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Abstract

The effects of heat blanching and UV-C light followed by heat on Portuguese cabbage peroxidase
(POD), colour and texture were studied in the temperature range of 80-95 °C. POD inactivation,
lightness (L) and yellowness (b) colour changes were described by a first-order reaction model. The
greenness (a) colour and texture (firmness) changes followed a two fraction kinetic model behaviour.
The temperature effect was well described by the Arrhenius law.
At lower temperatures the combined treatment showed higher POD inactivation. Colour and texture
parameters did not show significant differences between treatments. Long processing times turned the
leaves slightly darker, decreased greenness, yellowness and firmness. Short processing times increased
the firmness and greenness of the leaves. The treatment at 80 °C for 90 seconds reduced 90% of POD,
retaining 98% of lightness and 92% of yellowness and improved the green colour (130%) and firmness
(125%). At 80 °C the heat blanching required 7.4 min to inactivate 90% of the enzyme activity, reducing
lightness, greenness, yellowness and firmness to 92%, 68%, 62% and 61%, respectively. The present
findings will help to optimize the Portuguese cabbage blanching conditions.

Keywords: Portuguese cabbage; Blanching; UV-C light; Peroxidase; Colour; Texture

1 Introduction

Portuguese cabbage (Brassica oleracea L. var.
costata DC) is a very popular cabbage in Por-
tugal together with galega cabbage, all very rich
in vitamins and mineral salts, being the major
ingredient in the traditional kale soup and in the
“cozido à portuguesa” (traditional dish consist-

ing of boiled cabbage with sausages, beef and
pork). This cabbage is a perishable product and
the application of a freezing process could be a
good solution to extend its shelf-life. Many fruits
and vegetables are blanched (e.g. immersion in
hot water for a short time) before any freezing
process, to inactivate oxidative enzymes. Perox-
idase (POD) is one of them and acts on the hy-
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drogen peroxide (H2O2) present in the cell, lead-
ing to oxidation of several cellular compounds,
thus causing changes of colour and flavour in veg-
etables (Nagodawithana & Reed, 1993). Due to
its resistance to thermal treatment, POD is of-
ten used as a blanching indicator (Ganjloo, Rah-
man, Osman, Bakar, & Bimakr, 2011; Szymanek,
2011).
The blanching process has proved to be one
of the most effective processes to clean the
surface of vegetables, destroy microorganisms
and inactivate enzymes. On the other hand,
blanching may also cause off-flavours, off-colours,
changes in texture, vitamins and minerals (Pa-
tras, Tiwari, & Brunton, 2011). Moreover,
from an industrial point of view, this process
may be extremely water and energy consuming
(Aguilar, Rodriguez-Herrera, Montanez-Saenz,
Reyes-Vega, & Contreras-Esquivel, 2004). Non-
thermal treatments, aimed at reducing microbial
content or enzyme activity, while retaining the
quality of the product, are promising alternative
technologies in food processing. An emerging
and challenging technology that can be used by
the food industry is the application of ultravio-
let (UV) radiation (Allende & Artes, 2003). Low
intensity light treatments may modify the confor-
mation of the enzyme active site without chang-
ing its catalyzing capacity but leading to an in-
crease of the overall activity. On the other hand,
enzyme inactivation may be the result of non-
reversible structural changes due to higher inten-
sity light treatments (Manzocco, Dri, & Quarta,
2009). Perhaps the weakest point of UV-C light
is its poor penetrative capacity, therefore this
technique is limited to food surface applications.
Nevertheless, the application of physical factors,
such as temperature and/or pressure, combined
with UV-C light, may result in the increase of
the enzymatic activity, followed by further inac-
tivation. These techniques used in combination
(or sequentially), normally referred to as hur-
dle technologies, have been used as less severe
heat treatments, resulting in higher quality and
safer products than traditional treatments (Man-
zocco, Dri, & Quarta, 2009). Moreover, UV-C
light has a positive image to the consumer and
is considered a low cost non-thermal technology
(Koutchma, 2009).
On the basis of these considerations and the few

studies available in the literature reporting the
effect of blanching treatments on cabbage leaves
(Alvarez-Jubete, Valverde, Patras, Mullen, &
Marcos, 2014; Jaiswal, Gupta, & Abu-Ghannam,
2012), the aim of this work was to evaluate the ki-
netics of Portuguese cabbage POD inactivation,
colour and texture changes during heat blanch-
ing and an alternative blanching process (UV-C
light followed by heat blanching) and with the
findings help to optimize the Portuguese cabbage
blanching conditions.

2 Materials and Methods

2.1 Sample preparation

Portuguese cabbage was purchased at a local
market in Faro, Portugal. The leaves were se-
lected and the tip of each leaf was cut and then
weighed (11 g).

2.2 Heat blanching and combined
treatment processes

The samples were separated in two groups ac-
cording to the treatment to be applied: UV-C
light followed by heat blanching group and the
heat blanching group. The first group was ex-
posed to a UV-C radiation intensity of 11 Wm−2

for 90 s (each leaf side) at 25±1 °C in a ven-
tilated UV-C chamber (composed of four UV
lamps (Philips TUV G8T5 8 W, Holland), each
separated by 10 cm). The lamps were placed
at 21.5 cm above the processing surface. Dur-
ing UV-C radiation processing, lab coats, pro-
tective gloves and safety goggles were worn by
staff. UV-C radiation intensity was determined
by a photo-radiometer (Delta OHM DO 9721,
Caselle di Selvazzano, Italy) and an irradiance
probe (Delta OHM LP 9021 UVC, Caselle di
Selvazzano, Italy). Then, both groups were im-
mersed in an 8 L water bath (Grant W14, Cam-
bridgeshire, England), with temperatures rang-
ing from 80 to 95 °C for different periods of ex-
posure (up to 480 s, based in preliminary tests
for peroxidase inactivation). After the thermal
treatments, the leaves were cooled down in an
iced water bath. The temperature was moni-
tored by a digital thermometer (Ellab ctd 87,
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Roedovre, Denmark) and a thermocouple (1.2
mm needle dia.; constantan-type T). The exper-
iments were run in triplicate.

2.3 Peroxidase determination

Peroxidase extraction

Leaves (3 g) were added to 100 ml of potassium
phosphate buffer solution, previously prepared
with distilled water and mono and dipotassium
phosphate (Merck) with a molar concentration
of 0.1 M, pH 6.5 and kept at 4 °C (according
to the method of (Morales-Blancas, Chandia, &
Cisneros-Zevallos, 2002), and homogenized for 1
minute with an Ultra-Turrax (IKA T25 Janke
& Kunkel, Staufen, Germany). The suspension
was then centrifuged in polypropylene tubes for
10 minutes at 18,000×g (Sigma 3 K20, Osterode,
Germany) and 4 °C. The POD enzymatic extract
was then filtered through filter paper Whatman
nº 1.

Peroxidase activity measurement

The POD activity was determined by mixing
0.120 ml of enzymatic extract and 3.48 ml of
substrate solution in 10 mm-path-length glass
cuvettes (Amersham Bioscience). The substrate
solution was prepared daily (mixture of 0.1 ml
of guaiacol (BDH Chemicals Ltd) (99.5%), 0.1
ml of hydrogen peroxide (Pancreac) (30%) and
99.8 ml of potassium phosphate buffer (0.1 M,
pH 6.5)). The POD activity was measured by ab-
sorbance increase using an UV/Vis spectropho-
tometer (Hitachi U-2000, Tokyo, Japan) at 6 s
intervals and 470 nm (absortivity ξ=26.6 mM−1

cm−1 for tetraguaiacol). The reaction was fol-
lowed until steady state was reached using a
blank prepared with 0.120 ml of distilled water
and 3.48 ml of substrate solution.

Protein determination

The protein content was determined by Lowry’s
method using bovine serum albumin (BSA)
(Fluka) as standard. The results were expressed
as mg of total protein and the enzyme specific ac-
tivity was expressed as µmol min−1 mg protein−1

.

Colour determination

Colour was evaluated with the Hunter Lab co-
ordinates [L (lightness, 0 for black to 100 for
white), a (red-green) and b (yellow–blue)] with
a tristimulus colorimeter (Dr Lange Spectro-
colour, Berlin, Germany) (Hunterlab, 2012). The
colorimeter (d/8° geometry, illuminant D65, 10°
observer) was calibrated against a standard ce-
ramic white tile (X=84.60, Y=89.46, Z=93.85)
and a standard ceramic black tile (X=4.12,
Y=4.38, Z=4.71). Measurements were taken in
triplicate with 5 readings each.

Texture determination

The texture of raw and processed samples was
analysed using a texturometer (LFRA Texture
Analyser, Brookfield) equipped with a 1.5 kg
load cell. Based on the method reported by Tani-
waki, Takahashi, Sakurai, Takada, and Nagata
(2009), each leaf was sandwiched between two
metal plates with a cylindrical hole in the centre
(diameter=15 mm). The test speed was set at 2
mm/s and a stainless steel probe (TA-39) with
flat end, 2 mm diameter and 20 mm long was
used to penetrate the sample. Peak force was
used to quantify the firmness (g) of the samples.
Measurements were run in triplicate.

pH determination

Two grams of raw Portuguese cabbage were ho-
mogenized (Ultra-Turrax T25 Janke and Kunkel)
for 1 min at 13,500 rpm in 20 ml of degassed wa-
ter (Health Canada-Official Method, 1999). The
extracts were obtained through agitation with a
mechanical shaker (Edmund Bühler 7400 Tübin-
gen KL2) for 30 min. Afterwards, samples were
kept in the dark for an additional hour. The
supernatant was decanted and the pH was mea-
sured (pH meter Crison micropH 2002) in ten
replicates.

Data analysis

Enzyme inactivation, colour and texture changes
are well described in the literature by zero,
first-order, fractional and two fraction first-order
models (Anthon & Barrett, 2002; Cruz, Vieira,
& Silva, 2006; Gonçalves, Pinheiro, Abreu,
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Brandão, & Silva, 2007; Lau, Tang, & Swan-
son, 2000; Morales-Blancas et al., 2002; Soysal &
Soylemez, 2005; Tijskens, Schijvens, & Biekman,
2001). After preliminary analysis, a first-order
reaction model (Eq. 1) was used to fit the ex-
perimental data for POD inactivation and L and
b parameters colour changes obtained for each
blanching process.

Ct = C0e
−kt (1)

Where C0 is the initial value and Ct the value at
time t.
The temperature dependence of the rate constant
(k) followed the Arrhenius behaviour (Eq. 2).

k = krefe

−Ea

R

(
1

T
−

1

Tref

)
(2)

A global model (Eq. 3) was obtained replacing
k in Eq. 1 by the Arrhenius equation (Eq. 2)
(Arabshahi & Lund, 1985):
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(3)

For texture and a parameter colour changes, a
two fraction first-order reaction model (Eq. 4)
was used to fit the experimental data.

Ct = C01e
−k1t + C02e

−k2t (4)

For both fractions, it was assumed that the first-
order rate constants, k1 and k2, dependence on
temperature (Eqs. 5 and 6) followed the Arrhe-
nius law:
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R
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1

T
−

1
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)
(5)

k2 = kref2e
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A global model (Eq. 7) was obtained replacing k
in Eq. 4 by the Arrhenius equation (Eq. 5 and

6) for both fractions.
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(7)

Experimental data points were normalized, by
dividing the values at time t (Ct) by the ini-
tial value (C0). An analysis of variance (two-
way ANOVA with replication) was performed to
assess the effect of blanching time-temperature
(tested factors-independent variables) conditions
on POD activity, colour and texture changes
(dependent variables). The kinetic parameters
were estimated directly from the experimental
data, by performing a one-step non-linear regres-
sion analysis (using least squares estimation and
Levenverg–Marquart method), fitting the global
model equations 3 (first-order reaction) and 7
(two fractions first-order reaction) (Arabshahi &
Lund, 1985) and using the statistical software
STATA version 10.0. The reference temperature
(Tref ) was considered to be the average temper-
ature of the experiments (87.5 °C) aimed at im-
proving parameter estimation. The goodness of
fit of the regression was assessed by the coeffi-
cient of determination (R2) while normality and
randomness of residuals by the predicted vs. ex-
perimental data chart; the precision of the pa-
rameters was evaluated by confidence intervals
at 95%.

3 Results and Discussion

3.1 Peroxidase inactivation

Raw Portuguese cabbage presented a peroxidase
activity of 0.30±0.17 µmol min−1 mg protein−1

and a pH of 6.32±0.12. Experimental and pre-
dicted values of the POD activity for heat only
and the combined treatment are presented in Fig-
ure 1. The results at higher temperatures, 90
and 95 °C, showed similar rate of POD inac-
tivation between heat and the combined treat-
ment (about 100% inactivation in the first 10 s
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Figure 1: Effect of temperature and UV-C light over time on POD specific activity in Portuguese cabbage
in the temperature range 80-95 °C: (x) experimental values of POD specific activity with heat blanching
processes; (—) model predicted values for heat blanching processes; (o) experimental values of POD
specific activity with combined UV-C light and heat blanching processes; ( ) model predicted values
with combined UV-C light and heat blanching processes. Bars represent mean ± standard deviation
(n=3)

of processing), meaning that the high tempera-
ture was the main factor for this outcome. Nev-
ertheless, at lower temperatures (80 and 85 °C)
the combined treatment showed a higher POD
inactivation rate (about 4-fold at 80 °C and 1
min of exposure) due to the synergistic hurdle
effect produced by the UV-C light followed by
heat. These results were mainly due to the
structural changes on the enzyme active site,
leading to a lower enzyme-substrate interaction.
Lamikanra, Kueneman, Ukuku, and Bett-Garber
(2005) found that UV treatment increases POD
activity while lowering esterase and lipase activ-
ity. In another study, Manzocco, Quarta, and Dri
(2009) showed that exposure of apple derivatives
to UV-C light is very effective in polyphenoloxi-
dase inactivation. These outcomes are dependent

on the applied methodologies and the different
types of food matrices.
Concerning the kinetic modelling, a first-order
kinetic model was well-fitted to results ob-
tained for both blanching processes (R2=0.97
and R2=0.98 in table 1), meaning that the en-
zyme inactivation could be described by this
model. Other studies also proposed this model
for POD inactivation, for watercress (Cruz et al.,
2006), for carrots (Soysal & Soylemez, 2005) and
for broccoli (Morales-Blancas et al., 2002). Also,
the temperature dependence of the rate constant
followed the Arrhenius behaviour. The thermal
inactivation reaction rate (kref ) and activation
energy (Ea) for heat and UV-C+heat blanching
treatments are shown on Table 1. The reaction
rate for the combined treatment, at the refer-
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Table 1: Kinetic parameters for quality changes in Portuguese cabbage

Heat blanching UV-C and heat blanching

Peroxidase

kref (s−1) 0.10±0.02
0.18±0.06

Ea (kJ mol−1) 417.80±34.88 255.96±49.08

Colour (L)

kref (s−1) 0.00041±0.00009 0.00040±0.00012
Ea (kJ mol−1) 117.9±35.74 63.96±49.42

Colour (a)

C01 1.62±0.13 1.44±0.12
155.33±16.75kref1 (s−1) 0.0056±0.00095 0.0054±0.00040
Ea1 (kJ mol−1)

0.63±0.13 0.45±0.18
C02149.62±10.43
kref2 (s−1) 0.082±0.038 0.076±0.043
Ea2 (kJ mol−1) 79.98±52.41 68.95±41.24
Colour (b)

kref (s−1) 0.0021±0.0005 0.0017±0.0003

Ea (kJ mol−1) 96.60±35.60
144.95±31.11

Firmness (g)

C01 0.55±0.12 0.58±0.10

kref1 (s−1) 0.11±0.06 0.13±0.08
Ea1 (kJ mol−1) 186.86±53.91 140.10±67.09
C02 1.55±0.11 1.61±0.10
kref2 (s−1) 0.0055±0.00098 0.0067±0.00088
Ea2 (kJ mol−1) 135.68±12.72 138.99±9.51

ence temperature, was higher (0.18±0.06 s−1)
than the value obtained for the heat blanching
treatment (0.10±0.02 s−1). The estimated ac-
tivation energy for POD inactivation was in ac-
cordance with the ones reported by Anthon and
Barrett (2002) 480 kJ mol−1 and 478 kJ mol−1

for carrot and potato. In contrast, Soysal and
Soylemez (2005) reported values of 148 kJ mol−1

for POD inactivation in carrot. In another study,
Cruz et al. (2006) reported activation energy val-
ues of Ea1= 421 kJ mol−1 and Ea2= 352 kJ
mol−1 in watercress leaves, for heat-labile and
heat-resistant fractions, respectively.
Moreover, Neves, Vieira, and Silva (2012) re-
ported that UV-C light also contributed to

the increase in POD inactivation rate in zuc-
chini. The estimated kinetic parameters were
kHeat= 7.37Ö10−7 min-−1 and EaHeat = 925 kJ
mol−1 and kHeat+UV−C = 2.42Ö10−5 min−1 and
EaHeat+UV−C = 596 kJ mol−1.

3.2 Colour changes

Raw Portuguese cabbage presented values of L, a
and b of 36.89±2.73, -7.49±1.17 and 8.39±2.31,
respectively. At the end of each blanching pro-
cess, these colour parameters did not show signif-
icant differences between treatments (ANOVA,
p>0.05). The L and b colour parameters de-
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Figure 2: Effect of temperature and UV-C light over time on colour L parameter in Portuguese cabbage
in the temperature range 80-95 °C: (x) experimental values of L parameter with heat blanching processes;
(—) model predicted values for heat blanching processes; (o) experimental values of colour L parameter
with combined UV-C light and heat blanching processes; ( ) model predicted values for with combined
UV-C light and heat blanching processes. Bars represent mean ± standard deviation (n=15)

creased in both treatments (traditional and UV-
C light followed by heat blanching), showing
that the samples after blanching became slightly
darker and less yellow (Fig. 2 and Fig. 4, re-
spectively). Changes in the a colour param-
eter showed two distinct mechanisms. First,
the a values increased right at the beginning
of the blanching treatments (5-60 s and 80-95
°C) resulting in greener samples, and then de-
creased after some time of exposure turning the
samples less green (Fig. 3). This decrease
might be related to the chlorophylls leaching
out into the blanching medium and/or conver-
sion of chlorophylls to pheophytins (Schwartz
& Vonelbe, 1983). These results are in agree-
ment with those reported by Di Cesare, Forni,
Viscardi, and Nani (2004), in which leaves of
oregano also became greener after blanching. Lin

and Brewer (2005) showed in a study with frozen
peas that after microwave and water blanching
the peas were also greener. In another study,
Brewer, Begum, and Bozeman (1995) reported
significant darkening of stems and florets of broc-
coli after microwave blanching. Tijskens et al.
(2001) presented similar effects on green colour
of blanched broccoli and green beans. Recently,
Alvarez-Jubete et al. (2014), in a study in which
white cabbage samples were blanched at 90-95 °C
during 3 min, also reported a slight decrease in
the L parameter. These colour changes may be
related to the replacement of the gases inside the
intercellular spaces by the blanching medium, al-
tering light refraction from the cell surface (Mac-
Dougall, 2002).
In terms of kinetic modelling, a first-order model
and two fractions first-order model fitted well the
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Figure 3: Effect of temperature and UV-C light over time on colour a parameter in Portuguese cabbage
in the temperature range 80-95 °C: (x) experimental values of a parameter with heat blanching processes;
(—) model predicted values for heat blanching processes; (o) experimental values of colour a parameter
with combined UV-C light and heat blanching processes; ( ) model predicted values for with combined
UV-C light and heat blanching processes. Bars represent mean ± standard deviation (n=15)

experimental data for L and b parameters and a
parameter, respectively (Table 1) and the tem-
perature dependence followed the Arrhenius be-
haviour. In all cases, normality and randomness
of residuals were verified, and the coefficient of
determination, R2, was higher than 0.95. No sig-
nificant differences (p>0.05) were detected be-
tween the estimated reaction rates and activa-
tion energies at the reference temperature (87.5
°C) for both treatments. The activation energy
values for colour changes varied between 63.96
and 155.33 kJ mol−1 for L and a parameters in
the UV-C and heat blanching treatment, respec-
tively. The high activation energies obtained re-
vealed that Portuguese cabbage is sensitive to the
temperatures applied during the blanching pro-
cess. Cruz, Vieira, and Silva (2007) presented
higher activation energies for Lab parameters

(EaL=235.83±89.32 kJ mol−1, Eaa=187.70±160
kJ mol−1 and Eab=330.62±128.16 kJ mol−1)
in thermosonicated watercress leaves. Recently,
Aamir, Ovissipour, Rasco, Tang, and Sablani
(2014) determined in blanched spinach leaves
(65-85 °C) an activation energy value of 117.7
kJ mol−1 for colour a parameter. In another
study, Gonçalves, Pinheiro, Abreu, Brandão,
and Silva (2010), in blanched carrot, reported
values of EaL= 187.03±13.60 kJ mol−1, Eaa=
186.39±10.33 kJ mol−1 and Eab= 231.16±17.01
kJ mol−1.

3.3 Texture changes

Raw Portuguese cabbage presented values of
firmness of 168.17±35.42 g. Figure 5 shows the
effect of heat and UV-C light followed by heat in
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Figure 4: Effect of temperature and UV-C light over time on colour b parameter in Portuguese cabbage
in the temperature range 80-95 °C: (x) experimental values of b parameter with heat blanching processes;
(—) model predicted values for heat blanching processes; (o) experimental values of colour b parameter
with combined UV-C light and heat blanching processes; ( ) model predicted values for with combined
UV-C light and heat blanching processes. Bars represent mean ± standard deviation (n=15)

the firmness of the Portuguese cabbage leaves.
The firmness of the cabbage leaves showed no
significant differences between blanching treat-
ments (ANOVA, p>0.05). Texture changes in
Portuguese cabbage leaves also showed two dis-
tinct mechanisms. First, at short processing
times (5-60 s and 80-95 °C), the Portuguese cab-
bage leaves increased in firmness to 130-140%
compared to initial values. Then, the samples be-
came softer when the processing time increased.
Ni, Lin, and Barrett (2005) also reported that the
firmness of a variety of vegetables (broccoli, Pak
choy, Chinese cabbage, cabbage, green peppers,
sugar snap peas and carrots) blanched at differ-
ent temperatures (55, 60, 65, 70, 75, and 80 °C)
and times of exposure (5, 15, 30, 45 and 60 min)
showed between 80 and almost 200% increase in
firmness compared to the blanched control (100

°C and 3 min.). Moreover, AnzalduaMorales,
Quintero, and Balandran (1996) reported a pro-
nounced increase in the firmness of lentils in the
initial stage of blanching at 80 °C and 85 °C
compared to blanching at 90 and 95 °C. Dur-
ing thermal processing, a range of enzymatic and
chemical reactions occur, which alter the texture
of processed vegetables. The chemical changes,
such as solubilisation and depolymerisation of
pectic polysaccharides, affect the constituents of
the cell wall and middle lamella, thereby result-
ing in a major change in the firmness of veg-
etables (Nisha, Singhal, & Pandit, 2006). This
increase in firmness may be the result of the
availability of calcium ions for cross-link forma-
tion with adjacent pectin molecules (Latorre, de
Escalada Plá, Rojas, & Gerschenson, 2013) and
also the role of pectin methyl esterase (PME), in
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Figure 5: Effect of temperature and UV-C light over time on texture (firmness) in Portuguese cabbage
in the temperature range 80-95 °C: (x) experimental values of texture (firmness) with heat blanching
processes; (—) model predicted values for heat blanching processes; (o) experimental values of texture
(firmness) with combined UV-C light and heat blanching processes; ( ) model predicted values for with
combined UV-C light and heat blanching processes. Bars represent mean ± standard deviation (n=3)

hydrolyzing the methyl ester linkages in pectin
molecules, releasing methanol and free galac-
turonic acid moieties. The resulting free car-
boxyl groups may then form cross-links between
pectin polymers through salt-bridge formation
with divalent cations (particularly Ca2+) nat-
urally present in the tissues (Puri, Solomos, &
Kramer, 1982; Ni et al., 2005). At higher tem-
peratures the permeability of membranes is in-
creased, resulting in passive efflux of solutes and
an irreversible reduction of cell turgor well before
membranes are completely destroyed (De Belie,
Herppich, & De Baerdemaeker, 2000).
A two fractions first-order model fitted well the
experimental data (Table 1) and the temperature
dependence of firmness also followed the Arrhe-
nius behaviour. The estimated reaction rates and
activation energies at the reference temperature

(87.5 °C) for both treatments where very similar
(R2 and adjusted R2 presented values of 0.99 for
both treatments). The activation energy values
for texture changes, for each fraction, varied be-
tween 135.68 and 186.86 kJ mol−1. Jaiswal et al.
(2012) reported a lower activation energy value of
33.88 kJ mol−1 for Irish York cabbage blanched
at temperatures varying between 80-100 °C dur-
ing 2-14 min. Huang and Bourne (1983) reported
activation energies ranging from 21.35 to 146.50
kJ mol−1 for different vegetables. (Anzaldu-
aMorales et al., 1996) reported activation energy
values of 107.50 kJ mol−1, 147.40 kJ mol−1 and
210.50 kJ mol−1 for the texture of blanched (80-
95 °C) white beans, chick peas and broad beans,
respectively. Lau et al. (2000) studied the kinet-
ics of textural changes in green asparagus during
thermal treatments (70-98 °C) and reported an

IJFS October 2016 Volume 5 pages 180–192
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activation energy value of 100.6 kJ mol−1. In
another study Gonçalves et al. (2007) reported
an activation energy value of 72.21 kJ mol−1 in
blanched pumpkin (75-95 °C). Vu et al. (2004) re-
ported an activation energy of 117.6 kJ mol−1 in
blanched carrot (80-110 °C). Possibly, these vari-
ations are related to the differences in the raw
material, modelling methodologies and the tem-
perature ranges used in each study.
In commercial scenarios, to obtain vegetables
that maintain optimum quality during storage,
a reduction of 90% of the POD activity af-
ter blanching is recommended (Bahçeci, Serpen,
Gokmen, & Acar, 2005). In the present study,
the UV-C light followed by heat treatment, for
example at 80 °C, required only 1.30 min to re-
duce 90% of the POD activity, while maintain-
ing 98% of lightness and 92% of yellowness and
increasing green colour (130%) and the firmness
(125%) of the Portuguese cabbage leaves. On the
other hand, the traditional heat blanching treat-
ment at 80 °C requires 7.4 min to reduce 90%
of the enzyme activity. This treatment reduces
lightness, greenness, yellowness and firmness to
92%, 68%, 62% and 61% of initial values, re-
spectively. Therefore, for the inactivation of this
enzyme, the alternative treatment may be used
to minimize colour and texture changes, since
processing times can be reduced. It should be
also remarked that instead of promoting colour
and texture degradation, the applied treatment
at lower short processing times led to greener and
firmer Portuguese cabbage leaves.

4 Conclusions

The combination of UV-C light followed by
heat blanching treatment at 80 and 85 °C was
shown to significantly shorten the treatment time
needed to inactivate POD in Portuguese cab-
bage. Thus, it can be considered effective to be
used as a hurdle prior to a heat blanching treat-
ment and provide a practical alternative to the
traditional blanching treatments for inactivat-
ing POD in Portuguese cabbage. Moreover, this
combined treatment was revealed to be a better
blanching process due to the good quality reten-
tion in the treated produce. The present find-
ings will help optimize the Portuguese cabbage

blanching conditions by heat blanching combined
with UV-C light treatment.
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