
MATERIAL PROGRAMMING 

In	the	near	future	every	other	smart	material	will	have	computational	power	embedded	in	the	
form	of	graphene	transistors	or	nanotubes	[cf.	5].	These	will	be	the	ultimate	computational	
composites:	materials	that	hold	classic	material	qualities,	such	as	structural	durability,	flexibility,	
texture,	weight,	and	color,	but	additionally	being	capable	of	sensing,	actuating,	and	computing	[6].	
Indeed,	computers	will	not	be	things	in	and	by	themselves,	but	embedded	into	the	materials	that	
make	up	our	surroundings.	This	also	means	that	the	way	we	interact	with	computers	and	the	way	
we	program	them,	will	change.	Consequently	we	ask	what	the	practice	of	programming	and	giving	
form	to	such	materials	would	be	like?	How	would	we	be	able	to	familiarize	ourselves	with	the	
dynamics	of	these	materials	and	their	different	combinations	of	cause	and	effect?	Which	tools	
would	we	need	and	what	would	they	look	like?	Will	we	program	these	computational	composites	
through	external	computers	and	then	transfer	the	code	them,	or	will	the	programming	happen	
closer	to	the	materials?	In	this	feature	we	outline	a	new	research	program	that	floats	between	
imagined	futures	and	the	development	of	a	material	programming	practice	[5].		

ENVISIONING A MATERIAL PROGRAMMING PRACTICE 

Central	to	the	practice	of	interaction	design	is	crafting	the	couplings	and	relations	between	user	
actions	and	artifact	functions.	To	design	interactive	artifacts	therefore	requires	an	understanding	
of	the	potential	dynamics	between	sensory	and	actuating	mechanisms	in	the	materials	we	design	
with.	It	is	a	matter	of	“getting	a	feel”	for	the	potential	compositions	of	cause	and	effect.	Gaining	
such	embodied	understanding,	however,	is	only	really	possible	through	explorations	with	the	
materials	we	are	to	design	with.	With	the	rise	in	variety	and	complexity	of	computational	
composites	over	the	coming	decade,	it	becomes	pertinent	to	develop	a	design	practice	that	
enables	the	designer	to	maintain	this	level	of	explorations.	We	envision	material	programming	as	
becoming	such	a	practice	[5].		

Supporting Kinesthetic Creative Practice 

Material	programming	would	complement	traditional	crafting	of	physical	form	with	the	crafting	of	
temporal	form	and	together	they	would	make	up	the	future	practice	of	interaction	design	[6].	
Indeed,	material	programming	would	be	a	programming	practice	that	enables	the	designer	to	stay	
in	the	material	realm.	The	designer	would	program	directly	on	the	material	and	thus	have	first	
hand	access	to	explore	and	experience	the	outcome	of	different	interactive	compositions.	It	would	
minimize	the	distance	between	programming	and	execution,	and	provide	the	designer	
(programmer)	access	to	real-time	situated	experiences	of	causes	and	effects.	This	immediacy	
would	bridge	the	intellectual	and	physical	gap	we	know	from	other	detached	programming	
practices	and	provide	an	opportunity	for	kinesthetic	thinking	[4].	

Tools for Material Programming 

A	material	programming	practice	would	be	a	programming	practice	using	physical	tools.	With	
tools	in	hand	working	directly	with	the	material,	the	designer	would	be	able	to	achieve	an	
embodied	sense	of	its	interactive	and	expressive	properties.	Such	tools	would	each	have	a	specific	
function	designed	from	the	designer’s	point	of	view	–	rather	than	a	programming	logics	point	of	
view.	By	also	limiting	the	scope	for	each	tool’s	action	space,	it	will	be	possible	to	create	rather	
sophisticated	tools	in	terms	of	what	the	designer	can	do	with	them.	Such	tools	might	require	some	
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learning	and	expertise,	but	we	assume	that	professional	interaction	designers	are	willing	to	invest	
the	time	and	effort	needed.	Yet,	they	would	not	demand	highly	technical	skills	from	the	designer,	
only	interaction	design	skills.	Essentially,	we	imagine	a	future	design	practice,	where	we	use	
traditional	material	tools	and	machines	to	develop	the	physical	form	of	the	designs	and	the	
material	programming	tools	to	develop	the	temporal	form	of	the	interactive	artifacts.		

Situated and Real-time 

Material	programming	would	happen	on-site,	instead	of	through	a	detached	desktop,	with	
physical	tools	working	directly	on	the	materials.	This	would	lower	the	threshold	for	the	designer	to	
truly	explore	the	potential	of	a	new	material	in	context	and	thus	give	the	designer	a	better	sense	
of	the	design	space.	Such	expanded	support	of	kinesthetic	creative	practice	and	bespoke	designs	
would	likely	result	in	more	sophisticated	expressions,	fitted	to	their	context	of	use.	Material	
programming	would,	however,	be	limiting	if	it	were	to	the	only	means	of	programming	interactive	
artifacts.	Therefore,	we	envision	integration	with	more	complex	back-end	algorithmic	
programming	and	access	to	databases	when	needed.	In	that	sense,	material	programming	can	be	
seen	as	a	sort	of	interface	programming.	In	some	cases,	however,	there	may	not	be	any	back-end	
at	all	and	the	interactive	artifacts	can	be	designed	from	working	with	these	computational	
composites	alone.	

SKETCHING A MATERIAL PROGRAMMING PRACTICE 

To	give	a	better	sense	of	what	we	mean	by	tools	for	material	programming	we	here	present	some	
sketches	of	physical	tools	for	programming	computational	composites.	In	order	to	convey	the	
functionality	of	these	tool	sketches,	we	assume	the	existence	of	a	very	particular	computational	
composite:	a	shape-changing	material	that	can	respond	to	airflow.	We	imagine	this	computational	
composite	to	be	used	in	interior	design	and	architecture,	for	instance	in	interactive	facades	or	in	
furniture	(See	Figure	1).	Through	speculating	and	enacting	the	practice	of	shaping	the	behavior	of	
this	composite,	we	discuss	qualities	of	what	material	programming	for	interaction	designers	could	
look	like.			
	
For	instance,	we	suggest	that	the	tools	we	need	for	programming	shape-changes	would	be	a	
Select	tool	and	a	Force	tool	(See	Figure	2).	The	Select	tool	is	used	to	indicate	which	area	of	the	
material	is	activated	for	programming	by	brushing	over	it.	The	Select	tool	can	also	be	used	for	
copying	and	pasting	a	programmed	area	to	other	areas.	The	Force	tool	is	used	to	program	the	
shape-changing	behavior	with	respect	to	when,	where,	and	how	force	should	be	applied	in	the	
material	by	simulating	a	pulling	motion.	Both	tools	are	inspired	by	known	techniques	for	
manipulating	materials,	such	as	brushing	(selecting),	and	pulling	(moving).	To	minimize	the	
distance	between	programming	and	execution,	the	tools	work	on	the	material	by	wirelessly	
connecting	to	the	embedded	computational	power	in	the	material.	The	material	is	activated	when	
the	tools	are	brought	in	close	proximity	to	them.	This	allows	for	exchanging	information	from	the	
tool	to	the	material	and	vice	versa.	Similarly,	moving	the	tool	away	from	the	material	will	
‘disconnect’	the	embedded	computers	and	the	tools.	
	
In	this	particular	material	we	are	interested	in	programming	the	relation	between	the	airflow	and	
a	resulting	shape	change	of	the	material.	The	first	step	is	therefore	to	select	the	area	that	should	
change	its	shape	by	brushing	over	it	with	the	Select	tool	(See	Figure	3).	By	adjusting	the	distance	



measure	on	the	tool,	larger	areas	of	the	material	than	one’s	arms	range	can	easily	be	selected.	
This	would,	for	instance,	be	needed	if	the	design	demands	a	large	material	surface	instead	of	a	
small	one	exemplified	in	this	feature.	Using	the	Select	tool	allows	the	designer	to	program	
different	behaviors	into	different	parts	of	the	material.	Next	step	is	to	connect	the	Force	tool	to	
the	material.	Independently	of	input,	the	designer	can	start	out	exploring	the	expression	space	of	
the	shape	changes	and	become	familiar	with	the	expressive	properties	of	the	particular	
computational	composite	(See	Figure	4).	By	pulling	or	pushing	the	sliders	in	the	Force	tool	the	
material	responds	with	protrusions	in	the	corresponding	direction.	The	sliders	are	operated	
directly	with	the	hands	and	the	tool	is	responsive	to	the	pressure	applied	(pace	of	the	fingers),	
which	is	then	translated	into	the	strength	of	the	force	in	the	material	(pace	of	shape-change).	
Playing	around	with	different	forces	applied	to	the	selected	area,	the	designer	is	able	to	get	a	feel	
for	the	shape	changing	qualities	of	the	material,	and	the	relation	between	the	actions	with	the	
Force	tool	and	the	material	reaction.	Since	one	(continuous)	swipe	on	the	Force	tool	only	results	in	
one	(continuous)	movement	in	the	material,	the	tool	also	allows	for	layers	of	forces,	making	it	
possible	to	compose	more	intricate	forms	of	shape-change.	
	
Afterwards	the	designer	(or	designers)	can	use	the	same	tool	concurrently	with	increasing	the	
airflow	(input)	at	the	desired	areas	of	the	material	(See	Figure	1).	Again,	the	designer	can	play	
around	with	different	reaction	patterns	–	whether	it	should	be	a	simple	action-reaction	or	if	an	
increase	in	airflow	should	result	in	more	elaborate	shape-changing	patterns.	Finally,	when	the	
designer	has	found	a	desired	relation	between	expression	and	the	airflow,	the	Select	tool	can	be	
used	to	copy	and	paste	this	to	other	parts	of	the	material	–	or	another	piece	of	the	material	if	
needed.	
	
Programming	materials	can	thus	be	akin	to	enacting	a	composed	dance	or	gradually	shaping	forms	
in	clay.	Depending	on	the	designer’s	experience	it	can	be	a	craft-like	explorative	practice	or	a	
meticulously	composed	design	practice.	The	more	experience,	the	more	intricate	expressions	the	
designer	will	be	able	to	compose.	The	key	to	this	is	the	open-endedness	of	the	tools	and	the	real-
time	reaction	to	input.	

BUILDING ON RELATED PROGRAMMING PRACTICES 

In	most	cases	the	default	mode	of	programming	computers	is	textual.	There	are,	however,	
alternatives	to	textual	programming	languages	that	are	relevant	to	discuss	in	relation	to	material	
programming.	Visual	programming,	tangible	programming,	and	programming-by-example,	for	
instance,	all	support	explorative	design	practices	by	minimizing	the	distance	(mentally	as	well	as	
physically)	between	programming	and	execution.	We	will	here	discuss	the	relation	between	the	
qualities	of	these	programming	practices	and	material	programming.	
	
Visual	Programming	
Visual	programming	works	by	replacing	textual	code	with	visual	notations	(i.e.	2D	representations)	
and	tools	as	means	to	construct	software	(See	Figure	5)	[cf.	2].	Thus,	visual	programming	utilizes	
people’s	ability	to	easily	recognize	and	work	with	visual	patterns,	and	thereby	minimizes	the	need	
for	learning.	Visual	programming	is	good	in	aiding	rapid	development,	in	particular	in	the	early	
stages	of	design.	This	is	partly	due	to	the	low	threshold	of	changing	the	logical	structure	of	a	
program,	which	makes	it	easy	to	experience	multiple	design	alternatives	in	an	explorative	manner.		



Material	programming	would	also	utilize	this	latter	quality	since	programming	and	execution	
happens	in	the	same	material	realm.	A	textual	or	graphical	overview	of	the	data	structure	and	
algorithms	would,	however,	not	be	an	integrated	part	of	the	practice	although	it	could	be	made	
available	elsewhere.		
	
Tangible	Programming	
Tangible	programming	environments	use	physical	objects	to	represent	various	programming	
elements,	commands,	and	flow	control	structures	(See	Figure	6)	[cf.	1].	Here,	the	manipulation	
and	arrangement	in	space	of	these	objects	are	used	to	construct	an	algorithm.	Similar	to	visual	
programming,	tangible	programming	enables	a	visible	and	tangible	organization	of	a	program	
which	eliminates	levels	of	abstraction.	Yet,	by	relying	on	physical	manipulation,	tangible	
programming	is	even	less	abstract	than	visual	programming,	which	means	it	is	even	less	capable	of	
supporting	development	of	complex	algorithms.	The	important	advantage	is,	however,	that	it	
references	some	of	our	experiences	in	the	physical	world.	
	
Both	tangible	and	material	programming	thus	operate	in	the	physical	world.	However,	while	the	
tangibility	in	tangible	programming	typically	remains	a	rather	cognitive	activity	removing	the	
designer	from	the	material	at	hand,	material	programming	would	be	an	embodied	activity	tightly	
coupled	to	the	material’s	expressive	potential.		
	
Programming-by-Example	
Programming-by-example	is	a	programming	practice	where	the	programmer	demonstrates	an	
algorithm	to	a	system	by	recording	a	set	of	actions	through	an	artifact/interface,	which	can	then	
be	played	back	in	that	artifact/interface	(See	Figure	7)[cf.	3].	Programming	by	example	is	typically	
applied	in	situations	where	the	artifact	is	a	one-off,	accessible,	and	tangible,	such	as	in	the	design	
of	shape-changing	interfaces	and	robots.	Like	visual	and	tangible	programming,	programming-by-
example	has	a	low	threshold	for	beginners	and	non-technical	disciplines.	Further,	its	complete	lack	
of	abstractions	makes	composing	the	behavior	immediate.	The	allure	of	programming-by-example	
in	a	design	context	is	how	it	allows	designers	to	use	their	tacit	or	bodily	knowledge	in	a	manner	
similar	to	how	non-computational	products	are	designed,	however	constrained	by	what	the	
materials,	actuators,	and	sensors	in	the	artifact	allow.		
	
In	programming-by-example	we	recognize	material	programming’s	quality	of	working	almost	
directly	with	the	design	material	to	be	programmed.	However,	programming-by-example	often	
results	in	a	very	limited	and	artifact	specific	design	space.	Instead,	the	tools	used	in	material	
programming	allow	the	designer	at	least	one	layer	of	abstraction,	enabling	a	larger	action	space	
and	thus	potentially	more	sophisticated	designs.	Also,	the	envisioned	tools	would	allow	a	wider	
array	of	applications	exclusively	utilizing	a	computational	composite’s	properties,	due	to	their	
specific	connections	to	the	materials.		

WHY A MATERIAL PROGRAMMING PRACTICE? 

In	this	feature	we	presented	the	notion	of	material	programming	as	a	future	practice	for	designing	
computational	composites	[5].	Such	practice	would	be	a	way	for	designers	to	explore	and	
experience	the	dynamics	of	the	computational	materials	they	are	working	with.	This	will	in	turn	
support	the	designers’	kinesthetic	creative	practice	and	we	believe	they	will	become	capable	of	



composing	more	sophisticated	and	complex	temporal	forms	in	their	designs.	We	propose	this	
practice	knowing	that	the	current	technology	and	materials	are	not	entirely	ready	to	support	it,	
but	we	are	convinced	that	they	could	be	in	a	not	too	distant	future.	The	future	material	
programming	practice	will	not	look	like	the	one	proposed	above,	so	the	contribution	here	is	
therefore	in	arguing	for	the	qualities	such	practice	would	embody	which	is	fourfold:		
First,	a	material	programming	practice	would	not	rely	on	any	direct	representation	of	the	
programming	actions	performed	on	the	material,	beyond	the	material	itself.	A	material	
programming	practice	thus	unites	the	‘programming’	and	‘running’	modes,	while	avoiding	
unnecessary	abstractions	that	could	move	the	attention	away	from	the	material.	The	argument	
being	that	the	better	the	interaction	designer	knows	the	material	at	hand,	the	more	sophisticated	
and	finished	designs	we	can	expect.	Instead	of	shaping	these	temporal	dimensions	through	
detached	means	(e.g.	by	writing	code	on	a	detached	computer	only),	the	actual	interactive	
behavior	of	the	material	is	explored	and	programmed	on	the	material,	in	real	time	and	in-situ.		
Second,	we	see	how	the	tools	bring	us	closer	to	an	actual	form-giving	practice	in	interaction	
design.	Through	this	practice	the	unique	interactive	and	physical	properties	of	the	particular	
materials	easily	play	a	key	role	in	both	concept	development	and	actual	creation.	In	a	way,	
material	programming	could	be	more	in	line	with	traditional	crafting	practices,	where	several	
dedicated	tools	are	used	for	crafting	a	material,	and	can	be	mastered	through	practice	and	skill	
gained	over	time.	This	is	not	unlike	a	silversmith’s	practice.	The	Force	tool,	for	example,	provides	
the	possibility	to	explore	different	rhythms	and	directions	of	movement	in	a	shape-changing	
computational	composite,	supporting	an	understanding	of	the	properties	of	the	computational	
composite	at	hand.			
	
Third,	since	the	physical	interaction	with	the	material	is	central	to	this	programming	practice,	the	
designer	can	slowly	develop	tacit	bodily	skills	and	knowledge	of	how	to	use	the	expressive	
properties	of	both	tools	and	materials.	The	tools	allow	the	interaction	designer	to	use	her	body	in	
ways	similar	to	that	of	crafting	non-computational	materials,	enabling	and	utilizing	the	designer’s	
expressive	potential.	This	could,	for	example,	be	reflected	in	the	smooth	and	refined	actions	of	
sliding	the	thumbs	on	the	Force	tool’s	sliding	areas	to	explore	the	speed	and	acceleration	of	a	
material’s	shape-change.		
	
Fourth,	the	tools	allow	for	at	least	one	level	of	abstraction,	which	enables	the	designer	to	utilize	
the	ability	of	programmed	cause-and-effect	in	the	computational	composites.	In	other	words,	the	
input/output	relation	does	not	have	to	be	one-to-one	but	can	assume	other	temporal	forms	and	
dependabilities	in	between.	Further,	we	also	see	a	good	possibility	for	these	materials	to	be	
coupled	with	more	advanced	computational	power,	once	embedded	in	designs.	Thus,	we	imagine	
the	programming	of	the	material	coupled	with	more	advanced	algorithms	and	databases	in	a	
back-end	design,	which	would	probably	rely	on	traditional	textual	programming.	In	that	sense,	
computational	composites	and	material	programming	can	be	seen	as	the	front-end	of	cloud-based	
Internet-of-Things	from	a	programming	perspective.	
Finally,	an	important	bonus	is	that	a	material	programming	practice	would	likely	appeal	to	a	wider	
array	of	design	and	craft	practitioners.	As	such,	the	design	of	our	future	artifacts	and	
environments	would	not	only	rely	on	designers	brought	up	in	technological	educations	and	
practices.	We	envision	that	this	wider	array	of	participants	could	probably	lead	to	a	more	varied	
range	of	material	expressions.		



As	proposals	of	new	ideas	and	research	programs	go,	a	full	realization	of	a	material	programming	
practice	would	not	happen	tomorrow.	Working	towards	it	would	require	collaborations	from	
material	science,	computer	science,	interaction-	and	industrial	design.	And	in	the	end,	it	will	look	
quite	different	than	the	sketched	tools	proposed	here.	With	this	work	however,	we	intend	to	start	
giving	form	to	the	new	possibilities	we	have	before	us.	
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