A NOTE ON SQUARE-FREE FACTORIZATIONS

PIOTR JĘDRZEJEWICZ, ŁUKASZ MATYSIAK, AND JANUSZ ZIELIŃSKI

Abstract

We analyze properties of various square-free factorizations in greatest common divisor domains (GCD-domains) and domains satisfying the ascending chain condition for principal ideals (ACCP-domains).

1. Introduction

Throughout this article by a ring we mean a commutative ring with unity. By a domain we mean a ring without zero divisors. By R^{*} we denote the set of all invertible elements of a ring R. Given elements $a, b \in R$, we write $a \sim b$ if a and b are associated, and $a \mid b$ if b is divisible by a. Furthermore, we write $a \operatorname{rpr} b$ if a and b are relatively prime, that is, have no common non-invertible divisors. If R is a ring, then by Sqf R we denote the set of all square-free elements of R, where an element $a \in R$ is called square-free if it can not be presented in the form $a=b^{2} c$ with $b \in R \backslash R^{*}, c \in R$.

In [4] we discuss many factorial properties of subrings, in particular involving square-free elements. The aim of this paper is to collect various ways to present an element as a product of square-free elements and to study the existence and uniqueness questions in larger classes than the class of unique factorization domains. In Proposition 1 we obtain the equivalence of factorizations (ii) - (vii) for GCD-domains. We also prove the existence of factorizations (i) - (iii) in Proposition 1 for ACCP-domains, but their uniqueness we obtain in Proposition 2 for GCD-domains. Recall that a domain R is called a GCD-domain if the intersection of any two principal ideals is a principal ideal. Recall also that a domain R is called an ACCP-domain if it satisfies the ascending chain condition for principal ideals.

[^0]We refer to Clark's survey article [1] for more information about GCD-domains and ACCP-domains.

It turns out that some preparatory properties (Lemma 2) hold in a larger class than GCD-domains, namely pre-Schreier domains. A domain R is called preSchreier if every non-zero element $a \in R$ is primal, that is, for every $b, c \in R$ such that $a \mid b c$ there exist $a_{1}, a_{2} \in R$ such that $a=a_{1} a_{2}, a_{1} \mid b$ and $a_{2} \mid c$. Integrally closed pre-Schreier domains are called Schreier domains. The notion of Schreier domain was introduced by Cohn in [2]. The notion of pre-Schreier domain was introduced by Zafrullah in [6], but this property had featured already in [2], as well as in [3] and [5]. The reason why we consider pre-Schreier domains in Lemma 2 is that we were looking for a minimal condition under which a product of pairwise relatively prime square-free elements is square-free. For further information on pre-Schreier domains we refer the reader to [6].

2. Preliminary lemmas

Note the following easy lemma.
Lemma 1. Let R be a ring. If $a \in \operatorname{Sqf} R$ and $a=b_{1} b_{2} \ldots b_{n}$, then b_{1}, b_{2}, \ldots, $b_{n} \in \operatorname{Sqf} R$ and $b_{i} \operatorname{rpr} b_{j}$ for $i \neq j$.

In the next lemma we obtain the properties we will use in the proofs of Propositions 1 b) and 2 (i). Recall that every GCD-domain is pre-Schreier ([2], Theorem 2.4).
Lemma 2. Let R be a pre-Schreier domain.
a) Let $a, b, c \in R, a \neq 0$. If $a \mid b c$ and $a \operatorname{rpr} b$, then $a \mid c$.
b) Let $a, b, c, d \in R$. If $a b=c d$, $a \operatorname{rpr} c$ and $b \operatorname{rpr} d$, then $a \sim d$ and $b \sim c$.
c) Let $a, b, c \in R$. If $a b=c^{2}$ and $a \operatorname{rpr} b$, then there exist $c_{1}, c_{2} \in R$ such that $a \sim c_{1}^{2}$, $b \sim c_{2}^{2}$ and $c=c_{1} c_{2}$.
d) Let $a_{1}, \ldots, a_{n}, b \in R$. If $a_{i} \operatorname{rpr} b$ for $i=1, \ldots, n$, then $a_{1} \ldots a_{n} \operatorname{rpr} b$.
e) Let $a_{1}, \ldots, a_{n} \in R$. If $a_{1}, \ldots, a_{n} \in \operatorname{Sqf} R$ and $a_{i} \operatorname{rpr} a_{j}$ for all $i \neq j$, then $a_{1} \ldots a_{n} \in \operatorname{Sqf} R$.

Proof. a) If $a \mid b c$, then $a=a_{1} a_{2}$ for some $a_{1}, a_{2} \in R \backslash\{0\}$ such that $a_{1} \mid b$ and $a_{2} \mid c$. If, moreover, $a \operatorname{rpr} b$, then $a_{1} \in R^{*}$. Hence, $a \sim a_{2}$, so $a \mid c$.
b) Assume that $a b=c d, a \operatorname{rpr} c$ and $b \operatorname{rpr} d$. If $a=0$ and R is not a field, then $c \in R^{*}$, so $d=0$ and then $b \in R^{*}$. Now, let $a, d \neq 0$.

Since $a \mid c d$ and $a \operatorname{rpr} c$, we have $a \mid d$ by a). Similarly, since $d \mid a b$ and $d \operatorname{rpr} b$, we obtain $d \mid a$. Hence, $a \sim d$, and then $b \sim c$.
c) Let $a b=c^{2}$ and $a \operatorname{rpr} b$. Since $c \mid a b$, there exist $c_{1}, c_{2} \in R \backslash\{0\}$ such that $c_{1} \mid a$, $c_{2} \mid b$ and $c=c_{1} c_{2}$. Hence, $a=c_{1} d$ and $b=c_{2} e$ for some $d, e \in R$, and we obtain $d e=c_{1} c_{2}$. We have $d \operatorname{rpr} c_{2}$, because $d \mid a$ and $c_{2} \mid b$, analogously $e \operatorname{rpr} c_{1}$, so $d \sim c_{1}$ and $e \sim c_{2}$, by b). Finally, $a \sim c_{1}^{2}, b \sim c_{2}^{2}$.
d) Induction. Let $a_{i} \mathrm{rpr} b$ for $i=1, \ldots, n+1$. Put $a=a_{1} \ldots a_{n}$. Assume that $a \mathrm{rpr} b$. Let $c \in R \backslash\{0\}$ be a common divisor of $a a_{n+1}$ and b. Since $c \mid a a_{n+1}$, there exist $c_{1}, c_{2} \in R \backslash\{0\}$ such that $c_{1}\left|a, c_{2}\right| a_{n+1}$ and $c=c_{1} c_{2}$. We see that $c_{1}, c_{2} \mid b$, so $c_{1}, c_{2} \in R^{*}$, and then $c \in R^{*}$.
e) Induction. Take $a_{1}, \ldots, a_{n+1} \in \operatorname{Sqf} R$ such that $a_{i} \operatorname{rpr} a_{j}$ for $i \neq j$. Put $a=$ $a_{1} \ldots a_{n}$. Assume that $a \in \operatorname{Sqf} R$. Let $a a_{n+1}=b^{2} c$ for some $b, c \in R \backslash\{0\}$.

Since $c \mid a a_{n+1}$, there exist $c_{1}, c_{2} \in R \backslash\{0\}$ such that $c=c_{1} c_{2}, c_{1} \mid a$ and $c_{2} \mid a_{n+1}$, so $a=c_{1} d$ and $a_{n+1}=c_{2} e$, where $d, e \in R$. We obtain $d e=b^{2}$. By d) we have $a \operatorname{rpr} a_{n+1}$, so d rpr e. And then by c), there exist $b_{1}, b_{2} \in R$ such that $d \sim b_{1}^{2}$, $e \sim b_{2}^{2}$ and $b=b_{1} b_{2}$. Since $a, a_{n+1} \in \operatorname{Sqf} R$, we infer $b_{1}, b_{2} \in R^{*}$, so $b \in R^{*}$.

3. Square-Free factorizations

In Proposition 1 below we collect possible presentations of an element as a product of square-free elements or their powers. We distinct presentations (ii) and (iii), presentations (iv) and (v), and presentations (vi) and (vii), because (ii), (iv) and (vi) are of a simpler form, but in (iii), (v) and (vii) the uniqueness will be more natural (in Proposition 2).

Proposition 1. Let R be a ring. Given a non-zero element $a \in R \backslash R^{*}$, consider the following conditions:
(i) there exist $b \in R$ and $c \in \operatorname{Sqf} R$ such that $a=b^{2} c$,
(ii) there exist $n \geqslant 0$ and $s_{0}, s_{1}, \ldots, s_{n} \in \operatorname{Sqf} R$ such that $a=s_{n}^{2^{n}} s_{n-1}^{2^{n-1}} \ldots s_{1}^{2} s_{0}$,
(iii) there exist $n \geqslant 1, s_{1}, s_{2}, \ldots, s_{n} \in(\operatorname{Sqf} R) \backslash R^{*}, k_{1}<k_{2}<\ldots<k_{n}, k_{1} \geqslant 0$, and $c \in R^{*}$ such that $a=c s_{n}^{2^{k_{n}}} s_{n-1}^{2^{k_{n}-1}} \ldots s_{2}^{2^{k_{2}}} s_{1}^{2^{k_{1}}}$,
(iv) there exist $n \geqslant 1$ and $s_{1}, s_{2}, \ldots, s_{n} \in \operatorname{Sqf} R$ such that $s_{i} \mid s_{i+1}$ for $i=$ $1, \ldots, n-1$, and $a=s_{1} s_{2} \ldots s_{n}$,
(v) there exist $n \geqslant 1, s_{1}, s_{2}, \ldots, s_{n} \in(\operatorname{Sqf} R) \backslash R^{*}, k_{1}, k_{2}, \ldots, k_{n} \geqslant 1$, and $c \in R^{*}$ such that $s_{i} \mid s_{i+1}$ and $s_{i} \nsim s_{i+1}$ for $i=1, \ldots, n-1$, and $a=c s_{1}^{k_{1}} s_{2}^{k_{2}} \ldots s_{n}^{k_{n}}$,
(vi) there exist $n \geqslant 1$ and $s_{1}, s_{2}, \ldots, s_{n} \in \operatorname{Sqf} R$ such that $s_{i} \operatorname{rpr} s_{j}$ for $i \neq j$, and $a=s_{1} s_{2}^{2} s_{3}^{3} \ldots s_{n}^{n}$,
(vii) there exist $n \geqslant 1, s_{1}, s_{2}, \ldots, s_{n} \in(\operatorname{Sqf} R) \backslash R^{*}, k_{1}<k_{2}<\ldots<k_{n}, k_{1} \geqslant 1$, and $c \in R^{*}$ such that s_{i} rpr s_{j} for $i \neq j$, and $a=c s_{1}^{k_{1}} s_{2}^{k_{2}} \ldots s_{n}^{k_{n}}$.
a) In every ring R the following holds:

$$
(\mathrm{i}) \Leftarrow(\mathrm{ii}) \Leftrightarrow(\mathrm{iii}), \quad(\mathrm{iv}) \Leftrightarrow(\mathrm{v}) \Rightarrow(\mathrm{vi}) \Leftrightarrow(\text { vii })
$$

b) If R is a GCD-domain, then all conditions (ii) - (vii) are equivalent.
c) If R is an ACCP-domain, then conditions (i) - (iii) hold.
d) If R is a UFD, then all conditions (i) - (vii) hold.

Proof. a) Implication (i) \Leftarrow (ii) and equivalencies (ii) \Leftrightarrow (iii), (iv) \Leftrightarrow (v), (vi) \Leftrightarrow (vii) are obvious, so it is enough to prove implication (iv) \Rightarrow (vi).

Assume that $a=s_{1} s_{2} \ldots s_{n}$, where $s_{1}, s_{2}, \ldots, s_{n} \in \operatorname{Sqf} R$ and $s_{i} \mid s_{i+1}$ for $i=1, \ldots, n-1$. Let $s_{i+1}=s_{i} t_{i+1}$, where $t_{i+1} \in R$, for $i=1, \ldots, n-1$. Put also $t_{1}=s_{1}$. Then $s_{i}=t_{1} t_{2} \ldots t_{i}$ for each i. Since $s_{n} \in \operatorname{Sqf} R$, by Lemma 1 we obtain that $t_{1}, t_{2}, \ldots, t_{n} \in \operatorname{Sqf} R$ and $t_{i} \operatorname{rpr} t_{j}$ for $i \neq j$. Moreover, we have $s_{1} s_{2} \ldots s_{n}=t_{1}^{n} t_{2}^{n-1} \ldots t_{n}$.
b) Let R be a GCD-domain.
(vi) \Rightarrow (iv) Assume that $a=s_{1} s_{2}^{2} s_{3}^{3} \ldots s_{n}^{n}$, where $s_{1}, s_{2}, \ldots, s_{n} \in \operatorname{Sqf} R$ and s_{i} rpr s_{j} for $i \neq j$. We see that

$$
s_{1} s_{2}^{2} s_{3}^{3} \ldots s_{n}^{n}=s_{n}\left(s_{n} s_{n-1}\right)\left(s_{n} s_{n-1} s_{n-2}\right) \ldots\left(s_{n} s_{n-1} \ldots s_{2}\right)\left(s_{n} s_{n-1} \ldots s_{2} s_{1}\right)
$$

Since R is a GCD-domain, $s_{n} s_{n-1} \ldots s_{i} \in \operatorname{Sqf} R$ for each i by Lemma 2 e).
(vi) \Rightarrow (ii) Let $a=s_{1} s_{2}^{2} s_{3}^{3} \ldots s_{n}^{n}$, where $s_{1}, s_{2}, \ldots, s_{n} \in \operatorname{Sqf} R$, and s_{i} rpr s_{j} for $i \neq j$. For every $k \in\{1,2, \ldots, n\}$ put $k=\sum_{i=0}^{r} c_{i}^{(k)} 2^{i}$, where $c_{i}^{(k)} \in\{0,1\}$. Then

$$
a=\prod_{k=1}^{n} s_{k}^{k}=\prod_{k=1}^{n} s_{k}^{\sum_{i=0}^{r} c_{i}^{(k)} 2^{i}}=\prod_{k=1}^{n} \prod_{i=0}^{r} s_{k}^{c_{i}^{(k)} 2^{i}}=\prod_{i=0}^{r}\left(\prod_{k=1}^{n} s_{k}^{c_{i}^{(k)}}\right)^{2^{i}},
$$

where $\prod_{k=1}^{n} s_{k}^{c_{i}^{(k)}} \in \operatorname{Sqf} R$ for each i by Lemma 2 e).
(ii) \Rightarrow (vi) Let $a=s_{n}^{2^{n}} s_{n-1}^{2^{n-1}} \ldots s_{1}^{2} s_{0}$, where $s_{0}, s_{1}, \ldots, s_{n} \in \operatorname{Sqf} R$. For every $k \in\left\{1,2, \ldots, 2^{n+1}-1\right\}$ put $k=\sum_{i=0}^{n} c_{i}^{(k)} 2^{i}$, where $c_{i}^{(k)} \in\{0,1\}$. Let $t_{k}^{\prime}=\operatorname{gcd}\left(s_{i}\right.$: $\left.c_{i}^{(k)}=1\right), t_{k}^{\prime \prime}=\operatorname{lcm}\left(s_{i}: c_{i}^{(k)}=0\right)$ and $t_{k}^{\prime}=\operatorname{gcd}\left(t_{k}^{\prime}, t_{k}^{\prime \prime}\right) \cdot t_{k}$, where $t_{k} \in R$ (by [2], Theorem 2.1, in a GCD-domain least common multiples exist). Then t_{k} is the greatest among these common divisors of all s_{i} such that $c_{i}^{(k)}=1$, which are relatively prime to all s_{i} such that $c_{i}^{(k)}=0$. In particular, $t_{k} \mid s_{i}$ for every k, i such that $c_{i}^{(k)}=1$, and t_{k} rpr s_{i} for every k, i such that $c_{i}^{(k)}=0$. In each case, $\operatorname{gcd}\left(s_{i}, t_{k}\right)=t_{k}^{c_{i}^{(k)}}$. Moreover, t_{k} rpr t_{l} for every $k \neq l$.

Since $s_{i} \mid t_{1} t_{2} \ldots t_{2^{n+1}-1}$, we obtain

$$
s_{i}=\operatorname{gcd}\left(s_{i}, \prod_{k=1}^{2^{n+1}-1} t_{k}\right)=\prod_{k=1}^{2^{n+1}-1} \operatorname{gcd}\left(s_{i}, t_{k}\right)=\prod_{k=1}^{2^{n+1}-1} t_{k}^{c_{i}^{(k)}}
$$

SO
$\prod_{i=0}^{n}\left(s_{i}\right)^{2^{i}}=\prod_{i=0}^{n} \prod_{k=1}^{2^{n+1}-1}\left(t_{k}^{c_{i}^{(k)}}\right)^{2^{i}}=\prod_{k=1}^{2^{n+1}-1} \prod_{i=0}^{n} t_{k}^{c_{i}^{(k)} 2^{i}}=\prod_{k=1}^{2^{n+1}-1} t_{k}^{\sum_{i=0}^{n} c_{i}^{(k)} 2^{i}}=\prod_{k=1}^{2^{n+1}-1} t_{k}^{k}$.
Moreover, $t_{k} \in \operatorname{Sqf} R$, because for $k \in\left\{1,2, \ldots, 2^{n+1}-1\right\}$ there exists i such that $c_{i}^{(k)}=1$, and then $t_{k} \mid s_{i}$.
c) Let R be an ACCP-domain. In this proof we follow the idea of the second proof of Proposition 9 from [1], p. 7, 8.
(i) If $a \notin$ Sqf R, then $a=b_{1}^{2} c_{1}$, where $b_{1} \in R \backslash R^{*}, c_{1} \in R$. If $c_{1} \notin$ Sqf R, then $c_{1}=b_{2}^{2} c_{2}$, where $b_{2} \in R \backslash R^{*}, c_{2} \in R$. Repeating this process, we obtain a strongly ascending chain of principal ideals $R a \varsubsetneqq R c_{1} \varsubsetneqq R c_{2} \varsubsetneqq \ldots$, so for some k we will have $c_{k-1}=b_{k}^{2} c_{k}, b_{k} \in R \backslash R^{*}$, and $c_{k} \in \operatorname{Sqf} R$. Then $a=\left(b_{1} \ldots b_{k}\right)^{2} c_{k}$.
(iii) If $a \notin \operatorname{Sqf} R$, then by (i) there exist $a_{1} \in R \backslash R^{*}$ and $s_{0} \in \operatorname{Sqf} R$ such that $a=a_{1}^{2} s_{0}$. If $a_{1} \notin \operatorname{Sqf} R$, then again, by (i) there exist $a_{2} \in R \backslash R^{*}$ and $s_{1} \in \operatorname{Sqf} R$ such that $a_{1}=a_{2}^{2} s_{1}$. Repeating this process, we obtain a strongly ascending chain of principal ideals $R a \varsubsetneqq R a_{1} \varsubsetneqq R a_{2} \varsubsetneqq \ldots$, so for some k we will have $a_{k-1}=a_{k}^{2} s_{k-1}$, $a_{k} \in(\operatorname{Sqf} R) \backslash R^{*}, s_{k-1} \in \operatorname{Sqf} R$. Putting $s_{k}=a_{k}$ we obtain:

$$
a=a_{1}^{2} s_{0}=a_{2}^{2^{2}} s_{1}^{2} s_{0}=\ldots=s_{n}^{2^{n}} \ldots s_{2}^{2^{2}} s_{1}^{2} s_{0}
$$

d) This is a standard fact following from the irreducible decomposition.

4. The uniqueness of factorizations

The following proposition concerns the uniqueness of square-free decompositions from Proposition 1. In (i) - (iii) we assume that R is a GCD-domain, in (iv) - (vii) R is a UFD.
Proposition 2. (i) Let $b, d \in R$ and $c, e \in \operatorname{Sqf} R$. If

$$
b^{2} c=d^{2} e
$$

then $b \sim d$ and $c \sim e$.
(ii) Let $s_{0}, s_{1}, \ldots, s_{n} \in \operatorname{Sqf} R$ and $t_{0}, t_{1}, \ldots, t_{m} \in \operatorname{Sqf} R, n \leqslant m$. If

$$
s_{n}^{2^{n}} s_{n-1}^{2^{n-1}} \ldots s_{1}^{2} s_{0}=t_{m}^{2^{m}} t_{m-1}^{2^{m-1}} \ldots t_{1}^{2} t_{0}
$$

then $s_{i} \sim t_{i}$ for $i=0, \ldots, n$ and, if $m>n$, then $t_{i} \in R^{*}$ for $i=n+1, \ldots, m$.
(iii) Let $s_{1}, s_{2}, \ldots, s_{n} \in(\operatorname{Sqf} R) \backslash R^{*}, t_{1}, t_{2}, \ldots, t_{m} \in(\operatorname{Sqf} R) \backslash R^{*}, k_{1}<k_{2}<\ldots<$ $k_{n}, l_{1}<l_{2}<\ldots<l_{m}$ and $c, d \in R^{*}$. If

$$
c s_{n}^{2^{k_{n}}} s_{n-1}^{2^{k_{n-1}}} \ldots s_{2}^{2^{k_{2}}} s_{1}^{2^{k_{1}}}=d t_{m}^{2^{l_{m}}} t_{m-1}^{2^{l_{m-1}}} \ldots t_{2}^{2_{2}} t_{1}^{2^{l_{1}}}
$$

then $n=m, s_{i} \sim t_{i}$ and $k_{i}=l_{i}$ for $i=1, \ldots, n$.
(iv) Let $s_{1}, s_{2}, \ldots, s_{n} \in \operatorname{Sqf} R, t_{1}, t_{2}, \ldots, t_{m} \in \operatorname{Sqf} R, n \leqslant m, s_{i} \mid s_{i+1}$ for $i=$ $1, \ldots, n-1$, and $t_{i} \mid t_{i+1}$ for $i=1, \ldots, m-1$. If

$$
s_{1} s_{2} \ldots s_{n}=t_{1} t_{2} \ldots t_{m}
$$

then $s_{i} \sim t_{i+m-n}$ for $i=1, \ldots, n$ and, if $m>n$, then $t_{i} \in R^{*}$ for $i=1, \ldots, m-n$.
(v) Let $s_{1}, s_{2}, \ldots, s_{n} \in(\operatorname{Sqf} R) \backslash R^{*}, t_{1}, t_{2}, \ldots, t_{m} \in(\operatorname{Sqf} R) \backslash R^{*}, k_{1}, k_{2}, \ldots, k_{n}$ $\geqslant 1, l_{1}, l_{2}, \ldots, l_{m} \geqslant 1, c, d \in R^{*}, s_{i} \mid s_{i+1}$ and $s_{i} \nsim s_{i+1}$ for $i=1, \ldots, n-1$, $t_{i} \mid t_{i+1}$ and $t_{i} \nsim t_{i+1}$ for $i=1, \ldots, m-1$. If

$$
c s_{1}^{k_{1}} s_{2}^{k_{2}} \ldots s_{n}^{k_{n}}=d t_{1}^{l_{1}} t_{2}^{l_{2}} \ldots t_{m}^{l_{m}}
$$

then $n=m, s_{i} \sim t_{i}$ and $k_{i}=l_{i}$ for $i=1, \ldots, n$.
(vi) Let $s_{1}, s_{2}, \ldots, s_{n} \in \operatorname{Sqf} R, t_{1}, t_{2}, \ldots, t_{m} \in \operatorname{Sqf} R, n \leqslant m$, $s_{i} \operatorname{rpr} s_{j}$ for $i \neq j$ and $t_{i} \operatorname{rpr} t_{j}$ for $i \neq j$. If

$$
s_{1} s_{2}^{2} s_{3}^{3} \ldots s_{n}^{n}=t_{1} t_{2}^{2} t_{3}^{3} \ldots t_{m}^{m}
$$

then $s_{i} \sim t_{i}$ for $i=1, \ldots, n$ and, if $m>n$, then $t_{i} \in R^{*}$ for $i=n+1, \ldots, m$.
(vii) Let $s_{1}, s_{2}, \ldots, s_{n} \in(\operatorname{Sqf} R) \backslash R^{*}, t_{1}, t_{2}, \ldots, t_{m} \in(\operatorname{Sqf} R) \backslash R^{*}, 1 \leqslant k_{1}<k_{2}<$ $\ldots<k_{n}, 1 \leqslant l_{1}<l_{2}<\ldots<l_{m}, c, d \in R^{*}$, $s_{i} \operatorname{rpr} s_{j}$ for $i \neq j$, and $t_{i} \operatorname{rpr} t_{j}$ for $i \neq j$. If

$$
c s_{1}^{k_{1}} s_{2}^{k_{2}} \ldots s_{n}^{k_{n}}=d t_{1}^{l_{1}} t_{2}^{l_{2}} \ldots t_{m}^{l_{m}}
$$

then $n=m, s_{i} \sim t_{i}$ and $k_{i}=l_{i}$ for $i=1, \ldots, n$.
Proof. (i) Assume that $b^{2} c=d^{2} e$. Put $f=\operatorname{gcd}(b, d), g=\operatorname{gcd}(c, e), b=f b_{0}$, $d=f d_{0}, c=g c_{0}$, and $e=g e_{0}$, where $b_{0}, c_{0}, d_{0}, e_{0} \in R$. We obtain $b_{0}^{2} c_{0}=d_{0}^{2} e_{0}$, $\operatorname{gcd}\left(c_{0}, e_{0}\right)=1$ and $\operatorname{gcd}\left(b_{0}, d_{0}\right)=1$, so also $\operatorname{gcd}\left(b_{0}^{2}, d_{0}^{2}\right)=1$. By Lemma 2 b), we infer $b_{0}^{2} \sim e_{0}$ and $c_{0} \sim d_{0}^{2}$, but $c_{0}, e_{0} \in \operatorname{Sqf} R$ by Lemma 1 , so $b_{0}, d_{0} \in R^{*}$, and then $c_{0}, e_{0} \in R^{*}$.
Statements (ii), (iii) follow from (i).
Statements (iv) - (vii) are straightforward using the irreducible decomposition.

Acknowledgements

The authors would like to thank the referee for helpful remarks.

References

[1] P.L. Clark, Factorizations in integral domains, math.uga.edu/~pete/factorization2010.pdf.
[2] P.M. Cohn, Bezout rings and their subrings, Proc. Camb. Phil. Soc. 64 (1968), 251-264.
[3] W. Dicks, E.D. Sontag, Sylvester domains, J. Pure Appl. Algebra 13 (1978), 243-275.
[4] P. Jędrzejewicz, Ł. Matysiak, J. Zieliński, On some factorial properties of subrings, to appear in Univ. Iagel. Acta Math., arXiv:1606.06592.
[5] S. McAdam, D.E. Rush, Schreier rings, Bull. London Math. Soc. 10 (1978), 77-80.
[6] M. Zafrullah, On a property of pre-Schreier domains, Comm. Algebra 15 (1987), 1895-1920.

Nicolaus Copernicus University, Faculty of Mathematics and Computer Science, 87-100 Toruń, Poland

E-mail address, Piotr Jędrzejewicz: pjedrzej@mat.uni.torun.pl
E-mail address, Łukasz Matysiak: lmatysiak@mat.uni.torun.pl
E-mail address, Janusz Zieliński: ubukrool@mat.uni.torun.pl

[^0]: 2010 Mathematics Subject Classification. Primary 13F15, Secondary 13F20.
 Key words and phrases. Square-free element, factorization, pre-Schreier domain, GCDdomain, ACCP-domain.

