−kx) 1

ω2
n + k2 + m2 + © . (D.15)

M in M2 ≡ m2 +© (up to a prefactor in front of © ), is called the full (dressed) mass to order

λ.

The dressed (to order λ) thermal Feynman propagator in momentum space is obtained via inverse

Fourier transformation. One reads it off directly from the above expression:

∆(ωn,k) =
1

ω2
n + k2 +M2

. (D.16)

However, one has to recognize that the Fourier transformation involves the discrete Matsubara

frequencies. This is why there appears a sum instead of an integral, which is the correct form of

the Fourier transformation on a finite interval with periodic constraint.

Second step

It is absolutely equivalent to work with W ≡ lnZ instead of Z. All quantities of our theory can

be constructed from Z by certain prescriptions and therefore equivalently for W . The Taylor

expansion for W is given by

W [J ] =

∞∑

n=0

∫

X1

...

∫

Xn

1

n!

δW [J ]

δJ (X1) ... δJ (Xn)
|J=0 J (X1) ... J (Xn) . (D.17)

It can be shown that the graphical representation of the functions δW [J]
δJ(X1) ... δJ(Xn) |J=0, only

possesses connected diagrams.
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definition D.1 (connected thermal n-point functions)

The coefficients δW [J]
δJ(X1) ... δJ(Xn) |J=0 we name connected thermal n-point functions (in the

absence of a source), and use the symbol G (X1, ..., Xn) resp. G(n) for them.

Furthermore, we refer to δW [J]
δJ(X1) ... δJ(Xn) as the connected thermal n-point functions in

the presence of a source J a, using the symbol G (X1, ..., Xn) resp. G(n).

aNote that the connected n-point functions in the presence of a source may contain disconnected graphs. Only

after setting the source to zero, those diagrams vanish

Let us draw all the possible connected diagrams to order λ2:

The connected 2-point function G(2) is given by the sum of all possible connected graphs with 2

external points, i.e.,

Together with ∆, it is possible to construct G(2) with the help of the so-called proper self energy

Σ which is defined (up to prefactors) as the sum of all truncated2 1PI3 diagrams (which had two

external lines before truncation), using the following recipe (which follows from combinatorics):

G (X,Y ) = ∆ (X,Y ) + ∆ (X,A) Σ (A,B) ∆ (B, Y )

+∆ (X,A) Σ (A,B) ∆ (B,C) Σ (C,D) ∆ (D,Y ) + ... . (D.18)

Equation (D.18) can be manipulated further:

G(2) = ∆(1 + Σ∆ + Σ∆Σ∆) = ∆(1 − Σ∆)
−1

⇐⇒
(
G(2)

)−1

= ∆−1 − Σ . (D.19)

2the truncated diagram is gained simply by removing the external lines
31PI diagrams are those connected diagrams, which cannot be disconnected by cutting one internal line.
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To order λ2 we have:

Moreover, there exists a resummed Dyson-Schwinger equation (see page 256 of [68]). Instead of

equation (D.18) one obtains the following relation between G(2) (the connected thermal 2-point

function in the presence of a source J) and Σ′ (the resummed self-energy):

G (X,Y ) = ∆ (X,Y ) + ∆ (X,A) Σ′ (A,B) G (B, Y ) . (D.20)

This is obviously a self-consistent equation. G on the right-hand side can be iterated by reinserting

the right-hand side:

G = ∆ + ∆Σ (∆ + ∆ΣG) = ∆ + ∆Σ∆ + ∆Σ∆ΣG = · · · . (D.21)

Hence we end up with

G (X,Y ) = ∆ (X,Y ) + ∆ (X,A) Σ′ (A,B) ∆ (B, Y )

+∆ (X,A) Σ′ (A,B) ∆ (B,C) Σ′ (C,D) ∆ (D,Y ) + ... (D.22)

⇐⇒
(
G(2)

)−1

= ∆−1 − Σ′ . (D.23)

To order λ2 we have:

One can pick an arbitrary point φ, which is by definition independent of τ and ~x (we keep the

same symbol φ) and fluctuate around it, i.e. φ(τ, ~x) = φ + σ(τ, ~x). The φ4-interaction term

yields a three-point and a four-point interaction vertex for the fluctuation σ. In that case the

resummed self-energy (up to two-loop order) is given by:
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In principle one would have to sum an infinite set of diagrams, which is practically impossible.

However, any truncation of the series at some given order represents a well-defined approxima-

tion. Taking only 1-loop diagrams in Σ′ into account is known as Hard-Thermal Loop (HTL)

approximation (in the high-temperature limit).

Apart from that it is possible to derive a rule how to construct the n-point functions in the

presence of a source from the connected n-point functions in the presence of a source. Here, we

give the formulas for the one-point and the two-point function:

〈φ (X)〉
�K

= G (X) , (D.24)

〈φ (X1)φ (X2)〉�K = G (X1, X2) +G (X1)G (X2) . (D.25)

Third step

As well as with W [J ] ≡ lnZ (J), one can work with its Legendre transform Γ (in the functional

sense), assuming that the source J can be expressed as a functional of 〈φ (X)〉
�K

, and has an

explicit dependence on X . It contains the same amount of information as W and is therefore

completely equivalent.

definition D.2 (effective action)

Γ [〈φ (X)〉
�K

] ≡W [J ] −
∫

X

J (X) 〈φ (X)〉
�K
.

The Taylor expansion reads

Γ [〈φ (X)〉
�K

] =
∞∑

n=0

∫

X1

...

∫

Xn

1

n!

δΓ [〈φ (X)〉
�K

]

δ〈φ (X1)〉�K ... δ〈φ (Xn)〉
�K
|J=0 〈φ (X1)〉�K ... 〈φ (Xn)〉

�K
.

(D.26)

It is possible to prove that Γ(n) ≡ δΓ
h

〈φ(X)〉
�K

i

δ〈φ(X1)〉
�K

... δ〈φ(Xn)〉
�K
|J=0, called irreducible n-point vertex

function (in the absence of a source), is (up to prefactors) equal to the sum of all possible 1PI

diagrams with n external points that can be constructed. The figure on p.167 shows all connected

graphs, and we see that Γ(2) is given by

Altogether, we found that it is possible to construct a quantity Γ [〈φ (X)〉
�K

] (from which all other

quantities of interest can be constructed) via formula (D.26), working with 1PI diagrams only,

which is much more convenient.

Definition (D.2) directly results in

δΓ [〈φ〉
�K

]

δ〈φ (X)〉
�K

=
δW

δ〈φ (X)〉
�K

−
∫

Y

δJ (Y )

δ〈φ (X)〉
�K

〈φ (Y )〉
�K

− J (X) = −J (X) , (D.27)
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due to

δW

δ〈φ (X)〉
�K

=

∫

Y

δW

δJ (Y )

δJ (Y )

δ〈φ (X)〉
�K

=

∫

Y

〈φ (Y )〉
�K

δJ (Y )

δ〈φ (X)〉
�K

.

We would like to find a function which is (among other properties) characterized by the property

that, for J = 0, it is globally minimized at 〈φ (X)〉
�K
|J=0. Expanding all of the 〈φ〉

�K
’s into a

Taylor series around a common point, Γ can always be brought into the form

Γ [〈φ〉
�K

] =

∫

X

(
−Veff (〈φ〉

�K
) +

1

2
∂µ〈φ〉�K∂

µ〈φ〉
�K
F (〈φ〉

�K
) + higher order derivatives

)
. (D.28)

Indeed, for 〈φ〉
�K

independent of space-inverse temperature, we conclude from equations (D.27)

and (D.28) that the so-called effective potential Veff is suitable, because

(i) 〈φ〉
�K
|J=0 fulfills the necessary condition

d Veff (〈φ〉
�K
|J=0)

d 〈φ〉
�K
|J=0

= 0 , (D.29)

and (as more elaborated calculation would show4 )

(ii) Neglecting all diagrams with loops (we speak of tree-level) yields Veff = U .

We know that an expansion in loops corresponds to an expansion in powers of ~, so that tree-level

means nothing but the classical limit ~ −→ 0. But the vacuum for the classical limit is the global

minimum of the classical potential U . So all in all, we have to regard Veff as the potential of the

system with quantum corrections (which entirely arise from diagrams with loops), and we have

to conclude:

result D.1 (calculation rule)

〈φ〉
�K
|J=0 is the global minimum of Veff .

Remark: Feynman rules in momentum space

So far, the Feynman diagrams introduced in this appendix are abbreviations which can be trans-

lated via the Feynman rules in position space. However, if one is interested in explicitly calcu-

lating a diagram resp. the mathematical expression it stands for, this would require an explicit

expression for the Feynman propagator in position space, given by formula (D.13). Unfortunately,

even carrying out just the Matsubara sum, yields a lengthy result containing hypergeometric func-

tions. Therefore, one works in momentum space. Let us consider for example the double-bubble

diagram . Translated via the Feynman rules in position space, it is equal to

−λ
∫

X

∆(0)
2

= −λ
1/T∫

0

∫
d3x

[
T

∞∑

n=−∞

∫
d3k

(2π)
3

1

ω2
n + k2 +m2

]2

= −λΩ

T

[
T

∞∑

n=−∞

∫
d3k

(2π)3
1

ω2
n + k2 +m2

]2

.

4 are obviously the only 1PI diagrams at tree-level, therefore only n = 2, 4 in the sum in definition

(D.2) contribute nonvanishing addends.
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Let us now draw a new kind of diagram, , by simply assigning a momentum to each

line (the direction of the arrow is arbitrary, it depends on how one chooses the sign for each of

the momenta). The Feynman rules how to translate such a diagram, can be found for example

in the textbook of Kapusta chapter 3. A factor of T
∑∞

n=−∞
∫

d3k

(2π)3
1

ω2
n+k2+m2 for each internal

line, a factor of −λ at each vertex and an overall factor of Ω/T yields likewise

−λΩ

T

[
T

∞∑

n=−∞

∫
d3k

(2π)
3

1

ω2
n + k2 +m2

]2

.

We calculated the same quantity, using the Feynman rules in momentum space. Taking any

connected diagram or sum of connected diagrams, one can either translate them using the position

space Feynman rules, or alternatively by applying the momentum space Feynman rules. Both

results will be equal.
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Appendix E

From Quantum Mechanics to

Statistical Quantum Field Theory

The generating functional for N particles (with positions x1, ..., xN ) is given in Quantum Me-

chanics by

Z =

∫
Dx1 (t) ...

∫
DxN (t) exp


i

tb∫

ta

dt

(
N∑

n=1

1

2
m

[
dxn

dt

]2
− U (x1, ...xN )

)
+ sourceterms


 .

(E.1)

Note that (E.1) refers to zero temperature. We denote the generating functional by the letter

Z, because, up to a constant prefactor, it is equal to the partition function A.3 for T → 0 and

vanishing sources.

In a heuristic sense, Zee motivates in his textbook the definition of the generating functional for

a scalar Quantum Field Theory:

definition E.1 (generating functional, QFT)

Z =

∫
Dφ (t,x) eiS+sourceterms ,

with S =

∫
dt

∫
d3x

(
1

2
∂µφ (t,x) ∂µφ (t,x) − U (φ (t,x))

)
,

∂µφ (t,x) ∂µφ (t,x) is understood using the Minkowski metric gµν = (+1,−1,−1,−1) ,

i.e., ∂µφ (t,x) ∂µφ (t,x) = (
dφ

dt
)2 − (

dφ

dx
)2 − (

dφ

dy
)2 − (

dφ

dz
)2 .

As one can learn from Zee’s textbook [43], what was the mass m in Quantum Mechanics has

been absorbed into the field φ by redefining φ −→ φ√
ρ , where ρ is the mass density. Mass in

Quantum Field Theory is generated by appropriate mass terms in U . Whereas expression (E.1)

is the generating functional for a non-relativistic quantized theory, definition E.1 describes a

relativistic and quantized theory. We now want to replace the real time t by negative imaginary
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time t. This is called a Wick rotation from real time to negative imaginary time:

t −→ t ≡ −iτ , (E.2)

where t ∈ R, τ ∈ R .

We obtain the so-called Euclidean version of the generating functional:

result E.1 (Euclidean generating functional,QFT)

Z =

∫
Dφ (τ,x) e−SE+sourceterms ,

where SE =

τb∫

τa

dτ

∫
d3x

(
1

2
∂µ,Eφ (τ,x) ∂µ

Eφ (τ,x) + U (φ (τ,x))

)
,

∂µ,Eφ (τ,x) ∂µ
Eφ (τ,x) is understood using the Euclidean metric

δµν = diag (+1,+1,+1,+1) , i.e., ∂µ,Eφ (τ,x) ∂µ
Eφ (τ,x) = (

dφ

dτ
)2 + (

dφ

dx
)2 + (

dφ

dy
)2 + (

dφ

dz
)2 .

Actually, in result E.1 one should write “ZE” instead of “Z” to distinguish the quantity from Z

in definition E.1, which is not the same. Since in the literature the letter Z is used for different

kinds of partition functions and generating functionals anyway, we do not introduce a subscript.

Let us recall the steps we performed. First, we replaced t by t. Then we did the simple coordinate

transformation t = −iτ , i.e.,

dt

dτ
= −i ⇐⇒ idt = dτ ,

dφ

dt
=

dφ

−idτ =⇒
(
dφ

dt

)2

= −
(
dφ

dτ

)2

,

which resulted E.1. Note that the Wick rotation known from Quantum Mechanics is just a for-

mal trick. After the Wick rotation, further computations are easier to handle, but the results for

physical quantities would be imaginary, i.e., one has to rotate back after having performed the

complicated steps. In this sense the Euclidean version of the generating functional is equivalent

to the Minkowskian one. In contrast, in the imaginary-time formalism (or Matsubara formalism),

SQFT is based on the Euclidean generating functional where the following additional features

come into play:

• one has to identify τb ≡ 1
T and τa ≡ 0 ,

• one has to impose the periodic boundary condition φ(τ, ~x)
!
= φ(τ + 1

T , ~x) .

The idea that these constraints yield a theory at nonzero temperature was established by Mat-

subara [69]. For further details see [70]. The generating functional for our scalar Quantum Field

Theory at nonzero temperature is therefore:
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definition E.2 (generating functional, SQFT)

Z =

∮
Dφ (τ,x) e−SE+sourceterms ,

where SE =

1/T∫

0

dτ

∫
d3x

(
1

2
∂µ,Eφ (τ,x) ∂µ

Eφ (τ,x) + U (φ (τ,x))

)
,

∂µ,Eφ (τ,x) ∂µ
Eφ (τ,x) is understood using the the Euclidean metric

δµν = diag (+1,+1,+1,+1) , i.e., ∂µ,Eφ (τ,x) ∂µ
Eφ (τ,x) = (

dφ

dτ
)2 + (

dφ

dx
)2 + (

dφ

dy
)2 + (

dφ

dz
)2 .

One has to bear in mind the periodic boundary condition φ(τ, ~x)
!
= φ(τ +

1

T
, ~x) .

For clarification, let us carry out the transition from Quantum Mechanics to 1+0 dimensional

SQFT within the discretized version of the path integral. Without loss of generality let us

consider the quantum-mechanical time-transition amplitude

〈x1,bx2,btb|x1,ax2,ata〉 =
1

2π~iǫ/m

[
N∏

n=1

∫
dx1,n√
2π~iǫ/m

] [
N∏

n=1

∫
dx2,n√
2π~iǫ/m

]
e

i
~

A , (E.3)

with A ≡ ǫ

N+1∑

n=1

[
m

2

(
~xn − ~xn−1

ǫ

)2

− U(~xn, tn)

]
. (E.4)

Performing a Wick rotation t → t = −iτ resp. ǫ = tn − tn−1 → −i(τn − τn−1) ≡ −iε, carrying

out the replacements m→ 1, ~x→ ~φ and identifying τa ≡ 0, τb ≡ β, we obtain the corresponding

expression for the thermal evolution amplitude in SQFT in 1+0 dimensions:

〈φ1,bφ2,bβ|φ1,aφ2,a0〉 =
1

2π~ε

[
N∏

n=1

∫
dφ1,n√
2π~ε

][
N∏

n=1

∫
dφ2,n√
2π~ε

]
×

× exp


 ε

~

N+1∑

n=1


1

2

(
~φn − ~φn−1

−iε

)2

− U(~φn,−iτn)




 ,

or shorter:

〈φ1,bφ2,bβ|φ1,aφ2,a0〉 =
1

2π~ε

[
N∏

n=1

∫
dφ1,n√
2π~ε

][
N∏

n=1

∫
dφ2,n√
2π~ε

]
e−

1
~

AE (E.5)

with AE = ε

N+1∑

n=1


1

2

(
~φn − ~φn−1

ε

)2

+ U(~φn,−iτn)


 . (E.6)
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According to result A.4, the partition function Z is obtained by setting φ1,a = φ1,b as well as

φ2,a = φ2,b , and then integrating over φ1,a = φ1,b as well as over φ2,a = φ2,b:

Z =

[
N+1∏

n=1

∫
dφ1,n√
2π~ε

] [
N+1∏

n=1

∫
dφ2,n√
2π~ε

]
e−

1
~

AE , (E.7)

where φ1,a = φ1,b and φ2,a = φ2,b , (E.8)

with the Euclidean action AE = ε
N+1∑

n=1


1

2

(
~φn − ~φn−1

ε

)2

+ U(~φn,−iτn)


 . (E.9)

Moreover, let us specify the periodic boundary condition on the Greens function for the harmonic

oscillator in SQM and for free SQFT in 1+0 dimensions with a mass term m2φ2 respectively.

The proportionality of the Greens function and the 2-point function for these cases is shown in

appendix F. The generating functional for the harmonic oscillator in QM is given by

Z[J ] =

∞∫

−∞

Dx exp




i

~

tb∫

ta

dt

[
M

2
(ẋ2 − ω2x2) + x(t)J(t)

]
 . (E.10)

As shown for example in chapter 3 of Kleinert’s textbook [42], the Greens function Gr(t, t′) for

this case is defined as the general solution of

(
− ∂2

∂t2
− ω2

)
Gr(t, t′) ≡ δ(t− t′) , with t, t′ ∈ [ta, tb] . (E.11)

Performing a Wick-rotation t → t = −iτ ,
we obtain

the generating functional for the harmonic oscillator in Euclidean QM:

Z[J ] =

∞∫

−∞

Dx exp



−1

~

τb∫

τa

dτ

[
M

2
(ẋ2 + ω2x2) − x(τ)J(τ)

]
 , (E.12)

as well as the differential equation determining the Euclidean Greens function GrE(τ, τ ′):

(
− ∂2

∂τ2
+ ω2

)
GrE(τ, τ ′) ≡ δ(τ − τ ′) , with τ, τ ′ ∈ [τa, τb] . (E.13)

Imposing periodic boundary conditions,

i.e., GrP
E(τ, τ ′) ≡ GrP

E (τ − τ ′) = GrP
E (τ − τ ′ + (τb − τa)) ,

and setting τa ≡ 0, τb ≡ 1
T ,

we obtain

the generating functional for the harmonic oscillator in SQM:

Z[J ] =

∞∮

−∞

Dx exp




−1

~

1/T∫

0

dτ

[
M

2
(ẋ2 + ω2x2) − x(τ)J(τ)

]




, (E.14)

176



as well as the differential equation which defines the periodic Euclidean (i.e., quantum statistical)

Greens function GrP
E (τ − τ ′):

(
− ∂2

∂τ2
+ ω2

)
GrP

E (τ − τ ′) ≡ δ(τ − τ ′) , with τ − τ ′ ∈ [0,
1

T
) . (E.15)

Finally, making the replacements

M → 1, ω2 → m2, x→ φ ,

we end up with

the generating functional for free SQFT in 1+0 dimensions with a mass term m2φ2:

Z[J ] =

∞∮

−∞

Dφ exp




−1

~

1/T∫

0

dτ

[
1

2
φ̇2 +

m2

2
φ2 − φ(τ)J(τ)

]




, (E.16)

and again the differential equation defining the quantum field statistical Greens functionGrS(τ, τ ′):
(
− ∂2

∂τ2
+m2

)
GrS(τ − τ ′) ≡ δ(τ − τ ′) , with τ − τ ′ ∈ [0,

1

T
) . (E.17)

At the end of this appendix, let us discuss the Wick rotation in momentum space. In QFT,

the Minkowskian position-space representation is equivalent to a Minkowskian momentum-space

representation which is based on the Fourier transformation. Accordingly, the Euclidean position-

space representation of SQFT is equivalent to a Euclidean momentum-space representation based

on the Fourier transformation. The Wick rotation in momentum space,

k0 −→ k0 ≡ ip4 , (E.18)

where k0 ∈ R, p4 ∈ R ,

is the analogue of the transformation (E.2).

Consider for example the Feynman propagator ∆F (X) as defined in QFT:

∆F (X) ≡
∫

d4k

(2π)
4 e

−ikx 1

k2 −m2
︸ ︷︷ ︸
≡∆F (k)

, (E.19)

which is, up to a prefactor, equal to the free 2-point function in the absence of a source:

∆F (X − Y ) ≡ 1

i
〈φ (X)φ (Y )〉(T=0)

free |J=K=0 , (E.20)

where 〈 〉(T=0)
free |J=K=0 refers to definition A.10 with the subscript free indicating that the action

(which enters the definition of the expectation value) is that for the free theory (i.e., UI = 0) .

∆F (k) is the momentum-space representation of ∆F (X).

Let us perform the Wick rotations (E.2) and (E.18):

∫
dk0

∫
d3k

(2π)
4 e

−ik0t+ikx 1

k2
0 − k2 −m2

︸ ︷︷ ︸
=∆F (X)

−→ −i
∫
dp4

2π

∫
d3k

(2π)
3 e

−i(p4τ−kx)

≡∆F,E(p4,k)︷ ︸︸ ︷
1

p2
4 + k2 +m2

︸ ︷︷ ︸
≡∆F,E(X)

.

(E.21)
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∆F,E (X) is the Euclidean Feynman propagator in position space. ∆F,E (p4,k) is the Euclidean

Feynman propagator in momentum space. From the Euclidean Feynman propagator we obtain

the Feynman propagator at nonzero temperature, i.e., in SQFT, as follows. Due to the constraint

of periodicity

φ (1/T,x)
!
= φ (0,x) ∀ x , (E.22)

which one has to impose at nonzero temperature, we have

p4
!
= 2πnT ≡ ωn (E.23)

for our bosonic scalar field. Imposing the constraint (E.23) on the Euclidean Feynman propagator,

we obtain the thermal Feynman propagator in position space, denoted by ∆(X) in this thesis,

and in momentum space, denoted by ∆ (ωn,k):

∆ (X) = T

∞∑

n=−∞

∫
d3k

(2π)
3 e

−i(ωnτ−kx)

≡∆(ωn,k)︷ ︸︸ ︷
1

ω2
n + k2 +m2

. (E.24)
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Appendix F

Proportionality of free 2-point

function and Greens function

In this appendix we refer to the definition A.11 for K = 0 and X = τ , whereas we denote the

correctly normalized thermal n-point function...

• ...in the presence of a single source J by:

〈φ (τ1) · · ·φ (τn)〉
�K

≡
∮
Dφ e− 1

~
SE [φ]+ 1

~
φJφ (τ1) ... φ (τn)∮

Dφ e− 1
~

SE [φ]+ 1
~

φJ
, (F.1)

• ...(in the absence of a source) by:

〈φ (τ1) · · ·φ (τn)〉
�K
|J=0 ≡

∮
Dφ e− 1

~
SE [φ]+ 1

~
φJφ (τ1) ... φ (τn)∮

Dφ e− 1
~

SE [φ]+ 1
~

φJ

∣∣∣∣∣
J=0

. (F.2)

For consistency, we use the subscript ��K to indicate the absence of the source K in the definition.

Of course, the absence of the source is equivalent to setting the source to zero, indicated by |K=0,

however we want to be consistent with the notation we use in appendix D. Note that we write

out ~ = 1 explicitly.

F.0.3 Proving the proportionality

In the following we want to show that, for SE =
1/T∫
0

dτ
[

1
2 φ̇

2 + m2

2 φ
2
]
, the free1 thermal propa-

gator (in the absence of a source), 〈φ(τ1)φ(τ2)〉�K |J=0, is, up to a prefactor, equal to the Greens-

function GrS(τ1 − τ2) (see (E.17) for its definition):

result F.1 (free SQFT in 1+0 dimensions with a mass term m2φ2)

〈φ(τ1)φ(τ2)〉�K |J=0 = ~GrS(τ1 − τ2) .

1free, because we refer to the free action.
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The proof goes as follows:

Using

1/T∫

0

dτ
1

2
φ̇φ̇ =

[
1

2
φφ̇

]1/T

0

−
1/T∫

0

1

2
φφ̈dτ (integration by parts) , (F.3)

[
1

2
φφ̇

]1/T

0

= 0 due to φ(0) = φ(1/T ) , (F.4)

and

1/T∫

0

dτ2
1

2
φ(τ1)

(
− ∂2

∂τ2
1

+m2

)
δ(τ1 − τ2)φ(τ2)

=

1/T∫

0

dτ2

[
−1

2
φ(τ1)

∂2

∂τ2
1

δ(τ1 − τ2)φ(τ2)

]
+

1/T∫

0

dτ2

[
1

2
m2φ(τ1)φ(τ2)δ(τ1 − τ2)

]

= −1

2
φ(τ1)

∂2

∂τ2
1

φ(τ1) +
1

2
m2φ(τ1)

2 , (F.5)

we are able to rewrite the generating functional as follows:

Z[J ] =

∞∮

−∞

Dφ exp(− 1

~

1/T∫

0

dτ1[

1/T∫

0

dτ2
1

2
φ(τ1)

(
− ∂2

∂τ2
1

+m2

)
δ(τ1 − τ2)φ(τ2)

︸ ︷︷ ︸
≡ 1

2φDφ

−φ(τ1)J(τ1)]),

(F.6)

with the definition D(τ1 − τ2) ≡
(
− ∂2

∂τ2
1

+m2
)
δ(τ1 − τ2). Comparison with definition (E.17)

yields D−1(τ1 − τ2) = GrS(τ1 − τ2).

Treating D(τ1, τ2) as matrix with continuous indices, and completing the square by introducing

φ′ ≡ φ−D−1J , one is able to rewrite Z in the form2

Z[J ] =

∞∮

−∞

Dφ′e
− 1

~

1/T
R

0

dτ1
1
2φ′Dφ′

exp





1

2~

1/T∫

0

dτ1

1/T∫

0

dτ2 J(τ1)D
−1(τ1 − τ2)J(τ2)





︸ ︷︷ ︸
independent of φ′

. (F.7)

As the second exponent is independent of φ′, one is able to perform the path integral, which

leads to

Z[J ] =
1

2 sinh m
2T

exp





1

2~

1/T∫

0

dτ1

1/T∫

0

dτ2 J(τ1)D
−1(τ1 − τ2)J(τ2)




. (F.8)

2Compare with page 241 of [42].
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Since

〈φ(τ1) · · ·φ(τn)〉
�K

=
1

Z[J ]
~

δ

δJ(τ1)
· · ·~ δ

δJ(τn)
Z[J ] , (F.9)

which follows directly from expressions (E.16) and (F.1), we have:

〈φ(τ1)φ(τ2)〉�K |J=0 =

= 2 sinh
( m

2T

)
~

2




δ

δJ(τ1)

δ

δJ(τ2)

1

2 sinh m
2T

exp





1

2~

1/T∫

0

dτ1

1/T∫

0

dτ2 J(τ1)D
−1(τ1 − τ2)J(τ2)








J=0

= ~
2




1

2~
2D−1(τ1 − τ2) exp





1

2~

1/T∫

0

dτ1

1/T∫

0

dτ2 J(τ1)D
−1(τ1 − τ2)J(τ2)








J=0

= ~D−1(τ1 − τ2) = ~GrS(τ1 − τ2) . (F.10)

q.e.d.

F.0.4 Explicit expression for the free thermal propagator

According to [42], p.242, 〈φ(τ1)φ(τ2)〉�K |J=0 = ~GrS(τ1 − τ2) is given by

〈φ(τ1)φ(τ2)〉�K |J=0 = T

∞∑

n=−∞

1

ω2
n +m2

e−iωn(τ1−τ2) =
1

2m

cosh
[
m(|τ1 − τ2| − 1

2T )
]

sinh
(

m
2T

) (F.11)

with |τ1 − τ2| ∈ [0, ~/T ) , ωn = ~2πnT , (n = 0,±1,±2, · · · ) ,

where m is the same as in the free action.

In the zero-temperature limit, the above expression becomes:

〈φ(τ1)φ(τ2)〉�K |J=0
T=0
= ~

∫
dωn

2π

1

ω2
n +m2

e−iωn(τ1−τ2) =
1

2m
e−m|τ1−τ2| . (F.12)
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Appendix G

Important thermodynamic

relations

In this appendix we want to list some important thermodynamic relations. For further details

regarding Statistical Mechanics and Statistical Quantum Mechanics we recommend the textbook

of Nolting [16]. Note that we work in natural units where kB ≡ 1.

Let us begin with an important concept. Thermal equilibrium means that the thermodynamic

quantities do not explicitly depend on space and time. Local thermal equilibrium means that

although quantities are varying in space and time, this takes place so slowly that for any point

one can assume thermodynamic equilibrium.

Whereas the microscopic definitions for thermodynamic quantities in statistical physics depend

on the ensemble, the relations between thermodynamic quantities1,

conserved charges: Qi, chemical potentials: µi,

spatial volume: V , temperature: T , entropy: S, pressure: p,

Helmholtz free energy: F , Gibbs free energy: G, internal energy: E or U , grand canonical

potential: Ω,

are universally valid (compare with the discussion in section A.1).

We want to give the microscopic definitions for some thermodynamic quantities in the grand

canonical ensemble:

p = T

(
∂

∂V
lnZ

)

T,{µi}
, (G.1)

Ω = −T lnZ , (G.2)

U = −
(
∂ lnZ
∂β

)

{µi}
+
∑

i

µi

β

(
∂ lnZ
∂µi

)

β

, (G.3)

S = lnZ + βU − β
∑

i

µiQi , (G.4)

F = Ω +
∑

i

µiQi . (G.5)

1We list only the commonly used. Note that one can of course define other thermodynamic quantities, such as

for example enthalpy.
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For µi = 0 and homogeneous systems (i.e., ∂
∂V ≡ 1

V ), we obtain from definitions A.1, A.3, (G.1)

and (G.5):

p
µi=0
=

T

V
lnZ = −Ω

V
= −F

V
. (G.6)

Finally, we want to list the most important relations between thermodynamic quantities. De-

pending on the system, it is convenient to work either with E, F , G or Ω.

E = E(S, V, {Qi}) , (G.7)

1st law of thermodynamics: dE = TdS − pdV +
∑

i

µidQi , (G.8)

T =

(
∂E

∂S

)

V,{Qi}
, (G.9)

p = −
(
∂E

∂V

)

S,{Qi}
, (G.10)

µj =

(
∂E

∂Qj

)

S,V,{Qi}i6=j

. (G.11)

F = E − TS, F = F (T, V, {Qi}) , (G.12)

1st law of thermodynamics: dF = −SdT − pdV +
∑

i

µidQi , (G.13)

S = −
(
∂F

∂T

)

V,{Qi}
, (G.14)

p = −
(
∂F

∂V

)

T,{Qi}
, (G.15)

µj =

(
∂F

∂Qj

)

T,V,{Qi}i6=j

. (G.16)

G = E − TS + pV, G = G(T, p, {Qi}) , (G.17)

1st law of thermodynamics: dG = −SdT + V dp+
∑

i

µidQi , (G.18)

S = −
(
∂G

∂T

)

p,{Qi}
, (G.19)
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V =

(
∂G

∂p

)

T,{Qi}
, (G.20)

µj =

(
∂G

∂Qj

)

T,p

. (G.21)

Ω = −pV, Ω = Ω(T, V, {µi}) , (G.22)

1st law of thermodynamics: dΩ = −SdT − pdV −
∑

i

Qidµi , (G.23)

S = −
(
∂Ω

∂T

)

V,{µi}
, (G.24)

p = −
(
∂Ω

∂V

)

T,{µi}
= −Ω

V
, (G.25)

Qj = −
(
∂Ω

∂µj

)

T,V,{µi}i6=j

. (G.26)
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Appendix H

QCD and SQCD

H.1 QCD

Consider a non-Abelian group G, whose elements can be represented as N × N -matrices U =

exp (−itaθa) (a = 1, ..., n) belonging to the fundamental representation of G. Then consider a

“fermion field” ψ (X) with N components ψi (X), on which U can act, and n “gauge-fields” Aa
µ,

labeled by a = 1, ..., n, with 4 components labeled by Lorentz indices µ = 0, ..., 3. Then the

general form of a Lagrangian invariant under non-Abelian local gauge transformations

ψi −→ Uijψj , (H.1)

taAa
µ = U

(
taAa

µ − i

g
U−1∂µU

)
U−1 , (H.2)

is given by

L = −1

4
F a

µνF
aµν + ψ (iγµDµ −m)ψ , (H.3)

with Dµ ≡ ∂µ − igtaAa
µ −→ UDµU

−1 , (H.4)

and F a
µν ≡ ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , (H.5)

where fabc are the structure constants of G. (H.6)

We speak of a non-Abelian local gauge theory (syn. local Yang-Mills theory).

For G = SU (Nc), we obtain the Lagrangian used in QCD, for Nc colors. For Nc = 3 the gener-

ators ta would be half the Gell-Mann matrices, i.e., ta = λa/2. ψ is a Nc-tuple with Nf -tuples

as components with 4-tuples as components. For example for Nc = 3 and Nf = 3:
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ψ =



r

g

b


 =




ur

dr

sr

ug

dg

sg

ub

db

sb




=




ur,0

ur,1

ur,2

ur,3

dr,0

dr,1

dr,2

dr,3

sr,0

sr,1

sr,2

sr,3

ug,0

ug,1

ug,2

ug,3

dg,0

dg,1

dg,2

dg,3

sg,0

sg,1

sg,2

sg,3

ub,0

ub,1

ub,2

ub,3

db,0

db,1

db,2

db,3

sb,0

sb,1

sb,2

sb,3




(H.7)

Note that the matrices U act on ψ represented as Nc-tuple. Together with the transformation

law (H.2), the invariance of the Lagrangian under non-Abelian local gauge transformations can

be seen using the compact notation (H.3).

L can be divided into a free part and an interaction part, i.e.,

L = L0 + LI . (H.8)
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Although one always works with the compact notation, writing it out explicitly clears up its

meaning:

L0 =

Nf∑

q=1

3∑

µ=0

Nc∑

c=1

ψqµc

[
i

3∑

ν=0

(γν∂ν) −mqq′δqq′δµµ′δcc′

]
ψq′µ′c′

−1

4

N2
c −1∑

a=1

3∑

µ=0

3∑

ν=0

(∂µA
a
ν − ∂νA

a
µ)(∂µAν

a − ∂νAµ
a) , (H.9)

LI = g
∑

qµµ′cc′

ψqµc[
(
γ0
)
µµ′ { (t1)cc′

A1
0 +

(
t2
)
cc′
A2

0 + · · · +
(
t8
)
cc′
A8

0 }

+
(
γ1
)
µµ′ { (t1)cc′

A1
1 +

(
t2
)
cc′
A2

1 + · · · +
(
t8
)
cc′
A8

1 }
+
(
γ2
)
µµ′ { (t1)cc′

A1
2 +

(
t2
)
cc′
A2

2 + · · · +
(
t8
)
cc′
A8

2 }
+
(
γ3
)
µµ′ { (t1)cc′

A1
3 +

(
t2
)
cc′
A2

3 + · · · +
(
t8
)
cc′
A8

3 }]ψqµ′c′

−g
N2

c −1∑

a,b,c=1

fabc∂µA
a
νA

µ
bA

ν
c − g2

4

N2
c −1∑

a,b,c,d,e

fabcfcdeA
µ
aA

ν
bA

c
µA

d
ν . (H.10)

where

∑

qµµ′cc′

≡
Nf∑

q=1

3∑

µ=0

3∑

µ′=0

Nc∑

c=1

Nc∑

c′=1

.

The Lagrangian alone simply describes a classical field theory, “chromodynamics”. Within the

path integral formalism, the theory can be quantized (referring to second quantization) by intro-

duction of the following adequate generating functional [2]:

Z
[
J, ξ, ξ, η, η

]
=

[ ∏

µ,a,t,x

∫
dAa

µ (t,x)
][∏

a,t,x

∫
dχa (t,x)

][∏

a,t,x

∫
dχa (t,x)

][ ∏

q,c,µ,t,x

∫
dψ (t,x)

][ ∏

q,c,µ,t,x

∫
dψ (t,x)

]

× exp

(
i

∫
dt

∫
d3x

(
L

′ +Aa
µJ

aµ + χaξa + ξ
a
χa + ψiηi + ηiψi

))
, (H.11)

where L ′ = − 1
4F

a
µνF

aµν + ψ (iγµDµ −m)ψ + LGF + LFP . The so-called gauge fixing part,

LGF = − 1
2α

(
∂µAa

µ

)2
, and the Fadeev-Popov part LFP = (∂µχa)Dab

µ χ
b came into play, because

the naive guess

Z [J, η, η] =
[ ∏

µ,a,t,x

∫
dAa

µ (t,x)
][ ∏

q,c,µ,t,x

∫
dψ (t,x)

][ ∏

q,c,µ,t,x

∫
dψ (t,x)

]

× exp

(
i

∫
dt

∫
d3x

(
L +Aa

µJ
aµ + ψiηi + ηiψi

))
(H.12)

yields infinities, resulting from not having fixed the gauge. In this case, too much paths are

included in the path integral over Aa
µ. Infinitely many paths are related to others by unphysical
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gauge transformations. The same physical information is taken into account redundantly. Getting

rid of the unphysical part by fixing the gauge leads to LGF and LFP . In QED, the same problem

arises, however the Fadeev-Popov part can be integrated out, in contrast to QCD, where the ghost

fields couple to the gauge-fields.

For the same reasons as in (D.7), it is possible to separate the interaction part of the potential,

UI , from the free term, and to replace the sources in UI by functional derivatives:

Z
[
J, ξ, ξ, η, η

]
= exp

(
i

∫
dt

∫
d3x UI

(
δ

iδJaµ
,
δ

iδξ
a ,

δ

iδ(−ξa)
,
δ

iδη
,

δ

iδ(−η)

))
Z0

[
J, ξ, ξ, η, η

]
.

(H.13)

The expansion (D.8) can be performed in the same way:

Z
[
J, ξ, ξ, η, η

]
= 1 + λ

(
u1

[
J, ξ, ξ, η, η

]
− u1 [0, 0, 0, 0, 0]

)
+ λ2

(
u2

[
J, ξ, ξ, η, η

]
− u2 [0, 0, 0, 0, 0]

)
+

λ2u1 [0, 0, 0, 0, 0]
(
u1 [0, 0, 0, 0, 0]− u1

[
J, ξ, ξ, η, η

])
+ ... , (H.14)

with u1

[
J, ξ, ξ, η, η

]
= Z−1

0

[
J, ξ, ξ, η, η

]


∫

X

UI

(
δ

iδJaµ
,
δ

iδξ
a ,

δ

iδ(−ξa)
,
δ

iδη
,

δ

iδ(−η)

)


× Z0

[
J, ξ, ξ, η, η

]
, (H.15)

and u2

[
J, ξ, ξ, η, η

]
= Z−1

0

[
J, ξ, ξ, η, η

]


∫

X

UI

(
δ

iδJaµ
,
δ

iδξ
a ,

δ

iδ(−ξa)
,
δ

iδη
,

δ

iδ(−η)

)


×



∫

Y

UI

(
δ

iδJaµ
,
δ

iδξ
a ,

δ

iδ(−ξa)
,
δ

iδη
,

δ

iδ(−η)

)
 Z0

[
J, ξ, ξ, η, η

]
. (H.16)

The generating functional for free fields, Z0, can be expressed analytically:

Z0

[
J, ξ, ξ, η, η

]
= ZG

0 [J ]ZFP
0

[
ξ, ξ
]
ZF

0 [η, η] , (H.17)

ZG
0 [J ] = exp

(
i

2

∫
d4xd4yJaµ (x)Dab

µν (x− y)Jbν (y)

)
, (H.18)

ZFP
0

[
ξ, ξ
]

= exp

(
i

∫
d4xd4y ξ

a
(x)Dab (x− y) ξb (y)

)
, (H.19)

ZF
0 [η, η] = exp

(
i

∫
d4xd4y η (x)S (x− y) η (y)

)
, (H.20)

with the bare propagators for the gluon, Fadeev-Popov ghost and quark (their analogue in sta-

tistical scalar QFT is (D.13))

Dab
µν (x) δab

∫
d4k

(2π)4
e−ikx

k2 + iǫ

(
gµν − (1 − α)

kµkν

k2

)
, (H.21)

Dab (x) = δab

∫
d4k

(2π)
4

−1

k2 + iǫ
e−ikx, (H.22)

S (x) =

∫
d4p

(2π)
4

1

m− γµpµ
e−ipx . (H.23)
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Let us abbreviate

Z⊔1...⊔n

[
J, ξ, ξ, η, η

]
≡

[ ∏

µ,a,t,x

∫
dAa

µ (t,x)
][∏

a,t,x

∫
dχa (t,x)

][∏

a,t,x

∫
dχa (t,x)

][ ∏

q,c,µ,t,x

∫
dψ (t,x)

][ ∏

q,c,µ,t,x

∫
dψ (t,x)

]

× ⊔1 · · ·⊔n × exp

(
i

∫
dt

∫
d3x

(
L

′ +Aa
µJ

aµ + χaξa + ξ
a
χa + ψiηi + ηiψi

))
,

where the symbols ⊔i are replacement characters.

In this notation, the correctly normalized n-point functions (in the absence of sources) are defined

via

〈⊔1 ... ⊔n〉0 ≡ Z⊔1...⊔n

[
J, ξ, ξ, η, η

]

Z
[
J, ξ, ξ, η, η

]
∣∣∣∣∣
0

, (H.24)

where |0 stands for |J=ξ=ξ=η=η=0 and each of the symbols ⊔i can be replaced by either Aa
µ, χa,

χa, ψ or ψ.

Multiple functional differentiation yields

δnZ
[
J, ξ, ξ, η, η

]

δ∪1 ... δ∪n
=

[ ∏

µ,a,t,x

∫
dAa

µ (t,x)
][∏

a,t,x

∫
dχa (t,x)

][∏

a,t,x

∫
dχa (t,x)

][ ∏

q,c,µ,t,x

∫
dψ (t,x)

][ ∏

q,c,µ,t,x

∫
dψ (t,x)

]

× (i ⊔1) ... (i ⊔n) × exp

(
i

∫
dt

∫
d3x

(
L

′ +Aa
µJ

aµ + χaξa + ξ
a
χa + ψiηi + ηiψi

))
,

(H.25)

where each of the symbols ⊔i can be replaced by either Aa
µ, χa, χa, ψ or ψ. Then the symbol

∪i has to be replaced by the corresponding source, whereas in case of η and ξ there is an extra

minus sign (arising from the anticommutation of Grassmann numbers).

Choosing Z [0, 0, 0, 0, 0] ≡ 1, we conclude from comparison of (H.24) and (H.25):

in〈⊔1 ... ⊔n〉0 =
δnZ

[
J, ξ, ξ, η, η

]

δ∪1 ... δ∪n

∣∣∣∣∣
0

. (H.26)

For example, the 1-gluon-2quark 3-point function (in the absence of sources) is given by

〈Aa
µψiψj〉0 =

1

i3
δ3Z

[
J, ξ, ξ, η, η

]

δJaµ δ(−ηi) δηj

∣∣∣∣∣
0

. (H.27)

Plugging the expressions (H.17-H.20) into the expansion (H.14), it is possible to calculate Z in

the same way, as we did on p.165 for φ4 theory. In analogy to page 165, one can introduce

diagrams and translation rules (the Feynman rules for QCD), which enables us to express every

single contribution to Z diagrammatically.
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H.2 SQCD

The generalization to nonzero temperature has to be performed in complete analogy to appendix

E. That means, section H.1 with the replacements

∫

x

f (x) −→
∫

X

f (X) ≡
1/T∫

0

dτ

∫
d3x f (τ,x) , (H.28)

iS −→ −SE , (H.29)

Dab
µν (x) δab

∫
d4k

(2π)
4

e−ikx

k2 + iǫ

(
gµν − (1 − α)

kµkν

k2

)

−→ −iT δab
∞∑

n=−∞

∫
d3k

(2π)3
ei(ωnτ−kx) 1

ω2
n + k2 − iǫ

(
gµν − (1 − α)

kµkν

(−ω2
n − k2)

)
, (H.30)

Dab (x) = δab

∫
d4k

(2π)
4

−1

k2 + iǫ
e−ikx

−→ −iT δab
∞∑

n=−∞

∫
d3k

(2π)
3 e

i(ωnτ−kx) −1

ω2
n + k2 − iǫ

, (H.31)

S (x) =

∫
d4p

(2π)
4

1

m− γµpµ
e−ipx

−→ iT δab
∞∑

n=−∞

∫
d3p

(2π)
3 e

i(ωnτ−px) 1

m− γµpµ

, (H.32)

with kµ ≡ (iωn,−k) , (H.33)

yields SQCD, if one imposes periodic (antiperiodic) boundary conditions on the (fermionic)

fields. Note that in case of the fermionic fields ωn refers to the fermionic Matsubara frequencies

(2n+ 1)πT .
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[3] David Griffiths. Einführung in die Elementarteilchenphysik. 1.Auflage der dt. Ausg., Berlin,

Akad. Verl., 1996.

[4] Lewis H. Ryder. Quantum Field Theory. Cambridge University Press,1985.

[5] C. Amsler et al. Review of Particle Physics. Phys.Lett.B667,1,2008.

[6] K.G. Wilson. Confinement of quarks. Phys.Rev.D10,2445-2459,1974.

[7] R. Gupta. Introduction to Lattice QCD. arXiv:hep-lat/9807028v1, July 1998.

[8] F. Karsch et al. Nucl.Phys.B (Proc. Suppl.)53,413-416,1997.

[9] L3 Collaboration, M. Acciarri et al. Phys.Lett.B411,339,1997.

[10] M.-P. Lombardo. hep-ph/0103141v2. Published in: Astroparticle physics and cosmology,

Trieste 2000.

[11] J. Baez. From the article ‘Renormalization Made Easy’, available from his homepage

http://math.ucr.edu/home/baez/renormalization.html, December 19, 2005.

[12] K.G. Wilson. The renormalization group and critical phenomena.

Rev.Mod.Phys.Vol.55,no.3,1983.

[13] M.N. Barber. An Introduction to the Fundamentals of the Renormalization Group in Critical

Phenomena. Phys.Rept.29,1-84,1977.

[14] J. Zinn-Justin. Quantum Field Theory and Critical Phenomena. Oxford University Press,

1989.

[15] A. Pelissetto and E. Vicari. Critical phenomena and renormalization group theory.

Phys.Rept.368,549-727,2002.

[16] W. Nolting. Grundkurs Theoretische Physik 6 (Statistische Physik), 4. Auflage. Springer-

Verlag Berlin Heidelberg, 2002.

195



[17] H. Kleinert and V. Schulte-Frohlinde. Critical Properties of φ4-Theories. World Scientific,

Singapore, 2001.

[18] L.P. Kadanoff et al. Static Phenomena Near Critical Points: Theory and Experiment.

Rev.Mod.Phys.Vol.39,no.2,1967.

[19] R.B. Griffiths. Dependence of Critical Indices on a Parameter. Phys.Rev.Lett. 24,1479, 1970.

[20] K.G. Wilson and J. Kogut. The renormalization group and the ǫ expansions.

Phys.Rept.12,75-200,1974.

[21] A.D. Bruce. Structural phase transitions. II. Static critical behaviour.

Adv.Phys.Vol.29,no.1,111-217,1980.

[22] D.J. Amit. Field Theory, the Renormalization Group, and Critical Phenomena. McGraw-

Hill,1978.

[23] H.E. Stanley. Scaling, universality, and renormalization: Three pillars of modern critical

phenomena. Rev.Mod.Phys.71,358,1999.

[24] Hildegard Meyer-Ortmanns. Phase transitions in quantum chromodynamics.

Rev.Mod.Phys.68,no.2,1996.

[25] Á. Mócsy, F. Sannino and K. Tuominen. Confinement versus Chiral Symmetry.

Phys.Rev.Lett.92:182302,2004.

[26] H. Kleinert. Hadronization of Quark Theories. published in Understanding the Fundamental

Constituents of Matter Plenum Press, New York, 1978, A.Zichichi ed., pp.289-390.

[27] R.D. Pisarski and F. Wilczek. Remarks on the chiral phase transition in chromodynamics.

Phys.Rev.D29,338-341,1984.

[28] A.J. Paterson. Coleman-Weinberg symmetry breaking in the chiral SU(n) × SU(n) linear

σ model. Nucl.Phys.B,190,188-204,1981.

[29] R.D. Pisarski and D.L. Stein. Critical behavior of linear Φ4 models with G×G′ symmetry.

Phys.Rev.B,23,3549-3552,1981.

[30] F. Wilczek. Application of the renormalization group to a second order QCD phase transi-

tion. Int.J.Mod.Phys.A7,3911-3925,1992.

[31] A. Butti, A. Pelissetto and E. Vicari. On the nature of the finite-temperature transition in

QCD. JHEP 0308:029,2003.

[32] J.-Q. Chen. Group representation theory for physicists. World Scientific Publishing, 1989.

[33] F. Karsch. Scaling of pseudocritical couplings in two-flavor QCD. Phys.Rev.D49,3791-

3794,1994.

[34] T. Umekawa, K. Naito and M. Oka. Renormalization Group Approach to the O(N) Linear

Sigma Model at Finite Temperature. arXiv:hep-ph/9905502v1, May 1999.

196



[35] J.A. Gracey. The QCD β-function at O(1/Nf ). Phys.Lett.B373,178-184,1996.

[36] D.H. Rischke. The quark-gluon plasma in equilibrium. Prog.Part.Nucl.Phys.52,197,2004.

[37] J.M. Cornwall, R. Jackiw and E. Tomboulis. Effective action for composite operators.

Phys.Rev.D10,2428-2445,1974.

[38] W. Nolting. Grundkurs Theoretische Physik 5/1 (Quantenmechanik-Grundlagen), 6. Au-

flage. Springer-Verlag Berlin Heidelberg, 2004.

[39] C. Rossetti. Esercizi di meccanica quantistica elementare, volume 1. Levrotto and Bella,

2003.

[40] H.S. Yi, H.R. Lee and K.S. Sohn. Semiclassical quantum theory and its applications in two

dimensions by conformal mapping. Phys.Rev.A49(5),3277-3282,1994.

[41] A. Sinha, R. Roychoudhury and Y.P. Varshni. Wentzel-Kramers-Brillouin quantization rules

for two-dimensional quantum dots. PhysicaB325,214-223,2003.

[42] H. Kleinert. Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Finan-

cial Markets. 4th Edition, World Scientific, Singapore, 2006.

[43] A. Zee. Quantum Field Theory in a Nutshell. Princeton University Press, 2003.

[44] George Leibbrandt. Introduction to the technique of dimensional regularization.

Rev.Mod.Phys.47,849-876,1975.

[45] Jonathan T. Lenaghan and Dirk H. Rischke. The O(N) model at finite temperature: Renor-

malization of the gap equations in Hartree and Large-N approximation. J. Phys., G26:431–

450, 2000.

[46] H. Kleinert and A. Chervyakov. Rules for Integrals over Products of Distributions from Co-

ordinate Independence of Path Integrals. arXiv:quant-ph/0002067v1, Februrary 2000. Pub-

lished in: Eur.Phys.J.C19,743-747,2001.

[47] S.-H.H. Tye and Y. Vtorov-Karevsky. Effective Action of Spontaneously Broken Gauge

Theories. hep-th/9601176, 1996. Published in: Int.J.Mod.Phys.A13,95-124,1998.

[48] Y. Nemoto, K. Naito and M. Oka. Effective potential of the O(N) linear sigma-model at

finite temperature. Eur.Phys.J.A9,245-259, 2000.

[49] M. Chaichian and A. Demichev. Path Integrals in Physics, Vol.I, Stochastic Processes and

Quantum Mechanics. IOP Publishing Ltd 2001.

[50] J. Zinn-Justin. The Regularization Problem in Chiral Gauge Theories.

Chin.J.Phys.Vol.38,no.3-II,2000.

[51] N. Weiss. Effective potential for the order parameter of gauge theories at finite temperature.

Phys.Rev.D24,no.2,1981.

197
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