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THE CAUCHY-KOWALEVSKI THEOREM

BEATA OSIŃSKA-ULRYCH AND GRZEGORZ SKALSKI

Abstract. We give a recursive description of polynomials with non-negative
rational coefficients, which are coefficients of expansion in a power series so-
lutions of partial differential equations in Cauchy-Kowalevski theorem.

1. Introduction

In recent time we can observe the renewed interest in the algorithms associated
with the solution of partial differential equations using power series (see: for ex-
ample [8]). This study initiated by the famous theorem of Cauchy-Kowalevski1

(see original work [9], Theorem 2.1 and Proposition 2.1 in this article, compare [2],
[3]) were later generalized by Riquier [11] for a wide class of orthonomic passive
systems. In both theorems, the proof of the existence and uniqueness consisted
of demonstration, in a first step, the existence and uniqueness of formal solutions,
and in the second step of its convergence. The work of Riquier for polynomial
nonlinear differential equations was complemented by Ritt [12]. The proof used
the method of characteristic set. Since that time many algorithms for determining
the formal solution of partial differential equations was stated. It is well known
that coefficients of such a formal solution are polynomials depending on coefficients
occurring in the power series expansion of right-hand side functions in partial dif-
ferential equations (see: for example [1], [4], [8], see also [13]). Moreover, these
polynomials have non-negative rational coefficients. The aim of this paper is to

2010 Mathematics Subject Classification. 35-XX, 35A24, 35R01, 12Hxx.
Key words and phrases. Partial differential equations, Cauchy problem, Cauchy-Kowalevski

Theorem.
1After G. B. Folland, [3] the problem of how to spell this name is vexed not only by the usual

lack of a canonical scheme for transliterating from the Cyrillic alphabet to the Latin one but also
by the question of whether to use the feminine ending (-skaia instead of -ski). The spelling used
here is the one preferred by Kowalevski herself in her scientific works.
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give a recursive description of these polynomials (Theorem 2.5), which is not given
explicitly in textbooks.

Multi-indexes and partial derivatives. The n-element sequence α =
(α1, . . . , αn) of non-negative integers2 will be called multi-index of dimension n.
We introduce the following notations:

|α| =
n∑
j=1

αj , α! = α1! · · ·αn!,

and for x ∈ Rn,
xα = xα1

1 · · ·xαnn .

In general, we will use the shortcut

∂j = ∂xj =
∂

∂xj

for the partial derivative in Rn. For the partial derivatives of higher order it is
more convenient to use multi-index

∂α = ∂αx =

n∏
j=1

(
∂

∂xj

)αj
=

∂|α|

∂xα1
1 · · · ∂x

αn
n
.

In particular, we note that for α = 0, ∂α it is the identity operator. Let I be any
non-empty set containing an element j. Then 1j designates a system (δi)i∈I , where
δi = 1 for i = j and δi = 0 for i 6= j. With the above descriptions it is easily to
note that the partial derivatives can be defined by induction in the following way:

(1) ∂0 = id,
(2) ∂α+1j = (∂α)1j = ∂j∂

α for j ∈ {1, 2, . . . , n} and all α ∈ Nn.

Let us order the set of multi-indices. We write that α 6 β, if αi 6 βi for all i.
For the given complex numbers aα for |α| 6 k, by (aα)|α|6k we denote the element
of CN(k) given by ordering the α’s in this fashion, where N(k) is the number of
elements in the set {α ∈ Nn : |α| 6 k}. Similarly, if A ⊂ {α : |α| 6 k}, then we
can consider the elements of space CN of the form (aα)α∈A, where N = #A.

2. The Cauchy-Kowalevski Theorem

Let k be a positive integer and let S be an analytic hypersurface of form

S = {(x, t) = (x1, . . . , xn−1, t) ∈ Rn : t = 0} .

Let F : Ω→ R be an analytic function in some neighbourhood Ω ⊂ Rn ×RN(k) of
the origin, where

N(k) =

(
n+ k

k

)
= {(α, j) = (α1, . . . , αn−1, j) ∈ Nn : |α|+ j 6 k}.

2Here the set of non-negative integers is denoted by N.



“23_Osinska_Skalski-kopia” — 2017/12/1 — 20:49 — page 147 — #3

THE CAUCHY-KOWALEVSKI THEOREM 147

If ϕ0, . . . , ϕk−1 are the real analytic functions at the origin of Rn−1, then the
analytic Cauchy problem is to look for the solution u of system (2.1) analytic at
the origin of Rn

(2.1)

F
(
x, t,

(
∂αx ∂

j
t u
)
|α|+j6k

)
= 0,

∂jt u(x, 0) = ϕj(x), 0 6 j < k.

We assume that the equation F = 0 can be solved for ∂kt u to yield ∂kt u as an
analytic function G of the remaining variables. We do this because of the bad
behaviour that can occur when this condition is not satisfied (see examples i and
ii, page 43 in [3]). The Cauchy problem then takes the form

(2.2)

∂kt u = G

(
x, t,

(
∂αx ∂

j
t u
)
|α|+j6k, j<k

)
,

∂jt u(x, 0) = ϕj(x), 0 6 j < k.

This problem has at most one analytic solution (see [3, Proposition 1,21]):

Proposition 2.1. Assume that G,ϕ0, . . . , ϕk−1 are analytic functions near the
origin.Then there is at most one analytic function u satisfying (2.2).

Proof. Functions ϕ0, . . . , ϕk−1 together with (2.2) determine all the partial deriva-
tives of function u of order 6 k on S. Since G is analytic, by differentiating (2.2)
with respect to t we have

∂k+1
t u =

∂G

∂t
+

∑
|α|+j6k, j<k

∂G

∂u(α,j)

(
x, t,

(
∂αx ∂

j
t u
)
|α|+j6k, j<k

)
∂αx ∂

j+1
t u.

All the quantities on the right are known on S, so is ∂k+1
t u; hence we know all

derivatives of u of order 6 k + 1 on S. Applying ∂t more times, we obtain higher
derivatives. All the partial derivatives of the function u at zero are therefore known
and determine u uniquely. �

In our article we focus on the following fundamental existence theorem (see [9],
compare [2, Theorem 2 in paragraph 4.6.3], [3, Theorem 1.25]).

Theorem 2.2 (The Cauchy-Kowalevski Theorem). Assume that G,ϕ0, . . . , ϕk−1

are analytic functions near the origin. Then there is a neighborhood of the origin
on which the Cauchy problem (2.2) has a unique analytic solution.

Uniqueness of solution was proved in Proposition 2.1. It’s proof suggests the
construction of solution: determine all the derivatives of u at the origin by differ-
entiating

∂kt u = G

(
x, t,

(
∂αx ∂

j
t u
)
|α|+j6k, j<k

)
and plug the results into Taylor’s formula. The problem is to show that the resulting
power series converges. To this end, it is convenient to replace our k-th order
equation by a first order system of differential equations.
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Theorem 2.3. The Cauchy problem (2.2) is equivalent to the Cauchy problem for
a certain first order quasi-linear system of partial differential equations of the form

(2.3)

∂tY =

n−1∑
j=1

Aj(x, t, Y )∂xjY +B(x, t, Y ),

Y (x, 0) = Φ(x),

i.e., a solution to one problem can be read off from a solution to the other. Here
Y , B, and Φ are vector-valued functions, the Aj’s are matrix-valued functions, and
Aj, B, and Φ are explicitly determined by the functions in (2.2).

Proof. Let Y = (yαj)06|α|+j6k, where yαj will stand for ∂αx ∂
j
t u as an independent

variable in G. Moreover, for multi-index α 6= 0, let i = i(α) denote the smallest
index i, for which αi 6= 0 and let 1i = (δ1, . . . , δn−1), where

δj =

{
1 for j = i,

0 for j 6= i.

The first order system we are looking for is

(2.4)


∂tyαj = yα(j+1) for |α|+ j < k,

∂tyαj = ∂xi(α)
y(α−1i(α))(j+1) for |α|+ j = k, j < k, |α| 6= 0,

∂ty0k = ∂G
∂t +

∑
|α|+j<k

∂G
∂yαj

yα(j+1) +
∑

|α|+j=k
j<k

∂G
∂yαj

∂xi(α)
y(α−1i(α))(j+1),

and the initial conditions are

(2.5)

{
yαj(x, 0) = ∂αxϕj(x) for j < k,

y0k(x, 0) = G
(
x, 0, (∂αxϕj(x))|α|+j6k, j<k

)
.

Obviously, if u is a solution of (2.2), then the functions yαj = ∂αx ∂
j
t u satisfy (2.4)

and (2.5). Conversely, if the Y = (yαj)06|α|+j6k is a solution of (2.4) and (2.5),
then u = y00 satisfies (2.2). This involves the initial conditions in an essential way.

Observe, that the equation ∂tyαj = yα(j+1) of system (2.4) implies that

(2.6) yα(j+l) = ∂ltyαj for j + l 6 k.

Then the equation ∂tyαj = ∂xi(α)
y(α−1i(α))(j+1) of system (2.4) implies

∂tyαj = ∂t∂xiy(α−1i)j, for |α|+ j = k, j < k.

Therefore
yαj(x, t) = ∂xiy(α−1i)j(x, t) + cαj(x)

for some function cαj . But by the first equation of (2.5),

yαj(x, 0) = ∂αxϕj(x) = ∂xi∂
α−1i
x ϕj(x) = ∂xiy(α−1i)j(x, 0),
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hence cαj = 0 and we have,

(2.7) yαj = ∂xiy(α−1i)j for |α|+ j = k, j < k.

Then, from the third equation of (2.4), (2.6) and (2.7), we have

∂ty0k =
∂G

∂t
+

∑
|α|+j6k
j<k

∂G

∂yαj

∂yαj
∂t

=
∂

∂t
(G (x, t, (yαj))) ,

whence
y0k(x, t) = G (x, t, (yαj(x, t))) + c0k(x)

for some function c0k. But by (2.5),

y0k(x, 0) = G (x, 0, (∂αxϕj(x))) = G (x, 0, (yαj(x, 0))) ,

hence again c0k = 0 and we have

(2.8) y0k = G
(
x, t, (yαj)|α|+j6k, j<k

)
.

Finally, by induction on p = k − j − |α|, we will prove that

(2.9) yαj = ∂xiy(α−1i)j for α 6= 0.

For p = 0, i.e. when |α| + j = k the above is true from (2.7). From the first
equation in (2.4), from (2.6) and from the inductive hypothesis we have

∂tyαj = yα(j+1) = ∂xiy(α−1i)(j+1) = ∂t∂xiy(α−1i)j ,

hence
yαj(x, t) = ∂xiy(α−1i)j(x, t) + cαj(x).

But by the first equation in (2.5),

yαj(x, 0) = ∂αxϕj(x) = ∂xi∂
α−1i
x ϕj(x) = ∂xiy(α−1i)j(x, 0).

Therefore cαj = 0 and we get (2.9).
Finally, applying (2.6) and (2.9) repeatedly we obtain that

yαj = ∂αx ∂
j
t y00,

and then by (2.8) and the first equation in (2.5) we find that u = y00 satisfies
(2.2). �

We still need a little simplification.

Theorem 2.4. The Cauchy problem (2.3) is equivalent to another problem of the
same form in which Φ = 0 i A1, . . . , An−1 and B do not depend on t.

Proof. To eliminate Φ we set U(x, t) = Y (x, t)−Φ(x). Then Y satisfies (2.3) if and
only if U satisfies:

∂tU =

n−1∑
i=1

Ãi(x, t, U)∂xiU + B̃(x, t, U), U(x, 0) = 0,
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where

Ãi(x, t, U) =Ai(x, t, U + Φ),

B̃(x, t, U) =B(x, t, U + Φ) +

n−1∑
i=1

Ai(x, t, U + Φ)∂xiΦ.

To eliminate variable t from Ãi and B̃ we add to U an extra component u0 satisfying
the equation ∂tu0 = 1 and the initial condition u0(x, 0) = 0. Then we replace t by
u0 in Ãi and B̃, by adding the extra equation and initial condition. �

Let us assume the following designations: (x, Y ) ∈ Rn−1 × RN and (x, t) ∈
Rn−1 × R, where x = (x1, . . . , xn−1), Y = (y1, . . . , yN ). Since the constructions in
these theorems preserve analyticity, we have reduced the Cauchy-Kowalevski theo-
rem to the following theorem. This theorem is well known, but we add a recursive
description coefficients of solution as polynomials of the coefficients occurring in
the series in the partial differential equation.

Theorem 2.5. Suppose that B = [bm]
N
m=1 is a real analytic vector-valued function

and Ai =
[
aiml
]N
m,l=1

, i ∈ {1, . . . , n− 1}, are real analytic matrix-valued functions
defined on a neighborhood of the origin in Rn−1×RN . Then there is a neighborhood
U of the origin in Rn, on which the Cauchy problem

(2.10)

∂tY =
n−1∑
i=1

Ai(x, Y )∂xiY +B(x, Y ),

Y (x, 0) = 0

has a unique analytic solution Y = (y1, . . . , yN ) : U 3 (x, t) 7→ Y (x, t) ∈ RN .
Furthermore, if

aiml(x, y1, . . . , yN ) =
∑
σ,τ

ai;στml x
σY τ , bm(x, y1, . . . , yN ) =

∑
σ,τ

bστm xσY τ ,

then coefficients cαjm of ym =
∑
α,j c

αj
m x

αtj depends polynomially on coefficients of
aiml and bm. The dependance is defined inductively in the following way:

cα0
m = 0,

cαj+1
m =

1

j + 1

∑
i,l

∑
µ+ν=α
g+h=j

P
aiml
(µ,g) · (νi + 1)c(ν+1i)h

m + P bm(α,j)

 ,

where

P
aiml
(α,j)(c

βλ
k ) = P(α,j)

((
ai;στml

)
|σ|+|τ |6|α|+j

,
(
cβλk

)
β6α,λ6j,k6N

)
,

P bm(α,j)(c
βλ
k ) = P(α,j)

(
(bστm )|σ|+|τ |6|α|+j ,

(
cβλk

)
β6α,λ6j,k6N

)
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and P(α,j) are polynomials in (X(σ,τ))|σ|+|τ |6|α|+j and (Yk(β,λ))k6N,β6α,λ6j defined
inductively by the following conditions:

1. P(0,0) = X(0,0),
2. P(α+1p,j) =

=
1

αp + 1

[ ∑
|σ|+|τ |
6|α|+j

1

σ!τ !

∂P(α,j)

∂X(σ,τ)
·

(
n−1∑
k=1

X(σ+1k,τ)Yk(1p,0) +

N∑
k=1

X(σ,τ+1k)Yk(1p,0)

)

+
∑

k6n−1+N
β6α,λ6j

1

β!λ!

∂P(α,j)

∂Yk(β,λ)
Yk(β+1p,λ)

]

and

P(α,j+1) =

=
1

j + 1

[ ∑
|σ|+|τ |
6|α|+j

1

σ!τ !

∂P(α,j)

∂X(σ,τ)
·

(
n−1∑
k=1

X(σ+1k,τ)Yk(0,1) +

N∑
k=1

X(σ,τ+1k)Yk(0,1)

)

+
∑

k6n−1+N
β6α,λ6j

1

β!λ!

∂P(α,j)

∂Yk(β,λ)
Yk(β,λ+1)

]
.

The theorem will be preceded by two lemmas.

Lemma 2.6. Let f(x) =
∑
α∈Nn aαx

α be an analytic function in a neighbour-
hood of 0 ∈ Rn and let gk(ξ) =

∑
β∈Nm bk;βξ

β, k = 1, . . . , n, be an analytic
functions in a neighbourhood of 0 ∈ Rm such that gk(0) = 0. Then the func-
tion F (ξ) = f(g1(ξ), . . . , gn(ξ)) is analytic in a neighbourhood of 0 ∈ Rm, and it’s
Taylor expansion takes a form

F (ξ) =
∑
γ∈Nm

Pγ
(
(aα)|α|6|γ|, (bk;β)β6γ,k6n

)
ξγ ,

where Pγ ∈ Z[(Xα)|α|6|γ|, (Ykβ)β6γ,16k6n], γ ∈ Nm are polynomials with non-
negative integer coefficients defined by the following induction conditions:

(1) P0(X0, Y10, . . . , Yn0) = X0, where X0 = X(0,...,0) and 0 = (0, . . . , 0) ∈ Nn.
(2) If the polynomial Pγ = Pγ

(
(Xα)|α|6|γ|, (Ykβ)β6γ,16k6n

)
, then the polyno-

mial Pγ+1j is of the form

Pγ+1j = Pγ+1j

(
(Xα)|α|6|γ|+1, (Ykβ)β6γ+1j ,16k6n

)
,

where

Pγ+1j =
1

γj + 1

 ∑
|α|6|γ|

(
1

α!

∂Pγ
∂Xα

·
n∑
k=1

Xα+1kYk1j

)
+
∑
β6γ

n∑
k=1

1

β!

∂Pγ
∂Ykβ

· Ykβ+1j

 .
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Proof. Obviously,

(2.11) aα =
∂αf(0)

α!
, bk;β =

∂βgk(0)

β!
for 1 6 k 6 n.

Let F (ξ) =
∑
γ cγξ

γ . Then

(2.12) cγ =
∂γF (0)

γ!
.

Let 1α = (δκ)κ∈Nn , where δα = 1 and δκ = 0 for κ 6= α. Clearly

∂γ =

m∏
j=1

(
∂1j
)γj

.

The above lemma arises from the fact that

∂1jF =

n∑
k=1

∂1kf · ∂1jgk

by induction on |γ|. Indeed, it suffices to show that, for every γ there exists
a polynomial Qγ with variables Xα, |α| 6 |γ| and Ykβ , 1 6 k 6 n, β 6 γ with
non-negative integer coefficients such that

(2.13) ∂γF (ξ) = Qγ

(
(∂αf(g(ξ)))|α|6|γ| ,

(
∂βgk(ξ)

)
β6γ,16k6n

)
and degQγ 6 |γ|+ 1. For |γ| = 0 that is, for γ = 0 we have

∂0F (ξ) = f(g1(ξ), . . . , gn(ξ)),

hence we set Q0(X0, Y10, . . . , Yn0) = X0, where degQ0 = 1. If (2.13) holds for
|γ| = p, then for |γ| = p + 1 multi-index γ can be written as γ = γ + 1j , where
|γ| = p for some j ∈ {1, . . . ,m}. Therefore, induction hypothesis implies

∂γF (ξ) = ∂1j∂γF (ξ) =
∑
|α|6|γ̄|

(
∂1αQγ ·

n∑
k=1

∂α+1kf (g(ξ)) ∂1jgk(ξ)

)
+

+
∑
β6γ̄

n∑
k=1

(
∂1βQγ · ∂β+1jgk(ξ)

)
.

The right-hand side of this equation is a polynomial with non-negative integer
coefficients of variables (∂αf(g(ξ)))|α|6|γ| and

(
∂βgk(ξ)

)
β6γ,k6n

. It’s degree is
6 |γ|+ 1. Thus, it is a searched polynomial Qγ for |γ| = p+ 1. Induction ends the
above reasoning. By (2.13),(2.11) and (2.12) we obtain

cγ =
1

γ!
Qγ

(
(∂αf(0))|α|6|γ| ,

(
∂βgk(0)

)
β6γ,k6n

)
=

=
1

γ!
Qγ
(
(α!aα)|α|6|γ|, (β!bk;β)β6γ,k6n

)
.
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Then the right-hand side of the above formula is a searched polynomial Pγ . More-
over, from the above formula, we can easily read the inductive conditions describing
polynomial Pγ of variables (Xα)|α|6|γ|, (Ykβ)β6γ,k6n:

P0 = X0,

Pγ+1j =
1

γj + 1

 ∑
|α|6|γ|

(
1

α!

∂Pγ
∂Xα

·
n∑
k=1

Xα+1kYk1j

)
+
∑
k6n
β6γ

1

β!

∂Pγ
∂Ykβ

· Ykβ+1j


because Pγ

(
(Xα)|α|6|γ|, (Ykβ)β6γ,k6n

)
= 1

γ!Qγ
(
(α!Xα)|α|6|γ|, (β!Yk;β)β6γ,k6n

)
and

Qγ+1j

(
(α!Xα)|α|6|γ|+1, (β!Ykβ)β6γ+1j ,k6n

)
=
∑
|α|6|γ|

(
γ!

α!

∂Pγ
∂Xα

·
n∑
k=1

Xα+1kYk1j

)
+

+
∑
k6n
β6γ

γ!

β!

∂Pγ
∂Ykβ

· Ykβ+1j .

�

We say that a power series
∑
aα(x−x0)α with non-negative coefficients majorize

power series
∑
bα(x − x0)α, if |bα| 6 aα for every multi-index α. In this case the

series
∑
bα(x− x0)α is absolutely convergent everywhere the series

∑
aα(x− x0)α

is absolutely convergent. We say that the series a =
∑
aα(x− x0)α is a majorant

of series b =
∑
bα(x − x0)α and we write a � b, after Poincaré. Similarly, for

A = [ai]i∈I and B = [bi]i∈I symbol A� B means that ai � bi for every i ∈ I.

Lemma 2.7. Suppose that the series
∑
aαx

α is convergent in

TR = {x :
n

max
j=1
|xj | < R}.

Then for every positive number r < R end every M > sup{|aα|r|α| : α ∈ Nn}, the
geometric series ∑

α∈Nn

M |α|!
α!r|α|

xα

is convergent in Tr/n = {x : max |xj | < r/n} to the function

Tr/n 3 x 7→
Mr

r − (x1 + . . .+ xn)
∈ R

and majorize series
∑
aαx

α.

Proof. Let r be a positive number less than R. Then the series
∑
aαr
|α| is conver-

gent and for every M > 0 such that |aαr|α|| 6M for all α we have

|aα| 6
M

r|α|
6
M |α|!
α!r|α|

.
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On the other hand, function

f(x) =
Mr

r − (x1 + . . .+ xn)

is analytic in Tr/n and for x ∈ Tr/n

f(x) = M

∞∑
k=0

(x1 + . . .+ xn)k

rk
=
∑
|α|>0

M |α|!
α!r|α|

xα.

This ends the proof. �

Let’s move on to the proof of the Theorem 2.5.

Proof of Theorem 2.5. We are looking for the solution Y = (y1, . . . , yN ) of the
Cauchy problem (2.10), where

(2.14) ym =
∑
α,j

cαjm x
αtj for 1 6 m 6 N.

Obviously,

cαjm =
∂αx ∂

j
t ym(0, 0)

α!j!
.

The initial conditions implies that cα0
m = 0 for every α andm. In order to determine

the coefficients cαjm for j > 0, we substitute (2.14) to the differential equations

(2.15) ∂tym =
∑
i,l

aiml(x, y1, . . . , yN )∂xiyl + bm(x, y1, . . . , yN ).

Let

(2.16)

aiml(x, y1, . . . , yN ) =
∑
σ,τ

ai;στml x
σY τ ,

bm(x, y1, . . . , yN ) =
∑
σ,τ

bστm xσY τ ,

∂xiyl =
∑
α,j

(αi + 1)c
(α+1i)j
l xαtj .

Lemma 2.6 implies that aiml is a power series in x and t, whose coefficients of xαtj

are polynomials with non-negative rational coefficients in (ai;στml )|σ|+|τ |6|α|+j and
(cβλk )β6α,λ6j,k6N . Moreover, the coefficients of the terms in which t occurs to the
j-th power only involve the cβλk with λ 6 j. The same is true for the series obtained
from bm and ∂xiyl, and multiplying aiml by ∂xiyl still preserves these properties.

Roughly speaking, on the right side of (2.15) we obtain an expression of the form∑
α,j

Pαjm

((
ai;στml , b

στ
m

)
|σ|+|τ |6|α|+j,i6n−1,l6N

,
(
cβλk

)
β6α,λ6j,k6N

)
xαtj ,
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where Pαjm is a polynomial with non-negative coefficients. On the left side, we have

∂tym =
∑
α,j

(j + 1)cα(j+1)
m xαtj .

Hence,

cα(j+1)
m =

Pαjm

((
ai;στml , b

στ
m

)
|σ|+|τ |6|α|+j,i6n−1,l6N

,
(
cβλk

)
β6α,λ6j,k6N

)
j + 1

,

so if we know that cβλk with λ 6 j, we can determine the cβλk with λ = j + 1.
Proceeding inductively, we determine all the cαjm and we find that

cαjm = Qαjm

((
ai;στml , b

στ
m

)
|σ|+|τ |6|α|+j,i6n−1,l6N

,
(
cβλk

)
β6α,λ<j,k6N

)
=

= Qαjm

(
ai;στml , b

στ
m , cβλk

)
,

where Qαjm is a polynomial with nonnegative coefficients in cβλk , where λ < j. More
precisely the coefficients of xαtj of power series aiml i bm are polynomials with
non-negative rational coefficients of the form:

P
aiml
(α,j)(c

βλ
k ) = P(α,j)

((
ai;στml

)
|σ|+|τ |6|α|+j

,
(
cβλk

)
β6α,λ6j,k6N

)
,

P bm(α,j)(c
βλ
k ) = P(α,j)

(
(bστm )|σ|+|τ |6|α|+j ,

(
cβλk

)
β6α,λ6j,k6N

)
,

where P(α,j) is a polynomial in (X(σ,τ))|σ|+|τ |6|α|+j and (Yk(β,λ))k6N,β6α,λ6j de-
fined inductively by the following conditions:

1. P(0,0) = X(0,0),
2. P(α+1p,j) =

=
1

αp + 1

[ ∑
|σ|+|τ |
6|α|+j

1

σ!τ !

∂P(α,j)

∂X(σ,τ)
·

(
n−1∑
k=1

X(σ+1k,τ)Yk(1p,0) +

N∑
k=1

X(σ,τ+1k)Yk(1p,0)

)

+
∑

k6n−1+N
β6α,λ6j

1

β!λ!

∂P(α,j)

∂Yk(β,λ)
Yk(β+1p,λ)

]



“23_Osinska_Skalski-kopia” — 2017/12/1 — 20:49 — page 156 — #12

156 B. OSIŃSKA-ULRYCH AND G. SKALSKI

and

P(α,j+1) =

=
1

j + 1

[ ∑
|σ|+|τ |
6|α|+j

1

σ!τ !

∂P(α,j)

∂X(σ,τ)
·

(
n−1∑
k=1

X(σ+1k,τ)Yk(0,1) +

N∑
k=1

X(σ,τ+1k)Yk(0,1)

)

+
∑

k6n−1+N
β6α,λ6j

1

β!λ!

∂P(α,j)

∂Yk(β,λ)
Yk(β,λ+1)

]
.

Therefore,

Pαjm

((
ai;στml , b

στ
m

)
|σ|+|τ |6|α|+j,i6n−1,l6N

,
(
cβλk

)
β6α,λ6j,k6N

)
=

=
∑
i,l

∑
µ+ν=α
g+h=j

P
aiml
(µ,g) · (νi + 1)c(ν+1i)h

m + P bm(α,j),

thereby cα0
m = Qα0

m = 0 and

cαj+1
m = Qαj+1

m

(
ai;στml , b

στ
m , cβλk

)
=

=
1

j + 1

∑
i,l

∑
µ+ν=α
g+h=j

P
aiml
(µ,g) · (νi + 1)c(ν+1i)h

m + P bm(α,j)

 .

Now, to show convergence of Y , it suffices to find the Cauchy problem∂tỸ =
n−1∑
i=1

Ãi(x, Ỹ )∂xi Ỹ + B̃(x, Ỹ ),

Ỹ (x, 0) = 0,

(where Ãi and B̃ are analytic equivalents of Ai and B respectively), for which:

a) there exists the analytic solution Ỹ nearby (0, 0);

b) Ai � Ãi and B � B̃.

Indeed, the solution Ỹ = (ỹ1, . . . , ỹN ) of this problem has the form ỹm =∑
c̃αjm x

αtj , m = 1, . . . , N , where

c̃αjm = Qαjm

(
ãi;στml , b̃

στ
m , c̃βλk

)
,

and Qαjm are polynomials defined for the preceding Cauchy problem. Since Qαjm has
non-negative coefficients and depends only on cβλk , where λ < j, then we can easily
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show by induction that:

|cαjm | =
∣∣Qαjm (ai;στml , b

στ
m , cβλk

) ∣∣ 6 Qαjm (|ai;στml |, |b
στ
m |, |c

βλ
k |
)

6 Qαjm
(
ãi;στml , b̃

στ
m , c̃β,λk

)
= c̃αjm .

Therefore Ỹ majorize Y which gives convergence of Y in some neighbourhood of
(0, 0).

We will construct such a majorizing system. LetM > 0 be sufficiently large and
r > 0 sufficiently small so that by Lemma 2.7 series for Ai and B are all majorized
by the series for

Mr

r − (x1 + . . .+ xn−1)− (y1 + . . .+ yN )
.

Thus we consider the following Cauchy problem: for m = 1, . . . , N,

(2.17)

∂tym = Mr
r−

∑
xi−

∑
yl

(∑
i

∑
l

∂xiyl + 1

)
,

ym(x, 0) = 0.

To determine the solution of this Cauchy problem it is enough to solve the
Cauchy problem consisting of one equation

(2.18)

{
∂tu = Mr

r−s−Nu (N(n− 1)∂su+ 1) ,

u(s, 0) = 0,

for if we will put

yj(x, t) = u(x1 + . . .+ xn−1, t) (j = 1, . . . , N),

we obtain that Y = (y1, . . . , yN ) satisfies (2.17). We will transform (2.18) to

(r − s−Nu)∂tu−MrN(n− 1)∂su = Mr,

and will solve this by method of characteristics:
dt

dτ
= r − s−Nu, ds

dτ
= −MrN(n− 1),

du

dτ
= Mr

with the initial conditions:

t(0) = 0, s(0) = σ, u(0) = 0.

The solution of the above is given by the formulas:

t =
1

2
MrN(n− 2)r2 + (r − σ)τ, s = −MrN(n− 1)τ + σ, u = Mrτ.

The elimination of σ and τ yields

u(s, t) =
r − s−

√
(r − s)2 − 2MrNnt

Mn
.

Clearly this is analytic for s and t near 0, so the proof is complete. �
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There remains the question of whether the Cauchy problem (2.2) might admit
non-analytic solutions as well. In the linear case, the answer is negative: this is the
Holmgren uniqueness theorem. The proof can be found in John [5], Hörmander [6],
[7, vol I], or Treves [14].

A major drawback of the Cauchy-Kowalevski theorem is that it gives little con-
trol over the dependence of the solution on the Cauchy data.

Example 2.8. Consider the following example in R2, due to Hadamard:{
∂2

1u+ ∂2
2u = 0

u(x1, 0) = 0, ∂2u(x1, 0) = ke−
√
k sin kx1,

where k > 0. One easily checks that the solution is

u(x1, x2) = e−
√
k(sin kx1)(sinh kx2).

As k → ∞, the Cauchy data and their derivatives of all orders tend uniformly
to zero since e−

√
k decays faster than polynomially. But if x2 > 0, then

lim
k→∞

e−
√
k sinh kx2 = +∞.

The solution for the limiting case k = +∞ is of course u ≡ 0. This example
shows that the solution of the Cauchy problem may not depend continuously on
the Cauchy data in most of the usual topologies on functions.
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