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Abstract 

  To investigate the effect of hydrophobicity on the charge reversal of colloidal particles, we 

measured and analyzed the electrophoretic mobility (EPM) of carboxyl latex particles in mixed 

electrolytes solutions containing potassium chloride KCl and tetraphenylphosphonium chloride 

TPPCl. Tetraphenylphosphonium (TPP+) ion strongly adsorbs on the particle surface due to its 

hydrophobicity, and thus causes the charge reversal/overcharging. Measurements of EPM were 

carried out as functions of pH, ionic strength, and the mixed molar ratio of X=[TPP+]/[K +] to 

unveil the influence of surface charge on hydrophobic interaction. Experimental EPM was 

analyzed by using 1-pKH Stern Gouy Chapmann model with the Ohshima equation including the 

relaxation effect or the Smoluchowski equation neglecting the relaxation effect for calculating 

theoretical EPM values. Our results demonstrate that carboxyl latex particles show charge 

reversal indicated by positive EPMs at low pH due to the accumulation of TPP+ ions on the 

surface and the reversed EPM values at low pH are augmented with increasing the mixed molar 

ratio of X=[TPP+]/[K +]. Also, we observed that charge re-reversal at higher pH as the 

deprotonation of surface carboxyl groups proceeded. The pH at which the charge re-reversal 

occurred increased with increasing the mixed molar ratio. From the comparison between our 

experiments and theoretical analysis, we found that the intrinsic energy of adsorption decreases 

with increasing the surface charge density to describe the observed charge re-reversal. These 

results indicate that the intrinsic adsorption energy of TPP+, which is probably due to 

hydrophobic interaction, decreases with increasing the surface charge density. 
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1. Introduction 

    The stability of colloidal dispersion against aggregation-sedimentation is one of the 

important issues for scientific interest and industrial and technological applications such as 

foods storage, inks, paints, water treatment, and colloid-facilitated transport[1, 2]. The stability 

of colloids can be commonly explained by the Derjaguin, Landau, Verwey, and Overbeek 

(DLVO) theory [3, 4] in which interparticle interactions are composed of the van der Waals 

attraction and electrical double layer force. Particularly, the electrical double layer force is 

regulated by the charging behavior of colloidal particles. Therefore, one needs to estimate the 

surface charge of colloidal particles to predict their colloidal stability. 

   The surface charging properties of colloidal particles are strongly affected by the adsorption 

of oppositely-charging species such as polyelectrolytes[5, 6], surfactants[7, 8], and multivalent 

ions[9–11] onto the surfaces. Such adsorption can induce so-called charge reversal/overcharging 

which causes the change in sign of the net surface charges due to the excess accumulation of 

counter ionic species[12]. To reveal the mechanism of charge reversal, many studies have been 

done with the approaches of Monte-Carlo simulation and molecular dynamics including 

inter-ion correlation[13, 14], ionic specificity[15], and hydrophobic interaction[16]. The 

previous studies have demonstrated that the hydrophobicity of ions and colloids can 

significantly influence the surface/electrokinetic charge density in the presence of large 

hydrophobic ions[16–19]. Notably, the previous research with molecular dynamics 

simulation[16] has confirmed the linear relationship between the isoelectric point (IEP), which 

is the concentration where the charge reversal occurs, and the surface charge density by 

assuming a constant adsorption free energy of ions[17, 20]. Nevertheless, the intrinsic energy 

of adsorption for hydrophobic tetraphenylphosphonium (TPP+) ions onto polystyrene sulfate 

latex surfaces decreases with increasing the surface charge density[19] even though the 

hydrophobic ion concentration at the IEP increases with the increase of the charge density as 

shown in the previous studies[16, 17]. This finding suggests that the adsorption energy of 

hydrophobic ions can be a function of surface charge density. However, the effect of 

charge density on the intrinsic energy of adsorption of hydrophobic ions remains 

ambiguous because the previous work used sulfate latex particles with different charge 

densities and sizes[19]. 

   In the present study, to clarify the effect of surface charges on the adsorption of hydrophobic 

ions, which induces the reverse of sign in the surface (or zeta) potential, we measured and 

analyzed the electrophoretic mobilities of carboxylate polystyrene latex particles in the presence 

of hydrophobic tetraphenylphosphonium (TPP+) ions. Carboxyl latex particles have carboxyl 
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groups on their surface, and thus the negative surface charge density increases with pH due to 

their deprotonation. This feature of carboxylated latex particles enables us to examine the effect 

of charge density and hydrophobic interaction on the adsorption of TPP+ ions onto the surfaces. 

 

2. Material and Methods 

2.1 Materials 

   Carboxylated polystyrene latex particles (Molecular Probes) were employed as model 

colloidal particles. The used carboxyl latex particles have pH-dependent negative charges due to 

the deprotonation of the carboxyl groups on the particle surface. The manufacturer reports that 

the chargeable site density on the surface ���� is 1.136 /nm2, the diameter 2� is 1.5±0.03 µm, 

and the density is 1.055 g/cm3, respectively. KCl (JIS special grade, Wako Pure Chemical 

Industries) and tetraphenylphosphonium chloride TPPCl (EP grade, Tokyo Chemical 

Industry Co.) were used to prepare the electrolyte solutions. The pH was adjusted by the 

addition of HCl (JIS special grade, Wako Pure Chemical Industries) and KOH solutions. 

Carbonate free KOH solution was prepared by following the method described in the 

literature[21]. Before the sample preparation, all solutions were filtered with a 0.20 μm pore 

filter (DISMIC 25HP ADVANTEC). All solutions and suspensions were prepared from 

deionized water (Elix, MILLIPORE) and degassed before use. 

 

 

2.2 Experimental Methods 

EPM was measured by electrophoretic light scattering technique with Zetasizer NANO-ZS 

(Malvern). Measurements were carried out as a function of solution pH at different mixed molar 

ratio X = [TPP+] /[K +] with fixed ionic strength, where [TPP+] and [K+] denote the 

concentrations of TPP+ and K+. The pH was adjusted in the range from 3 to 11 with HCl and 

KOH solutions. Ionic strengths were 10 mM and 50 mM, and the mixed molar ratios X were 0, 

0.01, 0.1, 0.5, 5 and ∞. The particle concentration was set to 50 mg/L in all experiments. The 

samples were prepared by mixing the required volumes of the suspension of the carboxyl latex 

particles, KCl solution, TPPCl solution, pH adjuster, and degassed water. The pH was measured 

with a combination electrode (ELP-035, TOA-DKK). All experiments were carried out at 

20 ℃. 

 

3. Theoretical Analysis 

 

3.1 Charging model 

The surface charge of the used particle arises from the deprotonation of carboxyl group. That 
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is,  

 �COOH ⇋ �COO
 � H� (1) 

The dissociation equilibrium between the carboxyl groups and the proton in the electrolyte 

solution is characterized by the proton dissociation constant defined as[22] 

 p�� � � log�� �� � � log��
�
��������

�
����  (2) 

where �
���� , �
����, and ����  are the surface activities of dissociated and protonated 

carboxyl groups, and proton, respectively. KH is the acid dissociation constant. The value of pKH 

used in this study is 4.9 from the literature[1, 2]. The surface activity of proton is related to the 

bulk activity ���  and the surface potential �� via the Boltzmann equation 

 ��� � ���exp  � !��"#$% (3) 

where e is the elementary charge, "# is the Boltzmann constant, $ is the absolute temperature. 

Since the surface charge density is attributed to the dissociated carboxyl groups on the surface, 

the relationship between the surface charge density and the surface potential due to 

deprotonation can be described as 

where ����  is the total site density of surface carboxyl groups including dissociated and 

protonated ones. 

The TPP+ ions strongly adsorb onto the surfaces of the polystyrene latex particles which are 

hydrophobic. To describe the adsorption of the TPP+ ions, we introduce the Stern layer model 

with the following equation[2, 3]: 

 Г' � 2)'*+,,exp  � �- � !�."#$ % (5) 

where the Г' is the amount of adsorbed TPP+ ions in the Stern layer, )' is the radius of 

adsorbed TPP+ ion with the value of 2)'  = 0.94 nm[17] used in present study, *+,, is the bulk 

concentration of TPPCl, �.  is the diffuse layer potential, -  is the non-electrostatic 

chemical/intrinsic adsorption energy per ion. The term of chemical/intrinsic adsorption energy 

represents the energies other than from electrostatic origin. To incorporate the dependency of 

the non-electrostatic adsorption energy on the surface charge density proposed by the previous 

work [19], we have introduced the following simple linear interpolation to calculate the value of 

- as 

 /� � �!�
���� � � !����
1 � 10234
2�exp 5� !��"#$6 (4) 
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 - � 7-89: � -8;<= /��!Γ��� � -8;< (6) 

where -89:  and -8;<  are the minimum and the maximum non-electrostatic 

chemical/intrinsic adsorption energy per ion. These values are determined below in Section 4. 

With Eq. (5), we can express the Stern layer charge density /' as 

 /' � !?@Г' (7) 

where ?@ is the Avogadro number. This equation suggests that the adsorbed amount of TPP+ 

ions in the Stern layer is in charge of the development of the Stern layer charge density /'. 

The relationship between the diffuse layer charge density /. and the diffuse layer potential 

�. for our system is given by the Grahame equation for monovalent salt as follows[24]: 

with the inverse Debye parameter A
� as 

where *3BC  and *3BC  are the concentrations of KCl and TPPCl, and D� is the dielectric 

constant of vacuum, DE=80.4 is the relative dielectric constant of water. For the surface bearing 

weakly-acidic groups with the Stern layer, one needs to assume the following linear 

relationship[24] 

where *' is the Stern layer capacitance. And we set the value to *' � FGFG/)' by assuming 

the thickness of the Stern layer is the radius of TPP+ ion )'. 

 According to the principle of electroneutrality, the sum of surface /�, the Stern layer /', and 

diffuse layer charge densities /. must be zero which requires the condition below: 

 /� � /' � /. � 0 (11) 

The set of Eqs. [2-11] is solved numerically to obtain the diffuse layer potential �. for the 

successive calculation of the zeta potential I. Particularly, in a pure KCl solution, the above set 

of equation is solved with the conditions �. � ��, /' � 0, and *' → ∞ meaning no Stern 

layer for pure KCl case. 

 To calculate the electrophoretic mobility in the following section, the zeta potential I from 

�., which is set to �. � �� for pure KCl solution, is calculated with the Gouy-Chapman 

theory via 

 /. � � 2DGD�A"#$
! sinh  !�.2"#$% (8) 

 

A
� �  DED�"#$
27*3BC � *+,,BC=?@!P%

�P
 (9) 

 /� � *'7�� � �.= (10) 
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 I � �7Q'= � 4"#$
! tanh
� Utanh  !�.4"#$% exp7�AQ'=V (12) 

where Q' is the distance to the slipping plane. The value of Q' for pure KCl case is set to 

Q'=0.25 nm[1, 2], while the value for mixed KCl and TPPCl case is set to Q'=)'=0.47 nm with 

the assumption that the extent of the slipping plane coincides with the outer edge of the 

adsorbed TPP+ ion on the surface. 

 

3.2 Electrophoretic mobility (EPM) 

The electrophoretic mobilities (EPMs) are calculated from the zeta potential using the 

Ohshima equation including the relaxation effect[25] and the Smoluchowski equation 

neglecting the relaxation effect.  

First, the Smoluchowski equation is given by 

 W8 � DGD�X' I (13) 

where W8 is the electrophoretic mobility, X' is the viscosity of the solution. 

Second, an analytical expression for EPM of a negatively charged particle in 1:1 electrolyte 

solution such as KCl derived by the Ohshima, Healy, and White[25] is 

 W8 � sgn7I= DGD�X' Y|I| � 2[
1 � [  "#$

! % \]

� sgn7I= 2DGD�"#$
3X'! _ 1

A� `�18 bc � cd
9 f �

� 15[
1 � [ bc � 7cP

20 � cd
9 f

� 671 � 3jk= 51 � expl�Im 2⁄ o6 p � 12[
71 � [=P \

� 9Im
1 � [ 7jkp � j\= � 36[

1 � [ 5jkpP � j
1 � [ \P6qr 

(14) 

With 

 \ � ln 1 � explIm 2⁄ o
2  (15) 

 � � 1 � 25
37A� � 10= exp  � A�

67A� � 6= Im% (16) 

 [ � 2
A� 71 � 3j=lexplIm 2⁄ o � 1o  
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  p � ln 1 � expl�Im 2⁄ o
2  (17) 

 c � tanhlIm 4⁄ o (18) 

  Im � !I
"#$ (19) 

 j � 2DGD�"#$
3X'!P t,    jk � 2DGD�"#$

3X'!P tm,  (20) 

      t � tm � ?@!P|v9|P
w9°

 (21) 

where sgn(x) is 1 when x > 0 or −1 when x < 0, j and jk  are the scaled drag coefficients of 

counter-ions and co-ions, respectively, NA is the Avogadro constant, and w9° is the values of the 

limiting molar conductance of the i-th ionic species. Eq. (13) is valid for A� > 10 and this 

condition is satisfied in all experiments since the smallest A� is 245.65 in our experiment. In 

this study, the values of w9° (10−4 S m2/mol) used are 66.17 for K+, 20.7 for TPP+, and 68.68 for 

Cl− which are taken from the literature[10, 11]. 

 

 

4. Results and Discussion 

We plot the EPMs of carboxyl latex particles as a function of the solution pH at different 

ionic strengths in Fig. 1 (a,b) for 10 mM and Fig. 1 (c,d) for 50 mM, respectively. In Fig. 1, the 

symbols are experimental values, the solid lines are the theoretical values calculated by the 

Ohshima equation including the relaxation effect, and the dashed lines are the theoretical values 

calculated by the Smoluchowski equation neglecting the relaxation effect. While the lines in Fig. 

1 (a,c) are drawn with the constant non-electrostatic intrinsic energy of TPP+ adsorption of - �
6 "#$, the lines in Figure 1 (b,d) are obtained with the assumption that the energy for TPP+ 

adsorption linearly varies with the surface charge density from 6 kBT to 4 kBT. The value of 6 

kBT is taken from the literature[17]. They also reported that the free energy of transfer for a 

phenyl group from water to organic solvents is approximately 3 kBT and it is closely related to 

the adsorption energy. It should be noted that the value of 6 kBT corresponds to the situation 

where two of four phenyl groups on TPP+ ions adsorb onto hydrophobic polystyrene latex 

surfaces[17]. These values used in the literature are comparable with the values we used. 

In the case of pure KCl solution, X=[TPP+]/[K +]=0, the electrophoretic mobility in 

magnitude increases with pH. It shows that the particles are highly negatively charged at high 

pH due to the deprotonation of carboxyl groups. The experimental electrophoretic mobilities in 



9 
 

the solution including TPP+ in Fig. 1 show positive values at low pH, indicating that the 

occurrence of charge inversion. This inversion is attributed to the adsorption of TPP+ on the 

surfaces by hydrophobic interaction between phenyl groups of TPP+ ions and the polystyrene 

surface. With increasing pH, the positive electrophoretic mobilities decrease. Then, the 

electrophoretic mobilities reverse again to negative values. This charge re-reversal means that 

the increased number of deprotonated carboxyl groups at high pH outnumbers the adsorbed 

amount of TPP+ ions. In addition, the charge re-reversal pHs shift to higher pH with increasing 

the mixed molar ratio X and the ionic strength. This is because larger amounts of deprotonated 

carboxyl groups are required to compensate more adsorbed TPP+ ions associated with abundant 

TPP+ ions in bulk solution. However, the experimental electrophoretic mobilities at 50 mM and 

mixed molar ratios higher than X=5 in Fig. 1 (c,d) are positive and do not show the charge 

re-reversal regardless of pH. This can be ascribed to the existence of excess amounts of 

adsorbed TPP+ ions even though all carboxyl groups are deprotonated at high pH. 

From the comparison between calculated values with two different models, Smoluchowski 

equation and Ohshima equation, we confirm that differences in calculated electrophoretic 

mobilities between these two methods are not so significant for our case. This can be 

rationalized by relatively low zeta potentials which are induced by the charge reversal, and thus 

the relaxation effect is not significant. 

In the comparison with theoretical values calculated by assuming the constant 

non-electrostatic intrinsic energy of adsorption in Fig. 1 (a,c), one finds that the calculations 

capture the experimental trends. However, the calculations with the constant adsorption energy 

overestimates the adsorption amounts of TPP+ ions and cannot describe the experimentally 

observed charge re-reversal of electrophoretic mobilities at high pH with higher mixed molar 

ratios. In contrast, the calculated mobilities obtained by assuming that the intrinsic energy of 

adsorption in Fig. 1 (b,d) is proportional to the surface charge density can successfully 

reproduce the charge re-reversal for all the conditions and even in high mixed molar ratios. 

Therefore, our result suggests that the intrinsic energy of adsorption of TPP+ decreases from 6 

kBT to 4 kBT with increasing charge density. This finding is consistent with the result that the 

intrinsic energy of TPP+ adsorption decreases with increasing the surface charge density of 

sulfate latex particles with different diameters[19], and complements their finding by 

monodisperse carboxylated latex particles with pH-variable surface charge. 

Moreover, on the basis of our results above, we suggest the reason why the intrinsic energy 

of adsorption for TPP+ ions can be dependent on the surface charge density as follows. As the 

deprotonation of surface carboxyl groups progresses with increasing pH, the particle surfaces 

become less hydrophobic. Such relatively low hydrophobicity can make difficult TPP+ ions to 

be accumulated near the surfaces. Therefore, the adsorption energy decreases with the surface 
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charge density, in other word, the number of dissociated surface groups. Hence, such reduction 

in the adsorption energy might cause the charge re-reversed electrophoretic mobilities from 

positive to negative due to the deprotonation of carboxyl groups. This suggestion also can 

rationalize the result of the previous study[19] because high surface charge densities of the 

sulfate latex particles mean larger number of surface sulfate groups on their surfaces. 

Even though the proposed simple modeling captures the experimental trends represented by 

the charge re-reversal, there are still quantitative discrepancies in intermediate mixed molar 

ratios, for instance, X=0.01 and 0.1 at 10 and 50 mM. This could suggest that the adsorption 

behavior in mixed solution of KCl and TPPCl can be more complex than the simple model used 

in this paper. The discrepancies in solution containing K+ ions at higher pH could be explained 

by K+ binding to the deprotonated carboxylic groups [28] by decreasing the amounts of surface 

charge, which decreases the magnitude of mobilities. However, such explanation is not 

applicable at lower pH because of less deprotonated groups. So, the discrepancies at lower pH 

within our simple modeling seem to be attributed to mixed effects due to mutual interaction 

between K+ and TPP+ ions. Since TPP+ ions have larger hydrophobicity, in other words, higher 

affinity to the hydrophobic latex surfaces than K+ ions, TPP+ ions tend to accumulate near the 

surface than K+ ions. In addition, K+ ions experience electrical repulsion with TPP+ ions and less 

attraction with the surface due to its lower surface charge density at low pH. These interactions 

between the surface and ions might cause the depletion of K+ ions between the surface and TPP+ 

ions, which can augment the TPP+ adsorption by depletion forces. Related specific ionic effects 

have been examined in the previous work [15], however, mixed effects of ions with different 

surface affinity on the adsorption are still under consideration. Molecular dynamics and Monte 

Carlo simulation would help to clarify this enhanced adsorption in mixed solution. 

Another possible effect, which can apparently reduce the adsorption energy in our 

modeling, is to consider ionic steric effect due to ionic saturation and finite size effects in 

adsorption process. Along with an approximated mean field model for the steric effect discussed 

in the previous research [17], an estimate for the excess chemical potential of TPP+ at the Stern 

layer is given by Wz< ≈ "#$ ln71 � *'|=, where *' � Г'/72)'= calculated from Eq. (5) is the 

TPP+ concentration at the Stern layer, and | ≈ 200 cmd/mol is the volume of the cation 

approximated as the value for TPAs+ (tetraphenyl arsonium ion) [29]. In 50 mM solution of pure 

TPPCl with constant adsorption energy of - � 6 "#$, one estimates *' ≈  2.38 M, and leads 

a repulsive free energy with Wz< ≈ 0.39 "#$. This value is still smaller than the reduction of 

adsorption energy of |-8;< � -89:| � 2 "#$, suggesting that the steric effect is not dominant 

in the TPP+ adsorption. Therefore, our interpretation can be valid in the solution where TPPCl is 

dominant, although we need more sophisticated theoretical treatment for the reduction of 

adsorption energy in the future. 
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5. Conclusion  

  Electrophoretic mobilities of carboxyl latex particles were measured in mixed solutions of 

KCl and TPPCl as a function of the pH, the ionic strength, and the mixed molar ratio of 

X=[TPP+]/[K +] to reveal the effect of hydrophobicity on the charge reversal. We observed that 

the charge reversal of the latex occurred at low pH in the presence of hydrophobic TPP+ ions 

because of hydrophobic interaction. With increasing pH, the EPMs were reversed again due to 

Figure 1 The relationship between electrophoretic mobility of carboxyl latex particles and pH in 

mixed solution of KCl and TPPCl at 10 mM for (a,b) and 50 mM for (c,d). Symbols are experimental 

values. Solid and dashed lines are theoretical values calculated by the Ohshima equation and the 

Smoluchowski equation, respectively. Mixed molar ratios X= [TPP+] / [K+] are 0, 0.01, 0.1, 0.5, 5 and 

∞ from lower to upper lines. Calculated values in (a,c) are obtained by assuming the constant 

non-electrostatic intrinsic energy of TPP+ adsorption and theoretical values in (b,d) are calculated by 

assuming pH-dependent intrinsic energy of TPP+ adsorption. 
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the increased deprotonation of carboxylic groups and the reduction of hydrophobic interaction. 

With the theoretical analysis describing such charge re-reversal, we found the reduction in the 

intrinsic energy of adsorption of TPP+ with increasing the charge density from 6"#$ at the 

lowest charge density to 4"#$  at the highest charge density. This finding supports the 

conclusion in the previous work [19] and suggests that the non-electrostatic energy of 

adsorption of TPP+ is dependent on the surface charge density of adsorbents. 

 

Acknowledgment 

This work was supported by JSPS KAKENHI Grant Number 15H04563, 16H06382 and 

15J00805. 

 

Conflict of interest 

The authors declare that they have no conflict of interest associated with this article. 

 

 

References 

 

[1] W. B. Russel, D. A. Saville, and W. R. Schowalter, “Colloidal dispersions,” 1989. 

[2] M. Elimelech, J. Gregory, and X. Jia, “Particle deposition and aggregation: measurement, 

modelling and simulation,” 2013. 

[3] B. Derjaguin and L. Landau, “The theory of stability of highly charged lyophobic sols 

and coalescence of highly charged particles in electrolyte solutions,” Acta Physicochim. 

URSS, 1941. 

[4] E. Verwey, J. Overbeek, and J. Overbeek, “Theory of the stability of lyophobic colloids,” 

DoverPublications. com, 1999. 

[5] I. Szilagyi, G. Trefalt, A. Tiraferri, P. Maroni, and M. Borkovec, “Polyelectrolyte 

adsorption, interparticle forces, and colloidal aggregation.,” Soft Matter, vol. 10, no. 15, 

pp. 2479–502, Apr. 2014. 

[6] W. F. Tan, W. Norde, and L. K. Koopal, “Humic substance charge determination by 

titration with a flexible cationic polyelectrolyte,” Geochim. Cosmochim. Acta, vol. 75, no. 

19, pp. 5749–5761, 2011. 

[7] P. Somasundaran, T. W. Healy, and D. W. Fuerstenau, “Surfactant Adsorption at the 

Solid--Liquid Interface--Dependence of Mechanism on Chain Length,” J. Phys. Chem., 

vol. 68, no. 12, pp. 3562–3566, 1964. 

[8] M. Kobayashi, S. Yuki, and Y. Adachi, “Effect of anionic surfactants on the stability 

ratio and electrophoretic mobility of colloidal hematite particles,” Colloids Surfaces A 



13 
 

Physicochem. Eng. Asp., vol. 510, pp. 190–197, 2016. 

[9] M. L. Jiménez, Á. V. Delgado, and J. Lyklema, “Hydrolysis versus ion correlation 

models in electrokinetic charge inversion: Establishing application ranges,” Langmuir, 

vol. 28, no. 17, pp. 6786–6793, 2012. 

[10] M. Nishiya, T. Sugimoto, and M. Kobayashi, “Electrophoretic mobility of carboxyl latex 

particles in the mixed solution of 1:1 and 2:1 electrolytes or 1:1 and 3:1 electrolytes: 

Experiments and modeling,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 504, pp. 

219–227, 2016. 

[11] T. Cao, T. Sugimoto, I. Szilágyi, G. Trefalt, and M. Borkovec, “Heteroaggregation of 

Oppositely Charged Particles in the Presence of Multivalent Ions,” Phys. Chem. Chem. 

Phys., vol. 19, pp. 15160–15171, 2017. 

[12] J. Lyklema, “Overcharging, charge reversal: Chemistry or physics?,” Colloids Surfaces 

A Physicochem. Eng. Asp., vol. 291, no. 1–3, pp. 3–12, 2006. 

[13] M. Quesada-Pérez, E. González-Tovar, A. Martín-Molina, M. Lozada-Cassou, and R. 

Hidalgo-Álvarez, “Ion size correlations and charge reversal in real colloids,” Colloids 

Surfaces A Physicochem. Eng. Asp., vol. 267, no. 1–3, pp. 24–30, 2005. 

[14] A. Martín-Molina, J. A. Maroto-Centeno, R. Hidalgo-Álvarez, and M. Quesada-Pérez, 

“Charge reversal in real colloids: Experiments, theory and simulations,” Colloids 

Surfaces A Physicochem. Eng. Asp., vol. 319, no. 1–3, pp. 103–108, 2008. 

[15] F. Vereda, A. Martín Molina, R. Hidalgo-Alvarez, and M. Quesada-Pérez, “Specific ion 

effects on the electrokinetic properties of iron oxide nanoparticles: experiments and 

simulations,” Phys. Chem. Chem. Phys. Phys. Chem. Chem. Phys, vol. 17, no. 17, pp. 

17069–17078, 2015. 

[16] C. Calero, J. Faraudo, and D. Bastos-González, “Interaction of monovalent ions with 

hydrophobic and hydrophilic colloids: Charge inversion and ionic specificity,” J. Am. 

Chem. Soc., vol. 133, no. 38, pp. 15025–15035, 2011. 

[17] A. Martín-Molina, C. Calero, J. Faraudo, M. Quesada-Pérez, A. Travesset, and R. 

Hidalgo-Álvarez, “The hydrophobic effect as a driving force for charge inversion in 

colloids,” Soft Matter, vol. 5, no. 7, p. 1350, 2009. 

[18] L. P.- Fuentes, C. Drummond, J. Faraudo, and D. Bastos-González, “Anions makes the 

difference: Insights from the interaction of big cations and anions with 

poly(N-isopropylacrylamide) chains and microgels,” Soft Matter, vol. 11, p. 5077, 2015. 

[19] A. Hakim, M. Nishiya, and M. Kobayashi, “Charge reversal of sulfate latex induced by 

hydrophobic counterion: effects of surface charge density,” Colloid Polym. Sci., vol. 294, 

no. 10, pp. 1671–1678, 2016. 

[20] K. Besteman, M. a G. Zevenbergen, and S. G. Lemay, “Charge inversion by multivalent 



14 
 

ions: Dependence on dielectric constant and surface-charge density,” Phys. Rev. E - Stat. 

Nonlinear, Soft Matter Phys., vol. 72, pp. 1–9, 2005. 

[21] P. Sipos, P. M. May, and G. T. Hefter, “Carbonate removal from concentrated hydroxide 

solutions,” Analyst, vol. 125, no. 5, pp. 955–958, 2000. 

[22] S. H. Behrens, D. I. Christl, R. Emmerzael, P. Schurtenberger, and M. Borkovec, 

“Charging and Aggregation Properties of Carboxyl Latex Particles : Experiments versus 

DLVO Theory,” Langmuir, vol. 16, no. 12, pp. 2566–2575, 2000. 

[23] T. Sugimoto, M. Kobayashi, and Y. Adachi, “The effect of double layer repulsion on the 

rate of turbulent and Brownian aggregation : experimental consideration,” Colloids 

Surfaces A Physicochem. Eng. Asp., vol. 443, pp. 418–424, 2014. 

[24] M. Schudel, S. H. Behrens, H. Holthoff, R. Kretzschmar, and M. Borkovec, “Absolute 

Aggregation Rate Constants of Hematite Particles in Aqueous Suspensions: A 

Comparison of Two Different Surface Morphologies,” J. Colloid Interface Sci., vol. 196, 

no. 2, pp. 241–253, 1997. 

[25] H. Ohshima, T. W. Healy, and L. R. White, “Approximate analytic expressions for the 

electrophoretic mobility of spherical colloidal particles and the conductivity of their 

dilute suspensions,” J. Chem. Soc. Faraday Trans. 2, vol. 79, no. 11, p. 1613, Jan. 1983. 

[26] The Chemical Society of Japan, Ed., “Kagaku Binran (Ed.),” 2004. 

[27] Y. Zhao and G. R. Freeman, “Electrical Conductances of Tetraphenylphosphonium and 

Tetraphenylboride Salts in C 1 to C 4 Alcohols,” vol. 3654, no. 96, pp. 17568–17572, 

1996. 

[28] L. Ehrl, Z. Jia, H. Wu, M. Lattuada, M. Soos, and M. Morbidelli, “Role of counterion 

association in colloidal stability,” Langmuir, vol. 25, no. 13, pp. 2696–2702, 2009. 

[29] J. I. Kim, “Preferential solvation of single ions. A critical study of the Ph4AsPh4B 

assumption for single ion thermodynamics in amphiprotic and dipolar-aprotic solvents,” 

J. Phys. Chem., vol. 82, no. 2, pp. 191–199, 1978. 

 


