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1 Introduction and Motivation

Programming languages are often described by their syntax and their operational
semantics, which in principle enables the implementation of an interpreter and
a compiler in order to put the language into use. Of course, also optimizations
and transformations into low-level constructs are part of the implementation.
The justification of correctness is in many cases either omitted, informal or by
intuitive reasoning.

Here we want to pursue the approach using contextual semantics for justifying
the correctness of optimizations and compilation and to look for methods for
automating the correctness proofs of transformations and optimizations.

We assume given the syntax of programs P , a deterministic reduction re-
lation → ⊆ P × P that represents a single execution step on programs and
values that represent the successful end of program execution. The reduction
of a program may be non-terminating due to language constructs that allow
iteration or recursive definitions. For a program P ∈ P we write P⇓ if there
is a sequence of reductions to a value, and say P converges (or terminates
successfully) in this case. Then equivalence of programs can be defined by
P1 ∼ P2 ⇐⇒

(
for all C : C[P1]⇓ ⇐⇒ C[P2]⇓

)
, where C is a context, i.e.

a program with a hole [·] at a single position. Justifying the correctness of a
program transformation P ; P ′ means to provide a proof that P ∼ P ′. Unfor-
tunately, the quantification is over an infinite set: the set of all contexts, and
the criterion is termination, which is undecidable in general. Well-known tools to
ease the proofs are context lemmas [Mil77], ciu-lemmas [FH92] and bisimulation,
see e.g. [How89].

The reduction relation → is often given as a set of rules li → ri similarly
to rewriting rules, but extended with different kinds of meta-variables and some
other constructs, together with a strategy determining when to use which rule
and at which position. In order to prove correctness of a program transformation
that is also given in a rule form s1 → s2, we have to show that σ(s1) ∼ σ(s2) for
all possible rule instantiations σ i.e. C[σ(s1)]⇓ ⇐⇒ C[σ(s2)]⇓ for all contexts C.
Using the details of the reduction steps and induction on the length of reductions,
the hard part is to look for conflicts between instantiations of s1 and some
li, i.e. to compute all the overlaps of li and s1, and the possible completions
under reduction and transformation. This method is reminiscent of the critical
pair criterion of Knuth-Bendix method [KB70] but has to be adapted to an
asymmetric situation, to extended instantiations and to higher-order terms.

In this paper we develop a unification method to compute all overlaps of left
hand sides of a set of transformations rules and the reduction rules of the calculus
LR which is a call-by-need lambda calculus with a letrec-construct, constructors,
case-expressions and a seq-construct for strict evaluation (see [SSSS08]). We show
that a custom-tailored unification algorithm can be developed that is decidable
and produces a complete and finite set of unifiers for the required equations.
The following expressiveness is required: Many-sorted terms in order to avoid
most of the junk solutions; context variables which model the context meta-
variables in the rule descriptions; context classes allow the unification algorithm



Computing Overlaps by Unification in the λ-calculus LR 3

to treat different kinds of context meta-variables in the rules; the equational
theory of multi-sets models the letrec-environment of bindings; Empty sorts are
used to approximate scoping rules of higher-order terms, where, however, only
the renaming can be modeled. Since the reduction rules are linear in the meta-
variables, we finally only have to check whether the solutions produce expressions
that satisfy the distinct variable convention. Binding Chains in letrec-expressions
are a syntactic extension that models binding sequences of unknown length in
the rules. This also permits to finitely represent infinitely many unifiers, and
thus is indispensable for effectively computing all solutions.

The required complete sets of diagrams can be computed from the overlaps
by applying directed transformations and reduction rules. These can be used to
prove correctness of program transformations by inductive methods.

2 An Extended Lambda Calculus with letrec

We will throughout use the call-by-need calculus LR from [SSSS08]. In this
section we introduce its syntax and semantics.

2.1 The Call-by-Need Calculus LR

Syntax and Reduction Rules The expressions of the call-by-need lambda
calculus LR from [SSSS08] consist of variables, applications, abstractions,
constructor-expressions, case-expressions and recursive let-expressions.

There are finitely many constants, called constructors. The set of constructors
is partitioned into (non-empty) types, i.e. we assume that a type T is the set of its
constructors. For every type, we let T = {cT,i, i = 1, . . . , |T |}. Every constructor
has an arity ar(cT,i) ≥ 0.
The syntax for expressionsE, case alternativesAlt and patterns Pat is as follows:

s, s1, . . . , sn ∈ E ::= x | (c s1 . . . sar(c)) | (seq s1 s2) | (caseT s Alt1 . . .Alt |T |)

| (s1 s2) | (λx.s) | (letrec x1 = s1, . . . , xn = sn in s)

Alt ::= (Pat → s)

Pat ::= (c x1 . . . xar(c))

where x, xi are variables, and where c denotes a constructor. Within each individ-
ual pattern in a case, variables are not repeated. In a case-expression of the form
(caseT . . .), for every constructor cT,i, i = 1, . . . , |T | of type T , there is exactly
one alternative with a pattern of the form (cT,i y1 . . . yn) where n = ar(cT,i).

We assign the names application, abstraction, constructor-application, seq-
expression, case-expressions or letrec-expression to the expressions (s t), (λx.s),
(c s1 . . . sn), (seq s1 s2), (caseT E Alt1 . . . Alt|T |), (letrec x1 = s1, . . . , xn =
sn in t), respectively.

The pair x = s of a variable x and an expression s is called a letrec-binding or
just binding. A group of letrec-bindings, also called environment, is abbreviated
as Env. A value v is defined as an abstraction or a constructor application.
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We assume that variables xi in letrec-bindings are all distinct, that letrec-
expressions are identified up to reordering of binding-components (i.e. the
binding-components can be interchanged), and that, for convenience, there is at
least one binding, i.e. we assume that there are no empty letrec-environments.

Letrec-bindings are recursive, i.e., the scope of xj in (letrec x1 =
s1, . . . , xn−1 = sn−1 in sn) are all expressions si with 1 ≤ i ≤ n. Variable bind-
ing primitives are λ, letrec, and patterns in alternatives of case-expressions.
Free and bound variables in expressions and α-renamings are defined as usual.

The set of free variables in t is denoted as FV (t). We use the distinct variable
convention (DVC ), i.e., all bound variables in expressions are assumed to be
distinct, and free variables are distinct from bound variables. The reduction rules
are assumed to implicitly α-rename bound variables in the result if necessary.

We use the notation {xg(i) = sh(i)}
n
i=m for the chain xg(m) =

sh(m), xg(m+1) = sh(m+1), . . . , xg(n−1) = sh(n−1) of bindings, e.g. {xi+1 = si}ni=m

means the bindings xm+1 = sm, xm+2 = sm+1 . . . , xn = sn−1, where all the xi

are distinct variables. Notice, that chains run from m to n − 1 in contrast to
[SSSS08], where they run from m to n. The reason for this lies in the unification
algorithm, where we need to split chains, which is more conveniently done on
our modified chains.

A context C is an expression according to the syntax of LR where the symbol
[·], the hole, is also allowed as expression, such that [·] occurs exactly once (as
sub-expression) in C. We distinguish the following different context classes:

Definition 2.1. Application contexts A, general contexts C, reduction contexts
R and surface contexts S are defined by the following grammars:

A ∈ A ::= [·] | (A s) | (caseT A alts) | (seq A s)
R ∈ R ::= A | letrec Env in A | letrec y1 = A1,Env in A[y1]

| letrec y1 = A1, {yi+1 = Ai+1[yi]}ni=1,Env in A[yn]
S ∈ S ::= [·] | (S s) | (s S) | (c s1 . . . si−1 S si+1 . . . sar(c))

| (letrec x1 = s1, . . . , xn = sn in S) | (letrec Env , y = S in s)
| seq S s | seq s S | caseT S alts | (caseT s alts(Pat → S) alts)

C ∈ C ::= [·] | (C s) | (s C) | (c s1 . . . si−1 C si+1 . . . sar(c)) | (λx.C)
| (letrec x1 = s1, . . . , xn = sn in C) | (letrec Env , x = C in s)
| (seq C s) | (seq s C) | caseT C alts | (caseT s alts(Pat → C) alts)

where s, si denote expressions.

Given a term t and a context C, we write C[t] for the LR-expression con-
structed from C by plugging t into the hole, i.e, by replacing [·] in C by t, where
this replacement is meant syntactically, i.e., a variable capture is permitted. Note
that α-renaming of contexts is restricted.

Remark 2.2. A reduction context R may contain a chain of the form {yi+1 =
Ai+1[yi]}ni=1, where the Ai could be the empty context. This differs from the
calculus in [RSS11] where these application-contexts are required to be non-
empty.
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Definition 2.3. The unrestricted reduction rules for the calculus LR are defined
in Figures 1 and 2. Several reduction rules are denoted by their name prefix, e.g.
the union of (llet-in) and (llet-e) is called (llet), and we speak also of the rules
(cp), (lll), (seq), and (case).

(lbeta) ((λx.s) r) → (letrec x = r in s)
(cp-in) (letrec x1 = v, {xi+1 = xi}

m
i=1,Env in C[xm])

→ (letrec x1 = v, {xi+1 = xi}
m
i=1,Env in C[v])

where v is an abstraction
(cp-e) (letrec x1 = v, {xi+1 = xi}

m
i=1,Env , y = C[xm] in r)

→ (letrec x1 = v, {xi+1 = xi}
m
i=1,Env , y = C[v] in r)

where v is an abstraction
(llet-in) (letrec Env1 in (letrec Env2 in r))

→ (letrec Env1,Env2 in r)
(llet-e) (letrec Env1, x = (letrec Env2 in sx) in r)

→ (letrec Env1,Env2, x = sx in r)
(lapp) ((letrec Env in t) s) → (letrec Env in (t s))
(lcase) (caseT (letrec Env in t) alts) → (letrec Env in (caseT t alts))
(seq-c) (seq v t) → t if v is a value
(seq-in) (letrec x1 = v, {xi+1 = xi}

m
i=1,Env in C[(seq xm t)])

→ (letrec x1 = v, {xi+1 = xi}
m
i=1,Env in C[t])

if v is a value
(seq-e) (letrec x1 = v, {xi+1 = xi}

m
i=1,Env , y = C[(seq xm t)] in r)

→ (letrec x1 = v, {xi+1 = xi}
m
i=1,Env , y = C[t] in r)

if v is a value
(lseq) (seq (letrec Env in s) t) → (letrec Env in (seq s t))

Fig. 1: Unrestricted reduction rules, part a

A standardizing order of reduction is the normal order reduction (see defini-
tions below) where reduction takes place only inside reduction contexts.

The normal order reduction of LR in [SSSS08] is defined via a search for a
normal-order redex and placing labels in the expression. We will give an equiv-
alent, explicit definition using contexts, since this explicit definition will be the
basis for the computation of overlaps of reductions and transformation rules.

Definition 2.4. Normal order reduction
no
−→ (called no-reduction for short) is

defined by the reduction rules in Figure 3 and 4. There are special cases for
constructors of arity = 0, or when parts of the environment are not available
or omitted, which can easily be derived from these rules by instantiation. After
instantiation of rules, empty environments are not permitted.

Note that the normal order reduction is unique. A weak head normal form in
LR (WHNF) is defined as either an abstraction λx.s, or a constructor application
(c s1 . . . sn) or an expression (letrec Env in v), where v is an abstraction or a
constructor application.
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(case-c) (caseT (ci
−→
t ) . . . ((ci

−→y ) → t) . . .) → (letrec y1 = t1, . . . , yn = tn in t)
where n = ar(ci) ≥ 1

(case-c) (caseT ci . . . (ci → t) . . .) → t if ar(ci) = 0

(case-in) letrec x1 = (ci
−→
t ), {xi+1 = xi}

m
i=1, Env

in C[caseT xm . . . ((ci
−→z ) . . . → t) . . .]

→ letrec x1 = (ci
−→y ), y1 = t1, . . . , yn = tn, {xi+1 = xi}

m
i=1, Env

in C[(letrec z1 = y1, . . . , zn = yn in t)]
where n = ar(ci) ≥ 1 and yi are fresh variables

(case-in) letrec x1 = ci, {xi+1 = xi}
m
i=1, Env in C[caseT xm . . . (ci → t) . . .]

→ letrec x1 = ci, {xi+1 = xi}
m
i=1, Env in C[t]

if ar(ci) = 0

(case-e) letrec x1 = (ci
−→
t ), {xi+1 = xi}

m
i=1,

u = C[caseT xm . . . ((ci
−→z ) → r1) . . . ], Env

in r2
→ letrec x1 = (ci

−→y ), y1 = t1, . . . , yn = tn, {xi+1 = xi}
m
i=1,

u = C[(letrec z1 = y1, . . . , zn = yn in r1)], Env
in r2

where n = ar(ci) ≥ 1 and yi are fresh variables
(case-e) letrec x1 = ci, {xi+1 = xi}

m
i=1, u = C[caseT xm . . . (ci → r1) . . .], Env

in r2
→ letrec x1 = ci, {xi+1 = xi}

m
i=1 . . . , u = C[r1], Env in r2

if ar(ci) = 0

Fig. 2: Unrestricted reduction rules, part b

The transitive closure of the reduction relation → is denoted as
+
−→ and the

transitive and reflexive closure of→ is denoted as
∗
−→. Respectively we use

no,+
−−−→

for the transitive closure of the normal order reduction relation,
no,∗
−−−→ for its

reflexive-transitive closure, and
no,k
−−−→ to indicate k normal order reduction steps.

If for an expression t there exists a (finite) sequence of normal order reductions

t
no,∗
−−−→ t′ to a WHNF t′, we say that the reduction converges and denote this as

t ⇓ t′ or as t⇓ if t′ is not important. Otherwise the reduction is called divergent
and we write t⇑.

2.2 Chains of Bindings in letrec Environments

Chains of the form {xi+1 = Ai+1[xi]}
n
i=m play a particular role in reduction

rules. The binding chain starts with the binding xm+1 = Am+1[xm], i.e. xm

denotes a variable that does not occur at a binder position inside the chain (it
is free in the chain but may occur at a binder position outside the chain, as
it usually does in the reduction rules). The last letrec-binding in the chain is
xn = An[xn−1], which means that xn denotes a binder.

In the reduction rules from figure 1, 2, 3 and 4 there are two different types
of binding chains:
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(no, lbeta) R[(λx.s) r] → R[letrec x = r in s]
(no, cp-in) letrec x1 = v, {xi+1 = xi}

m
i=1,Env in A[xm]

→ letrec x1 = v, {xi+1 = xi}
m
i=1,Env in A[v]

where v is an abstraction.
(no, cp-e) letrec x1 = v, {xi+1 = xi}

m
i=1, y1 = A1[xm],

{yi+1 = Ai+1[yi]}
n
i=1,Env in A[yn]

→ letrec x1 = v, {xi+1 = xi}
m
i=1, y1 = A[v],

{yi+1 = Ai+1[yi]}
n
i=1,Env in A[yn]

where v is an abstraction and A1 is a non-empty context.
(no, llet-in) (letrec Env1 in (letrec Env2 in r))

→ (letrec Env1,Env2 in r)
(no, llet-e) letrec y1 = (letrec Env1 in r), {yi+1 = Ai+1[yi]}

n
i=1,Env2 in A[yn]

→ letrec y1 = r, {yi+1 = Ai+1[yi]}
n
i=1,Env1,Env2 in A[yn]

(no, lapp) R[((letrec Env in r) t)] → R[(letrec Env in (r t))]
(no, lcase) R[caseT (letrec Env in r) alts)]

→ R[(letrec Env in (caseT r alts))]
(no, lseq) R[seq (letrec Env in r) s)] → R[(letrec Env in (seq r s))]

Fig. 3: Normal order reduction rules of LR, part 1

1. N-chains of the form {yi+1 = Ai+1[yi]}ni=m where Ai+1 is a (possible empty
A context). They occur only in normal order reduction rules and are used to
specify the exact position of the normal order redex. In the reduction rules
such chains are accompanied by a leading binding ym = s, where the form
of s varies from rule to rule. We call this binding the origin of the chain.

2. Var-chains of the form {xi+1 = xi}ni=m occur in the cp reduction rules,
seq-rules and case-rules of the calculus LR. When a var-chain occurs in a
reduction rule, it is always accompanied by a leading binding xm = v, which
we call origin of the var-chain.

Var-chains are special instances of A-chains where all application contexts
are empty and the leading binding is of the special form x = v where v is a
value. Both types of chains can be characterized by a relation on their bindings.

2.3 Contextual Equivalence

The semantic foundation of our calculus LR is the equality of expressions defined
by contextual equivalence.

Definition 2.5 (Contextual Preorder and Equivalence). Let s, t be LR-
expressions. Then:

s ≤c t iff ∀C : C[s]⇓⇒ C[t]⇓
s ∼c t iff s ≤c t ∧ t ≤c s

Definition 2.6. A program transformation T ⊆ LR × LR is a binary relation
on LR-expressions. A program transformation is called correct iff T ⊆ ∼c.
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(no, case) R[(caseT (ci
−→
t ) . . . (ci

−→x → t) . . .)]
→ R[letrec x1 = t1, . . . , xn = tn in t] if ar(ci) ≥ 1

(no, case) letrec x1 = c
−→
t , {xi+1 = xi}

m
i=1,Env

in A[caseT xm c −→y → t, alts]
→ letrec z1 = t1, . . . , zn = tn, x1 = c −→z , {xi+1 = xi}

m
i=1,Env

in A[letrec y1 = z1, . . . , yn = zn in t]

(no, case) letrec x1 = c
−→
t , {xi+1 = xi}

m
i=1, y1 = A[caseT xm c −→u → t, alts],

{yi+1 = Ai+1[yi]}
n
i=1,Env in A[yn]

→ letrec z1 = t1, . . . , zn = tn, x1 = c −→z , {xi+1 = xi}
m
i=1,

y1 = A[letrec u1 = z1, . . . , un = zn in t], {yi+1 = Ai+1[yi]}
n
i=1,

Env in A[yn]
(no, seq) R[(seq v s] → R[t] if v is a value
(no, seq) letrec x1 = v, {xi+1 = xi}

m
i=1,Env in A[seq xm t]

→ letrec x1 = v, {xi+1 = xi}
m
i=1,Env in A[t] if v is a value

(no, seq) letrec x1 = v, {xi+1 = xi}
m
i=1, y1 = A[seq xm t],

{yi+1 = Ai+1[yi]}
n
i=1,Env in A[yn]

→ letrec x1 = v, {xi+1 = xi}
m
i=1,

y1 = A[t], {yi+1 = Ai+1[yi]}
n
i=1,Env in A[yn] if v is a value

Fig. 4: Normal order reduction rules of LR, part 2

Program transformations are usually given in a format similarly to reduction
rules, as in Figure 1, 2 and Figure 3 and 4. A program transformation T is

written as s
T
−→ t. Here we restrict our attention for the sake of simplicity to the

program transformations that are given by the reduction rules in Figure 1, 2.

An important tool to prove contextual equivalence is a context lemma (see for
example [Mil77], [SSS10],[SSSS08]), which allows to restrict the class of contexts
that have to be considered in the definition of the contextual equivalence from
general C to R contexts.

However, often S-contexts are more appropriate for computing overlaps and
closing the diagrams, for example there are cases, where the forking diagrams
cannot be closed using reductions in R-contexts. To use transformations in all
possible contexts will lead to diagrams which in several cases prevent induction
proofs on the lengths of reductions, since duplicated reductions may be required.
The S-contexts do not permit holes in abstractions, so the major source of
duplicating reductions is omitted. The extension of the reasoning to all contexts
is done using the context lemma for surface contexts. So we will use S-contexts
in the following for transformations instead of R-contexts.

Lemma 2.7. Let s, t be LR-expressions and S a context of class S. (S[s]⇓ ⇒
S[t]⇓) iff ∀C : (C[s]⇓⇒ C[t]⇓); i.e. s ≤c t.

Proof. A proof of this lemma when the contexts are in class R is in [SSS10] (and
also in [SSSS08]). Since every R-context is also an S-context, the lemma holds.
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To prove the correctness of a transformation s
T
−→ t we have to prove that

s ∼c t, which is equivalent to s ≤c t ∧ t ≤c s. By Definition 2.5 this amounts
to showing ∀C : C[s]⇓ ⇒ C[t]⇓ ∧ C[t]⇓ ⇒ C[s]⇓. The context lemma yields
that it is sufficient to show ∀S : S[s]⇓ ⇒ S[t]⇓ ∧ S[t]⇓ ⇒ S[s]⇓. We restrict
our attention here to S[s]⇓ ⇒ S[t]⇓ because S[t]⇓ ⇒ S[s]⇓ could be treated

in a similar way. To prove s ∼c t we assume that s
T
−→ t and S[s]⇓ holds,

i.e. there is a WHNF s′, such that S[s]
no,k
−−−→ s′ (see Figure 5(a)). It remains

to show that there also exists a sequence of normal order reductions from S[t]
to a WHNF. This can often be done by induction on the length k of the given

normal order reduction S[s]
no,k
−−−→ s′ using complete sets of reduction diagrams.

Therefore we split S[s]
no,k
−−−→ s′ into S[s]

no
−→ so

no,k−1
−−−−−→ s′ (see Figure 5(b)).

Then an applicable forking diagram defines how the fork s0
no
←− S[s]

T
−→ S[t]

can be closed specifying two sequences of transformations such that a common
expression t′ is eventually reached: one starting from S[t] consisting only of no-
reductions and one starting from s0 consisting of some other reductions (that
are not normal order) denoted by T ′ in Figure 5(c).

S[s]

no,k

��

T
// S[t]

s′

(a) Forking in the
proof of s ≤c t

S[s]

no

��

T
// S[t]

s0

no,k−1
��

s′

(b) Splitting the
no-sequence

S[s]

no

��

T
// S[t]

no,∗

��
�

�

s0

no,k−1
��

T ′,∗

//___ t′

s′

(c) Application of
a forking diagram

S[s]

no

��

T
// S[t]

no,∗

��
�

�

s0

no,k−1
��

T ′,∗

//____ t′

no,∗
��
�

�

s′
T ′,∗

//___ t′′WHNF

(d) Inductive
proof of s ≤c t

Fig. 5: Sketch of the correctness proof for s
T
−→ t

A set of forking diagrams for a transformation T is complete if the set com-
prises an applicable diagram for every forking situation. If we have a complete set
of forking diagrams we often can inductively construct a terminating reduction
sequence for S[t] if S[s]⇓ (as indicated in Figure 5(d)). To prove S[t]⇓ ⇒ S[s]⇓
another complete set of diagrams called commuting diagrams is required which
usually can be deduced from a set of forking diagrams (see [SSSS08]). We restrict
our attention to complete sets of forking diagrams.

2.4 Complete Sets of Forking and Commuting Diagrams

Reduction diagrams describe transformations on reduction sequences. They are
used to prove the correctness of program transformations.
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Non-normal order reduction steps for the language LR are called internal
and denoted by a label i. An internal reduction in a reduction context is marked
by iR, and an internal reduction in a surface context by iS.

A reduction sequence is of the form t1 → . . . → tn, where ti are LR-
expressions and ti → ti+1 is a reduction as defined in Definition 2.3. In the
following definition we describe transformations on reduction sequences. There-
fore we use the notation

iX,T
−−−→ .

no,a1

−−−→ . . .
no,ak−−−→ ;

no,b1
−−−→ . . .

no,bm
−−−−→ .

iX,T1

−−−−→ . . .
iX,Th−−−−→

for transformations on reduction sequences. Here the notation
iX,T
−−−→ means a

reduction with iX ∈ {iC, iR, iS}, and T is a reduction from LR.
In order for the above transformation rule to be applied to the prefix of the

reduction sequence RED, the prefix has to be s
iX,T
−−−→ t1

no,a1

−−−→ . . . tk
no,ak−−−→ t.

Since we will use sets of transformation rules, it may be the case that there is a
transformation rule in the set, where the pattern matches a prefix, but it is not
applicable, since the right hand side cannot be constructed.

We will say the transformation rule

iX,T
−−−→ .

no,a1

−−−→ . . .
no,ak−−−→ ;

no,b1
−−−→ . . .

no,bm
−−−−→ .

iX,T1

−−−−→ . . .
iX,Th−−−−→

is applicable to the prefix s
iX,T
−−−→ t1

no,a1

−−−→ . . . tk
no,ak,−−−−→ t of the reduction

sequence RED iff the following holds:

∃y1, . . . , ym, z1, . . . , zh−1 : s
no,b1
−−−→ y1 . . .

no,bm
−−−−→ ym

iX,T1

−−−−→ z1 . . . zh−1
iX,Th−−−−→ t

The transformation consists in replacing this prefix with the result:

s
no,b1
−−−→ t′1 . . . t

′
m−1

no,bm
−−−−→ t′m

iX,T1

−−−−→ t′′1 . . . t
′′
h−1

iX,Th−−−−→ t

where the terms in between are appropriately constructed.

Definition 2.8.
• A complete set of forking diagrams for the reduction

iX,T
−−−→ is a set of trans-

formation rules on reduction sequences of the form

no,a1

←−−− . . .
no,ak←−−− .

iX,T
−−−→ ;

iX,T1

−−−−→ . . .
iX,T

k′

−−−−→ .
no,b1
←−−− . . .

no,bm
←−−−−,

where k, k′ ≥ 0,m ≥ 1, h > 1, such that for every reduction sequence th
no
←−

. . . t2
no
←− t1

iX,T
−−−→ t0, where th is a WHNF, at least one of the transformation

rules from the set is applicable to a suffix of the sequence.
The case h = 1 must be treated separately in the induction base.

• A complete set of commuting diagrams for the reduction
iX,T
−−−→ is a set of

transformation rules on reduction sequences of the form

iX,red
−−−−→ .

no,a1

−−−→ . . .
no,ak−−−→ ;

no,b1
−−−→ . . .

no,bm
−−−−→ .

iX,red1

−−−−−→ . . .
iX,red

k′

−−−−−→,
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where k, k′ ≥ 0,m ≥ 1, h > 1, such that for every reduction sequence t0
iX,T
−−−→

t1
no
−→ . . .

no
−→ th, where th is a WHNF, at least one of the transformation rules

is applicable to a prefix of the sequence.
In the proofs below using the complete sets of commuting diagrams, the case

h = 1 must be treated separately in the induction base.

The two different kinds of diagrams are required for two different parts of
the proof of the contextual equivalence of two terms.

In most of the cases, the same diagrams can be drawn for a complete set of
commuting and a complete set of forking diagrams, though the interpretation is
different for the two kinds of diagrams. The starting term is in the northwestern
corner, and the normal order reduction sequences are always downwards. where
the deviating reduction is pointing to the east. There are rare exceptions for
degenerate diagrams, which are self explaining.

For example, the forking diagram
no,a
←−−− ·

iC,llet
−−−−→ ;

iC,llet
−−−−→ ·

no,a
←−−− is

represented as

·
iC,llet

//

no,a

��

·

no,a

��
�

�

�

·
iC,llet

//___ ·

The solid arrows represent given reductions and dashed arrows represent
existential reductions. A common representation is without the dashed arrows,
where the interpretation depends on whether the diagram is interpreted as a
forking or a commuting diagram.We may also use the * and +-notation of regular
expressions for the diagrams. The interpretation is obvious and is intended to
stand for an infinite set accordingly constructed.

Note that the selection of the reduction label is considered to occur outside
the transformation rule, i.e. if

no,a
−−−→ occurs on both sides of the transformation

rule the label a is considered to be the same on both sides.

Example 2.9. Example forking diagrams are

·
iS,llet-e

//

no,llet-in

��

·

no,llet-in

��
�

�

�

·
iS,llet-e

//______ ·

·
iS,llet-e

//

no,llet-in
��

·

no,llet-in

||x
x

x
x

x
x

x

·
no,llet-e

��
�

�

·

where the dashed lines indicate existentially quantified reductions and the prefix
iS marks that the transformation is not a normal order reduction (but a so
called internal reduction which we also call transformation), and occurs within
a surface context. By application of the diagram a fork between a (no,llet-e)
and the transformation (llet-in) can be closed. The forking diagrams specify two
reduction sequences such that a common expression is eventually reached. The
following reduction sequence illustrates an application of the above diagram:
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(letrec Env1, x = (letrec Env2 in s) in (letrec Env3 in r))
no,llet-in
−−−−−−→ (letrec Env1,Env3, x = (letrec Env2 in s) in r)

iS∨no,llet-e
−−−−−−−−→ (letrec Env1,Env3,Env2, x = s in r)
the last reduction is either an no-reduction if r = A[x]
otherwise it is an internal reduction
iS,llet-e
−−−−−→ (letrec Env1,Env2, x = s in (letrec Env3 in r))
no,llet-in
−−−−−−→ (letrec Env1,Env2,Env3, x = s in r)

The square diagram covers the case, where (no,llet-in) is followed by an
internal reduction. The triangle diagram covers the other case, where the reduc-
tion following (no,llet-in) is (no,llet-e). One can view the forking diagram as a
description of local confluence.

The computation of a complete set of diagrams by hand is cumbersome and
error-prone. Nevertheless the diagram sets are essential for proving correctness
of a large set of program transformations in this setting. For this reason we are
interested in automatic computation of complete diagram sets.

The first step in the computation of a complete set of forking diagrams for

a transformation T is the determination of all forks of the form
no,red
←−−−− ·

iS,T
−−−→

where red is an no-reduction and T is not a normal order reduction (but a
transformation in an S-context). Such forks are given by overlaps between no-
reductions and the transformation. Informally we say that red and T overlap in
an expression s if s contains a normal order redex red and a T redex in a surface
context. To find an overlap between an no-reduction red and a transformation
T it is sufficient, by definition of the normal order reduction, to determine all
surface-positions in red where a T -redex can occur. This covers all overlaps (the
critical and the non critical). Note that complications are the multi-set property
of the letrec environments, and the instantiations of the context classes.

We devise an algorithm that computes complete sets of forks for the presented
calculus. The main goal of the algorithm is to compute all overlaps between left
hand sides of transformations rules and left hand normal order reduction rules.
The algorithm has different phases:

1. Translate/encode left hand sides of reduction rules into a first-order term
representation and use it to generate unification problems that describe all
overlaps.

2. Solve the unification problems (in a almost first order way);
3. then check if no expressions from different α-equivalence classes were

equated.
4. Instantiate the unification problems that describe the forks with the com-

puted solutions and translate them back to yield all forks in the LR calculus.

2.5 The Transformations

In this section we give the transformations that we want to show correct using
unification. These are the rules in Figure 6 which are variants of the unrestricted
rules in Figures 1, and the (unchanged) case-rules in Figure 2.
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Therefore we also need the deep general DC-contexts, which are the contexts
in C, but not in S. The technical reason is that the (cp)-rules for general contexts
appears too expressive, and cannot be shown to be correct using the technique
of using a context lemma, induction on the length of reductions and overlap
diagrams.

These deep contexts of class DC can defined as all contexts of the form C[D1],
where D1 is a context according to the following grammar:

(λx.C) | (caseT s alts(Pat → C) alts)

where s, si denote expressions, and C general contexts.

(lbeta) ((λx.s) r) → (letrec x = r in s)
(cp-in-S) (letrec x = v,Env in S[x]) → (letrec x1 = v,Env in S[v])

where v is an abstraction
(cp-in-D) (letrec x = v,Env in D[x]) → (letrec x1 = v,Env in D[v])

where v is an abstraction
(cp-e-S) (letrec x = v,Env , y = S[x] in r)

→ (letrec x = v,Env , y = S[v] in r)
where v is an abstraction

(cp-e-D) (letrec x = v,Env , y = D[x] in r)
→ (letrec x = v,Env , y = D[v] in r)

where v is an abstraction
(llet-in) (letrec Env1 in (letrec Env2 in r))

→ (letrec Env1,Env2 in r)
(llet-e) (letrec Env1, x = (letrec Env2 in sx) in r)

→ (letrec Env1,Env2, x = sx in r)
(lapp) ((letrec Env in t) s) → (letrec Env in (t s))
(lcase) (caseT (letrec Env in t) alts) → (letrec Env in (caseT t alts))
(seq-c) (seq v t) → t if v is a value
(seq-in) (letrec x1 = v, {xi+1 = xi}

m
i=1,Env in C[(seq xm t)])

→ (letrec x1 = v, {xi+1 = xi}
m
i=1,Env in C[t])

if v is a constructor application
(seq-e) (letrec x1 = v, {xi+1 = xi}

m
i=1,Env , y = C[(seq xm t)] in r)

→ (letrec x1 = v, {xi+1 = xi}
m
i=1,Env , y = C[t] in r)

if v is a constructor application
(lseq) (seq (letrec Env in s) t) → (letrec Env in (seq s t))

where C ∈ C,S ∈ S ,D ∈ DC

Fig. 6: Transformation rules

It is no restriction to prove correctness only for the transformations in Fig.
6 instead of the transformations in Fig. 1:

Proposition 2.10. Correctness of the transformations in Figure 6 implies the
correctness of the transformations in Figure 1.
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Proof. The correctness of (cp-in-S) and (cp-in-D) implies the correctness of
(cp-in): All contexts are covered, hence the transformation

(letrec x = v,Env in C[x])→ (letrec x1 = v,Env in C[v])

is correct. The correctness of copying over the chain can also be derived using
induction on the length of the variable-chain, since the transformations can also
be applied in the backward direction (i.e. cp-in-S and cp-in-D applied forwards
and backwards can simulate cp-in reductions).

Similar arguments apply to (seq-e) and (seq-in): The correctness of (seq-e)
and (seq-in) for abstraction follows from the correctness of (seq-c) and the the
correctness of the cp-transformations. ⊓⊔

Note that the variable chains in (seq-e) and (seq-in) cannot be omitted in this
way: there is no rule that permits to copy constructor applications. Using further
transformation rules as in [SSSS08] may be an alternative, but is a deviation
which will not be explored here.

3 Encoding Expressions as Terms in a Combination of

Sorted Equational Theories and Context

In this next sections we develop a unification method to compute proper over-
laps for forking diagrams. According to the context lemma for surface contexts
(Lemma 2.7) we restrict the overlaps to the transformations applied in surface
contexts. A complete description of a single overlap is the unification equation

S[lT ]
.
= lno,

where lT is a left hand side in Figure 6, 2, and lno a left hand side in Figure 3,
4 and S means a surface context.

To solve these unification problems we translate the meta-expressions from
transformations and no-reduction rules into many sorted terms with special con-
structs to mirror the syntax of the reduction rules in the lambda calculus, and
to represent the rule-schemas as a finite set of extended first-order rules. The
constructs are i) context variables of different context classesA,S and C, ii) a left-
commutative function symbol env to model that bindings in letrec-environments
can be rearranged, and iii) a special construct Ch(. . .) to represent binding chains
of variable length as they occur in reduction rules.

The presented unification algorithm is applicable to terms with the mentioned
extra constructs.

3.1 Many Sorted Terms and Contexts

Let S = {S1, S2, . . .} be a set of sort symbols and Σ be a many sorted signature
of function symbols, where for each function symbol an arity sort sa : Σ → S∗
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and a result sort sr : Σ → S is given. If sa(f) = (S1, . . . , Sn), sr(f) = S we
usually write f :: S1 × . . .× Sn → S and call it the sort of f .

FO-terms: Let VFO be a S-sorted set of first order variables, where VS
FO are

pairwise disjoint sets of variables of sort S. The set of S-sorted first order terms
TFO (Σ) is inductively defined by: VS

FO ∈ T
S
FO (Σ) if S ∈ S and f(s1, . . . , sn) ∈

T S
FO (Σ) if f ∈ Σ, f :: S1 × . . .× Sn → S and si ∈ T

Si

FO (Σ) for i = 1, . . . , n. We
also use sr(x) to denote the sort of the FO-variable x.

CV -terms: For a set of sorts symbol S and each pair of sorts S = (S1, S2) ∈
S we define a set of context variables VS

CV = {X,Y, Z, . . .} of sort S1 → S2, and
we set VCV =

⋃

S∈S×S V
S
CV . Context variables can be regarded as unary function

symbol, so we abuse the notation sa and sr to denote their arity sort and result
sort. With TCV (Σ) we denote the following inductively defined set of S-sorted
terms over VFO ∪ VCV : T S

FO ⊆ T
S
CV for S ∈ S and X(s) ∈ T S

CV (Σ) if X ∈ VCV

X :: S1 → S and s ∈ T S1

CV (Σ). Positions are strings of integers defining paths
in terms. s|p is the subterm of s at position p and s[t]p is the term where s|p is
replaced by t at position p. If s is a term, then VarO(s) is the set of O-variables
occurring in s, with O ∈ {FO ,CV } and we set Var(t) = VarFO (t) ∪ VarCV (t).

Contexts are terms with one hole. As notation we use t[·]p, where p is the

position of the hole. The sort of t[·]p is S1 → S2 if t ∈ T S2

CV and sr(t|p) = S1.
A term s without occurrences of variables is called ground. We also allow

sorts without any ground term, also called empty sorts. These are sorts, such
that there is no function symbol f in Σ with sr(f) = S. The term s is called
almost ground, if for every variable x ∈ VS

FO in s, the sort of x is an empty sort.
An FO-substitution is a mapping σFO : VFO → TFO such that σ(x) = x

except for a finite set and ∀x ∈ VFO : sr(x) = sr(σFO (x)). Analogously a CV -
substitution maps context variables to context of the correct sort. We confuse σ

with the tuple (σFO , σCV ) and extend it to arbitrary terms in the usual way.

3.2 Encoding of LR-Expressions as Terms

The sort and term structure according to the expression structure of the lambda
calculus LR (from Section 2.1) is as follows. Let S1 = {Exp,BV ,Bind} be a set
of free sorts for expressions, bound variables, bindings (of the form x = s) and
S2 = {Env} be a set of theory sorts for environments (i.e. sets of bindings); we
set SLR = S1 ∪ S2. The following free function symbols are used to encode the
corresponding LR-expressions in ΣLR:

Σ1 =







app :: Exp × Exp → Exp, var :: BV → Exp,
lam :: BV × Exp → Exp, seq :: Exp × Exp → Exp,
let :: Env × Exp → Exp, bind :: BV × Exp → Bind







The LR-calculus further contains constructor- and case expressions, which we
encode by the following function symbols in Σ1:

1. For every constructor c from LR, there is a free function symbol c of arity
ar (c) of sort Exp × . . .× Exp

︸ ︷︷ ︸

ar(c)

→ Exp.
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2. For every type T , there is a function symbol caseT of arity 1 +
∑

i=1,...,|T |(ar(cT,i)+1). The sort of caseT is Exp×BV×. . .×BV×Exp . . .→

Exp. The first argument is the to-be-cased expression, then there are |T |
groups of arguments, one group for every constructor. The group for the
constructor c is represented by the sorts BV × . . .× BV

︸ ︷︷ ︸

ar(c)

×Exp, where we

assume, that the sequence of the constructors is fixed for every type.

For example, for type List, there is a function symbol caseList of sort Exp ×
BV × BV × Exp × Exp → Exp. Argument 1 is for the expressions to be cased,
arguments 2, 3 are the pattern variables of the list-constructor, argument 4 is the
result expression for the list-constructor, and argument 5 is the result expression
for the empty-list constructor. The function symbol caseBool is of sort Exp ×
Exp × Exp → Exp, which can be interpreted like an if-then-else with three
arguments.

In addition there are two theory function symbols:

Σ2 =
{
emptyEnv :: Env , env :: Bind × Env → Env

}

We set ΣLR = Σ1 ∪Σ2. Note that there are free function symbols that map
from Env to Exp, but there is no free function symbol that maps to Env . Note
also that there is no function symbol with resulting sort BV , hence this is an
empty sort, and every term of sort BV is a variable.

Definition 3.1. We use the name FO-LR to denote the SLR-sorted set of terms
TFO (ΣLR) over the SLR-sorted set of first order variables VFO . These are the
terms without context variables, and without variable chains (introduced below).

The language CV-LR is the language FO-LR extended by context variables
of type Exp → Exp. I.e. other context variables are not permitted.

Definition 3.2. Given an LR-expression t (without any meta-constructs like
context-symbols, or variable chains), the translation into a FO-LR-term is de-
noted as JtK.

Given an FO-LR-term s, the backtranslation into LR, which is unique, is
denoted as JsK−. In case this results in a (syntactically) illegal LR-expression, we
simply say that the backtranslation is not defined (on this expression). Otherwise,
we say that s is an LR-syntactically correct term. If the backtranslated expression
JtK satisfies the DVC in LR, then we also say that t satisfies the DVC.

We use the notion syntactically correct instead of LR-syntactically correct.

3.3 Context Classes

Context classes are required to correctly model the overlappings in LR. The
transformations in Figure 6, 2 contain only C-contexts, whereas in Figure 3,
4 there are also A- and R-contexts, and the overlapping also requires surface
contexts S.
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FO-LR contexts are encodings of the respective contexts of C, A, and S-
context where the hole is of sort Exp. We also say that they belong to context
class C, A, or S, respectively. If an almost ground FO-LR context C is of context
class C, A, or S, then this is denoted as C ∈ C, C ∈ A, or C ∈ S, respectively.
There is a natural partial order on context classes: A < S < C, reflecting the
subset ordering. The minimal context class of a context C is denoted as cc(C).
Also arbitrary non-almost ground contexts in CV-LR are associated to context
classes. If all context variables occurring in a context t[·]p have a context class,
then the context class of t[·]p can easily be determined (via backtranslation to
LR, where context variables are translated to arbitrary context of the appropriate
class).

For a term context t[·]p that has no counterpart in LR, cc is undefined, e.g.
cc(lam([·], s)) = CUD. We define CUD as the greatest element in the partial order
of the context classes, i.e. A < S < C < CUD (this is used in the side conditions
of the DC unification rule from ??).

3.4 Context Variables

Similarly to FO-LR-contexts, context variables come equipped with a context
class, which is either A,S or C. With cc(X) we denote the minimal class of
X ∈ VCV . Substitutions have to respect the context class of context variables: if
X is a context variable, then σ(X) must be a context with cc(σ(X)) ≤ cc(X).

3.5 Encoding of letrec-environments

To model the multi-set property of letrec-environments, i.e., that bindings can
be reordered, we use the equational theory of left-commutativity (abbreviated by
LC ).

Definition 3.3. The equational theory LC of a left-commutative function sym-
bol env is defined by the following axiom:

LC env := {env(x, env(y, z)) = env(y, env(x, z))}.

It is denoted by =LC . We also define =LC on FO-LR-contexts, in the natural
way, which is without problems, since the application of LC-axioms keeps the
number of holes.

For the LC -theory and unification modulo LC see [DPR06,DPR98,DV99]).

Lemma 3.4 (Properties of LC ). Let s, t be FO-LR terms.

1. s =LC t implies that |s| = |t|, Var(s) = Var(t) and the root symbols of s, t
agree.

2. For all n ≥ 0 and f ∈ Σn
2 : f(s1, . . . , sn) =LC f(t1, . . . , tn) iff

s1 =LC t1, . . . , sn =LC tn.
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3. If s =LC t, and the root symbol of s is env, then s, t are
of the form s = env(s1, env(s2 . . . env(sn, sn+1) . . .)), and t =
env(t1, env(t2 . . . env(tn, tn+1) . . .)), where all si, ti, i = 1, . . . , n + 1 do not
have env as root symbol, and the following holds: (i) sn+1 =LC tn+1, where
either sn+1 = tn+1 = y for some variable y or sn+1 = tn+1 = emptyEnv;
(ii) there is a bijection φ : {1, . . . , n} → {1, . . . , n} such that si =LC tφ(i) for
all i = 1, . . . , n.

4. env(s1, s2) =LC env(t1, t2) iff s1 =LC t1 ∧ s2 =LC t2 or
∃z : s2 =LC env(t1, z) ∧ t2 =LC env(s1, z).

5. If t[·]p =LC s[·]q, for FO-LR-application contexts t[·]p, s[·]q, then p = q. If
t[x]p =LC s[y]q for variables x, y, then also x =LC y and hence x = y.

6. If bind(y, t1[var (x1)]p) =LC bind(z, t2[var (x2)]q) and cc(t1[·]p) =
cc(t2[·]q) = A, then y = z, x1 = x2, t1[·]p =LC t2[·]q, and p = q.

Proof. The ⇐-directions of claims 2 and 4 are trivial. For item 1 and the ⇒-
directions of items 2 and 4, one can use the fact, that s =LC t implies that there
exists an n ≥ 0 such that s

n
←→LC t.

The claim of item 3 can easily be proved by induction on the length of an
LC-equality deduction env(s1, s2)

n
←→LC env(t1, t2). The claim of item 4 is a

consequence of item 3. The claim of item 5 follows from previous items, by
induction on the structure of the contexts, and since application contexts do
not have a function symbol env as a root symbol of a subcontext on the hole
path. ⊓⊔

It is convenient to have a notation for nested env -expressions:
env*({t1, . . . , tm}∪r) denotes the term env(t1, env(t2, . . . , env(tm, r) . . .)), where
we assume that the root symbol of r is different from env . Due to our assump-
tions on terms of sort Env and the notation, only the constant emptyEnv ,
and a variable of sort Env are possible for r. We also use the notation
env*(M1 ∪ . . .∪Mk ∪ r), where we always assume that the rightmost expression
in the union is of type Env . The convenience of the notation can be seen in the
following situations: If r is a variable, then instantiating it with env*(M ′ ∪ r′)
results in env*(M1 ∪ . . . ∪Mk ∪M ′ ∪ r′). The components in the multi-set may
only be expressions of type Bind , i.e., variables of type Bind or expressions
with top symbol bind . (We will later allow additional constructs (chains) in the
multi-sets).

Lemma 3.4 immediately implies:

Lemma 3.5. For FO-LR-terms the following holds:
env*({s1, . . . , sm} ∪ r1) =LC env*({t1, . . . , tn} ∪ r2) iff m = n, r1 = r2 = y for
some variable y or r1 = r2 = emptyEnv; and there is a bijection φ : {1, . . . , n} →
{1, . . . , n}, such that si =LC tφ(i).

We write env(M∪r) to denote the environment term whereM = {s1, . . . , sn}
is a set of (encodings of) bindings.
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3.6 The Predecessor Relation

Definition 3.6 (Predecessor relation on bindings). We consider again the
language of FO-LR terms. Let env*(M ∪ r) be an env-term with two bindings
s1, s2 as elements of M .

We define the predecessor relation ≺ for bindings (in the same environment):
s1 ≺ s2 iff s1 is of the form bind(x, s) and s2 is of the form bind(y, t[var(x)]p)
and x 6= y, where x, y are BV -sorted variables, s is some term of sort Exp and
t[·]p is an application context (i.e. cc(t[·]p) = A).

The predecessor relation describes the criterion by which bindings are chained
in environment terms: Two binding terms (terms with root symbol bind) are
chained if they both have different binders and one binder occurs in the bound
expression s of the other binding at a position p such that s[·]p is an application
context. A sequence of bindings s1 ≺ s2 ≺ . . . ≺ sn is called a (first order)
binding chain.

Example 3.7. We have bind(x, app(var(y), r)) ≺ bind(z, app(var (x), r′)).
It is also possible that the variables y, z are equal. In this case
we have bind(x, app(var (y), r)) ≺ bind(y, app(var (x), r′)), as well as
bind(y, app(var (x), r′)) ≺ bind(x, app(var (y), r)), which means that there may
be cycles.
Note that the relation bind(y, t[var (x)]p) ≺ bind(z, t′[var (y)]q) implies that the
position q is unique, since we only consider application contexts.

Lemma 3.8. For a LR-syntactically correct FO-LR-term the following proper-
ties hold:

1. In a term env*({s1, . . . , sm} ∪ r), the terms si are bindings of the form
bind(xi, s

′
i), where xi is a BV -sorted variable, and the variables xi are pair-

wise different.
2. The term r is either a variable of sort Env or the constant emptyEnv.

Lemma 3.9. For a LR-syntactically correct FO-LR-term with a subterm
env*(M ∪ r), the following holds:

1. For every binding s ∈ M : if there is a further binding s′ ∈ M with s′ ≺ s,
then s′ is unique.

2. For every binding s ∈M : There is a unique descending chain s ≻ s1 ≻ s2 . . .

with si ∈ M . Either the chain does not terminate, or there is a unique
minimal binding s′ ∈M reachable from s via ≻-steps.

Proof. The claims follow from syntactical correctness and the definition of ≺.
⊓⊔

Note that the reverse of Lemma 3.9(1) does not hold, sind for example for
s1 := bind(x, r1), s2 := bind(y, app(x, r2)), s3 := bind(z, app(x, r3)), we have
s1 ≺ s2 and s1 ≺ s3, and s1, s2, s3 are permitted to occur in the same en-
vironment term in an LR-syntactically correct term, since x, y, z are different
variables.
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The syntactical correctness of terms impose a restriction on the possibilities
that bindings chained by the predecessor relation ≺ can be equated in environ-
ment terms by the LC congruence. We will elaborate on this in the following
example and lemmas.

Example 3.10. Suppose the following equations between syntactically correct
environment terms with chained bindings are given:

env(bind(x1, s), env(bind(x2, t[var (x1)]p), r))
=LC env(bind(y1, s

′), env(bind(y2, t
′[var (y1)]q), u))

bind(x2, t[var (x1)]p) =LC bind(y2, t
′[var (y1)]q)

Where cc(t[·]p) = cc(t′[·]q) = A and x1 6= x2. By Lemma 3.4 (6) we have
x1 = y1, x2 = y2, t[·]p = t′[·]q and p = q. Now suppose, that bind(x1, s) 6=LC

bind(y1, s
′). Then by Lemma 3.4 there is a z, such that r =LC env(bind(y1, s

′), z)
and u =LC env(bind(x1, s), z). But this violates the assumption of syntacti-
cal correctness, since both environment terms would contain the variable y1
twice at a binder position, hence for the above example bind(x2, t[x1]p) =LC

bind(y2, t
′[y1]q) implies bind(x1, s) =LC bind(y1, s

′).

Lemma 3.11. Let s := env*(M1 ∪ r1) and t := env*(M2 ∪ r2) be LR-
syntactically correct environment terms with s1, s2 ∈ M1, t2 ∈ M2, s1 ≺ s2,
s =LC t and s2 =LC t2. Then there is some t1 ∈M2 with t1 ≺ t2 and s1 =LC t1.

Proof. Lemma 3.5 implies that there is some t1 ∈ M2 with s1 =LC t1. Syn-
tactic correctness, the preconditions of this lemma, and Lemma 3.4 imply that
s2 = bind(x, s′2), and t2 = bind(x, t′2) for some variable x, and s′2 =LC t′2. More-
over, s′2 = s′′2 [y1]p, and t′2 = t′′2 [y1]p and s′′2 [·]p, t

′′
2 [·]p are application contexts,

because s2, t2 have predecessors in M1,M2. Now s1 ≺ s2 and t1 ≺ t2 imply that
s1 = bind(y1, s

′
1) and t1 = bind(y1, t

′
1). Syntactical correctness implies that M1

contains at most one term with binding variable y1, and the same for M2. From
s =LC t and Lemma 3.4 it follows that s1 =LC t1 must hold. ⊓⊔

Definition 3.12. In a syntactically correct environment term
env*({s1, . . . , sn} ∪M ∪ r) with s1 ≺ . . . ≺ sn we call s′ ∈ {s1, . . . , sn} ∪M the
origin of the chain if s′ is the minimal binding in {s1, . . . , sn} ∪M reachable
from si through ≻-steps.

In the language FO-LR, a binding bind(x, t) is called a value binding, if t is
a value, i.e. if t is the encoding of an abstraction or of a constructor application.

Note that s′ ≺ s is not possible for a value binding s.

Lemma 3.13. Let env*({s1, . . . , sm}∪M1∪r1) and env*({t1, . . . , tn}∪M2∪r2)
be LR-syntactically correct environment terms with s1 ≺ s2 ≺ . . . ≺ sm and
t1 ≺ t2 ≺ . . . ≺ tn.

If env*({s1, . . . , sm}∪M1∪r1) =LC env*({t1, . . . tn}∪M2∪r2) and si =LC tj
for some 1 ≤ i ≤ m, 1 ≤ j ≤ n then
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1. If i > j then si−j+1 =LC t1, . . . , si−1 =LC tj−1.
2. If i < j then s1 =LC tj−i+1, . . . , si−1 =LC tj−1.
3. If i = j then s1 =LC t1, . . . , si−1 =LC tj−1.
4. If s1 and t1 are origins of the chains, respectively, and s1 or t1 is a value

binding, then i = j, s1 =LC t1, . . . , si−1 =LC ti−1 and s1, t1 are both value
bindings.

Proof. This follows by iterated application of Lemma 3.11. Item 4 follows from
Lemma 3.11 and since in addition value bindings cannot be equal to other non-
value bindings in the chains. ⊓⊔

3.7 Encoding of Binding Chains with Variable Length

We extend the set of CV-LR-terms by a special construct VCh,NCh (see below)
to encode chains of bindings of variable length (as they occur in LR). We denote
this set of terms with the special chain constructs by TCH (or by CH-LR).

Remark 3.14 (Encoding through the use of schematization). The constructs for
binding chains describe (possibly infinite) sets of terms. They bear some similar-
ities to term schematizations used in [Sal92,Her92,HG97]. The main difference is
that our schematization describes only a very specific set of terms whereas other
schematizations (like R-terms or primal grammars) can be used to describe ar-
bitrary terms with a recurrent structure. Also our schematization allows the
introduction of new variables, a feature that is not supported by R-terms. Pri-
mal grammars with marked variables allow the generation of new variables, but
for them unification is undecidable [Sal93], whereas our schematization has a
decidable unification problem (under some conditions).

Syntax: Let N = {1, 2, . . .} be the set of natural numbers and VN =
{l1, l2, . . .} the set of N -variables. The set of N -terms TN is defined as the
smallest set such that N ∪ VN ⊆ TN and e1 + e2 ∈ TN when e1, e2 ∈ TN . We
use the two special symbols for chains : VCh and NCh which can be regarded as
a function symbols of arity 3 that take as arguments two BV -sorted variables
and a TN -term. The symbol Ch is used to denote either chain construct. The
occurrence of these constructs is restricted to environment terms, i.e. in a term
env*(M ∪ r) a chain can occur in M ; informally the Ch-construct is a context
of sort Env → Env , and hence can be seen as BV ×BV ×Int → (Env → Env ).
Our union-notation for env* also permits the view that the resulting sort is
Set of Binds .

Remark on Occurrence and Use of Chains: Note that the occurrences
of the constructs VCh,NCh is rather limited in equations: There may be at most
one NCh-construct and at most two VCh-constructs, and both are in the top
letrec of equations. These number of occurrences is not increased in the data
structure. The following definition of semantics exploits that there is at most
one occurrence of an NCh-construct.

For several occurrences of NCh, the definitions would have to be generalized.
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Semantics of CH-LR-terms The chain constructs are used to represent
special sets of CV-LR-terms: Sets of binding terms with variable size where the
bindings are connected. In a chain expression NCh(x, y, l) the variables x and y

denote variables that can occur somewhere else (for example in a superterm),
and represent the end- and start-point of the chain. The N -term l controls the
size of the set of bindings. The process of unfolding a chain into a sequence of
bindings can be formalized in the following way:

unfold(NCh(x, y, i)) = NCh(x, y, i)
unfold(NCh(x, y, 1)) = {bind(y,A(var (x)))}
unfold(NCh(x, y, n)) = {bind(z, A(var (x)))} ∪ unfold(NCh(z, y, n− 1))
unfold(NCh(x, y, l1 + l2)) = unfold(NCh(x, z, l1)) ∪ unfold(NCh(z, y, l2))

where i ∈ VN , n ∈ N , l1, l2 ∈ TN , z is a fresh BV -sorted variable and A is a
fresh context variable of class A.

Unfolding VCh-constructs is defined analogously, with the difference
that binding terms are unfolded omitting application context variables, i.e.
unfold(VCh(x, y, 1)) = {bind(y, var (x))} and so on. The operation of unfolding
arbitrary Ch-terms is denoted by unfolT . We use the abbreviation NCh(x, y, l)
instead of unfold(NCh(x, y, l)) and s instead of unfolT (s). Thus unfolT is de-
fined by v = v, if v is a (first order or context) variable; Ch(x, y, l) = Ch(x, y, l)
and f(s1, . . . , sn) = f(s1, . . . , sn). In contrast to [Sal92] the unfolding of a
chain may introduce new (BV sorted) variables and context variables. With
IVar(Ch(x, y, l)) := Var(Ch(x, y, l)) \ {x, y} we denote the set of variables intro-
duced through the unfolding of the chain construct. The variables introduced
through the unfolding of chains in a Ch-term are chosen as distinct to all others
variables in the context where the unfolding takes place, i.e. Var(t)∩IVar (t) = ∅.

An N -substitution is a mapping σN : VN → TN . We use σ to denote the
triple (σFO , σCV , σN ), which is a slight extension of substitutions.

The application of substitutions to arbitrary Ch-terms is defined as follows
(with O ∈ {FO ,CV ,N}): σ(x) = σO(x), where x ∈ VO, σ(f(s1, . . . , sn)) =
f(σ(s1), . . . , σ(sn)), where f is an n-ary function symbol and si ∈ TFO ,
σ(X(s)) = σCV (X)(σ(t)) and σ(Ch(x, y, l)) = Ch(σFO (x), σFO (y), σN (l)). We
say a substitution σ is O-ground if there occur no O-variables in the image
of σ. Unfoldings are also extended to FO and substitutions, i.e. σ = {x1 7→
s1, . . . , xn 7→ sn}.

The set of CV-LR-terms represented by the CH-LR-term r is defined as

TCV (r) = {σN (r) | σN is N -ground and dom(σN ) = VarN (r)}

and the set of FO-LR-terms represented by r is

TFO (r) = {σCV (s) | s ∈ TCV (r), σVCV
is CV -ground and dom(σCV ) = VarCV (s)}.

Example 3.15. The chain NCh(x, y, l) stands for the following sets of
CH-LR-terms: {{bind(y,A1(var (x)))} when choosing {l 7→ 1}, and
{bind(x1, A1(var (x))), bind (y,A2(var (x1)))} . . .} when choosing {l 7→ 2}.
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Remark 3.16. For chains the variable names introduced through an unfolding
are somehow irrelevant, i.e. we allow renaming of such introduced variables.

However, this representation semantics would not work for the NCh-
constructs during unification, if context variable names are connected to an-
other NCh-constructs, for example if a NCh-construct is syntactically duplicated
and the the two copies should be the same. The reason is that the unfolding
introduces fresh names of free context variables.

Luckily, in all the considered unification problems between left hand sides
(see Definition ??) there will be at most one occurrence of an NCh-construct,
which is never connected to another such NCh-construct.

Lemma 3.17. Let Ch(x, y, l),Ch(x, y, l′) be two chains (of the same type, i.e.
both VCh or NCh) and σ be a substitution, such that σ(l) = l′. Then there exists
a variable renaming ρ : IVar(Ch(x, y, σ(l)))→ IVar(Ch(x, y, l′)) (i.e. a bijection
between the variables introduced through the unfolding of both chains) such that
ρ(Ch(x, y, σl)) = Ch(x, y, l′).

Proof. Through induction over l′. We treat only the case where Ch = NCh.
For l′ = i ∈ VN we set ρ = ∅. For l′ = 1 let the unfoldings be
NCh(x, y, σl) = {bind(y,A(var (x)))} and NCh(x, y, l′) = {bind(y,A′(var (x)))}.
Then we set ρ = {A 7→ A′}. In the case l′ = 1 + n let the unfoldings be
NCh(x, y, σl) = NCh(x, z, 1)∪NCh(z, y, n) = {bind(y,A(var (z)))} ∪NCh(z, y, n)
and NCh(x, y, l′) = {bind(y,A′(var (z′)))} ∪ NCh(z′, y, n) respectively. We set
ρ = {z 7→ z′, A 7→ A′} and compose this renaming with the renaming yielding
from the induction hypothesis applied to the renaming of two chains of length
n. ⊓⊔

In general there does not exist a bijective renaming between two unfolded
chains of different types. However, after instantiating all context variables in an
NCh, the chains may become renamings of each other. Due to the construction
of the unification algorithm, this may happen only after a complete expansion
of the chain making the context variables explicit.

We regard two chains (of the same type) as equivalent when they unfold to
the same set of bindings, modulo renaming of the variables that are introduced
through the unfolding, i.e. when they have the same starting and ending (BV
sorted) variables and the same length. This is semantically justified.

Definition 3.18. Two CH-LR-terms s1 and s2 are equivalent modulo LC
(s1 =LC s2) iff for all N -ground substitutions σN with dom(σN ) = VarN (s1) ∪
VarN (s2) there exists a renaming ρ from the variables introduced through the
unfolding of s1 to those in s2 such that ρ(σN (s1)) =LC σN (r2).

Example 3.19. Let s = env*(VCh(x, z1, l1)∪{bind(z2, var(z1))}∪VCh(z2, y, l2)∪
r) and t = env*(VCh(x, y, l1 + 1 + l2) ∪ r) and suppose IVar(s) =
IVar(VCh(x, z1, l1)) ∪ VCh(z2, y, l2) ∪ {z1, z2} then s and t are equivalent under
the renaming ρ : IVar(s)→ IVar(t) (constructed as in the proof of lemma 3.17).
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The bindings introduced through the unfolding of chains are ordered by the
predecessor relation ≺.

Lemma 3.20. If Ch(x, y, l) = {s1, . . . , sn} then s1 ≺ . . . ≺ sn, and these are
the only ≺-relations if x 6= y.

Proof. Follows from the definition of chain unfolding.

We extend Definition 3.2 of the translation J·K : LR → FO-LR to translate
LR-meta-expressions (used in the definition of the reduction rules) into CH-LR
terms (see also Fig. 12).

Definition 3.21. We define the two sets lhsT , lhsno of encoded left hand sides
( lhs) of unrestricted and normal order reduction rules, respectively, of the cal-
culus LR. In order to keep the rules finite, we restrict the types to the type Bool

with constructors True, False and List with constructors Nil and Cons.

1. lhsT
is the following set of encodings of left hand sides of an unrestricted LR
reduction rule (see figures 6, 2), where first the rules are instantiated:

(a) The phrase “v is a value” will lead to instantiations into an abstraction
λx.t and constructor terms, one possibility for every constructor.

(b) Every mention of constructor c is instantiated to every possible construc-
tor. This is also done accordingly with cases and types.

(c) Rules with a {xi+1 = xi}mi=1-expression are further instantiated resulting
in two rules: one for m = 1 without a chain, and one for the case m > 1.
Then the usual translation J·K applies, but the chains {xi+1 = xi}mi=1 (for
the case m > 1) are translated into VCh(x1, xm, N), where N is a new
integer variable. Note that the number m does not play any role here.

2. lhsno
is the set of first-order encodings of left hand sides of normal order LR
reduction rule (see figures 3, 4) with the following procedure: For every left
hand side, the following instantiations will generate variants of the rules:

(a) The phrase “v is a value” will lead to instantiations into an abstraction
λx.t and constructor terms, one possibility for every constructor.

(b) Every mention of constructor c is instantiated to every possible construc-
tor. This is also done accordingly with cases and types.

(c) For rules which contains the the symbol R (reduction context), there will
be four instances where R is replaced by one of the following possibilities:

i. A,
ii. (letrec Env in A),
iii. (letrec y1 = A,Env in A2[y1]),
iv. (letrec y1 = A, {yi+1 = Ai+1[yi]}mi=1,Env in A′[ym]).

(d) Rules with an occurrence of {xi+1 = xi}mi=1-expression or {yi+1 =
Ai+1[yi]}ni=1-expressions are further instantiated to distinguish the cases
m = 1, where the chain is omitted, and the case m > 1, as well as
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n = 1 and the case n > 1. Then J·K is used for the first-order en-
coding, where the chain {xi+1 = xi}mi=1 (for the case m > 1) is trans-
lated into VCh(x1, xm, N), where N is a new variable, and the chain
{yi+1 = Ai+1[yi]}

n
i=1 is translated into NCh(y1, yn, N

′) where N ′ is a
fresh first-order variable. Note that neither n nor m play a role in the
encoding.
For the left hand side of the rule cp-e a constraint will be added, saying
that the context variable A1 is not empty.

That the restriction to type Bool and List is sufficient has to be argued on
a meta-level.

In an env -term t = env*(Ch(x, y, l)∪M∪r) the chain Ch(x, y, l) has an origin
in t if Ch(x, y, 1) has an origin in t.

Definition 3.22. A term t ∈ TCH satisfies the T-chain-restrictions if

1. In t there occurs at most one VCh-construct and no NCh-constructs.

2. If a VCh occurrs in t then it has an origin, which is a value binding.

A term t ∈ TCH satisfies the N-chain-restrictions if

1. In t there occurs at most one VCh-construct and at most one NCh-construct.

2. Every Ch-consruct in t has an origin.

3. If a VCh occurrs in t its origin is a value binding.

4. If the origin of a NCh in t is a value binding then the env-term, in which
the chain occurs is of the form

(env*({bind(x,A(var (z)))} ∪ NCh(x, y, k) ∪ Env)

where A context variable of class A, that is constraint to as non empty.

Lemma 3.23. All lT ∈ lhsT satisfy the T-chain-restrictionsand all lno ∈ lhsno
satisfy the N-chain-restrictions.

Proof. Through inspection of the reduction rules in figures 6, 2, 3 and 4. The
cases for item ?? are the normal order reduction rules (no, cp-e), (no, case) and
(no, seq), wich are of the form

let(env*({bind(x′, v)}∪VCh(x′, z, k′)∪{bind(x,A(var (z)))}∪NCh(x, y, k)∪Env ), r)

⊓⊔

The intuition behind item ?? of the above lemma is the following: For the en-
coded reduction rules, if the origin of a NCh-construct is a value binding then
this NCh-chain is connected (trough ≺) over a binding (bind(x, t[y′]p), where
t[·]p 6= [·]) to a VCh which is terminated by a value binding.
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4 A Unification Algorithm for Left-Commutativity, Sorts

and Context-Variables and Binding Chains

4.1 Unification of CH-LR-Terms

If two CH-LR terms s1 and s2 are to be unified, each term of the unfoldings
in TCV (s1) and TCV (s2) have to be checked against each other, thus typically
leading to a infinite set of unifiers. The goal of CH-LR unification is to compute
(a finite complete set of) unifiers (that are substitutions that solve unification
problems between CH-LR-terms modulo LC ) thus yielding finite descriptions of
sets of unifiers.

A unification problem is a pair (Γ,∆), where Γ = {s1
.
= t1, . . . , sn

.
= tn} is a

set of equations between CH-LR terms such that the terms si and ti are of the
same sort for every i, and every context variable is labelled with a context class
symbol (A,S or C). ∆ is a set of constraints: it consists of context variables that
must not be instantiated by the empty context.

A solution σ of (Γ,∆), with Γ = {s1
.
= t1, . . . , sn

.
= tn} is a substitution σ

according to the following conditions:

i) It instantiates variables by terms and context variables by contexts of the
correct context class that are nontrivial if contained in ∆.

ii) It replaces chain constructs Ch(x, y,N) by a set of bindings according to the
unfolding definition, and in case of NCh(x, y,N) the context variables are
also replaced by ground contexts. In proofs, we add the exact information
on the form NCh(x, y,N) 7→ bindingSet .

iii) σ(si), σ(ti) are almost ground for all i.
iv) σ(si) =LC σ(ti) for all i.

A unification problem Γ is called almost linear, if every context variable
occurs at most once and every variable of a non-empty sort occurs at most once
in the equations.

Definition 4.1. We consider the set of unification problems

IP := {{S(s1)
.
= s2} | s1 ∈ lhsT , s2 ∈ lhsno}

where S is a context variable of context-class S . The terms s1, s2 are assumed
to be variable disjoint, which can be achieved by renaming. The initial set ∆ of
context variables only contains the A1-context in case s2 comes from a (cp-e)-
reductions. The pair (Γ,∆) with Γ ∈ IP is called an initial LR-forking-problem.

Proposition 4.2. The following holds for each P ∈ {{S(s1)
.
= s2} | s1 ∈

lhsT , s2 ∈ lhsno}:

1. They are almost linear
2. There is at most one occurrence of a NCh-construct
3. There are at most two occurrences of VCh-constructs.
4. There are no variables of type Bind.
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Definition 4.3. A final unification problem S derived from an initial LR-
forking-problem (Γ,∆) is either Fail or a set of equations s1

.
= t1, . . . , sn

.
= tn,

such that S = SBV ∪ S¬BV , and every equation in SBV is of the form x
.
= y

where x, y are of sort BV and every equation in S¬BV is of the form x
.
= t,

where x is not of sort BV .

Proposition 4.4. Given an initial LR-forking-problem (Γ,∆). Then the equa-
tions in S¬BV in the final unificaiotn problem are in DAG-solved form.

Given a final unification problem S, the represented solutions σ could be de-
rived turning the equations into substitutions, instantiating the integer variables,
expanding the Ch-constructs into first order binding chains and then instanti-
ating all context variables and variables that are not of sort BV . Note that
there may be infinitely many represented solutions for a single final unification
problem.

Definition 4.5. A final unification problem S derived from Γ satisfies the dis-
tinct variable convention (DVC), if for every derived solution σ, all terms in
σ(Γ ) satisfy the DVC.

Proposition 4.6. The DVC-property of a final unification problem is decidable.

Proof. If t1
.
= t2 is the initial problem, then apply the substitution σ derived

from S to t1. The DVC is violated iff the following condition holds: Let MBV be
the set of BV -variables occurring in σ(t1). If σ(t1) makes two variables in MBV

equal, then the DVC is violated.

Example 4.7. We give an example that is not an initial one, but can also be
treated: Unifying (the first-order encodings of) λx.λy.x and λu.λv.v, the unifi-
cation succeeds and generates an instance that represents λx.λx.x, which does
not satisfy the DVC. Using the DVC-check, our unification can efficiently check
alpha-equivalence of pure lambda-expressions that satisfy the DVC.

4.2 The Unification Rules

We proceed by describing a unification algorithm starting with initial LR-
unification problems (Γ,∆). It is intended to be complete for all common in-
stances that represent LR-expressions that satisfy the DVC, i.e. where all bound
variables are distinct and the bound variables are distinct from free variables.
Final unification problems that lead to expressions that do not satisfy the DVC
are discarded.

Given an initial unification problem Γ = {s1
.
= t1};∆, the (non-

deterministic) unification algorithm described below will non-deterministically
compute a final unification problem S or fail. A finite complete set of final uni-
fication problems can be attained by gathering all final unification problems in
the whole tree of all non-deterministic choices.
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Note that the initial equation is almost linear, hence the rules can be pre-
sented in a simplified way. For example substitution application can be avoided
during unification.

We implicitly use symmetry of
.
= if not stated otherwise. We divide Γ into

a solved part S, (a final unification problem), and a still to be solved part P .
We permit also context-equations in the solved part S. We usually omit ∆ in
the notation if it is not changed by the rule.

The following non-deterministic unification rules have to form:

Name
Sys C

1) Sys1
2) Sys2

. . .

n) Sysn

where Sys = S;P ;∆ is a system that consists of a set of solved equations S a set
of still to be solved equations P and a set of constraints ∆ on context variables
and variable chains. There may also be additional conditions C that must be
satisfied for the rule Name to be applied. If a given system sys matches the form
of Sys and fulfils the conditions C then sys can be transformed into a system
Sys i where 1 ≤ i ≤ n. They systems S1 . . . Sn represent the non-deterministical
choises of transformations (they may be given implictly, e.g. “select an i with
1 ≤ i ≤ n”). If a rule introduces new variables into a system, then these are
chosen as fresh, i.e. distinct from all variables already present in the system.

Standard unification rules The standard unification rules can be seen in Figure 7.

The rules Solve pushes an equation in solved form (x
.
= s) into the set of

solved equations S without an occurs-check or emlimination of x from the rest
problem (this is due to the almost linearity of the initial LR-forking problems).

Solve
S; {x

.
= t} ⊎ P

{x
.
= t} ∪ S; P

Trivial
S; {s

.
= s} ⊎ P

S; P

Dec
S; {f(s1, . . . , sn)

.
= f(t1, . . . , tn)} ⊎ P

S; {s1
.
= t1, . . . , sn

.
= tn} ∪ P

If f 6= env

Fail
S; {f(. . .)

.
= g(. . .)} ⊎ P

Fail
If f 6= g.

Stuck-Fail
S; P P 6= ∅

Fail
and no unification rule is applicable to P .

DVC-Fail
S; ∅

Fail
If S is final and the DVC is violated w.r.t. the initial problem.

Fig. 7: Standard unification rules
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The DVC-Fail rule discards unifiers that equate terms of different alpha-
equivalence classes or capture free bound variables w.r.t. the initial LR-forking
problem (see section 6.1).

Solving equations with context variables: Figure 8 shows unification rules to deal
with equations that contain context variables. There is the rule Empty-C that
guesses an arbitrary context variable in the problem P as empty or not empty
(in which case the variable is marked by insertion into the constraint set ∆). The
aim of the other rules is context decomposition of equationsX(s)

.
= f(t1, . . . , tn),

where we instantiate the prefix of X to f and guess where the hole can appear
in this prefix, thereby taking into account the context class of X . The rules
of Figure 8 enumerate all possible choices for f and hole positions i, . . . , n in
dependence of the context class of X .

In the rules we use the notation f(s1, . . . , sn)[C]i to denote the context
f(s1, . . . , si−1, C, si+1, . . . , sn).

Alternate Rules to solve X(s) = f(t1, . . . , tn): The rule DC from figure 9 sub-
sumes the rules Dec-C-App-Seq, Dec-C, Dec-C-Lam, Fail-C-Lam, Fail-
C-Var, Dec-C-Case-1 and Dec-C-Case-2.

Explanation of the rules: To solve an equation of the form X(s)
.
=

f(t1, . . . , tn) we use DC to guess an position p where s can appear in
f(t1, . . . , tn). Let p = i · q with i = 1, . . . , n, then s occurs in ti at position
q, which is recursively determined through solving X ′(s)

.
= ti. The position

where the hole occurs in f(t1, . . . , tn) has to comply with the context class of X ,
which is stated in the side condition. E.g. to X(s)

.
= lam(x, t) where cc(X) = S

the rule DC is not applicable, because 1. lam(X ′, t) is not an legal context
(the hole can not occur at an position with a subterm of sort BV see 3.3, i.e.
cc(lam(X ′, t)) = CUD) and 2. cc(X) = S < cc(lam(x,X ′)) = C (i.e. in a S
context the hole can not appear in the body of an abstraction).

We need the additional rule DCL to guess the position of the hole (which
accommodates s) deep into the right hand side of an letrec-binding, which can
not be achieved by DC because there are no context variables of sort Exp → Env
(all context variables and context must be of sort Exp → Exp see 3.3)

The failure rules are mimicked through the fact, that the side condition of rule
DC prevent certain kinds of applications, and therefore unification gets stuck,
e.g. X(s)

.
= var(x) can not be transformed by DC, because cc(var (X ′)) =

CUD > cc(X ).
To solve equations with context variables of the form X(s)

.
= Y (t), with

X,Y ∈ ∆, we use the rules from Figure 10. The idea is that either there is
common prefix of the two contexts (in which case we guess this position via
Merge-Prefix) or there is none (in which case we guess a common part of
the two contexts and then a function symbol where the hole positions fork via
Merge-Fork).
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Empty-C
S; P ; X 6∈ ∆ X occurs in P

1) S; P ; {X} ∪∆ 2) {X
.
= [·]} ∪ S; {X 7→ [·]}P ; ∆

Dec-C-App-Seq
S; {X(s)

.
= f(t1, t2)} ⊎ P ; X ∈ ∆ f ∈ {app, seq}

{X
.
= f(X ′, t2)} ∪ S; {X ′(s)

.
= t1} ∪ P ; ∆

X ′ is a fresh context variable of the same context class as X.

Dec-C
S; {X(s)

.
= f(t1, t2)} ⊎ P ; X ∈ ∆ cc(X) 6= A, f ∈ {let , app, seq}

{X
.
= f(t1, X

′)} ∪ S; {X ′(s)
.
= t2} ∪ P ; ∆

X ′ is a fresh context variable of the same context class as X.

Dec-C-Let
S; {X(s)

.
= let(t1, t2)} ⊎ P ; X ∈ ∆ cc(X) 6= A

{X
.
= let(env∗({bind(x,X ′)} ∪ z), t2)} ∪ S;

{env∗({bind(x,X ′(s))} ∪ z)
.
= t1} ∪ P ; ∆

X ′ is fresh of the same class as X and x, z are fresh variables of appropriate sort.

Dec-C-Lam
S; {X(s)

.
= lam(t1, t2)} ⊎ P ; X ∈ ∆ cc(X) = C

{X
.
= lam(t1, X

′)} ∪ S; {X ′(s)
.
= t2} ∪ P ; ∆

X ′ is a fresh context variable of the same class as X.

Fail-C-Lam
S; {X(s)

.
= lam(t1, t2)} ⊎ P ; X ∈ ∆ cc(X) 6= C

Fail

Fail-C-Var
S; {X(s)

.
= var(x)} ⊎ P ; X ∈ ∆

Fail

Dec-C-Cons
S; {X(s)

.
= c(s1, . . . , sn)} ⊎ P ; X ∈ ∆ cc(X) 6= A

select an i, 1 ≤ i ≤ n:
{X

.
= c(s1, . . . , sn)[X

′]i} ∪ S; {X ′(s)
.
= si} ⊎ P ; ∆

where n = ar(c) and X ′ is fresh of the same class as X.

Fail-C-Cons
S; {X(s)

.
= c(s1, . . . , sar(c))} ⊎ P ; X ∈ ∆ cc(X) = A

Fail

Dec-C-Case-1
S; {X(s)

.
= caseT (s1, . . . , sn)} ⊎ P ; X ∈ ∆

{X
.
= caseT (X

′, s1, . . . , sn)} ∪ S; {X ′(s)
.
= s1} ⊎ P ; ∆

where n = ar(caseT ) and X ′ is fresh of the same class as X.

Dec-C-Case-2
S; {X(s)

.
= caseT (s1, . . . , sn)} ⊎ P ; X ∈ ∆ cc(X) 6= A

select an i, 2 ≤ i ≤ n such that so(si) = Exp:
{X

.
= caseT (s1, . . . , sn)[X

′]i} ∪ S; {X ′(s)
.
= si} ⊎ P ; ∆

where n = ar(caseT ) and X ′ is fresh of the same class as X.

Fig. 8: Unification rules to solve equations with context variables
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DC
{X(s)

.
= f(t1, . . . , tn)} ⊎ P ;X ∈ ∆

select an i, 1 ≤ i ≤ n
{X

.
= f(t1, . . . , tn)[X

′]i, X ′(s)
.
= ti} ∪ P

cc(X) = cc(X ′) ≥ cc(f(t1, . . . , tn)[X
′]i)

1 ≤ i ≤ n

DCL
S; {X(s)

.
= let(t1, t2)} ⊎ P ; X ∈ ∆

{X
.
= let(env∗({bind(x,X ′)} ∪ z), t2)} ∪ S;

{env∗({bind(x,X ′(s))} ∪ z)
.
= t1} ∪ P ; ∆

cc(X) = cc(X ′) ∈ {S ,C}
so(z) = Env , fresh

Fig. 9: Decomposition rules to solve of the form X(s)
.
= f(t1, . . . , tn)

Merge-Prefix
S; {X(s)

.
= Y (t)} ⊎ P ; X,Y ∈ ∆

{Y
.
= ZY ′, X

.
= Z} ∪ S; {s

.
= Y ′(t)} ∪ P ; ∆

Y ′ is a fresh variable of the same class as Y , and Z has context class min(cc(X), cc(Y )).

Merge-Fork-A

S; {X(s)
.
= Y (t)} ⊎ P ; X,Y ∈ ∆ cc(Y ) 6= A

1) S; {X
.
= Z(app(X ′, Y ′(t))), Y

.
= Z(app(X ′(s), Y ′))} ∪ P ; ∆

2) S; {X
.
= Z(seq(X ′, Y ′(t))), Y

.
= Z(seq(X ′(s), Y ′))} ∪ P ; ∆

3) S; {X
.
= Z(caseT (s1, . . . , sn)[X

′]1, [Y
′(t)]i),

Y
.
= Z(caseT (s1, . . . , sn)[X

′(s)]1, [Y
′]i)} ∪ P ; ∆

so(caseT ) = S1 × . . .× Sn → S, S1 = Si = Exp, 2 ≤ i ≤ n

where X ′, Y ′ are fresh variables of the same class as X,Y , respectively, and Z is a fresh
context variable of context class min(cc(X), cc(Y )).

Merge-Fork-C

S; {X(s)
.
= Y (t)} ⊎ P ; X, Y ∈ ∆ cc(X) 6= A 6= cc(Y )

1) S; {X
.
= Z(app(X ′, Y ′(t))), Y

.
= Z(app(X ′(s), Y ′))} ∪ P ; ∆

2) S; {X
.
= Z(seq(X ′, Y ′(t))), Y

.
= Z(seq(X ′(s), Y ′))} ∪ P ; ∆

3) S; {X
.
= Z(let(env∗({bind(x,X ′)} ∪ z), Y ′(t))),

Y
.
= Z(let(env∗({bind(x,X ′(s))} ∪ z), Y ′))} ∪ P ; ∆

4) S; {X
.
= Z(let(env∗({bind(x,X ′), bind(y, Y ′(t)))))} ∪ z), w),

Y
.
= Z(let(env∗({bind(x,X ′(s)), bind(y, Y ′)} ∪ z), w))} ∪ P ; ∆

5) S; {X
.
= Z(caseT (s1, . . . , sn)[X

′]i[Y
′(t)]j),

Y
.
= Z(caseT (s1, . . . , sn)[X

′(s)]i, [Y
′]j)} ∪ P ; ∆

so(caseT ) = S1 × . . .× Sn → S, Si = Sj = Exp, 2 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j
6) S; {X

.
= Z(c(s1, . . . , sar(c))[X

′]i[Y
′(t)]j),

Y
.
= Z(c(s1, . . . , sar(c))[X

′(s)]i[Y
′]j)} ∪ P ; ∆

i, j ∈ {1, . . . , ar(c)}, i 6= j

where X ′, Y ′ are fresh context variables of the same context class as X,Y , respectively
and Z is a fresh context variable of context class min(cc(X), cc(Y )). The variables
w, x, y, z are also fresh and of the appropriate sort.

Fig. 10: Unification rules for context merging
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Rules for Multi-Set Equations. The additional (non-deterministic) unification
rules in Figure 11 are sufficient to solve nontrivial equations of type Env ,
i.e. proper multi-set-equations, which must be of the form env∗(M1 ∪ r1)

.
=

env∗(M2 ∪ r2), where r1, r2 are variables or the constant emptyEnv .

Solve-Env
S; {env∗(M1 ∪ r1)

.
= env∗(M2 ∪ r2)} ⊎ P

{r1
.
= env∗(M2 ∪ z3), r2

.
= env∗(M1 ∪ z3)} ∪ S; P

if r1, r2 are variables and z3 is a fresh variable.

Dec-Env
S; {env∗(M1 ∪ r1)

.
= env∗(M2 ∪ r2)} ⊎ P t1 ∈ M1, t2 ∈ M2

S; {t1
.
= t2, env

∗((M1 \ {t1}) ∪ r1)
.
= env∗((M2 \ {t2}) ∪ r2)} ⊎ P

Fail-Env
S; {env*(L ∪ r)

.
= emptyEnv} ⊎ P

Fail
if L is nonempty, i.e contains at least one binding or at least one Ch-expression.

Dec-Chain
{env*(M1 ∪ r1)

.
= env*(Ch(x, y, l) ∪M2 ∪ r2)} ⊎ P s ∈ M1 is a binding term

1) {l
.
= 1, s

.
= bind(y,A(var(x))), env*(M1 \ {s} ∪ r1)

.
= env*(M2 ∪ r2)} ∪ P

2) {l
.
= 1+l1, s

.
= bind(z,A(var(x))),

env*(M1 \ {s} ∪ r1)
.
= env*(Ch(z, y, l1) ∪M2 ∪ r2)} ∪ P

3) {l
.
= l1+1, s

.
= bind(y,A(var(z))),

env*(M1 \ {s} ∪ r1)
.
= env*(Ch(x, z, l1) ∪M2 ∪ r2)} ∪ P ;

4) {l
.
= l1+1+l2, s

.
= bind(z2, A(var(z1))),

env*(M1 \ {s} ∪ r1)
.
= env*(Ch(x, z1, l1) ∪ Ch(z2, y, l2) ∪M2 ∪ r2)} ∪ P

where z, z1, z2 are fresh variables of sort BV and A is either a fresh context variable of
class A if Ch=NCh or [·] if Ch=VCh and l1, l2 are fresh N variables.

U-Chain
{env*({bind(x1, s1)} ∪ VCh(x1, y1, l1) ∪M1 ∪ r1)

.
=

env*({bind(x2, s2)} ∪ VCh(x2, y2, l2) ∪M2 ∪ r2)} ⊎ P ;
dis(VCh(x1, y1, l1),VCh(x2, y2, l2)) 6∈ ∆

1) {l1
.
= l2, bind(x1, s1)

.
= bind(x2, s2), y1

.
= y2,

env*(M1 ∪ r1)
.
= env*(M2 ∪ r2)} ∪ P ;∆

2) {l1
.
= l+l′1, l2

.
= l+l′2, bind(x1, s1)

.
= bind(x2, s2),

env*(VCh(z, y1, l
′
1) ∪M1 ∪ r1)

.
= env*(VCh(z, y2, l

′
2) ∪M2 ∪ r2)} ∪ P ;

dis(VCh(z, y1, l
′
1),VCh(z, y2, l

′
2)) ∪∆

where z is a fresh variable of sort BV , l, l′1, l
′
2 are fresh N -variables and

VCh(z, y1, l
′
1),VCh(z, y2, l

′
2) are disjunct.

Fig. 11: Unification rules to solve multi-set equations

The rule Dec-Chain covers the cases where a non-chain binding s is equated
with a chain binding. The possibilities are: 1) The chain consists only of one bind-
ing which is equated with s, or 2) the first binding of the chain is equated with
binding s, or 3) the last chain binding is equated with s, or 4) a binding from the
middle of the chain is equated with s and the original chain is split around this
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externalized binding. All of these cases require that some of the internal chain
variables (context and BV -sorted) are made explicit. These variables are always
chosen as fresh (i.e. not occurring anywhere else in the unification problem).

For the unification rule U-Chain we extend our sets of constraints ∆ to
also contain constraints on chains of the form dis(VCh(x1, y1, l1),VCh(x2, y2, l2))
denoting that these two chains are disjunct, i.e. if env*(VCh(x1, y1, l1)∪r1) =LC

env*(VCh(x2, y2, l2) ∪ r2) then r1 is of the form (VCh(x2, y2, l2) ∪ r3) and r2 is
of the form (VCh(x1, y1, l1) ∪ r3).

In case ii) of rule U-Chain the chains are identical. Case i) of the U-
Chain rule describes that the origins and some initial part of two var-chains are
equal, i.e. two chains are equated beginning from their starting point up to some
point from where they are disjoint. The possibilities of unifying chains among
each other seem rather restricted, after all should it not be possible to equate two
arbitrary bindings from two different chains? The rule seems incomplete not to
take into account such possibilities. Nevertheless from lemma 3.13, definition 3.21
and lemma 3.23 it follows that the rule covers all possibilities of unifying chains
among each other: All other possibilities of unifying bindings of chains lead to
solutions representing (LR-syntactically incorrect terms).

5 Termination

On initial LR-forking problems the unification algorithm terminates. This is
manly due to the almost linearity of those unification problems and the special
restrictions on the occurrence of chains (lemma 3.23).

Theorem 5.1. For initial LR-forking problems problems, the unification algo-
rithm terminates.

Proof. Let Γ = (P,∆) be an initial LR-forking problem and µ = (µ1, µ2, µ3) be
an associated complexity measure where

– µ1 is the number of occurrences of the function symbol let in P .
– µ2 is the size of P , i.e.

∑

(s
.
=t)∈P (|t| + |s|) where | · | is the usual definition

of the size of a term, with the modification

|env∗(M ∪ r)| = 7m+m′ + |r|+
∑

ti∈M

|ti|

where m is the number of bind -expressions in ML and m′ is the number of
Ch-expressions in M .
We set µ2(Fail ) = 0

– µ3 is the number of context variables in P that are not constraint as not
empty (VarCV (P ) \∆)

Each application of an unification rule (except for the Merge-Fork rules)
decreases µ regarding the lexicographic order.
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The multi-equation rules in rule Dec-Chain have to be analyzed. The new
constructed bind-term has size 5, so the sub-cases 1) – 3) strictly reduce the size.
The sub-case 4) adds 6 to the size due to new sub-terms, and removes 7 since t1
is a non-Ch-expression and removed from the multi-set.

Notice that by lemmas 3.23 and 6.15 the rule U-Chain is applicable only
once to initial LR-forking problems: Because after the application, the value
binding origins of the chains are removed from the env*-terms.

The rules Merge-Fork-A and Merge-Fork-C both increase µ2 and µ3

and they may as well increase µ1 (depending on the non-deterministic choice).
Nevertheless all equations that result from the application of those rules are of
the form X

.
= Z(f(s1, . . . , sn)[X

′]i, [Y
′]j) and on such equations only the rule

Empty-C can be applied (Empty-C at most 3 times) or Solve can be applied
which moves those equations to the solved part, thereby eventually decreasing
µ. ⊓⊔

6 Soundness and Completeness

6.1 Correct Handling of Bound Variables

LR is a higher order calculus with bound variables and the usual notion of α-
equivalence. When we encode reduction rules of LR into CH − LR (TCH) for
unification we loose information about bound names. Furthermore the unifica-
tion algorithm has no notion of bound variables. An undesirable consequence is
that we may equate terms in TCH that are not (α-)equivalent in LR. We give
two example for this:

Example 6.1. Unifying (the first-order encodings of) λx.λy.x and λu.λv.v the
unification succeeds:

{lam(x, lam(y, var(x)))
.
= lam(u, lam(v, var (v)))}

=⇒3×Dec {x
.
= u, y

.
= v, x

.
= v} =: S.

By coalescing the variables in S we get the unifier σS = {x 7→ v, y 7→ v, u 7→ v}
that equates the two terms by an instance that represents λv.λv.v. The original
expressions are not α-equivalent but the computed solution equates them.

Example 6.2. Substitutions in TCH are not capture avoiding. E.g. unifying the
encodings of λx.y and λz.z (where we assume x 6= y) yields {x

.
= z, y

.
= z} as a

final problem. The corresponding substitution again equates two terms that are
not α-equivalent in the original higher order calculus.

To fix this mistreatment of bound names we introduced a method, called
DVC-check, to discard unifiers that equate expressions from different α-
equivalence classes or that provoke capture of variables in the wrong scope. We
proceed by explaining the notions that are required to formulate this method.

With J·K : Meta-LR → TCH we denote the translation from Meta-LR ex-
pressions into their encoding; J·K− : TCH → Meta-LR is the inverse translation.
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Meta-variables in expression are translated into variables of the appropriate sort.
The context classes are chosen according to their intention in the rules. A defi-
nition of J·K can be seen in Fig. 12.

JxK = var(x)
J(λx.s)K = lam(x, JsK)
J(s1 s2)K = app(Js1K, Js2K)

Jseq s1 s2K = seq(Js1K, Js2K)
J(c s1 . . . sn)K = c(Js1K, . . . , JsnK)

J(caseT s At1 . . .At |T |)K = caseT(JsK, JAt1K, . . . , JAt|T |K)
J(letrec Env in s)K = let(JEnvK, JsK)

Jx = sK = bind(x, JsK)
J{ }K = emptyEnv

J{x1 = s1, . . . , xn = sn}K = env(Jx1 = s1K, J{. . . , xn = sn}K)
(a) Translation of LR-expressions into many sorted terms (FO-LR)

JsK = s :: S
translate meta variable s to term variable of an appropriate sort S

JA[s]K = X(JsK) X is a context variables of class A
JS[s]K = X(JsK) X is a context variables of class S
JC[s]K = X(JsK) X is a context variables of class C

J{xi+1 = xi}
m
i=kK = VCh(xk, xm, l)

J{yi+1 = Ai+1[yi]}
m
i=kK = NCh(yk, ym, l)

the x’s and y’s are BV sorted and l is an integer variable
(b) Translation of additional syntactic constructs (into CH -LR)

Fig. 12: Encoding of LR-reductions

Lemma 6.3. If s ∈ TCH is almost ground and no Ch-constructs occur in s then
JsK− ∈ LR.

Definition 6.4. An LR expression s satisfies the DVC iff all free variables in s

are distinct from bound variables and all bound variables in s are distinct.
For a term s ∈ TCH let τ be a substitution such that

τ(t) = a for all variables t ∈ VarExp(s) and a is a constant
τ(Env ) = emptyEnv for all environment variables Env ∈ VarEnv (s)
τ(X) = [·] for all context variables X in s

τ(Ch(N,M)) = ym = yn for all Ch-constructs in s

A term s ∈ TCH satisfies the DVC iff Jτ(s)K− satisfies the DVC.
A term s ∈ TCH satisfies the closedness condition iff Jτ(s)K− is closed.

As we work with α-equivalence classes of terms in LR, we can assume by
convention that in an LR-expression all free variables are different from bound
variables. We also choose to work with representatives in which all bound vari-
ables are distinct. Therefore we can assume that in an initial unification problem
all terms satisfy the DVC.
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We will also assume that the terms that are obtained after instantiating with
a solution satisfy the DVC.

Definition 6.5 (DVC-check). Assume s, t ∈ TCH and Γ = {s
.
= t} is an

initial unification problem and S 6= Fail is a final system derived from Γ .
Then the following two rules check if the substitution σS derived from S

satisfies the DVC w.r.t. the initial problem Γ = {s
.
= t}.

DVC-Success
S

S
if σS(s) satisfies the DVC.

DVC-Fail
S

Fail
if σS(s) does not satisfy the DVC.

If the rule DVC-Fail is applicable to a final system we speak of a DVC-check
failure w.r.t. the initial unification problem Γ = {s

.
= t}.

The DVC-check is decidable: If s
.
= t is the initial problem, then apply the

substitution σS derived from a final problem S to s. Then check if τσS(s) satisfies
the DVC where τ is the substitution from definition 6.4 that ensures that the
resulting term is ground. (The DVC-check can be done on the representation of
the solutions, not all ground instances have to be checked).

The DVC-check can not detect the capture of free variables as in exam-
ple 6.2. Convention: To avoid capture of free variables by a substitution, terms
in an initial unification problem must adhere to the closedness condition (Defi-
nition 6.4).

Solutions of unification problems that violate the DVC may not respect
alpha-equivalence in the original LR calculus in a correct way. Hence we have to
adapt the notion of solutions.

Definition 6.6 (DVC-solution). Let Γ = {s1
.
= t1, . . . sn

.
= tn} and σ be a

solution of Γ . Then σ is a DVC-solution iff σ(si) satisfies the DVC for all i.

Convention: As we are only interested in solutions that do not collapse
expressions from different α-equivalence classes, we henceforth obey to the con-
vention, that when we speak of σ as a solution of a unification problem Γ we
mean that σ is a DVC-solution of Γ .

6.2 Soundness and Completeness

Definition 6.7. Let Γ = (P,∆), P = {s1
.
= t1, . . . sn

.
= tn} be a unification

problem. Then we define the set of solutions modulo LC of Γ as

ULC(Γ ) := {σ | σ is a solution of si
.
= ti for i = 1, . . . , n}.

The set of DVC-solutions is defined by

UDV C
LC (Γ ) := {σ | σ ∈ ULC(Γ ) and σ(si) satisfies the DVC for i = 1, . . . , n}.
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We set UDVC
LC (Fail ) = ∅.

Remark 6.8. In the following proofs we can safely ignore the sets S, P of an
unification system because equations in these two sets, that are not explicitly
mentioned, are not changed by unification rules.

Lemma 6.9. The standard unification rules Solve, Dec, Trivial and the
failure rules Fail, Fail-C-Lam, Fail-C-Var, Fail-C-Cons and Fail-Env,
preserve the set of DVC-solutions. I.e. If Γ ′ is derived from Γ with one of the
above rules, then UDVC

LC (Γ ) = UDVC
LC (Γ ′).

Proof. For the standard rules this is straightforward.
(Fail-C-Lam) If Fail-C-Lam is applicable to Γ then there is an equation

X(s)
.
= lam(t1, t2) in Γ where X belongs to the context class A or S. Such an

equation has no solution, because by Definition 2.1 neither of the context classes
A,S permit the occurrence of the hole in the body of an abstraction.

(Fail-C-Var) The equation X(s)
.
= var(x) has no solution, because the

symbol var is of sort BV → Exp and in a context the hole can only appear at
an term position of sort Exp not an position of sort BV . ⊓⊔

Lemma 6.10. The rules of the unification algorithm are correct, i.e. if Γ ′

is derived from Γ using one of the rules of the unification algorithm, then
UDVC
LC (Γ ) ⊇ UDVC

LC (Γ ′).

Proof. For the rules mentioned in lemma 6.9 this is obvious.
If the set of DVC-solutions of Γ ′ is empty (e.g. for Γ ′ = Fail ) then

UDVC
LC (Γ ) ⊇ ∅ = UDV C

LC (Γ ′) holds. Therefore the Fail-rules are correct and
we assume UDVC

LC (Γ ′) 6= ∅.
If a rule introduces variables of sort BV (as is the case for Dec-C-Let,

Merge-Fork-A, Merge-Fork-C, Dec-Chain, U-Chain) then the variables
introduced are chosen in such a way, that the DVC is satisfied by the resulting
terms (i.e. a unification step never introduces an DVC-error into a problem).

We show some unification rules as correct. The other rules can be proved
correct similarly straightforward. If a rule involves non-deterministic choice, then
for each derivable system correctness has to be shown.

To prove that Dec-C-App-Seq is a correct unification rule, we assume
that σ is a solution of {X

.
= f(X ′, t2), X

′(s)
.
= t1} where f ∈ {app, seq}, i.e.

σ(X) =LC f(σ(X ′), σ(t2)) and σ(X ′(s)) =LC σ(t1). Such a solution σ also
solves the equation X(s)

.
= f(t1, t2) which can be seen by simple instantiation

σ(X(s)) = f(σ(X ′(s)), σ(t2)) =LC f(σ(t1), σ(t2)) = σ(app(t1, t2)).
Correctness of (Dec-Chain): We look at case 2) of Dec-Chain and we

assume that the chain construct is NCh, i.e. for a solution σ we have:

σ(l) = σ(1+l1)
σ(s) =LC σ(bind(z, A(var (x))))

σ(env*(M1 \ {s} ∪ r1)) =LC σ(env*(NCh(z, y, l1) ∪M2 ∪ r2))

The equation σ(l) = σ(1+ l1) indicates, that the chain NCh(x, y, l) (from the
premise of the rule) was split into a leading binding and a remaining chain of
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length l1. If we explicitly store the chain-split in the equation system of the
conclusion, like this:

{NCh(x, y, l)
.
= {bind(z, A(var (x)))} ∪ NCh(z, y, l1)} ∪

{NCh(x, y, l) 7→ {bind(z, A(var (x)))} ∪ NCh(z, y, l1)}(S)

then by assumption we know that σ is a solution of this equation, i.e.

σ(NCh(x, y, l)) =LC σ({bind(z, A(var(x)))} ∪ NCh(z, y, l1))

holds and this σ also solves the equation in the premise of Dec-Chain, i.e.:

σ(env*(M1 ∪ r1))
= env*({σ(s)} ∪ σ(M1 \ {s}) ∪ σ(r1))

=LC env*({σ(bind(z, A(var (x))))} ∪ σ(NCh(z, y, l1)) ∪ σ(M2) ∪ σ(r2))
= env*(σ(NCh(x, y, l)) ∪ σ(M2) ∪ σ(r2))

= σ(env*(NCh(x, y, l) ∪M2 ∪ r2))

For the other three cases of the Dec-Chain rule (and if the chain is VCh) the
proof is analogous.

Correctness of U-Chain: Case 1) of U-Chain states that the two chains are
equal. The correctness is obvious.

A solution σ of case 2) satisfies:

σ(l1) = σ(l+l′1)
σ(l2) = σ(l+l′2)

σ(bind(x1, s1)) =LC σ(bind(x2, s2))⇒ σ(x1) = σ(x2)
σ(env*(VCh(z, y1, l

′
1) ∪M1 ∪ r1)) =LC σ(env*(VCh(z, y2, l

′
2) ∪M2 ∪ r2))

which means, that the two chains in the premise of the rule are cut in half and
the initial parts are equated (starting from their origins), and the two tails are
disjunct. If we again explicitly store the split of the chains in the solved part of
the conclusion:

VCh(x1, y1, l1)
.
= VCh(x1, z, l) ∪ VCh(z, y1, l

′
1)

VCh(x2, y2, l2)
.
= VCh(x2, z, l) ∪ VCh(z, y2, l

′
2)

then it is easy to see that σ is also a solution of the equations in the premise of
the rule U-Chain. ⊓⊔

We use the notation Γ =⇒ Γ ′ to denote that the unification problem Γ

is transformed into the problem Γ ′ by means of a unification rule. Γ =⇒∗ Γ ′

denotes a finite sequence of transformations and Γ =⇒T Γ ′ to denote a trans-
formation with rule T .

Theorem 6.11 (Soundness). If Γ =⇒∗ Γ ′ and Γ ′ is a final unification prob-
lem then UDVC

LC (Γ ) ⊇ UDVC
LC (Γ ′).
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Proof. Either Γ ′ is Fail , in which case the claim follows directly, or Γ ′ 6= Fail in
which case we perform induction on the length of the transformation to solved
form using lemma 6.10.

Now that we established soundness of the unification algorithm, we show its
completeness.

Lemma 6.12. Let Γ = ({X(s)
.
= f(t1, . . . , tn)}, ∆ = ∅) be an almost linear

unification problem with X(s), f(t1, . . . , tn) ∈ TCH and let σ be a solution of Γ
(i.e. σ ∈ UDVC

LC (Γ )).
Then there exists a unification rule (or a sequence of rules) such that Γ=⇒Γ ′

(or Γ =⇒∗ Γ ′) and there exists a substitution τ with dom(τ) = Var(Γ )\Var(Γ ′)
such that and τσ ∈ UDVC

LC (Γ ′).

Proof. The context variable X can be the empty context, in this case σ(s) =LC

f(σ(t1), σ(t2)) holds and σ is also a solution of the unification problem {X
.
=

[·]} ∪ {X 7→ [·]}({X(s)
.
= f(t1, t2)}), which results from X(s)

.
= f(t1, t2) by

application of the case 2) of the rule Empty-C. If X is not the empty context
we can first transform Γ with case 1) of rule Empty-C and insert X into the
constraint set ∆ thereby constraining the context variable as not empty. Now
we are in the case, that there is a sequence of transformations to Γ ′ and we go
trough the cases for the function symbol f and the the context class of X to
show that for each possible solution σ of {X(s)

.
= f(t1, . . . , tn)}, {X} ⊎∆ there

exists a transformation that keeps the solution.

Case f = app or f = seq i.e. σ(X(s)) =LC f(σ(t1), σ(t2)) holds. 1. Assume
that the context class of X is A. Since X is not the empty context and in a
A context the hole can appear only in the first argument of f , we can con-
clude σ(X) =LC f(σ(t1[·]p), σ(t2)) and σ(s) =LC σ(t1|p) for some position
p in Pos(t1) such that t1[·]p is a context of class A. With τ = {X ′ 7→ t1[·]p}
we have a solution τσ for the left hand side of rule Dec-C-App-Seq i.e. τσ
solves {X

.
= f(X ′, t2), X

′(s)
.
= t1}. 2. Now we assume that the context class

of X is either S or C. Since every A is also an S context (C context respec-
tively) the above case applies as well. In addition, according to the definition
of the two context classes, the hole can also occur in the second argument of
f . Therefore we can conclude σ(X) =LC f(σ(t1), σ(t2[·]p)) for some position
p in Pos(t2) such that t2[·]p is a context of class S (C respectively). If we set
τ = {X ′ 7→ t2[·]p} we have a solution τσ that also solves the equation in the
conclusion of rule Dec-C i.e. {X

.
= f(t1, X

′), X ′(s)
.
= t2}.

Case f = lam According to the definition of the context classes A,S and C the
hole is only admissible in a body of an abstraction for contexts of class C.
Hence X(s)

.
= lam(t1, t2) has only a solution if X is of class C (the two

rules that cover all possible solutions of the equation are Dec-C-Lam and
Fail-C-Lam).

Case f = let then the class of X can be either a S or a C (if X is of class
A, then X(s)

.
= let(t1, t2) has no solution). We have two cases: 1. The

hole may occur in the second argument of let . In this case a solution is
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also a solution of the equation transformed by the rule Dec-C. 2. Addi-
tionally to the above case the hole can appear in the first argument of let
i.e. σ(X) =LC let(σ(t1[·]p), σ(t2)) and σ(s) =LC σ(t1|p) for some position
p ∈ Pos(t1) such that t1[·]p is an admissible S contexts (C context respec-
tively). Since let is of sort Env → Exp → Env the head symbol of the
context t1[·]p must be of sort Env and in t1 the hole can occur only on
the right hand side of variable-expression binding, hence we can conclude
σ(t1[·]p) =LC σ(env∗({bind(x, (t1|q)[·]r)} ∪ z)) for some fresh variables x, z
of appropriate sort and and some positions q, r such that p = qr (i.e. q = 1.2).
When we set τ = {X ′ 7→ (t1|q)[·]r} then στ is a solution for the conclusion
{X

.
= let(env*({bind(x,X ′)} ∪ z), t2), env

*({bind(x,X ′(s))} ∪ z)
.
= t1} of

the Dec-C-Let rule.
Case f = c(s1, . . . , sn) . If the context class of X is A then this equation has

no solution, in which case the rule Fail-C-Cons applies. Else the hole of the
solution of X may appear under any argument position of the constructor
c, which is handled by the rule Dec-C-Cons.

Case f = caseT here Dec-C-Case-1 covers the possible solutions when X is
of class A, then the hole of σ(X) can appear only under the first argument
of the caseT term. Dec-C-Case-2 covers the possible solutions if X is of
class S or C, then the hole of σ(X) can appear under any argument position
of the caseT term where the sort is not BV .

Case f = env or f = bind . This case can not occur since env is of sort
Bind ×Env → Env (bind is of sort BV ×Exp → Bind respectively) and X

is of sort Exp. Therefore an equation X(s)
.
= env(t1, t2) (X(s)

.
= bind(t1, t2)

respectively) is not well sorted and has no well sorted solution.

Lemma 6.13. Let Γ = ({X(s)
.
= Y (t)}, ∆ = ∅) be an almost linear unification

problem with X(s), Y (t) ∈ TCH and let σ be a solution of Γ (i.e σ ∈ UDVC
LC (Γ )).

Then there exists a unification rule (or a sequence of rules) such that Γ=⇒Γ ′

(or Γ =⇒∗ Γ ′) and there exists a substitution τ with dom(τ) = Var(Γ ′)\Var (Γ )
such that and τσ ∈ UDVC

LC (Γ ′).

Proof. Assume σ ∈ UDVC
LC ({X(s)

.
= Y (t)}).

Either one (or both) of the context variables may be empty the empty con-
text, in which case we use Empty-C to guess the respective context variable
(or both) as empty. (E.g. one case is X = [·], i.e. σ(s) =LC σ(Y (t)) and σ is also
a solution if we transform Γ by Empty-C 2) where we choose X as empty.)

If both context variables are not the empty context we know, that σ(X) =LC

sp[·]p, σ(Y ) =LC tq[·]q and sp[σ(s)]p =LC tq[σ(t)]q holds. Let p0 be the greatest
common prefix of p, q. We have to distinguish two cases:

First case: p0 = p or p0 = q W.l.o.g. we assume p0 = p (in this case X is a
prefix of Y , the other case is symmetrical). Then tq[·]q can be written as
tq[·]q =LC sp[u[·]p′ ]p where u[σ(s)]p′ =LC σ(t).
Let τ = {Y ′ 7→ u[·]p′ , X ′ 7→ sp[·]p}. Then τσ is a solution for the conclusion
of Merge-Prefix (where we first applied Empty-C twice to constrain X

and Y as non empty).
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Second case: p0 is distinct from p and q Sketch: In this case we have in-
comparable positions of the holes in the solution. Guess where the least
common ancestor of the two positions p, q is: p0 (i.e. p = p0p

′ and q = p0q
′).

The context above this position is Z. The function symbol at this position is
f : a function symbol that can accommodate two holes at different positions
directly under the root position and has resulting sort Exp. Below f there
are two contexts X ′, Y ′ before we find the terms s, t.
The context classes of X,Y also have to be taken into account: if exactly
one context is a A context then the case is covered by Merge-Fork-A (f
can only be app, seq or caseT ) and the hole of the A context is in the first
argument of f). If both contexts have a context class greater than A then the
additional cases (for f) are covered by the possibilities of the rule Merge-
Fork-C (again with two previous applications of Empty-C to constrain
X,Y as non empty).

To show completeness of the unification rules that handle environment terms
with chains, it is helpful to reformulate the properties from lemma 3.23: that the
occurrence of chains in initial LR-forking problems are restricted.

Definition 6.14. An equation s
.
= t between terms s, t ∈ TCH satisfies the IP-

chain-restictions if

– in each terms s and t occurs at most one VCh-construct that has an origin
that is a value binding and

– in only one of the terms s or t there occurs an NCh-construct that has an
origin that is an value binding. In this case the term is of the form as in
definition 3.22 (item 4).

The next lemma shows, that the number of chains in an initial LR-forking-
problem can only increase during unification by splitting chains (via Dec-
Chain and U-Chain).Therefore for LR-forking problems the number of chains
that have an value binding as origin can only decrease (from one to zero).

Lemma 6.15. Let s, t ∈ TCH be terms such that one (say s) satisfies the T-
chain-restrictions and the other (say t) satisfies the N-chain-restrictions (from
definition 3.22) and let {s

.
= t} be an almost linear unification problem.

Then for all possible sequences of unification transformations

{s
.
= t} =⇒ Γ1 =⇒ . . . =⇒ Γn

to a final system Γn all equations si
.
= ti in Γj (for j = 1, . . . , n) satisfy the IP-

chain-restictions and each VCh-construct in si, ti that does not have an value
binding as an origin is originated through the split of some initial chains in s

and t.

Proof. Through induction over the length of the transformation to a final sys-
tem, using the almost linearity (i.e. there is no copying of chains), T-chain-
restrictions and N-chain-restrictions and the form of the unification rules, where
the critical rules are those that modify (i.e. split) chains: Dec-Chain and U-
Chain. ⊓⊔
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The following diagram shows an example, where in a term s an initial chain
Ch(x, y, l) with a value binding origin is cut during unification (e.g. by Dec-
Chain 4) into a leading chain Ch(x, z1, l1) and a trailing chain Ch(z2, y, l2)
(which has no value binding origin in si).

s : x = v Ch(x, y, l) |

si : x = v Ch(x, z1, l1) Ch(z2, y, l2)

Lemma 6.16. Let Γ = (P = {env*(M1 ∪ r1)
.
= env*(M2 ∪ r2)} ⊎ P ′, ∆) be

an almost linear unification problem where r1, r2 are variables of sort Env and
M1,M2 are sets of bindings and chain constructs, such that Γ either satisfies
the T-chain-restrictions and the N-chain-restrictionsor it was derived form a
unification problem that satisfied both.

Let σ be a solution of Γ (σ ∈ UDVC
LC (Γ )). Then either

1. Γ is already in solved form or
2. there exists a unification rule (or a sequence of rules) such that Γ =⇒ Γ ′ (or

Γ =⇒∗ Γ ′) and there exists a substitution τ with dom(τ) = Var(Γ ′)\Var(Γ )
such that τσ ∈ UDVC

LC (Γ ′).

Proof. By structural induction on M1 and M2.
Case M1 = ∅ and M2 = ∅, i.e. both sequences are empty, then by definition
of the env* function symbol env*(r1) = r1 and env*(r2) = r2 and the equation
r1

.
= r2 is in solved form.

Case M1 = ∅ and M2 = {t} ∪M ′
2: The equation env*(r1) = r1

.
= env*({t} ∪

M ′
2 ∪ r2) is in solved form.

Case M1 = {x} ∪M ′
1 and M2 = ∅: The equation env*(r1) = r1

.
= env*({x} ∪

M ′
2 ∪ r2) is in solved form.

Case M1 and M2 are both not the empty, i.e. there are x, y such that x ∈M1

and y ∈ M2. We analyze the cases for x and y (where we use M ′
1 = M1 \ {x}

and M ′
2 = M2 \ {y}):

1. x is a binding term, i.e. x = bind(z, s) and
y is a binding term: y = bind(z′, t), then σ(env*({bind(z, s)} ∪ M ′

1 ∪
r1)) =LC σ(env*({bind(z′, t)} ∪M ′

2 ∪ r2)) holds and by lemma 3.5 we can
conclude that either

(a) σ(bind(z, s)) =LC σ(bind(z′, t)) and σ(env*(M ′
1∪r1)) =LC σ(env*(M ′

2∪
r2)). We chose Dec-Env as the unification rule and to transform Γ into
Γ ′ = {bind(z, s)

.
= bind(z′, t), env*(M ′

1 ∪ r1)
.
= env*(M ′

2 ∪ r2)} of which
σ is also a solution.

(b) Or there exist a z such that σ(r2) =LC σ(env*(M1 ∪ z)) and σ(r1) =LC

σ(env*(M2∪z)). If we apply Solve-Env to Γ then σ solves the derived
Γ ′.

y is a chain construct i.e. y = Ch(x1, y1, l1), then σ(env*({bind(z, s)} ∪
M ′

1 ∪ r1)) =LC σ(env*(Ch(x1, y1, l1) ∪M ′
2 ∪ r2)) holds where the chain of
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length l1 is unfolded to all ground instances of binding chains (before appli-
cation of σ):

NCh(x1, y1, l1) =
bind(y1, A(var (x1)))) if l1 = 1 or
bind(z1, A1(var (x1))), s1, . . . , sl1−2, bind(y1, Al1(var (zl1−1))) if l1 ≥ 2

where the intermediate bindings introduced through the unfolding are con-
nected via the predecessor relation ≺, i.e.

uch := bind(z1, A1(var(x1))) ≺ s1 ≺ . . . ≺ sl1−2 ≺ bind(y1, Al1(var (zl1−1))).

We call this first order binding chain uch (unfold chain).
By lemma 3.5 we conclude now that either there exists a z such that
σ(r1) =LC σ(env*(M2 ∪ z)) and σ(r2) =LC σ(env*(M1 ∪ z)) in which case
we can apply Solve-Env to derive Γ ′ for that σ is a solution.
Or the binding term bind(z, s) is lc-congruent (under σ) to some binding
from the chain Ch(x1, y1, l1), i.e.

σ(bind(z, s)) =LC σ(u) for u ∈ uch and
σ(env*(M ′

1 ∪ r1)) =LC σ(env*(uch \ {u} ∪M ′
2 ∪ r2))

There are now four different cases for u:

1) If l1 = 1 (i.e. the chain is of length one) then uch = u =
bind(y1, A(var (x1))) and if we apply case 1) of Dec-Chain to Γ then
σ is a solution for the resulting unification problem Γ ′.

– If l1 ≥ 2 then u may either be 2) the start-binding bind(z1, A1(var (x1)))
of uch or 3) some intermediate binding si for i = 1, . . . , l−2 or 4) the end-
binding bind(y1, Al1(var (zl1−1))) of uch. For each of the cases there is
non-deterministic choice in the Dec-Chain rule, such that the solution
is preserved. The position where u is taken from the (unfold) chain of
bindings uch is represented by equations over the length l1 of the (not
unfold) chain Ch(x1, y1, l1) in the conclusions of the Dec-Chain rule.

2. x is a chain construct x = Ch(x1, y1, l1).
If y is a binding term then this case is symmetrical to the one above.
y is a chain construct: y = Ch(x2, y2, l2). By lemma 6.15 and the assump-
tions only one of the chains can be a NCh, w.l.o.g. we assume x = NCh, then
y is a VCh and

σ(env*(NCh(x1, y1, l1) ∪M ′
1 ∪ r1)) =LC σ(env*(VCh(x2, y2, l2) ∪M ′

2 ∪ r2))

holds. Then the chains are disjunct in the solution, i.e.

σ(r1) =LC σ(env*(VCh(x2, y2, l2) ∪ z))

σ(r2) =LC σ(env*(NCh(x1, y1, l1) ∪ z))
σ(env*(M ′

1 ∪ z)) =LC σ(env*(M ′
2 ∪ z)).
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Which means, that no chain-bindings can be equated between a NCh and a
VCh. We show this by contradiction using lemma 3.13, which states, that if
any two bindings from the (unfolded) chains are equal, then all their pre-
decessors are equal until the origin of one chain is reached1. We distinguish
the cases for the origin:

(a) The origin is a value binding, then by lemma 3.13 the origins of both
chains are equal (modulo lc under σ) and both origins have to be
value bindings. Now we conclude by lemma 6.15 that there is a bind-
ing b := bind(z, A(var (x1))) ∈ M ′

1 (where A must not be the empty
context) that is a predecessor of the leading binding of the unfold chain
NCh(x1, y1, l1) which is equal under σ to some binding b′ which is unfold
from VCh(x2, y2, l2). But for any binding b′ := bind(z′, (var(z′′))) unfold
form the chain VCh(x2, y2, l2) the equation b =LC b′ can never hold.

(b) The origin is a non-value binding. By lemma 6.15 we can conclude that
this chain Ch(z, . . .) results from the split of some initial chain. Hence the
leading binding of Ch(z, . . .) has a predecessor bind(z, t) in the original
problem (but not in the term (local) env*(VCh(x2, y2, l2)∪M ′

2∪r2)). Now
lemma 3.13 provides a contradiction for the original problem (i.e. the
original problem now contains LR-syntactically incorrect terms, thereby
raising a DVC-failure).

As both chains must be disjunct under σ we can apply Solve-Env to derive
a unification problem that preserves the σ.
Now we assume, that x and y are both VCh-constructs and

σ(env*(VCh(x1, y1, l1) ∪M ′
1 ∪ r1)) =LC σ(env*(VCh(x2, y2, l2) ∪M ′

2 ∪ r2))

holds. By assumptions we know, that either

(a) M ′
1 contains the origin of the chain VCh(x1, y1, l1) and M ′

2 contains the
origin of VCh(x2, y2, l2) respectively (which are both value bindings). In
this case we conclude by lemma 3.13 that starting form their origins
some initial parts of both chains are equal until some point, from which
they are disjunct This case is covered by the case 2. of rule U-Chain.
Or both chains are completely identical, which is covered by case 1. of
U-Chain.

(b) Or just one or neither of the chains has an origin that is an value bind-
ing in M ′

1 (M ′
2 respectively), but then by lemma 6.15 those chains are

originated by splits, i.e. in the initial problem they have predecessors,
which are not equated with the respective predecessors from the other
chain. By lemma 3.13 such an solution contradicts the assumption that
the solution of the initial problem is LR-syntactically correct. I.e. the
chains originated by splits can only by disjunct from each other (and
from initial parts of non split chains) in the solution. This case is again
covered by Solve-Env. ⊓⊔

1 We can apply lemma 3.13 here because the chain constructs are unfolded to first-
order binding chains.
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To an initial problem the rule U-Chain can be applied only once, because
there are at most two chains that have value bindings as origins in an initial
problem and after an application of U-Chain there are no more such chains
with value origins in the problem.

Theorem 6.17 (Completeness). Let Γ = (P , ∆) be an LR-initial-forking
problem. For each θ ∈ UDVC

LC (Γ ) there exists a (finite) sequence of trans-
formations Γ =⇒ Γ1 =⇒ . . . =⇒ Γn and a substitution τ with dom(τ) =
Var(Γn) \Var(Γ ) such that τ(Γn) is a final system that represents θ.

Proof. By structural induction on P . For almost linear problems the unification
algorithm terminates (by theorem 5.1) with a unification problem that is either
final or Fail .

If Γ = (P,∆) is in solved form (a final system) then it is of the form (P =
{x1

.
= y1, . . . , xm

.
= ym, z1

.
= t1, . . . , zn

.
= tn}, ∆). If the DVC-check fails on this

set of equations, then Γ has no DVC-solution. Otherwise all DVC-solutions of
this systems are represented by σΓ (the substitution that can be derived from
Γ ).

It remains to show that for each Γi, which is not a final unification problem,
and every solution σ ∈ UDVC

LC (Γi) of Γi there exists a unification transformation
=⇒T and a substitution τ such that Γi =⇒T Γi+1 and τσ ∈ UDV C

LC (Γi).
If Γi is not a final problem, then it contains some equations that are not

solved and can still be transformed by unification rules. Or the problem is stuck
in which case the Stuck-Fail rule applies and detects this case. We go trough
the cases for these equations.
Case f(s1, . . . sm)

.
= g(t1, . . . , tn) where f, g are free function symbols. Either

f = g and m = n, and then the rule Dec can be applied, which by Lemma 6.9
does not modify the set of solutions. Or f 6= g then the Fail rule applies which
also does not change the set of solutions.

This holds for all unsolved equations to which unification rules can be applied
that do not modify the set of solutions (i.e. the rules covered in Lemma 6.9).
Case X(s)

.
= f(t1, . . . , tn). Then by lemma 6.12 we know there exist a unifica-

tion rule that transforms the equation (-set) into another set, while keeping the
solution.
Case X(s)

.
= Y (t) is treated in lemma 6.13.

Case env∗(M1 ∪ r1)
.
= env∗(M2 ∪ r2) where M1,M2 may contain binding terms

and chain constructs and the equation satisfies the IP-chain-restictions (by as-
sumption that we sarted with an initial LR-forking problem and by lemma 6.15).
Then the rules Solve-Env, Dec-Env Dec-Chain and U-Chain can be ap-
plied wich by lemma 6.16 ensure completeness of the algorithm. ⊓⊔

Theorem 6.18. The rule-based algorithm terminates if applied to initial LR-
forking-problems. Thus it decides unifiability of these sets of equations. Since
it is sound and complete, and the non-deterministic forking possibilities of the
algorithm are finite, the algorithm also computes a finite and complete set of
final unification problems by gathering all possible results.
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Theorem 6.19. The computation of all overlaps between the rules in Figures 6
and 2 and left hand sides of normal order reductions in Figures 3 and 4 explained
in definition 3.21 can be done using the unification algorithm.

The unification algorithm terminates in all of these cases and computes a
finite set of final unification problems and hence all the critical pairs w.r.t. our
normal order reduction.

7 Further Transformation Rules

The method of overlap computation we employed here, is in general also ap-
plicable to other transformations, if they satisfie the following conditions: Their
left-hand-sides can be represented by the unification term language together with
possible side conditions (i.e. JlhsK exists and the side conditions must also be
encode-able in unification problems, like A is not empty), the translated lhs of
the transformations have to be almost linear (see section 4.1) and they further
have to satisfy the T-chain-restrictions (from definition 3.22).

Figure 13 shows some additional transformations which are considered in
[SSSS08]. Note that these are all proved as correct in [SSSS08], but neverthe-
less are a challenging testbed for the unification algorithm and the subsequent
automatic complete induction prover for diagrams.

We comment on the applicability of the overlap computation to the extra
transformations:

gc1,gc2 These rules require an extra condition on the occurrences of variables,
which currently can not be treated in the unification algorithm.

ucp1,ucp2,ucp3 Also, these rules have restrictions on the number of occur-
rences of the replaced variable x, which currently cannot be treated in the
unification algorithm.

Other rules in Fig. 13 can all be processed by the unification algorithm, since
all the conditions are satisfied.

The addition of these restrictions to the algorithm would also make changes
necessary to the unification rules and consequently also to completeness and
termination proof. We leave this as further work.
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(gc1) (letrec {xi = si}
n
i=1,Env in t) → (letrec Env in t)

if for all i : xi does not occur in Env nor in t
(gc2) (letrec {xi = si}

n
i=1 in t) → t

if for all i : xi does not occur in t
(cpx-in) (letrec x = y,Env in C[x])

→ (letrec x = y,Env in C[y]) where y is a variable and x 6= y
(cpx-e) (letrec x = y, z = C[x],Env in t)

→ (letrec x = y, z = C[y],Env in t) where y is a variable and x 6= y
(cpax) (letrec x = y,Env in s)

→ (letrec x = y,Env [y/x] in s[y/x])
where y is a variable, x 6= y and y ∈ FV (s,Env)

(cpcx-in) (letrec x = c
−→
t ,Env in C[x])

→ (letrec x = c −→y , {yi = ti}
ar(c)
i=1 ,Env in C[c −→y ])

(cpcx-e) (letrec x = c
−→
t , z = C[x],Env in t)

→ (letrec x = c −→y , {yi = ti}
ar(c)
i=1 , z = C[c −→y ],Env in t)

(abs) (letrec x = c
−→
t ,Env in s) → (letrec x = c −→x , {xi = ti}

ar(c)
i=1 ,Env in s)

where ar(c) ≥ 1

(abse) (c
−→
t ) → (letrec {xi = ti}

ar(c)
i=1 in c −→x ) where ar(c) ≥ 1

(xch) (letrec x = t, y = x,Env in r) → (letrec y = t, x = y,Env in r)
(ucp1) (letrec Env , x = t in S[x]) → (letrec Env in S[t])
(ucp2) (letrec Env , x = t, y = S[x] in r) → (letrec Env , y = S[t] in r)
(ucp3) (letrec x = t in S[x]) → S[t]

where in the (ucp)-rules, x has at most one occurrence in S[x] and no
occurrence in Env , t, r; and S is a surface context

(lwas) W−
(1)[(letrec Env in s)] → (letrec Env in W−

(1)[s])

where W−
(1)

is of main depth 1 and the hole is not contained

in an abstraction nor in a letrec-expression
(cpcxnoa) (letrec x = c x1 . . . xm,Env in C[x])

→ (letrec x = c x1 . . . xm,Env in C[c x1 . . . xm])
(case-cx) (letrec x = (cT,j x1 . . . xn),Env in C[caseT x ((cT,j y1 . . . yn) → s) alts])

→ letrec x = (cT,j x1 . . . xn),Env
in C[(letrec y1 = x1, . . . , yn = xn in s)]

(case-cx) letrec x = (cT,j x1 . . . xn),Env ,
y = C[caseT x ((cT,j y1 . . . yn) → s) alts] in r

→ letrec x = (c x1 . . . xn),Env ,
y = C[(letrec y1 = x1, . . . , yn = xn in s)] in r

(case-cx) like (case) in all other cases

Fig. 13: Extra Transformation Rules
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8 Extending the Unification Algorithm to Commuting

Diagrams

Commuting diagrams (as defined in section 2.4) are of the form

s

no,∗

��
�

�

�
T

// t

no

��

s′
T,∗

//___ t′

They describe the situation that a reduction sequence that consists of a transfor-
mation T and a normal order reduction is turned into a sequence of no-reductions
followed by a sequence of transformations (i.e. the transformation T is swapped
behind the normal order reduction).

Commuting diagrams can be derived as a forking diagrams using the fol-
lowing observation: It is sufficient to determine all overlaps of T−1 with normal

order reductions , i.e. determine all forks of the form s′
no
←−−− s

T−1

−−−→ t, which

correspond to the commuting sequence t
T
−−→ s

no
−−−→ s′. So we can use the same

unification algorithm provided the conditions are met. However, right hand sides
of our considered transformations are different from the left hand sides.

Our encoding of expressions also applies to right hand sides of transforma-
tions see Definition 3.21. However, several right hand sides violate conditions for
initial unification problems. Problematic cases are the cp-transformations, that
may contain variables standing for values twice, e.g. in the right hand side of
(cp-e-S) (letrec x = v,Env , y = S[v] in r) the meta-variable v occurs twice.
A naive encoding into TCH would violate the almost linearity condition, which
is crucial for termination and completeness of the unification algorithm. An-
other violation is that the (llet)-rules have two variables in the environment:
Env1,Env2, which cannot be treated by the current set of rules.

Since proper non-linearity prohibits the use of our unification algorithm, we
choose to encode a slight variant of right-hand sides of the (cp)-rules, where
one v is translated into lam(x, s) and the other into lam(x′, s′), and then the
unifier is checked whether it instantiates s, s′ or not, and for the two environment
variables, we extend the rule Solve-Env.

Definition 8.1. We define the set rhsT of encoded right hand sides ( rhs) of
unrestricted reduction rules of the calculus LR.

rhsT is the following set of encodings of right hand sides of an unrestricted
LR reduction rule (see figures 6, 2), where first the rules are instantiated:

1. The phrase “v is a value” will lead to instantiations into an abstraction λx.t

and constructor terms, one possibility for every constructor. If a right hand
side contains two occurrences of the same variable v and the side condition
“v is a value”, we instantiate one occurrence with λx.t and the other one
with λx′.t′ (where all variables are fresh).

2. The other instantiations are done as in definition 3.21.
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Remark 8.2. After this change, all terms in rhsT satisfy the conditions concern-
ing chains from 3.22 and they are almost linear. One difference is that they
may contain environment terms with more than one variable of sort Env , e.g.
(letrec Env1,Env2 in r) the rhs of (llet-in). This and the item 1 from above
must be kept in mind during unification (i.e. this requires a slight modification
of the unification algorithm).

The initial LR-commuting-problems describe all commuting sequences be-
tween transformations and reductions of LR.

Definition 8.3. We consider the set of unification problems

IPC := {{S(r)
.
= l} | r ∈ rhsT , l ∈ lhsno}

where S is a context variable of context-class S . The terms r, l are assumed to be
variable disjoint, which can be achieved by renaming. The initial set ∆ of context
variables only contains the A1-context in case l comes from a (cp-e)-reductions.
The pair (Γ,∆) with Γ ∈ IPC is called an initial LR-commuting-problem.

To solve initial LR-commuting-problems we have to slightly modify the uni-
fication algorithm to address the two problems from remark 8.2:

– Two occurrences of the same variable v in one term: This is addressed dur-
ing encoding where the two occurrences of v are encoded as lam(x, s) and
lam(x′, s′) respectively. For all computed unifiers σ of initial commuting
problems that contain two such terms, we have to check if s, s′ are instanti-
ated by different terms. If so, the unifier σ must be discarded, and unification
fails: In this case our unification algorithm cannot compute the complete set
of unifiers. We expect that this does not happen in the calculus LR with
the transformations in Figure 6. Experimental results for the calculus Lneed

([RSS11]) support this conjecture.
– Two environment variables may be in the same environment in a right hand

side of a rule, as in

(llet-in) (letrec Env1 in (letrec Env2 in r))→ (letrec Env1,Env2 in r)
(llet-e) (letrec Env1, x = (letrec Env2 in sx) in r)

→ (letrec Env1,Env2, x = sx in r)

Overlapping the left-hand side of cp-rules, e.g. (cp-in): (letrec x1 =
v, {xi+1 = xi}mi=1Env in C[xm]) with the above right hand sides is not
possible with the current unification rules. Extending the rule Solve-Env
without precaution must take care of all partitions of the variable chain into
the two variables Env1,Env2, which would result in an infinite number of
solutions, and hence nontermination. The observation that the scoping of
Env1,Env2 is restricted (variables bound in Env2 have their scope in Env2,
but not in Env1), permits to represent the possible unifiers and to extend
the unification rules to a terminating and complete unification algorithm. A
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further restriction is that the two environment variable case only appears in
the right hand side of transformations which do not contain chains.
If two variables r1, r2 of sort Env occur in one environment-term we modify
Solve-Env to deal with the problem state

S; {env∗(M1 ∪ {r1, r2})
.
= env∗(M2 ∪ r3} ⊎ P

where we assume that the bindings in M1,M2 are not further unified.
The Solve-Env-variant can first be applied to remove M1:

S; {env∗(M1 ∪ {r1, r2})
.
= env∗(M2 ∪ r3)} ⊎ P

{r3
.
= env∗(M1 ∪ z3)} ∪ S; {env∗({r1, r2})

.
= env∗(M2 ∪ z3)} ⊎ P

Then the following possibilities may be chosen:
1. The remaining single bindings in M2 have to be in r1, or r2.
2. There may be a chain or even two chains (for example (no,cp-e)) in M2.

The scoping considerations allow us to make only a single split: Select
one split in the chain (the two chains seen as one), and assing one part
to r1 and the other part to r2.

Unfortunately, this is not sufficient, since the computed overlap may be in-
valid, because applying the transformation backwards may lead to expres-
sions violating the DVC.
Thus a final check is necessary, whether all the computed expressions s, s′, t
satisfy the DVC after instantiation.

t

no,∗

��
�

�

�

T
// s

no

��

t′
T,∗

//___ s′

Hence complete (and finite) sets of commuting diagrams for LR transfor-
mations can be computed using a slight variant of the encoding to deal with
duplicate v-variables and a modified Solve-Env-rule together with an extended
DVC-check.

9 Conclusion

We investigated the extended call-by-need λ-calculus LR from [SSSS08] which is
a core language of pure Haskell. The calculus is equipped with a contextual se-
mantics for program equivalence that naturally leads to the notion of correctness
of program transformations. One crucial step in the proof of the correctness of
a program transformation is the determination of complete sets of forking and
commuting diagrams. In [SSSS08] the those diagram sets where generated by
hand. Our presented method is able to automatically compute the overlaps be-
tween the core transformations of LR and the normal order reductions, thereby
determining a complete set of forks for forking diagrams.



Computing Overlaps by Unification in the λ-calculus LR 51

For the computation of the overlaps we translate the transformations and
normal order reduction of LR into the term language TCH that captures the
special syntactic constructs of the LR reductions, as they are: 1. sorts, 2. context
variables of different context classes, 3. commutativity of bindings in letrec-
environments, 4. bound variables and 5. chains of bindings.

All overlaps in LR are then described by the special set of unification prob-
lems, the initial LR forking-problems. We presented a unification algorithm to
solve those problems and proofed its termination, soundness and completeness.
Thereby we showed, that the computation of of all overlaps of the core transfor-
mations of the LR calculus is possible and yields a finite and complete sets of
forks. The presented method can also be used to compute overlaps of additional
transformations (from section 7), if their left-hand-sides can be encoded into
TCH and satisfy some additional restrictions on variable occurrences (i.e. almost
linearity) and binding chains (i.e. they T-chain-restrictions from definition 3.22).

If we slightly modify the rules of our unification algorithm we can also use it
to compute all commuting sequences for the core transformations in LR . Hence
the unification algorithm is a crucial part in the automatization of correctness
proofs for program transformations because can be used to determine the all
forks and commuting sequences which have to be closed to generate complete
diagram sets.

Outlook: The next steps in the automatization of correctness proofs are
closing of diagrams and automatic induction. The closing of forking diagrams
for the simpler calculus Lneed is described in [RSS11]. There matching is used to
reduce terms and a search procedure is employed to find a common reduct that
joins the overlaps. This method is able to automatically close all the determined
overlaps in LR. We conjecture that a similar procedure can close the diagrams
in LR.

To automatize induction, our future research investigates the following ideas:
A diagram can be interpreted as an rewrite rule (on strings), that rewrites a
sequence of reductions into another sequence. And a complete set of diagrams
can be interpreted as a TRS D. To automatically verify induction (e.g. on the
length of the normal order reduction) it has to be checked, if D is a terminating
TRS. This can be done using a tool that automatically proofs termination of
term rewrite systems (TRS).
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