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A NOTE ON SQUARE-FREE FACTORIZATIONS

PIOTR JEDRZEJEWICZ, LUKASZ MATYSIAK, AND JANUSZ ZIELINSKI

ABSTRACT. We analyze properties of various square-free factorizations in gre-
atest common divisor domains (GCD-domains) and domains satisfying the
ascending chain condition for principal ideals (ACCP-domains).

1. INTRODUCTION

Throughout this article by a ring we mean a commutative ring with unity. By
a domain we mean a ring without zero divisors. By R* we denote the set of all
invertible elements of a ring R. Given elements a,b € R, we write a ~ b if a and
b are associated, and a | b if b is divisible by a. Furthermore, we write a rprd if a
and b are relatively prime, that is, have no common non-invertible divisors. If R is
a ring, then by Sqf R we denote the set of all square-free elements of R, where an
element a € R is called square-free if it can not be presented in the form a = b%c
with b€ R\ R*, c € R.

In [4] we discuss many factorial properties of subrings, in particular involving
square-free elements. The aim of this paper is to collect various ways to present
an element as a product of square-free elements and to study the existence and
uniqueness questions in larger classes than the class of unique factorization do-
mains. In Proposition 1 we obtain the equivalence of factorizations (ii) — (vii) for
GCD-domains. We also prove the existence of factorizations (i) — (iii) in Propo-
sition 1 for ACCP-domains, but their uniqueness we obtain in Proposition 2 for
GCD-domains. Recall that a domain R is called a GCD-domain if the intersection
of any two principal ideals is a principal ideal. Recall also that a domain R is called
an ACCP-domain if it satisfies the ascending chain condition for principal ideals.
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We refer to Clark’s survey article [1] for more information about GCD-domains
and ACCP-domains.

It turns out that some preparatory properties (Lemma 2) hold in a larger
class than GCD-domains, namely pre-Schreier domains. A domain R is called pre-
Schreier if every non-zero element a € R is primal, that is, for every b,c € R such
that a | bc there exist a1, as € R such that a = ajaq, a1 | b and as | ¢. Integrally
closed pre-Schreier domains are called Schreier domains. The notion of Schreier
domain was introduced by Cohn in [2]. The notion of pre-Schreier domain was in-
troduced by Zafrullah in [6], but this property had featured already in [2], as well
as in [3] and [5]. The reason why we consider pre-Schreier domains in Lemma 2
is that we were looking for a minimal condition under which a product of pairwi-
se relatively prime square-free elements is square-free. For further information on
pre-Schreier domains we refer the reader to [6].

2. PRELIMINARY LEMMAS

Note the following easy lemma.

Lemma 1. Let R be a ring. If a € Sqf R and a = b1bs...by,, then by, by, ...,
b, € Sqf R and b; rprb; for i # j.

In the next lemma we obtain the properties we will use in the proofs of Pro-
positions 1 b) and 2 (i). Recall that every GCD-domain is pre-Schreier ([2], The-
orem 2.4).

Lemma 2. Let R be a pre-Schreier domain.

a) Let a,b,ce R, a#0. If a | bc and arprb, then a | c.

b) Let a,b,c,d € R. If ab= cd, arprc and brprd, then a ~d and b ~ c.

c) Leta,b,c € R. Ifab = ¢ and arprb, then there exist ¢1,ca € R such that a ~ c3,
b~ c3 and c = cica.

d) Let ay,...,an,b € R. If a;rprd fori=1,...,n, then ay ...a, rprb.

e) Let a1,...,a, € R. If a1,...,a, € Sqf R and a; rpra; for all i # j, then
ai...a, € Sqf R.

Proof. a) If a | be, then a = ayay for some aj,as € R\ {0} such that a; | b and
as | e. If, moreover, a rprb, then a; € R*. Hence, a ~ az, S0 a | c.

b) Assume that ab = ¢d, arprec and brprd. If @ = 0 and R is not a field, then
¢ € R*, so d=0 and then b € R*. Now, let a,d # 0.

Since a | ¢d and arprc, we have a | d by a). Similarly, since d | ab and drprb, we
obtain d | a. Hence, a ~ d, and then b ~ c.

c) Let ab = ¢? and arprb. Since ¢ | ab, there exist c1,co € R\ {0} such that ¢; | a,
co | b and ¢ = ¢jco. Hence, a = ¢1d and b = cqe for some d, e € R, and we obtain
de = c¢1co. We have drpr ¢, because d | @ and cg | b, analogously erprcy, so d ~ ¢;

and e ~ ¢z, by b). Finally, a ~ ¢2, b ~ c3.
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d) Induction. Let a;rprbfori =1,...,n+1. Put a = a; ... a,. Assume that arprb.
Let ¢ € R\ {0} be a common divisor of aa,+1 and b. Since ¢ | aay41, there exist
c1,¢2 € R\ {0} such that ¢; | a, ¢2 | ant1 and ¢ = ¢jca. We see that ¢, ¢2 | b, so
c1,co € R*, and then ¢ € R*.

e) Induction. Take ai,...,an+1 € Sqf R such that a; rpra; for i # j. Put a =
ai...a,. Assume that a € Sqf R. Let aa, 1 = b?c for some b,c € R\ {0}.

Since ¢ | aany1, there exist c¢1,ca € R\ {0} such that ¢ = ¢1¢2, ¢1 | @ and
2 | @ny1, 50 a = c1d and a, 11 = coe, where d, e € R. We obtain de = b%. By d) we
have a rpra, 1, so drpre. And then by c), there exist by, by € R such that d ~ b3,
e~ b% and b = b1by. Since a,a,+1 € Sqf R, we infer by,b5 € R*, so b € R*. O

3. SQUARE-FREE FACTORIZATIONS

In Proposition 1 below we collect possible presentations of an element as
a product of square-free elements or their powers. We distinct presentations (ii)
and (iii), presentations (iv) and (v), and presentations (vi) and (vii), because (ii),
(iv) and (vi) are of a simpler form, but in (iii), (v) and (vii) the uniqueness will be
more natural (in Proposition 2).

Proposition 1. Let R be a ring. Given a non-zero element a € R\ R*, consider
the following conditions:

i) there exist b € R and ¢ € Sqf R such that a = b3c
(i) a )

(ii) there exist n >0 and sq,51,...,5, € Sqf R such that a = s2" s%":ll ... 8250,
(iii) there exist n > 1, s1,82,...,8, € (Sqf R) \ R*, k1 < ka < ... < kn, k1 2 0,
and ¢ € R* such that a = cs2 " 271 .. 53752

(iv) there exist n > 1 and $1,82,...,8, € Sqf R such that s; | sit+1 for i =
1,....,.n—1, and a = 5182...5p,

(v) there exist n > 1, s1,82,...,8, € (Saf R) \ R*, k1,k2,...,k, = 1, and c € R*
such that s; | s;y1 and s; # ;41 fori=1,...,n—1, and a = cs’flsé€2 ... sfl",

(vi) there exist n > 1 and s1,82,...,S, € Sqf R such that s; rprs; fori # j, and

a=s18385...8",

(vil) there exist n > 1, s1,89,...,8, € (SAf R) \ R*, k1 < ko < ... < kn, k1 > 1,

kn

and ¢ € R* such that s;rprs; for i # j, and a = cslfl 512€2 c S

a) In every ring R the following holds:
(i) < (ii) < (iii), (iv) & (v) = (vi) & (vii).
b) If R is a GCD-domain, then all conditions (ii) — (vii) are equivalent.

c) If R is an ACCP-domain, then conditions (1) — (iii) hold.
d) If R is a UFD, then all conditions (i) — (vii) hold.
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Proof. a) Implication (i) < (ii) and equivalencies (ii) < (iii), (iv) < (v), (vi) &
(vii) are obvious, so it is enough to prove implication (iv) = (vi).

Assume that a = s1s2...5,, where s1,82,...,8, € Sqf R and s; | s;41 for
i =1,...,n —1. Let s;41 = s;t;+1, where t,47 € R, fori = 1,...,n — 1. Put
also t; = s1. Then s; = tyts...¢; for each . Since s, € Sqf R, by Lemma 1
we obtain that ti,%2,...,t, € Sqf R and t; rprt; for ¢ # j. Moreover, we have

_ ynyn—1

8182...8, =11ty ...t

b) Let R be a GCD-domain.

(vi) = (iv) Assume that a = sys3sj...s", where s1, s2, ..., s, € Sqf R and s;1pr s;
for i # j. We see that
2.3

518585 ... Sp = Sp(SnSn—1)(SnSn—18n—2) - - (SnSn—1...52)(SnSn—1 ... 5251).
Since R is a GCD-domain, $,8,_1 ...5; € Sqf R for each ¢ by Lemma 2 e).
(vi) = (ii) Let a = s1s3s3...s", where s1,82,...,8, € Squ and s; rprs; for

i#j. Forevery ke {1,2,...,n} put k=3, Ek)2z where c ) € {0,1}. Then

Tk TT e - o8, gi
o= Lk =TT =TI =T1 (L)
k=1 k=1

k=11i=0 i=0 k=1

(k)i

)
where [[;_; s’ € Sqf R for each i by Lemma 2 e).
(i) = (vi) Let a = s2"s2" ' ... s2sy, where 30,81,.. ,8n € Sqf R. For every
ke{l,2,....27" —1}put k=3I, 5“21 where c ) e {0,1}. Let ¢}, = ged(s;:
cgk) = 1), t) = lem(s;: cgk) = 0) and t;, = ged(t),t)) - tx, where t, € R (by
[2], Theorem 2.1, in a GCD-domain least common multiples exist). Then tj is
the greatest among these common divisors of all s; such that cgk) = 1, which are
relatively prime to all s; such that c(k) = 0. In particular, t; | s; for every k,i

() — 0. In each case,

such that c(k) 1, and ¢ rprs; for every k,i such that c;
)
ged(s;, ty) = tk" . Moreover, t; rprt; for every k # 1.
Since s; | tita ... ton+1_1, we obtain

gn+1_q gn+1_ gn+1_q

si=ged(si, [[ t)= H ged(si, te) = H tk(k),
k=1

SO

nt1 +1 +1_ +1
T2 T <k) ool gy ¥ D L
[0 :HH - 11 1w —Ht”” - 11
1=0 =0 k=1

Moreover, t; € Sqf R, because for k € {1,2,...,2"!1 — 1} there exists i such
that c(k) =1, and then t; | s;.

c) Let R be an ACCP-domain. In this proof we follow the idea of the second proof
of Proposition 9 from [1], p. 7, 8.
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(i) If a & Sqf R, then a = b3c;, where by € R\ R*, ¢; € R. If ¢; ¢ Sqf R, then
c1 = bdcy, where by € R\ R*, co € R. Repeating this process, we obtain a strongly
ascending chain of principal ideals Ra G Rey G Rea & ..., so for some k we will
have c,_1 = bick, by € R\ R*, and ¢ € Sqf R. Then a = (b ...by)%ck.

(iii) If @ & Sqf R, then by (i) there exist a; € R\ R* and sg € Sqf R such that
a = a?sg. If a1 & Sqf R, then again, by (i) there exist az € R\ R* and s; € Sqf R
such that a; = a3s;. Repeating this process, we obtain a strongly ascending chain of
principal ideals Ra G Ray G Ray & .. ., so for some k we will have aj,_1 = a2 sk—1,
ar, € (Saf R) \ R*, sk—1 € Sqf R. Putting s; = aj, we obtain:

on

2 2
a=ajsg=a3 sis0=... =52 ...55 5150

d) This is a standard fact following from the irreducible decomposition. O

4. THE UNIQUENESS OF FACTORIZATIONS

The following proposition concerns the uniqueness of square-free decompositions
from Proposition 1. In (i) — (iii) we assume that R is a GCD-domain, in (iv) — (vii)
R is a UFD.

Proposition 2. (i) Let b,d € R and c,e € Sqf R. If
b2e = de,
then b ~d and c ~ e.
(ii) Let so,81,.-.,8, € Saf R and to,t1,...,tm € Saf R, n < m. If

2m—1

on on—1 2. _ 2™ 2
Sy Sp_q1 ---S180 = t,, tr,_1 ... t{t0,

then s; ~t; fori=20,...,n and, if m >n, thent; € R* fori=n+1,...,m.

(iii) Let s1,82,...,8n € (Saf R)\ R*, t1,t2,...,tm € (SAf R)\ R*, k1 <ka < ...<
kn, l1 <lo <...<lp and c,d € R*. If

okn  9kn_1 ok2 oki . olm olm-—1 ol2 ol1
cS;, Sp_q -..85 87 =dt;, to_, ...137t7,
thenn=m, s; ~t; and k; =1; fori=1,...,n.

(iv) Let s1,892,...,8, € SAf R, t1,ta, ..., t;m € Saf R, n < m, s; | Si41 for i =
1,...,n—=1, and t; | tiyq fori=1,...,m—1. If

5152...Sn:t1t2...tm,

then s; ~ tiym—n fori=1,...,n and, if m > n, thent; € R* fori=1,...,m—n.
(v) Let s1,82,...,8, € (Sqf R) \ R*, t1,t2,...,tm € (Sqf R) \ R*, ki,ka, ..., ky
> 1, Il 21, ¢,d € R, s; | $i+1 and s; # 841 fori=1,...,n—1,

ti | ti+1 andti 7ét1'+1 forizl,...,m—l, If
cshishe st = qlrlr e

thenn=m, s; ~t; and k; =1; fori=1,...,n.
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(vi) Let s1,82,...,8, € Sqf R, t1,t2,...,tm € SAf R, n < m, s; 1prs; fori # j
and t; rprt; fori # j. If
$18385 ... 8T = tyt3ts T,

then s; ~t; fori=1,....n and, if m >n, thent; € R* fori=n+1,...,m.
(vil) Let s1,82,...,8, € (Sqf R) \ R*, t1,t2,...,tm € (SAf R)\ R*, 1 < k1 < ko <
o<k, 1< <l <o <y, e,d € R, syrprs; fori # j, and t;rpri; for
i) 0f

cshrshe sk = qlrlr gl

thenn=m, s; ~t; and k; =1; fori=1,...,n.

Proof. (i) Assume that b%c = d%e. Put f = ged(b,d), g = ged(c,e), b = fbo,
d = fdy, ¢ = gcg, and e = gegy, where by, cg, dg,eqg € R. We obtain b%co = d%eo,
ged(co, e9) = 1 and ged(bg,dy) = 1, so also ged(b3, d2) = 1. By Lemma 2 b), we
infer b3 ~ eg and cg ~ d2, but g, eq € Sqf R by Lemma 1, so by, dy € R*, and then
co, €0 € R*.

Statements (ii), (iii) follow from (i).

Statements (iv) — (vii) are straightforward using the irreducible decomposition.
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