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We present results for the ratios of mean (MB), variance (σ2B), skewness (SB) and kurtosis (κB) of net
baryon-number fluctuations obtained in lattice QCD calculations with physical values of light and strange
quark masses. Using next-to-leading order Taylor expansions in baryon chemical potential we find that
qualitative features of these ratios closely resemble the corresponding experimentally measured cumulant
ratios of net proton-number fluctuations for beam energies down to

ffiffiffiffiffiffiffiffi
sNN

p ≥ 19.6 GeV. We show that the

difference in cumulant ratios for the mean net baryon-number, MB=σ2B ¼ χB1 ðT; μBÞ=χB2 ðT; μBÞ, and the
normalized skewness, SBσB ¼ χB3 ðT; μBÞ=χB2 ðT; μBÞ, naturally arises in QCD thermodynamics. Moreover,
we establish a close relation between skewness and kurtosis ratios, SBσ3B=MB ¼ χB3 ðT; μBÞ=χB1 ðT; μBÞ and
κBσ

2
B ¼ χB4 ðT; μBÞ=χB2 ðT; μBÞ, valid at small values of the baryon chemical potential.

DOI: 10.1103/PhysRevD.96.074510

I. INTRODUCTION

Fluctuations of [1,2] and correlations among [3] con-
served charges of strong interactions have long been
considered as sensitive observables to explore the structure
of the phase diagram of Quantum Chromodynamics
(QCD). These are accessible to lattice QCD calculations
[4] and are also the most promising observables in the
experimental search for the conjectured critical point [5,6]
in the phase diagram of QCD that is currently underway
with the beam energy scan (BES) program at the
Relativistic Heavy Ion Collider (RHIC) [7]. The results
on net electric charge [8,9] and net proton-number [10–12]
fluctuations obtained from the first BES runs at RHIC have
not yet provided conclusive evidence for the existence of a
critical point. However, the data on the skewness and
kurtosis of the distribution of net proton-number fluctua-
tions show an intriguing dependence on the beam energy.
The published data on cumulants of net proton-number
fluctuations [10] and, in particular, the preliminary data set
on net proton-number fluctuations measured in an extended

transverse momentum range [11,12] show obvious devia-
tions from the thermodynamics of a hadron resonance gas
(HRG). The ratios of even order cumulants, as well as the
ratios of odd order cumulants, differ from unity, and
different mixed ratios formed from even and odd order
cumulants are not identical. This may not be too surprising
as HRG model calculations are not expected to give an
accurate description of the thermodynamics of strong
interaction matter, described by QCD. However, these
experimental findings raise the question whether the
observed pattern seen in net proton-number fluctuations
can be understood in terms of QCD thermodynamics,
which provides information on net baryon-number fluctu-
ations in equilibrium [13], or whether other effects such as
acceptance cuts, limited efficiencies, and rapidity depend-
ence [14–18], or nonequilibrium effects [19–22], are
responsible for these differences (for a recent review
see [23]).
At large beam energies net proton-number densities are

small and the baryon chemical potential (μB) is close to
zero, e.g. μB=T ≃ 0.2 at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. It is, thus,
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conceivable that low order Taylor expansions are also
suitable for the description of the cumulants of the net
baryon-number fluctuations at the time of freeze-out [24].
In fact, the calculations of various thermodynamic observ-
ables in a Taylor series in baryon chemical potential suggest
that expansions up to next-to-leading order (NLO) in μB
provide good approximations for these observables for
μB=T ≲ ð1.5–2Þ [25]. In the transition region, characterized
by the pseudocritical temperature for the chiral transition,
Tc ¼ 154ð9Þ MeV [26], one thus may expect to obtain
reliable results up to baryon chemical potentials μB ≃
ð225–300Þ MeV within NLO Taylor expansion. Com-
parison of cumulant ratios of net electric charge fluctua-
tions, measured at various beam energies, with lattice QCD
results [27–30] as well as HRG model calculations
[8,31,32] suggests that μB < 1.4T for

ffiffiffiffiffiffiffiffi
sNN

p ≥ 19.6 GeV.
NLO Taylor expansions of cumulants of conserved charge
fluctuations, thus, should provide an adequate description
of equilibrium thermodynamics of strong interaction matter
for a large part of the beam energies probed with the BES at
RHIC, 7.7 GeV ≤ ffiffiffiffiffiffiffiffi

sNN
p ≤ 200 GeV.

The purpose of this paper is to determine, within the
framework of equilibrium thermodynamics of QCD, the
dependence of net baryon-number fluctuations on temper-
ature and baryon chemical potential along lines in the T-μB
plane. We will focus on an analysis of thermodynamic
properties of ratios of cumulants formed from the first four
cumulants of net baryon-number fluctuations, i.e. mean
(MB), variance (σ2B), skewness (SB), and kurtosis (κB) of net
baryon-number distributions,

RB
12ðT; μBÞ≡ χB1 ðT; μBÞ

χB2 ðT; μBÞ
≡MB

σ2B
;

RB
31ðT; μBÞ≡ χB3 ðT; μBÞ

χB1 ðT; μBÞ
≡ SBσ3B

MB
;

RB
42ðT; μBÞ≡ χB4 ðT; μBÞ

χB2 ðT; μBÞ
≡ κBσ

2
B: ð1Þ

Here the n-th order cumulants, χBn ðT; μBÞ, are obtained from
partial derivatives of the QCD pressure, PðT; μB; μQ; μSÞ,
with respect to the baryon chemical potential μB. Obviously,
the ratio RB

32 ≡ SBσB, which also is considered frequently as
an experimental observable, is simply obtained from the
above three independent ratios,

RB
32ðT; μBÞ ¼ RB

31R
B
12 ¼

χB3 ðT; μBÞ
χB2 ðT; μBÞ

≡ SBσB: ð2Þ

We will provide lattice QCD results on cumulants of
conserved charge fluctuations in next-to-leading order
Taylor expansions. We will confront these results with
experimental data on cumulants of net proton-number
fluctuations (MP, σ2P; SP; κP) [10,11], obtained by the
STAR collaboration during the first BES at RHIC.

Already at large beam energies, i.e. small values of the
baryon chemical potential, these data significantly deviate
from expectations based on HRG model calculations,
which are commonly used as a baseline for the analysis
of data on particle yields and charge fluctuations in terms
of equilibrium thermodynamics [33]. In particular data
suggest, that

(i) The ratio MP=σ2P is a monotonically decreasing
function of

ffiffiffiffiffiffiffiffi
sNN

p
, and MP=σ2P > SPσP in the entire

range of
ffiffiffiffiffiffiffiffi
sNN

p
probed so far.

(ii) SPσ3P=MP is smaller than unity and has a weak but
significant dependence on

ffiffiffiffiffiffiffiffi
sNN

p
becoming increas-

ingly smaller than unity with decreasing
ffiffiffiffiffiffiffiffi
sNN

p
or,

equivalently, with increasing MP=σ2P.
(iii) ForMP=σ2P ¼ 0 or, equivalently, for large

ffiffiffiffiffiffiffiffi
sNN

p
, the

relation SPσ3P=MP ≃ κPσ
2
P seems to hold quite well

even though both ratios individually remain smaller
than unity.

(iv) With decreasing
ffiffiffiffiffiffiffiffi
sNN

p
or, equivalently, increasing

MP=σ2P, the cumulant ratio κPσ
2
P departs further

away from unity than the skewness ratio SPσ3P=MP.
It seems that the inequality κPσ

2
P < SPσ3P=MP < 1

holds at least for all beam energies
ffiffiffiffiffiffiffiffi
sNN

p ≥
19.6 GeV.

We will show here that the QCD calculations of net
baryon-number fluctuations up to NLO in μB=T show all
the above qualitative features of the cumulants of net
proton-number fluctuations.
The paper is organized as follows: in Sec. II we introduce

the basic expressions for the NLO expansions of cumulants
of conserved charge fluctuations. In particular, we will
derive the formulas needed to describe the variation of
ratios of cumulants on a line in the T-μB plane of the QCD
phase diagram. Details of our lattice QCD calculations are
described in Sec. III. In Sec. IV and Sec. V we present
results on the LO and NLO Taylor coefficients of cumulant
ratios as function of μB. We compare these NLO lattice
QCD results on net baryon-number fluctuations to exper-
imental data on net proton-number fluctuations in Sec. VI.
Finally, we summarize the QCD results on the next-to-
leading order expansion of cumulant ratios and give some
conclusions in Sec. VII. Further details on the NLO
expansion coefficients are presented in the Appendix.

II. TAYLOR EXPANSIONS OF CUMULANTS OF
CONSERVED CHARGE FLUCTUATIONS

A. Expansions at fixed temperature

For small values of the baryon chemical potential the
cumulants of net baryon-number (B), net electric charge
(Q), or net strangeness (S) fluctuations,

χXn ðT; μ⃗Þ ¼
∂nP=T4

∂ðμX=TÞn ; X ¼ B;Q; S; ð3Þ
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with μ⃗ ¼ ðμB; μQ; μSÞ, are easily obtained from a Taylor
expansion of the QCD pressure. Using μ̂X ≡ μX=T the
pressure is given by

PðT; μ⃗Þ
T4

¼
X∞
i;j;k¼0

1

i!j!k!
χBQS
ijk ðTÞμ̂iBμ̂jQμ̂kS; ð4Þ

where the expansion coefficients χBQS
ijk are generalized

susceptibilities,

χBQS
ijk ðTÞ ¼ ∂ðiþjþkÞP=T4

∂μ̂iB∂μ̂jQ∂μ̂kS

����
μ⃗¼0

; ð5Þ

which can be evaluated in lattice QCD calculations
performed at vanishing chemical potential. They are
functions of the temperature, which we usually will not
mention explicitly, χBQS

ijk ≡ χBQS
ijk ðTÞ. We give the argu-

ments only for the nonexpanded cumulants which are
functions of T as well as μ⃗, i.e. χXn ðT; μ⃗Þ. In the following
we will also adopt the convention to suppress subscripts
and superscripts of the expansion coefficients whenever a
subscript vanishes, e.g. χBQS

101 ≡ χBS11 etc.
We will focus on NLO expansions of the first four

cumulants along a line in the space of the three chemical
potentials. This line is fixed by two constraints which relate
the electric charge and strangeness chemical potentials to
the baryon chemical potential [28]. In NLO one may
parametrize them as

μ̂QðT; μBÞ ¼ q1ðTÞμ̂B þ q3ðTÞμ̂3B þOðμ̂5BÞ;
μ̂SðT; μBÞ ¼ s1ðTÞμ̂B þ s3ðTÞμ̂3B þOðμ̂5BÞ: ð6Þ

In applications to heavy ion collisions it is appropriate to
determine the coefficients qi, si from constraints demand-
ing overall vanishing net strangeness density,

nS ≡ χS1ðT; μ⃗Þ ¼ 0; ð7Þ

and a fixed relation between net baryon-number and net
electric charge densities,

nQ
nB

≡ χQ1 ðT; μ⃗Þ
χB1 ðT; μ⃗Þ

¼ NP

NP þ NN
: ð8Þ

Here the last equality relates the ratio of the number
densities to the proton (NP) and neutron (NN) numbers
of the incident nuclei in heavy ion collision experiments. In
the case of gold or uranium nuclei, which are frequently
used in heavy ion collision experiments, setting nQ=nB ¼
0.4 is appropriate [28]. The isospin symmetric case
obviously corresponds to nQ=nB ¼ 1=2. In that case μQ ¼
0 and, thus, qi ¼ 0 at all orders. Explicit expressions for qi,
si have been given in Appendix B of Ref. [25].

We will discuss Taylor expansions for the ratios of
cumulants introduced in Eq. (1) and Eq. (2). Using the
parametrization of μQ and μS given in Eq. (6), we may write
these expansions in terms of μ̂B up to NLO,

RB
12ðT; μBÞ ¼ rB;112 μ̂B þ rB;312 μ̂

3
B; ð9Þ

RB
31ðT; μBÞ ¼ rB;031 þ rB;231 μ̂

2
B; ð10Þ

RB
42ðT; μBÞ ¼ rB;042 þ rB;242 μ̂

2
B: ð11Þ

Here the expansion coefficients rB;knm are functions of
temperature and the Taylor expansion coefficients qi, si
of the constraint chemical potentials μQ, μS. The superscript
k labels the order of the expansion in terms of μB. Explicit
expressions for the expansion coefficients rB;knm in terms of
the generalized susceptibilities, introduced in Eq. (5), are
given in the Appendix.

B. Expansions along lines TðμBÞ in the T-μB plane

It is our goal to compare cumulant ratios measured in
heavy ion experiments at different beam energies,

ffiffiffiffiffiffiffiffi
sNN

p
,

with lattice QCD calculations of such ratios. As the beam
energy is varied also the thermal conditions under which
particles “freeze-out" change. This is commonly charac-
terized by a pair of freeze-out parameters ðTf; μBÞ. They
map out a line, TfðμBÞ, in the QCD phase diagram. When
comparing the Taylor expanded cumulant ratios, discussed
in the previous subsection, with experimental data we thus
also need to take into account that the freeze-out temper-
ature varies with increasing μB. At large beam energies it is
appropriate to parametrize the freeze-out line as a poly-
nomial in μ2B [31].1

In the context of Taylor expansions for bulk thermody-
namic observables, “lines of constant physics” [25]
as well as the pseudocritical line for the QCD transition
[34–37] are generally given as polynomials in μ2B. We thus
will consider the behavior of cumulants of conserved
charge fluctuations on lines in the T-μB plane that are
parametrized as

TfðμBÞ ¼ T0ð1 − κf2 μ̄
2
B þOðμ̄4BÞÞ; ð12Þ

with μ̄B ≡ μB=T0. As we will exploit only NLO expansions
for cumulants it suffices to know this parametrization up
to Oðμ2BÞ.

1Such a parametrization is commonly used when comparing
experimental data on particle yields with statistical hadronization
models (HRG models). An alternative parametrization, used in
Ref. [32], also provides a good description of the experimental
data but does not have a polynomial behavior for small μB. It
starts out with exponentially small corrections to the freeze-out
temperature at vanishing μB.
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Taking into account this temperature variation requires
an additional expansion of the ratios RB

nm in T. On a line
TfðμBÞ the Taylor expansion in T then generates additional
terms that are of order μ2B. I.e., the LO expansion coef-
ficients of cumulant ratios remain unchanged, while the
NLO expansion coefficients, rB;knm ðTÞ, receive an additional
contribution from the variation of cumulant ratios with
temperature along a line in the T-μB plane,

rB;knm → rB;knm;f ≡ rB;knm ðT0Þ − κf2T0

drB;k−2nm

dT

����
T¼T0

; ð13Þ

with k ¼ 2 or 3. With this, the three cumulant ratios
introduced in Eq. (1) become

RB
12ðTfðμBÞ; μBÞ ¼ rB;112 μ̄B þ rB;312;fμ̄

3
B; ð14Þ

RB
31ðTfðμBÞ; μBÞ ¼ rB;031 þ rB;231;fμ̄

2
B; ð15Þ

RB
42ðTfðμBÞ; μBÞ ¼ rB;042 þ rB;242;fμ̄

2
B: ð16Þ

Here all expansion coefficients rB;knm and rB;knm;f are evaluated
at μB ¼ 0 and at the temperature TðμB ¼ 0Þ≡ T0.
In the following sections we will present lattice

QCD results for the expansion coefficients appearing in
Eqs. (14)–(16). In particular, as done before in an analysis
of ratios of variances of net electric charge and net baryon-
number fluctuations [38], we will make use of the fact that
rB;112 is positive for all values of the temperature. At least to
leading order in μB the ratio MB=σ2B, thus, is a monoton-
ically rising function of μB. We may use this to eliminate
the baryon chemical potential μB in the NLO relations for
RB
31 and RB

42 in favor of the mean net baryon-number ratio,
RB
12 ≡MB=σ2B, i.e.

μ̂B ¼ 1

rB;112

RB
12 þOððRB

12Þ3Þ: ð17Þ

With this we obtain at NLO

RB
31ðT; RB

12Þ ¼ rB;031 þ rB;231;f

ðrB;112 Þ2
ðRB

12Þ2; ð18Þ

RB
42ðT; RB

12Þ ¼ rB;042 þ rB;242;f

ðrB;112 Þ2
ðRB

12Þ2: ð19Þ

Using Eq. (2) we easily obtain from Eq. (18), also, the NLO
expansion for the ratio RB

32,

RB
32ðT; RB

12Þ ¼ rB;031 R
B
12 þ

rB;231;f

ðrB;112 Þ2
ðRB

12Þ3: ð20Þ

Considering expansions of higher order cumulant ratios in
terms of the lowest order ratio RB

12 rather than expansions in
μ̂B has the advantage that we can compare the QCD results
directly to experimental observables without the need of
first determining a chemical potential from the data. A
trivial consequence is that at LO the slope of the expansion
of RB

32 in terms of RB
12 is identical to the intercept of RB

31

at μB ¼ 0.
We note that in the low temperature HRG limit

RB
12 ≃ tanh μ̂B, which can be inverted for all μ̂B.

However, in the vicinity of a possible critical point in
the T-μB plane RB

12 will no longer be a monotonic function
of μB as σ2B will diverge at a critical point while MB stays
finite. In the parameter range probed experimentally so
far, no indication for such a nonmonotonic behavior of RB

12

has been observed.

III. LATTICE QCD CALCULATIONS

The main results presented in the following are based on
lattice QCD calculations performed in the temperature
range 135 MeV≲ T ≲ 175 MeV. In this temperature inter-
val our analysis is based on calculations performed with a
strange quark mass tuned to its physical value and
degenerate light quarks with a mass ml=ms ¼ 1=27. In
the continuum limit this light quark mass corresponds to a
pion mass of about 140 MeV. For completeness and in
order to give a feeling for the trends in the temperature
dependence of various observables, we added a few data at
higher T-values that have been obtained from calculations
with a somewhat larger quark mass ratio, ml=ms ¼ 1=20.
In the continuum limit this quark mass ratio corresponds to
a pion mass of about 160 MeV.
The parameter choices, lattice sizes, quark masses, as

well as the determination of the temperature scale from zero
temperature observables, are identical to the setup used
previously in our calculation of the equation of state at
vanishing chemical potential [39] and the calculation of the
equation of state of (2þ 1)-flavor QCD at nonzero baryon
chemical potential in 6th order Taylor series [25].
Our calculations are performed on lattices of size

N3
σ×Nτ with Nσ ¼4Nτ and Nτ ¼ 6, 8, 12, 16. Compared

to earlier calculations [25] we have increased the statistics
on the 323×8 and 483×12 lattices by about a factor of four
and added new calculations on lattices of size 643 × 16.
Our main conclusions on the behavior of NLO expansion

coefficients are based on calculations performed on lattices
of size 323 × 8, where we generated up to 700,000 gauge
field configurations using the Rational Hybrid Monte Carlo
(RHMC) algorithm. We generated up to 7 million RHMC
trajectories of unit length and saved gauge field configu-
rations after every 10th trajectory. Our current statistics are
summarized in Table I.
Up to 6th order cumulants have been calculated on

these data sets. Due to the large number of gauge field
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configurations needed for an analysis of the expansion
coefficients of kurtosis and skewness ratios, our main
results on NLO expansion coefficients for these observ-
ables are based on calculations for a single lattice size
only; i.e., they are not yet continuum extrapolated,
although cutoff effects are expected to be significantly
smaller in theses observables than our current statistical
errors.
For the LO observables, continuum extrapolations were

done using global spline fits to data from all 4 lattice
spacings following the procedure described in [25,38].
We allow for 1=N2

τ dependence of the spline coefficients
and also vary the locations of the spline knots to
minimize the χ2 of the global fits. For the current
analysis we found it is sufficient to use spline interpo-
lations with quartic polynomials and 3 knots whose
location is allowed to vary in the fit range. Fits were
done for many bootstrap samples drawn from the
Gaussian errors of data points, and final results were
obtained from mean values and standard deviations of the
bootstrapped fit results, weighted by the quality of the fits
given by the Akaike information criteria. For the NLO
observables, we have lattice data only for 2 lattice
spacings corresponding to Nτ ¼ 6 and 8, and we could
not carry out proper continuum extrapolations. For these
cases, we provide “continuum estimates” following exactly
the same continuum extrapolation procedure described
above, but only using global spline fits to the data from
Nτ ¼ 6 and 8 lattices.
In the following three sections we will present results on

the various LO and NLO expansion coefficients entering in
Eqs. (17)–(20).

IV. LEADING ORDER EXPANSION OF
CUMULANT RATIOS

The leading order expansion coefficients for the ratios
RB
nm defined in Eq. (1) are given in the Appendix. We can

write them as

rB;112 ¼ 1þ s1
χBS11
χB2

þ q1
χBQ11
χB2

; ð21Þ

rB;042 ¼ χB4
χB2

; ð22Þ

rB;031 ¼ rB;042

1þ s1
χBS
31

χB
4

þ q1
χBQ
31

χB
4

1þ s1
χBS
11

χB
2

þ q1
χBQ
11

χB
2

: ð23Þ

This makes it apparent that the LO coefficients are
particularly simple for μS ¼ μQ ¼ 0. In that case, one
has rB;112 ¼ 1 and rB;031 ¼ rB;042 . In the strangeness neutral
case with fixed nQ=nB ¼ 0.4 the contribution from a
nonvanishing electric charge chemical potential is small.
The dominant correction arises from a nonzero strangeness
chemical potential needed to insure strangeness neutrality
[40]. As s1 > 0 and χBS11 =χ

B
2 < 0 we thus expect to find

rB;112 < 1. This is also the case at low temperature for
a HRG.
In Fig. 1 we show results for the leading order expansion

coefficients of the ratios RB
12, R

B
31, and RB

42, respectively.
The left-hand figure shows the LO expansion coefficient
rB;112 . This is an update on results obtained previously in [38]
from calculations with much lower statistics. The right-
hand part of the figure shows the LO result rB;042 . Also
shown as an inset in this figure is the difference between the
leading order results for rB;042 and rB;031 , normalized to the
latter. The LO results for the cumulant ratios shown in
this figure have been obtained for a strangeness neutral
system, nS ¼ 0, with electric charge to baryon-number
ratio nQ=nB ¼ 0.4.
Let us first discuss the leading order results for the

ratio RB
12ðT; μBÞ. Here results from calculations on lattices

with temporal extent Nτ ¼ 6 to 16 exist. They show rather
small cutoff dependence, which is known also from our

TABLE I. Number of gauge field configurations on lattices of size 323 × 8, 483 × 12, and 643 × 16 used in the
analysis of up to 6th order Taylor expansion coefficients. The values of the gauge coupling as well as the strange and
light quark mass parameter at these temperature values are taken from [25], where also details on the statistics
available on the 243 × 6 lattices are given.

Nτ ¼ 8 Nτ ¼ 12 Nτ ¼ 16
T½MeV� Number of configurations T½MeV� Number of configurations T½MeV� Number of configurations

134.64 456 070 134.94 39 380 � � �
140.45 626 790 140.44 61 610 � � �
144.95 684 200 144.97 69 910 144.94 2980
151.00 362 200 151.10 45 900 151.04 8080
156.78 513 130 157.13 30 100 156.92 4850
162.25 247 040 161.94 32 810 162.10 3010
165.98 283 640 165.91 64 820 166.03 2510
171.02 139 980 170.77 40 870 170.98 2430
175.64 137 500 175.77 39 040 � � �
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calculations of the Taylor expansion coefficients of the
equation of state. The results have been extrapolated to
the continuum limit using spline interpolations as described
in Ref. [39]. Obviously rB;112 approaches the HRG value
from below at all values of the temperature. As has
been observed previously in calculations of cumulants that
are sensitive to the strange baryon sector of hadron
resonance gas models [40], we find that a HRG model,
which includes additional strange baryons (QM-HRG)
provides a better description of the Taylor expansion
coefficients than a HRG model based only on experimen-
tally well established resonances listed in the Particle Data
Tables (PDG-HRG) [41].
Similarly, the LO expansion coefficients of the ratios

RB
31 ≡ SBσ3B=MB ¼ rB;031 þOðμ2BÞ and RB

42≡ κBσ
2
B ¼ rB;042 þ

Oðμ2BÞ, shown in Fig. 1 (right), seem to approach the HRG
model value from below. At least for T > 150 MeV these
ratios are smaller than unity. As a consequence we find to
LO in μB, or equivalently to LO in RB

12, that

RB
32 ≡ RB

31R
B
12 < RB

12 þOððRB
12Þ3Þ: ð24Þ

At least for T > 150 MeV ratios of cumulants thus
obey the inequality MB=σ2B > SBσB, or equivalently RB

31≡
SBσ3B=MB < 1. This clearly is different from HRG model
calculations with pointlike noninteracting hadrons, where
the exact relations, MB=σ2B ¼ SBσB and SBσ3B=MB ¼ 1,
hold at any order in μB, irrespective of the details of the
hadron spectrum used in that calculation.
From the LO expressions given in Eq. (22) and

Eq. (23), it is obvious that to leading order the ratios
RB
31 and RB

42 will also be identical in the case of vanishing
strangeness and electric charge chemical potentials,

although their values need not be unity. Fig. 1 (right)
shows that the LO coefficient rB;042 starts to deviate from
unity significantly for T > 150 MeV. Nonetheless, as can
be seen from the inset in Fig. 1 (right), the difference of
the LO expansion coefficients, rB;042 − rB;031 , stays small
also in the strangeness neutral case with nQ=nB ¼ 0.4.
The maximal difference is reached at T ≃ 200 MeV
where it amounts to about 12% of rB;031 . However, in
the crossover region, 145 MeV < T < 165 MeV, which
also is the temperature range of interest for comparison
with experimental data, this difference never exceeds
more than 4% of rB;031 . The experimental observation
that SPσ3P=MP and κPσ

2
P tend to agree at large

ffiffiffiffiffiffiffiffi
sNN

p
,

although they differ from unity, thus is in accordance
with the QCD result,

SBσ3B=MB ≃ κBσ
2
B for RB

12 → 0: ð25Þ

V. NEXT-TO-LEADING ORDER EXPANSIONS
OF CUMULANT RATIOS

The NLO corrections in the series expansion of ratios
RB
nm at fixed temperature as well as on lines in the T-μB

plane have been introduced in Eqs. (9)–(11) and in
Eqs. (14)–(16), respectively. We will derive the NLO
expansion coefficients in the following and show results
for strangeness neutral systems with an electric charge to
baryon-number ratio nQ=nB ¼ 0.4. However, for the dis-
cussion presented in this section we will also use the
simpler expressions obtained for the case of vanishing
strangeness and electric charge chemical potentials. In this
case the information contained in the NLO expansion
coefficients is much more transparent, and, as we will
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FIG. 1. The leading order expansion coefficients of the cumulant ratios RB
12 (left) and RB

42 (right) versus temperature calculated on
lattices with temporal extent Nτ, and spatial sizes Nσ ¼ 4Nτ. The inset in the right-hand figure shows the difference between the leading
order results for the kurtosis ratio RB

42 and the skewness ratio R
B
31 normalized to the latter. All expansion coefficients have been calculated

for strangeness neutral systems, Eq. (7), with an electric charge to baryon-number ratio r ¼ 0.4 (Eq. (8). The gray bands give the
continuum extrapolated result for rB;112 and, in the case of rB;042 , an estimate for the continuum result. In the right-hand figure we also show
results from a fit to the preliminary STAR data for the corresponding net proton-number fluctuations discussed in Sec. VI. See text for a
discussion of the two HRG curves shown in the left-hand figure.
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see, they show the same qualitative features and further-
more yield similar quantitative results.
The NLO expansions for cumulants and the resulting

expansions of cumulant ratios for arbitrary values of the
chemical potentials μ⃗ ¼ ðμB; μQ; μSÞ are given in the
Appendix. From these one easily obtains the NLO expan-
sion coefficients rB;312 , r

B;2
31 , and rB;242 for μQ ¼ μS ¼ 0 by

evaluating these expressions for si ¼ qi ¼ 0 for i ¼ 1, 3.
This yields for the ratio of NLO and LO expansion
coefficients,

rB;312

rB;112

¼ −
1

3

χB4
χB2

; ð26Þ

rB;231

rB;031

¼ 1

6

�
χB6
χB4

−
χB4
χB2

�
; ð27Þ

rB;242

rB;042

¼ 3
rB;231

rB;031

: ð28Þ

As the quadratic and quartic cumulants of net baryon-
number fluctuations are positive for all values of the
temperature [25], the NLO expansion coefficient of
RB
12 ¼ MB=σ2B is negative for all T. The NLO expansion

coefficient of RB
31 ¼ SBσ3B=MB is negative as long as

χB6 =χ
B
4 < χB4 =χ

B
2 . As known from the Taylor expansion of

the equation of state (Fig. 13 of Ref. [25]) this is the case,
at least for T ≳ 155 MeV. Furthermore, Eq. (28) explicitly
states that the NLO correction to the kurtosis ratio RB

42

is three times larger than that for the skewness ratio RB
31 for

all T as long as μQ ¼ μS ¼ 0.

Using Eq. (26) and Eq. (27), it also is straightforward to
obtain the NLO expansion coefficient of RB

32 ≡ SBσB,

rB;332

rB;132

¼ rB;231

rB;031

þ rB;312

rB;112

¼ 1

6

χB6
χB4

−
1

2

χB4
χB2

; ð29Þ

which also is negative, at least for T ≳ 155 MeV (see
Fig. 13 of Ref. [25]).

A. NLO expansion coefficients of RB
12

In Fig. 2 we show results for the ratio of NLO and
LO expansion coefficients of RB

12. The left-hand figure
shows the ratio of expansion coefficients for a Taylor
series evaluated at fixed temperature for the two cases
(i) μS ¼ μQ ¼ 0 and (ii) nS ¼ 0, nQ=nB ¼ 0.4. It is obvious
that the simpler case (i) is qualitatively similar to the
strangeness neutral case (ii). However, in the latter case the
ratio of NLO and LO expansion coefficients is systemati-
cally smaller in magnitude.
In order to judge the importance of additional contri-

butions to NLO expansion coefficients that arise from the
variation of T along a line TfðμBÞ in the T-μB plane, we use
the parametrization given in Eq. (12). We are particularly
interested in a line that characterizes the change of freeze-
out conditions that results from changes of the beam energy
in heavy ion collisions experiments. Of course, such a line
eventually needs to be determined from the experimental
data. However, it has been suggested [31,42] that hadronic
freeze-out in heavy ion collisions may take place along a
line on which some thermodynamic observables stay
constant as functions of ðT; μBÞ. Such “lines of constant
physics” have been determined from the Taylor expansions
of bulk thermodynamic observables [25] up to Oðμ4BÞ.
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FIG. 2. Ratio of NLO and LO expansion coefficients of the cumulant ratio RB
12 ≡MB=σ2B versus temperature. The left-hand figure

shows results for the NLO expansion coefficient evaluated at fixed temperature while the right-hand figure gives results for the NLO
expansion coefficient on a line in the T-μB plane defined in Eq. (12). The lower data set in the left-hand figure corresponds to the case
μQ ¼ μS ¼ 0 and the upper data set corresponds to the strangeness neutral case with nQ=nB ¼ 0.4. See Sec. IV for a discussion of the
HRG model curves shown in the left-hand figure. The right-hand figure shows fits to the ratio rB;312;f=r

B;1
12 in the strangeness neutral case

for expansion coefficients at fixed temperature, i.e. for κf ¼ 0 (lower line) and on lines, TfðμBÞ, with curvature coefficients in the range
0.006 ≤ κf2 ≤ 0.015. For clarity no error band is shown in this figure.
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For the purpose of our current NLO analysis it suffices to
use information from these expansions that defines the lines
TfðμBÞ up to Oðμ2BÞ. It turns out that lines of constant
pressure, energy density, or entropy density describe
similar trajectories in the T-μB plane. At NLO such lines
are controlled by the curvature coefficient κP2 (pressure), κϵ2
(energy density), or κs2 (entropy density), respectively.
In the crossover region, Tc ¼ ð154� 9Þ MeV, we find
that these curvature coefficients vary in the range,2

0.006 ≤ κf2 ≤ 0.012; f ¼ P; ϵ; s: ð30Þ

For baryon chemical potentials μB=T ≤ 1.5 the temperature
variation on a line TfðμBÞ with κf2 ≤ 0.012 thus is less than
3% of the T-value at μB ¼ 0. The μB-dependence of the
chiral crossover transition [34–37] is similar in magnitude.
This range of curvature coefficients also is consistent with
the bound on κf2 extracted in [38] by comparing exper-
imental data for MP=σ2P and the corresponding electric
charge ratio MQ=σ2Q with a NLO lattice QCD calculation.
The right-hand part of Fig. 2 shows the influence of a

nonvanishing curvature coefficient, κf2 ≤ 0.015, on the
NLO expansion coefficients for RB

12 ≡MB=σ2B. As can
be seen, the modification is small, leading at most to a 10%
change of the NLO expansion coefficient in the crossover
region.

B. NLO expansion coefficients of RB
42 and RB

31

The ratio of NLO and LO expansion coefficients for the
kurtosis ratio RB

42 is shown in Fig. 3. The left-hand figure

shows results for expansion coefficients in the Taylor
series evaluated at fixed temperature. Here only the high
statistics lattice QCD results obtained on lattices with
temporal extent Nτ ¼ 8 are shown for the strangeness
neutral case with nQ=nB ¼ 0.4. The band gives a spline
interpolation of the numerical results. The central line of
this interpolation is given as a black line. Although
statistical errors are large for these expansion coefficients,
which receive contributions from many sixth order cumu-
lants, it is apparent that they are negative for temper-
atures 145 MeV≲ T ≲ 175 MeV.
Similar to what has been shown in Fig. 2, we show in the

right-hand part of Fig. 3 the influence of a nonvanishing
curvature coefficient, κf2 , on the NLO expansion coeffi-
cients for RB

42 ≡ κBσ
2
B. Also in this case the contribution

arising from a nonvanishing κf2 is small. Compared to the
LO contribution, however, the NLO correction to RB

42

is large. In the temperature range of interest for a
discussion of freeze-out conditions in heavy-ion collisions,
145 MeV≲ T ≲ 165 MeV, the magnitude of rB;242;f varies

between 35% and 50% of rB;042 .
The above observations also hold for the NLO correc-

tions to the skewness ratio RB
31. We show a comparison of

rB;242 and three times rB;231 in Fig. 4 (left). Obviously, despite
of the large statistical errors, the central values of these
observables match quite well. This hints at a strong
correlation between these two NLO expansion coefficients
and allows one to determine their ratio to much better
accuracy than the individual values would suggest.
Nonetheless, the jackknife analysis of the ratio rB;242 =r

B;2
31

still is difficult at low and high temperatures where both
observables are compatible with zero within errors.
However, in the temperature interval 145 MeV < T <
175 MeV, these expansion coefficients are clearly
negative and errors are sufficiently small to determine
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FIG. 3. Left: The ratio of NLO and LO expansion coefficients, rB;242 =r
B;0
42 , versus temperature for a strangeness neutral system, nS ¼ 0,

with electric charge to baryon-number ratio nQ=nB ¼ 0.4. The black line shows the central value which is identical to the solid line for

the κf2 ¼ 0 case shown in the right and figure. Right: The ratio rB;242;f=r
B;0
42 , which gives the ratio of NLO and LO expansion coefficients

evaluated on a line in the T-μB plane as defined in Eq. (12). The band shows the shift of this ratio (central values only) resulting from a
variation of κf2 in the indicated interval.

2The temperature dependence of these curvature coefficients
for the three different bulk thermodynamic observables is shown
in Fig. 14 of Ref. [25].
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the ratio rB;242 =r
B;2
31 reliably. This is shown in the inset of

Fig. 4 (left). As expected, we find that also in the
strangeness neutral case the ratio of expansion coefficients
is close to three. This also is the case for μQ ¼ μS ¼ 0 (see
Eq. (28). The ratio has the tendency to drop with increasing
temperature, suggesting that it will approach the ideal gas
value at high temperature3

Using the temperature dependent curvature coefficients
κf2 we can determine the correction to NLO expansion
coefficients of the skewness (RB

31) and kurtosis (R
B
42) ratios,

which arises from a μB-dependent freeze-out temperature.
For κf2 ¼ 0, the ratio, rB;242 =r

B;2
31 , is shown as an inset in

Fig. 4 (left) together with a quadratic fit. This ratio drops
from 3.03(4) at T ¼ 145 MeV to 2.83(4) at T ¼ 165 MeV.
For κf2 > 0, the ratio, rB;242;f=r

B;2
31;f, will be larger than these

values. This can be seen from the fact that for κf2 > 0, the
NLO coefficients rB;242 and rB;231 are shifted by almost the
same positive constant (the temperature derivatives of rB;042

and rB;031 are negative and very similar in magnitude), and in
the temperature range of interest both rB;242 and rB;231 are
negative with rB;242 ∼ 3rB;231 . As these derivatives are small for
T ≲ 145 MeV, and are largest for T ≃ 165 MeV we thus
expect the difference between the ratios rB;242;f=r

B;2
31;f evalu-

ated for κf2 ¼ 0 and κf2 > 0 to rise when increasing the
temperature towards the upper end of the crossover
region. This is apparent from the results shown in
Fig. 4 (right). Taking into account current uncertainties

on the coefficients κf2 , we find in the temperature range
145 MeV ≤ T ≤ 165 MeV,

rB;242;f

rB;231;f

¼ 3.1–4.1: ð31Þ

VI. COMPARING NLO LATTICE QCD
CALCULATIONS WITH EXPERIMENTAL DATA

Qualitative features of the NLO expansions for ratios
of cumulants of net baryon-number fluctuations, derived
in the previous sections, may be confronted with exper-
imental results on cumulant ratios of net proton-number
fluctuations. Of course, as pointed out in the introduction,
one cannot directly compare the experimental data on
net proton-number fluctuations with those for net
baryon-number fluctuations. In particular, the systematic
differences between the two sets of data [10–12] taken in
different transverse momentum intervals, as well as the
known sensitivity of the data on acceptance cuts, indicate
that these systematic effects need to be taken care of, e.g.
by implementing them in realistic hydrodynamic and
transport calculations, before a quantitative comparison
becomes possible. A recent study, for instance, suggests
that effects of volume fluctuations are small and also effects
arising from hadronic scattering and resonance decays
have little influence on the ratios of net proton-number
cumulants [43].
Since experimentally measured cumulants of net proton-

number fluctuations can be different from the cumulants of
net baryon-number fluctuations [13], a direct comparison
between the two is subject to systematic errors. However, as
we will see, qualitative trends, visible in the experimental
data at beam energies

ffiffiffiffiffiffiffiffi
sNN

p ≥ 19.6 GeV, agree well with

3 r31
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FIG. 4. Left: The NLO expansion coefficient for the kurtosis ratio, rB;242 , and three times the NLO expansion coefficient for the
skewness ratio, rB;231 . The inset shows the ratio of the NLO expansion coefficients, rB;242 =r

B;2
31 , in temperature range where jackknife

estimators for this ratio are stable. Right: Ratio of NLO expansion coefficients of the skewness and kurtosis ratios on lines of constant
physics defined by pressure, energy density, and entropy density, respectively. Also shown is the result for vanishing curvature
coefficient (κf2 ¼ 0). Both figures show results for a strangeness neutral system, nS ¼ 0, with electric charge to baryon-number ratio
nQ=nB ¼ 0.4.

3In the infinite temperature limit cumulants approach the ideal
gas limit. For the ratio of NLO expansion coefficients one finds in
this limit, rB;242 =r

B;2
31 ¼ 1.98 for the strangeness neutral case,

nS ¼ 0, with nQ=nB ¼ 0.4.
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QCD results on cumulant ratios and their dependence
on the baryon chemical potential. They are consistent
with a freeze-out temperature close to the QCD transition
temperature.
For the comparison with experimental data, we will use

the expansion of higher order cumulant ratios on lines of
constant physics in terms of RB

12 as given in Eq. (18) to
Eq. (20). This allows us to compare lattice QCD calcu-
lations with experimental data without prior determination
of the chemical potential, μB.
In Fig. 5 (left) we show the skewness ratio RB

32 ¼ SBσB
calculated in a NLO Taylor series. Results are shown as a
function of RB

12 for three temperature intervals. These
temperature intervals have been fixed, somewhat arbitrar-
ily, by choosing three intervals for the slope parameter, rB;031 ,
i.e. (i) rB;031 ¼ 0.95ð5Þ, (ii) rB;031 ¼ 0.75ð5Þ, (iii) rB;031 ¼ 0.55ð5Þ.
These intervals correspond to temperature intervals cen-
tered around the (i) higher, (ii) central, and (iii) lower value
of the QCD transition range Tc ¼ 154ð9Þ MeV. Taking
into account the error band on the spline interpolation
shown in Fig. 1 (right), this leads to the error bands and
T-intervals given in Fig. 5 (left).
As is obvious from the temperature dependence of rB;042

and rB;031 , shown in Fig. 1 (right), the slope of RB
32, which

equals rB;031 , decreases with increasing temperature and the
NLO corrections lead to a bending of the curves away
from the simple straight line result, which also is obtained
in a HRG model calculation with noninteracting, pointlike
hadrons. The central temperature range 151 MeV ≤ T ≤
159 MeV, corresponding to the central value obtained for
the QCD transition temperature, also covers the freeze-out
temperature range determined by the ALICE collaboration
at the LHC for almost vanishing chemical potential, Tf ¼
156ð2Þ MeV [44]. This band also is consistent with
cumulant ratio results obtained by the STAR collabora-
tion from an analysis of cumulant ratios measured at

mid-rapidity, jyj ≤ 0.5, including protons and antiprotons
with transverse momenta 0.4 GeV ≤ pt ≤ 2.0 GeV
[11,12]. These data and the corresponding STAR data
set in a smaller pt-interval, 0.4 GeV ≤ pt ≤ 0.8 GeV [10]
are shown in Fig. 5 (right). We have fitted these data forffiffiffiffiffiffiffiffi
sNN

p ≥ 19.6 GeV using a cubic ansatz, RP
32 ¼ S0RP

12 þ
S2ðRP

12Þ3. The fits for the two different pt-ranges are also
shown in Fig. 5 (left). The data obtained in the larger
pt-interval are consistent with freeze-out in the vicinity of
the QCD crossover temperature, while the data in the
smaller pt-interval would be consistent only with a freeze-
out temperature smaller than 150 MeV.
The STAR data on RP

32 versus RP
12, obtained at beam

energies
ffiffiffiffiffiffiffiffi
sNN

p ≥ 19.6 GeV, deviate from a linear depend-
ence and show evidence for NLO corrections that are
consistent in magnitude with those determined in the
NLO lattice QCD calculation for RB

32. The data obtained
in the large pt-interval are thermodynamically consistent
with freeze-out happening close to the QCD transition
temperature as well as a freeze-out temperature Tf ≃
156 MeV as determined by the ALICE collaboration.
However, these results disfavor a large freeze-out temper-
ature, Tf ≃ 165 MeV, as determined by the STAR col-
laboration at large beam energies [45].
The fact that the slope of RB

32 differs from unity and
decreases with increasing temperature is equivalent to
stating that the intercept of the skewness ratio RB

31 ¼
SBσ3B=MB at vanishing RB

12 is smaller than unity and also
decreases with increasing temperature. As can be seen in
Eq. (18) and Eq. (20) the LO and NLO expansion
coefficients of RB

32 and RB
31 are, of course, identical. The

fits shown in Fig. 5 (right) thus also describe the exper-
imental data on the skewness ratio shown in Fig. 6. The
corresponding results for the skewness ratio of net baryon-
number fluctuations obtained from the NLO lattice QCD
calculation are shown as black bands in Fig. 7 for the three

FIG. 5. Left: Next-to-leading order lattice QCD result for SBσB versus MB=σ2B. Bands reflect the statistical errors of the lattice QCD
calculation. The dashed lines show the fits to the experimental data sets shown in the right-hand figure. Right: Experimental data on
SPσP versus MP=σ2P. Shown are data obtained by the STAR collaboration in two different transverse momentum intervals and for
different values of the beam energy,

ffiffiffiffiffiffiffiffi
sNN

p
=GeV ¼ 200; 62.4; 39; 27; 19.6; 11.5; 7.7. For the preliminary data in the larger pt range an

additional data point is shown at 14.5 GeV [12]. The dashed lines show cubic fits, aRP
12 þ bðRP

12Þ3, for
ffiffiffiffiffiffiffiffi
sNN

p ≥ 19.6 GeV.
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temperature intervals defined previously. These bands
are simply obtained from those shown in Fig. 5 (left) by
dividing with RB

12.
The additional fits for the kurtosis ratio RP

42 shown in
Fig. 6 have been obtained by using the quadratic fit ansatz,
RP
42 ¼ K0 þ K2ðRP

12Þ2, with K0 ≡ S0. I.e., we demand that
the skewness and kurtosis ratios have identical intercepts at
RP
12 ¼ 0. These constrained fits provide a good description

of the data with K2 ¼ ð4� 2ÞS2. Both fits, shown as blue
and red dashed lines in Fig. 6, are also shown in Fig. 7. The
ratio K2=S2 should be compared to the ratio of slope
parameters, rB;242;f=r

B;2
31;f, for the corresponding kurtosis and

skewness ratios of net baryon-number fluctuations, which
is given in Eq. (31). The trend and even the magnitude of
this ratio agrees well with the experimental data. The
stronger bending of the kurtosis ratio relative to the
skewness ratio of net proton-number fluctuations observed
experimentally thus finds a natural explanation in the NLO
lattice QCD calculation.
The general pattern seen in the STAR data for SPσ3P=MP

and κPσ
2
P for the two different pt-intervals is consistent

with what we have discussed for SPσP in connection with

Fig. 5. The data obtained in the large pt-interval are
consistent with a freeze-out temperature close to the
QCD transition temperature, while the data obtained in
the smaller pt-interval are thermodynamically consistent
only with a small freeze-out temperature, Tf < 150 MeV.
A large freeze-out temperature of about 165 MeV, on the
other hand, would require that the skewness and kurtosis
ratios become substantially smaller, even at large beam
energies once all potential systematic corrections have been
taken into account.
The fit to the data for RP

31 obtained in the large
pt-interval, which is shown in Fig. 6, gives the value
RP
31 ¼ RP

42 ¼ 0.80ð4Þ for the intercept at RP
12 ¼ 0. This

also is shown as a gray box in Fig. 1 (right) and constrains
the range of freeze-out temperatures quite well. We con-
clude that all current data on cumulant ratios, measured
by STAR in the different transverse momentum intervals,
0.4 GeV < pt < pcut

t , are consistent with freeze-out
temperatures,

T0 ≤ 149 MeV for pcut
t ¼ 0.8 GeV;

T0 ¼ ð153� 5Þ MeV for pcut
t ¼ 2.0 GeV: ð32Þ

The latter is in excellent agreement with the freeze-out
temperature determined by the ALICE Collaboration from
particle yields at the LHC [44] but differs significantly from
the freeze-out parameters at large beam energies presented
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point for κPσ2P at the lowest beam energy

ffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7 GeV is not
shown. See text for a discussion of the fits.

FIG. 7. NLO expansion of the skewness (left) and kurtosis
(right) ratios SBσ3B=MB and κBσ2B, respectively. Shown are results
in three temperature ranges covering the crossover region of the
QCD transition at vanishing baryon chemical potential. Dashed
lines show the fits to experimental results for the corresponding
skewness and kurtosis ratios of net proton-number fluctuations.
These fits are also shown in Fig. 6.
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by STAR [45]. Within errors it also is consistent with the
somewhat lower value for Tf extracted in our analysis of
ratios of variances of net electric charge and net baryon-
number fluctuations [38].
Nonetheless, as stressed above, this observation can only

be taken as a first indication, given the observed depend-
ence of SPσ3P=MP on the transverse momentum range
analyzed as well as the size of rapidity bins entering the
analysis.

VII. SUMMARY AND CONCLUSIONS

Next-to-leading order calculations of cumulant ratios
involving the skewness and kurtosis of net baryon-number
fluctuations are computationally demanding as they involve
many 6th order cumulants of conserved charges fluctua-
tions that are difficult to calculate and statistically noisy in
lattice QCD. Depending on the temperature value the
analysis presented here required the generation of up to
7 million time units in RHMC simulations to control these
NLO corrections on lattices of size 323 × 8.
Most of the calculations presented here are not yet

extrapolated to the continuum limit. They, however, clearly
show that qualitative features of currently available exper-
imental data on net proton-number cumulants can be
understood in terms of equilibrium thermodynamics of
QCD. In the range of applicability, μB ≲ 200 MeV, which
corresponds to energies

ffiffiffiffiffiffiffiffi
sNN

p ≳ 19 GeV in the RHIC
beam energy scan, the QCD-based calculations presented
here may explain

(i) the deviation of SPσ3P=MP from unity,
(ii) the coincidence of the skewness ratio SPσ3P=MP

and the kurtosis ratio κPσ
2
P for large RHIC beam

energy,
ffiffiffiffiffiffiffiffi
sNN

p ≳ 200 GeV,
(iii) the significantly stronger decrease of κPσ

2
P, in

comparison to SPσ3P=MP, with decreasing beam
energies down to

ffiffiffiffiffiffiffiffi
sNN

p ¼ 19.6 GeV.
We have shown that NLO corrections to the skewness and
kurtosis ratios, evaluated for the strangeness neutral case,
are negative in the entire interval 145MeV≲T≲175MeV.
This also holds for the case μQ ¼ μS ¼ 0. As shown in
Eq. (27) and Eq. (28), it is evident that negative values for
the skewness and kurtosis ratios in this case imply
χB6 =χ

B
4 < χB4 =χ

B
2 . In fact, the 6th order cumulant of net

baryon-number fluctuations turns out to be negative in this
temperature range.
It is conceivable that higher order cumulants will start

changing signs in an irregular pattern for T ≳ 145 MeV,
indicating that the radius of convergence of the Taylor
series for the QCD pressure is limited by a singularity in
the complex plane (strictly alternating signs of expansion
coefficients would correspond to a singularity for purely
imaginary values of μB=T). Such a scenario disfavors the
location of a critical point in the QCD phase diagram
for T ≳ 145 MeV.

The observation that Taylor series for skewness and
kurtosis of net baryon-number fluctuations closely resem-
ble the corresponding experimental results for the net
proton-number fluctuations for μB ≤ 200 MeV is, thus,
consistent with the analysis of the radius of convergence of
the Taylor series for the pressure and second order net
baryon-number cumulants [25], which leads to the con-
clusion that a critical point at μB=T ≤ 2 is disfavored by
current lattice QCD calculations.
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APPENDIX: NLO EXPANSION
COEFFICIENTS FOR χBn

We give here the next-to-leading order results for the
expansion coefficients of up to fourth order cumulants of
net baryon-number fluctuations in the constrained case,
where μQ and μS get replaced by Eq. (6). The expansions of
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even and odd order cumulants in terms of the baryon
chemical potential, μ̂B ¼ μB=T, are given by

χB2nðT; μBÞ ¼ χ̄B;02n þ 1

2
χ̄B;22n μ̂

2
B; n ¼ 1; 2

χB2nþ1ðT; μBÞ ¼ χ̄B;12nþ1μ̂B þ 1

6
χ̄B;32nþ1μ̂

3
B; n ¼ 0; 1: ðA1Þ

Here the k-th order expansion coefficients χ̄B;kn are func-
tions of temperature and the Taylor expansion coefficients
qi, si of the electric charge and strangeness chemical
potentials (see Eq. (6). The LO expansion coefficients are
given by,

χ̄B;11 ¼ χB2 þ s1χBS11 þ q1χ
BQ
11 ;

χ̄B;02 ¼ χB2 ;

χ̄B;13 ¼ χB4 þ s1χBS31 þ q1χ
BQ
31 ;

χ̄B;04 ¼ χB4 : ðA2Þ

We note that in LO the expansion coefficients for even
order cumulants do not depend on the constraint put on
strangeness and electric charge densities, while the odd
order expansion coefficients explicitly depend on them.
The NLO expansion coefficients for odd order cumulants,
χ̄B;3n , n ¼ 1, 3, can be written as,

χ̄B;3n ¼ mB;3
n þ 6s3χBSn1 þ 6q3χ

BQ
n1 ; ðA3Þ

with

mB;3
1 ¼ χB4 þ χBS13 s

3
1 þ χBQ13 q

3
1 þ 3χBS22 s

2
1 þ 3χBQ22 q

2
1

þ 3χBS31 s1 þ 3χBQ31 q1 þ 6χBQS
211 q1s1

þ 3χBQS
121 q21s1 þ 3χBQS

112 q1s21; ðA4Þ

and

mB;3
3 ¼ χB6 þ χBS33 s

3
1 þ χBQ33 q

3
1 þ 3χBS42 s

2
1 þ 3χBQ42 q

2
1

þ 3χBS51 s1 þ 3χBQ51 q1 þ 6χBQS
411 q1s1

þ 3χBQS
321 q21s1 þ 3χBQS

312 q1s21: ðA5Þ

Explicit expressions for the NLO expansion coefficients q3,
s3 of the electric charge and strangeness chemical poten-
tials, needed in Eq. (A3), have been given in Appendix B of
Ref. [25]. Similarly, the NLO expansion coefficients of
even order cumulants, χ̄Bn , n ¼ 2, 4 are obtained as

χ̄B;22 ¼ χB4 þ s21χ
BS
22 þ q21χ

BQ
22 þ 2s1χBS31

þ 2q1χ
BQ
31 þ 2q1s1χ

BQS
211 ; ðA6Þ

χ̄B;24 ¼ χB6 þ s21χ
BS
42 þ q21χ

BQ
42 þ 2s1χBS51

þ 2q1χ
BQ
51 þ 2q1s1χ

BQS
411 : ðA7Þ

This gives for the ratios of LO expansion coefficients
introduced in Eqs. (9)–(11),

rB;112 ¼ χ̄B;11

χ̄B;02

; rB;031 ¼ χ̄B;13

χ̄B;11

; rB;042 ¼ χ̄B;04

χ̄B;02

: ðA8Þ

For the NLO expansion coefficients introduced in
Eqs. (9)–(11), one then obtains,

rB;312

rB;112

¼ 1

6

χ̄B;31

χ̄B;11

−
1

2

χ̄B;22

χ̄B;02

; ðA9Þ

rB;231

rB;031

¼ 1

6

�
χ̄B;33

χ̄B;13

−
χ̄B;31

χ̄B;11

�
; ðA10Þ

rB;242

rB;042

¼ 1

2

�
χ̄B;24

χ̄B;04

−
χ̄B;22

χ̄B;02

�
: ðA11Þ

The corresponding expansion coefficients in the case
μQ ¼ μS ¼ 0 are obtained from these expressions simply
by substituting χ̄ → χ.
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