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RATIONALITY OF SEMIALGEBRAIC FUNCTIONS

WOJCIECH KUCHARZ AND KRZYSZTOF KURDYKA

Abstract. Let X be an algebraic subset of Rn, and f : X → R a semialgebraic

function. We prove that if f is continuous rational on each curve C ⊂ X then:
1) f is arc-analytic, 2) f is continuous rational on X. As a consequence we

obtain a characterization of hereditarily rational functions recently studied by

J. Kollár and K. Nowak.

1. Introduction

Our goal is to give a short introduction to some results on real rational functions.
The interested reader may consult [4] and [5] for a more comprehensive treatment.
We strive for simplicity of our presentation. Keeping this in mind, we deal only
with semialgebraic functions. Furthermore, we explain in detail the role of Bertini’s
theorem in establishing a criterion for rationality of such functions.

Throughout this section, X denotes an algebraic subset of Rn. Recall that
a function f : X → R is said to be regular at x ∈ X if there exist two polynomials
p, q ∈ R[x1, . . . , xn] such that q(x) 6= 0 and f = p/q in a Zariski open neighborhood
of x in X. Furthermore, f is regular on a subset of X if it is regular at each point
of this subset. We say that the function f : X → R is rational if it is regular on
a Zariski open dense subset of X (this minor deviation from the standard definition
is justified, f being defined everywhere on X). Obviously, f is rational if and only
if its restriction to each irreducible component of X is rational. We also say that
the function f is continuous rational if it is continuous (in the strong topology) on
X and rational in the sense just defined.
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Example 1.1. Let C = {x3 = y2} ⊂ R2, and let f : C → R be the function defined
by f = y/x for (x, y) 6= (0, 0) and f(0, 0) = 0. Then f is continuous rational on C
but is not regular at (0, 0).

Note that Example 1.1 makes sense also in the complex setting.

Example 1.2. The function f : R2 → R, defined by f(x, y) = x3

x2+y2 for (x, y) 6=
(0, 0) and f(0, 0) = 0, is continuous rational on R2 but is not regular at (0, 0).

Example 1.2 is specific to real algebraic geometry. Indeed, in the complex setting,
a continuous rational function on a nonsingular algebraic set is actually regular.

Continuous rational functions on nonsingular real algebraic sets are studied by
the first named author [6, 7, 8] in the context of approximation of continuous maps
into spheres. Both authors initiated a theory of vector bundles [9] on real algebraic
varieties, in which continuous rational functions are used to define morphisms.
Continuous rational functions, under the name fonctions régulues, are the object
of investigation in [3]. An interesting phenomenon discovered by J. Kollár is recalled
below.

Example 1.3. The algebraic surface

S := {x3 − (1 + z2)y3 = 0} ⊂ R3

is an analytic submanifold, and the function f : S → R defined by f(x, y, z) =
(1 + z2)1/3 is analytic and semialgebraic. Furthermore, f is continuous rational on
S since f(x, y, z) = x/y on S without the z-axis. On the other hand, f restricted
to the z-axis is not a rational function, and f cannot be extended to a continuous
rational function on R3, cf. [5].

In order to avoid such a pathology Kollár and Nowak [5] proposed the following
notion. A function f : X → R is said to be hereditarily rational if for every algebraic
set Z ⊂ X the restriction f |Z is a rational function on Z. According to the main
result of [5], any continuous and hereditarily rational function on X ⊂ Rn can be
extended to a continuous and hereditarily rational function on Rn. Moreover, if
the algebraic set X is nonsingular, then any continuous rational function on X is
hereditarily rational [5].

Now we introduce a crucial notion for this paper. We say that a function f : X →
R is curve-rational if for every irreducible algebraic curve C ⊂ X the restriction
f |C is rational on C.

Our main result, whose proof is given in Section 3, is the following.

Theorem A. For a function f : X → R on an algebraic subset X of Rn, the
following conditions are equivalent:

(a) f is hereditarily rational.
(b) f can be extended to a hereditarily rational function on Rn.
(c) f is semialgebraic and curve-rational.



“20˙Kucharz˙Kurdyka” — 2017/12/1 — 20:45 — page 87 — #3

RATIONALITY OF SEMIALGEBRAIC FUNCTIONS 87

As demonstrated by Example 1.2, a semialgebraic continuous rational function
need not be curve-rational.

We are now heading towards our second result, which is proved in Section 4. We
say that a function f : X → R is continuously curve-rational if for every irreducible
algebraic curve C ⊂ X the restriction f |C is continuous rational on C.

In the 1980’s the notion of arc-analytic function was introduced by the second
named author [10]. A function f : V → R, defined on a real analytic set V , is said
to be arc-analytic if f ◦ γ is analytic for every analytic arc γ : (−1, 1) → V . An
arc-analytic function on Rn need not be continuous [1] and may have a nondiscrete
singular set [11].

Theorem B. Any semialgebraic, continuously curve-rational function on an alge-
braic subset of Rn is continuous and arc-analytic.

As an immediate consequence of Theorems A and B we obtain the following
characterization of continuous hereditarily rational functions.

Corollary 1.4. A function on an algebraic subset of Rn is continuous and hered-
itarily rational if and only if it is semialgebraic and continuously curve-rational.

In Section 2, which is crucial for the proof of Theorem A, we recall some results
on semialgebraic sets, prove a suitable version of Bertini’s theorem, and analyze
the Zariski closure of a Nash submanifold of Rn.

2. Preliminaries

We will use the notion of dimension in various situations. If Y is an algebraic
subset of Rn or Cn, then by dimY we mean the Krull dimension of the ring of
polynomial R-valued or C-valued, respectively, functions on Y . Recall that a Nash
submanifold of Rn is an analytic submanifold that is also a semialgebraic set. For
a semialgebraic subset A of Rn,

dimA := max dimN,

where N runs through the collection of Nash submanifolds of Rn contained in A.

The Zariski closure of an arbitrary subset S of Rn will be denoted by S
Z

. Hence

S
Z

is the smallest algebraic subset of Rn containing S. If X is an algebraic subset
of Rn, we denote by XC its complexification, that is, the smallest algebraic subset
of Cn containing X. For A as above,

dimA = dimA
Z

= dim(A
Z

)C,

cf. [2, Section 2.8]. We will frequently use these equalities without explicitly
referring to them.

In the sequel we will also use the following standard facts on rational functions.
Let X be an irreducible algebraic subset of Rn. Recall that each nonempty Zariski
open subset of X is Zariski dense. Let f : X → R be a rational function that is
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regular in a nonempty Zariski open set X0 ⊂ X. We denote by G(f) the Zariski
closure in Rn × R of the graph of f |X0

, that is,

G(f) := graph(f |X0
)
Z
.

SinceX is irreducible, so areX0 and graph(f |X0
). Consequently, G(f) is irreducible

as well. We have

dimG(f) = dim(graph(f |X0
)) = dimX0 = dimX.

It readily follows that G(f) does not depend on the choice of X0. By complexifying
X ⊂ Rn and G(f) ⊂ Rn×R, we obtain irreducible complex algebraic sets XC ⊂ Cn

and G(f)C ⊂ Cn×C. For our purposes, the key property of G(f)C is the following.

Lemma 2.1. Let π : Cn × C → Cn be the canonical projection. With notation as
above,

G(f)C ∩ π−1(x) = {(x, f(x))}
for all x ∈ X0.

Proof. We can choose polynomials p, q ∈ R[x1, . . . , xn] with q(x) 6= 0 and f(x) =
p(x)/q(x) for all x ∈ X0, cf. [2, p. 62]. Set

U := {z ∈ XC | q(z) 6= 0}

and define g : U → C by g(z) = p(z)/q(z) for z ∈ U . It suffices to prove that

(i) G(f)C ∩ (U × C) = graph(g).

To this end denote by G the Zariski closure of graph(g) in Cn × C. Then G is
irreducible with

dimG = dimXC = dimX = dimG(f)C.

Since graph(g) is Zariski closed in U × C, it follows that

(ii) G ∩ (U × C) = graph(g).

Clearly, graph(f |X0
) ⊂ graph(g), which implies that G(f)C ⊂ G. Consequently,

(iii) G(f)C = G,

both G(f)C and G being complex algebraic sets of the same dimension. Hence (i)
follows by combining (ii) and (iii). �

Next we study the Zariski closure of Nash manifolds. One readily checks that the
Zariski closure of a connected Nash submanifold of Rn is an irreducible algebraic
set. It is convenient to introduce the following notion.

We say that two Nash submanifolds A and B of Rn are compatible if for any
nonempty open subsets (in the relative strong topology) A′ ⊂ A, B′ ⊂ B there exist
points a ∈ A′, b ∈ B′ and an irreducible algebraic curve C ⊂ Rn with the following
properties: a is an accumulation point of A ∩ (C \ {a}) and b is an accumulation
point of B ∩ (C \ {b}). In that case, both a and b belong to C.
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Proposition 2.2. If two connected Nash submanifolds A and B of Rn, with

dimA = dimB, are compatible, then A
Z

= B
Z

.

Proof. Note that A
Z

and B
Z

are irreducible algebraic subsets of the same di-

mension. Suppose that A and B are compatible, but A
Z 6= B

Z
. Then the sets

A′ := A \BZ and B′ := B \AZ are nonempty and open in A and B, respectively.
Let a ∈ A′, b ∈ B′, and C be as in the definition of compatible Nash submanifolds
given above. Since a is an accumulation point of A ∩ (C \ {a}), it follows that the
intersection A ∩ C is an infinite set and hence the irreducibility of C implies the

inclusion C ⊂ AZ . Thus we get a contradiction since a, b ∈ C. �

We will need an affine version of the classical theorem of Bertini. For the sake
of completeness we include a full proof of it.

Theorem 2.3 (Bertini). Let π : Cn × Ck → Cn be the canonical projection, Y ⊂
Cn×Ck an irreducible algebraic set, and X the Zariski closure of π(Y ). If dimY =
dimX = d ≥ 2, then the set of affine (n − d + 1)-planes in Cn contains a Zariski
open dense subset B such that for every L ∈ B the intersection Y ∩ π−1(L) is an
irreducible curve.

Proof. We will repeat almost word by word the proof of Theorem 3.3.1 (a projective
version of Bertini’s theorem) from the excellent survey of R. Lazarsfeld [12]. First
we fix a general affine (n − d)-plane Λ such that π−1(Λ) cuts Y transversally in
finitely many smooth points. By a translation we may assume that Λ is actually
a linear subspace of Cn. The space of linear (n− d+ 1)-planes which contain Λ is
parametrized by a projective space T = Pd−1. Given t ∈ T we denote by Lt the
corresponding linear (n− d+ 1)-plane. Consider the set

V := {(y, t) ∈ Y × T | π(y) ∈ Lt}.

The issue is to establish the irreducibility of a general fiber of the second projection

p : V → T.

To this end note that the first projection V → Y is actually the blowing up of
Y along the finite set Y ∩ π−1(Λ). Hence V is irreducible. Furthermore, if we fix
a point y0 ∈ Y ∩ π−1(Λ), then the mapping s : T → V , defined by s(t) = (y0, t),
defines a global section of p whose image is away from the singular locus of V .
Moreover, p is a submersion at each point s(t) = (y0, t), t ∈ T .

Let Z ⊂ V be the union of singular points of V and critical points of p. Clearly
Z is nowhere dense in V , hence V \Z is connected and p is a submersion on V \Z.
By a result of Verdier [14, Corollary 5.1], there exists a Zariski closed nowhere
dense set R ⊂ T such that

p′ : V ′ → T ′
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is a locally trivial fibration (for the strong topology), where T ′ = T \ R, V ′ =
p−1(T ′), and p′ stands for the restriction of p to V ′. Clearly s restricted to T ′ is
a section of p′.

We claim that for each t ∈ T ′ the fiber p′−1(t) is connected, which implies
that p−1(t) is irreducible. Indeed, let Wt be the connected component of p′−1(t)
containing s(t) and set

W :=
⋃
t∈T ′

Wt.

The fiber p′−1(t) has finitely many connected components, and hence Wt is open
and closed in it. Moreover, since p′ is a locally trivial fibration, it follows that
W is open and closed in V ′. Hence W = V ′ and Wt = p′−1(t). Thus p′−1(t) is
connected. �

We will make use of Theorem 2.3 to study real algebraic sets. First we recall
that an algebraic subset V of Cn is said to be defined over R if it is the set of
common zeros (in Cn) of a collection of polynomials with real coefficients. In other
words, V is required to be stable under complex conjugation. In that case,

V (R) := V ∩ Rn

is called the set of real points of V . If V (R) is Zariski dense in V , then

V (R)C = V.

Proposition 2.4. Let X be a d-dimensional irreducible algebraic subset of Rn. Let
A and B be Nash submanifolds of Rn, both of dimension d and contained in X.
Let A′ ⊂ A and B′ ⊂ B be nonempty open subsets (in the relative strong topology).
Then there exist points a ∈ A′, b ∈ B′ and an affine (n − d + 1)-plane M in Rn

such that C := X ∩M is an irreducible curve for which a is an accumulation point
of A ∩ (C \ {a}) and b is an accumulation point of B ∩ (C \ {b}). In particular, A
and B are compatible.

Proof. It suffices to consider the case d ≥ 2. Set r := n− d+ 1. If X0 is the set of
regular points of X, then the subsets A′ ∩X0 ⊂ A and B′ ∩X0 ⊂ B are nonempty
and open. By Theorem 2.3 (with k = 0), for a general affine r-plane L in Cn the
intersection XC ∩ L is an irreducible complex curve. We can choose such an L so
that it is defined over R and the affine r-plane M := L(R) in Rn cuts A and B
transversally at some points a ∈ A′∩X0 and b ∈ B′∩X0. Then the complex curve
XC ∩ L is defined over R, and hence

C := (XC ∩ L)(R) = X ∩M

is an irreducible real curve satisfying the required conditions. �
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3. Proof of Theorem A and related results

The following result will play the key role.

Theorem 3.1. Let X be an irreducible algebraic subset of Rn of dimension d ≥
2, and f : X → R a semialgebraic function. Let D be a Nash submanifold of
Rn, contained in X and of dimension d. Let C be the collection of all irreducible
algebraic curves in X of the form X ∩M for some affine (n − d + 1)-plane M in
Rn with D ∩M 6= ∅. Assume that for every curve C ∈ C the restriction f |C is
a rational function. Then the function f is rational.

Proof. Let A and B be connected Nash submanifolds of Rn, both of dimension
d with A ⊂ D and B ⊂ X, for which the restrictions f |A and f |B are analytic
functions. Such A and B exist, the function f being semialgebraic, cf. [2].

Claim 1. The graphs F := graph(f |A) and G := graph(f |B) have the same
Zariski closure in Rn × R.

Note that F and G are connected Nash submanifolds of Rn × R of dimension
d. By Proposition 2.2, it suffices to show that F and G are compatible. To this
end let A′ and B′ be nonempty open subsets of A and B, respectively. According
to Proposition 2.4, there exist points a ∈ A′, b ∈ B′ and a curve C ∈ C such that
a is an accumulation point of A ∩ (C \ {a}) and b is an accumulation point of
B ∩ (C \ {b}). Since f |C is a rational function, there exists a set C0 ⊂ C such that
its complement C \ C0 is finite, f |C is regular on C0, and

G(f |C) = graph(f |C0
)
Z

is an irreducible algebraic curve in Rn × R. The points a and b may not be in C0,
but it does not matter. By construction, (a, f(a)) and (b, f(b)) are accumulation
points of

F ∩ (graph(f |C0
) \ {(a, f(a))}) and G ∩ (graph(f |C0

) \ {(b, f(b))}),
respectively. This argument shows that F and G are compatible, which completes
the proof of Claim 1.

Note that the algebraic subset

Y := F
Z

of X × R is of dimension d and irreducible.

Claim 2. There exists a nonempty Zariski open set X0 ⊂ X such that
graph(f |X0) ⊂ Y .

Since the function f is semialgebraic, there is a decomposition

X = E ∪A1 ∪ . . . ∪Ak

into disjoint semialgebraic sets such that dimE < d, and for i = 1, . . . , k the Ai is
a d-dimensional connected Nash submanifold of Rn for which the restriction f |Ai
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is an analytic function, cf. [2]. By Claim 1, the Zariski closure of graph(f |Ai
) is

equal to Y . Hence Claim 2 holds for X0 := X \ EZ .

Let π : Cn × C → Cn be the canonical projection. Obviously, the complexi-
fications YC ⊂ Cn × C and XC ⊂ Cn are irreducible complex algebraic sets of
dimension d. We have π(YC) ⊂ XC since π(Y ) ⊂ X and π is continuous in the
Zariski topology. It follows that the restriction π0 : YC → XC of π is generically
finite-to-one. Hence there exist a positive integer l and a nonempty Zariski open
set U ⊂ XC such that for every point x ∈ U the set π−1

0 (x) = YC ∩ π−1(x) consists
of l distinct points.

Claim 3. The map π0 : YC → XC is generically one-to-one, that is, l = 1.

Set r := n − d + 1. By Theorem 2.3 (with k = 0), the set of affine r-planes
in Cn contains a Zariski open and dense subset B such that for every L ∈ B the
intersection XC ∩ L is an irreducible complex curve. Shrinking B if necessary and
making use of Theorem 2.3 (with k = 1), we may assume that YC ∩ π−1(L) is also
an irreducible complex curve. Now we choose an affine r-plane M in Rn such that
MC ∈ B and M cuts X transversally at some regular point contained in A∩X0∩U .
Then XC ∩MC is an irreducible complex curve defined over R, and

Γ := X ∩M
is its set of real points. By construction, Γ is an irreducible real curve with

ΓC = XC ∩MC.

Since the restriction f |Γ is a rational function, there exists a set Γ0 ⊂ Γ such that
its complement Γ \ Γ0 is finite, f |Γ is regular on Γ0, and

G(f |Γ) = graph(f |Γ0
)
Z

is an irreducible algebraic curve in Rn × R. By Claim 2,

graph(f |Γ0∩X0
) ⊂ Y ∩ π−1(M).

Since the intersection Γ0 ∩ X0 is nonempty, we obtain G(f |Γ) ⊂ Y ∩ π−1(M).
Taking the complexifications we get G(f |Γ)C ⊂ YC ∩ π−1(MC). The last inclusion
implies that

G(f |Γ)C = YC ∩ π−1(MC)

since both G(f |Γ)C and YC ∩ π−1(MC) are irreducible complex curves. According
to Lemma 2.1, the equality

G(f |Γ)C ∩ π−1(x) = {(x, f(x))}
holds for all x ∈ Γ0. It follows that

π−1
0 (x) = YC ∩ π−1(x) = {(x, f(x))}

for all x ∈ Γ0. Since the intersection Γ0 ∩ U is nonempty, we conclude that l = 1,
which proves Claim 3.

We are ready to complete the proof of the theorem. Obviously, YC ∩ π−1(U) is
a constructible set, which according to Claim 3 is the graph of some function
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g : U → C. By Zariski’s theorem on constructible graph (see for example
 Lojasiewicz [13, p. 449]), there exist a nonempty Zariski open set U ′ ⊂ U and
complex polynomial functions p, q on Cn such that

q(z) 6= 0 and g(z) =
p(z)

q(z)
for all z ∈ U ′.

It follows from Claim 2 that g(x) = f(x) ∈ R for all x ∈ X0 ∩ U ′. In particular,
using the standard notation for complex conjugation, we get

(∗) f(x) =
p(x)

q(x)
=
p(x)

q(x)
for all x ∈ X0 ∩ U ′.

The polynomials

p1(z) := p(z)q(z) + p(z)q(z) and q1(z) := 2q(z)q(z)

satisfy p1(z) = p1(z) and q1(z) = q1(z), which implies that they have real coeffi-
cients. In view of (∗) we get

f(x) =
p1(x)

q1(x)
for all x ∈ X0 ∩ U ′.

Hence f is a rational function on X, as required. �

As an immediate consequence of Theorem 3.1 we obtain the following criterion
for rationality of semialgebraic functions on Rn.

Corollary 3.2. Let U be a nonempty open subset (in the strong topology) of Rn.
A semialgebraic function on Rn is rational, provided that its restriction to every
affine line passing through a point in U is a rational function.

Let us note that the hypothesis in Corollary 3.2 cannot be relaxed too much.

Example 3.3. The function f : R2 → R, defined by f(x, y) = (x4 + y4)
1
2 , is

semialgebraic and arc-analytic. The restriction of f to an affine line L ⊂ R2 is
a rational function if and only if L passes through the origin. Obviously, f is not
a rational function.

It is convenient to record the following observation (cf. [5, p. 91]).

Remark 3.4. Let X be an algebraic subset of Rn, and f : X → R a function.
Then f is hereditarily rational if and only if there exists a sequence of algebraic
sets

X = X0 ⊃ X1 ⊃ · · · ⊃ Xm = ∅
such that for i = 0, . . . ,m − 1 the restriction f |Xi

is regular on Xi \ Xi+1. In
particular, every hereditarily rational function on X is semialgebraic. Indeed, set
X0 := X. If f is rational, then there exists an algebraic subset X1 ⊂ X0 such that
dimX1 < dimX0 and f is regular on X0 ⊂ X1. If f is hereditarily rational, we
can repeat this process with f |X1 , and so on, which yields a sequence of algebraic
sets with the required properties and shows that f is semialgebraic. The converse
readily follows.
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Next we deal with the extension problem for hereditarily rational functions.

Proposition 3.5. Let W ⊂ X be algebraic subsets of Rn, and f : X → R
a hereditarily rational function that is regular on X \W . Then f can be extended
to a hereditarily rational function on Rn that is regular on Rn \W .

Proof. We use induction on dimX. The case dimX is obvious.

Since f is a rational function, it is regular on a Zariski open dense set X0 ⊂ X.
We may assume that W ⊂ X \ X0 so, in particular, dimW < dimX. Hence, by
induction, f |W can be extended to a hereditarily rational function ϕ : Rn → R that
is regular on Rn \W . The function g := f − ϕ|X on X is hereditarily rational,
regular on X \ W and vanishes on W . It suffices to extend g to a hereditarily
rational function G : Rn → R that is regular on Rn \ W . This can be done as
follows. Since g is regular on X \W , we can find polynomial functions p, q on Rn

satisfying

q(x) 6= 0 and g(x) =
p(x)

q(x)
for all x ∈ X \W,

cf. [2, p. 62]. Let r be a polynomial function on Rn vanishing precisely in X. Set
P := pq, Q := q2 + r2, and define G : Rn → R by

G(x) =
P (x)

Q(x)
for x ∈ Rn \W and G(x) = 0 for x ∈W.

By construction, G is regular on Rn \W and G|X = g. Furthermore, G is heredi-
tarily rational in view of Remark 3.4. The proof is complete. �

Now we can prove the main result of this paper.

Proof of Theorem A. It is clear that (b) ⇒ (a), whereas (a) ⇒ (b) follows from
Proposition 3.5. By Remark 3.4, (a)⇒ (c). Thus it remains to show that (c)⇒ (a).

Suppose that condition (c) holds. We want to prove that for every algebraic
set Z ⊂ X the restriction f |Z is a rational function. It suffices to do it for Z
irreducible of dimension at least 2. In that case, however, the assertion follows
from Theorem 3.1. �

4. Nash arcs and meromorphic functions

Throughout this section, X denotes an algebraic subset of Rn. A map
γ : (−1, 1)→ X that is analytic and semialgebraic is called a Nash arc in X.

Lemma 4.1. Let f : X → R be a continuously curve-rational function, and
γ : (−1, 1)→ X a Nash arc. Then the function f ◦ γ is analytic.

Proof. We may assume that γ is a nonconstant map. Then γ((−1, 1)) is a semi-
algebraic curve, and hence its Zariski closure C is an irreducible algebraic curve
in X. By assumption, f |C is a continuous rational function. In particular, there
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exist two polynomials p, q ∈ R[x1, . . . , xn] with q(x) 6= 0 and f(x) = p(x)/q(x) for
all x ∈ C \ C1, where C1 is a finite set. The function

f(γ(t)) = (f |C)(γ(t)) =
p(γ(t))

q(γ(t))

is continuous and meromorphic on (−1, 1), and hence it is analytic. �

Lemma 4.2. Let f : X → R be a semialgebraic function. Assume that for every
Nash arc γ : (−1, 1)→ X the function f ◦ γ is analytic. Then f is continuous.

Proof. Let S1 ⊂ R2 be the unit circle. We compactify R via the embedding R→ S1,
which is the inverse of the stereographic projection from the north pole, and regard
F := graph(f) as a subset of Rn × R2. Fix a point x0 ∈ X and let l ∈ S1 be any
point such that (x0, l) belongs to the closure of F in Rn × R2. It suffices to prove
that f(x0) = l. By the Nash curve selection lemma [2, Proposition 8.1.13], there
exists a Nash arc ϕ = (ψ, g) : (−1, 1)→ Rn × R2 with ϕ(0) = (ψ(0), g(0)) = (x0, l)
and ϕ((0, 1)) ⊂ F . In particular, g(t) = f(ψ(t)) for t ∈ (0, 1). Consequently,
g(t) = f(ψ(t)) for t ∈ (−1, 1) since both g and f ◦ ψ are analytic functions. Hence

l = g(0) = f(x0) = lim
t→0

f(ψ(t)),

which proves the continuity of f at x0. �

Let M be a connected real analytic manifold. We say that a function λ : M → R
is meromorphic if there exist two analytic functions α : M → R and β : M → R
such that the set M0 := {y ∈M | β(y) 6= 0} is nonempty and λ(y) = α(y)/β(y) for
all y ∈M0.

Proposition 4.3. Let f : X → R be a hereditarily rational function. Then for any
connected real analytic manifold M and any analytic map ϕ : M → X the function
f ◦ ϕ is meromorphic.

Proof. We first note that the Zariski closure Z of ϕ(M) is an irreducible algebraic
subset of X (possibly with dimZ > dimM). By assumption, the restriction f |Z
is a rational function, and hence there exist two polynomials p, q ∈ R[x1, . . . , xn]
with q(x) 6= 0 and f(x) = p(x)/q(x) for all x ∈ Z \ Z1, where Z1 ⊂ Z is an
algebraic set, Z1 6= Z. Consequently, f ◦ϕ is a meromorphic function since the set
M0 := ϕ−1(Z \Z1) is nonempty and f(ϕ(y)) = p(ϕ(y))/q(ϕ(y)) for all y ∈M0. �

Proof of Theorem B. Let X be an algebraic subset of Rn, and f : X → R a semial-
gebraic function that is continuously curve-rational. According to Theorem A, f is
hereditarily rational. Furthermore, by Lemmas 4.1 and 4.2, f is continuous. Now,
let η : (−1, 1)→ X be an analytic arc. In view of Proposition 4.3, f ◦ η is a mero-
morphic function. Thus, f ◦ η is analytic since it is continuous and meromorphic
on (−1, 1). Consequently, f is arc-analytic. �
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