DIVERGENCE-FREE POLYNOMIAL DERIVATIONS

ANDRZEJ NOWICKI

Abstract. In this paper we present some new and old properties of divergences and divergence-free derivations.

Throughout the paper all rings are commutative with unity. Let k be a ring and let d be a k-derivation of the polynomial ring $k[X]=k\left[x_{1}, \ldots, x_{n}\right]$. We denote by d^{\star} the divergence of d, that is,

$$
d^{\star}=\frac{\partial d\left(x_{1}\right)}{\partial x_{1}}+\cdots+\frac{\partial d\left(x_{n}\right)}{\partial x_{n}} .
$$

The derivation d is said to be divergence-free if $d^{\star}=0$.

1. Preliminaries

Let k be a ring, and let R be a k-algebra. A k-linear mapping $d: R \rightarrow R$ is said to be a k-derivation of R if

$$
d(a b)=a d(b)+d(a) b
$$

for all $a, b \in R$. We denote by $\operatorname{Der}_{k}(R)$ the set of all k-derivations of R. If $d, d_{1}, d_{2} \in$ $\operatorname{Der}_{k}(R)$ and $x \in R$, then the mappings $x d, d_{1}+d_{2}$ and $\left[d_{1}, d_{2}\right]=d_{1} d_{2}-d_{2} d_{1}$ are also k-derivations of R. Thus, the set $\operatorname{Der}_{k}(R)$ is an R-module which is also a Lie algebra.

We denote by R^{d} the kernel of d, that is,

$$
R^{d}=\{a \in R ; d(a)=0\}
$$

This set is a subring of R, called the ring of constants of R (with respect to d). If R is a field, then R^{d} is a subfield of R.

[^0]Now let $k[X]=k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring in n variables over a ring k. For each $i \in\{1, \ldots, n\}$ the partial derivative $\frac{\partial}{\partial x_{i}}$ is a k-derivation of $k[X]$. It is a unique k-derivation d of $k[X]$ such that $d\left(x_{i}\right)=1$ and $d\left(x_{j}\right)=0$ for all $j \neq i$. If f_{1}, \ldots, f_{n} are polynomials belonging to $k[X]$, then the mapping

$$
f_{1} \frac{\partial}{\partial x_{1}}+\cdots+f_{n} \frac{\partial}{\partial x_{n}}
$$

is a k-derivation of $k[X]$. It is a k-derivation d of $k[X]$ such that $d\left(x_{j}\right)=f_{j}$ for all $j=1, \ldots, n$. It is not difficult to show that every k-derivation of $k[X]$ is of the above form. As a consequence of this fact we know that $\operatorname{Der}_{k}(k[X])$ is a free $k[X]$-module on the basis $\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}$. If $d \in \operatorname{Der}_{k}(k[X])$ and $f \in k[X]$, then

$$
d(f)=\frac{\partial f}{\partial x_{1}} d\left(x_{1}\right)+\cdots+\frac{\partial f}{\partial x_{n}} d\left(x_{n}\right) .
$$

Now assume that k is a domain containing \mathbb{Q} and d is a k-derivation of $k[X]$. We say that $F \in k[X]$ is a Darboux polynomial of d if $F \neq 0$ and $d(F)=\Lambda F$, for some $\Lambda \in k[X]$. In this case such Λ is unique and it is said to be the cofactor of F. Every nonzero element belonging to the ring of constants $k[X]^{d}$ is of course a Darboux polynomial. If $F_{1}, F_{2} \in k[X] \backslash\{0\}$ are Darboux polynomials of d then the product $F_{1} F_{2}$ is also a Darboux polynomial of d. The cofactor of $F_{1} F_{2}$ is in this case the sum of the cofactors of F_{1} and F_{2}. If $F \in k[X] \backslash k$ is a Darboux polynomial of d, then all factors of F are also Darboux polynomials of d. Thus, looking for Darboux polynomials of d reduces to looking for irreducible ones.

For a discussion of Darboux polynomial in a more general setting, the reader is referred to [15], [19], [13], [14].

A k-derivation d of $k[X]$ is called homogeneous of degree s if all the polynomials $d\left(x_{1}\right), \ldots, d\left(x_{n}\right)$ are homogeneous of degree s. In particular, each partial derivative $\frac{\partial}{\partial x_{i}}$ is homogeneous of degree 0 . The zero derivation is homogeneous of every degree. The sum of homogeneous derivations of the same degree s is homogeneous of degree s. Note some basic properties of homogeneous derivations (see [19] for proofs and details).

Proposition 1.1. Let d be a homogeneous k-derivation of $k[X]$ and let $F \in k[X]$. If $F \in k[X]^{d}$, then each homogeneous component of F belongs also to $k[X]^{d}$. In particular, the ring $k[X]^{d}$, is generated over k by homogeneous polynomials.

Proposition 1.2. Let d be a homogeneous k-derivation of $k[X]$, where k is a domain containing \mathbb{Q}, and let $0 \neq F \in k[X]$ be a Darboux polynomial of d with the cofactor $\Lambda \in k[X]$. Then Λ is homogeneous, and all homogeneous components of F are also Darboux polynomials with the common cofactor equal to Λ.

Note that Darboux polynomials of a homogeneous derivation are not necessarily homogeneous. Indeed, let $n=2, d\left(x_{1}\right)=x_{1}, d\left(x_{2}\right)=2 x_{2}$, and let $F=x_{1}^{2}+x_{2}$. Then d is homogeneous, F is a Darboux polynomial of d (because $d(F)=2 F$), and F is not homogeneous.

2. Basic properties of divergences

Let k be a ring and let d be a k-derivation of the polynomial ring $k[X]=$ $k\left[x_{1}, \ldots, x_{n}\right]$. Let us recall that we denote by d^{\star} the divergence of d, that is,

$$
d^{\star}=\frac{\partial d\left(x_{1}\right)}{\partial x_{1}}+\cdots+\frac{\partial d\left(x_{n}\right)}{\partial x_{n}} .
$$

We say that the derivation d is divergence-free if $d^{\star}=0$. For example, every partial derivative $\frac{\partial}{\partial x_{i}}$ is a divergence-free k-derivation of $k[X]$. It is clear that $(d+\delta)^{\star}=d^{\star}+\delta^{\star}$ for all $d, \delta \in \operatorname{Der}_{k}(k[X])$. Thus, the sum of divergence-free derivations is also a divergence-free derivation.
Proposition 2.1. If $d \in \operatorname{Der}_{k}(k[X])$ and $r \in k[X]$, then:

$$
(r d)^{\star}=r d^{\star}+d(r)
$$

Proof. $(r d)^{\star}=\sum_{p=1}^{n} \frac{\partial r d\left(x_{p}\right)}{\partial x_{p}}=\sum_{p=1}^{n}\left(r \frac{\partial d\left(x_{p}\right)}{\partial x_{p}}+\frac{\partial r}{\partial x_{p}} d\left(x_{p}\right)\right)=r \sum_{p=1}^{n} \frac{\partial d\left(x_{p}\right)}{\partial x_{p}}$
$+\sum_{p=1}^{n} \frac{\partial r}{\partial x_{p}} d\left(x_{p}\right)=r d^{\star}+d(r)$.
Thus, if d is a divergence-free k-derivation of $k[X]$ and $r \in k[X]^{d}$, then the derivation $r d$ is divergence-free.
Proposition 2.2. Let $d, \delta \in \operatorname{Der}_{k}(k[X])$ and let $[d, \delta]=d \delta-\delta d$. Then

$$
[d, \delta]^{\star}=d\left(\delta^{\star}\right)-\delta\left(d^{\star}\right)
$$

Proof. Put $f_{i}=d\left(x_{i}\right), g_{i}=\delta\left(x_{i}\right)$ for $i=1, \ldots, n$, and observe that

$$
\sum_{p=1}^{n} \sum_{i=1}^{n} \frac{\partial g_{p}}{\partial x_{i}} \frac{\partial f_{i}}{\partial x_{p}}=\sum_{p=1}^{n} \sum_{i=1}^{n} \frac{\partial f_{p}}{\partial x_{i}} \frac{\partial g_{i}}{\partial x_{p}} .
$$

Thus, we have

$$
\begin{aligned}
{[d, \delta]^{*} } & =\sum_{p=1}^{n} \frac{\partial}{\partial x_{p}}\left((d \delta-\delta d)\left(x_{p}\right)\right)=\sum_{p=1}^{n} \frac{\partial}{\partial x_{p}}\left(d\left(g_{p}\right)-\delta\left(f_{p}\right)\right) \\
& =\sum_{p=1}^{n} \frac{\partial}{\partial x_{p}}\left(\sum_{i=1}^{n} \frac{\partial g_{p}}{\partial x_{i}} f_{i}-\sum_{i=1}^{n} \frac{\partial f_{p}}{\partial x_{i}} g_{i}\right) \\
& =\sum_{p=1}^{n} \sum_{i=1}^{n}\left(\frac{\partial}{\partial x_{p}} \frac{\partial g_{p}}{\partial x_{i}} \cdot f_{i}+\frac{\partial g_{p}}{\partial x_{i}} \frac{\partial f_{i}}{\partial x_{p}}-\frac{\partial}{\partial x_{p}} \frac{\partial f_{p}}{\partial x_{i}} \cdot g_{i}-\frac{\partial f_{p}}{\partial x_{i}} \frac{\partial g_{i}}{\partial x_{p}}\right) \\
& =\sum_{p=1}^{n} \sum_{i=1}^{n}\left(\frac{\partial}{\partial x_{p}} \frac{\partial g_{p}}{\partial x_{i}} \cdot f_{i}-\frac{\partial}{\partial x_{p}} \frac{\partial f_{p}}{\partial x_{i}} \cdot g_{i}\right) \\
& =\sum_{p=1}^{n} \sum_{i=1}^{n}\left(\frac{\partial}{\partial x_{i}} \frac{\partial g_{p}}{\partial x_{p}} \cdot f_{i}-\frac{\partial}{\partial x_{i}} \frac{\partial f_{p}}{\partial x_{p}} \cdot g_{i}\right) \\
& =\sum_{p=1}^{n}\left(d\left(\frac{\partial g_{p}}{\partial x_{p}}\right)-\delta\left(\frac{\partial f_{p}}{\partial x_{p}}\right)\right)=d\left(\sum_{p=1}^{n} \frac{\partial g_{p}}{\partial x_{p}}\right)-\delta\left(\sum_{p=1}^{n} \frac{\partial f_{p}}{\partial x_{p}}\right) \\
& =d\left(\delta^{\star}\right)-\delta\left(d^{\star}\right) .
\end{aligned}
$$

This completes the proof.
The above propositions imply that the set of all divergence-free derivations of $k[X]$ is closed under the sum and the Lie product.

Let d be a k-derivation of $k[X]$. Given a polynomial $f \in k[X]$, we denote by V_{f}, the k-submodule of $k[X]$ generated by the set $\left\{f, d(f), d^{2}(f), d^{3}(f), \ldots\right\}$. The derivation d is called locally finite, if every module V_{f}, for all $f \in k[X]$, is a finitely generated over k. The derivation d is called locally nilpotent, if for every $f \in k[X]$ there exists a positive integer m such that $d^{m}(f)=0$. Every locally nilpotent derivation is locally finite. There exist, of course, locally finite derivations which are not locally nilpotent. Locally finite and locally nilpotent derivations was intensively studied from a long time; see for example [7], [6], [12], [19], where many references on this subject can be found.

The following result is due to H. Bass, G. Meisters [2] and B. Coomes, V. Zurkowski [4]. Another its proof is given in [19] (Theorem 9.7.3).

Theorem 2.3. Let k be a reduced ring containing \mathbb{Q}. If d is a locally finite k derivation of $k[X]=k\left[x_{1}, \ldots, x_{n}\right]$, then d^{\star}, the divergence of d, is an element of k.

Recall that a ring k is called reduced if k has no nonzero nilpotent elements. If k is non-reduced then the above property does not hold, in general.

Example 2.4. Let $k=\mathbb{Q}[y] /\left(y^{2}\right)$ and let d be the k derivation of $k[x]$ (a polynomial ring in a one variable) defined by $d(x)=a x^{2}$, where $a=y+\left(y^{2}\right)$. Since $d^{2}(x)=$ $2 a^{2} x^{3}=0, d$ is locally finite. But $d^{\star}=2 a x \notin k$.

Note the following important property of locally nilpotent derivations.
Theorem 2.5. ([19], [6]). If k is a reduced ring containing \mathbb{Q}, then every locally nilpotent k-derivation of $k[X]$ is divergence-free.

The derivation d from Example 2.4 is locally nilpotent. This means that if k is non-reduced then there exist locally nilpotent k-derivations of $k[X]$ with a nonzero divergence.

In the paper of Berson, van den Essen, and Maubach [3] is quoted the following result, which is related to their investigation of the Jacobian Conjecture.

Theorem 2.6. ([3]). Let k be any commutative \mathbb{Q}-algebra, and let d be a k derivation of $k[x, y]$. If d is surjective and divergence-free, then d is locally nilpotent.

This result was shown earlier by Stein [21] in the case k is a field.

3. Divergences and jacobians

If h_{1}, \ldots, h_{n} are polynomials belonging to $k[X]=k\left[x_{1}, \ldots, x_{n}\right]$, then we denote by $\left[h_{1}, \ldots, h_{n}\right]$ the jacobian of h_{1}, \ldots, h_{n}, that is,

$$
\left[h_{1}, \ldots, h_{n}\right]=\left|\begin{array}{cccc}
\frac{\partial h_{1}}{\partial x_{1}} & \frac{\partial h_{2}}{\partial x_{1}} & \cdots & \frac{\partial h_{n}}{\partial x_{1}} \\
\frac{\partial h_{1}}{\partial x_{2}} & \frac{\partial h_{2}}{\partial x_{2}} & \cdots & \frac{\partial h_{n}}{\partial x_{2}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial h_{1}}{\partial x_{n}} & \frac{\partial h_{2}}{\partial x_{n}} & \cdots & \frac{\partial h_{n}}{\partial x_{n}}
\end{array}\right|
$$

Proposition 3.1. Let d be a k-derivation of $k[X]$ and let $h_{1}, \ldots, h_{n} \in k[X]$. Then

$$
d\left(\left[h_{1}, \ldots, h_{n}\right]\right)=-\left[h_{1}, \ldots, h_{n}\right] d^{\star}+\sum_{p=1}^{n}\left[h_{1}, \ldots, d\left(h_{p}\right), \ldots, h_{n}\right]
$$

Proof. Put $f_{i}=d\left(x_{i}\right), f_{i j}=\frac{\partial f_{i}}{\partial x_{j}}, h_{i j}=\frac{\partial h_{i}}{\partial x_{j}}$, for all $i, j \in\{1, \ldots, n\}$, and let S_{n} denote the group of all permutations of $\{1, \ldots, n\}$. Observe that
(a)

$$
d\left(h_{\sigma(p) p}\right)=\frac{\partial}{\partial x_{p}} d\left(h_{\sigma(p)}\right)-\sum_{q=1}^{n} h_{\sigma(p) q} f_{q p}
$$

for all $\sigma \in S_{n}$ and $p \in\{1, \ldots, n\}$, and

$$
\begin{align*}
& \sum_{\sigma \in S_{n}}(-1)^{|\sigma|} h_{\sigma(1) 1} \cdots h_{\sigma(p-1)(p-1)} h_{\sigma(p) q} h_{\sigma(p+1)(p+1)} \cdots h_{\sigma(n) n} \tag{b}\\
& =\left[h_{1}, \ldots, h_{n}\right] \delta_{p q}
\end{align*}
$$

for all $p, q \in\{1, \ldots, n\}$, where $|\sigma|$ is the sign of σ, and $\delta_{p q}$ is the Kronecker delta. The above determines that

$$
\begin{aligned}
& d\left(\left[h_{1}, \ldots, h_{n}\right]\right)=\sum_{p=1}^{n} \sum_{\sigma \in S_{n}}(-1)^{|\sigma|} h_{\sigma(1) 1} \cdots d\left(h_{\sigma(p) p}\right) \cdots h_{\sigma(n) n} \\
& \stackrel{(\mathrm{a})}{=} \sum_{p=1}^{n} \sum_{\sigma \in S_{n}}(-1)^{|\sigma|} h_{\sigma(1) 1} \cdots\left(\frac{\partial}{\partial x_{p}} d\left(h_{\sigma(p)}\right)-\sum_{q=1}^{n} h_{\sigma(p) q} f_{p q}\right) \cdots h_{\sigma(n) n} \\
& \stackrel{(\mathrm{~b})}{=} \sum_{p=1}^{n}\left[h_{1}, \ldots, d\left(h_{p}\right), \ldots, h_{n}\right]-\sum_{p=1}^{n} \sum_{q=1}^{n} f_{p q}\left[h_{1}, \ldots, h_{n}\right] \delta_{p q} \\
& =\sum_{p=1}^{n}\left[h_{1}, \ldots, d\left(h_{p}\right), \ldots, h_{n}\right]-\sum_{p=1}^{n} f_{p p}\left[h_{1}, \ldots, h_{n}\right] \\
& =\sum_{p=1}^{n}\left[h_{1}, \ldots, d\left(h_{p}\right), \ldots, h_{n}\right]-\left[h_{1}, \ldots, h_{n}\right] d^{\star} .
\end{aligned}
$$

This completes the proof.

As a consequence of the above proposition we obtain the following proposition for divergence-free derivations.

Proposition 3.2. If d is a divergence-free k-derivation of $k[X]$ and h_{1}, \ldots, h_{n} are polynomials belonging to $k[X]$, then

$$
d\left(\left[h_{1}, \ldots, h_{n}\right]\right)=\sum_{p=1}^{n}\left[h_{1}, \ldots, d\left(h_{p}\right), \ldots, h_{n}\right] .
$$

Consider the case $n=2$. Put $x=x_{1}$ and $y=x_{2}$. If $f \in k[x, y]$, then we denote: $f_{x}=\frac{\partial f}{\partial x}, f_{y}=\frac{\partial f}{\partial y}$. Observe that for every $f \in k[x, y]$ we have the equality

$$
\left[f_{x}, x\right]+\left[f_{y}, y\right]=0
$$

In fact, $\left[f_{x}, x\right]+\left[f_{y}, y\right]=\left|\begin{array}{cc}f_{x x} & 1 \\ f_{x y} & 0\end{array}\right|+\left|\begin{array}{cc}f_{y x} & 0 \\ f_{y y} & 1\end{array}\right|=-f_{x y}+f_{y x}=0$.
In the case $n=3$ we have a similar equality. If $f, g \in k[x, y, z]$, then

$$
\left[f_{x}, g, x\right]+\left[f_{y}, g, y\right]+\left[f_{z}, g, z\right]=0
$$

Let us check: $\quad\left[f_{x}, g, x\right]+\left[f_{y}, g, y\right]+\left[f_{z}, g, z\right]$

$$
\begin{aligned}
& =\left|\begin{array}{lll}
f_{x x} & g_{x} & 1 \\
f_{x y} & g_{y} & 0 \\
f_{x z} & g_{z} & 0
\end{array}\right|+\left|\begin{array}{ccc}
f_{y x} & g_{x} & 0 \\
f_{y y} & g_{y} & 1 \\
f_{y z} & g_{z} & 0
\end{array}\right|+\left|\begin{array}{ccc}
f_{z x} & g_{x} & 0 \\
f_{z y} & g_{y} & 0 \\
f_{z z} & g_{z} & 1
\end{array}\right| \\
& =\left|\begin{array}{cc}
f_{x y} & g_{y} \\
f_{x z} & g_{z}
\end{array}\right|-\left|\begin{array}{cc}
f_{y x} & g_{x} \\
f_{y z} & g_{z}
\end{array}\right|+\left|\begin{array}{cc}
f_{z x} & g_{x} \\
f_{z y} & g_{y}
\end{array}\right| \\
& =\left(f_{x y} g_{z}-f_{x z} g_{y}\right)-\left(f_{y x} g_{z}-f_{y z} g_{x}\right)+\left(f_{z x} g_{y}-f_{z y} g_{x}\right) \\
& =f_{x y}\left(g_{z}-g_{z}\right)+f_{x z}\left(g_{y}-g_{y}\right)+f_{y z}\left(g_{x}-g_{x}\right)=0 .
\end{aligned}
$$

The same we have for every $n \geqslant 2$.
Proposition 3.3. If $f, g_{1}, g_{2}, \ldots, g_{n-2}$ are polynomials belonging to $k\left[x_{1}, \ldots, x_{n}\right]$, then

$$
\sum_{p=1}^{n}\left[\frac{\partial f}{\partial x_{p}}, g_{1}, g_{2}, \ldots, g_{n-2}, x_{p}\right]=0 .
$$

Proof. Put $f_{p}=\frac{\partial f}{\partial x_{p}}, f_{p, j}=\frac{\partial f_{p}}{\partial x_{j}}=\frac{\partial^{2} f}{\partial x_{p} x_{j}}$, and

$$
A_{p}=\left[f_{p}, g_{1}, g_{2}, \ldots, g_{n-2}, x_{p}\right], \quad G_{j}=\left(\frac{\partial g_{1}}{\partial x_{j}}, \frac{\partial g_{2}}{\partial x_{j}}, \ldots, \frac{\partial g_{n-2}}{\partial x_{j}}\right)
$$

for all $p, j \in\{1, \ldots, n\}$. Note, that A_{p} is the jacobian of $f_{p}, g_{1}, \ldots, g_{n-2}, x_{p}$, and G_{j} is a sequence of $n-2$ polynomials from $k[X]$. Observe that, for every $p=1, \ldots, n$,
we have

$$
A_{p}=\left|\begin{array}{lll}
f_{p, 1} & G_{1} & 0 \\
\vdots & \vdots & \vdots \\
f_{p, p-1} & G_{p-1} & 0 \\
f_{p, p} & G_{p} & 1 \\
f_{p, p+1} & G_{p+1} & 0 \\
\vdots & \vdots & \vdots \\
f_{p, n} & G_{n} & 0
\end{array}\right|=(-1)^{n+p} D_{p}, \text { where } D_{p}=\left|\begin{array}{ll}
f_{p, 1} & G_{1} \\
\vdots & \vdots \\
f_{p, p-1} & G_{p-1} \\
f_{p, p+1} & G_{p+1} \\
\vdots & \vdots \\
f_{p, n} & G_{n}
\end{array}\right| .
$$

Consider the $n \times(n-2)$ matrix

$$
M=\left[\begin{array}{c}
G_{1} \\
G_{2} \\
\vdots \\
G_{n}
\end{array}\right]
$$

If p, q are different elements of $\{1, \ldots, n\}$, then denote by $B_{p, q}$ the determinant of the $(n-2) \times(n-2)$ matrix that results from deleting the p-th row and the q-th row of the matrix M. It is clear that $B_{p, q}=B_{q, p}$ for all $p \neq q$.

Now consider the Laplace expansions with respect to the first column for all the determinants D_{1}, \ldots, D_{n}. Let $p, q \in\{1, \ldots, n\}, p<q$. We have

$$
\begin{aligned}
D_{p} & =\sum_{i=1}^{p-1}(-1)^{i+1} f_{p, i} B_{p, i}+\sum_{j=p+1}^{n}(-1)^{j} f_{p, j} B_{p, j} \\
D_{q} & =\sum_{i=1}^{q-1}(-1)^{i+1} f_{q, i} B_{q, i}+\sum_{j=q+1}^{n}(-1)^{j} f_{q, j} B_{q, j}
\end{aligned}
$$

In the first equality appears the component $(-1)^{q} f_{p, q} B_{p, q}$, and in the second equality appears the component $(-1)^{p+1} f_{q, p} B_{q, p}$. But $f_{p, q}=f_{q, p}, B_{p, q}=B_{q, p}$, and moreover

$$
\sum_{r=1}^{n} A_{r}=\sum_{r=1}^{n}(-1)^{n+r} D_{r}
$$

Hence, in the sum $\sum_{r=1}^{n} A_{r}$ the polynomial $f_{p, q}$ appears exactly two times, and we have

$$
\begin{aligned}
& (-1)^{p+n}(-1)^{q} f_{p, q} B_{p, q}+(-1)^{q+n}(-1)^{p+1} f_{p, q} B_{p, q} \\
& =\left((-1)^{n+p+q}+(-1)^{n+p+q+1}\right) f_{p, q} B_{p, q} \\
& =0 \cdot f_{p, q} B_{p, q}=0 .
\end{aligned}
$$

Therefore, $\sum_{p=1}^{n}\left[\frac{\partial f}{\partial x_{p}}, g_{1}, g_{2}, \ldots, g_{n-2}, x_{p}\right]=\sum_{p=1}^{n} A_{p}=0$.

4. Jacobian derivations in two variables

Now assume that $n=2$. If $f \in k[x, y]$, then we denote by Δ_{f} the k-derivation of $k[x, y]$ defined by

$$
\Delta_{f}(g)=[f, g],
$$

for all $g \in k[x, y]$. We say that a k-derivation d of $k[x, y]$ is jacobian, if there exists a polynomial $f \in k[x, y]$ such that $d=\Delta_{f}$. Note, that

$$
\Delta_{f}(x)=-f_{y}, \quad \Delta_{f}(y)=f_{x} .
$$

If $f \in k[x, y]$ is a homogeneous polynomial of degree m, then Δ_{f} is a homogeneous k-derivation of degree $m-1$.

Proposition 4.1. Let $f, g \in k[x, y]$, and $a \in k$. Then:
(1) $\Delta_{f+g}=\Delta_{f}+\Delta_{g}$;
(2) $\Delta_{a f}=a \Delta_{f}$;
(3) $\Delta_{f g}=f \Delta_{g}+g \Delta_{f}$;
(4) $\left[\Delta_{f}, \Delta_{g}\right]=\Delta_{[f, g]}$.

Proof. The conditions (1) and (2) are obvious. Let $h \in k[x, y]$. Then we have

$$
\begin{aligned}
\Delta_{f g}(h) & =[f g, h]=-[h, f g]=-\Delta_{h}(f g)=-\left(f \Delta_{h}(g)+g \Delta_{h}(f)\right) \\
& =-f[h, g]-g[h, f]=f[g, h]+g[f, h]=f \Delta_{g}(h)+g \Delta_{f}(h) \\
& =\left(f \Delta_{g}+g \Delta_{f}\right)(h)
\end{aligned}
$$

Thus, we proved (3). We now check (4):

$$
\begin{aligned}
{\left[\Delta_{f}, \Delta_{g}\right](x) } & =\left(\Delta_{f} \Delta_{g}-\Delta_{g} \Delta_{f}\right)(x)=\Delta_{f}\left(-g_{y}\right)-\Delta_{g}\left(-f_{y}\right) \\
& =-g_{y x}\left(-f_{y}\right)-g_{y y} f_{x}+f_{y x}\left(-g_{y}\right)+f_{y y} g_{x} \\
& =\left(g_{y x} f_{y}+g_{x} f_{y y}\right)-\left(g_{y y} f_{x}+g_{y} f_{y x}\right) \\
& =\left(g_{x} f_{y}\right)_{y}-\left(f_{x} g_{y}\right)_{y}=\left(g_{x} f_{y}-f_{x} g_{y}\right)_{y}=-[f, g]_{y}=\Delta_{[f, g]}(x) ; \\
{\left[\Delta_{f}, \Delta_{g}\right](y) } & =\left(\Delta_{f} \Delta_{g}-\Delta_{g} \Delta_{f}\right)(y)=\Delta_{f}\left(g_{x}\right)-\Delta_{g}\left(f_{x}\right) \\
& =-g_{x x} f_{y}+g_{x y} f_{x}+f_{x x} g_{y}-f_{x y} g_{x} \\
& =\left(g_{x y} f_{x}+g_{y} f_{x x}\right)-\left(g_{x x} f_{y}+g_{x} f_{x y}\right) \\
& =\left(g_{y} f_{x}\right)_{x}-\left(f_{y} g_{x}\right)_{x}=\left(f_{x} g_{y}-f_{y} g_{x}\right)_{x}=[f, g]_{x}=\Delta_{[f, g]}(y)
\end{aligned}
$$

Thus, we proved that $\left[\Delta_{f}, \Delta_{g}\right]$ and $\Delta_{[f, g]}$ are k-derivations of $k[x, y]$ such that

$$
\left[\Delta_{f}, \Delta_{g}\right](x)=\Delta_{[f, g]}(x), \quad\left[\Delta_{f}, \Delta_{g}\right](y)=\Delta_{[f, g]}(y)
$$

This implies that $\left[\Delta_{f}, \Delta_{g}\right]=\Delta_{[f, g]}$.
Let us recall the following result of the author [18].
Theorem 4.2. Let k be a field of characteristic zero, and let $f, g \in k[x, y] \backslash k$. If $[f, g]=0$, then there exist a polynomial $h \in k[x, y]$ and polynomials $u(t), v(t) \in k[t]$ such that $f=u(h)$ and $g=v(h)$.

If d and δ are k-derivations of $k[x, y]$, then we write $d \sim \delta$ in the case when $a d=$ $b \delta$, for some nonzero $a, b \in k[x, y]$. It is clear that if $d \sim \delta$, then $k[x, y]^{d}=k[x, y]^{\delta}$ and $k(x, y)^{d}=k(x, y)^{\delta}$. As a consequence of Theorem 4.2 we get

Proposition 4.3. Let k be a field of characteristic zero, and let $f, g \in k[x, y] \backslash k$. Then $[f, g]=0$ if and only if $\Delta_{f} \sim \Delta_{g}$.

Proof. Let us observe that if $u(t) \in k[t] \backslash k$, then $\frac{\partial u}{\partial t}(f) \neq 0$ and $\Delta_{f} \sim \Delta_{u(f)}$, because

$$
\Delta_{u(f)}=\frac{\partial u}{\partial t}(f) \cdot \Delta_{f}
$$

Assume that $[f, g]=0$. It follows from Theorem 4.2 that $f=u(h)$ and $g=v(h)$, for some $u, v \in k[t]$ and some $h \in k[x, y]$. Since $f \notin k$ and $g \notin k$, we have $u \notin k$ nad $h \notin k$. Hence, $\Delta_{f}=\Delta_{u(h)} \sim \Delta_{h} \sim \Delta_{v(h)}=\Delta_{g}$, and hence $\Delta_{f} \sim \Delta_{g}$.

Now suppose that $\Delta_{f} \sim \Delta_{g}$. Let $a \Delta_{f}=b \Delta_{g}$, for some nonzero $a, b \in k[x, y]$. Then we have $a f_{x}=a \Delta_{f}(y)=b \Delta_{g}(y)=b g_{x}$ and $a f_{y}=-a \Delta_{f}(x)=-b \Delta_{g}(x)=$ $b g_{y}$. Hence, $f_{x}=u g_{x}$ and $f_{y}=u g_{y}$, where $u=b / a$. Therefore,

$$
[f, g]=f_{x} g_{y}-f_{y} g_{x}=u g_{x} g_{y}-u g_{y} g_{x}=0
$$

This completes the proof.
Every Δ_{f} is a divergence-free k-derivation of $k[x, y]$. Indeed:

$$
\Delta_{f}^{*}=\Delta_{f}(x)_{x}+\Delta_{f}(y)_{y}=-f_{y x}+f_{x y}=0
$$

We now show that if k contains \mathbb{Q}, then the converse of this fact is also true. The main role in our proof plays the following lemma.

Lemma 4.4. If $\mathbb{Q} \subset k$ and $f, g \in k[x, y]$, then the following conditions are equivalent:
(a) there exists $H \in k[x, y]$ such that $H_{x}=f$ and $H_{y}=g$;
(b) $f_{y}=g_{x}$.

Proof. (a) \Rightarrow (b) follows from the equality $\partial_{x} \partial_{y}=\partial_{y} \partial_{x}$.
(b) \Rightarrow (a). Let

$$
f=\sum_{\alpha, \beta} a(\alpha, \beta) x^{\alpha} y^{\beta}, \quad g=\sum_{\alpha, \beta} b(\alpha, \beta) x^{\alpha} y^{\beta},
$$

where all $a(\alpha, \beta), b(\alpha, \beta)$ belong to k. If $\alpha \geqslant 1$ and $\beta \geqslant 1$, then $\frac{1}{\alpha} a(\alpha-1, \beta)=$ $\frac{1}{\beta} b(\alpha, \beta-1)$. Put

$$
F=\sum_{\alpha, \beta} c(\alpha, \beta) x^{\alpha} y^{\beta}
$$

where $c(0,0)=0$ and, if $\alpha \geqslant 1$ then $c(\alpha, \beta)=\frac{1}{\alpha} a(\alpha-1, \beta)$, and if $\beta \geqslant 1$ then $c(\alpha, \beta)=\frac{1}{\beta} b(\alpha, \beta-1)$. It is easy to check that $H_{x}=f$ and $H_{y}=g$.

Proposition 4.5. If $\mathbb{Q} \subset k$ and d is a divergence-free k-derivation of $k[x, y]$, then there exists a polynomial $h \in k[x, y]$ such that $d=\Delta_{h}$.

Proof. Let $d(x)=P, d(y)=Q$ and suppose that $P_{x}+Q_{y}=0$. Put $f=Q$ and $g=-P$. Then $f_{y}=g_{x}$ and hence, by Lemma 4.4, there exists a polynomial $h \in k[x, y]$ such that $h_{x}=f$ and $h_{y}=g$, that is, $d=\Delta_{h}$.

Thus, we have
Proposition 4.6. Let $\mathbb{Q} \subset k$, and let d be a k-derivation of $k[x, y]$. Then d is jacobian if and only if d is divergence-free.

Theorem 4.7. If $\mathbb{Q} \subset k$ and d is a nonzero k-derivation of $k[x, y]$ then the following two conditions are equivalent:
(1) $k[x, y]^{d} \neq k$;
(2) $d \sim \delta$, where δ is a divergence-free k-derivation of $k[x, y]$.

Proof. Since $k[x, y]^{d}=k[x, y]^{h d}$ for every nonzero polynomial h in $k[x, y]$, we may assume that the polynomials $d(x)$ and $d(y)$ are relatively prime.
$(1) \Rightarrow(2)$. Suppose $k[x, y]^{d} \neq k$ and let $F \in k[x, y]^{d} \backslash k$. Put $d(x)=P, d(y)=Q$ and $h=\operatorname{gcd}\left(F_{x}, F_{y}\right)$. Then $P F_{x}+Q F_{y}=0, h \neq 0$ and there exist relatively prime polynomials $A, B \in k[x, y]$ such that $F_{x}=A h$ and $F_{y}=B h$. Hence $A P=-B Q$ and hence, $A|Q, Q| A, B \mid P$ and $P \mid B$. This implies that there exists an element $a \in k \backslash\{0\}$ such that $a A=Q$ and $a B=-P$. Let $\delta=h d$. Then $d \sim \delta$ and δ is divergence-free. Indeed,

$$
\delta^{\star}=(h P)_{x}+(h Q)_{y}=-(a h B)_{x}+(a h A)_{y}=-a F_{y x}+a F_{x y}=0 .
$$

The implication $(2) \Rightarrow(1)$ is obvious.
Now it is easy to prove the following theorem (see [19] Theorem 7.2.13).
Theorem 4.8. Let $\mathbb{Q} \subset k$, and let d and δ be k-derivations of $k[x, y]$ such that $k[x, y]^{d} \neq k$ and $k[x, y]^{\delta} \neq k$. Then $k[x, y]^{d}=k[x, y]^{\delta}$ if and only if $d \sim \delta$.

5. Jacobian derivations in n variables

Assume that $n \geqslant 2$. Let $F=\left(f_{1}, \ldots, f_{n-1}\right)$, where f_{1}, \ldots, f_{n-1} are polynomials belonging to $k[X]=k\left[x_{1}, \ldots, x_{n}\right]$. We denote by Δ_{F} the mapping from $k[X]$ to $k[X]$ defined by

$$
\Delta_{F}(h)=\left[f_{1}, \ldots, f_{n-1}, h\right],
$$

for all $h \in k[X]$. This mapping is a k-derivation of $k[X]$. We say that it is a jacobian derivation of $k[X]$. If $n=2$, then $\Delta_{F}=\Delta_{f_{1}}$ is the jacobian k-derivation from the previous section. If the polynomials f_{1}, \ldots, f_{n-1} are homogeneous of degrees m_{1}, \ldots, m_{n-1}, respectively, then the derivation Δ_{F} is homogeneous of degree $\left(m_{1}+\cdots+m_{n-1}\right)-(n-1)$, provided rank $\left[\frac{\partial f_{i}}{\partial x_{j}}\right]=n-1$.

Now assume that $n=3$. In this case $F=(f, g)$ is a sequence of two polynomials f, g from $k[X]=k[x, y, z]$, and $\Delta_{(f, g)}$ is a k-derivation of $k[x, y, z]$ such that

$$
\Delta_{(f, g)}(x)=f_{y} g_{z}-f_{z} g_{y}, \quad \Delta_{(f, g)}(x)=f_{z} g_{x}-f_{x} g_{z}, \quad \Delta_{(f, g)}(x)=f_{x} g_{y}-f_{y} g_{x}
$$

It is easy to check that $\Delta_{(f, g)}$ is a divergence-free k-derivation of $k[x, y, z]$. In general, for any $n \geqslant 2$, we have the following theorem.

Theorem 5.1. Every jacobian k-derivation of $k\left[x_{1}, \ldots, x_{n}\right]$ is divergence-free .
Proof. Consider a jacobian k-derivation Δ_{F} with $F=\left(f_{1}, \ldots, f_{n-1}\right)$, where f_{1}, \ldots, f_{n-1} are polynomials belonging to $k[X]=k\left[x_{1}, \ldots, x_{n}\right]$. Since every partial derivative of $k[X]$ is a divergence-free k-derivation, we have (see Proposition 3.2) the equalities of the form

$$
\frac{\partial}{\partial x_{p}}\left[f_{1}, \ldots, f_{n-1}, x_{p}\right]=\left[f_{1}, \ldots, f_{n-1}, 1\right]+\sum_{i=1}^{n-1}\left[f_{1}, \ldots, \frac{\partial f_{i}}{\partial x_{p}}, \ldots, f_{n-1}, x_{p}\right]
$$

for all $p=1, \ldots, n$. Note that $\left[f_{1}, \ldots, f_{n-1}, 1\right]=0$. Using Proposition 3.3 we obtain also the equalities of the form

$$
\sum_{p=1}^{n}\left[f_{1}, \ldots, \frac{\partial f_{i}}{\partial x_{p}}, \ldots, f_{n-1}, x_{p}\right]=0
$$

for all $i=1, \ldots, n-1$. We now have:

$$
\begin{aligned}
\left(\Delta_{F}\right)^{\star} & =\sum_{p=1}^{n} \frac{\partial}{\partial x_{p}} \Delta_{F}\left(x_{p}\right)=\sum_{p=1}^{n} \frac{\partial}{\partial x_{p}}\left[f_{1}, \ldots, f_{n-1}, x_{p}\right] \\
& =\sum_{p=1}^{n}\left(\left[f_{1}, \ldots, f_{n-1}, 1\right]+\sum_{i=1}^{n-1}\left[f_{1}, \ldots, \frac{\partial f_{i}}{\partial x_{p}}, \ldots, f_{n-1}, x_{p}\right]\right) \\
& =\sum_{p=1}^{n} \sum_{i=1}^{n-1}\left[f_{1}, \ldots, \frac{\partial f_{i}}{\partial x_{p}}, \ldots, f_{n-1}, x_{p}\right] \\
& =\sum_{i=1}^{n-1}\left(\sum_{p=1}^{n}\left[f_{1}, \ldots, \frac{\partial f_{i}}{\partial x_{p}}, \ldots, f_{n-1}, x_{p}\right]\right)=\sum_{i=1}^{n-1} 0=0 .
\end{aligned}
$$

Therefore, the derivation Δ_{F} is divergence-free .
Other proofs of the above theorem appear in Connell and Drost [5], Theorem 2.3; in Makar-Limanow [12]; and in Freudenburg's book [7], Lemma 3.8.

Let k be a field of characteristic zero and let f_{1}, \ldots, f_{n} be polynomials in $k[X]=$ $k\left[x_{1}, \ldots, x_{n}\right]$. Denote by w the jacobian of $\left(f_{1}, \ldots, f_{n}\right)$, that is, $w=\left[f_{1}, \ldots, f_{n}\right]$. It is well known and easy to be proved that if $k\left[f_{1}, \ldots, f_{n}\right]=k[X]$, then w is a nonzero element of k. The famous Jacobian Conjecture states that the converse of this fact is also true: if $w \in k \backslash\{0\}$ then $k\left[f_{1}, \ldots, f_{n}\right]=k[X]$. The problem is still open even for $n=2$. There exists a long list of equivalent formulations of this conjecture (see for example [22], [1], [6]). One of the equivalent formulations of the Jacobian Conjecture is as follows.

Conjecture 5.2. Let k be a field of characteristic zero, and let $F=\left(f_{1}, \ldots, f_{n-1}\right)$, where f_{1}, \ldots, f_{n-1} are polynomials belonging to $k[X]=k\left[x_{1}, \ldots, x_{n}\right]$. If there exists $g \in k[X]$ such that $\Delta_{F}(g)=1$, then the jacobian derivation Δ_{F} is locally nilpotent.

It is difficult to prove that the above Δ_{F} is locally nilpotent. Let us recall (see Theorem 2.5) that every locally nilpotent derivation is divergence-free. Thus, by theorem 5.1 we already know that Δ_{F} is divergence-free.

We know that $\operatorname{Der}_{k}(k[X])$ is a free $k[X]$-module on the basis $\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}$. This basis is commutative. We say that a basis $\left\{d_{1}, \ldots, d_{n}\right\}$ is commutative, if $d_{i} \circ d_{j}=$ $d_{j} \circ d_{i}$ for all $i, j \in\{1, \ldots, n\}$. A basis $\left\{d_{1}, \ldots, d_{n}\right\}$ is called locally finite (resp. locally nilpotent) if each d_{i} is locally finite (resp. locally nilpotent). Note the following results of the author.

Theorem 5.3. ([17]). If k is a field of characteristic zero, then the following conditions are equivalent.
(1) The Jacobian Conjecture is true in the n-variable case.
(2) Every commutative basis of the $k[X]-$ module $\operatorname{Der}_{k}(k[X])$ is locally finite.
(3) Every commutative basis of the $k[X]$-module $\operatorname{Der}_{k}(k[X])$ is locally nilpotent.

Theorem 5.4. ([19] Theorem 2.5.5). Let k be a reduced ring containing \mathbb{Q}. If $\left\{d_{1}, \ldots, d_{n}\right\}$ is commutative basis of the $k[X]$-module $\operatorname{Der}_{k}(k[X])$, then each derivation d_{i} is divergence-free.

Note also some results of E. Connell, J. Drost [5] and L. Makar-Limanow [12].
Theorem 5.5. ([5]). Let D be a k-derivation of $k[X]=k\left[x_{1}, \ldots, x_{n}\right]$, where k is a field of characteristic zero. If $\operatorname{tr} \cdot \operatorname{deg}_{k} k[X]^{D}=n-1$, then there exists $g \in k[X]$ such that the derivation $g D$ is divergence-free.

A k-derivation D of $k[X]$ is called irreducible, if $\operatorname{gcd}\left(D\left(x_{1}\right), \ldots, D\left(x_{n}\right)\right)=1$.
Theorem 5.6. ([12]). Let D be an irreducible locally nilpotent k-derivation of $k[X]=k\left[x_{1}, \ldots, x_{n}\right]$, where k is a field of characteristic zero. Let f_{1}, \ldots, f_{n-1} be $n-1$ algebraically independent elements of $k[X]^{D}$, and set $F=\left(f_{1}, \ldots, f_{n-1}\right)$. Then there exists $g \in k[X]^{D}$ such that $\Delta_{F}=g D$. In particular, the derivation Δ_{F} is locally nilpotent.

6. The ideal I(d) for homogeneous derivations

In this section k is a field of characteristic zero, $k[X]=k\left[x_{1}, \ldots, x_{n}\right]$ is a polynomial ring over k, and $d: k[X] \rightarrow k[X]$ is a homogeneous k-derivation of degree $s \geqslant 0$. Put

$$
g_{i j}=x_{i} d\left(x_{j}\right)-x_{j} d\left(x_{i}\right),
$$

for all $i, j \in\{1, \ldots, n\}$. Each $g_{i j}$ is a homogeneous polynomial of degree $s+1$. In particular, $g_{i i}=0$ and $g_{j i}=-g_{i j}$ for all i, j. Moreover, for all $i, j, p \in\{1, \ldots, n\}$,

$$
x_{i} g_{j p}+x_{j} g_{p i}+x_{p} g_{i j}=0 .
$$

We denote by $I(d)$ the ideal in $k[X]$ generated by all the polynomials $g_{i j}$ with $i, j \in\{1, \ldots, n\}$.
Proposition 6.1. The ideal $I(d)$ is differential, that is, $d(I(d)) \subset I(d)$.
Proof. Put $f_{1}=d\left(x_{1}\right), \ldots, f_{n}=d\left(x_{n}\right)$. Since f_{1}, \ldots, f_{n} are homogeneous polynomials of degree s, we have the Euler formulas:

$$
x_{1} \frac{\partial f_{i}}{\partial x_{1}}+\cdots+x_{n} \frac{\partial f_{i}}{\partial x_{n}}=s f_{i}
$$

for all $i=1, \ldots, n$. Thus, we have

$$
\begin{aligned}
d\left(g_{i j}\right) & =d\left(x_{i} f_{j}-x_{j} f_{i}\right) \\
& =f_{i} f_{j}+x_{i} d\left(f_{j}\right)-f_{j} f_{i}-x_{j} d\left(f_{i}\right)=x_{i} d\left(f_{j}\right)-x_{j} d\left(f_{i}\right) \\
& =x_{i}\left(\frac{\partial f_{j}}{\partial x_{1}} f_{1}+\cdots+\frac{\partial f_{j}}{\partial x_{n}} f_{n}\right)-x_{j}\left(\frac{\partial f_{i}}{\partial x_{1}} f_{1}+\cdots+\frac{\partial f_{i}}{\partial x_{n}} f_{n}\right) \\
& =\left(x_{1} \frac{\partial f_{j}}{\partial x_{1}}+\cdots+x_{n} \frac{\partial f_{j}}{\partial x_{n}}\right) f_{i}-\left(x_{1} \frac{\partial f_{i}}{\partial x_{1}}+\cdots+x_{n} \frac{\partial f_{i}}{\partial x_{n}}\right) f_{j}+a \\
& =\left(s f_{j}\right) f_{i}-\left(s f_{i}\right) f_{j}+a=a,
\end{aligned}
$$

where a is a polynomial belonging to $I(d)$. Thus, $d\left(g_{i j}\right) \in I(d)$ for all i, j, and this implies that $d(I(d)) \subset I(d)$.

We denote by E the Euler derivation of $k[X]$, that is,

$$
E=x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+\cdots+x_{n} \frac{\partial}{\partial x_{n}} .
$$

This derivation is homogeneous of degree 1 . If $0 \neq F \in k[X]$ is a homogeneous polynomial of degree s, then $E(F)=s F$. Thus, every nonzero homogeneous polynomial of degree s is a Darboux polynomial of E with cofactor s.
Proposition 6.2. The ideal $I(d)$ is equal to 0 if and only if $d=h \cdot E$ for some $h \in k[X]$.

Proof. Suppose that $d=h E$ with $h \in k[X]$, Then $d\left(x_{i}\right)=x_{i} h$ for $i=1, \ldots, n$. Thus, $g_{i j}=x_{i}\left(x_{j} h\right)=x_{j}\left(x_{i} h\right)=0$ and so, $I(d)=0$.

Now let $I(d)=0$. Put $f_{i}=d\left(x_{i}\right)$ for all i. Then, for all $i, j \in\{1, \ldots, n\}$, we have the equality $x_{i} f_{j}=x_{j} f_{i}$ so, each x_{i} divides f_{i}. Thus, $f_{i}=u_{i} x_{i}$ for $i=1, \ldots, n$, where $u_{i} \in k[X]$. Put $h=u_{1}$. Observe that $u_{i}=h$ for all $i=1, \ldots, n$. Therefore, $d=h E$.

Proposition 6.3. Let $d: k[X] \rightarrow k[X]$ be a homogeneous k-derivation of degree $s \geqslant 1$ and let $h \in k[X]$ be a homogeneous polynomial of degree $s-1$. Then $I(d)=I(d-h E)$.

Proof. Put $\delta=d-h E$. Then, for all $i, j \in\{1, \ldots, n\}$, we have

$$
x_{i} \delta\left(x_{j}\right)-x_{j} \delta\left(x_{i}\right)=x_{i}\left(d\left(x_{j}\right)-x_{j} h\right)-x_{j}\left(d\left(x_{i}\right)-x_{i} h\right)=x_{i} d\left(x_{j}\right)-x_{j} d\left(x_{i}\right) .
$$

Thus, the ideals $I(d)$ and $I(\delta)$ are generated by the same elements.

Proposition 6.4. Let $d: k[X] \rightarrow k[X]$ be a homogeneous derivation of degree s. Then there exists a homogeneous k-derivation $\delta: k[X] \rightarrow k[X]$, of degree s, such that $I(d)=I(\delta)$ and $\delta\left(x_{n}\right) \in k\left[x_{1}, \ldots, x_{n-1}\right]$.

Proof. Let $d\left(x_{n}\right)=A x_{n}+B$, where $A \in k[X]$ and $B \in k\left[x_{1}, \ldots, x_{n-1}\right]$. Put $\delta=d-A E$. Then $I(d)=I(\delta)$ (by Proposition 6.3) and $\delta\left(x_{n}\right)=d\left(x_{n}\right)-A x_{n}=$ $B \in k\left[x_{1}, \ldots, x_{n-1}\right]$.

Let us recall that all the polynomials $g_{i j}$ are homogeneous of degree $s+1, g_{i i}=0$ and $x_{i} g_{j p}+x_{j} g_{p i}+x_{p} g_{i j}=0$, for all $i, j, p \in\{1, \ldots, n\}$.

Proposition 6.5. Let $\left\{w_{i j} ; i, j=1, \ldots, n\right\}$ be a family of polynomials in $k[X]$. Suppose that:
(1) all the polynomials $w_{i j}$ are homogeneous of degree $s+1$;
(2) $w_{i i}=0$ for $i=1, \ldots, n$;
(3) $x_{i} w_{j p}+x_{j} w_{p i}+x_{p} w_{i j}=0$, for all $i, j, p \in\{1, \ldots, n\}$.

Then there exist homogeneous of degree s polynomials $f_{1}, \ldots, f_{n} \in k[X]$ such that

$$
w_{i j}=x_{i} f_{j}-x_{j} f_{i},
$$

for all $i, j \in\{1, \ldots, n\}$.
Proof. Let $Y_{i}=\sum_{j=1}^{n} \frac{\partial w_{i j}}{\partial x_{j}}$, for $i=1, \ldots, n$. Then, for $i, j, \in\{1, \ldots, n\}$, we have:

$$
\begin{aligned}
x_{i} Y_{j}-x_{j} Y_{i} & =x_{i} \sum_{p=1}^{n} \frac{\partial w_{j p}}{\partial x_{p}}-x_{j} \sum_{p=1}^{n} \frac{\partial w_{i p}}{\partial x_{p}} \\
& =x_{i} \frac{\partial w_{j i}}{\partial x_{i}}-x_{j} \frac{\partial w_{i j}}{\partial x_{j}}+x_{i} \sum_{p \neq i} \frac{\partial w_{j p}}{\partial x_{p}}-x_{j} \sum_{p \neq j} \frac{\partial w_{i p}}{\partial x_{p}} \\
& =x_{i} \frac{\partial w_{j i}}{\partial x_{i}}-x_{j} \frac{\partial w_{i j}}{\partial x_{j}}+x_{i} \sum_{p \neq i, p \neq j} \frac{\partial w_{j p}}{\partial x_{p}}-x_{j} \sum_{p \neq j, p \neq i} \frac{\partial w_{i p}}{\partial x_{p}} \\
& =x_{i} \frac{\partial w_{j i}}{\partial x_{i}}-x_{j} \frac{\partial w_{i j}}{\partial x_{j}}+\sum_{p \neq i, p \neq j} \frac{\partial}{\partial x_{p}}\left(x_{i} w_{j p}-x_{j} w_{i p}\right) \\
& =x_{i} \frac{\partial w_{j i}}{\partial x_{i}}-x_{j} \frac{\partial w_{i j}}{\partial x_{j}}+\sum_{p \neq i, p \neq j} \frac{\partial}{\partial x_{p}}\left(-x_{p} w_{i j}\right) \\
& =x_{i} \frac{\partial w_{j i}}{\partial x_{i}}+x_{j} \frac{\partial w_{j i}}{\partial x_{j}}-\sum_{p \neq i, p \neq j} x_{p} \frac{\partial w_{i j}}{\partial x_{p}}-\sum_{p \neq i, p \neq j} w_{i j} \\
& =-\sum_{p=1}^{n} x_{p} \frac{\partial w_{i j}}{\partial x_{p}}-(n-2) w_{i j}=-(s+1) w_{i j}-(n-2) w_{i j} \\
& =-(s+n-1) w_{i j} .
\end{aligned}
$$

Thus, $x_{i} Y_{j}-x_{j} Y_{i}=-(s+n-1) w_{i j}$. Let $f_{i}=-\frac{1}{s+n-1} Y_{i}$, for $i=1, \ldots, n$. Then we have

$$
w_{i j}=x_{i} f_{j}-x_{j} f_{i}
$$

for all $i, j \in\{1, \ldots$,$\} . It is clear that the polynomials f_{1}, \ldots, f_{n}$ are homogeneous of degree s.

Proposition 6.6. Let $\left\{w_{i j} ; i, j=1, \ldots, n\right\}$ be a family of polynomials in $k[X]$ such as in Proposition 6.5, and let $Y_{i}=\sum_{j=1}^{n} \frac{\partial w_{i j}}{\partial x_{j}}$, for $i=1, \ldots, n$. Then $\sum_{i=1}^{n} \frac{\partial Y_{i}}{\partial x_{i}}=0$. Proof. Put $A=\sum_{i=1}^{n} \frac{\partial Y_{i}}{\partial x_{i}}$. Then we have:

$$
A=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\sum_{j=1}^{n} \frac{\partial w_{i j}}{\partial x_{j}}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} w_{j p}}{\partial x_{i} \partial x_{j}}=-\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} w_{j i}}{\partial x_{j} \partial x_{i}}=-A .
$$

Thus, $A=0$.
Theorem 6.7. Let k be a field of characteristic zero, and let $d: k[X] \rightarrow k[X]$ be a homogeneous k-derivation of degree s. Then there exists a divergence-free k derivation $\delta: k[X] \rightarrow k[X]$ such that δ is homogeneous of degree s and $I(d)=I(\delta)$.

Proof. Let $w_{i j}=x_{i} d\left(x_{j}\right)-x_{j} d\left(x_{i}\right)$ for $i, j \in\{1, \ldots, n\}$. The polynomials $w_{i j}$ satisfy the properties (1) - (3) of Proposition 6.5. Put

$$
Y_{i}=\sum_{j=1}^{n} \frac{\partial w_{i j}}{\partial x_{j}}, \quad f_{i}=-\frac{1}{s+n-1} Y_{i}
$$

for $i=1, \ldots, n$. Then $w_{i j}=x_{i} f_{j}-x_{j} f_{i}$ (see the proof of Proposition 6.5). Let $\delta: k[X] \rightarrow k[X]$ be the k-derivation defined by $\delta\left(x_{i}\right)=f_{i}$, for $i=1, \ldots, n$. Then δ is homogeneous of degree s and $I(d)=I(\delta)$. Moreover, it follows from Proposition 6.6 that the divergence δ^{*} is equal to zero.

7. Polynomials M_{d} in two variables

In this section we assume that $n=2$ and k is a field of characteristic zero. Given a homogeneous k-derivation d of $k[X]$ we studied in the previous section the differential ideal generated by all polynomials of the form $x_{i} d\left(x_{j}\right)-x_{j} d\left(x_{i}\right)$. In the case $n=2$ this ideal is generated only by one polynomial

$$
M_{d}=x d(y)-y d(x) .
$$

If d is homogeneous derivation of degree s, then M_{d} is a homogeneous polynomial and $\operatorname{deg} M_{d}=s+1$. If d is the Euler derivation E, then $M_{d}=0$. It is easy to check that $M_{d}=0$ if and only if $d=h \cdot E$ for some $h \in k[x, y]$.

Proposition 7.1. If d is a homogeneous k-derivation of $k[x, y]$ and $M_{d} \neq 0$, then M_{d} is a Darboux polynomial of d and its cofactor is equal to the divergence d^{*}, that is,

$$
d\left(M_{d}\right)=d^{*} M_{d}
$$

Proof. Put $f=d(x), g=d(y)$. Since d is homogeneous, we have $x f_{x}+y f_{y}=s f$ and $x g_{x}+y g_{y}=s g$, where s is the degree of d. So, we have,

$$
\begin{aligned}
d\left(M_{d}\right)-d^{*} M_{d} & =d(x g-y f)-\left(f_{x}+g_{y}\right)(x g-y f) \\
& =f g+x\left(g_{x} f+g_{y} g\right)-g f-y\left(f_{x} f+f_{y} g\right)-\left(f_{x}+g_{y}\right)(x g-y f) \\
& =x g_{x} f+x g_{y} g-y f_{x} f-y f_{y} g-x f_{x} g+y f_{x} f-x g_{y} g+y g_{y} f \\
& =\left(x g_{x}+y g_{y}\right) f-\left(x f_{x}+y f_{y}\right) g \\
& =s g f-s f g=0,
\end{aligned}
$$

and hence, M_{d} is a Darboux polynomial with cofactor d^{*}
The above property does not hold when $d(x), d(y)$ are homogeneous of different degrees. Let for example, $d(x)=1, d(y)=x$. Then $M_{d}=x^{2}-y, d^{*}=0$ and $d\left(M_{d}\right)=d\left(x^{2}-y\right)=2 x-x=x \neq 0 \cdot\left(x^{2}-y\right)$. The above property also does not hold when $\operatorname{deg} d(x)=\operatorname{deg} d(y)$ and the polynomials $d(x), d(y)$ are not homogeneous. Let $d(x)=x+1, d(y)=y$. Then $M_{d}=-y, d^{*}=2, d\left(M_{d}\right)=-y \neq-2 y$.

We say that a Darboux polynomial f is said to be essential if $f \notin k$.
Proposition 7.2. Every homogeneous k-derivation of $k[x, y]$ has an essential Darboux polynomial $f \in k[x, y] \backslash k$.

Proof. If $M_{d} \neq 0$ then, by the previous proposition, M_{d} is a Darboux polynomial. If $M_{d}=0$, then $x-y$ is a Darboux polynomial.

The following examples show that the above property does not hold when d is not homogeneous, and when d is a homogeneous derivations in three variables. Let us recall that k is a field of characteristic zero.

Example 7.3. ([10], [19], [20]). The derivation $\partial_{x}+(x y+1) \partial_{y}$ has no essential Darboux polynomial.

Example 7.4. ([8]). The derivation $(1-x y) \partial_{x}+x^{3} \partial_{y}$ has no essential Darboux polynomial.

Example 7.5. ([9]). Let d be the k-derivation of $k[x, y, z]$ defined by:

$$
d(x)=y^{2}, \quad d(y)=z^{2}, \quad d(z)=x^{2} .
$$

Then d is homogeneous, divergence-free, and d has no essential Darboux polynomial.

Proposition 7.6. Let $d: k[x, y] \rightarrow k[x, y]$ be a homogeneous k-derivation, and let $f=d(x), g=d(y)$. If $h, \lambda \in k[x, y]$ are homogeneous polynomials such that $d(h)=\lambda h$, then

$$
M_{d} h_{x}=(y \lambda-m g) h, \quad M_{d} h_{y}=(m f=x \lambda) h
$$

where $m=\operatorname{deg} h$.

Proof. We have the following sequences of equalities:

$$
\begin{aligned}
f h_{x}+g h_{y} & =\lambda h, \\
y f h_{x}+y g h_{y} & =y \lambda h, \\
y f h_{x}+g\left(m h-x h_{x}\right) & =y \lambda h, \\
(x g-y f) h_{x} & =(y \lambda-m g) h, \\
M_{d} h_{x} & =(y \lambda-m g) h . \\
f h_{x}+g h_{y} & =\lambda h, \\
x f h_{x}+x g h_{y} & =x \lambda h, \\
f\left(m h-y h_{y}\right)+x g h_{y} & =x \lambda h, \\
(x g-y f) h_{y} & =(m f-x \lambda) h, M_{d} h_{y}=(m f=x \lambda) h .
\end{aligned}
$$

We used the Euler formula.

Proposition 7.7. If $d: k[x, y] \rightarrow k[x, y]$ is a nonzero homogeneous k-derivation, then every irreducible Darboux polynomial of d is a divisor of the polynomial M_{d}.

Proof. Let $h \in k[x, y] \backslash k$ be an irreducible Darboux polynomial of d, and let λ be its cofactor. Thus, $d(h)=\lambda h$. We know, by Proposition 1.2, that λ is homogeneous. Since $h \notin k$, we have either $h_{x} \neq 0$ or $h_{y} \neq 0$. Let us suppose that $h_{x} \neq 0$. Then the polynomials h_{x} and h are relatively prime and (by Proposition 7.6) $M_{d} h_{x}=(y \lambda-m g) h$. Thus, h divides M_{d}. In the case $h_{y} \neq 0$ we do the same procedure,

The Euler derivation $E: k[x, y] \rightarrow k[x, y]$ is a nonzero homogeneous derivation, and every nonzero homogeneous polynomial from $k[x, y]$ is a Darboux polynomial of E. Thus, E has infinitely many homogeneous irreducible Darboux polynomials, The same property has every derivation $h E$ with a nonzero homogeneous $h \in$ $k[x, y]$. Let us recall that in this case the polynomial M_{d} is equal to zero. The following proposition states that other homogeneous derivations have only finitely many homogeneous irreducible Darboux polynomials.

Theorem 7.8. Let k be a field of characteristic zero, and let $d: k[x, y] \rightarrow k[x, y]$ be a nonzero homogeneous k-derivation of degree s such that $M_{d} \neq 0$. Then d has at most $s+1$ pairwise nonassociated irreducible homogeneous Darboux polynomials.

Proof. It follows from Proposition 7.7, because M_{d} is a nonzero homogeneous polynomial of degree $s+1$.

In the above theorem we were interested in irreducible homogeneous Darboux polynomials. Without the word "homogeneous" such property does not hold, in general. Let for example, $d=x \partial_{x}+2 y \partial_{y}$. Then $d\left(x^{2}+a y\right)=2\left(x^{2}+a y\right)$ for every $a \in k$ and hence, d is a nonzero homogeneous k-derivation and d has infinitely many, pairwise nonassociated, irreducible Darboux polynomials,

8. Sums of Jacobian derivations

In this section k is always a commutative ring containing \mathbb{Q}.
We know (see Proposition 4.6) that every divergence-free k-derivation of $k[x, y]$ is a jacobian derivation. A similar property for $n \geqslant 3$ variables does not hold in general. Let, for example, d be the k-derivation of $k[x, y, z]$, defined by: $d(x)=$ $y^{2}, \quad d(y)=z^{2}, \quad d(z)=x^{2}$ (as in Example 7.5). Then d is divergence-free . It is known that $k[x, y, z]^{d}=k$ (see [9] or [15], [19]) so, d is not jacobian. There exist many similar examples for arbitrary $n \geqslant 3$ (see [11], [23], [19]). In this section we will show that every divergence-free k-derivation of $k[X]=k\left[x_{1}, \ldots, x_{n}\right]$ is a finite sum of some jacobian derivation.

Let f be a polynomial from $k[X]$, and let $i, j \in\{1, \ldots, n\}$. We denote by $\Omega_{i, j}^{f}$ the k-derivation of $k[X]$ defined by

$$
\Omega_{i, j}^{f}(g)=\left|\begin{array}{cc}
\frac{\partial f}{\partial x_{i}} & \frac{\partial g}{\partial x_{i}} \\
\frac{\partial f}{\partial x_{j}} & \frac{\partial g}{\partial x_{j}}
\end{array}\right|=f_{x_{i}} g_{x_{j}}-f_{x_{j}} g_{x_{i}}
$$

for all $g \in k[X]$. It is clear that $\Omega_{i, i}^{f}=0$ and $\Omega_{j, i}^{f}=-\Omega_{i, j}^{f}$ for all $i, j \in\{1, \ldots, n\}$. If $i \neq j$, then we have

$$
\Omega_{i, j}^{f}\left(x_{p}\right)=\left\{\begin{array}{cl}
0, & \text { if } p \neq i, p \neq j, \\
-\frac{\partial f}{\partial x_{j}}, & \text { if } p=i, \\
\frac{\partial f}{\partial x_{i}}, & \text { if } p=j,
\end{array}\right.
$$

for all $p=1, \ldots, n$. Note the following obvious proposition.
Proposition 8.1. Every derivation of the form $\Omega_{i, j}^{f}$ is divergence-free .
Another common notation for $\Omega_{i, j}^{f}$, is $\Omega_{x_{i}, x_{j}}^{f}$. If $n=2$ and $f \in k[x, y]$, then $\Omega_{x, y}^{f}=\Delta_{f}$, where Δ_{f} is the jacobian derivation of $k[x, y]$ from a previous section. If $n=3$ and $f \in k[x, y, z]$, then we have three k-derivations of the above forms: $\Omega_{x, y}^{f}, \Omega_{x, z}^{f}$ and $\Omega_{y, z}^{f}$.

Proposition 8.2. Let d be a k-derivation of $k[x, y, z]$, where k is a commutative ring containing \mathbb{Q}. If d is divergence-free, then there exist polynomials $u, v \in$ $k[x, y, z]$ such that

$$
d=\Omega_{x, y}^{u}+\Omega_{y, z}^{v} .
$$

Proof. Put $f=d(x), g=d(y), h=d(z)$ and $R=k[x, y, z]$. Since d is divergencefree, we have the equality $f_{x}+g_{y}+h_{z}=0$. Since the partial derivative $\frac{\partial}{\partial y}$ is a surjective mapping from R to R, there exists a polynomial $H \in R$ such that $h=H_{y}$. Let

$$
\bar{f}=f, \quad \bar{g}=g+H_{z},
$$

and consider the $k[z]$-derivation \bar{d} of $R=k[z][x, y]$ defined by $\bar{d}(x)=\bar{f}$ and $\bar{d}(y)=$ \bar{g}. Observe that the derivation \bar{d} is divergence-free. Indeed,

$$
(\bar{d})^{*}=\bar{f}_{x}+\bar{g}_{y}=f_{x}+g_{y}+H_{z y}=f_{x}+g_{y}+H_{y z}=f_{x}+g_{y}+h_{z}=0 .
$$

It follows from Proposition 4.5, that there exists a polynomial $F \in R$ such that $\bar{d}=\Delta_{F}$. Hence, $\bar{d}(x)=-F_{y}$ and $\bar{d}(y)=F_{x}$ and hence, $f=-F_{y}, g=F_{x}-H_{z}$. Put $u=F, v=H$ and $\delta=\Omega_{x, y}^{u}+\Omega_{y, z}^{v}$. Then we have:

$$
\begin{aligned}
& \delta(x)=\left|\begin{array}{ll}
u_{x} & 1 \\
u_{y} & 0
\end{array}\right|=-u_{y}=-F_{y}=f, \\
& \delta(y)=\left|\begin{array}{ll}
u_{x} & 0 \\
u_{y} & 1
\end{array}\right|+\left|\begin{array}{ll}
v_{y} & 1 \\
v_{z} & 1
\end{array}\right|=u_{x}-v_{z}=F_{x}-H_{z}=g, \\
& \delta(z)=\left|\begin{array}{ll}
v_{y} & 0 \\
v_{z} & 1
\end{array}\right|=v_{y}=H_{y}=h .
\end{aligned}
$$

Therefore, $d=\delta=\Omega_{x, y}^{u}+\Omega_{y, z}^{v}$.
Example 8.3. Let $d=y^{s} \frac{\partial}{\partial x}+z^{s} \frac{\partial}{\partial y}+x^{s} \frac{\partial}{\partial z}$, where $s \geqslant 1$. Then $d=\Omega_{x, y}^{u}+\Omega_{y, z}^{v}$ for $u=z^{s} x-\frac{1}{s+1} y^{s+1}$ and $v=x^{s} y$.
Proposition 8.4. Let d be a k-derivation of $k[x, y, z]$, where k is a commutative ring containing \mathbb{Q}. If d is divergence-free, then there exist polynomials $A, B, C \in$ $k[x, y, z]$ such that

$$
d=\Omega_{x, y}^{A}+\Omega_{y, z}^{B}+\Omega_{z, x}^{C} .
$$

In other words, there exist polynomials $A, B, C \in k[x, y, z]$ such that

$$
d(x)=C_{z}-A_{y}, \quad d(y)=A_{x}-B_{z}, \quad d(z)=B_{y}-C_{x} .
$$

Proof. Let $u, v \in k[x, y, z]$ as in Proposition 8.2. Put $A=u, B=v$ and $C=0$. Then $d=\Omega_{x, y}^{A}+\Omega_{y, z}^{B}+\Omega_{z, x}^{C}$.

Example 8.5. Let $d=y^{s} \frac{\partial}{\partial x}+z^{s} \frac{\partial}{\partial y}+x^{s} \frac{\partial}{\partial z}$, where $s \geqslant 1$. Then $d=\Omega_{x, y}^{A}+$ $\Omega_{y, z}^{B}+\Omega_{z, x}^{C}$ where $A=\frac{1}{2}\left(z^{s} x-\frac{1}{s+1} y^{s+1}\right), B=\frac{1}{2}\left(x^{s} y-\frac{1}{s+1} z^{s+1}\right)$ and $C=$ $\frac{1}{2}\left(y^{s} z-\frac{1}{s+1} x^{s+1}\right)$.
Example 8.6. If $f, g \in k[x, y, z]$, then $\Delta_{(f, g)}=\Omega_{x, y}^{A}+\Omega_{y, z}^{B}+\Omega_{z, x}^{C}$, where

$$
A=f_{z} g, \quad B=f_{x} g, \quad C=f_{y} g
$$

Quite recently, Piotr Jȩdrzejewicz generalizes Propositions 8.2 and 8.4 for arbitrary $n \geqslant 3$. Such generalizations seem to be well-known, although we could not find a reference.

Theorem 8.7 (Jȩdrzejewicz). Let d be a k-derivation of $k[X]=k\left[x_{1}, \ldots, x_{n}\right]$, where $n \geqslant 3$ and k is a commutative ring containing \mathbb{Q}. If d is divergence-free, then there exist polynomials $u_{1}, \ldots, u_{n-1} \in k[X]$ such that

$$
d=\Omega_{1,2}^{u_{1}}+\Omega_{2,3}^{u_{2}}+\cdots+\Omega_{n-1, n}^{u_{n-1}}
$$

In particular, we have the following equalities
(*)

$$
\begin{cases}d\left(x_{1}\right) & =-\left(u_{1}\right)_{x_{2}} \\ d\left(x_{2}\right) & =\left(u_{1}\right)_{x_{1}}-\left(u_{2}\right)_{x_{3}} \\ d\left(x_{3}\right) & =\left(u_{2}\right)_{x_{2}}-\left(u_{3}\right)_{x_{4}} \\ & \vdots \\ d\left(x_{n-1}\right) & =\left(u_{n-2}\right)_{x_{n-2}}-\left(u_{n-1}\right)_{x_{n}} \\ d\left(x_{n}\right) & =\left(u_{n-1}\right)_{x_{n-1}}\end{cases}
$$

Proof. By induction on n. For $n=3$ it follows from Proposition 8.2. Let $n \geqslant 3$ and suppose that our assertion is true for this n. Let d be a divergence-free k-derivation of $R=k\left[x_{1}, \ldots, x_{n+1}\right]$. Put $f_{i}=d\left(x_{i}\right)$ for all $i=1, \ldots, n+1$. We have the equality $\sum_{i=1}^{n+1}\left(f_{i}\right)_{x_{i}}=0$. Since the partial derivative $\frac{\partial}{\partial x_{n}}$ is a surjective mapping from R to R, there exists a polynomial $P \in R$ such that $f_{n+1}=P_{x_{n}}$. Let

$$
g_{1}=f_{1}, g_{2}=f_{2}, \ldots, g_{n-1}=f_{n-1}, g_{n}=f_{n}+P_{x_{n+1}}
$$

and consider the $k\left[x_{n+1}\right]$-derivation \bar{d} of R defined by $\bar{d}\left(x_{i}\right)=g_{i}$ for all $i=1, \ldots, n$. Observe that the derivation \bar{d} is divergence-free. Indeed,

$$
(\bar{d})^{*}=\sum_{i=1}^{n}\left(g_{i}\right)_{x_{i}}=\sum_{i=1}^{n-1}\left(f_{i}\right)_{x_{i}}+\left(f_{n}\right)_{x_{n}}+P_{x_{n} x_{n+1}}=\sum_{i=1}^{n+1}\left(f_{i}\right)_{x_{i}}=0
$$

because $P_{x_{n} x_{n+1}}=\left(f_{n+1}\right)_{x_{n+1}}$. By induction there exist polynomials $v_{1}, \ldots, v_{n-1} \in$ R satisfying the equalities $(*)$ for the derivation \bar{d}, that is,

$$
g_{1}=\bar{d}\left(x_{1}\right)=-\left(v_{1}\right)_{x_{2}}, \quad g_{n}=\bar{d}\left(x_{n}\right)=\left(v_{n-1}\right)_{x_{n-1}}
$$

and $g_{i}=\bar{d}\left(x_{i}\right)=\left(v_{i-1}\right)_{x_{i-1}}-\left(v_{i}\right)_{x_{i+1}}$ for $i=2, \ldots, n-1$. Let us recall that $g_{n}=f_{n}+P_{x_{n+1}}$ Put $u_{i}=v_{i}$ for $i=1, \ldots, n-1$, and $u_{n}=P$. Then $d\left(x_{1}\right)=f_{1}=$ $-\left(u_{1}\right)_{x_{2}}$, and $d\left(x_{i}\right)=-\left(u_{i-1}\right)_{x_{i-1}}$ for $i=2, \ldots, n-1$. Moreover,

$$
d\left(x_{n}\right)=f_{n}=g_{n}-P_{x_{n+1}}=\left(v_{n-1}\right)_{x_{n-1}}-P_{x_{n+1}}=\left(u_{n-1}\right)_{x_{n-1}}-\left(u_{n}\right)_{x_{n+1}}
$$

and $d\left(x_{n+1}\right)=f_{n+1}=P_{x_{n}}=u_{x_{n}}$. This means that $d=\Omega_{1,2}^{u_{1}}+\Omega_{2,3}^{u_{2}}+\cdots+\Omega_{n, n+1}^{u_{n}}$, and this completes the proof.

Theorem 8.8. Let d be a k-derivation of $k\left[x_{1}, \ldots, x_{n}\right]$, where $n \geqslant 3$ and k is a commutative ring containing \mathbb{Q}. If d is divergence-free, then there exist polynomials $A_{1}, \ldots, A_{n} \in k\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
d=\Omega_{1,2}^{A_{1}}+\Omega_{2,3}^{A_{2}}+\cdots+\Omega_{n-1, n}^{A_{n-1}}+\Omega_{n, 1}^{A_{n}}
$$

In particular, $d\left(x_{i}\right)=\left(A_{i-1}\right)_{x_{i-1}}-\left(A_{i}\right)_{x_{i+1}}$ for all $i \in \mathbb{Z}_{n}$.
Proof. Let $u_{1}, \ldots, u_{n-1} \in k\left[x_{1}, \ldots, x_{n}\right]$ be as in Theorem 8.7. Put $A_{i}=u_{i}$ for $i=1, \ldots, n-1$ and $A_{n}=0$. Then our assertion follows from Theorem 8.7.

Example 8.9. Let d be the k-derivation of $k\left[x_{1}, \ldots, x_{n}\right]$ defined by $d\left(x_{i}\right)=x_{i+1}^{s}$ for $i=1, \ldots, n$, where k is a commutative ring containing $\mathbb{Q}, s \geqslant 0$, and $x_{n+1}=x_{1}$, $x_{0}=x_{n}$. Then d is divergence-free, and $d=\Omega_{1,2}^{A_{1}}+\Omega_{2,3}^{u_{2}}+\cdots+\Omega_{n-1, n}^{A_{n-1}}+\Omega_{n, 1}^{A_{n}}$. with

$$
A_{i}=\frac{1}{2}\left(x_{i+2}^{s} x_{i}-\frac{1}{s+1} x_{i+1}^{s+1}\right)
$$

for all $i=1, \ldots, n$.

Acknowledgments. The author would like to thank Jean Moulin Ollagnier and Piotr Jȩdrzejewicz for many valuable scientific discussions and comments.

References

[1] H. Bass, E.H. Connell and D. Wright, The jacobian conjecture: Reduction of degree and formal expansion of the inverse Bull. Amer. Math. Soc., 7 (1982), 287-330.
[2] H. Bass and G.H. Meisters, Polynomial flows in the plane, J. Algebra, 55 (1985), 173-208.
[3] J. Berson, A. van den Essen and S. Maubach, Derivations having divergence zero on $R[x, y]$, Israel J. Math., 124 (2001), 115-124.
[4] B.A. Coomes and V. Zurkowski, Linearization of polynomial flows and spectra of derivations, J. Dynamics and Diff. Equations, 3 (1991), 29-66.
[5] E. Connell and J. Drost, Conservative and divergence free algebraic vector fields, Proc. Amer. Math. Soc., 87 (1983), 607-612.
[6] A. van den Essen, Polynomial automorphisms and the Jacobian Conjecture, Progress in Mathematics 190, 2000.
[7] G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations, Encyclopedia of Mathematical Sciences, Springer, 2006.
[8] D.A. Jordan, Differentially simple rings with no invertible derivatives, Quart. J. Math. Oxford, 32 (1981), 417-424.
[9] J.-P. Jouanolou, Equations de Pfaff algébriques, Lect. Notes in Math. 708, Springer-Verlag, Berlin, 1979.
[10] I. Kaplansky, An Introduction to Differential Algebra, Hermann, Paris, 1976.
[11] A. Maciejewski, J.M. Ollagnier, A. Nowicki and J.-M. Strelcyn, Around Jouanolou nonintegrability theorem, Indag. Mathem., 11(2) (2000), 239-254.
[12] L. Makar-Limanov, Locally nilpotent derivations, a new ring invariant and applications, preprint 1998.
[13] J. Moulin Ollagnier and A. Nowicki, Derivations of polynomial algebras without Darboux polynomials, J. Pure Appl. Algebra, 212 (2008), 1626-1631.
[14] J. Moulin Ollagnier and A. Nowicki, Monomial derivations, Comm. Algebra, 39(9) (2011), 3138-3150.
[15] J. Moulin Ollagnier, A. Nowicki and J.-M. Strelcyn, On the non-existence of constants of derivations: The proof of a theorem of Jouanolou and its development, Bull. Sci. Math., 119 (1995), 195-233.
[16] P. Nousiainen and M.E. Sweedler, Automorphisms of polynomial and power series rings, J. Pure Appl. Algebra 29 (1983), 93-97.
[17] A. Nowicki, Commutative basis of derivations in polynomial and power series rings, J. Pure Appl. Algebra, 40 (1986), 279-283.
[18] A. Nowicki, On the jacobian equation $J(f, g)=0$ for polynomials in two variables, Nagoya J. Math., 109 (1988), 151-157.
[19] A. Nowicki, Polynomial derivations and their rings of constants, Nicolaus Copernicus University Press, Toruń, 1994.
[20] A. Nowicki, An example of a simple derivation in two variables, Colloq. Math., 113 (2008), 25-31.
[21] Y. Stein, On the density of image of differential operators generated by polynomials, J. Analyse Math., 52 (1989), 291-300.
[22] S.S-S. Wang, A jacobian criterion for separability, J. Algebra 65 (1980), 453-494.
[23] H. Żoła̧dek, Multidimensional Jouanolou system, J. Reine Angew. Math 556 (2003), 47-78.

Nicolaus Copernicus University, Faculty of Mathematics and Computer Science, ul. Chopina $12 / 18,87-100$ Toruń, Poland

E-mail address: anow@mat.uni.torun.pl

[^0]: 2010 Mathematics Subject Classification. Primary 12H05; Secondary 13N15.
 Key words and phrases. Derivation, divergence, Darboux polynomial, jacobian derivation, Jacobian Conjecture, homogeneous derivation.

