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Abstract. We investigate monads of partiality in Martin-Löf type the-
ory, following Moggi’s general monad-based method for modelling ef-
fectful computations. These monads are often called lifting monads and
appear in category theory with different but related definitions. In this
paper, we unveil the relationship between containers and lifting monads.
We show that the lifting monads usually employed in type theory can
be specified in terms of containers. Moreover, we give a precise char-
acterization of containers whose interpretations carry a lifting monad
structure. We show that these conditions are tightly connected with
Rosolini’s notion of dominance. We provide several examples, putting
particular emphasis on Capretta’s delay monad and its quotiented vari-
ant, the non-termination monad.

1 Introduction

Martin-Löf type theory is a total language, meaning that every definable function
is necessarily total. This is a fundamental requirement guaranteeing the consis-
tency of the type system. Therefore the implementation of partial functions in
type theory requires the employment of ad-hoc techniques. A comprehensive
overview of such techniques has been recently given by Bove et al. [5].

In this work, we investigate monads of partiality, following Moggi’s general
monad-based method for modelling effectful computations [16]. The study of
monads of partiality in type theory, in particular aimed at the representation
of possibly non-terminating computations (non-termination from iteration), has
been an active area of research in recent years [7, 8, 3, 14].

Monads of partiality have also been intensively studied in category theory.
These monads are often called lifting monads and appear in the literature with
different but related definitions. The oldest one, originated in the area of topos
theory, is the notion of partial map classifier [15]. A monad T on a category C is
a partial map classifier if every partial map f : X ⇀ Y in C, to be thought of as
a total map from a certain subset of X into Y , is in one-to-one correspondence
with a map f̂ : X → T Y . Another notion of lifting monad is given by Cockett
and Lack’s classifying monads [10]. They can be thought of as abstract partial
map classifiers, in the sense that their Kleisli category is an abstract category
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of partial maps, viz., a restriction category [9]. For a base category with finite
products, Bucalo et al. [6] have given another notion of lifting monad, that they
call equational lifting monads. These monads enjoy a more concise algebraic
characterization than classifying monads. Moreover, equational lifting monads
are a subclass of classifying monads.

In this paper, we investigate the connection between lifting monads and con-
tainers [1] in type theory. We noticed that the monads of partiality most com-
monly employed in type theory can be specified by containers:

– The maybe monad can be defined as MaybeX=dfΣs : Bool. ((s = ok)→ X)
where Bool = {ok, err}.

– The different definitions of the monad for non-termination [8, 3] are isomor-
phic to X⊥=df Σs : S. ((s = >)→ X) where S is a type called the Sierpinski
set [13] or Rosolini’s dominance [19].

– The full partial map classifier, classifying all partial maps, can be defined as
PMCX =df Σs : Ω. ((s = 1) → X) where Ω is the type of all propositions.
In the type theory that we consider, (s = 1) = s.

The types Bool, S and Ω have to be thought as types of truth values classifying
decidable, semidecidable and all subobjects respectively. The specific elements
ok : Bool, > : S and 1 : Ω are the truth values corresponding to truth.

Ahman et al. [2, 21] have given an algebraic characterization of containers
whose interpretations carry a monad structure. We build on their work and give
an algebraic characterization of containers whose interpretations carry a lifting
monad structure. We show that different notions of lifting monad give rise to
different characterizations. In particular, we give a new algebraic description of
dominances, a notion first introduced by Rosolini for the specification of partial
map classifiers in topos theory [19].

Our motivation for studying the relationship between containers and lifting
monads comes from the fact that different notions of lifting monad are difficult
to get an intuition for and compare in the abstract. Containers are a more
concrete setting where the fine differences between them become easier to see and
appreciate. For partiality specifically, containers provide a separation between
reasoning about the partiality effect of a computation (which is all about shapes)
and its functional content (which is about assignments of values to positions).

There is also some simplification to the metatheory of non-termination. The
container approach allowed Chapman et al. [8] to define the non-termination
monad in homotopy type theory avoiding the axiom of countable choice by using
standard higher inductive types. This was an improvement over Altenkirch et
al.’s [3] earlier solution that required higher inductive-inductive types.

The paper is organized as follows. In Section 2, we give an overview of some
notion of lifting monads that appear in category theory. In Section 3, we re-
vise containers and mnd-containers (containers interpreting into monads). In
Section 4, we derive algebraic conditions on containers that makes their inter-
pretations carry a lifting monad structure. Moreover, we give a new algebraic
description of dominances. In Section 5, we give several examples, with spe-
cial emphasis on the non-termination monad, used to classify partial maps with



semidecidable domain of definedness in type theory. Finally, in Section 6, we
draw some conclusions and we discuss future work.

We have fully formalized the development of the paper in the dependently
typed programming language Agda [17]. The code is available at http://cs.

ioc.ee/~niccolo/partialcont/; it uses Agda version 2.5.2 and Agda Standard
Library version 0.13.

The Type-Theoretical Framework We work in Martin-Löf type theory extended
with the following extensional concepts: function extensionality (pointwise equal
functions are equal) and proposition extensionality (logically equivalent propo-
sitions are equal). Equivalently, we could work in homotopy type theory, where
function and proposition extensionality are consequences of the univalence ax-
iom.

We assume uniqueness of identity proofs, which corresponds to working with
0-truncated types in homotopy type theory.

We revise a couple of basic definitions. A type X is a proposition, if any two
of its inhabitants are equal: isPropX=dfΠx1 x2 : X.x1 = x2. A type X is called
contractible, if there exists x : X such that every other element of X is equal to
x: isContrX =df Σx : X.Πx′ : X.x = x′.

2 Lifting Monads

In this section, we revise the different definitions of lifting monads appearing in
category theory and how these notions relate to each other.

A few words on notation. Given a monad (T, η, µ), we write f∗ : T X → T Y
for the Kleisli extension of the map f : X → T Y . Moreover, we write g � f for
the composition of f : X → T Y and g : Y → T Z in the Kleisli category of T .

We start with Cockett and Lack’s classifying monads [10].

Definition 1. An almost-classifying monad on a category C is a monad (T, η, µ)
with an operation (−), called restriction, sending any map f : X → T Y into a
map f : X → T X subject to the following conditions:

CM1 f � f = f ,
CM2 g � f = f � g,

CM3 g � f = g � f ,
CM4 g � f = f � g � f ,
CM5 ηY ◦ h = ηX , for h : X → Y .

We call it a classifying monad, if it also satisfies

CM6 idTX = TηX .

The restriction of a map f : X → TY should be thought of as a “partial
identity function” on X, a kind of a specification, in the form of a map, of the
“domain of definedness” of f (which need not be present in the category as an
object).



Conditions CM1-4 stipulate that the Kleisli category of T is a restriction cat-
egory. Condition CM5 states that pure maps, i.e., maps in the base category C,
are total. The additional condition CM6 of a classifying monad is more technical.
It was postulated by Cockett and Lack in order to connect classifying monads
and partial map classifiers, or more generally, classified restriction categories and
classifiedM-categories (Theorem 3.6 of [10]),M-categories being Robinson and
Rosolini’s [18] framework for partiality.

Together with CM5, the condition CM4 implies CM1:

f � f = f � ηY � f
CM4
= ηY � f

CM5
= ηY � f = f

A more specific notion of lifting monads is given by effective classifying mon-
ads [10]. Recall that a natural transformation is called Cartesian, if all of its
naturality squares are pullbacks. A monad (T, η, µ) is said to be Cartesian, if η
and µ are Cartesian.

Definition 2. A classifying monad (T, η, µ, (−)) is called effective, if η is Carte-
sian, pullbacks along ηX exist and are preserved by T .

An effective classifying monad is always Cartesian. Effective classifying mon-
ads are the same thing as partial map classifiers (Theorem 5.8 of [10]). This
means that, given an effective classifying monad (T, η, µ, (−)), there exists an
isomorphism C(X,T Y ) ∼= ParM(C)(X,Y ), where the category ParM(C) has the
same objects of C and it has spans
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as morphisms between X and Y , where the left leg m is a monic map belonging
to the collection M. Intuitively, an element of ParM(C)(X,Y ) is a partial map
from X to Y . The left leg of the span specifies its domain of definedness.

Bucalo et al. [6] introduced the notion of equational lifting monad. Recall
that a monad (T, η, µ) on a category C with finite products, equipped with a left
strength ψX,Y : X × T Y → T (X × Y ), is called commutative, if the following
diagram commutes:

T X × T Y
ψTX,Y //

φX,TY

��

T (T X × Y )

φ∗X,Y

��
T (X × T Y )

ψ∗X,Y

// T (X × Y )

(CommM)

where the right strength φX,Y : T X × Y → T (X × Y ) is defined as φX,Y =df

T swap ◦ ψX,Y ◦ swap.



Definition 3. A commutative monad (T, η, µ, ψ) is called an equational lifting
monad, if the following diagram commutes:

T X
∆ //

T ∆
��

T X × T X
ψT X,X

��
T (X ×X)

T (ηX×idX)
// T (T X ×X)

(EqLM)

Every equational lifting monad is canonically a classifying monad. Its restric-
tion operation is defined with the aid of the strength:

f =df X
〈idX ,f〉// X × T Y

ψX,Y // T (X × Y )
T π0 // T X (?)

Cockett and Lack showed that there exist classifying monads on categories with
finite products which are not equational lifting monads [10].

Notice that, in order to construct an almost-classifying monad, we can relax
condition EqLM above and consider Cockett and Lack’s copy monads [11].

Definition 4. A copy monad is a commutative monad (T, η, µ, ψ) for which the
following diagram commutes:

T X
∆ //

T ∆
��

T X × T X
ψT X,X
��

T (X ×X) T (T X ×X)
φ∗X,X

oo

(CopyM)

Every equational lifting monad is a copy monad:

φ∗ ◦ ψ ◦∆ = φ∗ ◦ T 〈η, id〉 = (φ ◦ (η × id) ◦∆)∗ = (η ◦∆)∗ = T∆

Every copy monad is canonically an almost-classifying monad. Its restriction
operation is defined as the one of equational lifting monads (?).

3 Container Monads

Containers [1] serve as a “syntax” of a wide class of set functors; we call these set
functors container functors. Many constructions on set functors can be carried
out on the level of containers. Their concreteness makes containers a useful tool
for enumerative combinatorics of container functors with special structure or
properties.

In this paper, we are specifically interested in container functors with a monad
structure. These were characterized by Ahman et al. [2, 21].

A container is given by a set S (of shapes) and an S-indexed family P of
sets (of positions in each shape).



A container determines a set functor JS, P Kc =df T where T X =df Σs :
S. P s→ X and T f =df λ(s, v). (s, f ◦ v).

We will not discuss container morphisms and their interpretation here. But
containers form a category Cont and interpretation J−Kc makes a fully-faithful
functor between Cont and [Set,Set].

There is an identity container defined by Idc =df (1, λ∗. 1). Containers can
be composed, composition is defined by (S, P ) ·c (S′, P ′) =df (Σs : S. P s→ S′,
λ(s, v). Σp : P s. P ′ (v p)).

Identity and composition of containers provide a monoidal category structure
on Cont. Interpretation J−Kc is a monoidal functor between (Cont, Idc, ·c) and
([Set,Set], Id, ·).

We call a mnd-container a container (S, P ) with operations

– e : S,
– • : Πs : S. (P s→ S)→ S,
– q0 : Πs : S.Πv : P s→ S. P (s • v)→ P s,
– q1 : Πs : S.Πv : P s→ S.Πp : P (s • v). P (v (v 0s p))

(where we write q0 s v p as v 0s p and q1 s v p as p 1v s) satisfying

– s • (λ . e) = s,
– e • (λ . s) = s,
– (s • v) • (λp′′. w (v 0s p′′) (p′′ 1v s)) = s • (λp′. v p′ • w p′),
– (λ . e) 0s p = p,
– p 1λ . s e = p,
– v 0s ((λp′′. w (v 0s p′′) (p′′ 1v s)) 0s•v p) = (λp′. v p′ • w p′) 0s p,
– ((λp′′. w (v 0s p′′) (p′′ 1v s)) 0s•v p) 1v s =

let u← λp′. v p′•w p′ in w (u 0s p) 0v (u0sp) (p 1u s),
– p 1λp′′. w (v0sp′′) (p′′1vs) (s • v) =

let u← λp′. v p′•w p′ in (p 1u s) 1w (u0sp) v (u 0s p).

The data (e, •) are like a monoid structure on S modulo the 2nd argument
of the multiplication being not an element of S, but a function from Ps to S
where s is the 1st argument. Similarly, introducing the visual 0,1 notation for
the data q0, q1 helps us see that they are reminiscent of a biaction (a pair of
agreeing right and left actions) of this monoid-like structure on P . But here a
further difference is also that P is not a set, but a S-indexed family of sets.

An mnd-container (S, P, e, •,0,1) interprets into a monad JS, P, e, •,0,1Kmc=df

(T, η, µ) where

– T =df JS, P Kc
– η x=df (e, λp. x)
– µ (s, v) =df let (v0 p, v1 p)← v p in (s • v0, λp. v1 (v0 0s p) (p 1v0 s))

We omit the definition of mnd-container morphisms and their interpretation.
We note that mnd-containers form a category MCont whose identity and com-
position are inherited from Cont. Interpretation J−Kmc is a fully-faithful functor
between MCont and Monad(Set).



Mnd-containers are in a bijection with containers whose interpretation carries
a monad structure. The reason is, we could say, that they are in a bijection with
monoid objects in the monoidal category (Cont, Idc, ·c).

Moving from sets of objects to categories, one can observe that the functor
J−Kmc : MCont → Monad(Set) is the pullback of the fully-faithful functor
J−Kc : Cont→ [Set,Set] along U : Monad(Set)→ [Set,Set] and the category
MCont is isomorphic to the category of monoids in (Cont, Idc, ·c).

MCont
∼= Monoid(Cont, Idc, ·c)

U //

f.f. J−Kmc

��

Cont

��

(Cont, Idc, ·c)

J−Kc f.f.

��

�Uoo

Monad(Set)
∼= Monoid([Set,Set], Id, ·)

U // [Set,Set] ([Set,Set], Id, ·)

As an example, we look at the container syntax for the list functor and the
standard monad structure on it.

The relevant container is (S, P ) where S=dfN, P s=df [0..s). The correspond-
ing functor is T where T X =df Σs : N. [0..s)→ X ∼= ListX.

This container extends to an mnd-container by

– e =df 1,
– s • v =df

∑
p:[0..s) v p,

– v 0s p=df greatest p0 : [0..s) such that
∑
p′:[0..p0)

v p′ ≤ p,
– p 1v s=df p−

∑
p′:[0..v0sp)

v p′

The corresponding monad structure on T is the standard list monad with
η x=df [x], µ xss =df concat xss.

The list mnd-container example can be generalized in the following way.
Let (O,#, id, ◦) be some non-symmetric operad, i.e., let O be a set of opera-
tions, # : O → N a function fixing the arity of each operation and id : O and
◦ : Πo : O. (# o→ O)→ O an identity operation and a parallel composition op-
erator, with # id = 1 and # (o ◦ v) =

∑
i:[0..# o) # (v i), satisfying the equations

of a non-symmetric operad. We can take S=dfO, P o=df [0..# o), e=df id, •=df ◦
and 0, 1 analogously to the definition of the (standard) list mnd-container. This
choice of (S, P, e, •,0,1) gives a mnd-container. The list mnd-container corre-
sponds to a special case where there is exactly one operation for every arity, in
which situation we can w.l.o.g. take O = N, # o = o. Keeping this generalization
of the list monad example in mind, we can think of mnd-containers as a gener-
alization of non-symmetric operads where the argument places of an operation
are identified nominally rather than positionally, operations may also have in-
finite arities, and, importantly, arguments may be discarded and duplicated in
composition.

Altenkirch and Pinyo [4] have proposed to think of an mnd-container
(S, P, e, •,0,1) as a “lax” (1, Σ) type universe à la Tarski, namely, to view S



as a universe of types (“codes for types”), P as an assignment of a set to each
type, e as a type 1, • as a Σ-type former, 0 and 1 as first and second projec-
tions from the denotation of a Σ-type. The laxity here is that we have functions
λ . ∗ : P e → 1 and λp. (v 0s p, p 1v s) : P (s • v) → Σp : P s. P (v p), but they
are not isomorphisms.

The interpretation of an mnd-container (S, P, e, •,0,1) is a Cartesian monad
if and only if the functions λ . ∗ : P e → 1 and λp. (v 0s p, p 1v s) : P (s • v) →
Σp : P s. P (v p) are isomorphisms. (We will prove the condition for Cartesian-
ness of η in Lemma 11).

The list mnd-container satisfies these condition and the list monad is Carte-
sian.

Cartesian mnd-containers can be thought of as (proper) operads with possi-
bly infinitary operations and as (proper) (1, Σ) type universes.

4 Containers of Partiality

Let (S, P, e, •,0,1) be an mnd-container and let (T, η, µ) be its interpretation
into a monad. We now derive conditions on the mnd-container under which the
monad is a lifting monad (in some sense or other).

4.1 Classifying Monads

We start with classifying monads. We restrict our attention to classifying monads
whose restriction operation is defined as in (?).

We have that f x = (s, λ . x), if f x = (s, h). If additionally g x = (s′, h′),
then g∗ (f x) = (s • (λ . s′), λ . h′(p 1λ . s′ s)).

We already know that CM1 is derivable from CM4 and CM5.

Lemma 1. CM2 holds if and only if the following condition holds:

A2 s • (λ . s′) = s′ • (λ . s)

Proof. Given f : X → T Y , g : X → T Z, x : X, let (s, h) = f x and (s′, h′) =
g x. We have:

g∗ (f x) = g∗ (s, λ . x) = (s • (λ . s′), λ . x)

f
∗

(g x) = f
∗

(s′, λ . x) = (s′ • (λ . s), λ . x)

It is easy to see that A2 implies CM2. Vice versa, CM2 implies A2 by choosing
f, g : 1→ T 1, f ∗=df (s, λ . ∗) and g ∗=df (s′, λ . ∗).

Lemma 2. CM3 holds always.

Proof. Given f : X → T Y , g : X → T Z, x : X, let (s, h) = f x and (s′, h′) =

g x. We have g∗ (f x) = (s • (λ . s′), λ . x) and g∗ ◦ f x = (s • (λ . s′, λ . x).



Lemma 3. CM4 holds if and only if the following two conditions hold:

A4 (s • v) • (λ . s) = s • v
A4’ p 1λ . s (s • v) = v 0s p

Proof. Given f : X → T Y , g : Y → T Z, x : X, let (s, h) = f x and v =
π0 ◦ g ◦ h : P s→ S. We have:

g∗ (f x) = g∗ (s, h) = (s • v, λp. h (v 0s p))

f∗ (g∗ ◦ f x) = f∗ (s • v, λ .x) = ((s • v) • (λ . s), λp. h (p 1λ . s (s • v)))

It is easy to see that A4 and A4’ imply CM4. Vice versa, CM4 implies A4 and
A4’ by choosing f : 1 → T (P s), f ∗ =df (s, id) and g : P s → T 1, g p =df

(v p, λ . ∗).

Lemma 4. CM5 holds always.

Proof. Immediate.

It is worth noting that the condition A2 is similar to commutativity and
condition A4 to left regularity of a binary operation.

In summary, we obtain the following characterization of containers whose
interpretation carry an almost-classifying monad structure.

Theorem 1. The interpretation of an mnd-container (S, P, e, •,0,1) is an
almost-classifying monad with restriction operation defined as in (?) if and only
if it satisfies A2, A4 and A4’.

We proceed to classifying monads and analyze condition CM6.

Lemma 5. CM6 holds if and only if the following two conditions hold:

B P s→ s = e
C isProp (P s)

Proof. (⇒) Assume CM6. Let s : S, we define t : T (P s), t =df (s, idP s). We
have:

idT (P s) t = (s, λ . (s, idP s))

T η1 t = (s, (λq. (e, (λ . q))))

CM6 implies, in particular, that the functions g =df λ . (s, idP s) and h =df

λq. (e, λ . q) of type P s→ T (P s) are equal.
In order to conclude B, let p : P s. Applying both functions g and h to p, we
obtain (s, idP s) = (e, λ . p), and in particular s = e.
In order to conclude C, let p, q : P s. Applying both functions g and h to
p, we obtain (s, idP s) = (e, λ . p). Applying both functions g and h to q, we
obtain (s, idP s) = (e, λ . q). In particular, we have (e, λ . p) = (e, λ . q) and
therefore p = q.



(⇐) Assume B and C. Let (s, g) : T X. We have idT (P s) (s, g) = (s, λ . (s, g))
and T ηX (s, g) = (s, λp. (e, λ . g p)). B and C imply that these two terms are
equal.

For container monads, we have that CM6 implies CM4.

Lemma 6. B implies A4; C implies A4’.

Proof. Assume B. Let s : S, v : Ps→ S.

(s • v) • (λ . s)
B
= (s • v) • (λ . e) = s • v

Assuming also C, we derive immediately A4’, since the latter is an equation
between positions.

In summary, we obtain the following characterization of containers whose
interpretations carry a classifying monad structure.

Theorem 2. The interpretation of an mnd-container (S, P, e, •,0,1) is a clas-
sifying monad with restriction operation defined as in (?) if and only if it satisfies
A2, B and C.

As we have shown in the Lemma 6, condition C implies the position equa-
tion A4’. Analogously, condition C trivializes all position equations from the
definition of mnd-container.

4.2 Copy Monads and Equational Lifting Monads

We now move to the characterization of containers whose interpretations carry
a copy monad structure or an equational lifting monad structure.

The left strength ψ, when applied to a term (s, h) : T X, returns ψ (x, (s, h)) =
(s, λp. (x, h p)), while the right strength φ symmetrically returns
φ ((s, h), y) = (s, λp. (h p, y)).

Lemma 7. CommM holds if and only if both A2 and the following condition
hold:

A2’ (λ . s′) 0s p = p 1λ . s s′

Proof. Given (s, h) : T X and (s′, h′) : T Y , we have:

ψ∗ (φ ((s, h), (s′, h′))) = ψ∗ (s, λp. (h p, (s′, h′)))

= (s • (λ . s′), λp. (h (λ .s′ 0s p), h′ (p 1λ .s′ s)))

φ∗ (ψ ((s, h), (s′, h′))) = φ∗ (s′, λp. ((s, h), h′ p))

= (s′ • (λ . s), λp. (h (p 1λ .s s′), h′ (λ .s 0s′ p)))

It is easy to see that A2 and A2’ imply CommM. Vice versa, CommM implies
both A2 and A2’ by choosing h=df idP s and h′ =df idP s′ .



Lemma 8. CopyM holds if and only if the following conditions hold:

A1 s • (λ . s) = s
A1’ p 1λ . s s = p
A1” (λ . s) 0s p = p

Proof. Given (s, h) : T X, we have:

φ∗ (ψ ((s, h), (s, h))) = (s • (λ . s), λp. (h (p 1λ .s s), h (λ .s 0s p)))

T ∆ (s, h) = (s, λp. (h p, h p))

It is easy to check that A1, A1’ and A1” imply CopyM. Vice versa, CopyM
implies A1, A1’ and A1” by choosing h=df idP s.

Condition A1 is a version of idempotence of a binary operation.
In summary, we obtain the following characterization of containers whose

interpretations carry a copy monad structure.

Theorem 3. The interpretation of an mnd-container (S, P, e, •,0,1) is a copy
monad if and only if it satisfies A1, A1’, A1”, A2 and A2’.

The following lemma shows that the set of conditions characterizing almost-
classifying monads in Theorem 1 implies the set of conditions characterizing
copy monads in Theorem 3.

Lemma 9. A4 implies A1. A4 and A4’ imply A1’ and A1”. Moreover, condi-
tions A2, A4 and A4’ imply A2’.

Proof. Assume A4. Given s : S, we have:

s • (λ . s) = (s • (λ . e)) • (λ . s)
A4
= s • (λ . e) = s

Assume also A4’. Given s : S and p : P (s • (λ . s)), we have:

p 1λ . s s = p 1λ . s (s • (λ . e))
A4’
= (λ . e) 0s p = p

(λ . s) 0s p
A4’
= p 1λ . s (s • (λ . s))

A1
= p 1λ . s s = p

Now assume also A2. Given s, s′ : S and p : P (s • (λ . s′)), we have:

p 1λ . s s′
A1’
= (p 1λ . s′•(λ . s) (s′ • (λ . s))) 1λ . s s′

= p 1λ . s ((s′ • (λ . s)) • (λ . s′))

A4
= p 1λ . s (s′ • (λ . s))

A2
= p 1λ . s (s • (λ . s′))

A4’
= (λ . s′) 0s p



Remember that every copy monad is canonically an almost-classifying monad.
Theorems 1 and 3 together with Lemma 9 tell us that the converse holds, if the
underlying functor of the monad is specified by a container and if restriction is
given as in (?).

Corollary 1. The interpretation of an mnd-container is a copy monad if and
only if it is an almost-classifying monad with restriction operation defined as in
(?).

We now move on to equational lifting monads.

Lemma 10. EqLM holds if and only if B and C hold.

Proof. Given (s, h) : T X, we have:

ψ (∆ (s, h)) = (s, λp. ((s, h), h p))

T (η × id) (T ∆ (s, h)) = (s, (η × id) ◦∆ ◦ h) = (s, λp. ((e, λ . h p), h p))

It is easy to check that B and C imply EqLM. Vice versa, EqLM implies both
B and C by choosing h=df idP s.

Analogously to Lemma 6, it is easy to see C implies A1’, A1”, A2’, as these
are all position equations.

In summary, we obtain the following characterization of containers whose
interpretations carry an equational lifting monad structure.

Theorem 4. The interpretation of an mnd-container (S, P, e, •,0,1) is an equa-
tional lifting monad if and only if it satisfies A2, B and C.

Remember that every equational lifting monad is canonically a classifying
monad. Theorems 2 and 4 tell us that the converse holds, if the monad is specified
by a container and if restriction is given as in (?).

Corollary 2. The interpretation of an mnd-container is an equational lifting
monad if and only if it is a classifying monad with restriction operation defined
as in (?).

4.3 Effective Classifying Monads

We move to effective classifying monads. As usual, we restrict our attention to
classifying monads whose restriction operation is defined as in (?).

In Set, all pullbacks exist and any container functor preserves all of them.
This means that in the category of sets and functions, an effective classifying
monad is a classifying monad with Cartesian η.

Lemma 11. The unit η is Cartesian if and only if the following condition holds:

D isContr (P e)



Proof. (⇐) Assume D. We are given the following data:

Z

g

��

k

%%
X

ηX //

f
��

T X

T f
��

Y
ηY
// T Y

We have to construct a unique map u : Z → X such that f ◦ u = g and
ηX ◦ u = k. Given z : Z, if k z = (s, h), then the commutativity of the
outermost square gives us s = e and f (h p) = g z for all p : P e, since we
have:

ηY (g z) = (e, λ . g z)

T f (k z) = (s, f ◦ h)

By D, we are given an element p : P e, so we define u z =df h p. We imme-
diately have f (u z) = g z. Moreover, ηX (u z) = (e, λ . h p) which is equal to
k z since h p = h q for all q : P e by D.
Let u′ : Z → X be another mediating map. In particular, we have ηX (u′ z) =
k z, which implies u′ z = h p = u z.

(⇒) Assume that η is Cartesian. We consider the following diagram:

T (P e)

!

""

g

''
P e

ηP e //

!
��

T (P e)

T !
��

1
η1

// T 1

where g (s, h)=df (e, idP e). Since the outermost diagram commutes, there ex-
ists a unique mediating map u : T (P e)→ P e. In particular, P e is inhabited
by u (e, idP e). It remains to show that P e is a proposition. Let (s, h) : T (P e).
We know that ηP e (u (s, h)) = g (s, h), i.e., (e, λ . u (s, h)) = (e, idP e). Then
for all p : P e, we have p = u (s, h). So in particular p = u (e, idP e). Therefore
P e is contractible.

Theorem 2 and Lemma 11 tell us that the interpretation of an mnd-container
(S, P, e, •,0,1) is an effective classifying monad with restriction operation de-
fined as in (?) if and only if satisfies A2, B, C and D.

Conditions B, C and D, when considered together, are very powerful. As-
suming conditions B and D, we obtain that P s is logically equivalent to s = e.
The left-to-right direction is given by B. Vice versa, if s = e, then P s = P e
and therefore P s holds by D. Assuming also C (and remembering that we are



assuming proposition extensionality), we obtain P s = (s = e). Therefore, for
containers whose interpretation extends to an effective classifying monad, P
cannot be chosen, it is uniquely determined.

Mnd-containers whose interpretation carry an effective classifying monad
structure can be given a more concise characterization.

Definition 5. An effective classifier is a set S equipped with operations

– e : S
– • : Πs : S. ((s = e)→ S)→ S
– q0 : Πs : S.Πv : (s = e)→ S. s • v = e→ s = e
– q1 : Πs : S.Πv : (s = e)→ S.Πp : s • v = e→ v (q0 s v p) = e

satisfying s • (λ . e) = s (i.e., the first shape equation of an mnd-container,
henceforth denoted RU) and A2.

Theorem 5. The interpretation of an mnd-container (S, P, e, •,0,1) is an ef-
fective classifying monad with restriction operation defined as in (?) (so that, in
particular, P s = (s = e)) if and only if (S, e, • 0,1) is an effective classifier.

Proof. We only need to show the right-to-left direction. In particular, we only
need to check that, using RU and A2, it is possible to derive all the equations
of mnd-containers. We know that the position equations hold since s = e is a
proposition for all s : S.

The first shape equation is RU, so we only need to derive the other two.
Notice that RU and A2 imply that the type family λs. (s = e) is injective, i.e.,
if s = e ↔ s′ = e then s = s′. In fact, from s = e → s′ = e and s′ = e → s = e,
we obtain two proofs, r1 : s • (λ . e) = s • (λ . s′) and r2 : s′ • (λ . e) = s′ • (λ . s).
Therefore we have:

s
RU
= s • (λ . e)

r1= s • (λ . s′)
A2
= s′ • (λ . s)

r2= s′ • (λ . e)
RU
= s′ (1)

Then, in order to prove e • (λ . s) = s, it is sufficient to construct the two
implications s = e → e • (λ . s) = e and e • (λ . s) = e → s = e. The first
implication follows from RU, the second from the type of q0.

The third shape equation is similarly derived employing the injectivity of
λs. (s = e).

4.4 Dominances

Traditionally, in topos theory partial map classifiers are specified by dominances,
introduced by Rosolini in his PhD thesis [19]. Dominances are used to charac-
terize the domain of definedness of partial maps, generalizing the notion of sub-
object classifier. In type theory, the notion of dominance was reformulated by
Escardó and Knapp [14]. Here we give a definition which is equivalent to theirs.

Definition 6. A dominance is a set with operations

– [[−]] : D → Ω,



– 1D : D,
– ΣD : ΠX : D. ([[X]]→ D)→ D

satisfying

– isInj [[−]],
– [[1D]] = 1,
– [[ΣDX Y ]] = Σx : [[X]]. [[Y x]].

The predicate isInj states the injectivity of a function. The type Ω is the type
of all propositions, Ω =df ΣX : U . isPropX.

In other words, a dominance is a set of (unique codes of) propositions closed
under 1 and Σ. Interestingly, the notion of dominance is equivalent to the one
of effective classifier.

Theorem 6. A set carries a dominance structure if and only it carries an ef-
fective classifier structure.

Proof. Let D be a set with a dominance structure.
First notice that, by the injectivity of [[−]] and the fact that [[1D]] = 1, we

have [[X]] = (X = 1D). In fact, By injectivity of [[−]], we have ([[X]] = [[1D]]) ↔
(X = 1D). By proposition extensionality therefore ([[X]] = [[1D]]) = (X = 1D).
Because [[1D]] = 1, we have ([[X]] = [[1D]]) = ([[X]] = 1). If [[X]], then [[X]] ↔ 1,
so by propositional extensionality also [[X]] = 1. Conversely, If [[X]] = 1, then
trivially [[X]]↔ 1 and further [[X]]. So [[X]]↔ ([[X]] = 1). Hence by propositional
extensionality one last time, [[X]] = ([[X]] = 1). In summary, [[X]] = ([[X]] = 1) =
([[X]] = [[1D]]) = (X = 1D).

The type D is equipped with the following effective classifier structure:

– e =df 1D,
– X • Y =df ΣDX Y ,
– q0 and q1 are definable, since we have [[ΣDX Y ]] = Σx : [[X]]. [[Y x]], which

is equivalent to (ΣDX Y = 1D) ↔ Σp : (X = 1D). (Y p = 1D). Using the
latter logical equivalence, it is easy to prove both RU and A2.

Vice versa, let S be a set with an effective classifier structure. Then it is
equipped with the following dominance structure:

– [[s]] =df (s = e),
– 1D =df e,
– ΣD s v =df s • v,
– [[−]] is injective. The proof of this fact corresponds to Equation (1) in the

proof of Theorem 5,
– [[1D]] = 1 is trivially true,
– [[ΣD s v]] = Σp : [[s]]. [[v p]] holds. Indeed, using proposition extensionality,

we only have to show that the two propositions are logically equivalent.
Unfolding the definitions, we have that the left-to-right implications s • v =
e → Σp : s = e. v p = e corresponds precisely to the conjunction of q0 and
q1. For the right-to-left implication, if p : s = e and v p = e, then we have:

s • v p,q= e • (λ . e)
RU
= e



Theorem 6 shows that effective classifiers are the same as dominances. But
the definition of effective classifier is more concise and easier to work with.

5 Examples

Imposed simultaneously, the characterizing conditions of effective classifying
monads, i.e., conditions A2, B, C and D, are very strong and constrain the
monad very much. But when some of them are dropped, more examples arise.
In this section, we give examples of lifting monads specified by containers.

Maybe Monad, Exception Monad The maybe monad T X =df X + 1, or
the exception monad with one exception, can be alternatively defined as the
interpretation of the container S =df {ok, err}, P ok=df 1, P err =df 0. The mnd-
container data are given by e=df ok, ok•v=df v ∗, err• =df err. These data satisfy
all of A2, B, C and D. In fact, the maybe monad is the partial map classifier
classifying partial maps with decidable domain of definedness.

One could ask if the exception monad with more than one exception carries
the structure of a lifting monad. The answer is no. The exception monad with two
exceptions, i.e., T X=dfX+2, can be alternatively defined as the interpretation
of the container S=df {ok, err0, err1}, P ok=df 1, P erri=df 0. The mnd-container
data are given by e =df ok, ok • v =df v ∗, erri • =df erri. These data satisfy B,
C and D, but falsify A2, since err0 • (λ . err1) 6= err1 • (λ . err0).

Delay Monad The underlying functor of Capretta’s delay monad [7] is defined
as the following coinductive type:

x : X

now x : DX

c : DX

later c : DX

It can be alternatively defined as the interpretation of the container S =df coN,
P n =df n↓ where coN =df D 1 is the set of conatural numbers and ↓ is the
convergence predicate defined inductively by the rules

0↓ : 0↓
n↓

suc↓ : (sucn)↓

We can define e=df 0, 0 • v=df v 0
↓, sucn • v=df suc (n • v ◦ suc↓). These data

specify the monad structure introduced by Capretta [7], which validate A2, C
and D, but neither A4 nor B. A4 fails since n • (λ .m) = n + m, and therefore
generally (n•v)• (λ . n) 6= n•v. B fails since n↓ does not generally imply n = 0.

If we instead define sucn • v=df suc (n • pred ◦ v ◦ suc↓), we also validate A4.
In fact, now we have n • (λ .m) = max (n,m). Therefore (n • v) • (λ . n) = n • v.
With this alternative definition of the operation •, the delay datatype carries an
almost-classifying monad structure.



Non-termination Monad To modify the delay monad example to validate B
too, we can quotient coN by weak bisimilarity ≈ defined by n ≈ m=df n↓ ↔ m↓,
i.e., S =df coN/≈. The new set S is typically called the Sierpinski set [13] or
Rosolini’s dominance [19]. The definitions of P and e are easily adjusted to
this change: P n=df n = [0], where [m] indicate the equivalence class of m wrt.
the equivalence relation ≈, and e =df [0]. In order to lift the operation • to the
quotient, it is necessary to invoke a choice principle. Chapman et al. [8] solve this
issue assuming the axiom of countable choice, a semi-classical principle recently
proved to be non-derivable in type theory [12]. A different solution is given
by Escardó and Knapp [14] assuming the axiom of propositional choice from
Rosolini propositions, i.e., propositions X for which the type ‖Σn : coN. (n↓ ↔
X)‖ is inhabited, where ‖A‖ is the propositional truncation of the type A [20,
Ch. 6.9]. It does not matter which version of • we lift to the quotient, addition
or maximum, the resulting monad structure on the quotient is the same.

We call the interpretation of this mnd-container the non-termination monad.3

It is the partial map classifier classifying partial maps with semidecidable domain
of definedness.

The Sierpinski set can also be defined from scratch in homotopy type theory
as a higher inductive type without recourse to the choice principle.

A first construction like this was by Altenkirch et al. [3] using higher inductive-
inductive types. They defined a datatype X⊥ as the free ω-complete pointed
partial order on a type X. The join constructor

⋃
has to take as input increas-

ing streams of elements in X⊥ (arbitrary streams do not have joins). Since this
constructor has to take an increasingness proof as an argument, they had to use
higher inductive-inductive types. They showed that the type X⊥ is isomorphic
to DX/≈ under the assumption of countable choice. The Sierpinski arises as 1⊥.

An alternative construction of the Sierpinski set was given by Chapman et
al. [8] using standard higher inductive types. They defined the Sierpinski set S
as the free countably-complete join semilattice on the unit type 1. This is to say
that S is the countable powerset of 1. They noticed that the Sierpinski set can
be specified using a join constructor

∨
that takes as input arbitrary streams

of elements of 1⊥, not only the increasing ones. They showed that the types S
and 1⊥ are isomorphic, which in turns also shows that S is isomorphic to coN/≈
under the assumption of countable choice.

Full Partial Map Classifier The full partial map classifier, i.e., the partial
map classifier classifying all partial maps, can be defined as the interpretation
of the container S =df Ω, P X =df X where Ω is the type of all propositions
introduced in Section 4.4.4 The mnd-container data is given by e =df 1, X •
Y =df Σx : X.Y x. Notice that the latter type is a proposition, when X is a

3 It is also called the partiality monad, but we want to use a more specific term here.
4 Notice that, if X : U , then JS, P Kc X : U1, i.e., JS, P Kc would not be an endofunctor.

But if X : U1, then also JS, P Kc X : U1. Therefore we think of JS, P Kc as a monad on
U1.



proposition and Y x is a proposition for all x : X. These data satisfy all of A2,
B, C and D.

Terminal Monad The terminal monad T X =df 1 can be alternatively defined
as the interpretation of the container S=df 1, P ∗=df 0. The mnd-container data
are trivial. These data satisfy A2, B and C, but falsify D, since P ∗ does not hold.
The terminal monad is an example of a classifying monad that is not effective.

6 Conclusions

In this paper, we continued the study of monads of partiality in Martin-Löf
type theory. In particular, we studied the connection between such monads and
containers. Building on work by Ahman et al. [2, 21] on container comonads and
container monads, we gave an algebraic characterization of containers whose
interpretation carries a lifting monad structure.

We considered several notion of lifting monad from category theory: classi-
fying monads [10], equational lifting monads [6], copy monads [11] and effective
classifying monads [10], corresponding to partial map classifiers [15]. A byprod-
uct of our investigation is the result that, for container monads, equational lifting
monads are the same as classifying monads with restriction operation defined as
in (?). Similarly, copy monads are the same as almost-classifying monads with
restriction operation defined as in (?). Moreover, we discovered a new concise
alternative definition of dominance [19] in type theory.

Recently, Uustalu and Veltri [22] introduced ω-complete pointed classifying
monads, which are those classifying monads whose Kleisli category is ωCPPO-
enriched wrt. the “less defined than” order on homsets induced by the restriction
operation. These monads are used for modelling potential non-termination. Ex-
amples include the non-termination monad of Section 5, which is the initial
ω-complete pointed classifying monad, and the full partial map classifier of Sec-
tion 5. In future work, we plan to extend the characterization developed in this
paper to containers whose interpretation carries a ω-complete pointed classifying
monad structure. When considering the effective case, those containers should
correspond to dominances closed under countable joins.
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