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Abstract. A generalization of the compressed string pattern match that
applies to terms with variables is investigated: Given terms s and t com-
pressed by singleton tree grammars, the task is to find an instance of
s that occurs as a subterm in t. We show that this problem is in NP
and that the task can be performed in time O(nc|Var(s)|), including the
construction of the compressed substitution, and a representation of all
occurrences. We show that the special case where s is uncompressed can
be performed in polynomial time. As a nice application we show that
for an equational deduction of t to t′ by an equality axiom l = r (a
rewrite) a single step can be performed in polynomial time in the size
of compression of t and l, r if the number of variables is fixed in l. We
also show that n rewriting steps can be performed in polynomial time,
if the equational axioms are compressed and assumed to be constant
for the rewriting sequence. Another potential application are querying
mechanisms on compressed XML-data bases.

1 Introduction

An important concept in various areas of computer science like automated de-
duction, first order logic, term rewriting, type checking, are terms (ranked trees),
and also terms containing variables (see e.g. [BN98]). The basic and widely used
algorithms in these areas are matching, unification, equational rewriting, asf. For
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example, a term f(g(a, b), c) may be rewritten into f(g(b, a), c) by the commuta-
tivity axiom g(x, y) = g(y, x) for g. Since implemented systems often deal with
large terms, perhaps generated ones, it is of high interest to look for compression
mechanisms for terms, and consequently, also investigate variants of the known
algorithms that also perform efficiently on the compressed terms without prior
decompression.
The device of straight line programs (SLP) (context free grammars that generate
exactly one string) for the compression of strings is a general one and allows clean
mathematical proofs [Ryt04] of correctness and complexity of algorithms. SLPs
are polynomially equivalent to the variants of Lempel-Ziv compression. These
are non-cyclic CFGs where every nonterminal has exactly one rule in the CFG,
such that any nonterminal represents exactly one string. Basic algorithms are
the equality check of two compressed strings, which is polynomial [Pla94], (see
[Lif07] for an efficient version), and the compressed pattern match, i.e., given
two SLP-compressed strings s, t, is s a substring of t, which can also be solved
in polynomial time in the size of the SLPs.
A generalization of SLPs for the compression of terms are singleton tree gram-
mars (STG) [SS05,LSSV06,LSSV10,GGSS08], a specialization of straight line
context free tree grammars [BLM05,BLM08,LMSS09a], where linear SLCF tree
grammars are polynomially equivalent to STGs [LMSS09a]. Basic notions for
tree grammars and tree automata can be found in [CDG+97]. Besides using
the well-known node sharing, also partial subtrees (contexts) can be shared in
the compression. The Plandowski-Lifshits equality test of nonterminals can be
generalized and requires polynomial time ([BLM05,SS05]).
A naive generalization of the pattern match is to find a compressed ground term
in another compressed ground term, which can be solved by translating this
problem into a pattern match of compressed preorder traversals of the terms.
The interesting generalization of the pattern match is the following submatching
problem: given two (compressed) terms s, t, where s may contain variables, is
there an occurrence of an instance of s in t? A special case is matching, where
the question is whether there is a substitution σ, such that σ(s) = t, which is
shown to be polynomial in [GGSS08,GGSS10], and also computes the (unique)
compressed substitution. Other related work are [Com95,Sal92] on term schema-
tizations that investigate a form of compression as well as representing infinite
sets of terms, and related algorithms.
In this paper we describe algorithms for answering the submatching question,
and which only operate on the grammars. We show that if s is ground and com-
pressed or if s is uncompressed, then the problem can be solved in polynomial
time (Theorem 3.3 and Theorem 3.8). In the general case, we describe an algo-
rithm that runs in time O(nc|Var(s)|) (Theorem 5.21), which is exponential, but
in a well-behaved parameter: If the number of variables is bounded by k, then the
match algorithm runs in polynomial time. As a subproblem it is shown that there
is a polynomial-time algorithm to find all occurrences of a compressed ground
context occurring in a compressed term (Theorem 5.20). As an application and
an easy consequence of the submatching algorithms, a single (parallel) deduction
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step on compressed terms by a compressed axiom with at most k variables can
be performed in polynomial time. We also show that a sequence of n rewrites
can be performed in polynomial time, where the term rewriting system as well
as the to-be-reduced term are compressed by STG. and where we assume that
the term rewriting system is assumed to be constant (see Theorem 6.4). Inves-
tigations on complexity of deduction sequences under DAG-compression are in
[AM10]. Another application is a querying mechanism for compressed XML-data
bases ([LMM10]).
An introductory example illustrating the compression and equational deduction
is as follows.

Example 1.1. As an example, consider the term rewriting rule f(x) → g(x, b),
and let the term t1 = f(f(f(a))) be compressed as C1 ::= f(·), C2 = C1C1,
T ::= C2(T ′), T ′ = f(a). A single term rewriting step on the compressed term t1
by the rule f(x) → g(x, a) would produce T ′ ::= g(a, b), and hence the reduced
and decompressed term is f(f(g(a, b))). Other rewriting steps on the compressed
term that do not decompress the term have to analyze the contexts. Let another
term be t2 = f16(a), compressed as C1 ::= f(·), C2 = C1C1, C3 = C2C2, C4 =
C3C3, C5 = C4C4, T ::= C5(a). A term rewriting step on T using f(x) → g(x, b)
may rewrite the context f(·) and thus would produce C1 ::= g(·, b), and hence
reduces the term in one blow to g(. . . , (g(. . . , b) . . .), b). In fact this is a form of
a parallel rewriting step.

The structure of the paper is as follows. First the basic notions, in particu-
lar STGs are introduced. Then algorithms for several special cases of the term
submatching problem are given. The main part is a general algorithm for term
submatching of compressed pattern and term, where it is shown that it can
be performed in polynomial time for a fixed number of variables. Finally, we
illustrate the application in equational deduction and term rewriting.

2 Preliminaries

We assume some knowledge in signatures, terms, positions, contexts and sub-
stitutions (see e.g. [BN98]). The set of free variables in a term t is denoted
as FV (t). Terms without occurrences of variables are called ground. A sub-
stitution σ is a mapping on variables, extended homomorphically to terms by
σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)). Let holep(c) be the position (as a string
of numbers) of a hole in a context c. A prefix context of a context c is defined
as a context c1, such that c = c1(c2) for some other context c2.

Definition 2.1. A term rewriting system (TRS) R is a finite set of pairs
{(li, ri) | i = 1, . . . , n}, usually written {li → ri}, where we assume that for
all i : li is not a variable, and FV (ri) ⊆ FV (li).
A term rewriting step is t

R−→ t′, if for some i: t = t1[σ(li)] and t′ = t1[σ(ri)].
This can also be seen as an equational deduction step, where the rules in R are
seen as equational axioms.
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2.1 Tree grammars for compressions

Definition 2.2. A singleton context-free grammar (SCFG) G, also called
straight-line program (SLP) is a 3-tuple 〈N , Σ, R〉, where N is a set of non-
terminals, Σ is a set of symbols (a signature), and R is a set of rules of the
form N → α where N ∈ N and α ∈ (N ∪ Σ)∗. The sets N and Σ must be
disjoint, each non-terminal X appears as a left-hand side of exactly one rule of
R, and >G on N is defined as X >G Y iff X → A ∈ R and Y occurs in A.
The transitive closure >+

G must be irreflexive; i.e. there are no >G-cycles. The
word generated by a non-terminal N of G, denoted by valG(N) or val(N) when
G is clear from the context, is the word in Σ∗ reached from N by successive
applications of the rules of G.

Definition 2.3. A singleton tree grammar (STG) is a 4-tuple G =
(T N , CN , Σ, R), where T N are tree/term non-terminals of arity 0, CN are
context non-terminals of arity 1, and Σ is a signature of function symbols (the
terminals), such that the sets T N , CN , and Σ are pairwise disjoint. The set of
non-terminals N is defined as N = T N ∪ CN . The rules in R must be of the
form:

– A → α(A1, . . . , Am), where A, Ai ∈ T N , and α ∈ Σ is an m-ary terminal
symbol.

– A → C1A2 where A, A2 ∈ T N , and C1 ∈ CN .
– C → [·] where C ∈ CN .
– C → C1C2, where C, C1, C2 ∈ CN .
– C → α(A1, . . . , Ai−1, [·], Ai+1, . . . , Am), where A1, . . . , Ai−1, Ai+1, . . . , Am ∈
T N , C ∈ CN , and α ∈ Σ is an m-ary terminal symbol.

– A → A1, (λ-rule) where A and A1 are term non-terminals.

Let N1 >G N2 for two non-terminals N1, N2, iff (N1 → t), and N2 occurs in t.
The STG must be non-cyclic, i.e. the transitive closure >+

G must be terminating.
Furthermore, for every non-terminal N of G there is exactly one rule having
N as left-hand side. Sometimes we refer to the right-hand side of this rule as
the definition of N in G. Given a term t with occurrences of non-terminals, the
derivation of t by G is an exhaustive iterated replacement of the non-terminals
by the corresponding right-hand sides. The result is denoted as valG(t). We will
write val(t) when G is clear from the context. In the case of a non-terminal N
of G, we also say that N (or G) generates valG(N) or compresses valG(N). The
depth of a nonterminal N is the maximal number of >G-steps starting from N ,
and the depth of G is the maximal depth of all its nonterminals. Let V be a set
of nonterminals with λ-rule, then the Vdepth(N, V ) is the maximal number of
>G-steps starting from N until an element of V or a leaf is reached. The size of
an STG is the number of its rules, denoted as |G|.

An application for SLPs are to represent compressed positions in compressed
terms.
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2.2 Grammar Extensions

We list the main grammar extensions required in this paper and give also their
size estimations.

Definition 2.4 (Grammar Extension). We say that an STG G′ =
(T ′, C′, Σ,R′) is a grammar extension of another STG G = (T , C, Σ,R), de-
noted G′ ⊇ G, if T ′ ⊇ T , C′ ⊇ C and R′ ⊇ R.

We repeat the constructions and their properties (see [LSSV10]).

Lemma 2.5. Term-Construction Let f be an n-ary function symbol f in its
signature and defining n terms t1, . . . tn. Then there exists a grammar exten-
sion G′ ⊇ G defining the context f(t1, . . . , [·], . . . , tn−1) and also a grammar
extension defining the term f(t1, . . . , tn) and satisfies

|G′| ≤ |G|+ 1
Vdepth(G′, V ) ≤ Vdepth(G, V ) + 1

Concatenation Let the contexts c1, . . . , cn for n ≥ 1 be generated by G. Then
there exists a grammar extension G′ ⊇ G that generates the context c1 ·· · ··cn

and satisfies

|G′| ≤ |G|+ n− 1
Vdepth(G′, V ) ≤ Vdepth(G, V ) + log n + 1

Exponentiation Let the context c be generated by G. For any n ≥ 1, there
exists a grammar extension G′ ⊇ G that generates the context cn and satisfies

|G′| ≤ |G|+ 2 log n
Vdepth(G′, V ) ≤ Vdepth(G, V ) + log n + 1

Prefix and Suffix Let the context c be generated by G. For any nontrivial prefix
or suffix c′ of the context c, there exists a grammar extension G′ ⊇ G that
defines c′, and satisfies

|G′| ≤ |G|+ depth(G)− 1
Vdepth(G′, V ) ≤ Vdepth(G, V ) + log(depth(G)) + 1

Subterm Let the context c or term t be generated by G. For any nontrivial
subterm t′ of the context c or of the term t, there exists a grammar extension
G′ ⊇ G that defines t′ and satisfies

|G′| ≤ |G|+ depth(G)
Vdepth(G′, V ) ≤ Vdepth(G, V ) + log(depth(G)) + 2

Subcontext Let the term t be generated by G. For any nontrivial prefix context
c of the term t, there exists a grammar extension G′ ⊇ G that generates c
and satisfies

|G′| ≤ |G|+ depth(G)(depth(G) + 3/2)
Vdepth(G′) ≤ Vdepth(G) + 2 log(depth(G)) + 4
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Instantiation Let the term t be generated by G, and let x ∈ V be a terminal
and let A be a nonterminal. Then the grammar extension G′ ⊇ G with the
additional rule x 7→ N satisfies

|G′| ≤ |G|+ 1
Vdepth(G′) = Vdepth(G)

Lemma 2.6. For an STG, we have depth(G) ≤ (Vdepth(G, V ) + 1) · (|V |+ 1).

Definition 2.7 (Grammar Extension Step). We say that the pair (G′, V ′)
is constructed from the pair (G, V ) using an α-bounded grammar extension
step if it can be constructed by term-construction, concatenation, exponentiation,
prefix, suffix, subterm, subcontext, or instantiation, where the exponent used for
exponentiation is bounded by 2α, and the number of concatenated contexts is
bounded by α.

Lemma 2.8. If G′ is an α-bounded extension of G according to Definition 2.7
then the following inequations hold:

|G′| ≤ |G|+O(depth(G)2) +O(α)
Vdepth(G′) ≤ Vdepth(G) +O(log(depth(G))) +O(log α)

In [LSSV10] it is shown, that a polynomial number of grammar extension as
above under certain restrictions for concatenation and exponentiation leads to
a polynomial-sized grammar:

Theorem 2.9. If the grammar G has size |G| = O(n), and 〈G′, V ′〉 is con-
structed from 〈G, ∅〉 using O(nk) many O(n)-bounded grammar extension steps,
then

|G′| = O(n5k+2)
depth(G′) = O(n2k+1)
Vdepth(G′, V ′) = O(nk+1)
|V ′| = O(nk)

The extensions steps above can be performed in polynomial time, where proofs
can be found in [GGSS10], and missing ones can be easily derived from these
proofs.

3 Term Submatching

Given two first-order terms s, t, where s (the pattern) may contain variables, the
submatching problem is to identify an instance of s as a subterm of t. The most
general variant that we will consider in this paper is when s, t are compressed by
an STG. This section contains several polynomial algorithms for special cases of
the term submatching problem.
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3.1 Term Submatching – First Observations

Algorithms for term matching and term submatching of compressed terms are
useful for locating positions where a term rewriting step may occur, depending
on whether the term that has to be rewritten is compressed and/or the term
rewriting system, and also for performing a single rewrite step or a sequence of
rewrite steps.
In deduction systems using equational deduction, like term rewriting system, the
rewriting process may generate very large terms in a few steps, thereby slowing
down the memory access as well as further deduction steps. It is standard to
use dag representation as optimization, which is a form of compression. Here
we investigate the more general case that an STG is used to represent terms.
We will show that this representation can also be used to perform equational
deduction.

Definition 3.1. The term submatching problem is:
Given a term s which may contain first-order variables, and a (ground) term
t, both compressed with an STG G, i.e., val(T ) = t and val(S) = s for term
nonterminals S, T of G. The task is to compute a (compressed) substitution σ
such that σ(s) is a subterm of t; also the (compressed) position (all positions) p
of the match in t should be computed.
We consider several specializations of the term submatching problem, depending
on the properties and the representation of s, where we also treat combinations
of the properties:

uncompressed If s is given as a plain term without any compression.
compressed If s is represented by a term nonterminal S with val(S) = s.
ground If s is ground.
linear If s is a linear term, i.e. every variable occurs at most once in s. ut

Note that (compressed) term matching is a special case: it asks whether σ(s) = t.
We are interested in efficient algorithms for submatching. We will prove that the
general case can be performed in time O(nc·k) where c is a constant, and k is
the number of different variables in s. Thus the general case has an exponential
worst-case upper bound for the required time, but the number of variables k is a
well-behaved parameter, since it often can be assumed as fixed for the rewriting
process. This upper bound already implies that the problem can be performed
in polynomial time for special cases like ground terms and terms containing
occurrences only of a single variable. Nevertheless, we will describe algorithms
for several specializations, since these are easier to describe and implement than
the general algorithm, and permit more flexibility for optimizations.

3.2 Ground term submatching

The investigation in [GGSS08] shows that (exact) term matching, also in the
fully compressed version and also the computation of a compressed substitu-
tion, is polynomial. I.e. given two nonterminals S, T , where S may contain first-
order variables, there is a polynomial time algorithm for answering the question
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whether there is some substitution σ such that σ(val(S)) = valG(val(T )), and
also for computing the substitution, where the representation is as a list of
variable-nonterminal pairs, where the nonterminals are w.r.t. an extension of
the input STG.

Algorithm 3.2 (ground compressed term submatching). The special case
of submatching where s is ground and compressed by a nonterminal S can
be solved in polynomial time by translating both compressed terms into their
compressed preorder traversals (i.e. strings) [BLM05,BLM08] and then applying
string pattern matching (see [Ryt04,Lif07] for further references on the subject).
The translation efficiently computes an SLP for the preorder traversal of val(S)
and val(T ) and asks whether one is a substring of the other (see [GGSS10]
for more information on the preorder traversal). The string match algorithm in
[Lif07] computes a polynomial representation of all occurrences. Note that in our
case, the structure of ground terms is very special as a string matching problem.
Thus the complete output of the algorithm is a follows: (i) a list of term non-
terminals N of the input STG G, where val(σ(S)) = val(N), and (ii) a list of
pairs (N, p), where the rule for N is of the form N ::= C[N ′], p is a compressed
position, and val(C)|val(p)[val(N ′)] = val(S). Moreover, every nonterminal N
appears at most once in the list.

There are efficient algorithms for the compressed string pattern match [Lif07].
The required time is O(n2m) where n is the size of SLP of T and m is the size
of the SLP of S (the pattern). Since the preorder traversal can be computed in
linear time (see [GGSS10]), we have:

Theorem 3.3. The ground compressed term submatching can be computed in
time O(|GT |2|GS |), and the output is a list of linear size.

Note that there may be exponentially many matching positions, even if the
output list has only single element N , since N may occur at an exponential
number of positions.

3.3 Uncompressed Linear Submatching

We only give a sketch for this case, since it will be solved in a more general case
in the next subsection.
Given an uncompressed and linear term s (i.e. every variable occurs at most once
in s) and an STG G together with a nonterminal T , the following algorithm
solves the submatching decision problem: Construct a non-deterministic tree
automaton Ts that recognizes whether s is a subterm of another term ignoring
the variables. This automaton can be easily constructed and has a linear number
of states, where Ts has an accepting run on val(T ) if and only if s is a subterm
of val(T ). It is known that acceptance of a compressed term by NTAs can be
decided in polynomial time in the size of the STG and the automaton (see
[LMSS09b,LM05]).
This method does not answer further questions like: What is the substitution,
all matching positions or matching positions according to further constraints.
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3.4 Uncompressed Submatching

Now we look for the case of uncompressed s, but where variables may occur
several times in s. We show that also in this case, there is an algorithm that
requires polynomial time. The algorithm outputs enough information to deter-
mine all the positions of a submatch. We derive the following by an easy case
analysis:

Lemma 3.4. Given an STG G, a term s and a nonterminal T , the start symbol,
with valG(T ) = t, where t is ground. If there is some substitution σ, such that
σ(s) is a subterm of t, then there are the following possibilities:

1. There is a term nonterminal B of G such that valG(B) = σ(s).
2. There is a rule B ::= C[B′] in G, such that σ(s) = c[valG(B′)], where c is a

suffix context of valG(C). There are subcases for the hole position p of c.
(a) (overlap case) p is a position in s.
(b) p = p1p2, where p1 is the maximal prefix of p that is also a position in

s. Then s|p1 = x is a variable. The algorithm has to distinguish further
subcases
i. (subterm case) x occurs more than once in s.
ii. (subcontext case) x occurs exactly once in s.

Example 3.5. The number of possible substitutions for a submatch may be ex-
ponential: Let the rules be S ::= f(x), and T ::= Cn[a], C0 ::= f([.]), C1 ::=
C0C0, . . . Ci ::= Ci−1Ci−1. Then val(T ) = f2n

(a), and every substitution
σ(x) = f i(a) with 0 ≤ i ≤ 2n − 1 corresponds to a submatch. However, distin-
guishing the subterm (Lemma 3.4, case 2a and subcontext case (Lemma 3.4,2b),
we see that the exponentially many substitutions correspond to one substitution
for the subcontext case.

We will see that this also holds for the uncompressed submatch.

s

x

C

s

C

The box represents the hole of C.

Fig. 1. Possible relative positions of C and s
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Algorithm 3.6 (uncompressed submatching). The following task is solved:
Given an STG G, a term nonterminal T of G, and a term s. Find one (or all)
possibilities of a substitution σ and a position p such that σ(s) occurs in val(T )
at position p. We assume that the substitutions and the positions are represented
in a compressed form.
There are the following kinds of output according to the cases in Lemma 3.4: (i) a
nonterminal N such that s matches N (case (1)), (ii) a nonterminal N with rule
N = C[B], such that s overlaps C and B (case (2a)), (iii) a substitution ρ such
that ρ(s) is ground, where the positions can be determined using Algorithm 3.2
(case (2b) with multiple occurrences of the variable x) (iv) a context nonterminal
C, a substitution ρ, and a compressed position of an occurrence of s in C, where
σ(s) occurs in val(C), and a variable x with a single occurrence in s where x
matches a superterm of the hole (case (2b)).

s-in-C-table For every context nonterminal C and for every position p of s there
is at most one entry ρ in the s-in-C-table, representing the possibilities where s
starts in val(C) (see Fig. 1). The substitution ρ instantiates certain variables of
s with ground terms. We assume that ρ is represented as a list with entries of the
form x 7→ Dx, where Dx are nonterminals in an extension of G. The semantics
is that ρ(s) has an overlap with val(C) at some position q in val(C), and p is a
position in s, such that q.p is the hole position of val(C).
We use dynamic programming for a bottom-up (w.r.t. G) computation of the
s-in-C-table. In a precomputation several attributes and further information can
be computed like an SLP for the the position of the holes in val(C) for every
context nonterminal C.

– The rule is C ::= f(A1, . . . , Aj−1, [·], Aj+1, . . . An). Then compute a com-
pressed substitution ρ, such that for s = f(s1, . . . , sn), val(ρ(si)) = val(Ai)
for all i = 1, . . . , n, where i 6= j. If there is no such ρ, then there is nothing
to do. Let ρ be the computed substitution. If sj = x and x occurs only once
in s, then there is no table entry, and we are in case (2(b)ii) of Lemma 3.4.
The output will be (C, ρ) and the top position ε. Otherwise, there will be a
table entry ρ.

– The rule is C ::= C1C2, and an entry in the table is to be computed from
the entries in the tables for C1, C2. There are several cases:
1. One case is that there is an entry in the table C2. This entry is simply

inherited.
2. The other case is that there is an entry ρ for (C1, p) in the s-in-C-table.

Then we have to match s|p against C2.
(a) If the hole position h of C2 is a position in s|p, then we compute

a compressed substitution ρ′ in an extension of G, such that every
variable x in s|p is instantiated, with the possible exception of vari-
ables for which p.h is a prefix of their position. If this is not possible,
then do nothing. If ρ′ and ρ are compatible, then the combined ρ′′

is the new entry for (C, p) Otherwise, there is no entry.
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(b) If the hole position h of C2 is not a position in s|p, then let q be the
maximal prefix of p.h that is also a position in s. Compute ρ′ for
the match of s|p with C2 taking into account all variable positions p′

with pp′ 6= q in s. If ρ′ does not exist, or if it is computable and not
compatible with ρ, then do nothing. Let ρ′′ be the combination of
ρ and ρ′. Clearly, s|q is a variable. If ρ(s)|q = s|q is a variable, then
this variable has only one occurrence in s, and we are in case (2(b)ii)
of Lemma 3.4. It is sufficient to have C, p, ρ in the output.
If ρ(s)|q is not a variable, then it is a ground term, and also ρ(s) is
a ground term, since all variables of s are instantiated. We are in
case (2(b)i) of Lemma 3.4. The substitution ρ will be outputted, and
the possible positions be computed using the algorithm for matching
ground compressed terms in Algorithm 3.2.

Now there are two further steps for detecting and locating matches:

1. For all term nonterminals N , check whether there is a substitution σ, such
that σ(s) = val(N). If this is true, then a match is found.

2. For all nonterminals N with rule N ::= C[B], and every position p of s,
compute a compressed match ρ′ for s|p with B. If ρ′ and the s-in-C-table
entry ρ for p are compatible, then a match is found.

Proposition 3.7. The algorithm 3.6 for uncompressed pattern matching has
polynomial running time in |s| and the size of G. Moreover, a polynomial sized
representation of all matching possibilities can be computed.
The number of necessary matching substitutions is polynomial, if the subcontext
case i.e. case (2(b)ii) of Lemma 3.4 is represented as a partial substitution, as
done in algorithm 3.6.

Proof. The table is of at most quadratic size and the entries are at most linear.
However, the nonterminals used in the substitutions ρ have to be constructed
during the construction. This constructions can be done independently of each
other. Hence the size of the table, and of the output is polynomial. The output
represents all the substitutions and positions. The number of substitutions is
therefore polynomial.

Note that the number of positions may be exponential, since for example a
matching nonterminal N may have an exponential number of occurrences in the
input term val(T ), but they can be represented in polynomial space. Also the
number of substitutions may be exponential, if plainly all ρ are requested such
that ρ(s) is a subterm of t.

Theorem 3.8. The uncompressed submatch computation problem can be solved
in polynomial time. Also an explicit polynomial representation of all matching
possibilities can be computed in polynomial time.
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4 Compressed Pattern Match for Terms

We consider the compressed pattern match problem for terms.
Given an STG G, two term nonterminals S, T , where val(S) may contain vari-
ables, compute an extension G′ of G and a compressed substitution σ such that
σ(valG′(S)) is a subterm of valG(T ). Also a representation of the position(s) of
the match in val(T ) have to be computed.

Algorithm 4.1. The (nondeterministic) algorithm for matching S against a
subterm of val(T ) proceeds in several steps: The algorithm consists of an iter-
ation that in every step (non-deterministically) generates instantiations for at
least one variable of val(S): In a single iteration step there are three cases:

1. If s := val(S) contains more than two occurrences of variables, then do the
following (nondeterministically):
Construct an extension G′ of G and nonterminals S′, C,A such that S′ ::=
C[A], val(S′) = s, val(C) is a ground context, val(A) = f(r1, . . . , rn), n ≥ 2
and at least two ri contain occurrences of variables. (The algorithm for this
prefix computation is in Subsection 4.1). Then (nondeterministically) select
a right hand side f(B1, . . . , Bn) of a rule that contributes to T . The first
case is that val(f(B1, . . . , Bn)) is a term. Then compute σ as matching A
against f(B1, . . . , Bn): This means to construct an extension G′′ of G′ such
that valG′′(A) = valG(f(B1, . . . , Bn)). Now valG′′(S′) is ground and we can
use another item in the next iteration to check the matching.
The second case is that f(B1, . . . , Bn) is a context. Then compute σ as
matching A against f(B1, . . . , Bi−1, [.], Bi+1, . . . , Bn), where we ignore the
index i, which is the hole position. This means to construct an extension
G′′ of G′, such that A can be replaced by f(A1, . . . , An) and to match Aj

against Bj for all j 6= i. The extension is such that valG′′(Aj) = valG(Bj).
Now valG′′(S′) contains less variables than s and we can go to the next
iteration.

2. If s is ground, then use compressed string matching. The position is an index
of the string pattern of s in the preorder traversal of t, which can easily and
efficiently be translated into compressed position p (see Algorithm 3.2).

3. If s contains exactly one occurrence of a variable (say x), then another
sub-algorithm is required (see Section 5). First construct a fresh context
nonterminal C, such that val(S) = val(C[x]). Note that C represents a
ground context. The algorithm in Section 5 uses dynamic programming to
compute a table such that for every context- and term nonterminal D that
contributes to T a (polynomial) representation of the occurrences of C in D
is stored.

4.1 Computing a Ground Prefix Context

We consider the subtask to split s = valG(S) into D[S′], such that C is the
maximal prefix context that is ground. This can be done along the structure of
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the STG G as follows, where the algorithm extends the grammar. We start with
the rule for S, and two lists Lp, Lt: one is the list for context-parts of the prefix
context and the other is required if the algorithm looks for contexts and has to
remember a list for context-parts and a term part for constructing the term in
the hole. Initially, these lists are empty

– A ::= C[A′]. If C does not contain variables, then proceed with A′ and
L′p := Lp; C. If C contains variables, then proceed with C and Lt := [A′].

– If A ::= f(A1, . . . , An) then check which of the terms valG(Ai) contain
variables. If there is only one, say Ai, then proceed with Ai, and L′p :=
Lp, f(A1, . . . , [.], . . . , An). Otherwise, the algorithm stops and constructs D
from the list Lp as a balanced tree.

– If C = C1C2, then there are two cases: If val(C1) does not contain variables,
then proceed with C2, and L′p := Lp; C1. Otherwise, if val(C1) contains
variables, then proceed with C1 and L′t := C2; Lt.

– If C = f(A1, . . . , [·]j , . . . , An), then there are two cases: If more than two of
the terms val(Ai) contain variables or one val(Ai) contains variables as well
as some expanded term or context in Lt, then we are finished. We construct
D from the list Lp as a balanced tree, and the term nonterminal from the
list Lt = B1; . . . ; Bm; A also as a balanced tree such that it is equivalent to
B1 . . . Bm[A]).
If only one val(Ai) contains variables and all expanded terms or contexts
in Lt are ground, then let k 6= j be this index. Now we construct Aj

from Lt as a balanced tree. Then we proceed with Ak, Lt := [], and
L′p := Lp; f(A1, . . . , [·]k, . . . , An).

5 Matching a Context as a Subcontext

This section contains a description of an algorithm for a subproblem of the fully
compressed pattern matching problem for terms: checking whether a compressed
ground context appears in a compressed term. The problem could be called the
fully compressed context-in-term problem.

Given an STG G, a context nonterminal C, and a term nonterminal A,
check whether valG(C) occurs in valG(A).

The goal is to describe a polynomial algorithm for this problem
The algorithm will rely on the efficient algorithm for the fully compressed pattern
matching problem for strings. We only have to take care of some special cases
that are not covered by a translation into strings. It will also use knowledge on
periodicity of strings.

5.1 Overlappings of Contexts

First we have to clarify the possibilities of overlapping two ground contexts.
There are two different variants of the question:
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(i) Given a ground context c, we ask for an occurrence of another ground context
d or perhaps parts of d in c.

(ii) Given a ground term t and two ground contexts c, d, find the occurrences
and relative positions of c, d in t.

Note that there are subtle differences between these two scenarios, since the
overlap question is relative to the given context or term. Though (ii) is finally
required, we investigate the case (i) since it answers the question also for all em-
beddings in terms t and permits a polynomial representation of all possibilities.
Similar considerations are in [SSS02], but only for the second case: overlapping
contexts embedded in terms.

Definition 5.1 (overlap and occurrence of contexts). We assume given a
(ground) context c and another context d and a position p within c. If there is a
term r, and a position p within c that is a prefix of holep(c) but p.holep(d) is not
a prefix of holep(c) and there is an occurrence of d in c[r] starting at p, then we
say there is an overlap of d in c at p. The overlap is called completely within c,
if p is not a prefix of holep(c). The overlap is aligned if p is a prefix of holep(c)
and holep(c) is a prefix of p.holep(d). The overlap is called partially aligned if p
is a prefix of holep(c) and holep(c) is not a prefix of p.holep(d).
The case that d occurs in c at a position p that is not a prefix of holep(c) is
called an side area occurrence, and the case that c at a position p that is a prefix
of holep(c) and p.holep(d) is a prefix of holep(c) is called an aligned occurrence.

Lemma 5.2. Let c be a context. Then every overlap of c with itself is aligned.

Proof. Let p 6= ε be the overlap-position of c. It is easy to see that p must
be a prefix of holep(c), since otherwise c is properly contained within itself,
which is impossible. Assume that holep(c) is not a prefix of p.holep(c). Then by
induction on n we see that for every n, the position pn is a position in c, which is
not possible since contexts are finite. Hence every occurrence of c in c is aligned.

Definition 5.3. Let c be a context. Let d be another context such that there are
2 overlaps of d in c at the occurrences q1 6= q2, and assume the overlaps are
partially aligned. We distinguish two possibilities (see figure 2):

– The occurrences q1, q2 are called parallel partially aligned occurrences of d
in c, iff there is a path r that is a prefix of holep(d) such that qi.r is the
maximal common prefix of holep(c) and qi.holep(d) for i = 1, 2.

– The occurrences q1, q2 are called sequential partially aligned occurrences, if
the following holds: there are two positions r1, r2 in d which are both pre-
fixes of holep(d), with q1.r1 = q2.r2 and such that q1.r1 is the maximal
common prefix of q1.holep(d) and holep(c), and q1.r1 is also the maximal
common prefix of q2.holep(d) and holep(c). Moreover, q1.holep(d) is a prefix
of q2.holep(d).

Lemma 5.4. Let c be a context. Let d be another context and q1 6= q2 be posi-
tions, such that q1 is a prefix of q2 and d is partially aligned at q1 and q2. Then
the occurrences are either parallel or sequential according to Definition 5.3.
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Fig. 2. Two possibilities of overlap

Proof. For i = 1, 2 let pi be the maximal common prefix of holep(c) and
qi.holep(d).
First assume that p1 6= p2. Let ri be such that qi.ri = pi. We have to show that
r1 = r2. If r1 is a proper prefix of r2. let a be a path such that q1.r1.a = q2.r1.
It is easy to see that r1a

n is a position in d for every n, which is impossible. If
r2 is a proper prefix of r1, let a be a path such that q1.r1.a = q2.r2. Again it
is easy to see that r1a

n is a position in d for every n, which is impossible. The
only case left is that r1 = r2. If the embedding is in c[t], then this is impossible,
since then the term at position q1.r1 contains itself as a proper subterm.
Now assume that p1 = p2. Let p := p1 and ri be such that qiri = p. Assume that
q1.holep(d) is not a prefix of q2.holep(d). Let b be the path such that q1.b = q2

and a be such that q1.r1.a is the maximal common prefix of q1holep(d) and
q2.holep(d). Then the position r1.a.bn is within d for every n, which is impossi-
ble. Hence q1.holep(d) is a prefix of q2.holep(d).

Example 5.5. There are examples for the parallel and sequential case of partial
overlaps:

1. Let c = f(f(f([.], a), a), a) and let d = f(f(f(a, a), a), [.]). Then d has par-
allel partially aligned overlaps at positions ε, 1 and 1.1. Note that if we in
c plug in a term t at position 1.1.1, then at most one these overlaps of d in
c[t] is possible at the same positions.
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2. We give an example for case 2 of Lemma 5.4, i.e. for sequential par-
tially aligned overlaps. The partially aligned occurrences of d within c
are not unique: Let t = f(a, f(a, f(a, f(a, f(a, b))))), d be the context
f(a, f(a, f(a, f([.], f(a.b))))) and let c = f(a, f(a, f(a, [.]))), and we look
for occurrences of c in d[a]. Then there are two partially aligned occurrences
of c in d: at position 2 and at position 2.2 of t. Note that the two occurrences
of c are aligned.

Corollary 5.6. Let c be a context and let q1, q2 be two different occurrences of d
that are parallel partial overlaps. For every term t, at most one occurrence q1, q2

can be an occurrence of d in c[t].

Proof. Otherwise, Lemma 5.2 would imply that the occurrences of d are aligned,
which is impossible.

Now we determine the possible relative positions of several partial overlaps of a
context d with a context c.

Definition 5.7. Let c, d be contexts. Then a periodic sequence of partially
aligned overlaps of d in c is a sequence of positions q1, . . . , qn for n ≥ 2 of
partially aligned overlaps of d in c, such that qi = q1.q

i−1 for some q and
i = 1, . . . , n. The path q is the period, and n the length of the sequence. If
the partially aligned occurrences are pairwise parallel, then we say it is a parallel
sequence, and if all partially aligned occurrences are pairwise sequential, then
we call it a sequential sequence. Note that there are no other possibilities due to
Lemma 5.4.

Example 5.8. This example shows that there may be three partially aligned
occurrences of d within c that do not form a periodic sequence. Let c = c3

1c2c
3
1

where ci = f([·], Ai), for i = 1, 2 and d = f(c2
1c2c

3
1(A3), [·]). Then there are

(parallel) partial alignments of d in c: at the top, i.e. at position ε, at 1.1.1.1 and
at 1.1.1.1.1. However, there is no partial alignment at position 1, since A1 6= A2.
The reason that there is no sequence is that the common part of the first two
overlaps of d is not large enough (see also Lemma 5.11). Note that there is no
term t, such that c[t] contains all these occurrences of d.

The goal is now a polynomial representation of all the possible partial alignments
that may have a potential embedding in a term.
We have to examine some special cases. First we examine parallel partially
aligned overlaps and show some completeness properties.

5.2 Overlapping of Strings with Holes

The relative positions of partially aligned overlaps can be determined by inves-
tigating overlaps of strings that may have a single hole. We represent the hole
by special symbol #. In overlaps, the symbol # holds the place of a single sym-
bol. Also, # will not be compared with other symbols. Positions in strings s are
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numbers 1, 2, 3, . . . and we use s[i] to denote a symbol at position i and s[i, i′] to
denote the substring from position i to i′ including the last one, The notation
s[i, j] is the empty string for i > j, and s[i, i] = s[i]. For example, the string
s1 = “babacabab′′ overlaps with s2 = a#ababd′′ at position 3 in s1, and s2 is
said to have the hole at position 2.

c

d

d

q
1

q 2

c

d

d

q

q

1

2

(i) (ii)

Fig. 3. Overlapping possibilities for two strings with a hole

Structure of Parallel Partially Aligned Overlaps We describe the situation
for the parallel overlap in a general way as overlapping of several strings with
or without a hole. In the case of a parallel partial overlap, the strings without
the hole represent the context c, and the strings with holes are the context d,
but along the path that is overlaid with the hole path of c; the string-hole is the
position, where the hole paths of the c, d-contexts fork.

Lemma 5.9. Let c be a string and let d be another string with a hole that has
two overlaps with c at q1, q2, where q1 < q2 and |d| ≥ |c|. Assume also that there
are no further overlaps of d for q1 < q < q2. Let p = q2 − q1 and let p1 be the
position of the hole of d. Assume further that |c| ≥ q2 + p.
Then there are two cases:

(i) There is a periodic sequence q1, . . . , qn of d-occurrences with n ≥ 2 and
|c| − qn < p, and for every overlap of d with c at q with q 6∈ {q1, . . . , qn}, we
have q − |c| < p.
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(ii) For every overlap of d with c where q 6∈ {q1, q2} and q > q2, we have q−|c| <
p.

Proof. We look at two occurrences of d in c. There are several cases, depending
on the position of the hole (see Fig. 3).

1. Let the hole position be 1 ≤ p1 < p. Then the overlap generates the following
equalities: d[p+1, p+p1−1] = d[1, p1−1], and d[p+p1 +1, 2p] = d[p1 +1, p],
but there is no relation between d[p+p1] and d[p1]. Furthermore there are the
equalities d[ip+p1] = d[(i+1)p+p1] for i ≥ 1, provided q2+ip+p1 ≤ |c|. This
implies that d[ip+1, (i+1)p] = [(i+1)p+1, (i+2)p], provided q2+(i+1)p ≤ |c|,
and also d[ip+1, k] = [(i+1)p+1, k] for the last partial period. This means
that d is periodic after the hole with period p. Hence there is a periodic
sequence as claimed in the lemma. If there is a further overlap q of d in c
with q 6∈ {q1, . . . , qm}, then there is an overlap of s = d[p + 1, 2p] within ss.
Hence the period of d after the hole is strictly smaller than p. So we will find
also a further overlap of d with c between q1 and q2, which is not possible.
Note that there may be further overlaps q of d with c with |c| − q < p.

2. Let the hole position be p′1 > p. Let p1, p2 be such that p = p1 + 1 + p2 and
p1 = p′1 mod p. Using a similar reasoning as above, it is easy to see that
there are two cases:
(i) d is periodic with period p (ignoring the hole), and there is a periodic
sequence as in the previous item and the same reasoning for other overlaps
as in the previous item is applicable.
(ii) The equality reasoning is disconnected at the hole overlappings and c is
long enough: i.e. d[p′1 − p] 6= d[p′1 + p], and q2 + p′1 > |c|.
Then d is periodic with period p up to the positions ip+p1, since the overlap
is large enough. Let a := d[p′1 − p] and b := d[p′1 + p], where a 6= b. Then
d[ip + p1] = a for all i ≥ 0 such that ip + p1 < p′1 and d[ip + p1] = b for
all i such that ip + p1 > p′1. This clarifies the periodic structure of d w.r.t.
the period d and up to the index |c| − q1, i.e., in the part of d at q1 that
overlaps c. It remains to show that there are no further long overlaps of d
with c other than q1, q2: First suppose there is an overlap at a position of
the form q1 + ip with i > 1. This is not possible, since there will be a conflict
at position d[p′1 + p], which is b for the occurrence of d at position q1 and a
for the occurrence of d starting at position q1 + ip.
Now suppose there is a further overlap of d with c at position q not at a
position of the form q1p

i, with q > q2 and with a significant overlap with
the c, i.e., q− |c| > p. Then the first period of length p of d at q is contained
either in d at q1 or d at q2 without covering a hole. Several case have to be
considered separately:
– If q + p > q2 + p′1, i.e. the first period of d at q2 is before the hole, then

d[1, p′1] is periodic with a period that is a divisor of p. If the hole of d at
q2 is not within c, i.e. q1 + p′1 > |c|, then there will be another overlap of
d between q1, q2, which is impossible. Hence the hole of d at q2 is within
c, i.e. q1 + p′1 ≤ |c|. Looking at d at q1, we obtain that d[p′1 + p] = a,
which contradicts a 6= b.
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– If q + p ≤ q2 + p′1, i.e. the first period of d at q2 may contain the hole or
is after the hole, and it is completely after the hole of d at q1. Then the
d[1, p] is periodic with a period that is a divisor of p. However, since the
containment is completely with the b-part of d, this is impossible, since
the multiset of symbols of d[1, p] (the d at q) and d[q−q1+1, q−q1+1+p]
(the d at q1) are different. Hence this is also impossible.

It is easy to see, based on the structural analysis in the previous proof, that the
following holds:

Lemma 5.10. In the situation of Lemma 5.9, if the periodic sequence consists
of at least 3 overlaps, at positions q1, q2, q3 with q2 − q1 = q3 − q2 = p and
|c| ≥ q3 + p, then the d has a regular structure: Replacing the hole of d by the
corresponding symbol of c makes d periodic, where p is a period of d.

Lemma 5.11. Let c be a context and let d be a context that has two occurrences
of parallel partially aligned overlaps with d at q1, q2, where q1 ¹ q2 and such that
there are no further partially aligned overlaps at occurrences q with q1 ¹ q ¹ q2.
Then there are two cases:

(i) There is a periodic sequence q1, . . . , qn of d-occurrences that are partially
aligned with n ≥ 2 and |holep(c)| − |qn| < |q2| − |q1].

(ii) Every occurrence q of d starting properly below q2 and which is a partially
aligned overlap satisfies |holep(c)| − |q| < |q2| − |q1].

In addition, if the periodic sequence has length at least 3, then there is a term r,
such that the term d[r] is the embedding of d in c, and along the hole path of c,
this term is periodic with period p, where q1.p = q2.

Proof. It is already known (see Lemma 5.4) that two different parallel partially
aligned overlaps have the same maximal common hole path with the context
c. Let p be the maximal path such that q1.p is a prefix of holep(c) and let r
be the path such that p.r = holep(d). Due to the overlap, the contexts d are
periodic with period p up to the positions corresponding to the hole, i.e up to
the positions pi.r. We can apply Lemma 5.9 to the labels at pi.r, and obtain
that also all the occurrences of contexts are either periodic or that q1, q2 are the
only occurrences, ignoring occurrences q of d that |holep(c)| − |q| < |q2| − |q1].
If the periodic sequence has length at least 3, then the claim follows from Lemma
5.10. ut

Structure of Sequential Partially Aligned Overlaps Similarly as for the
parallel case, we describe the situation for the sequential partial overlap in a
general way as overlapping of one string with a hole with two usual strings. Here
the interpretation as strings is as follows: the strings for d represent the contexts
along their hole path, and the string for c is the context seen along the path
used by the overlapping d-contexts. The string-hole is the position, where c and
d fork. Note that Lemma 5.12 about strings does not talk about the structure
of c below the forking position, which has to be deferred to Lemma 5.14.
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Fig. 4. Overlapping possibilities for two strings in a string with a hole

Lemma 5.12. Let c be a string with a hole at position ph, and let d be another
string that has two overlaps with c at q1, q2, where q1 < q2 and both occurrences
of d are completely within c and overlap the hole of c. Assume also that there
are no further overlaps of d for q1 < q < q2. Let p = q2 − q1 and let ph be
the position of the hole of c. Also, the overlap should be sufficiently large, i.e.
|d| ≥ 2|q2 − q1|.
Then the following holds:
There is a periodic sequence q1, . . . , qn of d-occurrences with n ≥ 2, where the
d-occurrences are completely within c, and the d-occurrences overlap the hole of
c, such that there are no other overlaps of d with c that are completely within c
and overlap the hole of c.

Proof. First analyze the structure of d. Let p = q1 − q2 be the period. Then let
p′h = ph − q1 mod p. The structure of d is as follows: it consists of a repetition
of k strings d[1..p], followed by a prefix of the string bj , where b is the same as
d[1..p] up to the position p′h. The reason is that the hole of c disconnects the
symbols of the lower and upper half of d.
Now assume that there is another occurrence q′ of d completely within c and
overlapping the hole of c. The preconditions show that if q′ − ph ≥ p, and that
then b = d[1..p], and it must be synchronous with the period structure of d. A
similar argument applies if q′ − ph < p, since in this case the overlap of the two
occurrences below the hole is large enough to enforce b = d[1..p].
We obtain that in the case of a third occurrence, all the d-occurrences that are
completely within c and overlap the hole form a periodic sequence q1, . . . , qn. But
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note that the last occurrence, qn, might be far from the hole, i.e. qn − ph > p is
possible.

It is easy to see that for more occurrences of d, we obtain periodicity:

Lemma 5.13. In the situation of Lemma 5.12, if the periodic sequence consists
of at least 3 overlaps at q1, q2, q3, then d is periodic with period p = q2 − q1.

Lemma 5.14. Let c be a context and let d be a context that has two occurrences
of sequentially partially aligned overlaps with d at q1, q2, where q1 ¹ q2 and
such that there are no further partially aligned overlaps at occurrences q with
q1 ¹ q ¹ q2. Then there is a periodic sequence q1, . . . , qn of d-occurrences that
are sequentially partially aligned with n ≥ 2 and there are no further sequentially
partially aligned overlaps of d in c.
Moreover, if n ≥ 3, then the context d is periodic with period p, where q2 = q1.p.
Also, the suffix context of c starting at the position where c and d fork is periodic
with a period p′, where |p′| = |p|.

Proof. This follows from Lemma 5.12, and the obtained structure of d. Note that
d is completely contained in c in every case up to the position where the two
hole paths fork, which corresponds to the hole in the string. Hence there can be
no other partially aligned occurrences in c.

Structure of Fully Aligned Overlaps Now we look for fully aligned overlaps,
which correspond to plain overlapping strings:

Lemma 5.15. Let c be a context and let d be a context that has two occurrences
of aligned overlaps with d at q1, q2, where q1 ¹ q2 and such that there are no
further aligned overlaps at occurrences q with q1 ¹ q ¹ q2. Then the following
holds:

(i) There is a periodic sequence q1, . . . , qn of d-occurrences that are aligned with
n ≥ 2 and |holep(c)| − |qn| < |q2| − |q1].

(ii) Every other occurrence q of d starting properly below q2 and which is a aligned
overlap satisfies |holep(c)| − |q| < |q2| − |q1].

Proof. This follows similarly as for overlapping strings. If there are other occur-
rences than mentioned in the claim of the lemma, then we would obtain a finer
period of d, and hence another periodic sequence.

Definition 5.16. Let G be an STG and let C, D be two context nonterminals
of G. A representation of all overlaps (partially aligned and aligned) of val(C)
with val(D) consists of three sequences, one for parallel partially aligned, one
for sequential partially aligned and one for aligned overlaps, of the following
components:

1. q, a position of an overlap.



22 Manfred Schmidt-Schauß

2. (q, P, n) for a periodic sequence starting at a position q with period context
nonterminal P and n occurrences. We assume that n ≥ 3.

The semantics is that val(C) has an overlap with val(D) at position
val(q) in val(D), and in case of a periodic sequence, also for all positions
val(q)holep(val(P ))i with 0 ≤ i < n.

Now we can prove that there is a polynomial representation of all overlaps of a
compressed context in another compressed context.

Proposition 5.17. Let C, D be two context nonterminals of an STG G. Then
there is a polynomial-sized representation of all overlaps (partially aligned and
aligned) of val(D) with val(C).

Proof. The lemmas above show that all the overlap positions of d in the upper
half of c can be represented by one or two single entries or by a single entry for
a periodic sequence. This covers already |holep(c)|/2 potential positions. t Since
the length |holep(c)| is bounded by 2|G|, the complete sequence has linear length
in |G|. The required numbers can also be represented in linear space. There are
at most three such sequences, hence the claim holds.

5.3 Tabling the Occurrences

We describe a dynamic programming algorithm for computing the occurrences
of a context c in a term t under compression, which computes the representation
in Definition 5.16, and also prints detected occurrences.
For a context nonterminal P and a natural number n we write Pn for the context
nonterminal that represents the n-fold iteration of val(P ); and prefix (P, k) for
the context nonterminal representing the prefix of val(P ) of hole depth k. Given a
number k, the rotation of P by k, denoted as rot(P, k), is a new nonterminal P ′ in
an extension of G, such that val(P ) = d1d2, val(P ′) = d2d1, and |holep(d1)| = k.
The following polynomial subalgorithms are used in the construction:

1. (Finding the maximal period parameters) Given a context nonterminal P ,
and a term (or context) nonterminal N , compute the maximal numbers m, k
with k < m, such that val(P )mprefix (P, k) is a prefix context of val(N).
This can be performed by known grammar constructions, using equality
check, and binary search.

2. (Rotating a context) Given a context nonterminal P , and a number k, com-
pute the rotation rot(P, k), i.e. construct the extension and the context non-
terminals.

Algorithm 5.18 (Checking occurrences of contexts in contexts). The
following dynamic programming algorithm computes a table indexed by
(C, B,w), where C is a context nonterminal, B is a context nonterminal, w
is one of the three texts “aligned”, “parallel”, “sequential”, and the entry rep-
resents the overlaps of val(C) in val(B). A single entry in the table is a list
consisting of single positions p and triples (p, P, n) for periodic sequences.
The computation of the entries is bottom-up on the second argument in the
grammar as follows:
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– If during the computation of the table entries below, it is detected, that a
position or periodic sequence represents a complete containment of val(C)
in val(B), then these occurrences are printed.

– If B ::= f(B1, . . . , Bi−1, [.], Bi+1, . . . , Bn) is a context nonterminal, then we
test whether the context val(C) overlaps (or occurs) at the top of val(B).
This can be done in the usual way by constructing term nonterminals such
that val(C) = val(f(C1, . . . , Ck−1, [.], Ck+1, . . . , Cn)) and testing whether
val(Cj) = val(Bj) for all j 6= i and j 6= k. If val(C) = val(B), this is
printed, otherwise if the test succeeds and k = i, then ε is an entry in the
aligned table, and if k 6= i, then an entry in each partial overlap list is ε.

– If the rule for B is B ::= B1B2, then we combine the table entries for (C, B1)
and (C, B2) as follows: The table entries for B2 are retained, where the po-
sitions are prefixed by a nonterminal representing the hole path of B1.
The table entries from B1 have to be checked how they can be inherited and
adapted:
Single occurrences can easily be checked by testing whether there is an over-
lap or an occurrence of val(C) in val(B1B2) at the position p. The test may
shift entries between tables: an aligned occurrence w.r.t. B1 may be turned
into a partially aligned occurrence w.r.t. B1B2.
Let (p, P, n) be the entry of a periodic sequence, and let n1 :=
|holep(val(P ))|, h = |holep(val(B1))| − |p| be the length of the path from p
to the hole of val(B1), and h1 := h mod n1 with h1 < n1. We distinguish
between the kinds of sequences:
• For a sequence of aligned positions: Compute the maximal m1, k1 with

m1 > k1 such that val(Pm1prefix (P, k1)) is a prefix of val(C). Let P ′ =
rot(P, h1), and compute the maximal m2, k2 with m2 > k2 such that
R := val(P ′m1prefix (P ′, k2)) is a prefix of val(B2). Now we have to
distinguish different cases:
1. Case val(R) = val(B2), i.e. B2 is completely covered by iterations

of P . We can now easily compute the following, on the basis of the
number of periods and the phase-shift, and take the corresponding
actions: Compute the new p′, n′ for the new entry (p′, P, n′) for C. If
C has an aligned occurrence in val(B1B2), then the information is
outputted, which can only be the case, when C is completely covered
by the periods.

2. Case val(R) 6= val(B2), i.e., the period P does not cover val(B2)
completely. Then the following cases are possible: (i) Let val(C) be
completely covered by P . If val(C) has occurrences in the periodic
sequence, which can be computed by comparing the parameters, then
this is outputted, but does not lead to an entry in the C-table. A
second case is that R′ has an overlap with rot(P, k2). Let R′ be equiv-
alent to f(A1, . . . , [.]i, . . . , An), which may have to be constructed,
and let j be the direction of the hole at the top of R′. Then we have
to compute the periodic parameters for rot(P, k2+1) in val(Aj). The
computed parameters now allow to determine the periodic sequence
entry in the sequential partially aligned list of the table.
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(ii) val(C) is not completely covered by P . Then let R′ be a context
nonterminal for the suffix of val(B2), such that val(RR′) = val(B2).
Also let C ′ be a context nonterminal for the suffix of C with
C = val(Pm1prefix (P, k1)C ′). There are four possibilities: (1) C ′

is a prefix of R′, (2) R′ is a proper prefix of C ′, (3) R′ and C ′ have
an overlap at the top but are not prefixes of each other, or (4) there
is no overlap. In case (1) and if the period sequence of B1B2 is suf-
ficiently long, there is an occurrence of val(C) in val(B), which is
outputted. In case (2), and if the period sequence of B1B2 is suffi-
ciently long, a single position for the occurrence of C in B1B2 is the
new entry. In case (3) of an overlap in the non-prefix case, we have
to check whether a partially aligned overlap of C with B is detected.
In this case it can only be a single one, and the position p′ can be
determined using the already computed parameters.

• For a periodic sequence of parallel partially aligned positions:
Similarly as in the aligned case, let P be the period, and m2, k2 be the
parameters of the coverage for val(B2). If B2 is completely covered, then
there will be a new periodic sequence.
If B2 is not completely covered, then at most one entry may be in the
table for (C, B). The computation is similar as for the aligned case:
Compute a context nonterminal R′ for the suffix of val(B2) below the
periodic sequence. Also compute a term nonterminal D′ for val(C) that
is below the periodic sequence. Note that in the case of parallel partial
alignment, the periodicity is in a subterm of val(C). If val(R′) is a prefix
of val(D′), then a single entry is in the table, where the position p can
be determined by using the already computed numbers.

• For a periodic sequence of sequential partially aligned positions:
The computation is simple. Let P be the period. Let D′ be the term
nonterminal that is the side term that overlaps the hole path of val(B1),
and let q be the path in val(D′) to the hole of val(B1) in the overlap.
Let D′′ be the term nonterminal defining val(D′)|q. If val(B2) is not a
prefix of val(D′′), then there will be no entry in the table and this case
is finished. Otherwise, the entry is inherited to B1B2.

Finally, a merge of the computed entries has to be done, where single as well
as periodic occurrences have to be checked, within every list. This can be
done on the basis of the positions and without further extending the STG.

Finally, we have to test whether C occurs in term nonterminals. This is done
using the table as follows:

Algorithm 5.19 (Checking occurrences of contexts in terms).
Given a context nonterminal C, for all term nonterminals B the following test
is performed:

– If B ::= f(B1, . . . , Bn) is a term nonterminal: then we only have to check
whether val(C) is a prefix of val(B). If yes, then the result will be printed.
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– If B ::= D[B′], then we use the table entries for (C, D), which is a list of
single and periodic occurrences.
For single occurrences p, the suffix context D′ of val(D) has to be computed
and then we have to test whether C occurs at the top of D′[B′].
For periodic sequences (p, P, n), the test depends on whether the periodic
occurrence belongs to aligned, a sequential or parallel partial aligned overlap.
For aligned occurrences, do the following: Let m, k be the parameters of
the period occurrences of val(P ) in val(D). Use binary search to find the
maximal occurrence m1, k1 of rot(P, k) in val(B′), and also the parameters
m2, k2 for the periodic occurrences of val(P ) in val(C). Also let B′′ and C ′

be the suffixes that are not covered by periods in B′ and C, respectively. If
C is completely covered by periods, then on the basis of these numbers and
the length of the period, all occurrences can be computed and printed. If C
is not completely covered, then the suffixes of C ′ and B′′′ have to be checked
for an overlap, and then a single occurrence can be detected.
For sequential partially aligned occurrences, a single equality test is sufficient
to check whether the complete periodic sequence represents occurrences of
val(C) or not. The equality check has to test whether D′[B′] completes the
gap in the periodic sequence in the C-overlap in D, which means an equality
check.
For parallel partially aligned occurrences, at most one occurrence of C can
be detected. It can be found by first comparing the size of val(B′) with
the sizes of the suffix contexts of val(D) that start at the forking positions
between val(D) and val(C) (as occurring in val(D)). Then constructing the
necessary nonterminals and an equality check are sufficient for the detection
of the occurrence.

5.4 Properties of Compressed Pattern Match

Theorem 5.20. Assume given an STG G and a context nonterminal C. The
algorithm 5.18 computes the occurrence table and the outputs in polynomial time,
such that for all context nonterminals B of G, all occurrences of val(C) in val(B)
are represented.
The algorithm 5.19, given the context-in-context occurrence table constructed
from algorithm 5.18, and a term nonterminal B, computes a representation of
all occurrences of C in B in polynomial time.

Proof. (sketch) We mention the main arguments for correctness and the com-
plexity. The structure of the overlaps of contexts is analyzed in Subsection 5.1.
The algorithm for the context-in-context table is based on this analysis. It only
memorizes the proper overlaps and prints the detected occurrences.
The number of positions is represented in polynomial space due to Proposition
5.17, and since a compacting step is included. The intermediate size increase of
G is only by constructing a prefix of a context, and then by constructing an
exponent. There is no iterated size increase, since the exponents can be removed
after they are no longer used for equality tests.
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Complexity: The table is of polynomial size. The size of the used STG G is
only moderately increased (see Theorem 2.9). Main contributions to the time
complexity are the binary searches in the periodic sequences, where in every
step an equality check in O(n3) is performed.

Hence the following holds:

Theorem 5.21. Given an STG G and two nonterminals S, T , where val(S)
may contain variables. Then the algorithm for fully compressed pattern match
for compressed terms s, t requires at most searching in |G||Var(s)| alternatives for
the substitution.
A single computation path can be completed in polynomial time.
Thus the submatching problem is in NP.

6 Polynomial Compressed Term Rewriting

In this section we apply the results on the compressed submatch to sequences
of reductions by a term rewriting system, which also comprises a single equa-
tional deduction step. Given a TRS R and a term t, where we assume that the
rules of R as well as t are compressed by STGs, we investigate upper bounds
for execution time and the growth of the compressed representation. There are
several options for a rewriting strategy, i.e. for choosing the position(s) for a
deduction step. There are single-position rewritings at leftmost innermost and
outermost-leftmost positions, and also parallel rewritings of the same subterm
at several positions using the same axiom. For our compressed representation
the natural approach is to use parallel rewriting of the same subterm at several
positions and by the same rewriting rule.
First we define how a (parallel) rewriting step on a compressed term t is per-
formed:

Algorithm 6.1. Given a compressed TRS R and a ground term t compressed
with G with val(T ) = t, where we assume that R is compressed by the STG GR

as {Li → Ri | i = 1, . . . , n} and Li, Ri are term nonterminals. A term rewriting
step is performed as follows:
First we compute a submatch of some left hand side Li of a rule Li → Ri of R
in val(T ). This will lead to a grammar that is an extension of G ∪ GR and the
position of the submatch. The different cases according to Algorithm 4.1 are:

1. The submatch has produced a compressed σ and a compressed position p
of σ(val(Li)) in t. If there is a term nonterminal A that contributes to t
and such that val(A) = σ(val(Li)), then replace the rule for A by A ::= Ri.
and also add the nonterminals and rules representing the compressed
substitution σ in the form x ::= Ax to the result STG.
The other case is that the rule for A ::= D[A′] and the match of Li is
in the middle between A and A′. Based on the returned position, we
construct context nonterminals D′, D′′, (and the corresponding rules) such
that val(D′D′′) = val(D) and val(D′′[A]) = σ(val(Li)). The rewrite step
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is then performed by replacing the rule A ::= D[A′] by A ::= D′[Ri], and
also adding to the resulting STG the compressed substitution σ in the form
x ::= Ax for all the substituted variables.

2. This is an alternative treatment of the deduction step in the exceptional case
that the rule can rewrite a context into another context, which is potentially
a very efficient deduction in our the representation
Let the submatch have produced a substitution σ := {x1 7→ A1, . . . , xm 7→
Am}, such that the term val(Li) has exactly one occurrence of the vari-
able x1, and val(Ri) has at most one occurrence of the variable x1. Let
σ1 := {x2 7→ A1, . . . xm 7→ Am}. Assume that val(σ1(val(Li))) = val(C[x1]),
where C is a context nonterminal representing a ground context, and there
is a context nonterminal D that contributes to t, and val(D) contains an
occurrence of val(C) that is aligned and completely contained in val(D).
Then the exceptional rewriting can take place:
The first step is to construct the rule for D as D ::= D1D2; D2 ::= CD3,
with fresh context nonterminals D1, D2, D3 and the corresponding rules. If
x1 is not contained in val(Ri), then the rewriting step turns D into a term
nonterminal with rule D ::= D1[Ri], and also adjusts the grammar bottom-
up by turning several context nonterminals into term nonterminals. If x1

is contained in val(Ri), then the rewriting step consists of constructing a
nonterminal C ′ such that val(Ri) = val(C ′[x1]) and then by replacing the
rule D2 ::= CD3 with D2 ::= C ′D3. Of course, also the substitution σ1 has
to be added to the grammar.

Now we estimate the size increase of the STG that is used to represent tn which
is the final term after n rewrite steps, i.e., t →R . . . →R tn. We distinguish
between the STG GR for the equations and the STG Gn for compression of tn.
Repeating the term rewriting step is done by using a fresh copy of GR, the STG
compressing the TRS R.
In order to complement the estimations in Lemma 2.5, we have to check the size
increase of the substitution, and the estimations for the rewrite step itself.

Lemma 6.2. Let M = maxi(|Var(ri, li)|).
A rewrite step consists of M instantiation steps, which can be seen as indepen-
dent, since we make a new copy of GR for instantiating every variable. The re-
placement of Li by Ri may increase the depth and Vdepth at most by depth(GR).
and for every such step transforming G into G′, the following estimation holds:

Vdepth(G′, V ′) ≤ Vdepth(G, V ) + log(depth(G)) + depth(R)
|V ′| ≤ |V |+ M
|G′| ≤ |G|+ |M |depth(G) + M + depth(G)2 + |R|

Proof. The contributions are: (i) for every variable x ∈ Var(val(S)): its substitu-
tion construction, i.e. constructing Var(s) times a subterm and then making an
instantiation. (ii) Rearranging G such that the position of val(σ(Li)) is explicit,
and (iii) Modifying the grammar rule by replacing Li by Ri.
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The construction (i) is independent from (ii) and (iii). Constructing the sub-
stitution consists in |Var(s)| times independently constructing a subterm of t,
which increases the size by M ˙depth(G), the Vdepth only by log(depth(G)) (since
we can take the maximum) and by instantiating, which adds M rules, adds M
variables to V , but does not change the Vdepth. Rearranging requires to con-
struct a prefix-context of a term and changing a grammar rule. This may add
depth(G)2 nonterminals for the prefix and the nonterminal Li plus its definition,
which means to add |R| to the size. The depth increase is at most depth(R).

Lemma 6.3. Let there be a sequence Gi, i = 0, . . . , n of grammars generated by
extension or transformation and sets Vi, i = 0, . . . , n of instantiated nontermi-
nals, such that the following holds:

Vdepth(Gi, Vi) ≤ Vdepth(Gi−1, Vi−1) +O(log(depth(Gi−1)))
|Vi| ≤ O(i)
|Gi| ≤ |Gi−1|+O(depth(Gi−1)2)

Then |Gn| is bounded by O(|G0| ∗ n7).

Proof. Since |Vi| is the sum of the number of variables in the used term rewrite
rule, we have |Vi| ≤ i ∗M , where M = maxi(|Var(ri)|).
From this bound and Lemma 2.6, we have depth(Gi) = O(i)Vdepth(Gi, Vi).
Therefore, the recurrence for Vdepth(Gi, Vi) may be replaced by

Vdepth(Gi+1, Vi+1) ≤ Vdepth(Gi, Vi) +O(log Vdepth(Gi, Vi)) +O(log i). (6.1)

A first bound for these recurrence can be computed relaxing the inequal-
ity as Vdepth(Gi+1, Vi+1) ≤ 3Vdepth(Gi, Vi) + O(log i) that has as solution
Vdepth(Gi, Vi) ≤ 3i

(
Vdepth(G0, V0) + O(log i)

)
= 3iO(log i). Replacing this

approximate solution in (6.1) results in

Vdepth(Gi+1, Vi+1) ≤ Vdepth(Gi, Vi) +O
(
log

(
3iO(n)

))
+O(log i)

= Vdepth(Gi, Vi) +O(i)

Now we get the approximate solution Vdepth(Gi, Vi) = O(i2). Therefore,
depth(Gi) = O(i)Vdepth(Gi, Vi) = O(i3). Replacing this in the recursion for
|Gi| we get |Gi+1| = |Gi|+O(i6). Hence, |Gn| ≤ O(n7).

Theorem 6.4. Let R be a TRS and t be a term compressed with an STG. Then
a sequence of n term rewriting steps according to Algorithm 6.1 can be performed
in polynomial time. The size increase by n term rewriting steps is O(n7), where
we assume that the R is O(1)

Proof. The size increase follows from Lemma 6.3, and since we assume that R
is constant during the iterated rewriting. The time estimation holds also, since
every construction step can be performed in polynomial time and the total size
of the final grammar is polynomial.
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Note that the degree of the polynomial for the estimation of the worst case
running time is worse than the space bound. The term rewriting sequence has
to be constructed (+ 1) and Plandowski equality check has to be used in every
construction step, which contributes a factor of 3 in the exponent. But note that
there are faster randomized equality checks.

6.1 Possible Extensions

A further example shows that more expressive formalisms than STGs may have
better compression properties, and may be a subject of future research.
Main theorem 6.4 tells us that the term rewriting algorithm on STG-compressed
terms will produce a polynomial-sized grammar depending on the number of
steps. This example will show that even for well-behaved equational rules an
exponential number of rewrites may be necessary to obtain an irreducible term.
This example also shows that an extension of STGs to linear SLCF tree gram-
mars as in [BLM08,LMSS09a], i.e. tree grammars using contexts with multiple
holes, where every hole occurs once, does not help. Let the term rewriting sys-
tem be f(x) → g(x, x), and let the term fn(a) be represented as C1 ::= f(·),
C2 = C1C1, C3 = C2C2, . . .Cn+1 = CnCn, T ::= Cn+1(x). A term rewriting
step on T using f(x) → g(x, x) that is applied to C1 would produce C1 := g(., .),
which is syntactically not permitted, since there would be two holes. A complete
rewriting sequence of fn(a) would produce a binary tree t′ of depth 2n with
22n

leaves. Since an STG G can produce only terms of size 2|G|, the STG for t′

would be of exponential size. The result of the rewrite could be easily expressed
in a non-linear SLCF tree grammar [BLM08], however, the complexity of the
equality check is currently only known to be in PSPACE, and also the complex-
ity of all other operations like matching, extensions, rewriting etc. has not been
investigated yet.

7 Future Research and Conclusion

We have shown that finding an instance of a term s as a subterm of t under
grammar compression with STGs can be done in time O(nO(|Var(s)|), and that
there are several cases where the algorithm or variants of the algorithm run in
polynomial time. Also, if we assume that the STG for a compressed term rewrit-
ing system is constant, then a sequence of n (parallel) rewrites of a compressed
term can be computed in polynomial time.
Further research is to find improved (polynomial) algorithms for the submatching
problem in the further cases, and to determine the complexity of the general case
of submatching.
Another line of research is to investigate the submatching in generalizations of
STGs as in linear and nonlinear SLCF tree grammars.
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