Analytic and Algebraic Geometry 2

Łódź University Press 2017, 67-74
DOI: http://dx.doi.org/10.18778/8088-922-4.11

ON A GENERIC SYMMETRY DEFECT HYPERSURFACE

STANIS£AW JANECZKO, ZBIGNIEW JELONEK, AND MARIA APARECIDA SOARES RUAS

Abstract

We show that symmetry defect hypersurfaces for two generic members of the irreducible algebraic family of n-dimensional smooth irreducible subvarieties in general position in $\mathbb{C}^{2 n}$ are homeomorphic and they have homeomorphic sets of singular points. In particular symmetry defect curves for two generic curves in \mathbb{C}^{2} of the same degree have the same number of singular points.

1. Introduction

Let $X^{n} \subset \mathbb{C}^{2 n}$ be a smooth algebraic variety. In [7] we have investigated the central symmetry of X (see also [1], [2], [3]). For $p \in \mathbb{C}^{2 n}$ we have introduced a number $\mu(p)$ of pairs of points $x, y \in X$, such that p is the center of the interval $\overline{x y}$. Recall that the subvariety $X^{n} \subset \mathbb{C}^{2 n}$ is in a general position if there exist points $x, y \in X^{n}$ such that $T_{x} X \oplus T_{y} X=\mathbb{C}^{2 n}$.

We have showed in [7] that if X is in general position, then there is a closed algebraic hypersurface $B \subset \mathbb{C}^{2 n}$, called symmetry defect hypersurface of X, such that the function μ is constant (non-zero) exactly outside B. Here we prove that the symmetry defect hypersurfaces for two generic members of an irreducible algebraic family of n-dimensional smooth irreducible subvarieties in general position in $\mathbb{C}^{2 n}$ are homeomorphic.

Moreover, by a version of Sard theorem for singular varieties (see [4]), we have that the symmetry defect hypersurfaces for two generic members of an irreducible

[^0]algebraic family of n-dimensional smooth irreducible subvarieties in general position in $\mathbb{C}^{2 n}$ have homeomorphic sets of singular points. In particular symmetry defect curves for two generic curves in \mathbb{C}^{2} of the same degree have the same number of singular points.

2. Bifurcation set

Let X be an irreducible affine variety. Let $\operatorname{Sing}(X)$ denote the set of singular points of X. Let Y be another affine variety and consider a dominant morphism $f: X \rightarrow Y$. If X is smooth then by Sard's Theorem a generic fiber of f is smooth. In a general case the following theorem holds (see [4]):

Theorem 2.1. Let $f: X^{k} \rightarrow Y^{l}$ be a dominant polynomial mapping of affine varieties. For generic $y \in Y$ we have $\operatorname{Sing}\left(f^{-1}(y)\right)=f^{-1}(y) \cap \operatorname{Sing}(X)$.

Recall the following (see [5], [6]):
Definition 2.2. Let $f: X \rightarrow Y$ be a generically-finite (i.e. a generic fiber is finite) and dominant (i.e. $\overline{f(X)}=Y$) polynomial mapping of affine varieties. We say that f is finite at a point $y \in Y$, if there exists an open neighborhood U of y such that the mapping $\left.f\right|_{f^{-1}(U)}: f^{-1}(U) \rightarrow U$ is proper.

It is well-known that the set S_{f} of points at which the mapping f is not finite, is either empty or it is a hypersurface (see [5], [6]). We say that the set S_{f} is the set of non-properness of the mapping f.

Definition 2.3. Let X, Y be smooth affine n-dimensional varieties and let f : $X \rightarrow Y$ be a generically finite dominant mapping of geometric degree $\mu(f)$. The bifurcation set of the mapping f is the set

$$
B(f)=\left\{y \in Y: \# f^{-1}(y) \neq \mu(f)\right\} .
$$

We have the following theorem (see [7]):
Theorem 2.4. Let X, Y be smooth affine complex varieties of dimension n. Let $f: X \rightarrow Y$ be a polynomial dominant mapping. Then the set $B(f)$ is either empty (so f is an unramified topological covering) or it is a closed hypersurface.

3. A super general position

In this section we describe some properties of a variety $X^{n} \subset \mathbb{C}^{2 n}$ which implies that X is in a general position. Recall that the subvariety $X^{n} \subset \mathbb{C}^{2 n}$ is in a general position if there exist points $x, y \in X^{n}$ such that $T_{x} X \oplus T_{y} X=\mathbb{C}^{2 n}$.
Definition 3.1. Let $X^{n} \subset \mathbb{C}^{2 n}$ be a smooth algebraic variety. We say that X is in very general position if there exists a point $x \in X$ such that the set $T_{x} X \cap X$ has an isolated point (here we consider $T_{x} X$ as a linear subspace of $\mathbb{C}^{2 n}$).

We consider also a slightly stronger property:
Definition 3.2. Let $X^{n} \subset \mathbb{C}^{2 n}$ be a smooth algebraic variety and let $S=\bar{X} \backslash X \subset$ π_{∞} be the set of points at infinity of X^{n}. We say that X is in super general position if there exists a point $x \in X$ such that $T_{x} X \cap S=\emptyset$ (here we consider $T_{x} X$ as a linear subspace of $\mathbb{P}^{2 n}=\mathbb{C}^{2 n} \cup \pi_{\infty}$).

We have the following:
Proposition 3.3. If X is in a super general position, then it is in a very general position.

Proof. Let $x \in X$ be a point such that $T_{x} X \cap S=\emptyset$. Take $R=T_{x} X \cap X$. Then the set R is finite, since otherwise the point at infinity of R belongs to $T_{x} X \cap S=\emptyset$.

We have also:
Proposition 3.4. Let $X \subset \mathbb{C}^{2 n}$ be in a super general position. Then for a generic point $x \in X$ we have $T_{x} X \cap S=\emptyset$.

Proof. It is easy to see that the set $\Gamma=\left\{(s, x) \in S \times X: s \in T_{x} X\right\}$ is an algebraic subset of $S \times X$. Let $\pi: \Gamma \ni(s, x) \rightarrow x \in X$ be a projection. It is a proper mapping. Since the variety X is in a very general position, we see that at least one point $x_{0} \in X$ is not in the image of π. Thus almost every point of X is not in the image of π, because the image of π is a closed subset of X.

Finally we have:
Theorem 3.5. If $X \subset \mathbb{C}^{2 n}$ is in a very general position, then it is in a general position, i. e., there exist points $x, y \in X$ such that $T_{x} X \oplus T_{y} X=\mathbb{C}^{2 n}$. In fact for every generic pair $(x, y) \in X \times X$ we have $T_{x} X \oplus T_{y} X=\mathbb{C}^{2 n}$.

Proof. Let $x_{0} \in X$ be the point such that the set $T_{x_{0}} X \cap X$ has an isolated point. The space $T_{x_{0}} X$ is given by n linear equations $l_{i}=0$. Let $F: X \ni$ $x \rightarrow\left(l_{1}(x), \ldots, l_{n}(x)\right) \in \mathbb{C}^{n}$. By the assumption the fiber over 0 of F has an isolated point, in particular the mapping F is dominant. Now by the Sard Theorem almost every point $x \in X$ is a regular point of F. This means that $T_{x} X$ is complementary to $T_{x_{0}} X$, i.e., $T_{x_{0}} X \oplus T_{x} X=\mathbb{C}^{2 n}$. If we consider the mapping $\Phi: X \times X \ni(x, y) \rightarrow x+y \in \mathbb{C}^{2 n}$, we see that it has the smooth point $\left(x_{0}, x\right)$. In particular almost every pair (x, y) is a smooth point of F, which implies that for every generic pair $(x, y) \in X \times X$ we have $T_{x} X \oplus T_{y} X=\mathbb{C}^{2 n}$.

We shall use in the sequel the following:
Proposition 3.6. Let $X^{n} \subset \mathbb{C}^{2 n}$ be a generic smooth complete intersection of multi-degree d_{1}, \ldots, d_{n}. If every $d_{i}>1$, then X is in a super general position.

Proof. We can assume that X is given by n smooth hypersurfaces $f_{i}=a_{i}+f_{i 1}+\ldots+$ $f_{i d_{i}}$ (where $f_{i k}$ is a homogenous polynomial of degree k), which have independent all coefficients (see section below). The tangent space is described by polynomials $f_{i 1}, i=1, \ldots, n$ and the set S of points at infinity of X is described by polynomials $f_{i d_{i}}, i=1, \ldots, n$. Since these two families of polynomials have independent coefficients, we see that generically the zero sets at infinity of these two families are disjoint. In particular such a generic X is in a super general position.

4. Algebraic families

Now we introduce the notion of an algebraic family.
Definition 4.1. Let M be a smooth affine algebraic variety and let Z be a smooth irreducible subvariety of $M \times \mathbb{C}^{n}$. If the restriction to Z of the projection π : $M \times \mathbb{C}^{n} \rightarrow M$ is a dominant map with generically irreducible fibers of the same dimension, then we call the collection $\Sigma=\left\{Z_{m}=\pi^{-1}(m)\right\}_{m \in M}$ an algebraic family of subvarieties in \mathbb{C}^{n}. We say that this family is in a general position if a generic member of Σ is in a general position in \mathbb{C}^{n}.

We show that the ideals $I\left(Z_{m}\right) \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ of a generic member of Σ depend in a parametric way on $m \in M$.

Lemma 4.2. Let Σ be an algebraic family given by a smooth variety $Z \subset$ $M \times \mathbb{C}^{n}$. The ideal $I(Z) \subset \mathbb{C}[M]\left[x_{1}, \ldots, x_{n}\right]$ is finitely generated, let the polynomials $\left\{f_{1}(m, x), \ldots, f_{s}(m, x)\right\}$ form its set of generators. The ideal $I\left(Z_{m}\right) \subset$ $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ of a generic member $Z_{m}:=\pi^{-1}(m) \subset \mathbb{C}^{n}$ of Σ is equal to $I\left(Z_{m}\right)=$ $\left(f_{1}(m, x), \ldots, f_{s}(m, x)\right)$.

Proof. Let $\operatorname{dim} Z=p$ and $\operatorname{dim} M=q$. Thus the variety $M \times \mathbb{C}^{n}$ has dimension $n+q$. Choose local holomorphic coordinates on M. Since the variety Z is smooth we have
$\operatorname{rank}\left[\begin{array}{cccccc}\frac{\partial f_{1}}{\partial m_{1}}(m, x) & \ldots & \frac{\partial f_{1}}{\partial m_{q}}(m, x) & \frac{\partial f_{1}}{\partial x_{1}}(m, x) & \ldots & \frac{\partial f_{1}}{\partial x_{n}}(m, x) \\ \vdots & & \vdots & \vdots & & \vdots \\ \frac{\partial f_{s}}{\partial m_{1}}(m, x) & \ldots & \frac{\partial f_{s}}{\partial m_{q}}(m, x) & \frac{\partial f_{s}}{\partial x_{1}}(m, x) & \ldots & \frac{\partial f_{s}}{\partial x_{n}}(m, x)\end{array}\right]=n+q-p$
on Z. Let us consider the projection $\pi: Z \ni(m, x) \mapsto m \in M$. By Sard's theorem a generic $m \in M$ is a regular value of the mapping π. For such a regular value m we have that dim ker $d_{(m, x)} \pi \cap T_{(m, x)} Z=p-q$ for every x such that $(m, x) \in Z$. In local coordinates on M this is equivalent to

$$
\operatorname{rank}\left[\begin{array}{cccccc}
1 & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & & \vdots & \vdots & & \vdots \\
0 & \ldots & 1 & 0 & \ldots & 0 \\
* & \ldots & * & \frac{\partial f_{1}}{\partial x_{1}}(m, x) & \ldots & \frac{\partial f_{1}}{\partial x_{n}}(m, x) \\
\vdots & & \vdots & \vdots & & \vdots \\
* & \ldots & * & \frac{\partial f_{s}}{\partial x_{1}}(m, x) & \ldots & \frac{\partial f_{s}}{\partial x_{n}}(m, x)
\end{array}\right]=n+2 q-p .
$$

Consequently for $(m, x) \in Z$ and m a regular value of π we have

$$
\operatorname{rank}\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(m, x) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(m, x) \\
\vdots & & \vdots \\
\frac{\partial f_{s}}{\partial x_{1}}(m, x) & \cdots & \frac{\partial f_{s}}{\partial x_{n}}(m, x)
\end{array}\right]=n+q-p .
$$

Note that $n+q-p=\operatorname{codim} Z_{m}$ (in \mathbb{C}^{n}). This means that the ideal $\left(f_{1}(m, x), \ldots, f_{s}(m, x)\right)$ locally coincide with $I\left(Z_{m}\right)$, because it contains local equations of Z_{m}. Hence it also coincides globally, i.e., $\left(f_{1}(m, x), \ldots, f_{s}(m, x)\right)=$ $I\left(Z_{m}\right)$.

Remark 4.3. This can be also obtained by a computation of a scheme theoretic fibers of π and using the fact that such generic fibers are reduced.

Example 4.4. a) Let $N:=\binom{n+d}{d}$ and let $Z \subset \mathbb{C}^{N} \times \mathbb{C}^{n}$ be given by equations $Z=\left\{(a, x) \in \mathbb{C}^{N} \times \mathbb{C}^{n}: \sum_{|\alpha| \leq d} a_{\alpha} x^{\alpha}=0\right\}$. The projection $\pi: Z \ni(a, x) \rightarrow a \in$ \mathbb{C}^{N} determines an algebraic family of hypersurfaces of degree d in \mathbb{C}^{n}. If $n=2$ and $d>1$ this family is in general position in \mathbb{C}^{2}.
b) More generally let $N_{1}:=\binom{n+d_{1}}{d_{1}}, N_{2}:=\binom{n+d_{2}}{d_{2}}, N_{n}:=\binom{n+d_{n}}{d_{n}}$ and let $Z \subset$ $\mathbb{C}^{N_{1}} \times \mathbb{C}^{N_{2}} \ldots \times \mathbb{C}^{N_{n}} \times \mathbb{C}^{2 n}$ be given by equations $Z=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}, x\right) \in \mathbb{C}^{N_{1}} \times\right.$ $\mathbb{C}^{N_{2}} \ldots \times \mathbb{C}^{N_{n}} \times \mathbb{C}^{n}: \sum_{|\alpha| \leq d_{1}} a_{1 \alpha} x^{\alpha}=0, \sum_{|\alpha| \leq d_{2}} a_{2 \alpha} x^{\alpha}=0, \ldots, \sum_{|\alpha| \leq d_{n}} a_{n \alpha} x^{\alpha}=$ $0\}$. The projection $\pi: Z \ni\left(a_{1}, a_{2}, \ldots, a_{n}, x\right) \xrightarrow{\rightarrow}\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{C}^{N_{1}} \times \mathbb{C}^{N_{2}} \ldots \times$ $\mathbb{C}^{N_{n}}$ determines an algebraic family $\Sigma\left(d_{1}, d_{2}, \ldots, d_{n}, 2 n\right)$ of complete intersections of multi-degree $d_{1}, d_{2}, \ldots, d_{n}$ in $\mathbb{C}^{2 n}$. If $d_{1}, d_{2}, \ldots, d_{n}>1$, then this family is in general position in $\mathbb{C}^{2 n}$. This follows from Proposition 3.6.

5. Defect of symmetry

Let us recall that a following result is true (see e.g. [7]):
Lemma 5.1. Let X, Y be complex algebraic varieties and $f: X \rightarrow Y$ a polynomial dominant mapping. Then two generic fibers of f are homeomorphic.

Proof. Let X_{1} be an algebraic completion of X. Take $X_{2}=\overline{\operatorname{graph}(f)} \subset X_{1} \times \bar{Y}$, where \bar{Y} is a smooth algebraic completion of Y. We can assume that $X \subset X_{2}$. Let $Z=X_{2} \backslash X$. We have an induced mapping $\bar{f}: X_{2} \rightarrow \bar{Y}$, such that $\bar{f}_{X}=f$.

There is a Whitney stratification \mathcal{S} of the pair $\left(X_{2}, Z\right)$. For every smooth strata $S_{i} \in \mathcal{S}$ let B_{i} be the set of critical values of the mapping $\left.f\right|_{S_{i}}$. Take $B=\overline{\bigcup B_{i}}$. Take $X_{3}=X_{2} \backslash f^{-1}(B)$ and $Z_{1}=Z \backslash f^{-1}(B)$. The restriction of the stratification \mathcal{S} to X_{3} gives a Whitney stratification of the pair $\left(X_{3}, Z_{1}\right)$. We have a proper mapping $f_{1}: X_{3} \rightarrow \bar{Y} \backslash B$ which is submersion on each strata. By the Thom first isotopy theorem there is a trivialization of f_{1}, which preserves the strata. It is an easy observation that this trivialization gives a trivialization of the mapping $f: X \backslash f^{-1}(B) \rightarrow Y \backslash B$.

Definition 5.2. Let X be an affine variety. Let us define $\operatorname{Sing}^{k}(X):=\operatorname{Sing}(X)$ for $k:=1$ and inductively $\operatorname{Sing}^{k+1}(X):=\operatorname{Sing}\left(\operatorname{Sing}^{k}(X)\right)$.

As a direct application of the Lemma 5.1 and Theorem 2.1 we have:
Theorem 5.3. Let $f: X^{n} \rightarrow Y^{l}$ be a dominant polynomial mapping of affine varieties. If y_{1}, y_{2} are sufficiently general then $f^{-1}\left(y_{1}\right)$ is homeomorphic to $f^{-1}\left(y_{2}\right)$ and $\operatorname{Sing}\left(f^{-1}\left(y_{1}\right)\right)$ is homeomorphic to $\operatorname{Sing}\left(f^{-1}\left(y_{2}\right)\right)$. More generally, for every k we have $\operatorname{Sing}^{k}\left(f^{-1}\left(y_{1}\right)\right)$ is homeomorphic to $\operatorname{Sing}^{k}\left(f^{-1}\left(y_{2}\right)\right)$.

Now we are ready to prove:
Theorem 5.4. Let Σ be an algebraic family of n-dimensional algebraic subvarieties in $\mathbb{C}^{2 n}$ in general position. Symmetry defect hypersurfaces B_{1}, B_{2} for generic members $C_{1}, C_{2} \in \Sigma$ are homeomorphic and they have homeomorphic singular parts i.e., $\operatorname{Sing}\left(B_{1}\right) \cong \operatorname{Sing}\left(B_{2}\right)$. More generally, for every k we have $\operatorname{Sing}^{k}\left(B_{1}\right)$ is homeomorphic to $\operatorname{Sing}^{k}\left(B_{2}\right)$.

Proof. Let Σ be given by a variety $Z \subset M \times \mathbb{C}^{2 n}$. The ideal $I(Z) \subset$ $\mathbb{C}[M]\left[x_{1}, \ldots, x_{2 n}\right]$ is finitely generated. Choose a finite set of generators $\left\{f_{1}(m, x), \ldots, f_{s}(m, x)\right\}$.

By Sard Theorem we can assume that all fibers of $\pi: Z \rightarrow M$ are smooth and for every $m \in M$ we have $I\left(Z_{m}\right)=\left\{f_{1}(m, x), \ldots, f_{s}(m, x)\right\}$ (see Lemma 4.2). Let us define

$$
\begin{aligned}
R=\left\{(m, x, y) \in M \times \mathbb{C}^{2 n} \times \mathbb{C}^{2 n}: f_{i}(m)(x)=0, i=1, \ldots, s \quad \& \quad\right. & f_{i}(m)(y)=0, \\
& i=1, \ldots, s\}
\end{aligned}
$$

The variety R is a smooth irreducible subvariety of $M \times \mathbb{C}^{2 n} \times \mathbb{C}^{2 n}$ of codimension $2 n$. Indeed, for given $(m, x, y) \in M \times \mathbb{C}^{2 n} \times \mathbb{C}^{2 n}$ choose polynomials $f_{i_{1}}, \ldots, f_{i_{n}}$ and $f_{j_{1}}, \ldots, f_{j_{n}}$ such that rank $\left[\frac{\partial f_{i_{l}}}{\partial x_{s}}(m, x)\right]_{l=1, \ldots, n ; s=1, \ldots, n}=n$ and rank $\left[\frac{\partial f_{j_{l}}}{\partial x_{s}}(m, x)\right]_{l=1, \ldots, n ; s=1, \ldots, n}=n$. Since Z is a smooth variety of dimension $\operatorname{dim} M+n$, we have that Z locally near (m, x) is given by equations $f_{i_{1}}, \ldots, f_{i_{n}}$ and near (m, y)
is given by equations $f_{j_{1}}, \ldots, f_{j_{n}}$. Hence the variety R near the point (m, x, y) is given as

$$
\begin{array}{r}
\left\{(m, x, y) \in M \times \mathbb{C}^{2 n} \times \mathbb{C}^{2 n}: f_{i_{l}}(m)(x)=0, l=1, \ldots, n \quad \& \quad f_{j_{l}}(m)(y)=0,\right. \\
l=1, \ldots, s\} .
\end{array}
$$

In particular R is locally a smooth complete intersection, i.e., R is smooth.
Moreover we have a projection $R \rightarrow M$ with irreducible fibers which are products $Z_{m} \times Z_{m}, \quad m \in M$. This means that R is irreducible. Note that R is an affine variety. Consider the following morphism

$$
\Psi: R \ni(m, x, y) \mapsto\left(m, \frac{x+y}{2}\right) \in M \times \mathbb{C}^{2 n}
$$

By the assumptions the mapping Ψ is dominant. Indeed for every $m \in M$ the fiber Z_{m} is in a general position in $\mathbb{C}^{2 n}$ and consequently the set $\Psi(R) \cap m \times \mathbb{C}^{2 n}$ is dense in $m \times \mathbb{C}^{2 n}$.

We know by Theorem 2.4 that the mapping Ψ has constant number of points in the fiber outside the bifurcation set $B(\Psi) \subset M \times \mathbb{C}^{2 n}$. This implies that $B\left(Z_{m}\right)=$ $m \times \mathbb{C}^{2 n} \cap B(\Psi)$. In particular the symmetry defect hypersurface of the variety Z_{m} coincide with the fiber over m of the projection $\pi: B(\Psi) \ni(m, x) \mapsto m \in M$. Now we conclude the proof by Theorem 5.3.

Corollary 5.5. Symmetry defect sets B_{1}, B_{2} for generic curves $C_{1}, C_{2} \subset \mathbb{C}^{2}$ of the same degree $d>1$ are homeomorphic and they have the same number of singular points.

Corollary 5.6. Let C_{1}, C_{2} be two smooth varieties, which are generic complete intersection of multi-degree $d_{1}, d_{2}, \ldots, d_{n}$ in $\mathbb{C}^{2 n}$ (where all $d_{i}>1$). Then symmetry defect hypersurfaces B_{1}, B_{2} of C_{1}, C_{2}, are homeomorphic and they have homeomorphic singular parts (i.e., Sing $\left(B_{1}\right) \cong \operatorname{Sing}\left(B_{2}\right)$). More generally, for every k we have $\operatorname{Sing}^{k}\left(B_{1}\right)$ is homeomorphic to $\operatorname{Sing}^{k}\left(B_{2}\right)$.

References

[1] P.J. Giblin and P.A. Holtom, The centre symmetry set, in: Geometry and Topology of Caustics (Warsaw 1998), Banach Center Publ. Vol. 50, ed. S. Janeczko and V.M. Zakalyukin, Warsaw, 1999, 91-105.
[2] P.J. Giblin and S. Janeczko, Geometry of curves and surfaces through the contact map, Topology Appl. 159 (2012), 466-475.
[3] S. Janeczko, Bifurcations of the Center of Symmetry, Geom. Dedicata 60, (1996), 9-16.
[4] Z. Jelonek, On semi-equivalence of generically finite polynomial mappings, to appear.
[5] Z. Jelonek, The set of points at which a polynomial map is not proper, Ann. Polon. Math. 58 (1993), 259-266.
[6] Z. Jelonek, Testing sets for properness of polynomial mappings, Math. Ann. 315 (1999), 1-35.
[7] S. Janeczko, Z. Jelonek and M.A.S. Ruas, Symmetry defect of algebraic varieties, Asian J. Math. 18 (2014), 525-544.
(Stanisław Janeczko) Instytut Matematyczny, Polska Akademia Nauk, Śniadeckich 8, 00-956 Warszawa, Poland, Wydzia乇 Matematki i Nauk Informacyjnych, Politechnika Warszawska, Pl. Politechniki 1, 00-661 Warszawa, Poland

E-mail address: janeczko@impan.pl
(Zbigniew Jelonek) Instytut Matematyczny, Polska Akademia Nauk, Śniadeckich 8, 00-956 Warszawa, Poland

E-mail address: najelone@cyf-kr.edu.pl
(Maria Aparecida Soares Ruas) Departamento de Matemática, ICMC-USP, Caixa Postal 668, 13560-970 SÃo Carlos, S.P., Brasil

E-mail address: maasruas@icmc.usp.br

[^0]: 2010 Mathematics Subject Classification. 14D06, 14Q20.
 Key words and phrases. Center symmetry set, affine algebraic variety, family of algebraic sets, bifurcation set of a polynomial mapping.
 Z. Jelonek and M. A. S. Ruas are partially supported by the grant of Narodowe Centrum Nauki, grant number 2015/17/B/ST1/02637.

