
Fast Equality Test for Straight-Line Compressed
Strings

Manfred Schmidt-Schauß1 and Georg Schnitger1

Institut für Informatik
Johann Wolfgang Goethe-Universität

Postfach 11 19 32
D-60054 Frankfurt, Germany

schauss@ki.informatik.uni-frankfurt.de,

georg@thi.informatik.uni-frankfurt.de

Technical Report Frank-45

Research group for Artificial Intelligence and Software Technology
Institut für Informatik,

Fachbereich Informatik und Mathematik,
Johann Wolfgang Goethe-Universität,

Postfach 11 19 32, D-60054 Frankfurt, Germany

April 6, 2011

Abstract. The paper describes a simple and fast randomized test for
equality of grammar-compressed strings. The thorough running time
analysis is done by applying a logarithmic cost measure.

Keywords randomized algorithms, straight line programs, grammar-based
compression

1 Introduction

Compression of data like strings and trees improves space usage, a well-known
method is Lempel-Ziv encoding [JA84]. The standard way of applying algorithms
to the data is a decompression prior to the application perhaps followed by a
compression of the generated or modified data. Algorithms that can be trans-
lated such that they work efficiently on the compressed data are of interest, and
complement the space efficiency by also improving running times.
To avoid the peculiarities of a specialized compression mechanism and to keep the
generality of analyses, grammar based compression was proposed. The grammars
are called straight line programs (SLP) which are used for string compression and
algorithms on strings [Pla94,PR99,KRS95] as well as for compressions of trees
and algorithms on them [BLM05,BLM08,GGSS08].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14522653?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Manfred Schmidt-Schauß and Georg Schnitger

A central algorithmic problem used as a subalgorithm in several other algorithms
on compressed data is the following: given two compressed representations r1
and r2, say of strings s1 and s2, respectively, decide whether s1 = s2. The
first efficient algorithm that works without prior decompression is Plandowski’s
algorithm [Pla94,Pla95]. It uses grammars as compression device and shows that
the equality test can be done in time polynomially in the size of the grammars.
An improvement of this equality test is in [Lif07] where an algorithm is described
that works in time O(n3), where n is the size of the grammar.
Randomized algorithms for variants of this test are described in [GKPR96] using
2×2 matrices and in [BKL+02] for the generalisation to two-dimensional strings,
where a polynomial interpretation is used.
In this paper we describe and analyze a randomized algorithm for Plandowski’s
equality problem that runs in quadratic time even using a logarithmic cost mea-
sure for arithmetic operations. It is correct if the answer is “no”, and in case
the answer is “yes”, it is correct for identical strings and for nonidentical strings
it does not detect inequality with a small probability δ, and with δn after n
repetitions of the test. The algorithm requires modulo computation where the
modulus is exponential in the size of G. It is open whether smaller numbers, for
example numbers with a polynomial number of digits are sufficient. The random-
ized equality test is faster than the deterministic Lifshits-test [Lif07], which has
a cubic running time, but presumably an O(n4) running time using the logarith-
mic cost measure. The equality test is also applicable to grammar-compressed
ranked trees by applying it to the SLCF grammar representing the preorder
traversals, which can be generated in linear time (see [BLM05,BLM08]).

2 Grammars and Equality

Definition 2.1. (a) A straight-line context-free grammar (SLCFG) (equivalent
to SLP) G is a quadruple (Σ,N , S,R) where

(1) Σ is a finite alphabet, (we assume |Σ| = O(1))
(2) N = {B1, . . . , BN} is a set of nonterminals,
(3) S = BN is the start symbol and
(4) R is a finite set of productions. A production has either the form Bi → BjBk

for i > j, k or Bi → a for a ∈ Σ. Moreover for each nonterminal Bi there is
exactly one production in R.

(b) Every nonterminal A ∈ N generates exactly one string val(A). The string
generated by the start symbol BN is denoted by val(G).
(c) The size |G| of G is the number of productions of R.

The length of val(G) may be as large as 2|G|. As an example, for every integer
n > 1 there is an SLCFG Gn of size d(log2(n))e such that val(Gn) is a string of
0’s of length n.
The EQ problem for SLCFGs is: given an SLCFG G and two nonterminals
A1, A2, determine whether val(A1) = val(A2).

Fast randomized equality test 3

Let b ≥ |Σ| + 1 be a number (the base) and let num be an injective function
num : Σ → {1, . . . , b − 1}. Observe that a string d = d1 · · · dm over Σ can
be interpreted as the b-ary representation of the natural number numb(d) =∑m−1

i=0 num(dm−i) · bi. Hence d = d′ iff numb(d) = numb(d′).
The EQ problem is non-trivial, since the strings val(A) may have length exponen-
tial in |G|, i.e as large as 2|G|. Thus the associated natural numbers numb(Ai) :=
numb(val(Ai)) may have representational size (number of digits) exponential in
|G|. Therefore we determine numb(A) modulo a randomly selected integer m
smaller than some bound and check whether numb(A1) ≡ numb(A2) mod m
holds.
For computing running times we apply a logarithmic cost measure, i.e., n1 ◦
n2 requires running time O(log n) for arithmetic operations including modulo
computation where n = max(n1, n2). This is justified, since the representational
size of numbers cannot be neglected in the analysis, even for the computation
of |val(G)|.

3 A Randomized Equality Test

We analyze the properties of a randomized equality test for natural numbers.
Let e = 2.718 . . . be the Euler-number.

Fact 3.1. Let c ≥ e be arbitrary and let a be a positive integer. For any two
natural numbers x, y < a, if x 6= y then

x ≡ y mod p

holds with probability at most ln(ec)/c, provided a prime p ≤ 2c · ln a is selected
uniformly at random.

Proof. First we show that asymptotically the number of prime divisors of an
integer a is less than π(2 ln a) where π(z) is the number of primes less than z.
First observe that

∑
p,p≤N ln p ∼ N , where we sum over all primes at most N

(see [BS96]). As a consequence ln(
∏

p,p≤N p) ≥ N/2 and hence
∏

p,p≤N p ≥ eN/2.
Let 0 < x < a and Px be the set of all primes p with x ≡ 0 mod p. Then

∏
p∈Px

p
is a divisor of x and in particular

∏
p∈Px

p < a.
If |Px| ≥ π(2 ln a), then by our previous argument

a ≤
∏

p,p≤2 ln a

p ≤
∏

p∈Px

p < a

and hence |Px| ≤ π(2 ln a) follows.
We apply the prime number theorem and obtain π(z) ∼ z/ ln(z). As a conse-
quence π(c · z) ∼ cz/ ln(cz) ≥ [c/ ln(ec)] · [z/ ln(z)], provided c, z ≥ e. Hence
π(c · z) ≥ [c/ ln(ec)] · π(z). We set z = ln a. If we choose a prime p ≤ cz at
random, then we do not detect inequality of x and y with probability at most
π(z)/π(cz) ≤ ln(ec)/c.

4 Manfred Schmidt-Schauß and Georg Schnitger

An alternative method is testing division modulo an arbitrary number m, which
does not require to find prime numbers and saves a factor |G| in the overall
running time see Remark 4.5.

Fact 3.2. Let a be a positive integer. For any two natural numbers x, y < a, if
x 6= y then

x ≡ y mod m

holds with probability at most 0.5, provided a number m ≤ (2 ln a)2 is selected
uniformly at random, and 2 ln a ≥ 355991.

Proof. The proof of Fact 3.1 shows that if 0 < x < a and Px is the number of
primes p with x ≡ 0 mod p, then |Px| ≤ π(2 ln a).
In an interval [k, k2], the number of multiples k′p ∈ [k, k2] of primes p ∈ [k, k2]

has as lower bound
k2∫
2k

k2/(x ln(x))dx = k2(ln ln(k2) − ln ln(2k)) provided k is

sufficiently large (k ≥ 355991).
(
For a rigorous argument, taking into account

that we use an approximation of the number of primes and their density see
[SSS11]. Using the result that the probability that a number m has a prime factor
at least

√
m approaches ln 2, see e.g. [Dic30,D.E98], it is easy to derive that the

estimation holds in the interval [k, k4] since the probability that numbers from
[k2, k4] have a prime factor at least k approaches ln 2.

)
Note that the multiples

are unique in the interval. An easy computation shows that the ratio compared
to all integers in the interval, which is k2 − 2k + 1, is > 0.6 for k ≥ 106 and
approaches ln 2 = 0.693.. if k →∞.
Since some primes from Px may be in the interval, a lower bound for the number
of integers in [k, k2] with a prime divisor not in Px is 0.6k2−|P |k. For k = (2 ln a),
we obtain a ratio (0.6k2 − |Px|k)/k2 = 0.6− 1/(2 ln ln a) > 0.5.
If we select m ≤ (2 ln a)2 uniformly at random, then x − y ≡ 0 mod m holds
with probability at most 0.5.

4 Equality-Test Algorithms

By utilizing a table with Bi 7→ |val(Bi)| computed as |val(Bi)| := 1 if Bi → a
is the production, and |val(Bi)| := |val(Bj)| + |val(Bj′)| if Bi → BjBj′ is the
production for Bi, and taking care of the logarithmic cost measure, we obtain:

Observation 4.1. For an SLCFG G the length of val(A) can be determined
simultaneously for all nonterminals A in time O(|G| · log |val(G)|).

Given a positive integer m, we store the values (b|val(A)| mod m) in a ta-
ble τ computed as follows: τ(Bi) := (b mod m) for Bi → a, and τ(Bi) :=
(τ(Bj) · τ(Bj′) mod m) for Bi → BjBj′ . We also determine (numb(B) mod m)
for all nonterminals B using another table σ computed as follows: σ(Bi) :=
(num(a) mod m) if Bi → a and σ(Bi) := (((σ(Bj) · τ(Bj′) mod m) +
σ(Bj′)) mod m) if Bi → BjBj′ . Since addition and multiplication are modulo
m, the entries in σ, τ are smaller than m.

Fast randomized equality test 5

Observation 4.2. Assume that an SLCFG G = (Σ,N , S,R) and a positive in-
teger m ≥ b is given. Then the numbers (b|val(B)| mod m) and (numb(B) mod m)
can be determined simultaneously for all B ∈ N in time O(|G| · logm).

Algorithm 4.3 (Equality Test by Modulo). Checking whether val(A1) =
val(A2) holds requires first to determine the lengths |val(A)| for all nonter-
minals A with Observation 4.1. We then randomly select a number m ≤
(2 · ln(b|val(G)|))2 = (2 · ln b)2|val(G)|2 and determine (numb(A1) mod m) and
(numb(A2) mod m) with Observation 4.2, and then compare the outcomes.

Theorem 4.4 (Modulo-test). Assume that an SLCFG G and two nonter-
minals A1, A2 of G are given. Using Algorithm 4.3: if the answer is “no”,
then val(A1) 6= val(A2). If the answer is “yes”, then the answer is correct if
val(A1) = val(A2); in case val(A1) 6= val(A2), then we do not detect inequality
with probability at most 0.5. The running time is bounded by O(|G| · log |val(G)|).

Since |val(G)| ≤ 2|G|, the running time is at most quadratic.

Remark 4.5 (Equality Test by Modulo Primes). Using Fact 3.1 allows to modify
Algorithm 4.3 using primes in the range up to 2 · ln(b|val(G)|). However, randomly
selecting primes requires first to select numbers, and check them for being prime,
and iterating this until a prime is found. The density of primes in this range is
(ln |val(G)|)−1, hence in the worst case O(|G|) numbers have to be tried. The
computational cost (using the logarithmic cost measure) for primality testing of
m are for the known tests at least O(log2m), which sums up in the worst case
to at least O(|G|3).

As a special case, let Σ be a one-letter alphabet. If we have to check whether
val(A1) = val(A2) holds it is sufficient to check whether |val(A1)| = |val(A2)|.
Therefore, given a number m ≥ b, we compute a table with lmod(Bi) = 1 for
rules Bi → a, and lmod(Bi) = ((lmod(Bj) + lmod(Bj′)) mod m) for rules Bi →
BjBj′ . In analogy to Observation 4.2, this can be done in time O(|G| logm). We
use Fact 3.2 with a = |val(G)|, and exploit ln a ≤ |G|.
We randomly select a number m ≤ (2 · |G|)2. Finally, with Fact 3.2, we do not
detect inequality with probability at most 0.5.

Theorem 4.6. For a one-letter alphabet Σ Theorem 4.4 holds with a running
time O(|G| · log |G|).

Note that this is faster than the naive comparison |val(A1)| = |val(A2)|, which
runs in time O(|G| · log |val(G)|), resp. quadratic in the worst-case.

Remark 4.7 (Some Practical Hints). The theoretical results may require large
modulo-numbers, seen from a practical viewpoint, for a safe randomized test.
However, since SLCFGs-generated numbers are rare, in practice smaller modulo-
bases may be sufficient. However, it is not hard to see that the selection of prime
numbers ≤ |G| ln 2 is unsafe (see [SSS11]).

6 Manfred Schmidt-Schauß and Georg Schnitger

Assuming ideal properties, the following computation is possible and gives a
rough estimate for the practically necessary range of tiny numbers (or primes)
(mathematically unsafe, but useful as a practical hint). Given |G| and assuming
|G| ≥ b, there are at most |G||G|2 different grammars of size |G|. Assuming that
the generated numbers are all different and are exactly 1, . . . , |G||G|2 , then using
Fact 3.1, we obtain that primes in the range up to 2 log(|G|) · |G|2 (resp. modulo
numbers m up to (2 log(|G|) · |G|2)4) have to be chosen for a useful modulo test
with tiny primes.

Algorithm 4.8. Modulo-test with tiny numbers. Use the randomized algorithm
4.3, but use numbers in the range up to (2 log(|G|) · |G|2)2.

Conjecture 4.9. Algorithm 4.8 is correct in the sense of Theorem 4.4, perhaps
with another polynomial upper bound for the range of m.

Remark 4.10. Our algorithm can also be applied to the EQPREF-problem.
This problem was also considered in [GKPR96]. The EQPREF problem for
SLCFGs is: given an SLCFG G and two nonterminals A1, A2 determine whether
val(A1) = val(A2) and if val(A1) 6= val(A2) then determine the length of the
longest common prefix of val(A1) and val(A2).
We perform an interval bisection method. Given an SLCFG G, a single bisec-
tion step requires to compute the length, and two grammars G1, G2 accord-
ing to the bisection, where G1, G2 are smaller than G. The number of bisec-
tion steps is O(log |val(G)|). The construction can be done in running time
O(|G| · log |val(G)|) and the test in time O(|G| · log |val(G)|). The test must
be repeated several times in every step, where a fixed number like 20 or 50 may
be used. This sums up to O(|G| · log2 |val(G)|) using a logarithmic cost measure.
Under a uniform cost measure we obtain O(|G| · log |val(G)|).

5 Summary

The following table summarizes the complexities of the different randomized or
sample equality tests, where we use the logarithmic cost measure.

Modulo-Test Algorithm worst case general case
modulo small m (Alg. 4.3) O(|G|2) O(|G| log(|val(G)|))
modulo tiny m (Alg. 4.8) O(|G| log(|G|)) O(|G| log logm)
|Σ| = 1 (Theorem 4.6) O(|G| log |G|) O(|G| log |G|)

References

[BKL+02] Piotr Berman, Marek Karpinski, Lawrence L. Larmore, Wojciech
Plandowski, and Wojciech Rytter. On the complexity of pattern match-
ing for highly compressed two-dimensional texts. J. Comput. Syst. Sci.,
65(2):332–350, 2002.

Fast randomized equality test 7

[BLM05] Giorgio Busatto, Markus Lohrey, and Sebastian Maneth. Efficient memory
representation of XML documents. In Proc. of DBPL 2005, volume 3774 of
LNCS, pages 199–216, 2005.

[BLM08] Giorgio Busatto, Markus Lohrey, and Sebastian Maneth. Efficient memory
representation of XML document trees. Information Systems, 33(4–5):456–
474, 2008.

[BS96] E. Bach and J. Shallit. Algorithmic Number Theory Vol 1: Efficient Algo-
rithms. MIT Press, Cambridge, MA, 1996.

[D.E98] D.E.Knuth. The Art of Computer Programming, Vol. 2. Addison-Wesley,
Reading, MA, 1998.

[Dic30] K. Dickman. On the frequency of numbers containing prime factors of a
certain relative magnitude. Arkiv för Mat., Astron. och Fys, 22A(10):1–14,
1930.

[Dus98] Pierre Dusart. Autour de la fonction qui compte le nombre de nombres
premiers. PhD thesis, Université de Limoges, 1998. Nr. 17-1998.

[GGSS08] A. Gascón, G. Godoy, and M. Schmidt-Schauß. Context matching for com-
pressed terms. In LICS 2008, pages 93–102. IEEE Computer Society, 2008.

[GKPR96] Leszek Gasieniec, Marek Karpinski, Wojciech Plandowski, and Wojciech
Rytter. Randomized efficient algorithms for compressed strings: The finger-
print approach (extended abstract). In 7th CPM 96, volume 1075 of LNCS,
pages 39–49. Springer, 1996.

[JA84] J.Ziv and A.Lempel. A universal algorithm for sequential data compression.
IEEE Trans. on Inf. Theory, 17:8–19, 1984.

[KRS95] M. Karpinski, W. Rytter, and A. Shinohara. Pattern-matching for strings
with short description. In CPM ’95, number 937 in LNCS, pages 205–214.
Springer-Verlag, 1995.

[Lif07] Yury Lifshits. Processing compressed texts: A tractability border. In 18th
CPM 2007, number 4580 in LNCS. Springer, 2007.

[Pla94] Wojciech Plandowski. Testing equivalence of morphisms on context-free
languages. In ESA, pages 460–470. Springer, 1994.

[Pla95] Wojciech Plandowski. The Complexity of the Morphism Equivalence Prob-
lem for Context-Free Languages. PhD thesis, Department of Mathematics,
Informatics and Mechanics, Warsaw University, 1995.

[PR99] W. Plandowski and W. Rytter. Complexity of language recognition prob-
lems for compressed words. In Jewels are Forever, pages 262–272. Springer,
1999.

[SSS11] Manfred Schmidt-Schauß and Georg Schnitger. Fast equality test for
straight-line compressed strings. Frank report 45, Institut für Informatik,
Goethe-Universität Frankfurt am Main, April 2011.

8 Manfred Schmidt-Schauß and Georg Schnitger

A An Estimation of the Number of Multiples of Primes

Let IP be the set of primes and π(x) be the number of primes smaller than x.
An estimation for π(x) is (see [BS96,Dus98]):

x

lnx
(
1 +

1
lnx

)
< π(x) for x ≤ 599

π(x) <
x

lnx
(
1 +

1
lnx

+
2.51

(lnx)2
)

for x ≤ 355991

The goal is to prove that asymptotically, the ratio of multiples of primes from
[k, k2] that are also in the interval [k, k2] approaches ln 2 ≈ 0.69. This has simi-
larity to the result that the probability that a number m has a prime factor at
least

√
m approaches ln 2 (see e.g. [Dic30,D.E98]). This result implies that our

estimation holds in the interval [k, k4] since the probability that numbers from
[k2, k4] have a prime factor at least k approaches ln 2.
In the following paragraph, we make a rigorous, but elementary, estimation for
the interval 5k, k2].

A.1 An Estimation under Uncertainty

Let there be a real (positive) interval [a, b], a monotone ascending function f :
[a, b] → IR, such that π(x) ≥ f(x) > 0 for all x ∈ [a, b], a positive, monotone
descending function g : [a, b] → IR. Note that π(x) is also monotone ascending.
Assume that the derivative f ′ exists, is continuous and monotone.
The goal is to determine a lower bound of

S0 :=
∑

x∈IP∩[a,b]

g(x)

We select a sequence a = a0 < a1 < . . . < an = b. Let us assume that it is
possible to select a1 such that ρ := π(a1)− π(a0) ≥ π(a1)− f(a1).
The idea is to omit the sum

∑
x∈IP∩]a0,a1]

g(x) from the sum S0 above and use
this to smooth the other sum contributions.
We use a step function w.r.t. the chosen sequence:(∑

i=1,...,n

(π(ai)− π(ai−1))g(ai)
)
≤

∑
x∈IP∩[a,b]

g(x)

Let R0 :=
∑

x∈IP∩[a0,a1]
g(x) and S :=

(∑
i=2,...,n(π(ai)− π(ai−1))g(ai)

)
.

For i = 1, . . . , n− 1 let:

Ri := (π(ai+1)− π(ai))g(ai+1)− (f(ai+1)− f(ai))g(ai+1) +Ri−1

R′i := (π(ai+1)− π(a1) + ρ)g(ai+1)− (f(ai+1)− f(a1))g(ai+1)

Lemma A.1. The following estimations hold:

– R0 ≥ ρg(a1).

Fast randomized equality test 9

– Ri ≥ R′i ≥ 0 for all i ≥ 1.

Proof. Since π(a1) − π(a0) = ρ and g is positive and monotone decreasing, we
obtain R0 ≥ ρg(a1).
Since π(a2) ≥ f(a2), R0 ≥ ρg(a1) ≥ ρg(a2), and ρ ≥ π(a1)− f(a1), we obtain:

R1 =
(
(π(a2)− π(a1))− (f(a2)− f(a1))

)
g(a2) +R0

≥ R′1 =
(
(π(a2)− π(a1) + ρ)− (f(a2)− f(a1))

)
g(a2)

≥ 0

Since π(ai+1) ≥ f(ai+1) and ρ ≥ π(a1) − f(a1), we see that for all i ≥ 1, the
inequation R′i = (π(ai+1) − π(a1) + ρ)g(ai+1) − (f(ai+1) − f(a1))g(ai+1) ≥ 0
holds.
For i = 2, . . . , n− 1: we show the inequation Ri ≥ R′i by induction on i:

Ri = (π(ai+1)− π(ai))g(ai+1)− (f(ai+1)− f(ai))g(ai+1) +Ri−1

≥ (π(ai+1)− π(ai))g(ai+1)− (f(ai+1)− f(ai))g(ai+1) +R′i−1

= (π(ai+1)− π(ai))g(ai+1)− (f(ai+1)− f(ai))g(ai+1)
+ (π(ai)− π(a1) + ρ)g(ai)− (f(ai)− f(a1))g(ai)

Since R′i−1 is positive, we can replace g(ai) by g(ai+1) and obtain:

≥ (π(ai+1)− π(ai))g(ai+1)− (f(ai+1)− f(ai))g(ai+1)
+ (π(ai)− π(a1) + ρ)g(ai+1)− (f(ai)− f(a1))g(ai+1)

= (π(ai+1)− π(a1) + ρ)g(ai+1)− (f(ai+1)− f(a1))g(ai+1)
= R′i ≥ 0

The previous lemma shows that(∑
i=1,...,n

(π(ai)− π(ai−1))g(ai)
)
≥
(∑

i=2,...,n

(f(ai)− f(ai−1))g(ai)
)

Using a sequence a1, . . . , an with ai = a1 + ih, we obtain using h→ 0:

∑
i=1,...,n

(f(ai)− f(ai−1))g(ai) ≥
∫ b

a1

f ′(x)g(x)dx

Number of Multiples of Primes in an Interval Now we apply this to
the following problem concerning prime numbers and their multiples. Let k ≥
355991. A lower bound on the the following number is required:

|{x | x ∈ [k, k2], x has a prime-factor in [k, k2]}|

This is the same as the number of multiples of the primes p ∈ [k, k2] that are
also in [k, k2]. If p ∈ [k, k2] is any prime, then for a multiple ip ∈ [k, k2], we

obtain i < k, hence the multiples are all distinct. We use
x

lnx
(
1 +

1
lnx

)
as the

10 Manfred Schmidt-Schauß and Georg Schnitger

function f , and g =
k2

x
for counting the number of multiples of x in the interval.

For the integral we use a further estimation:
x

lnx
(
1 +

1
lnx

)
≥ x

lnx
=: f1, and

thus
1

lnx
as the density f ′1.

For a safe estimation, we have to cut away a prefix of the interval [k, k2]. For

large numbers k, ρ is roughly
2k

ln(2k)
− k

ln k
which for k ≥ 355991 is larger than

3k
(ln k)3

. Thus, using Dusart’s formula, it is sufficient to cut away the interval

[k, 2k] and use [2k, k2] for the integral.
According to the above estimation method, we obtain the following lower bound
on the number of multiples:

k2∫
2k

k2/(x ln(x))dx = k2(ln ln(k2)− ln ln(2k))

An easy computation shows the following: the ratio is ≈ ln ln(k2) − ln ln(2k)
which is > 0.55 and approaches ln 2 = 0.693 . . . if k →∞.

B On Minimal Number of Primes

Remark B.1 (Lower Bound for Primes).
We show that prime factors greater than (ln 2) · |G| are required for the equality
test. More rigorously:
Let Σ = {0, . . . , b−1}, n be an integer and let G be an SLCFG such that val(A0)
is a string of only 0’s of length n, and val(A1) is a string of only 1’s of length
n. G can be chosen such that |G| ≤ 2dlog2(n)e. Let b < p1 < p2 < . . . pk ≤ N
be the sequence of all primes greater than b and bounded by N , and let n =
(p1− 1) · . . . · (pk − 1). For all p ∈ {p1, . . . , pk}: (

∑p−2
i=0 b

i) · (b− 1) = bp−1− 1 ≡ 0
mod p, since p > b. Hence (

∑p−2
i=0 b

i) ≡ 0 mod p, and val(A0) and val(A1) are
indistinguishable by the modulo algorithm for all primes p ∈ {p1, . . . , pk}. Using
the equations in the proof of Fact 3.1 we obtain lnn = ln

∏
p,b<p≤N (p − 1) ≤

ln
∏

p,p≤N p ∼ N . Thus ln
∏

p,p≤N p < 1.1N , for N not too small, and also
lnn = (ln 2) · log2(n) ≥ (ln 2) · (|G|−1). Thus N > c · |G| with c ≈ ln 2/1.1 ≈ 0.6.
Hence, it must be possible to select prime factors larger than (ln 2) · |G|.

