Analytic and Algebraic Geometry 2

Lódź University Press 2017, 97-121

DOI: http://dx.doi.org/10.18778/8088-922-4.15

RATIONAL CONSTANTS OF CYCLOTOMIC DERIVATIONS

JEAN MOULIN OLLAGNIER AND ANDRZEJ NOWICKI

1. Introduction

Let $K(X) = K(x_0, \ldots, x_{n-1})$ be the field of rational functions in $n \geq 3$ variables over a field K of characteristic zero. Let d be the cyclotomic derivation of $K(X)$, that is, d is the K-derivation of $K(X)$ defined by

$$
d(x_j) = x_{j+1}, \quad \text{for} \quad j \in \mathbb{Z}_n.
$$

We denote by $K(X)^d$ the field of constants of d, that is, $K(X)^d = \{f \in$ $K(X); d(f) = 0$.

We are interested in algebraic descriptions of the field $K(X)^d$. However, we know that such descriptions are usually difficult to obtain. Fields of constants appear in various classical problems; for details we refer to $[2]$, $[3]$, $[12]$, $[9]$ and [11].

We already know (see [10]) that if K contains the *n*-th roots of unity, then $K(X)^d$ is a field of rational functions over K and its transcendence degree over K is equal to $m = n - \varphi(n)$, where φ is the Euler totient function. In our proof of this fact the assumption concerning n-th roots plays an important role. We do not know if the same is true without this assumption. What happens, for example, when $K = \mathbb{Q}$?

In this article we give a partial answer to this question, for arbitrary field K of characteristic zero.

We introduce a class of special positive integers, and we prove (see Theorem 9.1) that if n belongs to this class, then the mentioned result is also true for arbitrary field K of characteristic zero, without the assumption concerning roots of unity.

²⁰¹⁰ Mathematics Subject Classification. Primary 12H05; Secondary 13N15.

Key words and phrases. Derivation, cyclotomic polynomial, Darboux polynomial, Euler totient function, Euler derivation, factorisable derivation, Jouanolou derivation, Lotka-Volterra derivation.

Moreover, we construct a set of free generators of $K(X)^d$, which are polynomials with integer coefficients. Thus, if the number n is special, then

$$
K(X)^d = K(F_0, \ldots, F_{m-1}),
$$

for some, algebraically independent, polynomials F_0, \ldots, F_{m-1} belonging to the polynomial ring $\mathbb{Z}[X] = \mathbb{Z}[x_0, \ldots, x_{n-1}]$, and where $m = n - \varphi(n)$. Note that in the segment [3, 100] there are only 3 non-special numbers: 36, 72 and 100. We do not know if the same is true for non-special numbers, for example when $n = 36$.

In our proofs we use classical properties of cyclotomic polynomials, and an important role play some results ([4], [5], [16], [17] and others) on vanishing sums of roots of unity.

2. NOTATIONS AND PREPARATORY FACTS

Throughout this paper $n \geqslant 3$ is an integer, ε is a primitive *n*-th root of unity, and \mathbb{Z}_n is the ring $\mathbb{Z}/n\mathbb{Z}$. Moreover, K is a field of characteristic zero, $K[X] = K[x_0, \ldots, x_{n-1}]$ is the polynomial ring over K in variables x_0, \ldots, x_{n-1} , and $K(X) = K(x_0, \ldots, x_{n-1})$ is the field of quotients of $K[X]$. The indexes of the variables x_0, \ldots, x_{n-1} are elements of the ring \mathbb{Z}_n . The cyclotomic derivation d is the K-derivation of $K(X)$ defined by $d(x_i) = x_{i+1}$ for $j \in \mathbb{Z}_n$.

For every sequence $\alpha = (\alpha_0, \alpha_1, \ldots, \alpha_{n-1})$, of integers, we denote by $H_{\alpha}(t)$ the polynomial from $\mathbb{Z}[t]$ defined by

$$
H_{\alpha}(t) = \alpha_0 + \alpha_1 t^1 + \alpha_2 t^2 + \dots + \alpha_{n-1} t^{n-1}.
$$

An important role in our paper will play two subsets of \mathbb{Z}^n denoted by \mathcal{G}_n and \mathcal{M}_n . The first subset is the set of all sequences $\alpha = (\alpha_0, \ldots, \alpha_{n-1})$ such that $\alpha_0, \ldots, \alpha_{n-1}$ are integers and

$$
\alpha_0 + \alpha_1 \varepsilon^1 + \alpha_2 \varepsilon^2 + \dots + \alpha_{n-1} \varepsilon^{n-1} = 0.
$$

The second subset \mathcal{M}_n is the set of all such sequences $\alpha = (\alpha_0, \dots, \alpha_{n-1})$ which belong to \mathcal{G}_n and the integers $\alpha_0, \ldots, \alpha_{n-1}$ are nonnegative, that is, they belong to the set of natural numbers $\mathbb{N} = \{0, 1, 2, \dots\}$. To be precise,

$$
\mathcal{G}_n = \{ \alpha \in \mathbb{Z}^n; H_\alpha(\varepsilon) = 0 \}, \quad \mathcal{M}_n = \{ \alpha \in \mathbb{N}^n; H_\alpha(\varepsilon) = 0 \} = \mathcal{G}_n \cap \mathbb{N}^n.
$$

If $\alpha, \beta \in \mathcal{G}_n$, then of course $\alpha \pm \beta \in \mathcal{G}_n$, and if $\alpha, \beta \in \mathcal{M}_n$, then $\alpha + \beta \in \mathcal{M}_n$. Thus \mathcal{G}_n is an abelian group, and \mathcal{M}_n is an abelian monoid with zero $0 = (0, \ldots, 0)$.

Let us recall that ε is an algebraic element over \mathbb{Q} , and its monic minimal polynomial is equal to the *n*-th cyclotomic polynomial $\Phi_n(t)$. Recall also (see for example [6] or [7]) that $\Phi_n(t)$ is a monic irreducible polynomial with integer coefficients of degree $\varphi(n)$, where φ is the Euler totient function. This implies the following proposition.

Proposition 2.1. Let $\alpha \in \mathbb{Z}^n$. Then $\alpha \in \mathcal{G}_n$ if and only if there exists a polynomial $F(t) \in \mathbb{Z}[t]$ such that $H_{\alpha}(t) = F(t)\Phi_n(t)$.

Put $e_0 = (1, 0, 0, \ldots, 0), e_1 = (0, 1, 0, \ldots, 0), \ldots, e_{n-1} = (0, 0, \ldots, 0, 1),$ and let $e = \sum_{i=0}^{n-1} e_i = (1, 1, \dots, 1)$. Since $\sum_{i=0}^{n-1} \varepsilon^i = 0$, the element e belongs to \mathcal{M}_n .

The monoid \mathcal{M}_n has an order \geq . If $\alpha, \beta \in \mathcal{G}_n$, the we write $\alpha \geq \beta$, if $\alpha - \beta \in \mathbb{N}^n$, that is, $\alpha \geqslant \beta \iff$ there exists $\gamma \in \mathcal{M}_n$ such that $\alpha = \beta + \gamma$. In particular, $\alpha \geq 0$ for any $\alpha \in \mathcal{M}_n$. It is clear that the relation \geq is reflexive, transitive and antisymmetric. Thus \mathcal{M}_n is a poset with respect to \geq .

Let $\alpha \in \mathcal{M}_n$. We say that α is a minimal element of \mathcal{M}_n , if $\alpha \neq 0$ and there is no $\beta \in \mathcal{M}_n$ such that $\beta \neq 0$ and $\beta < \alpha$. Equivalently, α is a minimal element of \mathcal{M}_n , if $\alpha \neq 0$ and α is not a sum of two nonzero elements of \mathcal{M}_n .

We denote by ζ , the rotation of \mathbb{Z}^n given by $\zeta(\alpha) = (\alpha_{n-1}, \alpha_0, \alpha_1, \ldots, \alpha_{n-2}),$ for $\alpha = (\alpha_0, \alpha_1, \ldots, \alpha_{n-1}) \in \mathbb{Z}^n$. The mapping ζ is a \mathbb{Z} -module automorphism of \mathbb{Z}^n . Note that $\zeta^{-1}(\alpha) = (\alpha_1, \ldots, \alpha_{n-1}, \alpha_0)$, for all $\alpha = (\alpha_0, \alpha_1, \ldots, \alpha_{n-1}) \in \mathbb{Z}^n$. If $a, b \in \mathbb{Z}$ and $a \equiv b \pmod{n}$, then $\zeta^a = \zeta^b$. Moreover, $\zeta(e_j) = e_{j+1}$ for all $j \in \mathbb{Z}_n$, and $\zeta(e) = e$.

Let us recall from [10] some basic properties of \mathcal{M}_n and \mathcal{G}_n .

Proposition 2.2 $([10])$.

(1) If $\alpha \in \mathcal{G}_n$, then there exist $\beta, \gamma \in \mathcal{M}_n$ such that $\alpha = \beta - \gamma$.

(2) The poset \mathcal{M}_n is artinian, that is, if $\alpha^{(1)} \geqslant \alpha^{(2)} \geqslant \alpha^{(3)} \geqslant \ldots$ is a sequence of elements from \mathcal{M}_n , then there exists an integer s such that $\alpha^{(j)} = \alpha^{(j+1)}$ for all $j \geqslant s$.

(3) The set of all minimal elements of \mathcal{M}_n is finite.

(4) For any $0 \neq \alpha \in \mathcal{M}_n$ there exists a minimal element β such that $\beta \leq \alpha$. Moreover, every nonzero element of \mathcal{M}_n is a finite sum of minimal elements.

(5) Let $\alpha \in \mathbb{Z}^n$. If $\alpha \in \mathcal{G}_n$, then $\zeta(\alpha) \in \mathcal{G}_n$. If $\alpha \in \mathcal{M}_n$, then $\zeta(\alpha) \in \mathcal{M}_n$. Moreover, α is a minimal element of \mathcal{M}_n if and only if $\zeta(\alpha)$ is a minimal element of \mathcal{M}_n .

Look at the cyclotomic polynomial $\Phi_n(t)$. Assume that $\Phi_n(t) = c_0 + c_1t + \cdots$ $c_{\varphi(n)}t^{\varphi(n)}$. All the coefficients $c_0,\ldots,c_{\varphi(n)}$ are integers, and $c_0=c_{\varphi(n)}=1$. Put $m = n - \varphi(n)$ and

$$
\gamma_0 = \Big(c_0, c_1, \ldots, c_{\varphi(n)}, \underbrace{0, \ldots, 0}_{m-1}\Big).
$$

Note that $\gamma_0 \in \mathbb{Z}^n$, and $H_{\gamma_0}(t) = \Phi_n(t)$. Consider the elements $\gamma_0, \gamma_1, \dots, \gamma_{m-1}$ defined by $\gamma_j = \zeta^j(\gamma_0)$, for $j = 0, 1, ..., m-1$. Observe that $H_{\gamma_j}(t) = \Phi_n(t) \cdot t^j$ for all $j \in \{0, \ldots, m-1\}$. Since $\Phi_n(\varepsilon) = 0$, we have $H_{\gamma_j}(\varepsilon) = 0$, and so, the elements $\gamma_0, \ldots, \gamma_{m-1}$ belong to \mathcal{G}_n . Moreover, we proved in [10], that they form a basis over Z, which is the following theorem.

Theorem 2.3 ([10]). \mathcal{G}_n is a free Z-module, and the elements $\gamma_0, \ldots, \gamma_{m-1}$, where $m = n - \varphi(n)$, form its basis over \mathbb{Z} .

3. Standard minimal elements

Assume that p is a prime divisor of n , and consider the sequences

$$
m(p,r) = \sum_{i=0}^{p-1} e_{r+i\frac{n}{p}},
$$

for $r = 0, 1, \ldots, \frac{n}{p} - 1$. Observe that each $m(p, r)$ is equal to $\zeta^r(m(p, 0))$. Each $m(p,r)$ is a minimal element of \mathcal{M}_n (see [10] for details). We say that $m(p,r)$ is a standard minimal element of \mathcal{M}_n . In [10] we used the notation $E_r^{(p)}$ instead of $m(p, r)$. It is clear that if $r_1, r_2 \in \{0, 1, \ldots, \frac{n}{p} - 1\}$ and $r_1 \neq r_2$, then $m(p, r_1) \neq$ $m(p, r_2)$.

If $\alpha = (\alpha_0, \ldots, \alpha_{n-1}) \in \mathbb{Z}^n$, then we denote by $|\alpha|$ the sum $\alpha_0 + \cdots + \alpha_{n-1}$. Observe that, for every r, we have $|m(p, r)| = p$. This implies, that if $p \neq q$ are prime divisors of n, then $m(p, r_1) \neq m(q, r_2)$ for all $r_1 \in \{0, \ldots, \frac{n}{p} - 1\}$, $r_2 \in$ $\{0, 1, \ldots, \frac{n}{q} - 1\}$. Note the following two obvious propositions.

Proposition 3.1. $\sum_{p=1}^{\infty}$ $\sum_{r=0}$ $m(p,r) = (1, 1, \ldots, 1) = e.$

Proposition 3.2. If p is a prime divisor of n, then the standard elements $m(p, 0)$, $m(p, 1), \ldots, m(p, \frac{n}{p} - 1)$ are linearly independent over \mathbb{Z} .

The following two propositions are less obvious and deserve a proof.

Proposition 3.3. Let $n = pqN$, where $p \neq q$ are primes and N is a positive integer. Then

$$
\sum_{k=0}^{p-1} m(q, kN) = \sum_{k=0}^{q-1} m(p, kN).
$$

which, for any shift r, is easily extended to

$$
\sum_{k=0}^{p-1} m(q, kN + r) = \sum_{k=0}^{q-1} m(p, kN + r).
$$

Proof. If m is a positive integer, then we denote by $[m]$ the set $\{0, 1, \ldots, m-1\}$. First observe that $\{k + ip; k \in [p], i \in [q]\} = \{k + iq; k \in [q], i \in [p]\} = [pq].$ Hence,

$$
\sum_{k=0}^{p-1} m(q, kN) = \sum_{k=0}^{p-1} \sum_{i=0}^{q-1} e_{kN+i\frac{n}{q}} = \sum_{k=0}^{p-1} \sum_{i=0}^{q-1} e_{N(k+ip)} = \sum_{k=0}^{pq-1} e_{Nk};
$$
\n
$$
\sum_{k=0}^{q-1} m(p, kN) = \sum_{k=0}^{q-1} \sum_{i=0}^{p-1} e_{kN+i\frac{n}{p}} = \sum_{k=0}^{q-1} \sum_{i=0}^{p-1} e_{N(k+iq)} = \sum_{k=0}^{pq-1} e_{Nk}.
$$
\nThus,
$$
\sum_{k=0}^{p-1} m(q, kN) = \sum_{k=0}^{pq-1} e_{kN} = \sum_{k=0}^{q-1} m(p, kN).
$$

Proposition 3.4. Let p be a prime divisor of n. Let $0 \leq r < \frac{n}{p}$, and $a \in \mathbb{Z}$. Then

$$
\zeta^a\Big(m(p,r)\Big) = m(p,b), \quad \text{where} \quad b = (a+r)\left(\text{mod }\frac{n}{p}\right)
$$

Proof. Put $w = \frac{n}{p}$, and $[p] = \{0, 1, \ldots, p-1\}$. Let $a + r = cw + b$, where $c, b \in \mathbb{Z}$ with $0 \leq b \leq w$. Observe that $\{b + (c + i)w \pmod{n}; i \in [p]\} = \{b + iw; i \in [p]\}.$ Hence,

$$
\zeta^{a}\left(m(p,r)\right) = \zeta^{a}\left(\sum_{i=0}^{p-1}e_{r+iw}\right) = \sum_{i=0}^{p-1}\zeta^{a}\left(e_{r+iw}\right) = \sum_{i=0}^{p-1}e_{a+r+iw}
$$

$$
= \sum_{i=0}^{p-1}e_{b+cw+iw} = \sum_{i=0}^{p-1}e_{b+(c+i)w} = \sum_{i=0}^{p-1}e_{b+iw} = m(p,b),
$$

and $b = (a + r) \pmod{w}$.

We will apply the following theorem of Rédei, de Bruijn and Schoenberg.

Theorem 3.5 ([13], [1], [15]). The standard minimal elements of \mathcal{M}_n generate the group \mathcal{G}_n .

Known proofs of the above theorem used usually techniques of group rings. Lam and Leung [5] gave a new proof using induction and group-theoretic techniques.

We know (see for example [10]) that if n is divisible by at most two distinct primes, then every minimal element of \mathcal{M}_n is standard. It is known (see for example [5], [17], [14]) that in all other cases always exist nonstandard minimal elements.

4. THE SETS I_i

Let $n \geq 3$ be an integer, and let $n = p_1^{\alpha_1} \cdots p_s^{\alpha_s}$, where p_1, \ldots, p_s are distinct primes and $\alpha_1, \ldots, \alpha_s$ are positive integers. Put $n_j = \frac{n}{p_j}$ for $j = 1, \ldots, s$. Let I_1, \ldots, I_s be sets of integers defined as follows:

$$
I_1 = \left\{ r \in \mathbb{Z}; 0 \le r < n_1 \right\},
$$

\n
$$
I_2 = \left\{ r \in \mathbb{Z}; 0 \le r < n_2, \gcd(r, p_1) = 1 \right\},
$$

\n
$$
I_3 = \left\{ r \in \mathbb{Z}; 0 \le r < n_3, \gcd(r, p_1 p_2) = 1 \right\},
$$

\n
$$
\vdots
$$

\n
$$
I_s = \left\{ r \in \mathbb{Z}; 0 \le r < n_s, \gcd(r, p_1 p_2 \cdots p_{s-1}) = 1 \right\}.
$$

That is, $I_1 = \{r \in \mathbb{Z}; 0 \leq r < n_1\}$ and $I_j = \{r \in \mathbb{Z}; 0 \leq r < n_1\}$ n_j , $gcd(r, p_1 \cdots p_{j-1}) = 1$ for $j = 2, \ldots, s$. This definition depends of the fixed succession of primes. We will say that the above I_1, \ldots, I_s are the *n*-sets of type $[p_1, \ldots, p_s].$

Let for example $n = 12 = 2^23$. Then $I_1 = \{0, 1, 2, 3, 4, 5\}$, $I_2 = \{1, 3\}$ are the 12-sets of type [2, 3], and $I_1 = \{0, 1, 2, 3\}$, $I_2 = \{1, 2, 4, 5\}$ are the 12-sets of type $|3, 2|$.

type			1 ₃
[2, 3, 5]	$\{0, 1, 2, \ldots, 14\}$	$\{1, 3, 5, 7, 9\}$	$\{1, 5\}$
[2, 5, 3]	$\{0, 1, 2, \ldots, 14\}$	$\{1,3,5\}$	$\{1, 3, 7, 9\}$
[3, 2, 5]	$\{0, 1, 2, \ldots, 9\}$	$\{1, 2, 4, 5, 7, 8, 10, 11, 13, 14\}$	$\{1, 5\}$
[3, 5, 2]	$\{0, 1, 2, \ldots, 9\}$	$\{1, 2, 4, 5\}$	$\{1, 2, 4, 7, 8, 11, 13, 14\}$
[5, 2, 3]	$\{0, 1, 2, 3, 4, 5\}$	$\{1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14\}$	$\{1, 3, 7, 9\}$
[5, 3, 2]	$\{0, 1, 2, 3, 4, 5\}$	$\{1, 2, 3, 4, 6, 7, 8, 9\}$	$\{1, 2, 4, 7, 8, 11, 13, 14\}$

Example 4.1. The 30-sets of a a given type:

Now we calculate the cardinality of the sets I_1, \ldots, I_s . We denote by |X| the number of all elements of a finite set X . First observe that if a, b are relatively prime positive integers, then in the set $\{1, 2, \ldots, ab\}$ there are exactly $\varphi(a)b$ numbers relatively prime to a. In fact, let $u \in \{1, 2, ..., ab\}$. Then $u = ka + r$, where $0 \leq k \leq b$ and $0 \leq r < a$, and $gcd(u, a) = 1 \iff gcd(r, a) = 1$. Thus, every such u, which is relatively prime to a, is of the form $ka+r$ with $1 \leq r < a$, $gcd(r, a) = 1$ and where k is an arbitrary number belonging to $\{0, 1, \ldots, b-1\}$. Hence, we have exactly b such numbers k, and so, the number of integers in $\{1, \ldots, ab\}$, relatively prime to a, is equal to $\varphi(a)b$. As a consequence of this fact we obtain

Lemma 4.2. Let $a \geqslant 2$, $b \geqslant 2$ be relatively prime integers. Then there are exactly $\varphi(a)b$ such integers belonging to $\{0, 1, \ldots, ab-1\}$ which are relatively prime to a.

Let us recall that $\varphi(n) = n\left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_s}\right)$. Now we are ready to prove the following proposition.

Proposition 4.3. $|I_1|=n_1$, and $|I_j|=n_j\left(1-\frac{1}{p_1}\right)\left(1-\frac{1}{p_2}\right)\cdots\left(1-\frac{1}{p_{j-1}}\right)$, for all $j = 2, 3, ..., s$.

Proof. The case $|I_1| = n_1$ is obvious. Let $j \ge 2$, and put $a = p_1^{\alpha_1} \cdots p_{j-1}^{\alpha_{j-1}}$, $b =$ $p_j^{\alpha_j-1} p_{j+1}^{\alpha_{j+1}} \cdots p_s^{\alpha_s}$. Then $\gcd(a, b) = 1, n_j - 1 = ab - 1$, and if $r \in \{0, 1, \ldots, n_j - 1\}$, then $r \in I_i \iff \gcd(r, a) = 1$. Hence, by Lemma 4.2, we have

$$
\begin{array}{rcl}\n|I_j| & = & \varphi(a)b = p_1^{\alpha_1} \cdots p_{j-1}^{\alpha_{j-1}} \left(1 - \frac{1}{p_1} \right) \cdots \left(1 - \frac{1}{p_{j-1}} \right) b \\
& = & p_1^{\alpha_1} \cdots p_{j-1}^{\alpha_{j-1}} \left(1 - \frac{1}{p_1} \right) \cdots \left(1 - \frac{1}{p_{j-1}} \right) p_j^{\alpha_j - 1} p_{j+1}^{\alpha_{j+1}} \cdots p_s^{\alpha_s} \\
& = & \frac{n}{p_j} \left(1 - \frac{1}{p_1} \right) \cdots \left(1 - \frac{1}{p_{j-1}} \right) = n_j \left(1 - \frac{1}{p_1} \right) \cdots \left(1 - \frac{1}{p_{j-1}} \right).\n\end{array}
$$

This completes the proof.

Lemma 4.4. Consider some nonzero numbers z_1, \ldots, z_s . Define w_1 by $w_1 = \frac{1}{z_1}$ and w_j by $w_j = \frac{1}{z_j}\left(1-\frac{1}{z_1}\right)\left(1-\frac{1}{z_2}\right)\cdots\left(1-\frac{1}{z_{j-1}}\right)$ for $j = 2, \ldots, s$. Then $w_1 + w_2 + \cdots + w_s = 1 - \left(1 - \frac{1}{z_1}\right)\left(1 - \frac{1}{z_2}\right)\cdots\left(1 - \frac{1}{z_s}\right).$

Proof. The case $s = 1$ is obvious. Assume now that it is true for an integer $s \geq 1$, and consider nonzero numbers z_1, \ldots, z_{s+1} . Then we have

$$
1 - \left(1 - \frac{1}{z_1}\right) \cdots \left(1 - \frac{1}{z_{s+1}}\right)
$$

= $\left(1 - \left(1 - \frac{1}{z_1}\right) \cdots \left(1 - \frac{1}{z_s}\right)\right) + \frac{1}{z_{s+1}} \left(1 - \frac{1}{z_1}\right) \cdots \left(1 - \frac{1}{z_s}\right)$
= $w_1 + \cdots + w_s + w_{s+1}$.

Proposition 4.5. $|I_1| + |I_2| + \cdots + |I_s| = n - \varphi(n)$.

Proof. We know, by Proposition 4.3, that $|I_j| = nw_j$, for $j = 1, ..., s$, where $w_1 = \frac{1}{p_1}$ and $w_j = \frac{1}{p_j} \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_{j-1}}\right)$ for $j = 2, \ldots, s$. Thus, by Lemma 4.4,

$$
|I_1| + |I_2| + \cdots + |I_s| = n (w_1 + \cdots + w_s)
$$

= $n \left(1 - \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_s}\right)\right)$
= $n - n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_s}\right) = n - \varphi(n).$

This completes the proof. \Box

Let us recall the following well-known lemma where ε is a primitive n-th root of unity.

Lemma 4.6. Let c be an integer and let $U = \sum^{n-1}$ $\sum_{r=0}^{n} (\varepsilon^c)^r$. If $n \nmid c$ then U is equal to 0, and in the other case, when $n | c$, this sum is equal to n.

Using this lemma we may prove the following proposition.

Proposition 4.7. If $c \in \mathbb{Z}$ then, for any $j \in \{1, ..., s\}$, the sum $W_j = \sum$ $r \in I_j$ $\left(\varepsilon^{p_jc}\right)^r$ is an integer.

Proof. First consider the case $j = 1$. Let $\eta = \varepsilon^{p_1}$. Then η is a primitive n_1 -th root of unity, and $W_1 = \sum_{n=1}^{n_1-1}$ $\sum_{r=0}^{\infty} (\eta^c)^r$. It follows from Lemma 4.6 that W_1 is an integer.

Now assume that $j \ge 2$. Put $X = \{0, 1, ..., n_j - 1\}$, and $D_i = \{r \in X; p_i | r\}$ for $i = 1, \ldots, j - 1$. Then $I_j = X \setminus (D_1 \cup \cdots \cup D_{j-1})$, and then $W_j = U - V$, where

$$
U = \sum_{r \in X} \left(\varepsilon^{p_j c} \right)^r, \quad V = \sum_{r \in D_1 \cup \dots \cup D_{j-1}} \left(\varepsilon^{p_j c} \right)^r.
$$

Observe that $U =$ $\sum_{j=1}^{n_j-1}$ $\sum_{r=0}^{\infty} (\eta^c)^r$, where $\eta = \varepsilon^{p_j}$ is a primitive n_j -root of unity. Thus, by Lemma 4.6, U is an integer. Now we will show that V is also an integer. For

this aim first observe that

$$
V = \sum_{k=1}^{j-1} (-1)^{k+1} \sum_{i_1 < \cdots < i_k} \sum_{r \in D_{i_1...i_k}} \left(\varepsilon^{p_j c} \right)^r,
$$

where the sum \sum $\sum_{i_1 \leq \cdots \leq i_k}$ runs through all integer sequences (i_1, \ldots, i_k) such that $1 \leq i_1 < \cdots < i_k \leq j-1$, and where $D_{i_1...i_k} = D_{i_1} \cap \cdots \cap D_{i_k}$.

Let $1\leqslant i_1<\cdots < i_k\leqslant j-1$ be a fixed integer sequence. Then we have

$$
\sum_{r \in D_{i_1...i_k}} (\varepsilon^{p_j c})^r = \sum_{r=0}^{u-1} (\eta^c)^r,
$$

where $\eta = \varepsilon^{p_j \cdot p_{i_1} \cdots p_{i_k}},$ and $u = \frac{n_j}{n_j \cdots n_k}$ $\frac{n_j}{p_{i_1}\cdots p_{i_k}} = \frac{n}{p_j \cdot p_{i_1}\cdots p_{i_k}}$. Since η is a primitive u-th root of unity, it follows from Lemma 4.6 that the last sum is an integer. Hence, every sum of the form $r \in \overline{D_{i_1...i_k}}$ $(\varepsilon^{p_j c})^r$ is an integer, and consequently, V is an integer. We already know that U is an integer. Therefore, $W_j = U - V$ is an integer.

5. Special numbers

As in the previous section, let $n = p_1^{\alpha_1} \cdots p_s^{\alpha_s}$, where p_1, \ldots, p_s are distinct primes and $\alpha_1, \ldots, \alpha_s$ are positive integers. Put $n_j = \frac{n}{p_j}$ for $j = 1, \ldots, s$. Assume that $[p_1, \ldots, p_n]$ is a fixed type, and I_1, \ldots, I_s are the *n*-sets of type $[p_1, \ldots, p_s]$. If $j \in \{1, \ldots, s\}$ and $0 \leqslant r < n_j$, then we have the standard minimal element $m(p_j, r) = \sum_{i=0}^{p_j-1} e_{r+in_j}$. Let us recall that each $m(p_j, r)$ belongs to the monoid \mathcal{M}_n , and it is a minimal element of \mathcal{M}_n . Moreover, $n_j = \frac{n}{p_j}$ for $j = 1, \ldots, s$.

The main role in this section will play the sets A_1, \ldots, A_s , which are subsets of the monoid \mathcal{M}_n . We define these subsets as follows

$$
\mathcal{A}_j = \Big\{ m(p_j, r); \ r \in I_j \Big\},\
$$

for all $j = 1, \ldots, s$. We denote by A the union $\mathcal{A} = \mathcal{A}_1 \cup \cdots \cup \mathcal{A}_s$. Note that the above sets A and A_1, \ldots, A_s are determined by the fixed succession $P = [p_1, \ldots, q_n]$ of the primes p_1, \ldots, p_s . In our case we will say that A is the *n*-standard set of type P.

Observe that the sets A_1, \ldots, A_s are pairwise disjoint, and as a consequence of Proposition 4.5 we have the equality $|\mathcal{A}| = n - \varphi(n)$.

Let us recall (see Theorem 2.3) that the group \mathcal{G}_n is a free Z-module, and its rank is equal to $n - \varphi(n)$, so this rank is equal to |A|. We are interested in finding conditions for A to be a basis of \mathcal{G}_n . First we need A to be linearly independent over Z.

Special numbers will then be convenient to prove Theorem 9.1. We will say that the number n is special of type P if the n-standard set A of type P is linearly independent over \mathbb{Z} . Moreover, we will say that the number n is special if there exists a type P for which n is special of type P. We will say that the number n is absolutely special if it is special with respect to any type P.

Example 5.1. Let $n = 12 = 2^23$ and consider the type [2, 3]. In this case we have: $s = 2, p_1 = 2, p_2 = 3, n_1 = 6, n_2 = 4, I_1 = \{0, 1, 2, 3, 4, 5\}$ and $I_2 = \{1, 3\}$. The 12-standard set $\mathcal A$ of type [2,3] is the set of the following 8 sequences:

Observe that $m(2, 1) + m(2, 3) + m(2, 5) = m(3, 1) + m(3, 3)$. Hence, the set A is not linearly independent over Z. This means, that 12 is not a special number of type [2, 3].

Now consider $n = 12$ and the type [3, 2]. In this case $p_1 = 3$, $p_2 = 2$, $n_1 = 4$, $n_2 = 6$, $I_1 = \{0, 1, 2, 3\}$ and $I_2 = \{1, 2, 2, 5\}$. The 12-standard set A of type [3, 2] is in this case the set of the following 8 sequences:

It is easy to check that in this case the set A is linearly independent over \mathbb{Z} . Thus, 12 is a special number of type $(3, 2)$, and 12 is not a special number of type $(2, 3)$.

 \Box

We will prove that the number n is absolutely special if and only if either n is square-free or n is a power of a prime number. Moreover, we will prove that the number *n* is special if and only if $n = p_1 p_2 \cdots p_{s-1} p_s^{\alpha_s}$, where p_1, \ldots, p_s are distinct primes and $\alpha_s \geq 1$.

Proposition 5.2. Every power of a prime is an absolutely special number.

Proof. Let $n = p^m$, where p is a prime and $m \ge 1$. Then $s = 1$, $n_1 = p^{m-1}$, $I_1 = \{0, 1, \ldots, p^{m-1} - 1\}$ and there is only one type $P = [p]$. Thus, $\mathcal{A} = \mathcal{A}_1$ and, by Proposition 3.2, the set $\mathcal A$ is linearly independent over $\mathbb Z$.

Lemma 5.3. Let p be a prime number, and let $N \geq 2$ be an integer such that $p \nmid N$. Then, for every integer r, there exists a unique $c_r \in \{0, 1, \ldots, p-1\}$ such that the number $r + c_rN$ is divisible by p. Moreover, all numbers of the form $r + c_rN$ with $0 \leq r < N$ are pairwise different.

Proof. Let $r \in \mathbb{Z}$. Consider the integers $r, r + N, r + 2N, \ldots, r + (p-1)N$, and observe that these numbers are pairwise noncongruent modulo p . Thus, there exists a unique $c_r \in \{0, 1, \ldots, p-1\}$ such that $r + c_r N = 0 \pmod{p}$. Assume that $r_1 + c_{r_1}N = r_2 + c_{r_2}N$ for some $r_1, r_2 \in \{0, 1, ..., N-1\}$. Then $N | r_1 - r_2$ and so, $r_1 = r_2$.

Despite the fact that we need the full Theorem 5.10 (A generates \mathcal{G}_n), we first state and prove the following Proposition $(A$ is linearly independent over \mathbb{Z}) for a better understanding. This Proposition is not equivalent, as A could generate a subgroup of \mathcal{G}_n of finite index.

Proposition 5.4. Let $n = p_1 \cdots p_{s-1} \cdot p_s^{\alpha}$, where $s \geq 2$, $\alpha \geq 1$, and p_1, \ldots, p_s $[p_{\sigma(1)}, \ldots, p_{\sigma(s-1)}, p_s]$, where σ is a permutation of $\{1, \ldots, s-1\}$. are distinct primes. Then n is a special number of every type of the form

Proof. Let P be a fixed type with p_s at the end. Without loss of generality, we may assume that $P = [p_1, \ldots, p_{s-1}, p_s]$. Let I_1, \ldots, I_s be *n*-sets of type P, and assume that

(a)
$$
\sum_{j=1}^{s} \left(\sum_{r \in I_j} \gamma_r^{(j)} m(p_j, r) \right) = (0, 0, \dots, 0),
$$

where each $\gamma_r^{(j)}$ is an integer. We will show that $\gamma_r^{(j)} = 0$ for all j, r.

Note, that every standard element $u = m(p_j, r)$ is a sequence $(u_0, u_1, \ldots, u_{n-1}),$ where all u_0, \ldots, u_{n-1} are integers belonging to $\{0, 1\}$. We will denote by $S(u)$ the support of u, that is, $S(u) = \{k \in \{0, 1, ..., n-1\}; u_k = 1\}.$

Consider the case $j = 1$. Put $p = p_1$ and $N = n_1 = \frac{n}{p} = p_2 p_3 \dots p_{s-1} \cdot p_s^{\alpha}$. Observe that $p \nmid N$, and all the numbers n_2, \ldots, n_s are divisible by p. Let $u =$ $m(p_i, r)$ with $r \in I_i$, where $j \geqslant 2$. Then $p \nmid r$, and

$$
S(u) = \{r, r + n_j, r + 2n_j, \ldots, r + (p_j - 1)n_j\},\
$$

and hence, all the elements of $S(u)$ are not divisible by p.

Look at the support of $m(p_1,r)$ with $r \in I_1$. We have $S(m(p_1,r)) = \{r, r +$ $N, r+2N, \ldots, r+(p-1)N$. It follows from Lemma 5.3 that in this support there exists exactly one element divisible by p. Let us denote this element by $r + c_rN$. We know also from the same lemma, that all the elements $r + c_rN$ with $r \in I_1$ are pairwise different. These arguments imply, that in the equality (a) all the integers $\gamma_r^{(1)}$, with $r \in I_1$, are equal to zero.

Now let $2 \leqslant j_0 < s$, and assume that we already proved the equalities $\gamma_r^{(j)} = 0$ for all $j < j_0$ and $r \in I_j$. Then the equality (a) is of the form

(b)
$$
\sum_{j=j_0}^{s} \left(\sum_{r \in I_j} \gamma_r^{(j)} m(p_j, r) \right) = (0, 0, \dots, 0),
$$

We will show that $\gamma_r^{(j_0)} = 0$ for all $r \in I_{j_0}$.

Put $p = p_{j_0}$ and $N = n_{j_0} = \frac{n}{p}$. Observe that $p \nmid N$, and all the numbers n_j with $j > j_0$ are divisible by p. Let $u = m(p_j, r)$ with $r \in I_j$, where $j > j_0$. Then $p \nmid r$, and

$$
S(u) = \{r, r + n_j, r + 2n_j, \ldots, r + (p_j - 1)n_j\},\
$$

and hence, all the elements of $S(u)$ are not divisible by p.

Look at the support of $m(p_{j_0}, r)$ with $r \in I_{j_0}$. We have $S(m(p_{j_0}, r)) = \Big\{r, r +$ $N, r+2N, \ldots, r+(p-1)N$. It follows from Lemma 5.3 that in this support there exists exactly one element divisible by p. Let us denote this element by $r + c_rN$. We know also from the same lemma, that all the elements $r + c_r N$ with $r \in I_{j_0}$ are pairwise different. These arguments imply, that in the equality (b) all the integers $\gamma_r^{(j_0)}$, with $r \in I_{j_0}$, are equal to zero.

Hence, by the induction hypothesis, the equality (b) reduces to the equality

$$
\sum_{r\in I_s} \gamma_r^{(s)} m(p_s, r) = (0,0,\ldots,0),
$$

where each $\gamma_r(s)$ is an integer. Now we use Proposition 3.2 and we have $\gamma_r(s) = 0$ for all $r \in I_s$. Thus, we proved that in the equality (a) all the integers of the form γ_r^j , where $j \in \{1, ..., s\}$ and $r \in I_j$, are equal to zero. This means that the n-standard set A of type P is linearly independent over \mathbb{Z} . Therefore, n is a special number of type P .

Using the above proposition for $\alpha = 1$ we obtain

Proposition 5.5. Every square-free integer $n \geq 2$ is absolutely special.

Lemma 5.6. Let $n = p_1^{\alpha_1} \cdots p_s^{\alpha_s}$, where $s \geq 2$, p_1, \ldots, p_s are distinct prime numbers and $\alpha_1, \ldots, \alpha_s$ are positive integers. Let $P = [p_1, \ldots, p_s]$. If $\alpha_1 \geq 2$, then n is not a special number of type P.

Proof. Put $p = p_1, q = p_2, u = \frac{n}{p^2}, v = \frac{n}{pq}, a = \sum_{n=1}^{\infty}$ $k=0$ $m(p, pk + 1), b = \sum_{k=1}^{p-1}$ $k=0$ $m(q, pk +$ 1). Observe that a is a sum of elements from A_1 , and b is a sum of elements from \mathcal{A}_2 . Moreover, $n_1 = \frac{n}{p} = pu$, $n_2 = \frac{n}{q} = pv$,

$$
a = \sum_{k=0}^{u-1} \sum_{i=0}^{p-1} e_{pk+1+in} = \sum_{k=0}^{u-1} \sum_{i=0}^{p-1} e_{pk+1+ipu} = \sum_{k=0}^{u-1} \sum_{i=0}^{p-1} e_{p(k+iu)+1} = \sum_{j=0}^{n_1-1} e_{pj+1},
$$

\n
$$
b = \sum_{k=0}^{v-1} \sum_{i=0}^{q-1} e_{nk+1+in} = \sum_{k=0}^{v-1} \sum_{i=0}^{q-1} e_{nk+1+in} = \sum_{k=0}^{v-1} \sum_{i=0}^{q-1} e_{n(k+in)+1} = \sum_{k=0}^{n_1-1} e_{nj+1}.
$$

$$
b = \sum_{k=0}^{n} \sum_{i=0}^{n} e_{pk+1+in_2} = \sum_{k=0}^{n} \sum_{i=0}^{n} e_{pk+1+ipv} = \sum_{k=0}^{n} \sum_{i=0}^{n} e_{p(k+iv)+1} = \sum_{j=0}^{n} e_{pj+1}.
$$

Hence, $a = \sum_{n=1}^{n}$ $j=0$ $e_{pj+1} = b$. This implies that the *n*-standard set A of type P is not

linearly independent over $\mathbb Z$. Thus, n is not a special number of type P. \Box

Lemma 5.7. Let $n = p_1^{\alpha_1} \cdots p_s^{\alpha_s}$, where $s \geq 2$, p_1, \ldots, p_s are distinct prime numbers and $\alpha_1, \ldots, \alpha_s$ are positive integers. Let $P = [p_1, \ldots, p_s]$. If there exists $j_0 \in \{1, 2, \ldots, s-1\}$ such that $\alpha_{j_0} \geq 2$, then n is not a special number of type P.

Proof. If $j_0 = 1$ then the assertion follows from Lemma 5.6. Assume that $j_0 \ge 2$, and let A_1, \ldots, A_s be the *n*-standard sets of type P. Put $N = p_1^{\alpha_1} \cdots p_{j_0-1}^{\alpha_{j_0-1}}$, $p \, = \, p_{j_0}, \; q \, = \, p_{j_0 + 1}, \; u \, = \, \frac{n}{N p^2}, \; v \, = \, \frac{n}{N p q}, \; w \, = \, \frac{n}{p N}, \; a \, = \, \sum^{u - 1}_{n = 1} \,$ $k=0$ $m(p, pNk + 1)$, and $b = \sum^{v-1}$ $\sum_{k=0} m(q, pNk + 1)$. Observe that a is a sum of elements from \mathcal{A}_{j_0} , and b is

a sum of elements from A_{j_0+1} . Moreover, $n_{j_0} = \frac{n}{p} = pNu$, $n_{j_0+1} = \frac{n}{q} = pNv$,

$$
a = \sum_{k=0}^{u-1} \sum_{i=0}^{p-1} e_{pNk+1+in_{j_0}} = \sum_{k=0}^{u-1} \sum_{i=0}^{p-1} e_{pNk+1+ipNu}
$$

\n
$$
= \sum_{k=0}^{u-1} \sum_{i=0}^{p-1} e_{pN(k+iu)+1} = \sum_{j=0}^{w-1} e_{pNj+1},
$$

\n
$$
b = \sum_{k=0}^{v-1} \sum_{i=0}^{q-1} e_{pNk+1+in_{j_0+1}} = \sum_{k=0}^{v-1} \sum_{i=0}^{q-1} e_{pNk+1+ipNv}
$$

\n
$$
= \sum_{k=0}^{v-1} \sum_{i=0}^{q-1} e_{pN(k+iv)+1} = \sum_{j=0}^{w-1} e_{pNj+1}.
$$

Hence, $a =$ \sum^{w-1} $j=0$ e_{pN} _{j+1} = b, where $w = \frac{n}{pN}$. This implies that the *n*-standard set A of type P is not linearly independent over $\mathbb Z$. Thus, n is not a special number of type P .

As a consequence of the above facts we obtain the following theorems.

Theorem 5.8. An integer $n \geq 2$ is special if and only if $n = p_1 p_2 \cdots p_{s-1} p_s^{\alpha_s}$, where p_1, \ldots, p_s are distinct primes and $\alpha_s \geq 1$.

Theorem 5.9. An integer $n \geq 2$ is absolutely special if and only if either n is square-free or n is a power of a prime number.

The smallest non-special positive integer $n \geqslant 2$ is $n = 36$. In the segment [2, 100] there are 3 non-special numbers: 36, 72 and 100.

Let us recall that if n is a special number, then its n-standard set A is linearly independent over \mathbb{Z} . Now we will show that, in this case, the set $\mathcal A$ is a basis of \mathcal{G}_n . Let us denote by $\overline{\mathcal{A}}$ the subgroup of \mathcal{G}_n generated by \mathcal{A} . Every element of \mathcal{A} is a finite combination over $\mathbb Z$ of some elements of $\mathcal A$.

We already know (see Theorem 3.5) that the group \mathcal{G}_n is generated by all the standard minimal elements of \mathcal{M}_n . Thus, for a proof that A is a basis of \mathcal{G}_n , it suffices to prove that every standard minimal element of \mathcal{M}_n belongs to \mathcal{A} .

Theorem 5.10. Let $n = p_1 \cdots p_{s-1} p_s^{\alpha}$, where $s \geq 1$, $\alpha \geq 1$, and p_1, \ldots, p_s are pairwise different primes. Let $P = [p_1, \ldots, p_s]$, and let A be the n-standard set of type P. Then every standard minimal element of \mathcal{M}_n belongs to $\overline{\mathcal{A}}$.

Proof. First, all p_1 -standard elements $m(p_1, r)$ with $0 \leq r < \frac{n}{p_1}$ belong to \mathcal{A}_1 and thus to \overline{A} .

To go further, for $j > 1$, we will use the relations given in Proposition 3.3 and we define therefore the *height* of a p_i -standard element (that may not belong to \mathcal{A}_j) as the number of primes among $\{p_1, \dots, p_{j-1}\}\$ that divide r and denote it by $h(m(p_j, r))$. Elements of \mathcal{A}_j have height 0. A p_j -standard element has an height at most $j-1$.

By definition all standard elements of height 0 belong to A and thus to A .

To achieve the proof by induction, we use the following fact.

Key fact. For $j > 1$, let $m(p_i, r)$ be a p_i -standard element with a non-zero height. Then some of the $p_i, 1 \leq i < j$ divide r. Let then denote by p one of them and p_j by q .

As all prime factors but the last have exponent 1 in the decomposition of n , when we apply Proposition 3.3, $N = n/pq$ is coprime with p and a multiple of all p_l , $1 \leq$ $l < j, l \neq i.$

For any k, $1 \leq k \leq p-1$, $r+kN$ is coprime with p and keeps the same other divisors among the other $p_l, 1 \leq l < j, l \neq i$: the height $h(m(p_j, r + lN))$ is then $h(m(p_j, r)) - 1.$

Whence the following relation we get from Proposition 3.3

$$
m(q,r) = \sum_{k=0}^{q-1} m(p,kN+r) - \sum_{k=1}^{p-1} m(q,kN+r).
$$

which means

$$
m(p_j, r) = \sum_{k=0}^{q-1} m(p_i, kN + r) - \sum_{k=1}^{p-1} m(p_j, kN + r).
$$

and $m(p_j, r)$ is a Z-linear combination of some $m(p_j, r')$ with a strictly smaller height and of some $m(p_i, r'')$ for an index $i < j$.

The proof is now a *double induction* with the following steps.

Let $j > 1$ and suppose that all $m(p_i, r)$ have been proven to belong to A for all $i < j$.

All $m(p_j, r)$ with a 0 height belong to \mathcal{A}_j and then to $\overline{\mathcal{A}}$.

For any $h', 1 \leq h' < j$, if we know that all $m(p_j, r)$ with $h(m(p_j, r)) < h'$ belong to \overline{A} , then the same is true for all $m(p_j, r)$ with $h(m(p_j, r)) = h'$ according to the previous key fact.

6. The cyclotomic derivation d

Throughout this section $n \geq 3$ is an integer, K is a field of characteristic zero, $K[X] = K[x_0, \ldots, x_{n-1}]$ is the polynomial ring over K in variables x_0, \ldots, x_{n-1} , and $K(X) = K(x_0, \ldots, x_{n-1})$ is the field of quotients of $K[X]$. We denote by \mathbb{Z}_n the ring $\mathbb{Z}/n\mathbb{Z}$. The indexes of the variables x_0, \ldots, x_{n-1} are elements of \mathbb{Z}_n . We denote by d the cyclotomic derivation of $K[X]$, that is, d is the K-derivation of $K[X]$ defined by

$$
d(x_j) = x_{j+1}, \quad \text{for} \quad j \in \mathbb{Z}_n.
$$

We denote also by d the unique extension of d to $K(X)$. We denote by $K[X]^d$ and $K(X)^d$ the K-algebra of constants of d and the field of constants of d, respectively. Thus,

$$
K[X]^{d} = \{ F \in K[X]; \ d(F) = 0 \}, \quad K(X)^{d} = \{ f \in K(X); \ d(f) = 0 \}.
$$

Now we recall from [10] some basic notions and facts concerning the derivation d. As in the previous sections, we denote by ε a primitive n-th root of unity, and first we assume that $\varepsilon \in K$.

The letters ρ and τ we book for two K-automorphisms of the field $K(X)$, defined by

$$
\varrho(x_j) = x_{j+1}, \quad \tau(x_j) = \varepsilon^j x_j \quad \text{for all} \quad j \in \mathbb{Z}_n.
$$

Observe that $\rho d\rho^{-1} = d$. We denote by $u_0, u_1, \ldots, u_{n-1}$ the linear forms, belonging to $K[X]$, defined by

$$
u_j = \sum_{i=0}^{n-1} (\varepsilon^j)^i x_i
$$
, for $j \in \mathbb{Z}_n$.

Then we have the equalities

$$
x_i = \frac{1}{n} \sum_{j=0}^{n-1} \left(\varepsilon^{-i}\right)^j u_j,
$$

for all $i \in \mathbb{Z}_n$. Thus, $K[X] = K[u_0, \ldots, u_{n-1}], K(X) = K(u_0, \ldots, u_{n-1}),$ and the forms u_0, \ldots, u_{n-1} are algebraically independent over K. Moreover,

$$
\tau(u_j) = u_{j+1}, \quad \varrho(u_j) = \varepsilon^{-j} u_j, \quad d(u_j) = \varepsilon^{-j} u_j,
$$

for all $j \in \mathbb{Z}_n$.

It follows from the last equality that d is a diagonal derivation of the polynomial ring $K[U] = K[u_0, \ldots, u_{n-1}]$ which is equal to the ring $K[X]$.

If $\alpha = (\alpha_0, \ldots, \alpha_{n-1}) \in \mathbb{Z}^n$, then we denote by u^{α} the rational monomial $u_0^{\alpha_0} \cdots u_{n-1}^{\alpha_{n-1}}$. Recall (see Section 2) that $H_\alpha(t)$ is the polynomial $\alpha_0 + \alpha_1 t^1$ + $\cdots + \alpha_{n-1}t^{n-1}$ belonging to $\mathbb{Z}[t]$. Since $d(u_j) = \varepsilon^{-j}u_j$ for all $j \in \mathbb{Z}_n$, we have

$$
d(u^{\alpha}) = H_{\alpha}(\varepsilon^{-1})u^{\alpha}
$$
, for all $\alpha \in \mathbb{Z}^n$.

Note that ε^{-1} is also a primitive *n*-th root of unity. Hence, by Proposition 2.1, we have the equivalence $H_{\alpha}(\varepsilon^{-1}) = 0 \iff H_{\alpha}(\varepsilon) = 0$, and so, we see that if $\alpha \in \mathbb{Z}^n$, then $d(u^{\alpha}) = 0 \iff \alpha \in \mathcal{G}_n$, and if $\alpha \in \mathbb{N}^n$, then $d(u^{\alpha}) = 0 \iff \alpha \in \mathcal{M}_n$. Moreover, if $F = b_1 u^{\alpha^{(1)}} + \cdots + b_r u^{\alpha^{(r)}}$, where $b_1, \ldots, b_r \in K$ and $\alpha^{(1)}, \ldots, \alpha^{(r)}$ are pairwise different elements of \mathbb{N}^n , then $d(F) = 0$ if and only if $d\left(b_i u^{\alpha^{(i)}}\right) = 0$ for every $i = 1, \ldots, r$. In [10] we proved the following proposition.

Proposition 6.1 ([10]). If the primitive n-th root ε belongs to K, then:

(1) the ring $K[X]^d$ is generated over K by all elements of the form u^{α} with $\alpha\in\mathcal{M}_n$;

(2) the ring $K[X]^d$ is generated over K by all elements of the form u^{β} , where β is a minimal element of the monoid \mathcal{M}_n ;

(3) the field $K(X)^d$ is generated over K by all elements of the form u^{γ} with $\gamma \in \mathcal{G}_n$;

(4) the field $K(X)^d$ is the field of quotients of the ring $K[X]^d$.

Let $m = n - \varphi(n)$, and let $\gamma_0, \ldots, \gamma_{m-1}$ be the elements of \mathcal{G}_n introduced in Section 2. We know (see Theorem 2.3) that these elements form a basis of the group \mathcal{G}_n . Consider now the rational monomials w_0, \ldots, w_{m-1} defined by

$$
w_j = u^{\gamma_j}
$$
 for $j = 0, 1, ..., m - 1$.

It follows from Proposition 6.1, that these monomials belong to $K(X)^d$ and they generate the field $K(X)^d$. We proved in [10] that they are algebraically independent over K . Moreover, in [10] proved the following theorem.

Theorem 6.2. If the primitive n-th root ε belongs to K, then the field of constants $K(X)^d$ is a field of rational functions over K and its transcendental degree over K is equal to $m = n - \varphi(n)$, where φ is the Euler totient function. More precisely,

$$
K(X)^d = K\Big(w_0, \ldots, w_{m-1}\Big),
$$

where the elements w_0, \ldots, w_{m-1} are as above.

7. THE POLYNOMIALS $S_{n,m}$

In this section we use the notations from the previous section, and we again assume that K is a field of characteristic zero containing ε . Let us recall that if p is a prime divisor of n and $0 \leqslant r \leqslant \frac{n}{p} - 1$, then $m(p, r)$, is the standard minimal element of the monoid \mathcal{M}_n defined by $m(p, r) = \sum^{p-1}$ $\sum_{i=0} e_{r+i\frac{n}{p}}$. Observe that if a, b are integers such that $a \equiv b \pmod{\frac{n}{p}}$, then $\sum_{n=0}^{p-1}$ $\sum_{i=0}^{p-1} e_{a+i\frac{n}{p}} = \sum_{i=0}^{p-1}$ $\sum_{i=0} e_{b+i\frac{n}{p}}$. Thus, we may define

$$
m(p, a) := \sum_{i=0}^{p-1} e_{a+i\frac{n}{p}}, \text{ for } a \in \mathbb{Z}.
$$

Note, that if $a \in \mathbb{Z}$, then $m(p, a) = m(p, r)$, where r is the remainder of division of a by $\frac{n}{p}$. Moreover, $\zeta^{\frac{n}{p}}(m(p, b)) = m(p, b)$ for $b \in \mathbb{Z}$, and more general, $\zeta^a(m(p, b)) =$ $m(p, a + b)$ for all $a, b \in \mathbb{Z}$ (see Proposition 3.4).

For every integer a, we define

$$
S_{p,a} := u^{m(p,a)} = \prod_{i=0}^{p-1} u_{a+i\frac{n}{p}}.
$$

Observe that $S_{p,q} = S_{p,r}$, where r is the remainder of division of a by $\frac{n}{p}$. Each $S_{p,q}$ is a monomial belonging to $K[U] = K[u_0, \ldots, u_{n-1}]$. Since $m(p, a) \in \mathcal{M}_n \subset \mathcal{G}_n$, each $S_{p,a}$ belongs to the constant field $K(X)^d$.

Recall (see Section 6) that ϱ is the K-automorphism of the field $K(X)$, defined by

$$
\varrho(x_j) = x_{j+1}, \quad \text{for} \ \ j \in \mathbb{Z}_n.
$$

We have $\varrho(u_j) = \varepsilon^{-j} u_j$ for $j \in \mathbb{Z}_n$. In particular, $\varrho(u_0) = u_0$. The proof of the following proposition is an easy exercise.

Proposition 7.1. If $a \in \mathbb{Z}$, then $\varrho(S_{p,a}) = \varepsilon^{-b} S_{p,a}$, where $b = pa + \frac{(p-1)n}{2}$ $rac{-1}{2}$. In particular, if p is odd then $\varrho(S_{p,q}) = \varepsilon^{-ap} S_{p,q}$. If $p = 2$, then n is even and $\varrho(S_{2,a}) = \varepsilon^{-(2a + \frac{n}{2})} S_{2,a}.$

Recall the following well known lemma, which appears in many books of linear algebra.

Lemma 7.2. For any integer $n \geq 2$,

$$
u_0u_1 \ldots u_{n-1} = \begin{vmatrix} x_0 & x_1 & \cdots & x_{n-1} \\ x_{n-1} & x_0 & \cdots & x_{n-2} \\ \vdots & \vdots & & \vdots \\ x_1 & x_2 & \cdots & x_0 \end{vmatrix}
$$

.

In particular, the product $u_0u_1 \ldots u_{n-1}$ is a polynomial belonging to $\mathbb{Z}[X]$.

Using this lemma we obtain the following proposition.

Proposition 7.3. The polynomial $S_{p,0}$ belongs to $\mathbb{Z}[X]$.

Proof. Put $b = \frac{n}{p}$, $\eta = \varepsilon^b$, and $v_i = u_{ib}$, $y_i = \sum_{i=1}^{b-1}$ $\sum_{j=0} x_{i+jp}$ for all $i = 0, 1, \ldots, p-1$, Then η is a primitive p-th root of unity, and $v_i = \sum^{p-1}$ $k=0$ $(\eta^i)^k y_k$, for all $i = 0, 1, ..., p - 1$. Now we use Lemma 7.2, and we have

$$
S_{p_j,0} = v_0v_1\cdots v_{p-1} = \begin{vmatrix} y_0 & y_1 & \cdots & y_{p-1} \\ y_{p-1} & y_0 & \cdots & y_{p-2} \\ \vdots & \vdots & & \vdots \\ y_1 & y_2 & \cdots & y_0 \end{vmatrix}.
$$

Thus, $S_{p_i,0} \in \mathbb{Z}[X]$.

Let $n = p_1^{\alpha_1} \cdots p_s^{\alpha_s}$, where p_1, \ldots, p_s are distinct primes and $\alpha_1, \ldots, \alpha_s$ are positive integers. Let $n_j = \frac{n}{p_j}$ for $j = 1, \ldots, s$. Assume that $P = [p_1, \ldots, p_n]$ is a fixed type, and I_1, \ldots, I_s are the *n*-sets of type *P*.

For every $j \in \{1, ..., s\}$ we denote by \mathcal{V}_j the K-subspace of $K[U]$ generated by all the monomials $S_{p_i,r}$ with $r \in I_j$. Let us remember

$$
\mathcal{V}_j = \langle S_{p_j,r}; \ r \in I_j \rangle, \ \text{for} \ \ j = 1, \ldots, s.
$$

We will say that $\mathcal{V}_1, \ldots, \mathcal{V}_s$ are *n-spaces of type P*. As a consequence of Propositions 4.3 and 4.5 we obtain the following proposition.

Proposition 7.4. If V_1, \ldots, V_s are n-spaces of type $P = [p_1, \ldots, p_s]$, then $\dim_K \mathcal{V}_1 \, = \, n_1, \, \, and \, \, \dim_K \mathcal{V}_j \, = \, n_j \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \cdots \left(1 - \frac{1}{p_{j-1}} \right), \, \, for \, \, all \, \, j \, =$ $2, 3, \ldots, s.$ Moreover,

$$
\dim_K (\mathcal{V}_1 \oplus \cdots \oplus \mathcal{V}_s) = n - \varphi(n).
$$

Let A be the *n*-standard set of type P . Let us recall (see Section 5) that $\mathcal{A} = \mathcal{A}_1 \cup \cdots \cup \mathcal{A}_s$, where $\mathcal{A}_j = \{p(p_j, r); r \in I_j\}$ for $j = 1, \ldots, s$. Hence, for each j we have the equality $V_j = \langle u^a; a \in A_j \rangle$. Let S the set of all the monomials u^a with $a \in \mathcal{A}$, that is,

$$
\mathcal{S} = \Big\{S_{p_j,r};\ j\in\{1,\ldots,s\},\ r\in I_j\Big\}.
$$

Proposition 7.5. If the number n is special of type P , then the above set S is algebraically independent over K, and $K(X)^d = K(S)$.

Proof. Assume that n is special of type P. Let $\gamma_0, \ldots, \gamma_{m-1}$ be the elements of \mathcal{G}_n defined in Section 2, and let $w_i = u^{\gamma_i}$ for $i = 0, \ldots, m-1$. Recall that $m = n - \varphi(n)$. Put $\Gamma = \{\gamma_0, \ldots, \gamma_{m-1}\},\$ and $W = \{w_0, \ldots, w_{m-1}\}.$ We know (see Theorem 2.3) that Γ is a basis of \mathcal{G}_n . Since n is special, the set A is also a basis of \mathcal{G}_n . This implies that $K(\mathcal{S}) = K(W)$. But, by Theorem 6.2, the set W is algebraically independent over K and $K(W) = K(X)^d$. Moreover, $|S| = |W| = m$ Hence, the set S is also algebraically independent over K , and we have the equality $K(X)^d = K(S).$

In the above proposition we assumed that n is special of type P . This assumption is very important. Consider for example $n = 12$ and $P = [2, 3]$. We know (see Example 5.1) that 12 is not special of type P. In this case the set S is not algebraically independent over K . In fact, we have the polynomial equality $S_{2,1}S_{2,3}S_{2,5} = S_{3,1}S_{3,3}.$

8. THE POLYNOMIALS $T_{n,m}$

Let $n = p_1^{\alpha_1} \cdots p_s^{\alpha_s}$, where p_1, \ldots, p_s are distinct prime numbers and $\alpha_1, \ldots, \alpha_s$ are positive integers. Let $n_j = \frac{n}{p_j}$ for $j = 1, \ldots, s$. Assume that $P = [p_1, \ldots, p_n]$ is a fixed type, and I_1, \ldots, I_s are the *n*-sets of type *P*.

Now assume that j is a fixed element from the set $\{1, \ldots, s\}$, and a is an integer. Put

$$
T_{p_j,a} = \sum_{r \in I_j} \left(\varepsilon^{-ap_j} \right)^r S_{p_j,r}.
$$

Observe that $T_{p_i, a} = T_{p_i, m}$, where m is the remainder of division of a by n_j . Let us recall that $\varepsilon \in K$. Thus, every $T_{p_i,a}$ is a polynomial from $K[U]$ belonging to the subspace \mathcal{V}_j .

Proposition 8.1. For every $j = 1, \ldots, s$, all the polynomials $T_{p_j,m}$ with $0 \leq m <$ n_j , generate the K-space \mathcal{V}_j .

Proof. Let $q \in I_j$ and consider the sum $H =$ $\sum_{j=1}^{n_j-1}$ $\sum_{m=0}^{\infty} \left(\varepsilon^{qp_j}\right)^m T_{p_j,m}$. Put $\eta = \varepsilon^{p_j}$. Then η is a primitive n_j -th root of unity, and we have

$$
H = \sum_{m=0}^{n_j - 1} (\varepsilon^{qp_j})^m \left(\sum_{r \in I_j} \varepsilon^{rp_j m} S_{p_j, r} \right) = \sum_{r \in I_j} \left(\sum_{m=0}^{n_j - 1} \varepsilon^{(q-r)p_j m} \right) S_{p_j, r}
$$

=
$$
\sum_{r \in I_j} \left(\sum_{m=0}^{n_j - 1} \eta^{(q-r)m} \right) S_{p_j, r} = n_j S_{p_j, q}.
$$

In the last equality we used Lemma 4.6. Thus, if $q \in I_j$, then $S_{p_i,q}$ $\frac{1}{n_j}$ $\sum_{j=1}^{n}$ $\sum_{m=0}^{\infty} (\varepsilon^{qp_j})^m T_{p_j,m}$. But $\varepsilon \in K$, so now it is clear that all $T_{p_j,m}$ with $0 \leq m < n_j$, generate the K-space V_j .

Now we will prove that every polynomial $T_{p_i,a}$ belongs to the ring $\mathbb{Z}[X]$. For this aim first recall (see Section 6) that τ is a K-automorphism of $K(X)$ defined by

$$
\tau(x_j) = \varepsilon^j x_j \quad \text{for all} \quad j \in \mathbb{Z}_n.
$$

Since $\tau(u_i) = u_{i+1}$ for all $i \in \mathbb{Z}_n$, we have

$$
S_{p_j,r} = \tau^r \left(S_{p_j,0} \right)
$$

for $j \in \{1, \ldots, s\}$ and $r \in \mathbb{Z}$ (in particular, for $r \in I_j$). We say (us in [10]) that a rational function $f \in K(X)$ is τ -homogeneous, if f is homogeneous in the ordinary sense and $\tau(f) = \varepsilon^c f$ for some $c \in \mathbb{Z}_n$. In this case we say that c is the τ -degree of f and we write $\deg_{\tau}(f) = c$. Note that $\deg_{\tau}(f)$ is an element of \mathbb{Z}_n . Every rational monomial $x^{\alpha} = x_0^{\alpha_0} \cdots x_{n-1}^{\alpha_{n-1}}$, where $\alpha = (\alpha_0, \ldots, \alpha_{n-1}) \in \mathbb{Z}^n$, is τ -homogeneous and its τ -degree is equal to $\sum_{n=1}^{n-1}$ $\sum_{i=0} i \alpha_i \pmod{n}.$

Let j be a fixed number from $\{1, \ldots, s\}$ and consider the polynomial $S_{p_i,0}$. We know by Proposition 7.3 that this polynomial belongs to $\mathbb{Z}[X]$. Hence, we have the unique determined polynomials $B_0, \ldots, B_{n-1} \in \mathbb{Z}[X]$ such that $S_{p_i,0} =$ $B_0 + \cdots + B_{n-1}$, and each B_i is τ -homogeneous of τ -degree *i*.

Put $C_i = \tau^{n_j}(B_i)$, for all $i = 0, \ldots, n-1$. Since $\tau(B_i) = \varepsilon^i B_i$, we have $C_i =$ $\varepsilon^{in_j} B_i$, and this implies that $\tau(C_i) = \varepsilon^i C_i$. In fact,

$$
\tau(C_i) = \tau(\tau^{n_j}(B_i)) = \tau(\varepsilon^{in_j}B_i) = \varepsilon^{in_j}\tau(B_i) = \varepsilon^{in_j}\cdot\varepsilon^iB_i = \varepsilon^i\cdot\varepsilon^{in_j}B_i = \varepsilon^iC_i.
$$

Thus, every polynomial C_i is τ -homogeneous of τ -degree i. Observe that

$$
\tau^{n_j} \left(S_{p_j,0} \right) = S_{p_j,0}.
$$

But $\tau^{n_j} (S_{p_j,0}) = \sum^{n-1}$ $\sum_{i=0} C_i$, so $C_i = \tau^{n_j}(B_i) = B_i$ and so, $\varepsilon^{i n_j} B_i = B_i$, for all $i = 0, \ldots, n - 1$. Thus, if $B_i \neq 0$, then $n | in_j$. But $n = p_j n_j$ so, if $B_i \neq 0$, then i is divisible by p_i . Therefore,

$$
S_{p_j,0} = \sum_{k=0}^{n_j-1} B_{kp_j},
$$

where each B_{kp_j} is τ -homogeneous polynomial from $\mathbb{Z}[X]$ of τ -degree kp_j . Hence, for every $m \in \{0, \ldots, n-1\}$, we have

$$
T_{p_j,m} = \sum_{r \in I_j} \varepsilon^{-rp_j m} S_{p_j,r} = \sum_{r \in I_j} \varepsilon^{-rp_j m} \tau^r (S_{p_j,0})
$$

\n
$$
= \sum_{r \in I_j} \varepsilon^{-rp_j m} \tau^r \left(\sum_{k=0}^{n_j - 1} B_{kp_j} \right) = \sum_{r \in I_j} \varepsilon^{-rp_j m} \left(\sum_{k=0}^{n_j - 1} \tau^r (B_{kp_j}) \right)
$$

\n
$$
= \sum_{r \in I_j} \varepsilon^{-rp_j m} \left(\sum_{k=0}^{n_j - 1} \varepsilon^{kp_j r} B_{kp_j} \right) = \sum_{k=0}^{n_j - 1} B_{kp_j} \left(\sum_{r \in I_j} \varepsilon^{rp_j (k - m)} \right).
$$

Observe that, by Proposition 4.7, every sum Σ $r \in I_j$ $\varepsilon^{rp_j(k-m)}$ is an integer. Moreover, every polynomial B_{kp_j} belongs to $\mathbb{Z}[X]$. Hence, $T_{p_j,m} \in \mathbb{Z}[X]$.

Recall that $T_{p_j, a} = T_{p_j, m}$, where m is the remainder of division of a by n_j . Thus, we proved the following proposition.

Proposition 8.2. For any $j \in \{1, \ldots, s\}$ and $a \in \mathbb{Z}$, the polynomial $T_{p_j,m}$ belongs to the polynomial ring $\mathbb{Z}[X]$.

Now we will prove some additional properties of the polynomials $T_{p_i, a}$.

Proposition 8.3. Assume that $s \geq 2$, and let $i, j \in \{1, \ldots, s\}$, $i < j$. Then

$$
\sum_{k=0}^{p_i-1} T_{p_j, k \frac{n}{p_i p_j}} = 0.
$$

Proof. Put $p = p_i$, $q = p_j$, and $N = \frac{n}{pq}$. Then we have

$$
\sum_{k=0}^{p_i-1} T_{p_j, k \frac{n}{p_i p_j}} = \sum_{k=0}^{p-1} T_{q, kN} = \sum_{k=0}^{p-1} \sum_{r \in I_j} \left(\varepsilon^{-kNq} \right)^r S_{q, r} = \sum_{r \in I_j} \left(\sum_{k=0}^{p-1} \left(\varepsilon^{-\frac{n}{p} r} \right)^k \right) S_{q, r}.
$$

Let $\eta = \varepsilon^{-\frac{n}{p}}$. Then η is a primitive p-th root of unity. If $r \in I_j$, then $p \nmid r$ and, by Lemma 4.6, we have

$$
\sum_{k=0}^{p-1} \left(\varepsilon^{-\frac{n}{p}r}\right)^k = \sum_{k=0}^{p-1} \eta^{rk} = 0.
$$
\nThus, $\sum_{k=0}^{p_i-1} T_{p_j, k \frac{n}{p_i p_j}} = \sum_{r \in I_j} \left(\sum_{k=0}^{p-1} \left(\varepsilon^{-\frac{n}{p}r}\right)^k\right) S_{q,r} = \sum_{r \in I_j} 0 \cdot S_{q,r} = 0.$

Proposition 8.4. For any integer a, we have

$$
\varrho(T_{p_j,a}) = \begin{cases} T_{p_j,a+1}, & \text{when } p_j \neq 2, \\ -T_{p_j,a+1}, & \text{when } p_j = 2. \end{cases}
$$

Proof. First assume that p_j is odd. In this case (see Proposition 7.1), $\varrho(S_{p_j},\mathbf{r})=$ $\varepsilon^{-p_j r} S_{p_j r}$ for any $r \in \mathbb{Z}$. Hence,

$$
\varrho(T_{p_j, a}) = \sum_{r \in I_j} (\varepsilon^{-ap_j})^r \varrho(S_{p_j, r}) = \sum_{r \in I_j} (\varepsilon^{-ap_j})^r \varepsilon^{-p_j r} S_{p_j, r}
$$

=
$$
\sum_{r \in I_j} (\varepsilon^{-(a+1)p_j})^r S_{p_j, r} = T_{p_j, a+1}.
$$

Now let $p_j = 2$. Then, by Proposition 7.1, $\varrho(S_{p_j}, r) = \varepsilon^{-(p_j r + \frac{n}{2})} S_{p_j, r}$ for any $r \in \mathbb{Z}$. Moreover, $\varepsilon^{-\frac{n}{2}} = -1$. Thus, we have

$$
\varrho(T_{p_j, a}) = \sum_{r \in I_j} (\varepsilon^{-ap_j})^r \varrho(S_{p_j, r}) = \sum_{r \in I_j} (\varepsilon^{-ap_j})^r \varepsilon^{-(p_j r + \frac{n}{2})} S_{p_j, r} \n= \sum_{r \in I_j} \varepsilon^{-\frac{n}{2}} (\varepsilon^{-(a+1)p_j})^r S_{p_j, r} = -\sum_{r \in I_j} (\varepsilon^{-(a+1)p_j})^r S_{p_j, r} = -T_{p_j, a+1}.
$$

This completes the proof. \Box

Proposition 8.5. Assume that $s \geq 2$. Let $i, j \in \{1, \ldots, s\}$, $i < j$, and let $a \in \mathbb{Z}$. Then

$$
T_{p_j, a} = -\sum_{k=1}^{p_i-1} T_{p_j, a+k\frac{n}{p_i p_j}}.
$$

Proof. It follows from Proposition 8.4 that $T_{p_j, a} = (-1)^{p_j - 1} \varrho^a(T_{p_j, 0})$. Hence, using Proposition 8.3, we obtain

$$
T_{p_j, a} = (-1)^{p_j - 1} \varrho^a \left(T_{p_j, 0} \right) = (-1)^{p_j - 1} \varrho^a \left(- \sum_{k=1}^{p_i - 1} T_{p_j, k} \frac{n}{p_i p_j} \right)
$$

\n
$$
= (-1)^{p_j} \sum_{k=1}^{p_i - 1} \varrho^a \left(T_{p_j, k} \frac{n}{p_i p_j} \right) = (-1)^{p_j} \sum_{k=1}^{p_i - 1} (-1)^{p_j - 1} T_{p_j, a + k} \frac{n}{p_i p_j}
$$

\n
$$
= - \sum_{k=1}^{p_i - 1} T_{p_j, a + k} \frac{n}{p_i p_j}.
$$

This completes the proof.

For any $j \in \{1, \ldots, s\}$, let us denote by \mathcal{W}_j the Z-module generated by all the polynomials $T_{p_j, r}$ with $r \in I_j$. It is clear that every polynomial $T_{p_1, a}$, for arbitrary integer a, belongs to \mathcal{W}_1 .

Theorem 8.6. If the number n is special, then for all $j \in \{1, ..., s\}$ and $a \in \mathbb{Z}$, the polynomial $T_{p_j, a}$ belongs to \mathcal{W}_j .

Proof. Let $n = p_1 \cdots p_{s-1} \cdot p_s^{\alpha}$, where $s \geq 1$, $\alpha \geq 1$, and p_1, \ldots, p_s are distinct primes. Let $n_j = \frac{n}{p_j}$ for $j = 1, ..., s$. Assume that $P = [p_1, ..., p_n]$ is a fixed type, and I_1, \ldots, I_s are the *n*-sets of type *P*.

Let j be a fixed element from $\{1, \ldots, s\}$. If $s = 1$ or $j = 1$, then we are done. Assume that $s \geq 2$, $j \geq 2$, and a is an integer. Since $T_{p_j, a} = T_{p_j, m}$, where m is the remainder of division of a by n_j , we may assume that $0 \leq a \leq n_j$. We use the following notations:

$$
M := \{p_1, p_2, \ldots, p_{j-1}\}, \quad q := p_j, \quad B_c := T_{p_j, c} \quad \text{for } c \in \mathbb{Z}.
$$

We will show that $B_a \in \mathcal{W}_j$. If $gcd(a, p_1 \cdots p_{j-1}) = 1$, then $a \in I_j$ and so, $B_a \in \mathcal{W}_j$. Now let $gcd(a, p_1 \cdots p_{j-1}) \geq 2$. In this case, a is divisible by some primes belonging to M.

Step 1. Assume that a is divisible by exactly one prime number p_i belonging to M. Then $i < j$ and, by Proposition 8.5, we have the equality

$$
B_a = -\sum_{k=1}^{p_i-1} B_{a+k\frac{n}{p_i q}}.
$$

Let $k \in \{1, \ldots, p_i-1\}$, and consider $c := a + k \frac{n}{p_i q}$. Since *n* is special, the number $k \frac{n}{p_i q}$ is not divisible by p_i . But $p_i | a$, so $p_i \nmid c$. If $p \in M$ and $p \neq p_i$, then $p \nmid a$ and $p \mid k \frac{n}{p_i q}$, so $p \nmid c$. Hence, the numbers c and $p_1 \cdots p_{j-1}$ are relatively prime. This implies that the element c (mod n_j) belongs to I_j , and so, $B_c \in \mathcal{W}_j$. Therefore, by the above equality, $B_a \in \mathcal{W}_i$.

We see that if $s = 2$ or $j = 2$, then we are done. Now suppose that $s \geq 3$ and $j \geqslant 3$.

Step 2. Let $1 \leq t \leq j - 2$, and assume that we already proved that $B_c \in \mathcal{W}_j$ for every integer c which is divisible by exactly t primes belonging to M . Assume that a is divisible by exactly $t+1$ distinct primes m_1, \ldots, m_{t+1} from M. We have: $m_i | a$ for $i = 1, ..., t + 1$, and $m \nmid a$ for $m \in M \setminus \{m_1, ..., m_{t+1}\}.$ Put $p = m_{t+1}$. It follows from Proposition 8.5, that have the following equality:

$$
B_a = -\sum_{k=1}^{p-1} B_{a+k\frac{n}{pq}}.
$$

Let $k \in \{1, \ldots, p-1\}$, and consider $c := a + k \frac{n}{pq}$. Since *n* is special, the number $k\frac{n}{pq}$ is not divisible by p. But p | a, so p $\nmid c$, and consequently, $m_{t+1} \nmid c$. It is clear that $m_i | c$ for all $i = 1, \ldots, t$, and $m \nmid c$ for all $m \in M \setminus \{m_1, \ldots, m_t\}$. This means that c is divisible by exactly t primes from M. Thus, by our assumption, $B_c \in \mathcal{W}_j$. Therefore, by the above equality, $B_a \in \mathcal{W}_i$.

Now we use a simple induction and, by Steps 1 and 2, we obtain the proof of our theorem.

9. The main theorem

Assume that $n \geq 3$ is a special number of a type P. Let I_1, \ldots, I_s be the n-sets of type P, let A be the n-standard set of type P, and let

$$
S = \Big\{ S_{p_j,r}; \ j \in \{1,\ldots,s\}, \ r \in I_j \Big\}, \quad \mathcal{T} = \Big\{ T_{p_j,r}; \ j \in \{1,\ldots,s\}, \ r \in I_j \Big\}.
$$

Since n is special, we have the following sequence of important properties.

(1) A is a basis of the group \mathcal{G}_n (Theorems 5.8, 3.5 and 5.10).

(2) S is algebraically independent over K, and $K(X)^d = K(\mathcal{S})$ (Proposition 7.5).

(3) $K(\mathcal{S}) = K(\mathcal{T})$ (Proposition 8.1 and Theorem 8.6).

We know also (see Proposition 8.2) that each element of $\mathcal T$ is a polynomial belonging to $\mathbb{Z}[X]$. Moreover, $|\mathcal{T}| = |\mathcal{S}| = |\mathcal{A}| = n - \varphi(n)$. In particular, the set $\mathcal T$ is algebraically independent over K. Put an order on the set $\mathcal T$. Let $\mathcal{T} = \{F_0, F_1, \ldots, F_{m-1}\}\$ where $m = n - \varphi(n)$. Thus, if the number n is special, then $K(X)^d = K(F_0, \ldots, F_{m-1})$, where F_0, \ldots, F_{m-1} are polynomials belonging to $\mathbb{Z}[X]$, and these polynomials are algebraically independent over \mathbb{Q} .

Let us recall, that K is a field of characteristic zero containing ε (where ε is a primitive *n*-th root of unity). But the polynomials F_0, \ldots, F_{m-1} have integer coefficients, and they are constants of d. They are not dependent from the field K. Since the polynomials $d(x_0), \ldots, d(x_{n-1})$ belong to $\mathbb{Z}[X]$, we see that we may assume that K is a field of characteristic zero, without the assumption concerning ε . Thus, we proved the following theorem.

Theorem 9.1. Let K be an arbitrary field of characteristic zero, $n \geq 3$ an integer, and $K[X] = K[x_0, \ldots, x_{n-1}]$ the polynomial ring in n variables over K. Let $d: K[X] \to K[X]$ be the cyclotomic derivation, that is, d is a K-derivation of $K[X]$ such that

$$
d(x_i) = x_{i+1} \quad \text{for} \quad i \in \mathbb{Z}_n.
$$

Assume that $n = p_1 p_2 \cdots p_{s-1} p_s^{\alpha}$, where $s \geq 1$, $\alpha \geq 1$ and p_1, \ldots, p_s are distinct primes. Let $m = n - \varphi(n)$, where φ is the Euler totient function. Then

$$
K(X)^d = K(F_0, \ldots, F_{m-1}),
$$

where F_0, \ldots, F_{m-1} are algebraically independent over $\mathbb Q$ polynomials belonging to $\mathbb{Z}[X]$.

More exactly, $\{F_0, F_1, \ldots, F_{m-1}\} = \{T_{p_j, r}; j \in \{1, \ldots, s\}, r \in I_j\}, where$ I_1, \ldots, I_s are the n-sets of type $[p_1, \ldots, p_s]$.

We end this article with several examples illustrating the above theorem.

Example 9.2. If $n = 4$, then $K(X)^d = K(F_0, F_1)$, where $F_0 = x_0^2 - 2x_1x_3 + x_2^2$, and $F_1 = \varrho(F_0)$.

Example 9.3. If $n = 8$, then $K(X)^d = K(F_0, F_1, F_2, F_3)$, where $F_1 = \varrho(F_0)$, $F_2 = \varrho^2(F_0), F_3 = \varrho^3(F_0)$ and $F_0 = x_0^2 + x_4^2 - 2x_3x_5 - 2x_7x_1 + 2x_2x_6$.

Example 9.4. If $n = 9$, then $K(X)^d = K(F_0, F_1, F_2)$, where $F_1 = \varrho(F_0)$, $F_2 = \rho^2(F_0),$

$$
F_0 = 3x_1x_4^2 + 3x_8^2x_2 + 3x_8x_5^2 - 3x_0x_4x_5 - 3x_1x_0x_8 - 3x_2x_4x_3 - 3x_2x_7x_0
$$

\n
$$
-3x_8x_6x_4 + 3x_2^2x_5 + 3x_7^2x_4 + 3x_1^2x_7 + x_6^3 + x_0^3 - 3x_1x_3x_5 + 6x_0x_6x_3
$$

\n
$$
-3x_8x_7x_3 - 3x_2x_1x_6 - 3x_5x_7x_6 + x_3^3.
$$

Example 9.5. If $n = 6$ and $P = [2, 3]$, then $K(X)^d = K(F_0, F_1, F_2, F_3)$, where

$$
F_0 = x_0^2 - 2x_1x_5 + 2x_2x_4 - x_3^2,
$$

\n
$$
F_3 = (x_1^2 + x_4x_3 - 2x_1x_4 + x_0x_1 + x_5^2 - x_5x_3 + x_2x_3 - 2x_2x_5 + x_0x_5
$$

\n
$$
-2x_0x_3 - x_0x_2 - x_4x_0 + x_4^2 - x_1x_3 + x_2^2 + x_4x_5 + x_1x_2 + x_0^2
$$

\n
$$
-x_1x_5 - x_4x_2 + x_3^2(x_0 - x_1 + x_2 - x_3 + x_4 - x_5),
$$

and $F_1 = \rho(F_0)$, $F_2 = \rho^2(F_0)$.

Example 9.6. If
$$
n = 6
$$
 and $P = [3, 2]$, then $K(X)^d = K(F_0, F_1, F_2, F_3)$, where

$$
F_0 = x_0^3 + x_2^3 + x_4^3 + 3x_0x_3^2 + 3x_2x_5^2 + 3x_4x_1^2 - 3x_0x_2x_4 - 3x_5x_0x_1
$$

\n
$$
-3x_1x_2x_3 - 3x_3x_4x_5,
$$

\n
$$
F_2 = 2x_1^2 + x_2^2 - x_3^2 - 2x_4^2 - x_5^2 + x_0^2
$$

\n
$$
-2x_1x_3 + 2x_2x_4 + 4x_3x_5 + 2x_4x_0, -2x_5x_1 - 4x_2x_0.
$$

and $F_1 = \rho(F_0)$, $F_3 = \rho(F_2)$.

Example 9.7. If $n = 12$, then $K(X)^d = K(F_0, ..., F_7)$, where

$$
F_0 = -3x_6x_2x_4 - 3x_6x_8x_{10} - 3x_4x_0x_8 + x_0^3 + 3x_6^2x_0 - 3x_1x_8x_3 + 3x_3^2x_6
$$

\n
$$
+3x_9^2x_6 + x_8^3 - 3x_1x_{11}x_0 + 6x_5x_{11}x_8 - 3x_1x_5x_6 + 3x_7^2x_{10} + 3x_{10}^2x_4
$$

\n
$$
+3x_{11}^2x_2 + 3x_{11}^2x_{10} + 3x_{5}^2x_2 + 3x_{2}^2x_8 + 6x_3x_0x_9 + 6x_1x_7x_4 - 3x_7x_{11}x_6
$$

\n
$$
-3x_7x_5x_0 - 3x_{10}x_{11}x_3 - 3x_{10}x_5x_9 - 3x_4x_{11}x_9 - 3x_4x_5x_3 - 3x_1x_2x_9
$$

\n
$$
-3x_7x_2x_3 - 3x_7x_8x_9 + x_4^3 - 3x_{10}x_2x_0,
$$

$$
F_4 = 4x_6x_8 + x_3^2 - 2x_{10}x_8 + 2x_7x_3 + 2x_7x_{11} - 2x_{10}x_0 - 2x_4x_2 - 2x_4x_6
$$

+2x_1x_9 + 2x_1x_5 + 4x_0x_2 - 2x_0x_6 - 4x_3x_{11} - 2x_1^2 + x_{11}^2 + x_5^2 + 4x_4x_{10}
-2x_2x_8 - 2x_7^2 + x_9^2 - 4x_9x_5,

and $F_1 = \varrho(F_0)$, $F_2 = \varrho^2(F_0)$, $F_3 = \varrho^3(F_0)$, $F_5 = \varrho(F_4)$, $F_6 = \varrho^3(F_4)$, $F_7 = \varrho^4(F_4)$.

REFERENCES

- [1] N.G. de Bruijn, On the factorization of cyclic groups, Indag. Math. 15 (1953), 370–377.
- [2] A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Progress in Mathematics vol. 190, 2000.
- [3] G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations, Encyclopedia of Mathematical Sciences 136, Springer, 2006.
- [4] T.Y. Lam and K.H. Leung, On the cyclotomic polynomial $\Phi_{pq}(x)$, American Mathematical Monthly, 103(7) (1996), 562–564.
- [5] T.Y. Lam and K.H. Leung, On vanishing sums of roots of unity, J. Algebra, 224 (2000), 91–109,
- [6] S. Lang, Algebra, Second Edition, Addison-Wesley Publishing Company, 1984.
- [7] S. Lang, Undergraduate Algebra, Second Edition, Springer, 1990.
- [8] J. Moulin Ollagnier and A. Nowicki, Derivations of polynomial algebras without Darboux polynomials, J. Pure Appl. Algebra, 212 (2008), 1626–1631.
- [9] J. Moulin Ollagnier and A. Nowicki, Monomial derivations, Communications in Algebra, 39 (2011), 3138–3150.
- [10] J. Moulin Ollagnier and A. Nowicki, Constants of cyclotomic derivations, J. Algebra 394 (2013), 92–119.
- [11] A. Nowicki, Polynomial derivations and their rings of constants, N. Copernicus University Press, Toruń, 1994.
- [12] A. Nowicki and M. Nagata, Rings of constants for k -derivations in $k[x_1, \ldots, x_n]$, J. Math. Kyoto Univ., 28 (1988), 111–118.
- [13] L. R´edei, Ein Beitrag zum Problem der Faktorisation von endlichen Abelschen Gruppen, Acta Math. Hungar, 1 (1950), 197–207.
- [14] A. Satyanarayan Reddy, The lowest 0, 1-polynomial divisible by cyclotomic polynomial, arXiv: 1106.127v2 [math.NT] 15Nov 2011.
- [15] I.J. Schoenberg, A note on the cyclotomic polynomial, Mathematika, 11 (1964), 131–136.
- [16] J.P. Steinberger, The lowest-degree polynomial with nonnegative coefficients divisible by the n-th cyclotomic polynomial, The electronic journal of combinatorics $19(4)$ (2012), $\#P1$
- [17] J.P. Steinberger, Minimal vanishing sums of roots of unity with large coefficients, Proc. Lond. Math. Soc. (3) 97 (2008), 689–717.

(Jean Moulin Ollagnier) Laboratoire LIX, Ecole Polytechnique, F 91128 Palaiseau ´ Cedex, France

 $E-mail$ $address:$ Jean. Moulin-Ollagnier@polytechnique.edu

(Andrzej Nowicki) Nicolaus Copernicus University, Faculty of Mathematics and COMPUTER SCIENCE, UL. CHOPINA 12/18, 87-100 TORUŃ, POLAND

E-mail address: anow@mat.uni.torun.pl