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Zusammenfassung

Pattern und ihre Sprachen

Pattern, d. h. endliche Wörter aus Variablen und Terminalsymbolen, stellen eine kom-
pakte, elegante und natürliche Methode dar, gewisse kontextsensitive Sprachen zu re-
präsentieren. Ein Pattern erzeugt ein Wort durch eine Substitution, die alle Variablen im
Pattern durch beliebige endliche Wörter über einem festen Terminalalphabet ersetzt. Die
Patternsprache eines Pattern ist somit die Menge aller Wörter, die durch die Substituti-
on des Pattern gebildet werden können; etwas formaler ist eine Patternsprache also die
Menge aller Bilder des Pattern unter beliebigen terminalerhaltenden Homomorphismen.
Wenn wir beispielsweise das Pattern α:=x1 ax2 bx1 (mit Variablen x1, x2 und Termi-
nalsymbolen a, b) betrachten, liegen folglich (unter anderem) die Wörter w1:=aabbba,
w2:=abababab und w3:=aaabaa in der von α erzeugten Patternsprache L(α), woge-
gen die Beispielwörter w4:=ba, w5:=babbba und w6:=abba nicht von α erzeugt werden
können.

Die Untersuchung von Pattern in Wörtern lässt sich bis zu Thue [103] zurückverfolgen
und zählt mittlerweile zu den etablierten Teilgebieten der Wortkombinatorik (s. Cas-
saigne [17]), während die explizite Verwendung von Pattern als Sprachgeneratoren von
Angluin [4] eingeführt wurden. In Angluins Definition ist es nicht erlaubt, Variablen
löschend zu ersetzen, daher wird diese Klasse von Patternsprachen in der Literatur im
Allgemeinen als NE-Patternsprachen bezeichnet (

”
NE“ steht in diesem Fall für

”
non-

erasing“). Ebenfalls häufig betrachtet werden die von Shinohara [102] eingeführten so-
genannten

”
E-Patternsprachen“ (

”
E“ wie

”
erasing“ oder

”
extended“); bei dieser Sprach-

klasse ist die löschende Substitution gestattet. Im obigen Beispiel ist somit das Wort w3

zwar in der E-Patternsprache, nicht jedoch in der NE-Patternsprache von α enthalten.
Durch diesen – scheinbar kleinen – definitorischen Unterschied besitzen die beiden

Sprachklassen sehr unterschiedliche Eigenschaften. Beispielsweise lässt sich das Äqui-
valenzproblem (d. h. die Frage, ob zwei Pattern die gleiche Sprache erzeugen) für NE -
Patternsprachen trivial in Polynomialzeit entscheiden, während die Entscheidbarkeit des
Äquivalenzproblems für E -Patternsprachen ein schweres und seit rund 30 Jahren offenes
Problem darstellt (s. Ohlebusch und Ukkonen [79], Reidenbach [87]).

Beide Sprachklassen wurden zuerst in der Induktiven Inferenz, einem Teilgebiet der
(mathematischen) Lerntheorie, eingeführt. Ziel dieser Betrachtungen war es, zu gege-
benen Mengen von Wörtern effektiv Pattern zu finden, die diese Wörter beschreiben.
Inzwischen wurden Patternsprachen auch in der Theorie der formalen Sprachen ausgie-
big untersucht. Wegen ihrer einfachen Definition kommen Pattern und ihre Sprachen in
einer Vielzahl anderer Gebiete der Informatik und der diskreten Mathematik vor.

Aufgrund der einfachen Definition von Patternsprachen ließe sich vermuten, dass sich
die meisten interessanten Eigenschaften einer Patternsprache direkt aus dem sie erzeu-
genden Wort ablesen lassen. Insbesondere sollte sich daher leicht entscheiden lassen, ob
zwei Pattern die gleiche oder vergleichbare Sprachen erzeugen (d. h. ob eine Äquivalenz-
oder Inklusionsbeziehung vorliegt), und ob ein Wort in der Sprache eines Patterns ist
(das sogenannte

”
Wortproblem“). Tatsächlich ist diese Vermutung aber in den meisten

Fällen ein Trugschluss – beispielsweise ist das Inklusionsproblem im Allgemeinen unent-
scheidbar, und das Wortproblem NP-vollständig.

Die vorliegende Dissertation beschäftigt sich mit verschiedenen Aspekten des Inklu-
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sionsproblems. Den eigentlichen Hauptteil der Arbeit bilden die Kapitel 3 bis 7, die sich
sich grob in zwei Teile unterteilen lassen.

Der erste Teil, der aus den Kapiteln 3 und 4 besteht, befasst sich direkt mit dem
Inklusionsproblem für Patternsprachen und wendet eine in diesem Kontext entwickelte
Technik auf eine in der Praxis weit verbreitete Erweiterung der regulären Ausdrücke an.

Der zweite Teil, bestehend aus den Kapiteln 5 bis 7, untersucht Fragestellungen zu
sogenannten deskriptive Pattern, die aufgrund ihrer Definition eng mit dem Inklusions-
problem verwandt sind.

Im Folgenden wird der Inhalt der einzelnen Kapitel genauer vorgestellt und jeweils
explizit erwähnt, in welcher Form die genannten Resultate bereits veröffentlicht wurden.

Kapitel 3

Die Entscheidbarkeit des Inklusionsproblems für Patternsprachen wurde bereits bei der
Einführung der NE-Patternsprachen durch Angluin [4] als offenes Problem benannt.
Sowohl der NE- als auch der E-Fall dieses Problems erwiesen sich als überraschend
schwer zu lösen, bis schließlich Jiang et al. [51] der Beweis für die Unentscheidbarkeit
beider Fälle gelang.

Allerdings basiert der von Jiang et al. angegebene Beweis auf der Annahme, dass die
darin verwendeten Patternsprachen auf Terminalalphabeten von unbeschränkter Größe
definiert werden können. Im Gegensatz dazu verwenden aber die meisten Anwendungen
von Patternsprachen Alphabete von beschränkter Größe. Trotz des wegweisenden Resul-
tats von Jiang et al. blieb das Inklusionsproblem für Patternsprachen über spezifischen
Alphabeten offen.

Das erste Hauptresultat der vorliegenden Arbeit, Theorem 3.3, zeigt, dass das In-
klusionproblem für E-Patternsprachen über endlichen Terminalalphabeten (mit mindes-
tens zwei Buchstaben) unentscheidbar ist. Mittels einer Reduktion von Jiang et al. folgt
hieraus außerdem die Unentscheidbarkeit des Inklusionsproblems für NE-Patternsprachen
über endlichen Alphabeten mit mindestens vier Buchstaben.

Theorem 3.3 beantwortet die entsprechenden offenen Fragen von Reidenbach [85]
und Salomaa [99] und wurde bereits von Barceló et al. [8] in einer Arbeit aus der Daten-
banktheorie angewendet.

Im restlichen Teil von Kapitel 3 wird Entscheidbarkeit der Inklusion für stärker ein-
geschränkte Klassen von Patternsprachen untersucht. Sowohl der ursprüngliche Beweis
von Jiang et al., als auch der darauf aufbauende Beweis von Theorem 3.10 setzen vor-
aus, dass die verwendeten Pattern unbeschränkt viele verschiedene Variablen enthalten
dürfen.

Daher ist es naheliegend, als weitere Einschränkung die Zahl der in den Pattern vor-
kommenden Variablen zu betrachten. Theorem 3.10 zeigt durch eine Verfeinerung des
Beweises von Theorem 3.3, dass das Inklusionsproblem für E-Patternsprachen mit einer
beschränkten (wenn auch vergleichsweise hohen) Zahl von Variablen weiterhin unent-
scheidbar ist.

Um für stärker eingeschränkte Variablenzahlen interessante Resultate unterhalb der
Unentscheidbarkeit zu finden, wird (analog zu einer Technik aus der Untersuchung klei-
ner Turingmaschinen) außerdem ein weiteres Berechnungsmodell auf die Inklusion von
Patternsprachen reduziert. Hierzu wird die Iteration der Collatzfunktion C (s. Lagari-
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as [62, 63]) betrachtet1. Die Collatzvermutung besagt, dass wiederholte Iteration von C
stets zum Zyklus 4, 2, 1 führt.

Hier stellt sich heraus (Theorem 3.11), dass bereits eine verhältnismäßig geringe Zahl
von Variablen genügt, um die Iteration der Collatzfunktion in Patternsprachen zu codie-
ren. Weiterhin zeigt Theorem 3.12, dass sich die Frage nach der Existenz von Zahlen, die
die Iteration der Collatzfunktion in einen anderen Zyklus als 4, 2, 1 führen, konstruktiv
auf das Inklusionsproblem für Patternsprachen mit einer geringfügig größeren Varia-
blenzahl reduzieren lässt. Ein entsprechender Entscheidungsalgorithmus könnte also in
endlicher Zeit entweder die Collatzvermutung widerlegen, oder aber die Nichtexistenz
einer von zwei möglichen Klassen von Gegenbeispielen beweisen.

Auch wenn aus diesen Resultaten keine Unentscheidbarkeit der Inklusionsprobleme
von Patternsprachen mit den entsprechenden Variablenzahlen folgt, zeigen die Theore-
me 3.11 und 3.12, dass die entsprechenden Probleme zumindest schwer sind.

Die Inhalte dieses Kapitels wurden bereits in den Arbeiten [32] (gemeinsam mit
Daniel Reidenbach, zuerst erschienen als [30]) und [12] (gemeinsam mit Joachim Bremer,
ausgezeichnet mit dem

”
Best Paper Award“ der Konferenz DLT 2010) veröffentlicht.

Kapitel 4

Reguläre Ausdrücke zählen zu den am weitesten verbreiteten Beschreibungsmechanismen
und werden sowohl in der theoretischen, als auch in der praktischen Informatik auf ver-
schiedenste Arten angewendet. Allerdings haben sich im Lauf der Jahrzehnte in Theorie
und Anwendung zwei unterschiedliche Interpretationen dieses Konzepts entwickelt.

Während die Theorie weitestgehend der klassischen Definition folgt und reguläre Aus-
drücke betrachtet, die exakt die Klasse der regulären Sprachen beschreiben, erlauben
die meisten modernen Implementierungen von regulären Ausdrücken die Spezifikation
von Wiederholungen mittels Variablen (auch Rückreferenzen genannt). Die daraus re-
sultierenden erweiterten regulären Ausdrücke können durch diese Wiederholungen auch
nichtreguläre Sprachen beschreiben.

Beispielsweise erzeugt der erweiterte reguläre Ausdruck ((a | b)∗)%x x die nichtre-
guläre Sprache {ww | w ∈ {a, b}∗}. Hierbei kann der Teilausdruck ((a | b)∗)%x ein
beliebiges Wort w ∈ {a, b}∗ erzeugen, während gleichzeitig dieses Wort w der Variablen
x als Wert zugewiesen wird. Weitere Vorkommen von x erzeugen wiederum exakt das
gleiche Wort w.

Andererseits führt die Verwendung von Variablen nicht zwangsläufig zu Nichtregula-
rität; beispielsweise erzeugen (für n ≥ 1) Ausdrücke der Form

αn:=((a | b) . . . (a | b)︸ ︷︷ ︸
n mal (a | b)

)%x x

die endliche (und daher reguläre Sprache) aller Wörter ww ∈ {a, b}∗, die die Länge 2n
haben. Hierbei fällt auf, dass klassische reguläre Ausdrücke (d. h. Ausdrücke, die keine
Variablen enthalten) für diese Sprachen exponentiell länger sind als die Ausdrücke αn.

Kapitel 4 befasst sich hauptsächlich mit den folgenden zwei Fragen: Erstens, können
erweiterte reguläre Ausdrücke – in Hinsicht auf ihre Länge oder auf ihre Variablenzahl

1Die Funktion C ist definiert durch C(n):=3n+ 1 für ungerade n, und C(n):= 1
2n für gerade n.



vi Zusammenfassung

– effektiv minimiert werden? Und zweitens, um wie viel kompakter ist die Beschreibung
von regulären Sprachen durch erweiterte reguläre Ausdrücke im Vergleich zu klassischen
regulären Ausdrücken?

Die Klasse der Patternsprachen ist eine Teilklasse der von erweiterten regulären Aus-
drücken erzeugten Sprachen, da sich die erzeugenden Pattern ohne großen Aufwand
direkt in die entsprechenden Ausdrücke konvertieren lassen. Allerdings erhöht die Ver-
wendung des Alternierungsoperators | die Ausdruckskraft so sehr, dass deutlich schärfere
Nichtentscheidbarkeitsresultate als die in Kapitel 3 enthaltenen Resultate zur Inklusion
für Patternsprachen erzielt werden können.

Die Konstruktion zum Beweis von Theorem 3.10 lässt sich mit signifikantem Zusatz-
aufwand zu einer mächtigeren Konstruktion für erweiterte reguläre Ausdrücke umbauen
(Theorem 4.14), mit deren Hilfe in Theorem 4.15 mehrere Nichtentscheidbarkeitsresulta-
te gewonnen werden, mittels derer die beiden weiter oben genannten Fragen beantwortet
werden. Erweiterte reguläre Ausdrücke können nicht effektiv minimiert werden, und der
Tradeoff zwischen erweiterten und klassischen regulären Ausdrücken ist durch keine be-
rechenbare Funktion beschränkt. Dies beantwortet auch eine offene Frage von Bordihn
et al. [9] zu einem verwandten Sprachmodell.

Besondere Erwähnung verdient hierbei die Tatsache, dass die genannten negativen
Eigenschaften bereits bei erweiterten regulären Ausdrücken mit einer einzigen Variable
nachgewiesen werden.

Als praktische Konsequenz lässt sich feststellen, dass selbst die Verwendung einer ein-
zigen Variable zwar deutlich kompaktere Ausdrücke erlauben kann (was sich natürlich
auch positiv auf die Geschwindigkeit des Matchens der Ausdrücke auswirkt), dass aber
andererseits dieser Vorteil aufgrund der Unmöglichkeit einer effektiven (oder gar effizi-
enten) Minimierung nicht generell nutzbar ist.

Die Inhalte dieses Kapitels wurden bereits in der Arbeit [29] veröffentlicht.

Kapitel 5

Ein Pattern α ist konsistent mit einer Menge S ⊆ Σ∗, wenn jedes Wort von S in der
von α erzeugten Sprache L(α) enthalten ist2; d. h. wenn L(α) ⊇ S gilt. So sind bei-
spielsweise die Pattern α0:=x, α1:=xyxyx und α2:=x a b y konsistent mit der Menge
S0:={ababa, ababbababbab, babab}. Konsistente Pattern liefern also eine kompakte und
leicht verständliche Darstellung von Gemeinsamkeiten der Wörter einer Menge.

Wie das oben stehende Beispiel zeigt, gibt es zu einer Menge von Wörtern im All-
gemeinen eine Vielzahl von konsistenten Pattern, die intuitiv eine sehr unterschiedliche
Güte haben können; beispielsweise ist das Pattern α0 mit jeder Sprache konsistent und
dürfte daher für nahezu alle Anwendungen im Allgemeinen als eine triviale und nicht
sonderlich hilfreiche Approximation gelten.

Es ist daher vorteilhaft, konsistente Pattern hoher Qualität formal zu fassen. Ein in
der Literatur häufig verwendetes Qualitätsmaß ist das Konzept der deskriptiven Pattern
für eine Menge S. Ein Pattern δ dessen Sprache L(δ) in einer gegebenen Klasse P von
Patternsprachen liegt, ist P -deskriptiv für eine Sprache S, wenn δ mit S konsistent ist,
und außerdem L(δ) ⊃ L(γ) ⊇ S für kein Pattern γ mit L(γ) ∈ P gilt.

2Hierbei ist natürlich von Fall zu Fall festzulegen, ob E- oder NE-Patternsprachen betrachtet werden.
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Anschaulich formuliert können P -deskriptive Pattern als Erzeuger einer kleinsten in-
nerhalb der Klasse P möglichen Generalisierungen der Zielsprachen L verstanden werden.
Die vorliegende Arbeit betrachtet hierbei vor allem die Klassen der NE-Patternsprachen,
der E-Patternsprachen, und die Klasse der terminalfreien E-Patternsprachen (also der-
jenigen E-Patternsprachen, die von Pattern erzeugt werden, die keine Terminalsymbole
enthalten). In den ersten beiden Fällen sprechen wir gewöhnlich von NE-deskriptiven
beziehungsweise E-deskriptiven Pattern.

Die wahrscheinlich naheliegendste Frage bei der Suche nach deskriptiven Pattern für
beliebige Sprachen ist, ob zu jeder Sprache mindestens ein deskriptives Pattern exis-
tiert. Für NE-Patternsprachen wurde diese Frage bereits von Angluin [4] positiv be-
antwortet. Ebenso wurde von Jiang et al. [50] bewiesen, dass alle endlichen Sprachen
ein E-deskriptives Pattern besitzen, während der Fall von E-deskriptiven Pattern für
unendliche Sprachen offen blieb.

Das Hauptresultat dieses Kapitels, Theorem 5.18, besagt, dass zu jedem Terminalal-
phabet mit mindestens zwei Buchstaben eine Sprache existiert, für die kein Pattern E-
deskriptiv ist. Um die durch die Nichtentscheidbarkeit des Inklusionsproblems entstehen-
den Schwierigkeiten zu umgehen, verwendet der Beweis terminalfreie E-Patternsprachen,
da für diese Unterklasse die Inklusion durch ein einfaches syntaktisches Kriterium cha-
rakterisiert wird.

Die meisten der Inhalte dieses Kapitels wurden bereits in der Arbeit [33] (gemeinsam
mit Daniel Reidenbach, zuerst erschienen als [31]) veröffentlicht.

Kapitel 6

Im Gegensatz zu Kapitel 5, in dem die Existenz deskriptiver Pattern im Vordergrund
steht, befasst sich dieses Kapitel mit der Frage nach der Möglichkeit, deskriptive Pattern
effektiv zu finden.

Hierzu wird das Konzept der deskriptiven Generalisierung (anhand von positiven Da-
ten) eingeführt (kurz: das DG-Modell), das an Golds klassisches Modell (s. Gold [39]) der
Identifikation von Sprachen im Limes (anhand von positiven Daten), das LIM-TEXT-
Modell angelehnt ist. Das LIM-TEXT-Modell wurde in der einschlägigen Literatur in-
tensiv untersucht (s. Ng und Shinohara [76]).

Anschaulich (und vereinfacht) untersuchen wir die Existenz von Lernstrategien, die
Positivbeispiele von Sprachen L wortweise einlesen und, wann immer ein bisher ungese-
henes Wort eingelesen wird, ein Pattern als Hypothese ausgeben.

Ist P eine Klasse von Patternsprachen, so ist eine Klasse L von Sprachen P -deskriptiv
generalisierbar, wenn eine berechenbare Generalisierungsstrategie S existiert, so dass für
jede Sprache L ∈ L die Folge der von S ausgegeben Hypothesen gegen ein Pattern δ
konvergiert, das P -deskriptiv für L ist.

Es muss also keine exakte Repräsentation der Zielsprachen erlernt werden, sondern
nur eine Approximation. Hierbei stellt sich heraus, dass die Korrespondenz zwischen
zu generalisierenden Sprachen und korrekten Hypothesen im Allgemeinen schwächer ist
als bei den üblicherweise in der Literatur betrachteten Lernmodellen: Ein Pattern δ
kann gleichzeitig deskriptives Pattern (und korrekte Hypothese) für zwei unvergleichbare
Sprachen L1, L2 sein, und eine Sprache L kann durch zwei unterschiedliche deskriptive
Pattern δ1 und δ2 generalisiert werden.
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Zusätzlich charakterisiert Theorem 6.26 diejenigen Klassen von Sprachen, die anhand
einer festen (und nach Ansicht des Autors kanonischen) Strategie in Bezug auf die Klasse
der terminalfreien E-Patternsprachen deskriptiv generalisiert werden können.

Mittels dieser Charakterisierung lässt sich eine große deskriptiv generalisierbare Klas-
se von Sprachen definieren, wodurch tiefere Einsichten zur Stärke des DG-Modells ge-
wonnen und ein Vergleich zum LIM-TEXT ermöglicht werden.

Die Inhalte dieses Kapitels wurden bereits in der Arbeit [34] (gemeinsam mit Daniel
Reidenbach) veröffentlicht.

Kapitel 7

Dieses Kapitel befasst sich mit einer Vermutung, die der Autor beim Versuch aufstellte,
den Beweis von Theorem 5.18 zu einer Charakterisierung derjenigen Sprachen zu erwei-
tern, für die kein Pattern in Bezug auf die Klasse der terminalfreien E-Pattersprachen
deskriptiv ist.

Dazu wird ein größeres technisches Instrumentarium eingeführt und anschließend
zur Konstruktion von Gegenbeispielen zu dieser Vermutung verwendet. Darüber hinaus
werden verschiedene Phänomene diskutiert, die die Schwierigkeit einer Charakterisierung
der genannten Sprachen verdeutlichen.

Als Fazit dieses Kapitels lässt sich feststellen, dass die Nichtexistenz deskriptiver
Pattern selbst in Bezug auf die Klasse der terminalfreien Patternsprachen komplex und
wahrscheinlich nur schwer zu charakterisieren ist.

Die Inhalte dieses Kapitels wurden nicht zuvor veröffentlicht.
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Chapter 1

Introduction

1.1 On Patterns

Patterns – finite strings that consist of variables and terminals – are compact and
natural devices for the definition of formal languages. A pattern generates a word by
a substitution of the variables with arbitrary strings of terminals from a fixed alphabet
Σ (where all occurrences of a variable in the pattern must be replaced with the same
word), and its language is the set of all words that can be obtained under substitutions.
In a more formal manner, the language of a pattern can be understood as the set of
all images under terminal-preserving morphisms; i. e., morphisms that map variables to
terminal strings, and each terminal to itself. For example, the pattern α = x1x1 a bx2

(where x1 and x2 are variables, and a and b are terminals) generates the language L(α)
of all words that have a prefix that consists of a square, followed by the word a b, and
are followed by an arbitrary word.

The study of patterns in strings goes back to Thue [103] and is a central topic of
combinatorics on words (cf. the survey by Choffrut and Karhumäki [18]), while the in-
vestigation of pattern languages was initiated by Angluin [4]. Angluin’s definition of
pattern languages permits only the use of nonerasing substitutions (hence, this class of
pattern languages is called NE-pattern languages). Later, Shinohara [102] introduced
E-pattern languages (E for ‘erasing’ or ‘extended’), where erasing substitutions are per-
mitted.

This small difference in the definitions leads to immense differences in the properties
of these two classes. For example, while the equivalence problem for NE-pattern lan-
guages is trivially decidable, the equivalence problem for E-pattern languages is a hard
open problem. Although both classes were first introduced in the context of inductive
inference (which deals with the problem of learning patterns for given sets of strings, for
a survey see Ng and Shinohara [76]), they have been widely studied in Formal Language
Theory (cf. the surveys by Mateescu and Salomaa [69], Mitrana [72], Salomaa [98]). Due
to their compact definition, patterns or their languages occur in numerous prominent
areas of computer science and discrete mathematics, including unavoidable patterns (cf.
Jiang et al. [50]), extended regular expressions (cf. Chapter 4), word equations and the
positive theory of concatenation (cf. Section 3.4.1), and recently, database theory (cf.
Barceló et al. [8]).

From the simple definition of pattern languages, one might expect that all properties
of the language of a pattern are immediately obvious from the pattern itself (and the

1



2 Chapter 1. Introduction

information which terminal alphabet one substitutes the variables into and whether vari-
ables may be erased), and hence, comparing pattern languages (more formally, deciding
the equivalence or inclusion problem of a pattern language) or deciding whether a given
word belongs to the language of a pattern (the membership problem) should simply be
a straightforward matter of comparing patterns, or the pattern and the word. With few
exceptions, this is not the case – in general, inclusion for pattern languages is undecid-
able (cf. Chapter 3), and the membership is NP-complete even for many subclasses (cf.
Section 2.2).

Thus, patterns (and their languages) offer a simple and elegant definition that leads
to hard problems with the potential applications in various areas. On one side, proving a
negative result for a problem on patterns (e. g. undecidability, or hardness for some com-
plexity class) immediately extends to all larger classes that contain pattern languages,
and to problems on models that use pattern languages in their definition. On the other
side, the proof of a negative result often hints at appropriate restrictions that might sim-
plify that problem. Here, pattern languages serve as a proving ground for restrictions
and techniques, which (not always, but from time to time) can be extended to larger
classes and models with more intricate definitions that encompass patterns. For some
examples, see Ng and Shinohara [76], Reidenbach and Schmid [89], and Section 3.4 in
the present thesis.

Surveys on pattern languages and various extensions and applications have been
provided by A. Salomaa [96, 97], Mateescu and A. Salomaa [69], Kucherov and Rusi-
nowitch [59], K. Salomaa [98], Mitrana [72], Reidenbach [85] (Chapter 3), and Ng and
Shinohara [76]; further references on various aspects on pattern languages, particular
applications and related areas are mentioned in the text of this thesis whenever it is
appropriate.

1.2 On This Thesis

The present thesis examines various aspects of the inclusion problem for pattern lan-
guages, and related problems. The main focus is on E-pattern languages, as are most
results, but NE-pattern languages are often considered for comparison. The present
section provides a short overview of the structure of the thesis, of the content of each
chapter, and of the relations between the chapters. Note that every chapter has also its
own detailed introduction.

The formal part of the thesis begins with Chapter 2, where we introduce the technical
preliminaries that are used throughout the thesis.

The main body consists of five chapters that form two largely independent parts:
The first part, consisting of Chapters 3 and 4, deals with the inclusion problem for
pattern languages, and applies a technique for patterns to multiple decision problems for
a common extension of regular expressions.

More specifically, in Chapter 3, we examine the decidability of the inclusion problem
for pattern languages. In 1995, Jiang, Salomaa, Salomaa and Yu [51] solved a longstand-
ing open problem by proving that inclusion for pattern languages (in both the E and
the NE case) is undecidable. We show in Theorem 3.3 that undecidability holds even
when the terminal alphabet is restricted to two or four letters (in the E- and NE-case,
respectively), thus answering an open question that was first posed by Reidenbach [85]
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and reaffirmed by Salomaa [99]. Furthermore, we study the difficulty of deciding the in-
clusion for E-pattern languages that are generated by patterns with a bounded number
of variables. We show that inclusion is still undecidable for patterns with a bounded but
comparatively large number of variables (Theorem 3.10), and we combine the famous
Collatz conjecture (cf. Lagarias [62, 63]) with a slight variation of the technique from
the proof of Theorem 3.10 to prove that there is reason to expect that inclusion is still
very difficult for significantly lower bounds (Theorem 3.11 and 3.12). Furthermore, in
Sections 3.3.5 and 3.4, respectively, we discuss extensions of the aforementioned proof
technique to larger terminal alphabets and to the material presented in Chapter 4. The
content of this chapter was published in [12] and [32] (first presented as [30]).

In Chapter 4, we examine so-called extended regular expressions, which extend the
regular expressions commonly studied in Theoretical Computer Science with variables
that allow to specify repetitions (thus generating non-regular languages). The two main
questions in this chapter are whether there exist effective procedures that can be used
to simplify or compare extended regular expressions, and how much more succinctly
extended regular expressions describe regular languages in contrast to the well-known
classical regular expressions. We prove that the corresponding decision problems are
undecidable, and that the tradeoff in length between extended regular expressions and
regular expressions is not bounded by any recursive function. Furthermore, we show
that these results hold even if the extended regular expression uses only a single variable.
Almost all results in this chapter are based on Theorem 4.14, which was initially derived
from the proof of Theorem 3.10. The content in this chapter was published as [29].

Although the techniques in Chapters 3 and 4 are related, the chapters themselves can
be read and understood independently and in any order (as far as the author himself is
able to judge this question).

The second part of this thesis consists of Chapters 5 to 7, in which we examine various
aspects of descriptive patterns. A pattern δ from some class of patterns P is descriptive
of a language L if its language L(δ) is a minimal generalization of L with respect to
P ; i. e., L(δ) ⊇ L, and there is no γ ∈ P with L(δ) ⊃ L(γ) ⊇ L. As such, descriptive
patterns can be considered the best approximation of languages within P . Note that, as
descriptive patterns are defined using the inclusion relation of pattern languages, many
problems for descriptive patterns are related to the inclusion problem.

In Chapter 5, we examine the question which languages have a descriptive pattern.
After introducing and motivating the concept of descriptive patterns both informally
and formally (Sections 5.1 and 5.2), we first consider a necessary condition for the non-
existence of a descriptive pattern for a given language, namely the existence of a certain
kind of strictly decreasing chain of pattern languages (Section 5.3). We then examine
the existence of descriptive patterns for finite and infinite sets, considering patterns
generating a whole class of E- or NE-pattern languages. The main result of this chapter
is Theorem 5.18, in which we prove that there are languages of which no E-pattern
language is descriptive, answering an open question by Jiang et al. [50]. Furthermore,
in Section 5.5 we prove that the problem to compute descriptive patterns for finite sets
cannot be solved efficiently, and connect the problem of finding descriptive patterns for
unions of E-pattern languages to the equivalence problem for E-pattern languages.

Most of the content of this chapter was published in [33] (first presented as [31]),
the only exception being the material in Section 5.5, which was published in [34] (Sec-
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tion 5.5.1), or has not been published before (Section 5.5.2).
In Chapter 6, we introduce the concept of descriptive generalization (from positive

data). This is a new learning model that is based on Gold’s model of language identifi-
cation in the limit (cf. Gold [39]), but instead of learning exact representations of formal
languages from positive data, it infers descriptive patterns as approximations of these
languages. In Section 6.2, we discuss this model in its most general form (for arbitrary
effective strategies and arbitrary classes of patterns) and a possible extension to a more
abstract model that does not rely on patterns. In Section 6.3, we then consider a fixed
class of pattern languages with a decidable inclusion problem (the class of terminal-free
E-pattern languages), and a strategy that the author considers canonical. We then pro-
vide a characterization of the class that can be descriptively generalized in this setting
(Theorem 6.26), which we call the class of locking set languages. Section 6.4 lists various
properties of locking set languages. The content of this chapter was published in [34].

In Chapter 7, we examine a conjecture which the author developed in search of a
generalization of the proof of Theorem 5.18 from Chapter 5 to a characterization of
those languages that have no descriptive pattern with respect to the class of terminal-
free E-pattern languages. Most of the chapter is devoted to the technical tools that
are used to define the examples that disprove the author’s conjecture and illustrate the
various difficulties that such a characterization would need to overcome. This material
has not been published before.

Note that Chapters 6 and 7 use the definitions introduced in Section 5.2.1. Apart
from this, the content of Chapter 5 serves only as wider context for Chapter 6, both
chapters can be read mostly indepentenly. This does not hold for Chapter 7, which
attempts to generalize and extend the proof of Theorem 5.18. In order to appreciate
the content of this chapter, the reader should be familiar with the content of Section 5.3
and, preferably, the proof of Theorem 5.18 presented in Section 5.4.2.

The thesis closes with Chapter 8, where we summarize the results of the previous
chapters and point out some open questions and possible directions of future work.

Note that, with the exception of [29], all mentioned articles were published with co-
authors, namely, Joachim Bremer ([12]) and Daniel Reidenbach ([30, 31, 32, 33, 34]).
The author has contacted his co-authors to reaffirm that there are no disputes over the
ownership of the material presented in this thesis. Whenever we consider material from
any of these co-authored articles that is not the author’s, we explicitly mention this fact.



Chapter 2

Preliminaries

We begin the formal part of this thesis with a detailed description of basic definitions.
Although this thesis is largely self contained, we assume that the reader is familiar with
the common mathematical concepts and notations, as well with the elementary insights of
formal language theory (cf. Hopcroft and Ullman [46], Salomaa [95]), complexity theory
(cf. Garey and Johnson [38]), and recursion theory (cf. Cutland [21], Odifreddi [77],
Rogers [91]).

2.1 Basic Definitions

Let Z denote the set of all integers, and let N denote the set of all non-negative integers.
For every k ≥ 0, let Nk:={n ∈ N | n ≥ k}, and let the symbol ∞ denote infinity.

The symbols div and mod denote the integer division and its remainder (respec-
tively), and bc denotes the floor function. The symbols ⊆, ⊂, ⊇ and ⊃ refer to subset,
proper subset, superset and proper superset relation, respectively. The symbols ∅, P
and \ denote the empty set, the power set, and the set difference, respectively. For any
set A and any n ≥ 1, subsets A1, . . . , An ⊆ A form a partition of A if all Ai are pairwise
disjoint, and A =

⋃n
i=1Ai.

For any alphabet A, a string (over A) is a finite sequence of symbols from A, and λ
denotes the empty string, or empty word . The symbol A+ denotes the set of all nonempty
strings over A, and A∗:=A+ ∪ {λ}. For the concatenation of two strings w1, w2 we write
w1 · w2 or simply w1w2. We say a string v ∈ A∗ is a factor of a string w ∈ A∗ if there
are u1, u2 ∈ A∗ such that w = u1vu2. If u1 = λ (or u2 = λ), then v is a prefix of w (or a
suffix , respectively).

For an arbitrary alphabet A, a language L (over A) is a set of strings over A, i. e.
L ⊆ A∗. A language L is empty if L = ∅; otherwise, it is nonempty. A class L of
languages (over A) is a set of languages over A, i. e., L ⊆ P(A∗). Let FINA denote the
class of all finite languages over A.

The notation |K| denotes the size of a set K or the length of a string K; the term
|w|a refers to the number of occurrences of the symbol a in the string w. For any w ∈ A∗
and any n ∈ N0, wn denotes the n-fold concatenation of w, with w0:=λ. Furthermore,
we use · and the Kleene operations ∗ and + on sets and strings in the usual way.

If A is an alphabet, a (one-sided) infinite word over A is an infinite sequence w =
(wi)

∞
i=0 with wi ∈ A for every i ≥ 0. We denote the set of all one-sided infinite words

over A by Aω and, for every a ∈ A, let aω denote the word w = (wi)
∞
i=0 with wi = a for

5
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every i ≥ 0. We shall only deal with infinite words w ∈ Aω that have the form w = u aω

with u ∈ A∗ and a ∈ A.
Concatenation of words and infinite words is defined canonically: For every u ∈ A+

and every v ∈ Aω with v = (vi)
∞
i=0, u · v := w ∈ Aω, where w0 · . . . · w|u|−1 = u and

wi+|u| = vi for every i ≥ 0, and λ · v:=v, while v · u is undefined. Especially, note that
a · aω = aω for every a ∈ A.

For any alphabets A,B, a morphism is a function h : A∗ → B∗ that satisfies h(vw) =
h(v)h(w) for all v, w ∈ A∗. Given morphisms g : A∗ → B∗ and h : B∗ → C∗ (for
alphabets A, B, C), their composition h ◦ g is defined by (h ◦ g)(w) := h(g(w)) for all
w ∈ A∗. For every morphism h : A∗ → A∗ and every n ≥ 0, hn denotes the n-fold
iteration of h, i. e., hn+1 := h ◦ hn, where h0 is the identity on A∗.

A morphism h : A∗ → B∗ is said to be nonerasing if h(a) 6= λ for all a ∈ A. For any
string w ∈ C∗, where C ⊆ A and |w|a ≥ 1 for every a ∈ C, the morphism h : A∗ → B∗

is called a renaming (of w) if h : C∗ → B∗ is injective and |h(a)| = 1 for every a ∈ C.

2.2 Patterns and Their Languages

Let Σ be a (finite or infinite) alphabet of so-called terminals and X an infinite set of
variables with Σ∩X = ∅. We normally assume {a, b, . . .} ⊆ Σ and {x1, x2, x3, . . .} ⊆ X.
A pattern is a non-empty string over Σ∪X, a terminal-free pattern is a non-empty string
over X, and a terminal-string (or word) is a string over Σ. For any pattern α, we refer
to the set of variables in α as var(α) and to the set of terminals in α as symb(α). The
set of all patterns over Σ∪X is denoted by PatΣ; the set of all terminal-free patterns is
denoted by Pattf or X+. For every n ≥ 0, let Patn,Σ denote the set of all patterns over
Σ that contain at most n variables; that is, Patn,Σ :={α ∈ PatΣ | | var(α)| ≤ n}.

A morphism σ : (Σ ∪X)∗ → (Σ ∪X)∗ is called terminal-preserving if σ(a) = a for
every a ∈ Σ. A terminal-preserving morphism σ : (Σ ∪X)∗ → Σ∗ is called a substitution.
The E-pattern language LE,Σ(α) of α is given by

LE,Σ(α):={σ(α) | σ : (Σ ∪X)∗ → Σ∗ is a substitution},

and the NE-pattern language LNE,Σ(α) of a pattern α ∈ PatΣ is given by

LNE,Σ(α):={σ(α) | σ : (Σ ∪X)∗ → Σ∗ is a nonerasing substitution}.

If the intended meaning is clear, we write L(α) instead of LE,Σ(α) or LNE,Σ(α) for any
α ∈ PatΣ. A pattern language is called terminal-free if it is generated by a terminal-free
pattern. For convenience, we define LE,Σ(λ):=LNE,Σ(λ):={λ} for all terminal alphabets
Σ.

Furthermore, let ePATΣ denote the class of all E-pattern languages over Σ, and
nePATΣ the class of all NE-pattern languages over Σ. Likewise, we define ePATtf,Σ as
the class of all LE,Σ(α) with α ∈ Pattf , and, for any n ≥ 0, ePATn,Σ as the class of all
LE,Σ(α) with α ∈ Patn,Σ. The classes nePATtf,Σ and nePATn,Σ are defined accordingly.
In most of the cases, we shall consider only pattern languages over a terminal alphabet
Σ that is finite, and non-unary (i. e., |Σ| ≥ 2). The latter restriction that is due to
the fact that unary pattern languages are a strict subset of the set of regular languages
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(cf. Reidenbach [85]1), and share few interesting properties with pattern languages over
larger alphabets.

Furthermore, in order to obtain a unique representative of each class of those patterns
that are identical up to a terminal-preserving renaming, we define the notion of the
canonical form of a pattern. For this, we fix any well-founded total order � on X. A
pattern α ∈ PatΣ is in canonical form (with respect to �) if all variables are introduced
without gaps and in ascending order with respect to �. More formally, α ∈ PatΣ is in
canonical form if, for all β, γ ∈ (Σ ∪X)∗ and all x ∈ X with α = βxγ, y ∈ var(β) holds
for all y ∈ X with y ≺ x.

One of the canonical questions for classes of pattern languages is the membership
problem; i. e., given a pattern α from some class of patterns, and a word w ∈ Σ∗, does
w belong to L(α)? Both problems are decidable, although not efficiently (withstanding
P = NP):

Theorem 2.1 (Angluin [4], Jiang et al. [50]). Let Σ be an alphabet with |Σ| ≥ 2.
The membership problem for nePATΣ and the membership problem for ePATΣ are NP-
complete.

The NE-case of Theorem 2.1 is due to Angluin [4], the E-case is an extension of
the NE-case and due to Jiang, Kinber, Salomaa, Salomaa and Yu [50]. Independently,
Ehrenfeucht and Rozenberg proved the following more general theorem:

Theorem 2.2 (Ehrenfeucht and Rozenberg [27]). Let X be an infinite alphabet, and Σ
be an alphabet with at least two letters. Given an α ∈ X∗ and a w ∈ Σ∗, it is an NP-
complete problem to decide whether there is a morphism φ : X∗ → Σ∗ with φ(α) = w.

Note that this result implies that even for terminal-free pattern languages, the mem-
bership problem is NP-complete. Furthermore, all proofs rely on the fact that the number
of variables in the involved patterns is unbounded. As shown by Ibarra et al. [47], the
membership problem can be solved in polynomial time for E- and NE-patterns if the
number of variables in the patterns is bounded.

In contrast to this, the equivalence problem for NE-pattern languages is efficiently
decidable, as equivalence of NE-pattern languages can be characterized in a trivial man-
ner:

Theorem 2.3 (Angluin [4]). Let Σ be an alphabet with |Σ| ≥ 2. For patterns α, β ∈
PatΣ, LNE,Σ(α) = LNE,Σ(β) holds if and only if there is a terminal-preserving renaming
φ : PatΣ → PatΣ with φ(α) = β.

Thus, for all non-unary alphabets, two patterns generate the same NE-language if and
only if they are identical, modulo a renaming. Likewise, two patterns in canonical form
generate the same NE-language if and only if they are identical. On the other hand, the
equivalence problem for E-pattern languages is still open and is widely considered to be
among the hardest open problems for pattern languages (see Ohlebusch and Ukkonen [79]
and Freydenberger and Reidenbach [30]).

1Alternatively, one can prove this claim by observing that the class of unary pattern languages is
identical to the class of linear unary languages (cf. Proposition 5.21), which is a proper subset of the
class of regular unary languages (cf. Salomaa [95], Chapter II.7).
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The decidability of the inclusion problem for various classes of pattern languages –
the central topic of this thesis – is defined as follows: Let P1, P2 be two classes of patterns,
and PAT1,PAT2 be the corresponding classes of pattern languages (either the class of
all E-pattern languages or the class of all NE-pattern languages over some alphabet Σ
that are generated by patterns from P1 or P2). We say that the inclusion problem for
PAT1 in PAT2 is decidable if there exists a total computable function χ such that, for
every pair of patterns α ∈ P1 and β ∈ P2, χ decides on whether or not L(α) ⊆ L(β). If
no such function exists, this inclusion problem is undecidable. If both classes of pattern
languages are the same class PAT?,Σ, we simply refer to the inclusion problem of PAT?,Σ.

One of the most useful results on pattern languages is the following characterization
of the inclusion for terminal-free E-pattern languages:

Theorem 2.4 (Filè [28], Jiang et al. [50]). Let |Σ| ≥ 2. For every α, β ∈ X+, LE,Σ(α) ⊆
LE,Σ(β) holds if and only if there is a morphism φ : X∗ → X∗ with φ(β) = α.

While Theorem 2.4 implies that inclusion is decidable for terminal-free E-pattern
languages, we can also conclude (together with Theorem 2.2) that this problem is NP-
complete.



Chapter 3

Inclusion of Pattern Languages

3.1 On Inclusion for Pattern Languages

One of the most notable results on pattern languages is the proof of the undecidability
of the inclusion problem (for E- as well as NE-pattern languages) by Jiang, Salomaa,
Salomaa and Yu [51], a problem that was open for a long time and is of vital importance
for the inductive inference of pattern languages (cf. Angluin [5], Ng and Shinohara [76]).

Unfortunately, this proof heavily depends on the availability of an unbounded number
of terminals, which might be considered impractical, as pattern languages are mostly
used in settings with fixed (or at least bounded) terminal alphabets. The first major
theorem of the present chapter, Theorem 3.3, shows that undecidability holds even for
all E-pattern languages over finite terminal alphabets with more than one letter, and
for NE-pattern languages with at least four letters. This result was obtained through a
considerable modification of the proof technique of Jiang et al.

As the proof by Jiang et al. and its modification used in the proof of Theorem 3.3
require the number of variables of the involved patterns to be unbounded, the author
considers it a natural question whether the inclusion problems remain undecidable even
if bounds are imposed on the number of variables in the pattern; especially as bounding
the number of variables changes the complexity of the membership problem from NP-
complete to polynomial time (cf. Ibarra et al. [47]). Similar restrictions have been studied
in the theory of concatenation (cf. Section 3.4.1).

Apart from potential uses in inductive inference or other areas, and the search for
an approach that could provide the leverage needed to solve the equivalence problem for
E-pattern languages, the author’s main motivation for deeper research into the inclusion
problems is the question how strongly patterns and their languages are connected. All
known cases of (nontrivial) decidability of the inclusion problem for various classes of
patterns rely on the fact that for these classes, inclusion is characterized by the existence
of a terminal-preserving morphism mapping one pattern to the other. This is a purely
syntactical condition that, although NP-complete (cf. Ehrenfeucht and Rozenberg [27]),
can be verified in a straightforward way. Finding cases of inclusion that are not covered
by this condition, but still decidable, could uncover (or rule out) previously unknown
phenomena, and be of immediate use for related areas of research.

The three further main results in the present chapter, Theorems 3.10, 3.11 and 3.12,
can be summarized as follows: We show that the inclusion problem for E-patterns with
a bounded (but large) number of variables is indeed undecidable. For smaller bounds,

9
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we prove the existence of classes of patterns that have complicated inclusion relations,
and an inclusion problem which we are not able to prove undecidable. Some of these
inclusions can simulate iterations of the Collatz function, while others could (in principle)
be used to settle an important part of the famous Collatz conjecture.

3.2 Definitions and a Preliminary Result

This section contains the definitions of the models which we simulate in the proofs of
the major results presented in Section 3.3.

3.2.1 The Universal Turing Machine U
Let U be the universal1 Turing machine U15,2 with 2 symbols and 15 states described
by Neary and Woods [75]. This machine has the state set Q = {q1, . . . , q15} (where q1

is the initial state) and operates on the tape alphabet Γ = {0, 1} (where 0 is the blank
symbol). Its transition function δ : Γ × Q → (Γ × {L,R} × Q) ∪ HALT is depicted in
Figure 3.1.

q1 q2 q3 q4 q5 q6 q7 q8

0 0, R, q2 1, R, q3 0, L, q7 0, L, q6 1, R, q1 1, L, q4 0, L, q8 1, L, q9

1 1, R, q1 1, R, q1 0, L, q5 1, L, q5 1, L, q4 1, L, q4 1, L, q7 1, L, q7

q9 q10 q11 q12 q13 q14 q15

0 0, R, q1 1, L, q11 0, R, q12 0, R, q13 0, L, q2 0, L, q3 0, R, q14

1 1, L, q10 HALT 1, R, q14 1, R, q12 1, R, q12 0, R, q15 1, R, q14

Figure 3.1: The transition table of the universal Turing machine U which is defined
in Section 3.2.1. This machine is due to Neary and Woods [75] and is, to the author’s
knowledge, the smallest currently known universal Turing machine over a two letter tape
alphabet.

In order to discuss configurations of U , we use the following terminology: A config-
uration of U is a triple (qi, taL, tR) ∈ Q × Γ∗0ω × Γ∗0ω, where qi denotes the state, and
taL describes the content of what we shall call the left side of the tape, the infinite word
that starts at the position of the machine’s head and extends to the left2. Likewise, tR
describes the right side of the tape, the infinite word that starts immediately to the right
of the head and extends to the right (cf. Figure 3.2).

Encoding Computations of U

We define the function e : Γ → N0 as e(0):=0 and e(1):=1, and extend this to an
encoding of infinite sequences t = (ti)

∞
i=0 over Γ by e(t):=

∑∞
i=0 2i e(ti). As we consider

1Note that U is indeed Turing universal: There is a computable function cU that maps every Turing
machine M and every configuration I of M into a configuration cU (M, I) of U such that U halts in
finite time after being started in the configuration cU (M, I) if and only if M halts in finite time after
being started in the configuration I.

2Hence taL, as the word contains both the current letter a and the part to its left. This naming was
chosen intentionally, to distinguish this concept of tape sides from the one we shall use in Chapter 4.
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0 0 0 1 1 1 0 1 1 1 0 0 1 0 0 0 0. . . . . .
tR →← taL

Figure 3.2: An illustration of tape words of some configuration of the universal Turing
machine U (as defined in Section 3.2.1). The arrow below the tape symbolizes the
position of the head, while the dashed lines show the borders between the left tape side
and the right tape side. Assuming that all tape cells that are not shown contain 0, we
observe the left tape word tL = 1101110ω and the right tape word tR = 10010ω.

only configurations where all but finitely many cells of the tape consist of the blank
symbol 0 (which is encoded as 0), e(t) is always finite and well-defined. Note that for
every side t of the tape, e(t) mod 2 returns the encoding of the symbol that is closest to
the head (the symbol under the head for taL, and the symbol to the right of the head for
tR). Furthermore, each side can be lengthened or shortened by multiplying or dividing
(respectively) its encoding e(t) by 2. The encoding encU of configurations of U is defined
by

encU(qi, taL, tR):=0 0e(tR)#0 0e(taL)#0i,

for every configuration (qi, taL, tR).
Encoding the tape content of any configuration of U such that each tape side is

identified with a natural number by use of e allows us to describe the correct successor
configuration using only basic arithmetical operations:

Observation 3.1. Assume that U is in some configuration C = (taL, tR, qi), and δ(a, qi) =
(d,M, qj) for some d ∈ {0, 1}, some M ∈ {L,R} and some qj ∈ Q. For the (uniquely
defined) successor configuration C ′ = (t′aL, t

′
R, qj), the following holds:

1. if M = L, then e(t′aL) = e(taL) div 2 and e(t′R) = 2(e(tR)) + e(d),

2. if M = R, then e(t′aL) = 4(e(taL) div 2) + 2 e(d) + (e(tR) mod 2) and
e(t′R) = e(tR) div 2.

Proof. We begin with the case that M = L. Thus, if U reads a in state qi, it has to write
d and to execute a left movement. It is easier to understand the respective equations
if we view this not as movement of the head, but as movement of the tape. In order
to derive t′aL from taL, we simply move all tape cells one step to the right (instead of
moving the head ones step to the left), while the cell that is currently under at the head
position is moved to the right tape side. If we view taL as a binary number, it should
become obvious that e(t′aL) = e(taL) div 2.

Likewise, all cells of the right tape side are moved one step to the right, which
multiplies e(tR) by two. In addition to this, the right side gains the cell that was the
former head position as its leftmost tape cell. As U just wrote d into this cell, e(t′R) =
2 e(tR) + e(d) holds.
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Now consider the case of M = R. Although the equation for e(t′R) should be clear (as
it behaves analogously to the equation for e(t′aL) in the first case), the equation for e(t′aL)
is more involved. First, let t′′aL denote the content of the left tape side immediately after
writing d, but before moving the head. As the head position is the least significant bit
of taL (viewed as a binary number), we observe e(t′′aL) = 2(e(taL) div 2) + e(d). This tape
side is now shifted one step to the left (which is equivalent to multiplication by two) and
gains the leftmost letter of tR as new head symbol. Thus,

e(t′aL) = 2 e(t′′aL) + (e(tR) mod 2)

= 4(e(taL) div 2) + 2 e(d) + (e(tR) mod 2)

The intermediate result 2(e(taL) div 2) + e(d) sets the tape cell under the head to the
letter d, multiplying this number by 2 shifts the whole left side of the tape one cell to
the left and appends a new cell containing the blank symbol 0. This symbol is then
overwritten with the first letter of the right side of the tape by adding (e(tR) mod 2).
Thus, e(t′aL) can indeed be computed as claimed.

We extend this encoding to an encoding of finite sequences of configurations C =
(Ci)

n
i=1 by

encU(C):=## encU(C1)## . . . ## encU(Cn)##.

Let I be any configuration of U . A valid computation from I is a finite sequence C =
(Ci)

n
i=1 (with n ≥ 2) of configurations of U such that C1 = I, Cn is a halting configuration,

and Ci+1 is the valid successor configuration of Ci for every i with 1 ≤ i < n, if Ci is
not a halting configuration. In contrast to the definitions of valid computations that is
commonly used in literature, this definition allows U to continue its run after reaching
a halting configuration. Regarding tape sides, we define that any possible configuration
where both tape sides have a finite value under e is a valid successor configuration of a
halting configuration.

This extended definition of succession does not change the acceptance behavior of
U , and serves only to simplify the construction given in Section 3.3.2. Finally, for every
configuration I of U , let

ACCEPTU(I):={encU(C) | C is a valid computation from I}.

This set is nonempty if and only if U halts (and, thus, accepts) in finite time after being
started in the configuration I. Thus, this set can be used to decide the halting problem
of U . As U is universal, there can be no recursive function that, on input I, decides
whether ACCEPTU(I) is empty or not.

3.2.2 The Collatz Function

In this section, we discuss a different (and probably less powerful) model of computation,
which we shall also use in our proofs. The Collatz function C : N1 → N1 is defined by
C(n):=1

2
n if n is even, and C(n):=3n + 1 if n is odd. For any i ≥ 0 and any n ≥ 1,

let C0(n):=n and Ci+1(n):=C(Ci(n)). A number n leads C into a cycle if there are i, j
with 1 ≤ i < j and Ci(n) = Cj(n). The cycle is nontrivial if Ck(n) 6= 1 for every k ≥ 0;
otherwise, it is the trivial cycle.
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We consider the iterated Collatz function mainly in context of the Collatz conjec-
ture, which has also been called the 3n+ 1 conjecture, the Ulam conjecture, Kakutani’s
problem, Thwaites conjecture, Hasse’s algorithm, or the Syracuse problem:

Collatz conjecture. For every N ≥ 1, there is an n ≥ 1 such that Cn(N) = 1.

Consequently, the Collatz conjecture states that every natural number leads C into
the trivial cycle 4, 2, 1. Regardless of the considerable effort spent on this problem (see
the bibliographies by Lagarias [62, 63], as well as the recent book, [64]), the conjecture
remains unsolved, as the iterated function often behaves rather unpredictably. Ongoing
independent computer verifications by Roosendal [92] and Oliveira e Silva [80] have
verified the conjecture for all N ≤ 888 · 250 ≈ 1018 and all N ≤ 20 · 258 ≈ 5.764 · 1018,
respectively.

As their unpredictable behavior is in stark contrast to their simple definition, itera-
tions of the Collatz function have been studied in the research of small Turing machines.
Margenstern [68] conjectures that every class of Turing machines (as characterized by
the number of states and symbols) that contains a machine that is able to simulate the
iteration of the Collatz function, also contains a machine that has an undecidable halting
problem.

Note that there are two classes of potential counterexamples that would disprove the
Collatz conjecture: First, there could be an N ≥ 1 such that Ci(N) 6= Cj(N) for all
i 6= j, and second, there could be an N ≥ 1 that leads C into a cycle that is not the
trivial cycle.

Encoding Collatz Iterations

Similar to the definition of ACCEPTU(I), we encode those iterations of the Collatz
function that lead to the number 1 (and thus, to the trivial cycle) in languages over the
alphabet {0, #}. For every N ∈ N1, let

TRIV(N):={#0C
0(N)#0C

1(N)# . . . #0C
n(N)# | n ≥ 1, Cn(N) = 1},

By definition, TRIV(N) is empty if and only if N does not lead C into the trivial cycle.
As we shall see, our constructions are able to express an even stronger problem, the
question whether there are any numbers that lead C to a nontrivial cycle. We define
NTCC as the set of all strings #0C

0(N)#0C
1(N)# . . . #0C

n(N)#, where n,N ≥ 1, Ci(N) 6= 1
for all i ∈ {0, . . . , n}, and Cj(N) = Cn(N) for some j < n. Obviously, this set is
nonempty if and only if there exist nontrivial cycles in the iteration of C. As mentioned
above, this is one of the two possible cases that would disprove the Collatz conjecture.

3.3 The Difficulty of Inclusion

In this section, we study the inclusion problems of various classes of pattern languages
generated by patterns with a bounded number of variables.

As shown by Jiang et al. [51], the general inclusion problem for pattern languages is
undecidable, both in the case of E- and NE-patterns:
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Theorem 3.2 (Jiang et al. [51]). Let Z ∈ {E,NE}. There is no total computable function
χZ which, for every alphabet Σ and for every pair of patterns α, β ∈ PatΣ, decides on
whether or not LZ,Σ(α) ⊆ LZ,Σ(β).

Technically, Jiang et al. show that, given a so-called nondeterministic 2-counter au-
tomaton without input A (for details, see [51] or Freydenberger and Reidenbach [32]),
one can effectively construct an alphabet Σ and patterns αA, βA ∈ PatΣ such that
LE,Σ(αA) ⊆ LE,Σ(βA) if and only if A has an accepting computation. As this prob-
lem is known to be undecidable, the general inclusion problem for E-pattern languages
must also be undecidable. The undecidability of the general inclusion problem for NE-
pattern languages follows using an involved reduction of the E-case to the NE-case. This
construction requires two additional terminal letters in Σ.

In the proof for the E-case, Σ contains one letter for every state of A, and six further
symbols that are used for technical reasons. Quite obviously, we cannot use such an
approach to prove undecidability of the inclusion problem for ePATΣ with some fixed
alphabet Σ, since we would need to limit the number of states of the automata under
consideration. This step, in turn, would lead to a finite class of possible automata,
and, hence, would result in a trivially decidable emptiness problem for that class. Con-
sequently, as mentioned by Reidenbach [85] and Salomaa [99], there seems to be no
straightforward way from the undecidability result by Jiang et al. [51] to the undecid-
ability of the inclusion problem for ePATΣ, especially when Σ is comparatively small.
Nevertheless, the inclusion problem remains undecidable for most cases of a fixed termi-
nal alphabet:

Theorem 3.3. Let Σ be a finite alphabet. If |Σ| ≥ 2, the inclusion problem of ePATΣ is
undecidable. If |Σ| ≥ 4, the inclusion problem of nePATΣ is undecidable.

Although Theorem 3.3 is part of the present thesis, the author decided to omit its
proof, as the E-case is a corollary of Theorem 3.10 further down, and the proof technique
used in [32] is only a special case of the more general construction we shall present here.

The proof of the E-case of Theorem 3.3 that is given in [30] consists of a major mod-
ification of the construction for the general inclusion problem for E-pattern languages,
and requires that the construction is able to use an unbounded number of variables in
one of the two patterns. The NE-case of the result follows from the same reduction as
in the proof of Theorem 3.2 (thus, |Σ| ≥ 4, as the reduction uses two additional letters),
and also requires an unbounded number of variables.

As patterns with an arbitrarily large number of variables might seem somewhat ar-
tificial for many applications, the author considers it natural to bound this number in
order to gain decidability of (or at least further insights on) the inclusion of pattern
languages. We begin our considerations with an observation from two classical papers
on pattern languages:

Theorem 3.4 (Angluin [4], Jiang et al. [50]). The inclusion problem for nePATΣ in
nePAT1,Σ and the inclusion problem for ePATΣ in ePAT1,Σ are decidable.

The proofs for both cases of this theorem rely on the following sufficient condition
for inclusion of pattern languages:
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Theorem 3.5 (Jiang et al. [50], Angluin [4]). Let Σ be an alphabet and α, β ∈ PatΣ. If
there is a terminal-preserving morphism φ : (Σ ∪X)∗ → (Σ ∪X)∗ with φ(β) = α, then
LE,Σ(α) ⊆ LE,Σ(β). If φ is also nonerasing, then LNE,Σ(α) ⊆ LNE,Σ(β).

In fact, the proofs of both parts of Theorem 3.4 show that, for every alphabet Σ
and all patterns α ∈ PatΣ, β ∈ Pat1,Σ, L(α) ⊆ L(β) holds if and only if there is
a terminal-preserving (and, in the NE-case, nonerasing) morphism φ with φ(β) = α.
As the existence of such a morphism is a decidable property (although in general NP-
complete, cf. Theorem 2.2 and our remarks thereon), the respective inclusion problems
for these classes are decidable.

There are numerous other classes of pattern languages where this condition is not
only sufficient, but characteristic; e. g. the terminal-free E-pattern languages (cf. The-
orem 2.4), some of their generalizations (cf. Ohlebusch and Ukkonen [79]), and pattern
languages over infinite alphabets (cf. Reidenbach [85], [32]). To the author’s knowledge,
all nontrivial decidability results for pattern languages over non-unary alphabets rely on
this property3. Contrariwise, the existence of patterns where inclusion is not character-
ized by the existence of an appropriate morphism between them is a necessary condition
for an undecidable inclusion problem for this class.

The same phenomenon as in Theorem 3.4 does not occur if we swap the bounds of
the classes. For the nonerasing case, this is illustrated by the following example:

Example 3.6 (Reidenbach [85], Example 3.2). Let Σ = {a1, . . . , an} with n ≥ 2, and
consider the pattern αn:=x a1 x a2 x . . . x an x, β:=xyyz. Then there is no nonerasing
terminal-preserving morphism φ with φ(β) = αn, but every word from LNE,Σ(αn) contains
an inner square. Thus, LNE,Σ(αn) ⊆ LNE,Σ(β). 3

Using a less straightforward approach, one obtains an even tighter bound:

Proposition 3.7 (Angluin [4]). For every finite alphabet Σ, there exist patterns α ∈
Pat1,Σ and β ∈ Pat2,Σ such that LNE,Σ(α) ⊆ LNE,Σ(β), but there is no nonerasing
terminal-preserving morphism φ : (Σ ∪X)+ → (Σ ∪X)+ with φ(β) = α.

Proof. The proof for the case of binary terminal alphabets is due to Angluin [4] (Ex-
ample 3.8). As Angluin only sketches the extension to ternary terminal alphabets and
mentions that the construction can be extended to larger alphabets in a straightforward
way, we give the whole proof.

First, we define the infinite terminal alphabet Σ∞:={a1, a2, . . .}, where all ai are
pairwise different. Next, we define an infinite sequence of patterns (α̂i)

∞
i=1 by

α̂1:= a1 x,

α̂i+1:=α̂i ai+1 α̂ix

for every i ≥ 1. In addition to this, we define a second sequence (αi)
∞
i=1 by αi:=α̂i ai for

every i ≥ 1. Thus, the first three patterns in the two sequences are

α̂1:= a1 x, α1:= a1 x a1,

α̂2:= a1 x a2 a1 xx, α2:= a1 x a2 a1 xx a2,

α̂3:= a1 x a2 a1 xx a3 a1 x a2 a1 xxx, α3:= a1 x a2 a1 xx a3 a1 x a2 a1 xxx a3 .

3Nontrivial meaning that the involved classes are neither finite, nor restricted in some artificial way
that leads to trivial decidability.
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We shall now show that, for every alphabet Σ = {a1, . . . , an} ⊂ Σ∞ (with n ≥ 1), the
patterns αn and β:=xxy prove the claim – i. e., LNE,Σ(αn) ⊆ LNE,Σ(β), but there is no
nonerasing terminal-preserving morphism φ with φ(β) = α. The proof relies on the
following two claims:

Claim 1. For every n ≥ 1, no nonempty prefix of α̂n is a square.

Proof of Claim 1. We prove this claim by induction. For n = 1, α̂n = a1 x. The only
nonempty prefixes of α̂n are α̂n itself and a1, neither of which is a square.

Now assume the claim holds for some n ≥ 1 (i. e., no nonempty prefix of α̂n is a
square). By definition, α̂n+1 = α̂n an+1 α̂nx. Due to the definition of α̂n, we know that
the letter an+1 does not occur therein, and by the induction assumption, no nonempty
prefix of α̂n is a square. Thus, the claim holds or α̂n+1 as well. (Claim 1)

In order to state the next claim, for every i ≥ 1, we define Si to be the set of all
nonerasing substitutions σ : (Σ∞ ∪X)+ → (Σ∞)+ for which the leftmost letter of σ(x)
is ai.

Claim 2. For every n ≥ 1, every i with 1 ≤ i ≤ n and every σ ∈ Si, σ(α̂n) has a
nonempty prefix that is a square.

Proof of Claim 2. Again, we show the claim by induction. First, let n = 1. In this case,
we only need to consider the case of σ ∈ S1. For every such σ, there is a w ∈ (Σ∞)∗ such
that σ(x) = a1w. Accordingly, as σ(α̂1) = a1 a1w, the claim holds.

Now assume that, for some n ≥ 1 and all i with 1 ≤ i ≤ n, σ(α̂n) has a nonempty
prefix that is a square. As α̂n is a prefix of α̂n+1, this implies that, for every σ ∈ Si
with 1 ≤ i ≤ n, σ(α̂n+1) has a nonempty square as a prefix. Therefore, we only need to
consider the substitutions σ ∈ Sn+1. For every such σ, there is a w ∈ (Σ∞)∗ such that
σ(x) = an+1 w, and

σ(α̂n+1) = σ(α̂n an+1 α̂nx)

= σ(α̂n) an+1 σ(α̂n) an+1w.

Thus, (σ(α̂n) an+1)2 is a (nonempty) prefix of σ(α̂n+1). (Claim 2)

Now, for every n ≥ 1, consider the terminal alphabet Σ:={a1, . . . , an} and the patterns
α:=αn and β:=xxy (where x and y are distinct variables).

For every word w ∈ LNE,Σ(α), there is a nonerasing substitution σ : (Σ ∪X)+ → Σ+

with σ(α) = w. Therefore, σ ∈ Si for some i with 1 ≤ i ≤ n, depending on the
leftmost letter of σ(x). By Claim 2, σ(α̂n) has a nonempty prefix that is a square; i. e.,
there are a u ∈ Σ+ and a v ∈ Σ∗ such that w = uuv. We now define the substitution
τ : (Σ ∪ X)+ → Σ+ by τ(x):=u and τ(y):=v an. Thus, τ(β) = uuv an = σ(α̂n) an =
σ(αn) = w, and LNE,Σ(α) ⊆ LNE,Σ(β).

On the other hand, assume that there is a nonerasing morphism φ : X+ → (Σ∪X)+

with φ(β) = α = α̂n an. As φ is nonerasing, the rightmost letter of φ(y) must be an.
More formally, there is some γ ∈ (Σ ∪X)∗ with φ(y) = γ an. Thus, α̂n = (φ(x))2γ; by
definition of φ, this means that α̂n has a nonempty square as a prefix, which contradicts
Claim 1. Therefore, no such φ exists.
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Thus, regardless of the size of |Σ|, even the inclusion problem of nePAT1,Σ in nePAT2,Σ

is too complex to be characterized by the existence of a nonerasing terminal-preserving
morphism between the patterns. A similar phenomenon can be observed for E-pattern
languages:

Proposition 3.8. For every finite alphabet Σ with |Σ| ≥ 2, there are patterns α ∈ Pat1,Σ

and β ∈ Pat2|Σ|+2,Σ such that LE,Σ(α) ⊆ LE,Σ(β), but there is no terminal-preserving
morphism φ : (Σ ∪X)∗ → (Σ ∪X)∗ with φ(β) = α.

Proof. The patterns α and β can be directly obtained from the patterns in Reidenbach’s
proof of Theorem 6 in [32], by replacing each variable in α with a single variable x, and
removing a common prefix.

Let Σ = {a1, . . . , an} (where all ai are distinct, i. e., |Σ| = n). Let m:=n if n is odd,
and m:=n+ 1 if n is even. If n is even, we also define am := an.

Next, we define

α:= a1 x a1 x · a2 x a2 x · . . . · am x am x,
β:= a1 β1 a1 z1 · a2 β2 a2 z2 · . . . · am βm am zm,

with, for 1 ≤ i ≤ m,

βi:=

{
yiyi+1 if 1 ≤ i < m,

yny1 if i = m,

where y1, z1, . . . , ym, zm are pairwise distinct variables.
In order to show LE,Σ(α) ⊆ LE,Σ(β), we prove that, for every substitution σ, there

is a substitution τ with τ(β) = σ(α). If σ(x) = λ, it is easy to see that σ(α) can be
created from β by erasing all variables. Therefore, we can safely assume σ(x) = aj u
with 1 ≤ j ≤ n and u ∈ Σ∗.

We define the substitution τ by

τ(zi):=

{
σ(x) if i 6= j,

u aj σ(x) if i = j,

for every zi ∈ var(β), and by

τ(yi):=

{
λ if i ∈ ERASEj,

aju if i /∈ ERASEj,

for every yi ∈ var(β), where the set ERASEj ⊂ var(β) is defined as

ERASEj :={ys ∈ var(β) | s = j − 2i or s = j + 1 + 2i for some i ≥ 0}.

Note that, due to our definition of ERASEj and τ , τ(βj) = λ and τ(βi) = σ(x) for every
i 6= j hold, as ERASEj contains exactly those xs with either s ≤ j, and s has the same
parity as j, or s > j, where s and j have different parities.

In order to prove φ(β) = σ(α), it suffices to show that φ(ai βi ai zi) = σ(ai x ai x) for
every i with 1 ≤ i ≤ m – then the claim follows by definition of α and β.
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For every i with 1 ≤ i ≤ m and i 6= j, we use τ(βi) = σ(x) to conclude

τ(ai βi ai zi) = ai σ(x) ai σ(x)

= σ(ai x ai x).

Likewise, for the special case of i = j, τ(βj) = λ leads to

τ(aj βj aj zj) = aj ·λ · aj u · aj σ(x)

= aj σ(x) aj σ(x)

= σ(aj x aj x).

Thus, φ(β) = σ(α), and – as σ was chosen freely – LE,Σ(α) ⊆ LE,Σ(β).
We proceed to show that there is no terminal-preserving morphism φ : (Σ ∪X)∗ →

(Σ ∪ X)∗ with φ(β) = α. Assume to the contrary that there is a terminal-preserving
morphism φ with φ(β) = α. As α and β contain exactly the same occurrences of
terminals, φ(βi) = x and φ(zi) = x must hold for every i ∈ {1, . . . ,m}. We define
β′:=β1 · . . . · βm, and observe φ(β′) = xm. By definition of βi, |β′|zi = 2 for 1 ≤ i ≤ m,
and thus, |β′| is even. This contradicts the fact that m (and, thus, |xm|) is odd by
definition.

The proof also shows that, if Σ has an odd number of letters, the bound on the number
of variables in the second class of patterns can be lowered to 2|Σ|. We do not know
whether this lower bound is strict, or if there are patterns α ∈ Pat1,Σ, β ∈ Patn,Σ with
n < 2|Σ| such that LE,Σ(α) ⊆ LE,Σ(β), but there is no terminal-preserving morphism
mapping β to α.

For |Σ| = 2, according to Proposition 3.8, the inclusion of ePAT1,Σ in ePAT6,Σ is
not characterized by the existence of such a morphism. As this bound (and the bound
on NE-patterns from Proposition 3.7) are the lowest known bounds for ‘morphism-free’
inclusion, we want to emphasize the following problem:

Open Problem 3.9. Let |Σ| = 2. Is the inclusion problem of ePAT1,Σ in ePAT6,Σ

decidable? Is the inclusion problem of nePAT1,Σ in nePAT2,Σ decidable?

In principle, both inclusion problems might be undecidable, although this conjecture
is somewhat counterintuitive to the low bounds on the numbers of variables. Further-
more, even if these problems should be undecidable, the numbers of variables in the
results further down in this chapter suggest that a radically different proof would be
necessary.

On the other hand, the author considers these classes promising candidates for classes
of pattern languages where the inclusion is decidable, but not characterized by the exis-
tence of an appropriate morphism.

As evidenced by our next main theorem, bounding the number of variables preserves
the undecidability of the inclusion problem for E-pattern languages4:

Theorem 3.10. Let |Σ| = 2. The following problems are undecidable:

4Bremer has adapted Theorem 3.10 to NE-pattern languages over binary and larger alphabets, cf.
Bremer [11] and Bremer and Freydenberger [12]. The resulting bounds are higher for each second class
of patterns (“the βs”), but similar.
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1. The inclusion problem of ePAT3,Σ in ePAT2854,Σ,

2. the inclusion problem of ePAT2,Σ in ePAT2860,Σ.

The proof of this theorem starts in Section 3.3.1 and continues in Section 3.3.2.
Both cases of the proof use the same basic approach as the proofs of the E-case in

Theorems 3.2 and 3.3. We show that, for a given starting configuration I of the universal
Turing machine U , one can effectively construct patterns α, β in the appropriate classes
of patterns such that LE,Σ(α) ⊆ LE,Σ(β) if and only if U halts after starting in I. As
this would decide the halting problem of the universal Turing machine U , the inclusion
problems must be undecidable.

Note that extensions to larger (finite) alphabets are discussed in Section 3.3.5. The
bounds presented in this theorems are not optimal – through additional effort and some
encoding tricks, it is possible to reduce each bound on the number of variables in the
second pattern by a few hundred variables (cf. Section 3.3.2 for some remarks). As the
resulting number would still be far away from the bounds presented in the theorems
further down in this section, the author feels that these optimizations would only add
additional complexity to the proofs, without providing deeper insight, and decided to
give only the bounds present above, which are not as strict.

Although encoding the correct operation of a Turing machine (or any similar device)
in patterns requires a considerable amount of variables, the simple structure of iterating
the Collatz function C can be expressed in a more compact form. With far smaller
bounds, we are able to obtain the following result using the same construction as for the
proof of Theorem 3.10:

Theorem 3.11. Let Σ be a binary alphabet. Every algorithm that decides the inclusion
problem of ePAT2,Σ in ePAT74,Σ can be converted into an algorithm that, for every N ∈
N1, decides whether N leads C into the trivial cycle.

The proof starts in Section 3.3.1 and continues in Section 3.3.3.
As mentioned in Section 3.2.2, this demonstrates that, even for these far tighter

bounds, the inclusion relation of pattern languages can be used to express quite compli-
cated sets. Moreover, a slight modification of the proof allows us to state the following
far stronger result:

Theorem 3.12. Let Σ be a binary alphabet. Every algorithm that decides the inclusion
problem for ePAT4,Σ in ePAT80,Σ can be used to decide whether any number N ≥ 1 leads
C into a nontrivial cycle.

The proof of this theorem starts in Section 3.3.1 and continues in Section 3.3.4.
This result needs to be interpreted very carefully. Of course, the existence of nontriv-

ial cycles is trivially decidable (by a constant predicate); but these results are stronger
than mere decidability, as the patterns are constructed effectively. Thus, deciding the
inclusion of any of the two pairs of patterns defined in the proofs would allow us to prove
the existence of a counterexample to the Collatz conjecture, or to rule out the existence
of one important class of counterexamples, and thus solve ‘one half’ of the Collatz con-
jecture. More pragmatically, it is the author’s opinion that these results give reason to
suspect that the inclusion problems of these classes of pattern languages are probably
not decidable (even if effectively, then not efficiently), and definitely very complicated.
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The following table summarizes our findings on the difficulty of the inclusion problem
for ePATm,Σ in ePATn,Σ for binary Σ:

m n
unb. 1 characterized by existence of a morphism Theorem 3.5 ([50])

1 6 not characterized by existence of a morphism Proposition 3.8
2 74 simulate Collatz iterations Theorem 3.11
4 80 decide existence of non-trivial Collatz cycles Theorem 3.12
2 2860 undecidable Theorem 3.10
3 2854 undecidable Theorem 3.10

Note that, as mentioned above, Theorems 3.10, 3.11 and 3.12 can also be extended to
larger (finite) terminal alphabets Σ. Section 3.3.5 contains an extension that is compar-
atively straightforward (but leads to an increase in the number of variables in one of the
patterns that depends on the size of Σ), and mentions a less straightforward extension
by Bremer [11] (also contained in Bremer and Freydenberger [12]) that increases the
number of variables only by 22 (independently from the size of Σ).

In addition to this, Bremer extended Theorems 3.10, 3.11 and 3.12 to NE-pattern
languages (again, see [11] and [12]).

3.3.1 The Basic Construction

In this section, we describe the construction that is common to the proofs of Theo-
rems 3.10, 3.11 and 3.12, and describe how the number of necessary variables can be
derived from each actual instantiation of the construction. The proofs for Theorems 3.10,
3.11 and 3.12 use the material in the present section and continue in Section 3.3.2, 3.3.3
and 3.3.4, respectively.

As the construction is rather involved, we first give a basic sketch, before we consider
the technical details of the basic construction common to all three proofs.

Sketch of the proof. In each of the proofs, our goal is to decide the emptiness of a set
V, which is one of ACCEPTU(I) (for some configuration I), TRIV(N) (for some N ≥ 1),
or NTCC. For this, we construct two patterns α and β such that LE,Σ(α) \ LE,Σ(β) 6= ∅
if and only if V 6= ∅. The pattern α contains two subpatterns α1 and α2, where α2 is
a terminal-free pattern with var(α2) ⊆ var(α1) ∪ {y}, and y is a variable that occurs
exactly once in α2, but does not occur in α1.

Glossing over details (and ignoring the technical role of α2), the main goal is to define
β in such a way that, for every substitution σ, σ(α) ∈ LE,Σ(β) if and only if σ(α1) ∈ V.
More explicitly, the subpattern α1 generates a set of possible strings, and β encodes
a disjunction of predicates on strings that describe the complement of V through all
possible errors. If one of these errors occurs in σ(α1), we can construct a substitution τ
with τ(β) = σ(α). If V = ∅, every σ(α) belongs to LE,Σ(β). Otherwise, any element of
V can be used to construct a word σ(α) /∈ LE,Σ(β).

The actual proof. Let Σ = {0, #}. As mentioned above, our goal is to construct two
patterns α and β such that LE,Σ(α) \ LE,Σ(β) = ∅ if and only if V 6= ∅; where V, is one
of TRIV(N) (for some N ≥ 1), NTCC, or ACCEPTU(I) (for some configuration I).

Basically, α generates a list of possible strings and provides some technical infrastruc-
ture, while β encodes a list of predicates π1 to πµ that describe all possible errors in the
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strings generated by α by describing the complement of V. Due to the right choice of α
and β, LE,Σ(α) ⊂ LE,Σ(β) holds if some word in LE,Σ(α) satisfies none of the predicates.

Depending on which of the three proofs we want to actualize, we choose a structural
parameter κ ∈ {2, 3} and a µ ≥ 4. The parameter κ has two purposes: First, it
determines the maximal number of parameters in each predicate, and second, if none of
the predicates is satisfied, the encoded word must not contain a factor #κ.

In addition to this, also depending on the actual proof, we select patterns α1 and
α2, where α1 is a pattern that does not contain #κ as a factor, and α2 is a terminal-free
pattern with var(α2) ⊆ var(α1) ∪ {y}, where y is a variable that occurs exactly once in
α2, but does not occur in α1.

We define
α:=v v #4 v α1 v α2 v #

4 v u v,

where v:=0#30 and u:=0##0. The pattern α1 will be used to generate the set of possible
members of V, while α2 serves more technical purposes.

Note that the construction in [32] can be seen as a special case of the present con-
struction, by selecting α1:=x, α2:=y and κ:=3. Our more general approach allows us
to describe the intended starting and ending values of the encoded computation in α1

without the use of additional predicates. Furthermore, as we shall see soon, the variables
in var(α1) ∩ var(α2) provide us with greater control on the shape of the images of α1.

Furthermore, let
β:=(x1)2 . . . (xµ)2#4β̂1 . . . β̂µ#

4β̈1 . . . β̈µ,

with, for all i ∈ {1, . . . , µ}, β̂i:=xi γixi δixi and β̈i:=xi ηixi, where x1, . . . , xµ are pairwise
distinct variables and all γi, δi, ηi ∈ X∗ are terminal-free patterns. The patterns γi and
δi shall be defined later; for now, we only mention:

1. ηi:=zi(ẑi)
2zi and zi 6= ẑi for all i ∈ {1, . . . , µ},

2. var(γiδiηi) ∩ var(γjδjηj) = ∅ for all i, j ∈ {1, . . . , µ} with i 6= j,

3. xk /∈ var(γiδiηi) for all i, k ∈ {1, . . . , µ}.

Thus, for every i, the elements of var(γiδiηi) appear nowhere but in these three factors.
Let H be the set of all substitutions σ : (Σ ∪ var(α1α2))∗ → Σ∗. We interpret each
triple (γi, δi, ηi) as a predicate πi : H → {0, 1} in such a way that σ ∈ H satisfies πi
if there exists a morphism τ : var(γiδiηi)

∗ → Σ∗ with τ(γi) = σ(α1), τ(δi) = σ(α2) and
τ(ηi) = u. As we shall see, LE,Σ(α) \ LE,Σ(β) exactly contains those σ(α) for which σ
does not satisfy any of π1 to πµ. Our goal is a selection of predicates that describe the
complement of V, where the predicates π4 to πµ provide an exhaustive list of sufficient
criteria for ‘non-membership’ in V. We continue with further technical preparations.

A substitution σ is of κ-bad form if σ(α1) contains #κ as a factor, or if σ(α2) contains
#. Otherwise, σ is of κ-good form. For κ = 3, this notion is equivalent to the concept of
bad form and good form in [32].

The predicates π1 and π2 describe the cases where σ is of κ-bad form and are defined
by

γ1:=y1,1(ẑ1)κy1,2, γ2:=y2,

δ1:=ŷ1, δ2:=ŷ2,1 ẑ2 ŷ2,2,
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where y1,1, y1,2, y2, ŷ1, ŷ2,1, ŷ2,2, ẑ1 and ẑ2 are pairwise distinct variables.
Recall that ηi = zi(ẑi)

2zi for all i. It is not difficult to see that π1 and π2 characterize
the morphisms that are of κ-bad form:

Lemma 3.13. A substitution σ ∈ H is of κ-bad form if and only if σ satisfies π1 or π2.

Proof. We begin with the only if direction. If σ(α1) = w1#
κw2 for some w1, w2 ∈ Σ∗,

choose τ(y1,1):=w1, τ(y1,2):=w2, τ(ẑ1):=#, τ(ŷ1):=σ(α2) and τ(z1):=0. Then τ(γ1) =
σ(α1), τ(δ1) = σ(α2) and τ(η1) = u; thus, σ satisfies π1.

If σ(α2) = w1#w2 for some w1, w2 ∈ Σ∗, let τ(y2):=σ(α1), τ(ŷ2,1):=w1, τ(ŷ2,2):=w2

and τ(ẑ2):=#, and τ(z2):=0. It is easy to see that σ satisfies π2.
For the if direction, if σ satisfies π1, then there exists a morphism τ with τ(γ1) =

σ(α1) and τ(η1) = 0#20. Thus, τ(ẑ1) = # and τ(z1) = 0 must hold. Then, by definition
of γ1, σ(α1) = τ(y1,1)#κτ(y1,2), which means that σ is of κ-bad form.

Analogously, if σ satisfies π2, then σ(α2) contains the letter #, and σ is of κ-bad
form.

Note that, if σ is of good form, σ(x) ∈ 0∗ for all variables x ∈ var(α1)∩var(α2). Thus,
these variables provide us with greater control on the shape of σ(α1) for the remaining
predicates.

Now, Lemma 3.13 leads us to the central part of the construction:

Lemma 3.14. For every substitution σ ∈ H, σ(α) ∈ LE,Σ(β) if and only if σ satisfies
one of the predicates π1 to πµ.

Proof. We begin with the if direction. Assume σ ∈ H satisfies some predicate πi. Then
there exists a morphism τ : (var(γiδiηi))

∗ → Σ∗ such that τ(γi) = σ(α1), τ(δi) = σ(α2)
and τ(ηi) = u. We extend τ to a substitution τ ′ defined by τ ′(0):=0, τ ′(#):=#, and, for
all x ∈ var(β),

τ ′(x):=


τ(x) if x ∈ var(γiδiηi),

v if x = xi,

λ in all other cases.

By definition, none of the variables in var(γiδiηi) appears outside of these factors. Thus,
τ ′ can always be defined this way. We obtain

τ ′(β̂i) = τ ′(xi γi xi δi xi)

= v τ(γi) v τ(δi) v

= v σ(α1) v σ(α2) v,

τ ′(β̈i) = τ ′(xi ηi xi)

= v τ(ηi) v

= v u v.

As τ ′(γj) = τ ′(δj) = τ ′(ηj) = τ ′(β̂j) = τ ′(β̈j) = λ for all j 6= i, this leads to

τ ′(β) = τ ′
(

(x1)2 . . . (xµ)2#4β̂1 . . . β̂µ#
4β̈1 . . . β̈µ

)
= τ ′

(
(xi)

2
)
#4τ ′(β̂i)#

4τ ′(β̈i)

= v v #4 v σ(α1) v σ(α2) v #4 v u v

= σ(α).
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This proves σ(α) ∈ LE,Σ(β).
For the other direction, assume σ(α) ∈ LE,Σ(β). If σ is of κ-bad form, then by

Lemma 3.13, σ satisfies π1 or π2. Thus, assume σ(α1) does not contain #κ as a factor,
and σ(α2) ∈ 0∗. Let τ be a substitution with τ(β) = σ(α).

Now, as σ is of κ-good form, σ(α) contains exactly two occurrences of #4, and these are
non-overlapping. As σ(α) = τ(β), the same holds for τ(β). Thus, the equation σ(α) =
τ(β) can be decomposed into the system consisting of the following three equations:

0#30 0#30 = τ
(
(x1)2 . . . (xµ)2

)
, (3.1)

0#30 σ(α1) 0#30 σ(α2) 0#30 = τ(β̂1 . . . β̂µ), (3.2)

0#30 u 0#30 = τ(β̈1 . . . β̈µ). (3.3)

First, consider equation (3.1) and choose the smallest i for which τ(xi) 6= λ. Then τ(xi)
has to start with 0, and as

τ
(
(xi)

2 . . . (xµ)2
)

= 0#30 0#30,

it is easy to see that τ(xi) = 0#30 = v and τ(xj) = λ for all j 6= i must hold.
Note that u does not contain 0#30 as a factor, and does neither begin with #30, nor

end on 0#3. But as τ(β̈i) begins with and ends on 0#30, we can use equation (3.3) to
obtain 0#30 u 0#30 = τ(β̈i) and τ(β̈j) = λ for all j 6= i. As β̈i = xiηixi and τ(xi) = 0#30,
τ(ηi) = u must hold.

As σ is of κ-good form, σ(0#30α10#30α20#30) contains exactly three occurrences of #3.
But there are already three occurrences of #3 in τ(β̂i) = 0#30 τ(γi) 0#30 τ(δi) 0#30. This,
and equation (3.2), lead to τ(β̂j) = λ for all j 6= i and, more importantly, τ(γi) = σ(α1)
and τ(δi) = σ(α2). Therefore, σ satisfies the predicate πi.

Thus, we can select predicates π1 to πµ in such a way that LE,Σ(α) \ LE,Σ(β) = ∅ if
and only if V = ∅ by describing V through a disjunction of predicates on H. The proof
of Lemma 3.14 shows that if σ(α) = τ(β) for substitutions σ and τ ; where σ is of κ-good
form, there exists exactly one i (3 ≤ i ≤ µ) such that τ(xi) = 0#30.

Due to technical reasons, we need a predicate π3 that, if unsatisfied, sets a lower
bound to the length of σ(α2), defined by

γ3:=y3,1 ŷ3,1 y3,2 ŷ3,2 y3,3,

δ3:=ŷ3,1 ŷ3,2,

if κ = 2, or by

γ3:=y3,1 ŷ3,1 y3,2 ŷ3,2 y3,3 ŷ3,3 y3,4,

δ3:=ŷ3,1 ŷ3,2 ŷ3,3,

if κ = 3; where in either case all of y3,1 to y3,4 and ŷ3,1 to ŷ3,3 are pairwise distinct
variables.

Clearly, if some σ ∈ H satisfies π3, σ(α2) is a concatenation of κ (possibly empty)
factors of σ(α1). Thus, if σ satisfies none of π1 to π3, σ(α2) has to be longer than the
κ longest non-overlapping sequences of 0s in σ(α1). This allows us to identify a class of
predicates definable by a rather simple kind of expression, which we use to define π4 to
πµ in a less technical way. Note that any meaningful use of this construction requires α2
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to contain at least one variable that does not occur in α1, as otherwise, π3 would always
be satisfied.

Let Xκ:={x̂1, . . . , x̂κ} ⊂ X, let Gκ denote the set of those substitutions in H that
are of κ-good form and let R be the set of all substitutions ρ : (Σ ∪Xκ)

∗ → Σ∗ for
which ρ(x̂i) ∈ 0∗ for all i with 1 ≤ i ≤ κ. For patterns ζ ∈ (Σ ∪Xκ)

∗, we define
R(ζ):={ρ(ζ) | ρ ∈ R}.

Definition 3.15. A predicate π : Gκ → {0, 1} is called a κ-simple predicate for α1

if there exist a pattern ζ ∈ (Σ ∪Xκ)
∗ and languages L1, L2 ∈ {Σ∗, {λ}} such that a

substitution σ satisfies π if and only if σ(α1) ∈ L1 R(ζ) L2. If L1 = L2 = Σ∗, we call π
an factor-predicate. If only L1 = Σ∗ and L2 = {λ}, π is called a suffix-predicate, and if
L1 = {λ} and L2 = Σ∗, a prefix-predicate.

From a slightly different point of view, the elements of Xκ can be understood as
numerical parameters describing (concatenational) powers of 0, with substitutions ρ ∈ R
acting as assignments. For example, if σ ∈ Gκ satisfies a κ-simple predicate π if and
only if σ(α1) ∈ Σ∗R(#x̂1#x̂20#x̂1), we can also write that σ satisfies π if and only if σ(α1)
has a suffix of the form #0m#0n0#0m (with m,n ∈ N0), which could also be written as
#0m#0∗0#0m, as n occurs only once in this expression. Although these predicates do not
explicitly allow arithmetical operations on the numerical parameters, we use expressions
like 0m+2n+1 as a shorthand for 0m0n0n0.

As in the original construction, the predicate π3 allows us to express all κ-simple
predicates:

Lemma 3.16. For every κ-simple predicate πS having n numerical parameters with
n ≤ κ, there exists a predicate π defined by terminal-free patterns γ, δ, η such that for
all substitutions σ ∈ Gκ:

1. if σ satisfies πS, then σ also satisfies π or π3,

2. if σ satisfies π, then σ also satisfies πS.

Proof. We first consider the case of L1 = L2 = Σ∗. Assume πS is a κ-simple pred-
icate, and ζ ∈ (Σ ∪Xκ)

∗ is a pattern such that σ ∈ Gκ satisfies πS if and only if
σ(α1) ∈ L1R(ζ)L2. Then define γ:=y1 ζ

′ y2, where ζ ′ is obtained from ζ by replacing all
occurrences of 0 with a new variable z and all occurrences of # with a different variable ẑ,
while leaving all present elements of Xκ unchanged. Furthermore, δ:=x̂1 . . . x̂κŷ. Finally,
in order to stay consistent with the ηi appearing in β, let η:=z(ẑ)2z. Note that x̂1, x̂2,
x̂3, y1, y2, z and ẑ are pairwise distinct variables.

Now, assume σ ∈ Gκ satisfies πS. Then there exist words w1, w2 ∈ Σ∗ and a substitu-
tion ρ ∈ R such that σ(α1) = w1ρ(ζ)w2. If σ(α2) is not longer than any κ non-overlapping
factors of the form 0∗ of σ(α1) combined, π3 is satisfied. Otherwise, we can define τ by
setting τ(y1):=w1, τ(y2):=w2, τ(z):=0, τ(ẑ):=#, τ(x̂i):=ρ(x̂i) for all i ∈ {1, . . . , k} where
x̂i appears in ζ and τ(x̂i):=λ where x̂i does not appear in ζ. Finally, let τ(ŷ):=0m, where

m:=|σ(α2)| −
∑

x̂∈var(ζ)

|τ(x̂)|
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(m > 0 holds, as σ does not satisfy π3). Then τ(ζ ′) = ρ(ζ), and

τ(γ) = τ(y1) τ(ζ ′) τ(y2)

= w1 ρ(ζ) w2 = σ(α1),

τ(δ) = 0|σ(α2)| = σ(α2),

τ(η) = τ(z (ẑ)2 z)

= 0##0 = u.

Therefore, σ satisfies π, which concludes this direction.
For the other direction, assume σ ∈ Gκ satisfies π. Then there is a morphism τ such

that σ(α1) = τ(γ), σ(α2) = τ(δ) and τ(η) = u. As η = z (ẑ)2 z and u = 0##0, τ(z) = 0
and τ(ẑ) = # must hold. By definition τ(y1), τ(y2) ∈ Σ∗. If we define ρ(x̂i):=τ(x̂i) for
all x̂i ∈ var(δ), we see that σ(α1) ∈ L1R(ζ)L2 holds. Thus, σ satisfies πS as well.

The other three cases for choices of L1 and L2 can be handled analogously by omitting
y1 or y2 as needed. Note that this proof also works in the case ζ = λ.

Intuitively, if σ does not satisfy π3, then σ(α2) (which is in 0∗, due to σ ∈ Gκ) is long
enough to provide building blocks for κ-simple predicates using variables from Xκ.

All that remains for each of the proofs is to choose an appropriate set of predicates.
Then it is easy to see how many variables each predicate in β requires. First, every

predicate πi has a corresponding variable xi, for µ variables in total. The predicates π1

and π2 each use five further variables, π3 uses 2κ + 3 additional variables. In total, β
contains µ + 2κ + 13 variables for the predicates π1 to π3 and the variables xi, and the
additional variables that are required to encode the remaining predicates π4 to πµ.

Each of these predicates requires:

1. three variables for yi, zi and ẑi,

2. one variable for each numerical parameter (or occurrence of 0∗),

3. one additional variable if it is a prefix or a suffix predicate,

4. two additional variables if it is a factor predicate.

Thus, each predicate requires at least 3 and at most 8 variables.

3.3.2 Undecidability (Proof of Theorem 3.10)

For both claims of the proof, we show that, given any configuration I of U , we can
construct patterns α and β from the appropriate classes such that LE,Σ(α)\LE,Σ(β) = ∅
if and only if ACCEPTU(I) = ∅. The predicates for the proofs of the two claims of this
theorem are very similar, they differ only at the choice of α1 and α2, and an additional
predicate that is required for the second case. For the first claim, we choose µ:=333, for
the second, µ:=334. In either case, we choose κ = 3.

For the first claim of the theorem, we define

α1:=## encU(I)##x1#00x2x2#010##, α2:=x2y,
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where x1, x2 and y are pairwise distinct variables; for the second,

α1:=## encU(I)##x#010##, α2:=y,

where x and y are distinct variables. Ultimately, if σ(α) /∈ LE,Σ(β), σ(α1) is supposed to
contain an encoding of a valid computation that starts in the configuration I, and leads
to an accepting configuration. The variable x2 in the subpattern α1 of the first claim
will have an image from 0∗, which means that the left tape of the final configuration
has an odd encoding, and thus contains 1, while the machine is in state q10. For the
second claim, this condition will be checked by an additional predicate, which requires
6 additional variables in β.

Our first intermediate goal is a set of predicates that (if unsatisfied) forces σ(α1) into
a basic shape common to all elements of ACCEPTU(I). In other words, we want to
remove all cases where

σ(α1) /∈ (##0+#0+#0+)+##,

or σ(α1) contains a factor 016## and thus, an encoding of a state qn with n > 15 (such
a state does not exist in U).

To achieve this goal, we define predicates π4 to π7 by κ-simple predicates as follows:

π4 : σ(α1) contains a factor ##0+##,

π5 : σ(α1) contains a factor ##0+#0+##,

π6 : σ(α1) contains a factor ##0+#0+#0+#0,

π7 : σ(α1) contains a factor 016##.

Due to Lemma 3.16, the predicates π1 to π7 do not strictly give rise to a characterization
of substitutions with images that are not an encoding of a sequence of configurations
of U , as there are σ ∈ Gκ where σ(α1) is of the right shape, but π3 is satisfied due to
σ(α2) being too short. But this problem can be avoided by choosing σ(α2) long enough
to leave π3 unsatisfied.

Thus, if σ satisfies none of the predicates π1 to π7, σ(α1) is an encoding of a sequence
of configurations of U that starts with I, and ends in a halting configuration (for the
first claim we prove), or a configuration in state q10 (for the second claim).

The remaining predicates will describe all errors where one of the encoded configu-
rations is not a valid successor of its preceding configuration5. We will first consider all
errors in state transitions, and then all errors in the tape contents.

In principle, we could now define predicates that, for every state qi ∈ Q, every input
letter a ∈ Γ, list all states that are not the successor state of qi on input a. In order to
save predicates (and thereby variables), our approach is a little bit more involved. Every
state has at most two legal successor states, and the states q6, q10 and q15 have only one
successor. Thus, we can first exclude forbidden successor states regardless of the input
letter, and then handle the few remaining cases. Furthermore, we are able to express
the fact that a successor state has a larger number than possible.

5Note that, at this point, the construction uses 5 factor predicates (in addition to π1 to π3); one
for each possible number of numerical parameters from 0 to 3. Even this small number of predicates
requires 52 variables in β, and is only able to express the basic shape of encoded configurations.
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1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0





S =

Figure 3.3: The matrix S, listing the possible (and impossible) immediate successors
and predecessors of the states. Lines denote the sets of impossible state pairs that are
described by the predicates π8 to π34. The remaining occurrences of 0 are handled by
the predicates π35 to π66.

In order to determine a good choice of predicates, it helps to visualize the relations
of possible predecessor and successor states in a matrix. We define the 15 × 15 matrix
S = (si,j)

15
i,j=1 by

si,j:=

{
1 if there is an a ∈ Γ with δ(qi, a) = qj,

0 otherwise.

For a graphical representation of S and the predicates that are derived from it, see
Figure 3.3. Intuitively, si,j equals 0 if and only if qj can never be a valid immediate
successor of qj, regardless of the input letter.

First, we construct a predicate

π8 : σ(α1) contains a factor #01##0+#0+#03.

This predicates handles all cases where the encoding contains a configuration with state
q1, where the next state is some qj with j ≥ 3. In the same spirit, we can define a
predicate that handles all configurations where q1 is preceded by a state qj with j ≥ 10,
which is also impossible in a valid computation:

π9 : σ(α1) contains a factor 010##0+#0+#01#.

Intuitively, π8 describes all occurrences of 0 in the first row of S, while π9 describes the
bottom block of 6 occurrences of 0 in the first column.

We define similar predicates π10 to π33 for all states q2 to q13; each predicate handles
the longest continuous block of 0s when reading a row from the right, or a column from
the bottom.
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Using the matrix S it is easy to see that this is not possible for q14, as this state
has q15 as successor and as predecessor. Similarly, the state q15 is handled by a single
predicate

π34 : σ(α1) contains a factor #015##0+#0+#015#

that describes the lone 0 in the bottom right corner of S. Each of the 27 predicates π8

to π34 is a factor predicate with 2 numerical parameters.
It seems like reordering the states could transform the matrix and reduce the number

of predicates for single occurrences of 0. But after some experimentation, the author
and Joachim Bremer decided that the expected small savings would not warrant the
considerable effort. Further savings might be achieved by the use of an optimized machine
with a different matrix; although (as we shall see) the general overhead that is necessary
to encode computations makes the author doubt that these savings would be high enough
to motivate the search for a machine with an undecidable halting problem that is minimal
in this respect.

There are still 32 occurrences of 0 that have at least one 1 between them and the
right side or the bottom of S. Thus, for each si,j with this property, we define a predicate

πk : σ(α1) contains #0i##0+#0+#0j#

for an appropriate k. This leads to the 32 predicates π35 to π66, also factor predicates
with 2 numerical parameters.

Now, only 24 possible errors need to be considered. For every state qi ∈ Q \
{q6, q10, q15}, and every input letter a ∈ Γ, we need to describe the error that the suc-
ceeding state is the one possible successor state that would have been reached from qi
by reading the complement of a. This leads to the predicates π67 to π90; as an example,
we define the two predicates that handle the invalid successor states of q1:

π67 : σ(α1) contains #002m#01##0+#0+#01#; m ∈ N0,

π68 : σ(α1) contains #002m+1#01##0+#0+#02#; m ∈ N0.

The first of these two predicates describes all cases where the machine is in the state q1,
reads 0 (as encX(taL) mod 2 = 0 = e(0)) and stays in the state q1, while π68 describes all
cases where the machine transitions to q2 upon reading 1 in state q1.

No such predicates are required for the states q6 and q15, as these have only one
possible successor state. As we permitted the machine to continue working after reaching
a halting computation, the same applies to q10. The 24 predicates π67 to π90 are factor
predicates with three numerical parameters (as the starts count as numerical parameters
that occur only once).

Thus, if σ satisfies none of the predicates π1 to π90, σ(α1) encodes a sequence of
configurations that starts with the initial configuration I and ends on the state q10 (as
mentioned before, we also know that in the proof of the first claim, the final configuration
is an accepting configuration, but this fact will be discussed later). Furthermore, we know
that all transitions of the states are correct. Therefore, all that remains is to define a
set of predicates that handle errors in the manipulation of the tape.

For this, we need to distinguish between left movements and right movements. Before
we proceed to the definition of the predicates for tape errors in each of these cases, we
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take a closer look at the intended behavior of valid computations, and their encodings
in ACCEPTU(I). Assume U is in some state qi, while the tape contains taL on the left
and tR on the right side. Let a denote the input letter, i. e., e(a) = (e(taL) mod 2). Let
t′aL and t′R denote the left and the right tape side of the succeeding valid configuration,
respectively.

First, consider the case that δ(qi, a) = (d, L, qj) for some state qj ∈ Q and an output
letter d ∈ Γ. In this case, according to Observation 3.1,

e(t′aL) = e(taL) div 2,

e(t′R) = 2(e(tR)) + e(d).

Thus, every tape error can be understood as a difference between the supposed e-value
of the encoded side, and the actual e-value. As we shall see, all these differences can be
described by a finite number of simple predicates, simulating arithmetic operations with
the numerical parameters.

We begin with predicates for values that are too large, which can be defined with
less effort than for too small values. For some appropriate k > 90, define the predicates

πk : σ(α1) contains #002m+e(a)#0i##0+#00m+1; m ∈ N0,

πk+1 : σ(α1) contains #00m#002n+e(a)#0i##002m+e(d)+1; m,n ∈ N0.

These capture all cases where, upon reading a in state qi, the left or the right side of the
tape (respectively) in the succeeding configuration contains more than it is supposed to
(more meaning that its image under e is larger).

The following predicate describes all cases where the encoding of the left side of the
tape is too small:

πk+2 : σ(α1) contains #002(m+n+1)+e(a)#0i##0+#00m#; m,n ∈ N0.

We capture the same case for the right side of the tape by the following two cases:

πk+3 : σ(α1) contains #002m+e(a)#0i##002n+(1−e(d))#; m,n ∈ N0,

πk+4 : σ(α1) contains #00l+m+1#002n+e(a)#0i##002m+e(d)#; l,m, n ∈ N0.

As e(t′R) = 2(e(tR)) + e(d) holds, we know that every case with e(t′R) mod 2 6= e(d)
contains an error, which is described by πk+3. Assuming that this predicate is not
satisfied, we can use πk+4 to capture all cases where e(t′R) mod 2 equals e(d) mod 2, but
is too small.

This concludes the definitions of tape errors for L movements. Every combination of
qi and a that results in an L-movement requires 5 factor predicates πk to πk+4; the first
two use 2 parameters, the other three use 3 parameters. In total, U has 15 combinations
(qi, a) that lead to an L-movement. Therefore, we need 75 predicates for tape errors of
L-movements, which brings us to an intermediate total of 165 predicates.

Next, assume δ(qi, a) = (d,R, qj) for some state qj ∈ Q and an output letter d ∈ Γ.
Recall that, according to Observation 3.1,

e(t′aL) = 2(2(e(taL) div 2) + e(d)) + (e(tR) mod 2)

= 4(e(taL) div 2) + 2 e(d) + (e(tR) mod 2),

e(t′R) = e(tR) div 2.
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Again, we define predicates for all cases where e(t′aL) or e(t′R) is higher or lower than
prescribed by these equations.

For fixed qi and a, encoding R-steps is more involved than encoding L-steps, as we
need to distinguish the two possible cases for tR mod 2. This is the reason we chose to
count the head of U to the left side of the tape, as we have only 14 R-movements, but
15 L-movements. Larger savings could be achieved by using a different machine with a
larger difference in the number of L- and R-movements; but as mentioned before, we do
not think that these slight improvements warrant the effort.

For an appropriate k > 165, we define the following four predicates for cases where
one of the sides of the tapes contains too much:

πk : σ(α1) contains #002m#002n+e(a)#0i##0+#002(2n+e(d))+1; m,n ∈ N0,

πk+1 : σ(α1) contains #002m+1#002n+e(a)#0i##0+#002(2n+e(d))+2; m,n ∈ N0,

πk+2 : σ(α1) contains #002m#002n+e(a)#0i##00m+1; m,n ∈ N0,

πk+3 : σ(α1) contains #002m+1#002n+e(a)#0i##00m+1; m,n ∈ N0.

The first two describe the cases where t′aL is too large (with e(tR) being even or odd,
respectively), the second two the cases where e(t′R) is too large.

Next, we define two predicates that are satisfied if t′R is too small:

πk+4 : σ(α1) contains #002(l+m+1)#002n+e(a)#0i##00l#; l,m, n ∈ N0,

πk+5 : σ(α1) contains #002(l+m+1)+1#002n+e(a)#0i##00l#; l,m, n ∈ N0.

Again, we need to distinguish whether e(tR) is even (πk+4) or odd (πk+5). This concludes
the definition of predicates for t′R.

As t′aL = 4(e(taL) div 2)+2 e(d)+(e(tR) mod 2), we know that for every R-movement in
a valid computation, the congruence class of e(t′aL) modulo 4 is either 2 e(d) or 2 e(d)+1,
depending on tR,0 (recall that tR,0 is the first cell to the right of the head). Thus,
regardless of that tape cell, the congruence classes of 2− e(d) and 3− e(d) modulo 4 can
be excluded with the following two predicates:

πk+6 : σ(α1) contains #002m+e(a)#0i##0+#004n+(2−e(d))#; m,n ∈ N0,

πk+7 : σ(α1) contains #002m+e(a)#0i##0+#004n+(3−e(d))#; m,n ∈ N0.

Furthermore, depending on tR,0, we can also exclude the class 2 e(d) + (1 − e(tR,0))
modulo 4. For this, we need to distinguish the two possible cases for e(tR,0) and define
the predicates

πk+8 : σ(α1) contains #002l#002m+e(a)#0i##00l#004n+2 e(d)+1#; l,m, n ∈ N0,

πk+9 : σ(α1) contains #002l+1#002m+e(a)#0i##00l#004n+2 e(d)#; l,m, n ∈ N0.

Finally, the last two predicates handle the case where e(t′aL) is of the right congruence
class modulo 4, but too small. Again, we need to distinguish the two possible values of
e(tR,0):

πk+10 : σ(α1) contains #002l#002(m+n+1) e(a)#0i##00l#004m+2 e(d)#; l,m, n ∈ N0,

πk+11 : σ(α1) contains #002l+1#002(m+n+1) e(a)#0i##00l#004m+2 e(d)+1#; l,m, n ∈ N0.
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Note that the last four predicates already assume t′R has transitioned correctly. This is
acceptable, as errors on this side of the tape are handled by the previous predicates.

We see that every one of the 14 R-movements of U requires 12 factor predicates πk
to πk+11. Of these, πk+2 and πk+3 use 2 parameters, all others use 3 parameters. Adding
these 168 predicates allows us to conclude that µ = 333 was indeed a correct choice for
the first claim.

For the second claim, we also add the suffix predicate

π334 : σ(α1) ends on #002n#010##; n ∈ N0.

This predicate eliminates all computations where the last configuration is not accepting.
Now, if there is a σ(α) /∈ LE,Σ(β), σ(α1) encodes a computation of U that starts in I

and reaches the state q10, while e(taL) is odd. That means that the machine reads 1 in
q10 and halts. On the other hand, if there is a valid computation (Ci)

n
i=0 with C0 = I,

we can define σ by σ(α1):= encX(C) and (for example) σ(α2):=0|σ(α1)|. Then none of the
predicates is satisfied, and σ(α) /∈ LE,Σ(β).

Thus, for both claims, LE,Σ(α) \ LE,Σ(β) = ∅ if and only if ACCEPTU(I) = ∅. As I
was chosen freely, this question must be undecidable.

All that remains is to count the number of variables in β. For the first claim, the
types of predicates are distributed as follows:

1. 1 factor predicate with no parameter (π7),

2. 1 factor predicate with one parameter (π4),

3. 133 factor predicates with two parameters (π5, π8 to π66, 3 per L-instruction, 2 per
R-instruction),

4. 195 factor predicates with three parameters (π6, π67 to π90, 2 per L-instruction, 10
per R-instruction).

Therefore, in the first case, we have

| var(β)| = µ+ 2κ+ 13 + 5 + 6 + 133 · 7 + 195 · 8
= 333 + 6 + 13 + 5 + 6 + 931 + 1560 = 2854.

Thus, our construction proves that the inclusion problem for ePAT3,Σ in ePAT2854,Σ is
undecidable.

The suffix predicate π334 uses one parameter and requires 6 additional variables (as
µ needs to be increased by one), bringing the total amount of variables in β to 2860.
This demonstrates undecidability of the inclusion problem for ePAT2,Σ in ePAT2860,Σ.

3.3.3 Simulating Any Collatz Iteration (Proof of Theorem 3.11)

Here, for any given N ≥ 1, we use the construction to decide the emptiness of TRIV(N).
Let κ:=2, µ:=10, α1:=#0N# x #0# and α2:=y, where x and y are distinct variables.

Due to the results in Section 3.3.1, we know that if there is a substitution σ with
σ(α) /∈ LE,Σ(β), then

σ(α1) ⊆ #0N# (0+#)+ 0#.
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Therefore, every word from this set difference is already an encoding of a finite sequence
over N1, with N as the first, and 1 as the last number. All that remains is to choose
predicates π4 to πµ that describe every pair of successive numbers ni and ni+1 where
ni+1 6= C(ni).

We begin with the cases where ni+1 > C(ni), which are handled by the following two
predicates:

π4 : σ(α1) contains a factor #02m#0m+1 for some m ∈ N0,

π5 : σ(α1) contains a factor #02m+1#06m+3+2 for some m ∈ N0.

It is easy to see that π4 is satisfied if and only if the encoded sequence contains successive
numbers ni and ni+1 where ni is even, and ni+1 >

1
2
ni = C(ni). Likewise, π5 does the

same for odd ni: If ni is odd, there is an m ∈ N0 with ni = 2m+1, and C(ni) = 3ni+1 =
6m+ 3 + 1.

Next, we define a predicate that describes all cases where ni is even, and ni+1 < C(ni):

π6 : σ(α1) contains a factor #02m+2n+2#0m# for some m,n ∈ N0.

Obviously, if this predicate is satisfied, ni is even, and ni+1 < C(ni). For the other
direction, let ni be even, ni+1 < C(ni), and define m:=ni, n:=1

2
ni − ni+1 − 1. Then

2m+2n+2 = ni, which means that the corresponding substitution satisfies this predicate.

Capturing all cases where ni is odd and ni+1 < C(ni) is a little bit more involved.
We define the following four predicates:

π7 : σ(α1) contains a factor #02m+1#02n+1# for some m,n ∈ N0,

π8 : σ(α1) contains a factor #02m+1#06n# for some m,n ∈ N0,

π9 : σ(α1) contains a factor #02m+1#06n+2# for some m,n ∈ N0,

π10 : σ(α1) contains a factor #02m+2n+3#06n+4# for some m,n ∈ N0.

By definition of the Collatz function, if ni is odd, then C(ni) must be congruent to 4
modulo 6. The first three of these predicates handle all the cases where ni is odd, but
ni+1 is in the wrong congruence class modulo 6; i. e., either ni+1 is odd (π7) or division
by 6 leads to a remainder of 0 or 2 (π8 and π9, respectively). The remaining predicate
π10 is satisfied if and only if ni is odd, ni+1 is congruent to 4 modulo 6, and ni+1 < C(ni).

Thus, if there is a σ(α) /∈ LE,Σ(β), σ(α1) contains an encoding of a sequence n0, . . . , nl
for some l ≥ 2 with ni = Ci(N) for every i, and nl = 1. This means that N leads the
Collatz function to the trivial cycle, and thus, TRIV(N) 6= ∅.

On the other hand, assume TRIV(N) 6= ∅. Then there is an l ≥ 2 with Cl(N) = 1.
Let σ(x):=0C

1(N)#0C
2(N)# . . . #0C

l−1(N) and σ(y):=0m, wherem:=|σ(α1)|. As we have seen,
σ satisfies none of the predicates π1 to π10, and thus, σ(α) /∈ LE,Σ(β).

The total number of variables in β can be calculated as follows: First, we require
µ + 2κ + 13 variables from the basic construction and π1 to π3. As π4 and π5 are
factor predicates with one numerical parameter, they each require 6 additional variables.
Likewise, the predicates π6 to π10 require 7 variables each. Thus, β contains µ + 2κ +
13 + 12 + 35 = 74 different variables.
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3.3.4 Simulating All Collatz Iterations (Proof of Theorem 3.12)

In order to decide the emptiness of NTCC, we choose κ:=2, µ:=11 α1:=#x1#x2#x3#x2#

and α2:=x2y, where x1, x2, x3 and y are pairwise distinct variables.

We use the same predicates π4 to π10 as in the previous section for the encoding of
TRIV(N), and the additional predicate

π11 : σ(α1) contains the factor #0#.

Considering the previous section, it is easy to see that LE,Σ(α) \LE,Σ(β) 6= ∅ if and only
if there is a number leading to a nontrivial cycle: Assume there is a substitution σ with
σ(α) /∈ LE,Σ(β). This substitution satisfies none of the predicates π1 to π10, and must
be of 2-E-good form. Therefore, σ(x2) ∈ 0+, which means that the sequence encoded
in σ(α1) contains the number |σ(x2)| at least twice. Due to π11, this sequence does not
contain the number 1, which means that the encoded sequence contains a nontrivial cycle
of the Collatz function. Thus, NTCC is empty if and only if LE,Σ(α) \LE,Σ(β) is empty.

As π11 is a 2-simple factor predicate with no numerical parameters, its subpatterns
require five new variables in β (in addition to x11), bringing the total number of variables
in β to 80.

Therefore, any algorithm that decides the inclusion problem of ePAT4,Σ in ePAT80,Σ

can be used to determine in finite time whether there exists any nontrivial cycle of the
Collatz function by deciding whether LE,Σ(α) ⊆ LE,Σ(β).

3.3.5 Extensions to Larger Terminal Alphabets

The construction from Section 3.3.1 can be extended to larger (finite) terminal alphabets.
Assume that Σ = {0, #, a1, . . . , an} for some n ≥ 1.

We first discuss a comparatively straightforward extension that leads to a huge in-
crease in variables in the following section. In the section after that, we compare these
results to the ones that follow from a more efficient modification by Bremer [11] (which
is also contained in the upcoming full version of Bremer and Freydenberger [12]).

Straightforward Extension

We extend H to the set of all substitutions σ : (Σ ∪ {x, y})∗ → Σ∗, but do not extend
the definition of substitutions of κ-good form to our new and larger alphabet. Thus,
σ ∈ H is of κ-good form if σ(α1) ∈ {0, #}∗, σ(α2) ∈ 0∗ and σ(α1) does not contain #κ as
a factor.

In addition to the predicates π1 to πµ, for each new letter ai, we define a predicate
πµ+2i−1 which describes the cases that σ(α1) contains an occurrence of ai, and a predicate
πµ+2i which describes the cases that σ(α2) contains an occurrence of ai. Instead of
defining

α:=v v #4 v α1 v α2 v #
4 v u v,

with v:=0#30 and u:=0##0, we use

α:=v v #4 v α1 v α2 v #
4 v û v,



34 Chapter 3. Inclusion of Pattern Languages

with û:=0## a1 a1 . . . an an 0. In addition to this, we add the new predicates πµ+1 to πµ+2n

(which we still leave unspecified for a moment) to β and use

ηi:=zi(ẑi)
2(z̈i,1)2 . . . (z̈i,n)2zi

instead of ηi = zi(ẑi)
2zi, where all zi, ẑi, z̈i,j are pairwise distinct variables. Referring to

the new shape of u, we can make the following observation:

Lemma 3.17. Let n ≥ 1, let x1 . . . , xn ∈ X be pairwise distinct, let {a1, . . . , an} ⊆ Σ
and let

γ = x1 (x2)2 . . . (xn)2 x1.

If there is a morphism σ : X∗ → Σ∗ with σ(α) = a1 (a2)2 . . . (an)2 a1, then σ(xi) = ai for
each i ∈ {1, . . . , n}.

Proof. Assume σ (x1 (x2)2 . . . (xn)2 x1) = a1 (a2)2 . . . (an)2 a1. If σ(x1) = λ, then

σ
(
(x2)2 . . . (xn)2

)
= a1 (a2)2 . . . (an)2 a1

leads to an immediate contradiction. But σ(x1) 6= λ implies σ(x1) = a1. Therefore,

σ
(
(x2)2 . . . (xn)2

)
= (a2)2 . . . (an)2

must hold. Now, for every i ∈ {2, . . . , n} with σ(xi) 6= λ, |σ(xi)| = 1 must hold, as σ(γ)
does not contain squares that are longer than two letters. Thus, every (xi)

2 generates
at most one factor (aj)

2, and every factor (aj)
2 has to be generated by some (xi)

2. We
conclude that for every xi there is a j with σ(xi) = aj. Of course, this is only possible
if i = j in all cases; therefore, the claim holds.

Lemma 3.17 allows πµ+1 to πµ+2n to be analogously constructed to π2. To this end,
we define

γµ+2i−1:=yµ+2i−1,1 z̈µ+2i−1,i yµ+2i−1,2, γµ+2i:=yµ+2i,

δµ+2i−1:=ŷµ+2i−1, δµ+2i:=ŷµ+2i,1 z̈µ+2i,i ŷµ+2i,2.

for each i ∈ {1, . . . , n}. Again, all yj,k, ŷj,k, zj, ẑj and z̈j,k are pairwise different variables.
Now Lemma 3.13 applies (mutatis mutandis) as for binary alphabets, and since all
substitutions of good form behave for Σ as for the binary alphabet, we can use the very
same predicates and the same reasoning as before to prove undecidability of the inclusion
problem for ePATΣ.

Of course, if |Σ| = 2 + n, this construction adds

• 2n predicates with 5 + n variables each (zi, ẑi, z̈i,1 to z̈i,n, and the three variables
in γi and δi for each i with µ+ 1 ≤ i ≤ 2µ+ 2n), and also

• n variables (z̈i,1 to z̈i,n) for each of the µ predicates that were used in the original
construction,

for a total of n(10 + n + µ) additional variables in comparison to the construction for
the binary case.

Using this technique, we arrive at the following results:
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Corollary 3.18. Let |Σ| = 2 + n with n ≥ 1. The following holds:

1. The inclusion problem of ePAT3,Σ in ePATn2+343n+2854,Σ is undecidable.

2. The inclusion problem of ePAT2,Σ in ePATn2+344n+2860,Σ is undecidable.

3. Every algorithm that decides the inclusion problem of ePAT2,Σ in ePATn2+20n+74,Σ

can be converted into an algorithm that, for every N ∈ N1, decides whether N leads
C into the trivial cycle.

4. Every algorithm that decides the inclusion problem for ePAT4,Σ in ePATn2+21n+80,Σ

can be used to decide whether any number N ≥ 1 leads C into a nontrivial cycle.

This follows from the proofs of Theorem 3.10 (with µ = 333 and µ = 334), Theo-
rem 3.11 (with µ = 10) and Theorem 3.12 (with µ = 11).

Bremer’s Extensions

Using some clever coding tricks he discovered on the corresponding construction for
NE-patterns, Bremer (cf. Bremer [11] and the upcoming full version of Bremer and
Freydenberger [12]) developed an extension that modifies the basic construction to larger
alphabets Σ with |Σ| = 2 + n, using only 22 additional variables.

This leads to the following bounds that beat the bounds from Corollary 3.18 in almost
all cases:

Corollary 3.19. Let |Σ| = 2 + n with n ≥ 1. The following holds:

1. The inclusion problem of ePAT3,Σ in ePAT2876,Σ is undecidable.

2. The inclusion problem of ePAT2,Σ in ePAT2882,Σ is undecidable.

3. Every algorithm that decides the inclusion problem of ePAT2,Σ in ePAT96,Σ can be
converted into an algorithm that, for every N ∈ N1, decides whether N leads C
into the trivial cycle.

4. Every algorithm that decides the inclusion problem for ePAT4,Σ in ePAT102,Σ can
be used to decide whether any number N ≥ 1 leads C into a nontrivial cycle.

The only case where the bounds from Corollary 3.19 are not lower than the corre-
sponding bounds from Corollary 3.18 occur for n = 1. Then, the bound for the number
of variables in the β-pattern in item 3 (the reachability of the trivial Collatz cycle) is 95
due to Corollary 3.18, but 96 due to Corollary 3.19. Furthermore, both corollaries give
a bound of 102 for item 4.

In addition to this, Bremer extended the construction to use terminal-free β-patterns,
both in the E- and in the NE-case.
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3.4 From Pattern Inclusion to Regular Expressions

This section describes how a comparison of Theorem 3.10 and its proof to similar results
on the theory of concatenation led the author to the results on extended regular expres-
sion that we shall consider in Chapter 4. We begin in Section 3.4.1 with an introduction
to word equations and continue in Section 3.4.2 with a discussion of the similarities to
the proof of Theorem 3.10.

3.4.1 Word Equations and the Theory of Concatenation

This section provides a short introduction on word equations, one of the central topics
in combinatorics on words that is related to pattern languages. Far more information
can be found in Choffrut and Karhumäki [18], and Karhumäki et al. [52]. This material
serves mostly as additional context for the explanations in Section 3.4.2.

Given a finite terminal alphabet Σ and a disjoint infinite variable alphabet X, a word
equation (over the alphabet Σ) is a pair (α, β) ∈ (Σ ∪X)∗ × (Σ ∪X)∗, usually denoted
by α = β. Furthermore, a solution of a word equation α = β is a terminal-preserving
morphism σ : (Σ ∪X)∗ → Σ∗ with

σ(α) = σ(β).

Given an equation η = (α, β), we define var(η) = var(α∪β). It is easy to see that, when
speaking from a pattern point of view, a word equation might be considered an equation
on patterns (note that some variables might occur on both sides of the equation).

Moreover, given a language L ⊂ Σ∗, we say that L is expressible by an equation η if
there is an x ∈ var(η) such that

L = {σ(x) | σ is a solution of η}.

This definition can be directly extended to k-ary relations over Σ∗ (with k ≥ 0): A
relation R ⊆ (Σ∗)k is expressible by an equation η if there are variables x1, . . . , xk ∈
var(η) such that

R = {(σ(x1), . . . , σ(xk)) | σ is a solution of η}.

Obviously, for every alphabet Σ, every E-pattern language LE,Σ(α) over Σ is expressible
by the equation x = α, where x is any variable that does not occur in α. Later in this
section, we shall see that this also holds for LNE,Σ(α).

Let Σ:={a, b} and consider the word equation η = (x a b, a bx). Using some ele-
mentary combinatorics on words (cf. Perrin [81]), one can show that η expresses the
language (a b)∗. Similarly, the equation xz = zy expresses the conjugacy relation
{(x, y) | there exist u, v ∈ Σ∗ with x = uv, y = vu} (depending on the choice of the
terminal alphabet Σ∗).

One surprising result in this area is that even very simple equations can express
comparatively complicated relations, for details, see Czeizler’s alternative proof [22] of
the observation of Hmelevskĭı6 [43] on the set of solutions of the equation x a b y = y b ax.

6Actually, Хмелевский. Some authors use the alternative transcription Khmelevski.
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Although word equations are a quite powerful mechanism, there exist comparatively
simple languages and relations that cannot be expressed by word equations. Moreover,
like for pattern languages, the question whether a language is expressible depends heavily
on the choice of the terminal alphabet Σ. For example, given alphabets Σ and Σ′ ⊃ Σ,
one can show that Σ∗ is not expressible by any word equation over Σ′ (cf. Karhumaäki
et al. [52], Example 23). Furthermore, for every non-unary alphabet Σ, the relation
{(u, v) | u, v ∈ Σ∗, |u| = |v|} cannot be expressed by any word equation.

In his seminal paper, Makanin [67] proves that the satisfiability problem for word
equations is decidable; i. e., there is an algorithm that, given a word equation η over some
constant alphabet Σ, decides whether η has a solution. By most measures, Makanin’s
proof can be considered to be among the most complicated results in theoretical com-
puter science. Both the technique and the revision underwent multiple simplifications by
various authors, and culminated by the (to the author’s knowledge) most recent variant
by Diekert [24]. In addition to this, there is an algorithm by Plandowski [82] that decides
the satisfiability in PSPACE, and another algorithm by Plandowski and Rytter [83] that
is conjectured to decide satisfiability in NP (for an explanation, cf. [82]). Note that this
research has already found an application outside of combinatorics on words: The main
result of [83] has been used by Schaefer et al. [101] to show that so-called string graphs
can be recognized in NP (instead of the previously known upper bound of NEXPTIME).

As additional remark, NP-hardness of satisfiability follows immediately from the NP-
hardness of the membership problem for pattern languages.

As explained by Choffrut and Karhumäki [18] as well as Karhumäki et al. [52], the
notion of a word equation can be extended to that of a Boolean formula of equations .
We say that Φ is a Boolean formula of equations with range Σ and variable alphabet X
if it is obtained from equations over alphabets Σ and X by the operations of disjunction,
conjunction and negation. A terminal-preserving morphism σ : (Σ ∪ X)∗ → Σ∗ is a
solution of Φ if and only if Φ gets the value true whenever the values of the equations
of Φ get the values true or false depending on whether or not σ is a solution of the
corresponding equation. A relation R ⊂ Σk (with k ≥ 0) is expressible by a Boolean
formula of equations Φ if there are Variables x1, . . . , xk ∈ X such that

R = {(σ(x1), . . . , σ(xk)) | σ is a solution of Φ}.

Surprisingly, any language or relation of words that is expressible by a Boolean formula
is expressible by a single equation (Theorem 7 in Karhumäki et al. [52]). Note that the
elimination of a conjunction requires no additional variables, while the elimination of
disjunction and negation as presented in [52] introduce two additional variables, or a
finite number of variables that depends on the size of Σ, respectively.

This observation connects word equations to the existential theory of concatena-
tion (cf. Choffrut and Karhumäki [18]), as every word equation α = β using variables
x1, . . . , xk for some n ≥ 1 can be understood as the existential formula

∃x1 . . . ∃xn : α = β.

Consequently, every pattern language can be easily expressed in the existential theory of
concatenation: For every pattern α ∈ PatΣ with var(α) = {x1, . . . , xn} for some n ≥ 0,
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its pattern languages LE,Σ(α) and LNE,Σ(α) can be expressed as

LE,Σ(α) = {w | ∃x1 . . . ∃xn : w = α},
LNE,Σ(α) = {w | ∃x1 . . . ∃xn : w = α ∧ x1 6= λ ∧ . . . ∧ xn 6= λ}.

Considering this, Makanin’s result shows that intersection emptiness7 for pattern lan-
guages is decidable for E- and NE-pattern languages. For E-pattern languages, one
ensures that var(α)∩ var(β) = ∅ using a renaming of the variables if necessary, and uses
Makanin’s (or Plandowski’s) algorithm to check whether the equation α = β has a so-
lution. For NE-pattern languages, one additionally specifies that xi 6= λ for all involved
variables xi and converts the corresponding Boolean formula into an equation.

As already shown by Quine [84] in 1946, satisfiability is undecidable in the whole
theory of concatenation (i. e, where every combination of quantifiers is permitted). In
the following years, the borderline of proven undecidability has been moved closer to
Makanin’s decidability result (cf. Choffrut and Karhumäki [18]). To the author’s knowl-
edge, the smallest fragment of the theory of concatenation that is known to be undecid-
able is the ∀∃3-positive theory (cf. Durnev [26]). This fragment consists of all formulae of
the form ∀x1∃x2∃x3∃x4Φ, where Φ is a Boolean formula of equations over the variables
x1, . . . , x4 that uses only conjunctions and disjunctions, but no negations.

We return to this material in Section 3.4.2. There, we discuss how a comparison of
the proof of Durnev’s result to a similar result on pattern languages inspired the author
to obtain the results presented in Chapter 4.

3.4.2 Word Equations and Theorem 3.10

As mentioned in Section 3.4.1, pattern languages can be viewed as a special case of
languages that are expressible by word equations. For any two patterns α, β ∈ PatΣ

with var(α) = {x1, . . . , xm} and var(β) = {y1, . . . , yn} for some m,n ≥ 0 (where all xi
and all yj are pairwise distinct), the inclusion LE,Σ(α) ⊆ LE,Σ(β) holds if and only if the
formula

∀x1 . . . ∀xm∃y1 . . . ∃yn : α = β

is satisfiable. As such, the inclusion problem for pattern languages belongs to a com-
paratively restricted fragment of the positive ∀∃-theory of concatenation, and the un-
decidability of the inclusion problem of ePATm,Σ in ePATn,Σ immediately implies that
satisfiability of the positive ∀m∃n-positive theory of concatenation is undecidable. On
the other hand, the lower bounds of ∀3∃2854-positive and ∀2∃2860-positive that follow from
Theorem 3.10 are not very close to the lowest currently known bound of ∀1∃3-positive
that is due to Durnev [26].

In addition to this, Durnev’s proof is significantly shorter than the proof of Theo-
rem 3.10 presented in this thesis. In principle, both proofs use similar approaches: A
large disjunction describes all errors in the encodings of a machine with an undecidable
halting problem, and if anything remains, there is at least one accepting run of that
machine.

One major advantage of Durnev’s construction is disjunction, which allows the ‘reuse’
of variables in different predicates, while every predicate in the basic construction as
described in Section 3.3.1 uses its own set of variables.

7Given α, β ∈ PatΣ, is L(α) ∩ L(β) = ∅?
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This observation served as the author’s main inspirations for the results on extended
regular expressions presented in Chapter 4: Extended regular expressions have a built-in
alternation operator that works similarly to conjunction in the theory of concatenation.
Furthermore, extended regular expressions allow more structural control than pattern
languages8 – while a pattern has to allow every possible value from Σ∗ (or Σ+, in the
NE-case), an extended regular expression can be restricted to regular subsets of Σ∗.

One of the early precursors of Theorem 4.14 stated that the inclusion problem
L(α) ⊆ L(β) is undecidable, where α is a proper regular expression, and β is an extended
regular expression with at most 6 variables (from the set RegEx(6) in the terminology
we introduce in Chapter 4).

The next improvement followed from understanding that the greater control in ex-
tended regular expressions can be used to remove the auxiliary structure that is used in
the basic construction for patterns to ensure κ-good form. All this could be done us-
ing only regular features. While the construction for pattern languages reduces various
problems to the problem whether LE,Σ(α) \ LE,Σ(β) = ∅ for two constructed patterns α
and β, the same problem could be reduced to the question whether L(α) = Σ∗ for some
constructed extended regular expression α.

Furthermore, using the right choice of reduced problems and encodings (the problems
on the domain of extended Turing machines from Chapter 4), we can also reduce more
complicated problems to appropriate problems for extended regular expressions (as we
shall see, Π0

2-complete and Σ0
2-complete in the arithmetical hierarchy (cf. Odifreddi [77],

Rogers [91]), in contrast to the Σ0
1-completeness of the inclusion problem for pattern

languages that follows from the proof of Theorem 3.10).
This realization and further optimizations which resulted in extended regular expres-

sions with only one variable finally led to the results that are presented in Chapter 4.
The main conceptual idea of the proof of Theorem 3.10 (in contrast to the proof of The-
orem 3.3 as presented in [32]), the use of a single universal machine instead of infinitely
many general machines, survives in the extension described in Section 4.3.1.

Possibly, it might have been easier to develop the results in Chapter 4 directly, without
the potentially distracting detour over the inclusion of pattern languages. But, at least
in the author’s case, tackling the problems for pattern languages (which are narrower in
their results, but harder to prove) provided the experience and education that made the
actual proof of Theorem 4.14 comparatively simple9.

8There has also been work on extending pattern languages by allowing restrictions on the possible
replacements, i. e., giving the variables a certain type. For examples, see Koshiba [58], and Dumitrescu
et al. [25].

9As a closing footnote that is not directly related to the material in the present section, the author
would like to relate a long and perhaps not too interesting anecdote on the coincidences that led to the
proofs of Theorem 3.3 and Theorem 3.10. Readers who do not care about these things are invited (and
probably well advised) to skip this footnote.

Around July 2007, the author accidentally met Steffen Lange in the ICE from Kaiserslautern to
Frankfurt. Not only had they chosen the same train, but also seats that where almost next to each
other. In their short discussion, Lange remarked to the author (who was reading [51]) that someone
should definitely answer the then open question on the decidability of the alphabet-specific inclusion
problem. Although the author agreed, he was not too optimistic that he could be that someone, as
he had tried to understand the proofs in [51] for several times. A few weeks later, in late August, the
author had to spend a few hours in his new and at that time quite empty apartment, waiting for the
meter-reader. Due to several circumstances, he had nothing to pass the time but a copy of [51] and
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a few pens. For unknown reasons, the meter-reader missed this appointment, but while waiting, the
author finally understood the proof of Theorem 3.2, and how it could be adapted to prove Theorem 3.3.

The idea for Theorem 3.10 also occurred serendipitously. In June 2009, the author had to undergo
an ambulant surgery that required general anesthesia. While sitting in the waiting room, inspiration
struck, and he started to sketch the proof; but when he was hushed into the operating room, he had
only finished half of the proof. Apparently, anesthesia can cause memory loss, but not in this case.
Almost immediately after waking up, the author reoriented himself and finished the sketch – correctly,
as he later verified.



Chapter 4

Real Regular Expressions:
Decidability and Succinctness

4.1 On Extended Regular Expressions

Since being introduced by Kleene [55] in 1956, regular expressions have developed into
a central device of theoretical and applied computer science. On one side, research
into the theoretical properties of regular expressions, especially various aspects of their
complexity, is still a very active area of investigation (see Holzer and Kutrib [45] for a
survey with numerous recent references). On the other side, almost all modern program-
ming language offer regular expression matching in their standard libraries or application
frameworks, and most text editors allow the use of regular expressions for search and
replacement functionality.

But, due to practical considerations (cf. Friedl [36]), most modern matching engines
have evolved to use an extension to regular expressions that allows the user to specify non-
regular languages. In addition to the features of regular expressions as they are mostly
studied in theory (which we, from now on, call proper regular expressions), and apart
from the (regularity preserving) “syntactic sugar” that most implementations use, these
extended regular expressions1 contain back references , also called variables, which specify
repetitions that increase the expressive power beyond the class of regular languages.
For example, the (non-regular) language L = {ww | w ∈ {a, b}∗} is generated by the
extended regular expression α:= ((a | b)∗) %x x.

This expression can be understood as follows (for a more formal treatment, see Def-
inition 4.3): For any expression β, (β)%x matches the same expression as β, and binds
the match to the variable x. In the case of this example, the subexpression ((a | b)∗) %x
can be matched to any word w ∈ {a, b}∗, and when it is matched to w, the variable x is
assigned the value w. Any further occurrence of x repeats w, leading to the language of
all words of the form ww with w ∈ {a, b}∗. Analogously, the expression ((a | b)∗) %x xx
generates the language of all www with w ∈ {a, b}∗.

Although this ability to specify repetitions is used in almost every modern match-

1The author is aware that the term “extended regular expression” is also used for a different model
(used in conjunction with star-free languages). Personally, he would have preferred to use the term “real
expressions”, especially considering the fact that (proper) regular expressions are also called “rational
expressions”. As there are already far too many names for the same concept (e. g., rewbr, regex, practical
regular expression), he decided to follow the recent literature.

41
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ing engine (e. g., the programming languages PERL and Python), the implementations
differ in various details, even between two versions of the same implementation of a pro-
gramming language (for some examples, see Câmpeanu and Santean [14]). Nonetheless,
there is a common core to these variants, which was first formalized by Aho [1]. Later,
Câmpeanu et al. [13] introduce a different formalization that is closer to the real world
syntax, and addresses some questions of semantics that were left open in [1]. In addition
to this, the pattern expressions by Câmpeanu and Yu [15] and the H-expressions by
Bordihn et al. [9] use comparable repetition mechanisms and possess similar expressive
power.

Still, theoretical investigation of extended regular expressions has been comparatively
rare (especially when compared to their more prominent subclass); see e. g. Larsen [65],
Della Penna et al. [23], Câmpeanu and Santean [14], Carle and Narendran [16], and
Reidenbach and Schmid [89].

In contrast to their widespread use in various applications, extended regular expres-
sions have some undesirable properties. Most importantly, their membership problem
(the question whether an expression matches a word) is NP-complete (cf. Aho [1]); the
exponential part in the best known upper bounds depends on the number of different
variables in the expression. Of course, this compares unfavorably to the efficiently de-
cidable membership problem of proper regular expressions (cf. Aho [1]). On the other
hand, there are cases where extended regular expressions express regular languages far
more succinctly than proper regular expressions. Consider the following example:

Example 4.1. For n ≥ 1, let Ln:=
{
www | w ∈ {a, b}+ , |w| = n

}
. This language is

generated by the expression

αn:=((a | b) . . . (a | b)︸ ︷︷ ︸
n times (a | b)

)%x xx.

Moreover, every language Ln is finite and, hence, regular. With some effort, one can
show that (for sufficiently large n), every proper regular expression for Ln is exponentially
longer than αn. 3

Due to the repetitive nature of the words of languages Ln in Example 4.1, it is not
surprising that the use of variables provides a shorter description of Ln. The following
example might be considered less straightforward:

Example 4.2. Consider the expression α:=(a | b)∗
(
(a | b)+)%x x (a | b)∗. It is a well-

known fact (and easily verified by an exhaustive list of all possibilities) that every word
w ∈ {a, b}∗ with |w| ≥ 4 can be expressed in the form w = uxxv, with u, v ∈ {a, b}∗
and x ∈ {a, b}+. Thus, the expression α matches all but finitely many words; hence, its
language L(α) is regular. 3

The phenomenon used in Example 4.2 is strongly related to the notion of avoidable
patterns (cf. Cassaigne [17]), and involves some very hard combinatorial questions. We
observe that extended regular expressions can be used to express regular languages more
succinctly than proper regular expressions do, and that it might be hard to convert an
extended regular expression into a proper regular expression for the same language.

The two central questions studied in the present chapter are as follows: First, how
hard is it to minimize extended regular expressions (both with respect to their length,
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and with respect to the number of variables they contain), and second, how succinctly
can extended regular expressions describe regular languages? These natural questions
are also motivated by practical concerns: If a given application reuses an expression
many times, it might pay off to invest resources in the search for an expression that is
shorter, or uses fewer variables, and thus can be matched more efficiently.

We approach this question through related decidability problems (e. g. the universal-
ity problem) and by studying lower bounds on the tradeoff between the size of extended
regular expressions and proper regular expressions.

The main technical contribution of the present chapter is the proof that all these de-
cision problems are undecidable (some are not even semi-decidable), even for extended
regular expressions that use only a single variable. Thus, while bounding the number
of variables in extended regular expressions (or, more precisely, the number of variable
bindings) reduces the complexity of the membership problem from NP-complete to poly-
nomial (cf. Aho [1]), we show that extending proper regular expressions with only a single
variable already results in undecidability of various problems.

As a consequence, extended regular expressions cannot be minimized effectively, and
the tradeoff between extended and proper regular expressions is not bounded by any
recursive function (a so-called non-recursive tradeoff , cf. Kutrib [61]). Thus, although
the use of the “right” extended regular expression for a regular expression might offer
arbitrary advantages in size (and, hence, parsing speed), these optimal expressions can-
not be found effectively. These results highlight the power of the variable mechanism,
and demonstrate that different restrictions than the number of variables ought to be
considered.

The structure of the further parts of this chapter is as follows: In Section 4.2, we
introduce most of the technical details that serve as the fundament of this chapter, the
most important one being Theorem 4.14. In Section 4.3, we use Theorem 4.14 to derive
Theorem 4.15 – the main undecidability result – and its consequences, thus answering our
questions on minimizability and relative succinctness of extended regular expressions.

The technical preparations in Section 4.2 and the proof of Theorem 4.14 are of con-
siderable length; readers who are primarily interested in the answer to these questions
might prefer to read Section 4.3 before reading Section 4.2.

As explained in Section 3.4, the proof of Theorem 4.14, the main technical theorem
in the present chapter, was inspired by the proof of Theorem 3.10 in Chapter 3.

4.2 Definitions and Preliminary Results

This section contains the definition of extended regular expressions, and various tools
which we shall use later on in the present chapter.

4.2.1 Extended Regular Expressions

We now introduce syntax and semantics of extended regular expressions. Apart from
some changes in terminology, this formalization is due to Aho [1]:

Definition 4.3. Let Σ be an infinite set of terminals, X an infinite set of variables,
and the set of metacharacters consist of λ, (, ), |, ∗, and %, where all three sets are
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pairwise disjoint. Syntax and semantics of real regular expressions, or extended regular
expressions, are defined inductively as follows:

1. Each terminal a ∈ Σ is an extended regular expression that matches the word a.

2. Each variable x ∈ X is an extended regular expression that matches the word
defined by x.

3. If α1 and α2 are extended regular expressions, then (α1 | α2) is an extended regular
expression that matches any word matched by α1 or by α2.

4. If α1 and α2 are extended regular expressions, then (α1α2) is an extended regular
expression that matches any word of the form vw, where v matches α1 and w
matches α2.

5. If α is an extended regular expression, then (α)∗ is an extended regular expression
that matches any word of the form w1 . . . wn with n ≥ 0, where α matches each wi
with 1 ≤ i ≤ n.

6. If α is an extended regular expression that matches a word w, and x ∈ X, then
(α)%x is an extended regular expression that matches the word w, and x is bound
to the value w.

7. If α is an extended regular expression, then (α) is an extended regular expression
that matches the same words as α.

We denote the set of all extended regular expressions by RegEx. For every extended
regular expression α, we use L(α) to denote the set of all words that are matched by α,
and call L(α) the language generated by α.

A proper regular expression is an extended regular expression that contains neither
%, nor any variable from X.

Note that, as in [1], some peculiarities of the semantics of extended regular expres-
sions are not addressed in this definition (some examples are mentioned further down).
Câmpeanu et al. [13] offer an alternative definition that explicitly deals with some tech-
nical peculiarities that are omitted in Aho’s definition, and is closer to the syntax of the
programming language PERL. The proofs presented in this chapter are not affected by
these differences and can be easily adapted to the definition of Câmpeanu et al., or any
similar mechanism (e. g., those given by Câmpeanu and Yu [15] or Bordihn et al. [9]).

We shall use the notation (α)+ as a shorthand for α(α)∗, and freely omit parentheses
whenever the meaning remains unambiguous. When doing this, we assume that there is
a precedence on the order of the applications of operations, with ∗ and + ranking over
concatenation ranking over the alternation operator |.

We illustrate the intended semantics of extended regular expressions using the fol-
lowing examples in addition to the examples in Section 4.1:

Example 4.4. Consider the following extended regular expressions:

α1:= ((a | b)∗) %x xx ((a | b)∗) %x x, α2:= (((a | b)∗) %x x)
+
.
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These expressions generate the following languages:

L(α1) = {vvvww | v, w ∈ {a, b}∗} , L(α2) = {w1w1 . . . wnwn | n ≥ 1, wi ∈ {a, b}∗} .

Note that both expressions rely on the fact that variables can be bound multiple times,
and implicitly assume that we parse from left to right. 3

From a formal point of view, the fact that variables have a scope and the possibility
to rebind variables (as in Example 4.4) can cause unexpected side effects and would
normally require a more formal definition of semantics, instead of our “definition by
example”. Furthermore, Aho’s definition does not deal with pathological cases in which
some variables might be unbound, e. g. like ((a)%x | b)x. Although the definition by
Câmpeanu et al. [13] addresses these problems, we still use Aho’s notation, because it
is more convenient for the proof of Theorem 4.14, the main technical tool of the present
chapter.

As we use variables (and variable bindings) in a comparatively restricted way that
does not require rebinding of variables or assumptions on variable scopes, and as we do
not rely on any special features or conventions that are peculiar to Aho’s definition, all
proofs can be easily adapted to the notation of Câmpeanu et al.

In general, the membership problem for RegEx is NP-complete, as shown in Theo-
rem 6.2 in Aho [1]. As explained in that proof, this problem is solvable in polynomial-time
if the number of different variables is bounded. It is not clear how (or if) Aho’s reason-
ing applies to expressions like α2 in our Example 4.4; therefore, we formalize a slightly
stronger restriction than Aho, and consider the following subclasses of RegEx:

Definition 4.5. For k ≥ 0, let RegEx(k) denote the class of all extended regular expres-
sions α that satisfy the following properties:

1. α contains at most k occurrences of the metacharacter %,

2. if α contains a subexpression (β)∗, then the metacharacter % does not occur in β,

3. for every x ∈ X that occurs in α, α contains exactly one occurrence of %x.

Intuitively, these restrictions on extended regular expressions in RegEx(k) limit not
only the number of different variables, but also the total number of possible variable
bindings, to at most k.

Note that RegEx(0) is equivalent to the class of proper regular expressions; further-
more, observe that RegEx(k) ⊂ RegEx(k + 1) for every k ≥ 0.

Referring to the extended regular expressions given in Example 4.4, we observe that,
as %x occurs twice in α1, α1 is not element of any RegEx(k) with k ≥ 0, but the extended
regular expression α′1:= ((a | b)∗) %x xx ((a | b)∗) %y y generates the same language as
α1, and α′1 ∈ (RegEx(2) \ RegEx(1)). In contrast to this, α2 /∈ RegEx(k) for all k ≥ 0,
as % occurs inside a ()∗ subexpression (as we defined + through ∗).

For any k ≥ 0, we say that a language L is a RegEx(k)-language if there is some
α ∈ RegEx(k) with L(α) = L.

We also consider the class FRegEx of all extended regular expressions that do not
use the operator ∗ (or +), and its subclasses FRegEx(k):= FRegEx∩RegEx(k) for k ≥
0. Thus, FRegEx contains exactly those expressions that generate finite (and, hence,
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regular) languages. Analogously, for every k ≥ 0, we define a class CoFRegEx(k) as the
class of all α ∈ RegEx(k) such that L(α) is cofinite. Unlike the classes FRegEx(k), these
classes have no straightforward syntactic definition – as we shall prove in Theorem 4.15,
cofiniteness is not semi-decidable for RegEx(k) (if k ≥ 1).

4.2.2 Decision Problems and Descriptional Complexity

Most of the technical reasoning in the present chapter is centered around the following
decision problems:

Definition 4.6. Let Σ denote a fixed terminal alphabet. For all k, l ≥ 0, we define the
following decision problems for RegEx(k):

Universality: Given α ∈ RegEx(k), is L(α) = Σ∗?

Cofiniteness: Given α ∈ RegEx(k), is Σ∗ \ L(α) finite?

RegEx(l)-ity: Given α ∈ RegEx(k), is there a β ∈ RegEx(l) with L(α) = L(β)?

In addition to this, we also define inclusion and equivalence for RegEx(k) canonically.
Although we do not deal with the more general case, all these problems can be extended
to decision problems for the whole class RegEx.

As we shall see, Theorem 4.15 – one of this chapter’s main technical results – states
that these problems are undecidable (to various degrees). We use the undecidability
of the universality problem to show that there is no effective procedure that minimizes
extended regular expressions with respect to their length, and the undecidability of
RegEx(l)-ity to conclude the same for minimization with respect to the number of vari-
ables. Furthermore, cofiniteness and RegEx(l)-ity help us to obtain various results on
the relative succinctness of proper and extended regular expressions.

By definition, RegEx(l)-ity holds trivially for all RegEx(k) with k ≤ l. If l = 0, we
mostly use the more convenient term regularity (for RegEx(k)), instead of RegEx(0)-ity.
Note that, even for RegEx(0), universality is already PSPACE-complete (see Aho et
al. [2]).

In order to examine the relative succinctness of RegEx(1) in comparison with RegEx(0),
we use the following notion of complexity measures:

Definition 4.7. Let R be a class of extended regular expressions. A complexity measure
for R is a total recursive function c : R → N such that, for every alphabet Σ, the set of
all α ∈ R with L(α) ⊆ Σ∗

1. can be effectively enumerated in order of increasing c(α), and

2. does not contain infinitely many extended regular expressions with the same value
c(α).

This definition includes the canonical concept of the length, as well as most of its
natural extensions (for example, in our context, one could define a complexity measure
that gives additional weight to the number or distance of occurrences of variables, or
their nesting level). Kutrib [61] provides more details on (and an extensive motivation of)
complexity measures. Using this definition, we are able to define the notion of tradeoffs
between classes of extended regular expressions:
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Definition 4.8. Let k > l ≥ 0 and let c be a complexity measure for RegEx(k) (and
thereby also for RegEx(l)). A recursive function fc : N → N is said to be a recursive
upper bound for the tradeoff between RegEx(k) and RegEx(l) if, for all those α ∈
RegEx(k) for which L(α) is a RegEx(l)-language, there is a β ∈ RegEx(l) with L(β) =
L(α) and c(β) ≤ fc(c(α)).

If no recursive upper bound for the tradeoff between RegEx(k) and RegEx(l) exists,
we say that the tradeoff between RegEx(k) and RegEx(l) is non-recursive.

There is a considerable amount of literature on a wide range of non-recursive tradeoffs
between various description mechanisms; for a survey, see Kutrib [61].

4.2.3 Generalized Sequential Machines

In Section 4.2.4, we shall use a so-called generalized sequential machine (GSM) and its
associated mapping. A full formal definition of GSMs and the mappings they define is
provided in Chapter 11.2 of Hopcroft and Ullman [46], we only sketch the concept on a
superficial level that is sufficient to understand how we use it in the proof of Lemma 4.13.

Generalized sequential machines generalize nondeterministic finite automata by sup-
plementing every transition with an output; i. e., whenever a GSM reads a symbol, it
also emits a string (as specified by its transition relation). Thus, every path through a
GSM also yields the concatenation of the emitted strings as an output. Applying a GSM
M to a word w yields the language M(w) that consists of every string emitted by M
along an accepting path for w. Likewise, for every language L, M(L):=∪w∈LM(w). As
M maps L to M(L), this process is called a GSM mapping .

As we shall see, our use of a GSM in the proof of Lemma 4.13 is comparatively
simple: First, the machine is deterministic, and second, it is only used on words where
it is guaranteed that the machine reaches the accepting state. This allows us to ignore
all special cases that might require a more formal definition of GSMs. In either case, our
use is compatible with the extensive formal definition in [46].

One important fact is that the class of regular languages is closed under GSM map-
pings: Every GSM mapping can be expressed as the result of the application of an inverse
morphism, the intersection with a regular language, and the application of a morphism,
and as the class of regular languages is closed under each of these three operations,
closure under GSM mappings follows (cf. [46]).

Therefore, GSM mappings can be used to simplify proofs of non-regularity, as can be
seen in the following example:

Example 4.9. Consider the language L:={ai b an b b a2n bm | i ≥ 0, n,m ≥ 1} and
assume that we want to prove that L is not regular. Furthermore, assume that we are
familiar enough with the use of the Pumping Lemma to show that L′:={an bn | n ≥ 1}
is not regular, but that we do not see how we apply the Pumping Lemma to show that L
is not regular.

Our goal is to define a GSM M such that M(L) = L′. If L is regular, then M(L)
must be regular as well, which leads to the desired contradiction. To this end, we define
the M as depicted in Figure 4.1. Now assume that M is fed a word w ∈ L. By definition,
w = ai b an b b a2n bm for some i ≥ 0 and some n,m ≥ 1. First, M loops on in q1 reading
all letters of the prefix ai, and emits λ. When all these a have been consumed, M reads



48 Chapter 4. Real Regular Expressions: Decidability and Succinctness

q1 q2 q3

q4

q5

b |λ

a |λ

b b |λ

a | a

a | b

b |λ

a |λ

b |λ

Figure 4.1: The GSM M that is used in Example 4.9. As explained therein, M is used
to map each word ai b an b b a2n bm with i ≥ 0 and n,m ≥ 1 to the word an bn.

the letter b and consumes it, emits λ, and enters state q2. At this point, the unread part
of w is an b b a2n bm, and M has emitted λ.

Next, M loops in state q2, emitting a for every a from an. After all these a have been
read, M reads b b, emits λ, and enters q3. Now, the unread part of w is a2n bm, and an

has been emitted. Note that, in a strict interpretation of the definition, M would only be
allowed to read one letter in every transition. Purists can easily handle this problem by
introducing an additional state between q2 and q3.

Then M cycles between q3 and q4, processing the part a2n of w. For every two a the
machine reads, it emits a single b. As w ∈ L, we can rely on the fact that there is an even
number of a present. At some point, all these a have been processed, and M is in q3 and
has emitted an bn when it encounters the first b of bm. The machine enters state q5 and
consumes the remaining b, without emitting any further letters. Thus, M(w) = an bn,
and therefore, M(L) = L′.

If we assume L is regular, then L′ = M(L) must be regular as well, which contradicts
our initial assumption that L′ is not regular. 3

As Example 4.9 shows, GSM mappings are a powerful tool that can be used to reduce
the question whether a language is regular to languages where non-regularity is easier
to establish.

4.2.4 Extended Turing Machines

On a superficial level, we prove Theorem 4.15 by using Theorem 4.14 (which we introduce
further down in the present section) to reduce various undecidable decision problems for
Turing machines to appropriate problems for extended regular expressions (the problems
from Definition 4.6). This is done by giving an effective procedure that, given a Turing
machineM, returns an extended regular expression that generates the complement of a
language that encodes all accepting runs of M.

On a less superficial level, this approach needs to deal with certain technical pe-
culiarities that make it preferable to study a variation of the Turing machine model.
An extended Turing machine is a 3-tuple X = (Q, q1, δ), where Q and q1 denote the
state set and the initial state. All extended Turing machines operate on the tape al-
phabet Γ:={0, 1} and use 0 as the blank letter. The transition function δ is a function
δ : Γ×Q→ (Γ×{L,R}×Q)∪{HALT}∪({CHECKR}×Q). The movement instructions



4.2 Definitions and Preliminary Results 49

L and R and the HALT-instruction are interpreted canonically – if δ(a, q) = (b,M, p)
for some M ∈ {L,R} (and a, b ∈ Γ, p, q ∈ Q), the machine replaces the symbol under
the head (a) with b, moves the head to the left if M = L (or to the right if M = R), and
enters state p. If δ(a, q) = HALT, the machine halts and accepts.

The command CHECKR works as follows: If δ(a, q) = (CHECKR, p) for some p ∈ Q,
X immediately checks (without moving the head) whether the right side of the tape
(i. e., the part of the tape that starts immediately to the right of the head) contains only
the blank symbol 0. If this is the case, X enters state p; but if the right side of the
tape contains any occurrence of 1, X stays in q. As the tape is never changed during
a CHECKR-instruction, this leads X into an infinite loop, as it will always read a in q,
and will neither halt, nor change its state, head symbol, or head position.

Although it might seem counterintuitive to include an instruction that allows our
machines to search the whole infinite side of a tape in a single step and without mov-
ing the head, this command is expressible in the construction we use in the proof of
Theorem 4.14, and it is needed for the intended behavior.

We partition the tape of an extended Turing machine X into three disjoint areas:
The head symbol, which is (naturally) the tape symbol at the position of the head, the
right tape side, which contains the tape word that starts immediately to the right of
the head symbol and extends rightward into infinity, and the left tape side, which starts
immediately left to the head symbol and extends infinitely to the left. When speaking
of a configuration, we denote the head symbol by a and refer to the contents of the left
or right tape side as the left tape word tL or the right tape word tR, respectively. For an
illustration and further explanations, see Figure 4.2.

0 0 0 1 1 1 0 1 1 1 0 0 1 0 0 0 0. . . . . .
← tL tR →a

Figure 4.2: An illustration of tape words of an extended Turing machine (as defined in
Section 4.2.4). The arrow below the tape symbolizes the position of the head, while the
dashed lines show the borders between the left tape side, the head position and the right
tape side. Assuming that all tape cells that are not shown contain 0, we observe the left
tape word tL = 10111 0ω, the right tape word tR = 1001 0ω, and the head letter a = 1.

A configuration of an extended Turing machine X = (Q, q1, δ) is a tuple (tL, tR, a, q),
where tL, tR ∈ Γ∗0ω are the left and right tape word, a ∈ Γ is the head symbol, and
q ∈ Q denotes the current state. The symbol `X denotes the successor relation on
configurations of X , i. e., C `X C ′ if X enters C ′ immediately after C.

We define domX(X ), the domain of an extended Turing machine X = (Q, q1, δ),
to be the set of all tape words tR ∈ Γ∗0ω such that X , if started in the configuration
(0ω, tR, 0, q1), halts after finitely many steps.

The definition of domX is motivated by the properties of the encoding that we shall
use. Usually, definitions of the domain of a Turing machine rely on the fact that the
end of the input is marked by a special letter $ or an encoding thereof (cf. Minsky [70]).
As we shall see, our use of extended regular expressions does not allow us to express
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the fact that every input is ended by exactly one $ symbol. Without the CHECKR-
instruction in an extended Turing machine X , we then would have to deal with the
unfortunate side effect that a nonempty domX(X ) could never be finite: Assume w ∈ Γ∗

such that w 0ω ∈ domX(X ). The machine can only see a finite part of the right side of
the tape before accepting. Thus, there is a v ∈ Γ∗ such that both wv1 0ω ∈ domX(X )
and wv0 0ω ∈ domX(X ), as X will not reach the part where wv1 and wv0 differ. This
observation leads to wvx 0ω ∈ domX(X ) for every x ∈ Γ∗, and applies to various other
extensions of the Turing machine model. As Lemma 4.13 – and thereby most of the main
results in Section 4.2.5 – crucially depends on the fact that there are extended Turing
machines with a finite domain, we use CHECKR to allow our machines to perform
additional sanity checks on the input and to overcome the limitations that arise from
the lack of the input markers ¢ and $.

Using a classical coding technique for two-symbol Turing machines (see Minsky [70])
and the corresponding undecidability results, we establish the following negative results
on decision problems for extended Turing machines:

Lemma 4.10. Consider the following decision problems for extended Turing machines:

Emptiness: Given an extended Turing machine X , is domX(X ) empty?

Finiteness: Given an extended Turing machine X , is domX(X ) finite?

Then emptiness is not decidable, and neither finiteness nor its complement are semi-
decidable.

Proof. We show these results on extended Turing machines by reducing each of these
problems for “non-extended” Turing machines (or, as we call them, general Turing ma-
chines , to its counterpart for extended Turing machines. A general Turing machine is a
7-tuple M = (Q, q1, Γ̂, 0, ¢, $, δ), where Q is a finite set of states, q1 is the initial state,
0 ∈ Γ̂ is the blank tape symbol, ¢, $ ∈ Γ̂ are distinct special symbols (with ¢, $ 6= 0) that
are used to mark the beginning and end (respectively) of an input of M, and

δ : Γ̂×Q→ (Γ̂× {L,R} ×Q) ∪ {HALT}

is the transition function. We interpret δ as for extended Turing machines, and use the
same notion of tape words and configurations as for extended Turing machines.

The domain domT(M) of a general Turing machine M = (Q, q1, Γ̂, 0, ¢, $, δ), is
defined to be the set of all w ∈ (Γ̂ \ {¢, $})∗ such thatM, if started in the configuration
(0ω, tR, 0, q1) with tR = ¢w$ 0ω, halts after finitely many steps.

The definition of domT(M) corresponds to the definition of the language of a Turing
machine as given by Hopcroft and Ullman [46] and Minsky [70]. As for extended Turing
machines, we consider the following decision problems for general Turing machines:

Emptiness: Given a general Turing machine M, is domT(M) empty?

Finiteness: Given a general Turing machine M, is domT(M) finite?

Emptiness of domT is undecidable due to Rice’s Theorem; and due to the Rice-Shapiro
Theorem, both finiteness of domT and its complement are not semi-decidable (cf. Cut-
land [21], Hopcroft and Ullman [46]2).

2In [46], the Rice-Shapiro Theorem is called “Rice’s Theorem for recursively enumerable index sets”
(Chapter 8.4).
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In order to prove the present lemma’s claims on extended Turing machines, we now
define an effective procedure that, given a general Turing machine M, returns an ex-
tended Turing machine X such that domT(M) is empty (or finite) if and only if domX(X )
is empty (or finite).

First, assume that M is defined over some tape alphabet Γ̂ ⊇ {$, ¢, 0}. Using the
common technique to simulate Turing machines with larger tape alphabets on Turing
machines with a binary tape alphabet (cf. Chapter 6.3.1 in Minsky [70]), we choose a
k ≥ 1 with 2k ≥ |Γ̂| and fix any injective function bk : Γ̂ → Γk (every letter from Γ̂
is encoded by a block of k letters from Γ), with bk(0) = 0k (the blank symbol of M is
mapped to k successive blank symbols of X ). We extend this function bk canonically to
an injective morphism bk : Γ̂∗0ω → Γ∗0ω. Moreover, we partition the tape of X into non-
overlapping blocks of k tape cells, each representing a single tape cell of M as encoded
by bk.

The main idea of the construction is that X works in two phases. First, it checks
that its right tape word is bk(¢ŵ$ 0ω) = bk(¢ŵ$) 0ω for some ŵ ∈ (Γ̂ \ {¢, $})∗. If this is
the case, X simulates M, always reading blocks of k letters at a time and interpreting
every block bk(a) as input a for M.

More explicitly, the first phase works as follows: If started on an input w ∈ Γ∗0ω, X
scans w and checks whether the first block of k letters is bk(¢) (using its finite control to
store the k− 1 letters of the block, and evaluating the whole block after reading its k-th
letter). If this is not the case, X enters an infinite loop (and thus, rejects implicitly).
Otherwise, X continues scanning to the right, evaluating every block of k letters until
a block with bk($) is encountered. On its way to the right, X performs the following
checks: If a block contains some bk(a) with a ∈ (Γ̂ \ {¢, $}), X examines the next block.
If a block contains bk(¢) or some sequence of k letters that is not an image of any letter
from Γ̂, X enters an infinite loop. If a k-letter block containing bk($) is found, X moves
the head to the last letter of this block and executes the CHECKR-command. This leads
the machine to enter an infinite loop if any occurrence of the non-blank symbol 1 ∈ Γ
follows.

Thus, if there is no ŵ ∈ (Γ̂ \ {¢, $})∗ such that w = bk(¢ŵ$) 0ω, X will never find a
block bk($), and will never halt. Intuitively, X (implicitly) rejects any input that does
not satisfy its sanity criteria by refusing to halt.

But if w = bk(¢ŵ$) 0ω for some ŵ ∈ (Γ̂ \ {¢, $})∗, no tape cell containing 1 is found.
Then X enters its second phase: The machine returns to the left side of w (which it
recognizes by the unique block containing bk(¢)), and simulatesM on the corresponding
input ¢ŵ$ with bk(¢ŵ$) 0ω = w, always using the finite control to read blocks bk(a) of
length k which represent a tape letter a ∈ Γ̂ as input for M, and halting if and only if
M halts. By definition, the left tape side is initially empty; hence, due to bk(0) = 0k,
and due to the sanity check using CHECKR, we do not even need to keep track which
part of the tape X has already seen.

Thus, if w ∈ domX(X ), there is exactly one ŵ ∈ (Γ \ {¢, $})∗ with ŵ ∈ domT(M)
and bk(¢ŵ$) = w. Likewise, for every ŵ ∈ domT(M) (which, by definition, implies that
ŵ does not contain any ¢ or $), bk(¢ŵ$) 0ω ∈ domX(X ). Thus, domT(M) = ∅ if and
only if domX(X ) = ∅, and likewise, domT(M) is finite if and only if domX(X ) is finite.

As the whole construction process can be realized effectively, any algorithm that
(semi-)decides any of these two problems for extended Turing machines could be con-
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verted into an algorithm that (semi-)decides the corresponding problem for general Tur-
ing machines.

Due to the fact that emptiness of the domain for general Turing machines is not
decidable, and as neither finiteness nor its complement is semi-decidable, the claim
follows.

Those who are interested in these problems’ exact position in the arithmetical hierar-
chy (cf. Odifreddi [77]) can use Propositions X.9.5 and X.9.6 from Odifreddi [78] and the
canonical reasoning on the order of quantifiers for the respective levels to observe that –
for general and for extended Turing machines – emptiness of the domain is Π0

1-complete,
while finiteness of the domain is Σ0

2-complete (hence, its complement is Π0
2-complete).

In order to simplify some technical aspects of our further proofs below, we adopt the
following convention on extended Turing machines:

Convention 4.11. Every extended Turing machine

1. has the state set Q = {q1, . . . , qν} for some ν ≥ 1, where q1 is the initial state,

2. has δ(0, q1) = (0, L, q2),

3. has δ(a, q) = HALT for at least one 2-tuple (a, q) ∈ Γ×Q.

Obviously, every extended Turing machine can be directly (and effectively) adapted
to satisfy these criteria.

As every tape word contains only finitely many occurrences of 1, we can interpret
tape sides as natural numbers in the following (canonical) way which we already used in
the proof of Theorem 3.10 in Chapter 3: For sequences t = (ti)

∞
i=0 over Γ, define

e(t):=
∞∑
i=0

2i e(ti),

where e(0):=0 and e(1):=1. Most of the time, we will not distinguish between single
letters and their values under e, and simply write a instead of e(a) for all a ∈ Γ. It is
easily seen that e is a bijection between N and Γ∗0ω, the set of all tape words over Γ.
Intuitively, every tape word is read as a binary number, starting with the cell closest to
the head as the least significant bit, extending toward infinity.

Expressing the three parts of the tape (left and right tape word and head symbol) as
natural numbers allows us to compute the tape parts of successor configurations using
elementary integer operations. The following observation is straightforward, but a very
important tool for out proof of Theorem 4.14 further down:

Observation 4.12. Assume that an extended Turing machine X = (Q, q1, δ) is in
some configuration C = (tL, tR, a, qi), and δ(a, qi) = (b,M, qj) for some b ∈ Γ, some
M ∈ {L,R} and some qj ∈ Q. For the (uniquely defined) successor configuration
C ′ = (t′L, t

′
R, a

′, qj) with C `X C ′, the following holds:

If M = L: e(t′L) = e(tL) div 2, e(t′R) = 2 e(tR) + b, a′ = e(tL) mod 2,

if M = R: e(t′L) = 2 e(tL) + b, e(t′R) = e(tR) div 2, a′ = e(tR) mod 2.



4.2 Definitions and Preliminary Results 53

These equations are fairly obvious, especially considering Figure 4.2 and our previous
reasoning on the Observation 3.1 (the analogous observation on the configurations of the
universal machine U). When moving the head in direction M , X turns the tape cell that
contained the least significant bit of e(tM) into the new head symbol, while the other
tape side gains the tape cell containing the new letter b that was written over the head
symbol as new least significant bit.

Using the encoding e, we define an encoding encX of configurations of X by

encX (tL, tR, a, qi) :=00e(tL)#00e(tR)#00e(a)#0i

for every configuration (tL, tR, a, qi) of X . We extend encX to an encoding of finite
sequences C = (Ci)

n
i=1 (where every Ci is a configuration of X ) by

encX(C):=## encX(C1)## encX(C2)## . . . ## encX(Cn)##.

A valid computation of X is a sequence C = (Ci)
n
i=1 of configurations of X where C1

is an initial configuration (i. e. some configuration (0ω, w, 0, q1) with w ∈ Γ∗0ω), Cn is a
halting configuration, and for every i < n, Ci `X Ci+1. Thus, let

VALC(X ) = {encX(C) | C is a valid computation of X} ,
INVALC(X ) = {0, #}∗ \ VALC(X ).

The main tool in the proof of Theorem 4.15 is Theorem 4.14 (still further down), which
states that, given an extended Turing machine X , one can effectively construct an ex-
pression from RegEx(1) that generates INVALC(X ). Note that in encX(C), ## serves as
a boundary between the encodings of individual configurations, which will be of use in
the proof of Theorem 4.14. Building on Convention 4.11, we observe the following fact
on the regularity of VALC(X ) for a given extended Turing machine X :

Lemma 4.13. For every extended Turing machine X , VALC(X ) is regular if and only
if domX(X ) is finite.

Proof. The if direction follows immediately: As X is deterministic, every word in
VALC(X ) corresponds to exactly one word from domX(X ) (and the computation of
X on that word). Thus, if domX(X ) is finite, VALC(X ) is also finite, and thus, regular.

For the only if direction, let X = (Q, q1, δ), and assume that domX(X ) is infinite,
while VALC(X ) is regular. The main idea of the proof is to show that this assumption
implies the regularity of the language

LX :={0e(tR)#0e(tR) | tR ∈ domX(X )}.

Due to LX being an infinite subset of {0n#0n | n ≥ 0}, we can then obtain a contradiction
using the Pumping Lemma. In order to achieve this result, we use our convention that
M does not halt on the very first configuration (cf. Convention 4.11).

As X is deterministic, every word w ∈ VALC(X ) corresponds to exactly one tape
word tR ∈ domX(X ) and its accepting computation. This means that w has a prefix that
encodes the initial configuration (tL, tR, a, q1) with tL = 0ω and a = 0, and its successor
configuration (t′L, t

′
R, a

′, qj). Recall that, by Convention 4.11, δ(0, q1) = (0, L, q2). Using
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the first equation in Observation 4.12, we conclude e(t′L) = 0, e(t′R) = 2 e(tR), and a′ = 0.
This means that there are wp, w

′ ∈ {0, #}∗ such that w = wpw
′, and

wp = ##0 ︸︷︷︸
e(tL)

#0 0e(tR)︸ ︷︷ ︸
e(tR)

#0 ︸︷︷︸
a

# 0︸︷︷︸
q1

##0 ︸︷︷︸
e(t′L)

#0 0e(t′R)︸ ︷︷ ︸
e(t′R)

#0 ︸︷︷︸
a′

# 02︸︷︷︸
q2

##. (4.1)

We now define a GSM M (see Section 4.2.3 for the definition of generalized sequential
machines) to transform VALC(X ) into the language LX . The GSM M is defined by the
transition diagram in Figure 4.3.

q1 q2 q3 q4

q5

q6

##0#0|λ #|#

0|0

0#0##0#0|λ

0|0

#|λ

0|λ

0|λ, #|λ

Figure 4.3: The GSM M that is used in the proof of Lemma 4.13. Every transition
shows the string that is read to the left of the | symbol, and the emitted string to the
right. First, M erases ##0#0 and keeps the following continuous block of 0s and the #

after it. It then erases 0#0##0#0 and halves the number of 0s in the next continuous
block of 0s (using the loop between q4 and q5). After that block (as recognizable by #),
all following letters are erased. Note that M relies on the fact that it is only used on
words w = wpw

′, where wp of the form that is described in 4.1. For all such words, w′ is
completely erased in the loop in q6.

Compared to the definition of generalized sequential machines from Section 4.2.3, this
definition of M uses a slightly streamlined notation by allowing M to read multiple letters
in the transition between q1 and q2 and between q3 and q4. By introducing additional
states, one can easily convert M into a GSM that reads one letter after the other. E. g.,
instead of directly transitioning from q1 to q2 in a single step reading ##0#0 and emitting
λ, M could be redefined by adding four additional states q1,1 to q1,4, such that M goes
from q1 to q1,1 reading #, then q1,2 reading #, then q1,3 reading 0, then to q1,4 reading #,
and finally to q2 reading 0, while emitting λ in every step.

Thus, for every w ∈ VALC(X ), there are words wp, w
′ ∈ {0, #}∗ such that w = wpw

′,
where wp satisfies Equation 4.1 and encodes some values e(tR) and e(t′R). Now assume
that M is applied to w. First note that M is deterministic, thus, M(w) can contain
at most one word (in principle, M(w) could even be empty if M does not reach the
accepting state q6, but considering the structure of all words in VALC(X ), it is fairly
easy to see that this is impossible).

When transitioning from q1 to q2, M removes the prefix ##0#0 from w. This erases
the encoding of e(tL), the surrounding #, and the 0 that precedes the encoding of e(tR).
While M loops in q2, every 0 from the encoding of e(tR) is passed through unchanged, as
is the # that marks the end of that encoding when transitioning to q2. Therefore, when
M has reached q3, it has emitted 0e(tR)# and read the part ##0#00e(tR)# of the input.
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In the transition from q3 to q4, M reads 0#0##0#0 and emits only λ – thus, the GSM
passes over those parts of wp that encode a, q1 (of X ) and e(t′L), and over the 0 that
precedes the encoding of e(t′R), and emits only λ. In the loop between q4 and q5, M
emits half of the 0s that encode e(t′R). When reaching the # that marks the end of that
block, M transitions to q6 and erases all remaining letters of wp and all of w′. Thus,

M(w) = 0e(tR)#0
1
2

e(t′R) = 0e(tR)#0e(tR). Hence, if we consider not a single w ∈ VALC(X ),
but the whole language, we have

M(VALC(X )) =
⋃

w∈VALC(X )

M(w)

= {0e(tR)#0e(tR) | tR ∈ domX(X )} = LX .

By our initial assumption, VALC(X ) is regular, and as the class of regular languages is
closed under GSM mappings, LX must be regular as well. Also by our initial assumption,
domX(X ) is infinite, which means that LX is an infinite subset of {0n#0n | n ≥ 0}.
Using the Pumping Lemma (cf. Hopcroft and Ullman [46]), we can obtain the intended
contradiction, as pumping any sufficiently large word from LX would lead to a word that
is not a subset of 0∗#0∗, or to a word 0m#0n with m 6= n.

4.2.5 The Main Construction

Using the technical preparations from Sections 4.2.3 and 4.2.4, we are now able to state
Theorem 4.14, the main technical result that forms the fundament for the undecidability
result Theorem 4.15, on which in turn all further results in the present chapter are
based. In order to ease navigation of the text, this section contains only the statement
and its proof; the consequences of Theorem 4.14 (most importantly, Theorem 4.15) are
explained in Section 4.3.

Theorem 4.14. For every extended Turing machine X , one can effectively construct an
extended regular expression αX ∈ RegEx(1) such that L(αX ) = INVALC(X ).

Proof. Let X = (Q, q1, δ) be an extended Turing machine. Let ν ≥ 2 denote the number
of states of X ; by Convention 4.11, Q = {q1, . . . , qν} for some ν ≥ 2. Intuitively, each
element w of INVALC(X ) contains at least one error that prevents w from being an
encoding of a valid computation of X . We distinguish two kinds of errors:

1. structural errors , where a word is not an encoding of any sequence (Ci)
n
i=1 over

configurations of X for some n, or the word is such an encoding, but C1 is not an
initial, or Cn is not a halting configuration, and

2. behavioral errors , where a word is an encoding of some sequence of configurations
(Ci)

n
i=1 of X , but there is an i < n such that Ci `X Ci+1 does not hold.

The extended regular expression αX is defined by

αX :=αstruc | αbeha,

where the subexpressions αstruc and αbeha describe all structural and all behavioral errors,
respectively. Both expressions shall be defined later. Note that the variable reference
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mechanism shall be used only for some extended regular expressions in αbeha; most of
the encoding of INVALC(X ) can be achieved with proper regular expressions. In order
to define αstruc, we take a short detour and consider the language

SX :=
(
##0+#0+#0{λ, 0}#

{
0i | 1 ≤ i ≤ ν

})+
##

∩ ##0#0+#0#0##{0, #}∗

∩ {0, #}∗#
{

00a#0i## | a ∈ Γ, δ(a, qi) = HALT
}
.

Note that SX is exactly the set of all encX(C), where C = (Ci)
n
i=1 (with n ≥ 2) is a

sequence of configurations of X ; with C1 being an initial configuration (where neither
the left tape side nor the head cell contain any 1), and Cn being a halting configuration
(n ≥ 2 follows from our Convention 4.11 that X cannot halt in the first step). In other
words, all that distinguishes SX from VALC(X ) is that for SX , we do not require that
Ci `X Ci+1 holds for all i < ν. Thus, VALC(X ) ⊆ SX .

Furthermore, SX is a regular language, as it is obtained by an intersection of three
regular languages. Thus, {0, #}∗ \ SX is also a regular language, and we define αstruc to
be any proper regular expression with L(αstruc) = {0, #}∗ \ SX . It is easy to see that
such an αstruc can be constructed effectively solely from X , for example by constructing
a deterministic finite automaton A for SX , complementing A (by turning accepting
into non-accepting states, and vice versa), and converting the resulting nondeterministic
automaton into a proper regular expression. The DFA A depends only on ν and the
halting instructions occurring in δ and can be constructed effectively, as can all the
conversions that lead to αstruc (again, cf. Hopcroft and Ullman [46]). The exact shape
of αstruc is of no significance to this proof, as we require only that the expression is a
proper regular expression, and can be obtained effectively.

As mentioned above, VALC(X ) ⊆ SX , and thus, INVALC(X ) ⊇ L(αstruc). Further-
more, all elements of INVALC(X ) \ L(αstruc) are elements of SX and encode a sequence
(Ci)

n
i=1 (n ≥ 2) of configurations of X such that Ci `X Ci+1 does not hold for at least

one i, 1 ≤ i < n.
Thus, INVALC(X ) \ L(αstruc) contains exactly those words from SX that encode a

sequence of configurations with at least one behavioral error. Therefore, when defining
αbeha to describe all these remaining errors, we can safely assume that the word in
question is an element of SX , as otherwise, it is already contained in L(αstruc). This
allows us to reason about the yet to be defined elements of INVALC(X ) purely in terms
of the execution of X , as the encoding is already provided by the structure of SX ,
and to understand all errors that are yet to be defined as incorrect transitions between
configurations.

We distinguish three kinds of behavioral errors in the transition between a configu-
ration C = (tL, tR, a, qi) and a configuration C ′ = (t′L, t

′
R, a

′, qj), where C `X C ′ does not
hold:

1. state errors , where qj has a wrong value,

2. head errors , where a′ is wrong, and

3. tape side errors , where t′L or t′R contains an error (characterized by e(t′L) or e(t′R)
being different from the value that is expected according to Observation 4.12).
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Each of these types of errors shall be handled by an expression αstate, αhead or αtape
(respectively, of course), and we define

αbeha:=(αstate | αhead | αtape).

Basically, each of these expressions lists all combinations of a ∈ Γ and qi ∈ Q, and
describes the corresponding errors of the respective kind. The error that X continues its
computation after encounter a HALT-instruction is considered a state error and handled
in αstate (thus, we do not need to consider HALT-instructions in αhead and αtape). We
can already note that αhead and αstate are proper regular expressions, as variables and
the % metacharacter occur only in αtape (recall that, as αX ∈ RegEx(1), we are only
allowed to use % once in the whole expression).

State errors: We begin with the definition of αstate. For every a ∈ Γ and every i with
qi ∈ Q, we define a proper regular expression αstatea,i , and let

αstate:=
(
αstate0,1 | αstate1,1 | αstate0,2 | αstate1,2 | . . . | αstate0,ν | αstate1,ν

)
,

where each αstatea,i lists all ‘forbidden’ follower states for qi on a. More formally, if δ(a, qi) =
HALT, let

αstatea,i :=(0 | #)∗#00a#0i##0(0 | #)∗.

For all words in SX , this expression describes all cases where X reads a in state qi, and
continues instead of halting. First, as mentioned above, we only need to consider words
from SX , as all other words are already matched by αstruc. Due to the definition of encX,
every ## in words from SX marks the boundary between two encoded configurations,
and every string #0i immediately to the left of such a ## encodes a state qi. Likewise,
when continuing to the left, #00a encodes the head letter a. Thus, whenever a word from
SX contains a string #00a#0i##, there is a configuration where X is in state qi and reads
a. As δ(a, qi) = HALT, there may not be a succeeding configuration, and this definition
of αstatea,i describes all cases where X continues after reading a in qi. Note that we do
not need to deal with cases where ## is followed by yet another #, as such words are not
contained in SX and, thus, contained in L(αstruc).

For those cases where δ(a, qi) = (b,M, qj) for some M ∈ {L,R}, some b ∈ Γ, and
some qj ∈ Q, we define

αstatea,i :=(0 | #)∗#00a#0i##0+#0+#0+#αnotj ##(0 | #)∗,

where αnotj is any proper regular expression with

L(αnotj ) = {0k | 1 ≤ k ≤ ν and k 6= j}.

Again, we use #00a#0i## to identify an encoding of a configuration with head letter a
in state qi. To the right of ##, the subexpression 0+#0+#0+# is used to skip over the
encodings of t′L, t′R and a′, as we only deal with state errors (for now). By definition, the
invalid successor states are exactly all states from Q \ {qj}, and these are described by
αnotj . Thus, if a word from SX contains any state error when reading a in qi, the whole
word belongs to αstatea,i , and αstatea,i only matches such words.
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Finally, if δ(a, qi) = (CHECKR, qj) for some qj ∈ Q, we define

αstatea,i :=
(
(0 | #)∗#0#00a#0i##0+#0+#0+#αnotj ##(0 | #)∗

)
|
(
(0 | #)∗#00+#00a#0i##0+#0+#0+#αnoti ##(0 | #)∗

)
,

where αnotj is defined as in the preceding paragraph. This expression is slightly more
complicated, as it needs to distinguish two cases. Recall that the CHECKR-instruction
is to be interpreted as follows: If tR = 0ω, X is to change into state qj; and if tR 6= 0ω, X
is to stay in qi, which will lead to an infinite loop. The first line of the definition handles
all cases where tR = 0ω, while the second handles those where tR 6= 0ω. Again, both
cases use #00a#0i## to identify configurations where X is in state qi reading a.

In the first case, the string #0#00a#0i## contains the additional information that
e(tR) = 0, and thus, tR = 0ω. The correct successor state would be qj, and the expression
skips over the encodings of t′L, t′R and a′ (using 0+#0+#0+#αnotj #) and then matches all
states but qj.

Likewise, in the second case, #00+#00a#0i## matches all cases where (when reading
a in qi) e(tR) > 0, which is equivalent to tR 6= 0ω. Again, the expression skips over the
encodings of t′L, t′R and a′ and uses αnoti to identify all states that are not the correct
successor state qi.

Head errors: As αstate handles all cases where a halting configuration is followed by
any other configuration, we can restrict our definition of the various head errors to cases
where a non-halting instruction should be executed. We define

αhead:=
(
αhead0,1 | αhead1,1 | αhead0,2 | αhead1,2 | . . . | αhead0,ν | αhead1,ν

)
,

omitting those αheada,i with δ(a, qi) = HALT. For all a ∈ Γ, qi ∈ Q with δ(a, qi) 6= HALT,
we define αheada,i as follows.

If δ(a, qi) = (b, L, qj) (for some qj ∈ Q), let

αheada,i :=
(
(0 | #)∗#0(00)∗#0+#00a#0i##0+#0+#00#(0 | #)∗

)
|
(
(0 | #)∗#00(00)∗#0+#00a#0i##0+#0+#0#(0 | #)∗

)
.

According to the first equation in Observation 4.12, after a left movement of the head,
a′ = e(tL) mod 2 must hold. The two lines in the αheada,i distinguish the two possible
cases for e(tL) mod 2. In both cases, we once again identify a and qi in the encoding
using #00a#0i#. In the first line, the expression ignores e(tR) (using the 0+ to the left
of #00a#), and describes all cases where e(tL) is even (by the (00)∗ part of #0(00)∗). To
the right of ##, the expression skips t′L and t′R and finds a′ = 1, thus exactly those cases
where e(tL) is even, but a′ = 1. Likewise, the second line handles the cases where e(tL)
is odd, but a′ = 0. As a′ ∈ {0, 1} is ensured by SX , these expressions describe exactly
the head errors after L-movements.

Likewise, if δ(a, qi) = (b, R, qj) (for some qj ∈ Q), let

αheada,i :=
(
(0 | #)∗#0(00)∗#00a#0i##0+#0+#00#(0 | #)∗

)
|
(
(0 | #)∗#00(00)∗#00a#0i##0+#0+#0#(0 | #)∗

)
.
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This expression uses the second equation in Observation 4.12, a′ = e(tR) mod 2, and
works like the expression for L-moves, the only difference being that it does not skip
over the encoding of tR.

Finally, if δ(a, qi) = CHECKR(qj) for some qj ∈ Q, we define

αheada,i :=(0 | #)∗#00a#0i##0+#0+#001−a#(0 | #)∗.

As CHECKR-instructions do not change the tape or the head symbol, we just need to
describe the case where a′ 6= a. The expression identifies an encoding of a configuration
with head symbol a in state qi (again using ## as a navigation tool), skips over t′L and
t′R, and finds a head symbol a′ = 1 if a = 0, or a′ = 0 if a = 1. As a is fixed within every
αheada,i , we can use the shorthand notation 01−a without any formal problems (as it is just
another notation for 0 or λ, depending on a).

Tape side errors: As mentioned above, αtape is the only expression in this proof that
uses variables and variable bindings. In fact, as we operate in RegEx(1), we are only
allowed to use a single variable (which shall be called x), and bind it only once in all of
αtape.

In order to increase the readability, we shall define αtape using numerous subexpres-
sions. As most of these expressions contain the binding operator %, simply connecting
them with | (as we did with the proper regular expressions in the previous cases) would
force us out of RegEx(1). The main idea of this part of the proof is that, in all these
expressions, the binding occurs only in a prefix that they all have in common. This
allows us to ‘factor out’ the variable binding, and to capture all tape side errors without
leaving RegEx(1). Therefore, we do not need not be worried by the fact that most of the
following definitions contain %x; as we shall see, the resulting expression αstruc contains
only a single %x.

In this section, we do not follow our usual order, as we discuss tape side errors for
L- and R-instructions after the tape side errors for CHECKR-instructions. If δ(a, qi) is
a CHECKR-instruction, we define

αa,iL,>:=(0 | #)∗#0(0∗)%x#0+#00a#0i##0x0+#(0 | #)∗,

αa,iL,<:=(0 | #)∗#0(0∗)%x0+#0+#00a#0i##0x#(0 | #)∗,

αa,iR,>:=(0 | #)∗#0(0∗)%x#00a#0i##0+#0x0+#(0 | #)∗,

αa,iR,<:=(0 | #)∗#0(0∗)%x0+#00a#0i##0+#0x#(0 | #)∗.

Intuitively, for M ∈ {L,R}, αa,iM,> is used to describe all successor configurations (after

reading a in qi), where e(t′M) > e(tM). Likewise, αa,iM,< handles all those cases where

e(t′M) < e(tM). We discuss the correctness of these expressions using αa,iL,> as an example,

the three other expressions behave analogously. If αa,iL,> matches a word from SX , x
is bound to some word 0n with n ≥ 0 (due to (0∗)%x). As this 0n belongs to the
fourth block of 0s when counting from ## to the left, 0(0)n corresponds to 00e(tL) for a
configuration (tL, tR, a, qi). Analogously, the subexpression ##0x0+# matches the block
that encodes e(t′L). As ##00n0+# is expanded to some ##00n0m (with m ≥ 1), we know
that e(t′L) = 0m0n > e(tL). Likewise, for every e(t′L) > e(tL), we can find an appropriate
m ≥ 1 and expand 0+ to 0m. Thus, αa,iL,> matches exactly those cases in which X reads
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a in qi, and the resulting e(t′L) is larger than it should be (i. e., larger than e(tL), as
CHECKR-instructions do not change the tape).

The three other expressions behave analogously; but note that for αa,iR,> and αa,iR,<,
the subexpression 0(0∗)%x matches a the coding of e(tR) instead of e(tL), as can be seen
by the location of ##.

Handling tape side errors for configurations that lead to a left or right movement of
the head follows the same basic principle, but is a little more complicated, as we have to
deal with changes to the tape. First, recall that the equations given in Observation 4.12
allow us to compute e(t′L) and e(t′R) from e(tL), e(tR) and δ(a, qi).

If δ(a, qi) ∈ (b, L, qj) for some qj ∈ Q, we define

αa,iL,>:=(0 | #)∗#0(0∗)%xx(0 | λ)#0+#00a#0i##0x0+#(0 | #)∗,

αa,iL,<:=(0 | #)∗#0(0∗)%xx000∗#0+#00a#0i##0x#(0 | #)∗,

αa,iR,>:=(0 | #)∗#0(0∗)%x#00a#0i##0+#0xx0b0+#(0 | #)∗,

αa,iR,<:=(0 | #)∗#0(0∗)%x0+#00a#0i##0+#0xx0b#(0 | #)∗,

αa,imod:=(0 | #)∗#00a#0i##0+#0(00)∗01−b#(0 | #)∗.

These expressions fulfill the same purpose as their equally named counterparts we defined
to handle tape side errors for configurations in which a CHECKR-instruction is executed,
i. e., they describe the cases where e(t′L) or e(t′R) contains too much or too little. For
technical reasons that shall be explained a little later, we also use a proper regular
expression αa,imod to describe the errors where e(tR) has the wrong parity.

We begin with the expressions that handle errors on the left tape side. According
to the first equation in Observation 4.12, the correct t′L is characterized by e(t′L) =
e(tL) div 2.

First, we consider αa,iL,>. As before, a and qi are matched in #00a#0i##. To the left

of that block, the expression skips the encoding of e(tR), and matches 00e(tL) with the
expression 0(0∗)%xx(0 | λ). Note that x is bound to 0e(tL) div 2, and 0e(tL) mod 2 matches 0
or λ in (0 | λ). To the right of ##, 0x0+ matches the encoding of 00e(t′L). It is easily seen
that this describes exactly those cases where e(t′L) > (e(tL) div 2), as the 0+ is used to
match all possible values of e(t′L)− (e(tL) div 2).

Next, consider αa,iL,<. Note that if e(t′L) = (e(tL) div 2), either e(tL) = 2 e(t′L) or
e(tL) = 2 e(t′L) + 1 holds. Thus, e(t′L) is too small if and only if e(tL) > e(t′L) + 1, which
holds if and only if e(tL) = e(t′L)+2+m for some m ≥ 0. We can easily see that (for words
from SX ), αa,iL,< matches exactly those encodings of successive configurations (tL, tR, a, qi)
and (t′L, tR, a

′, qj), where e(tL) = 2n+ 2 +m and e(t′L) = n for some m,n ≥ 0, as x binds
to 0n, and 0(0∗)%xx000∗ corresponds to 00n0n000m = 00e(tL). Thus, this expression
handles exactly those cases where e(t′L) is too small.

Hence, αa,iL,> and αa,iL,< handle all errors on the left tape side (for given a, qi with
δ(a, qi) = (b, L, qj)). As we still need to handle errors on the right tape side, recall that
(according to the first equation in Observation 4.12), the correct right tape word t′R is
characterized by e(t′R) = 2 e(tR) + b.

It is easy to see that αa,iR,> handles exactly those words (from SX , with X reading a

in qi) where e(t′R) is too large. First, x is bound to 0e(tR). For t′R, we have 0 xx0b0+,
and thus, e(t′R) = 2 e(tR) + b+ n, with n ≥ 1, where 0+ expresses the difference between
e(t′R) and its intended value.
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The final case, where t′R is too small, is more complicated. We handle this case
with two expressions. First, note that e(t′R) mod 2 = b must hold. The expression αa,imod
describes those cases where this condition is not satisfied; i. e., X reads a in qi, but
e(t′R) mod 2 6= b. Therefore, we can restrict our definition of αa,iR,< to those cases where
e(t′R) and b have the same parity. In these cases, e(t′R) = 2n + b for some n ≥ 0, but
e(tR) > n, which holds if and only if there is an m geq0 with e(tR) = n+m+1. The words
from SX that match αa,iR,< (but not αa,imod) are exactly those that satisfy this condition:

The variable x is bound to 0n, while 0+ corresponds to m+1. Thus, αa,imod | α
a,i
R,< handles

the cases where e(t′R) is too small (but not exactly those cases, even when restricted to
SX , as αa,imod also matches encodings of computations where e(t′R) is too large and of the
wrong parity).

As we have seen, these five expressions describe all tape side errors occurring during
left movements of the head. Analogously, if δ(a, qi) ∈ (b, R, qj) for some qj ∈ Q, we
define

αa,iR,>:=(0 | #)∗#0(0∗)%xx(0 | λ)#00a#0i##0+#0x0+#(0 | #)∗,

αa,iR,<:=(0 | #)∗#0(0∗)%xx000∗#00a#0i##0+#0x#(0 | #)∗,

αa,iL,>:=(0 | #)∗#0(0∗)%x#0+#00a#0i##0xx0b0+#(0 | #)∗,

αa,iL,<:=(0 | #)∗#0(0∗)%x0+#0+#00a#0i##0xx0b#(0 | #)∗,

αa,imod:=(0 | #)∗#00a#0i##0(00)∗01−b#(0 | #)∗.

As already suggested by the similarities (of the equations in Observation 4.12, and of
the definitions of the five expressions), tape side errors for R-movements can be handled
analogously to tape side errors for L-movements. Thus, it can be easily verified that
these expressions describe exactly the tape side errors for all transitions where X reads
a in state qi (again assuming that we only consider words from SX ).

We can now combine all these expressions to define αtape. First, note that whenever
it is defined, αa,imod is a proper regular expression. We define

αmod:=α
0,1
mod | α

1,1
mod | α

0,2
mod | α

1,2
mod | . . . | α

0,ν
mod | α

1,ν
mod,

omitting those αa,imod that are undefined (i. e., cases where δ(a, qi) is a HALT- or a
CHECKR-instruction).

Next, note that all other expressions for tape side errors use exactly one variable
binding, and start with the common prefix (0 | #)∗#0(0∗)%x. For every αa,iM,c (with

M ∈ {L,R} and c ∈ {>,<}), let α̂a,iM,c be the (uniquely defined) extended regular
expression that satisfies

αa,iM,c = (0 | #)∗#0(0∗)%x α̂a,iM,c.

In other words, α̂a,iM,c is obtained from αa,iM,c by factoring out the prefix that contains
the variable binding. We then combine all this expressions into a single expression
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αvar ∈ RegEx(1) by

αvar = (0 | #)∗#0(0∗)%x

(
α̂0,1
L,> | α̂

0,1
L,< | α̂

0,1
R,> | α̂

0,1
L,R | α̂

1,1
L,> | α̂

1,1
L,< | α̂

1,1
R,> | α̂

1,1
L,R |

. . .

|α̂0,ν
L,> | α̂

0,ν
L,< | α̂

0,ν
R,> | α̂

0,ν
L,R | α̂

1,ν
L,> | α̂

1,ν
L,< | α̂

1,ν
R,> | α̂

1,ν
L,R

)
,

omitting all subexpressions that refer to (a, qi) where δ(a, qi) = HALT. Finally, we set

αtape:=αmod | αvar.

As discussed before, it is easy to see that L(αtape) is the union of all the languages
that are generated by the various regular expressions we defined to handle tape side
errors, and thus, L(αtape) contains exactly those words from SX that encode a tape side
error at some point of the encoded computation. Therefore, for every word w ∈ {0, #}∗,
w ∈ L(αX ) if and only if

w ∈ L(αstruc) ∪ L(αstate) ∪ L(αhead) ∪ L(αtape),

and this holds if and only if w contains a structural or behavioral error. Hence, we observe
that w ∈ L(αX ) if and only w ∈ INVALC(X ), and thereby, L(αX ) = INVALC(X ).

Finally, as this proof defines αX constructively, using only ν and δ, it also describes
an effective procedure to compute αX from X . This concludes the proof of Theorem 4.14.

Note that in the proof of Theorem 4.14, the single variable x is bound only to words
that match the expression 0∗. This shows that the “negative” properties we list in
Section 4.3 hold even if we restrict RegEx(1) by requiring that the variable can only be
bound to some proper regular expressions. In addition to this, it can be easily adapted
to pattern expressions (cf. Câmpeanu and Yu [15]) and H-expressions (cf. Bordihn et
al. [9]). These H-expressions are based on H-systems, which were introduced by Albert
and Wegner [3].

Theorem 4.14 can even be adapted to these simpler H-systems. An H-system is a 4-
tuple H = (X,Σ, L1, φ), where X and Σ are finite alphabets (the meta alphabet and the
terminal alphabet, respectively), L1 ⊆ X∗ is called the meta language, and φ : X → P is
a function that assigns to each x ∈ X a language φ(x) = Lx ⊆ Σ∗. The language of H
is defined as

L(H):={h(w) | w ∈ L1, h is a morphism with h(x) ∈ φ(x) for all x ∈ X}.

Less formally, every letter x from the meta alphabet is replaced uniformly with a word
from φ(x).

Furthermore, if L1 and L2 are classes of languages, H(L1,L2) denotes the class of
H-system languages of L1 and L2, i. e., the class of all languages that are generated by
H-systems that use a language L1 ∈ L1 as metalanguage, and have φ(x) ∈ L2 for every
x in their meta alphabet X.
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As explained by Bordihn et al. [9], one can easily show that all classes of pattern
languages are subclasses of H(ONE,REG) (where ONE denotes the class of languages
that contain only one word, and REG denotes the class of regular languages). It is easy
to see that, for every extended Turing machine X , the expressions αX that is derived from
the proof of Theorem 4.14 can be easily converted into an H-system H = (XH ,ΣH , L1, φ)
with L(H) = INVALC(X ) and L(H) ∈ H(REG,REG) by proceeding as follows.

First, we select Xh:={0, #, x} and ΣH :={0, #}. We then replace the single occurrence
of (0∗)%x in αX with x, and obtain a proper regular expression α̂X over the alphabet
ΣH . This allows us to choose L1:=L(α̂X ), while L1 ∈ REG holds. Next, we define
φ(0) = {0}, φ(#) = {#}, and φ(x):={0}∗. Hence, L(H) = L(αX ) = INVALC(X ) follows
immediately.

4.3 Undecidability and Its Consequences

As mentioned in Section 4.1, the central questions of the present chapter are whether we
can minimize extended regular expressions (under any complexity measure as defined in
Definition 4.7, or with respect to the number variables), and whether there is a recursive
upper bound on the tradeoff between extended and proper regular expressions. We
approach these questions by proving various degrees of undecidability for the decision
problems given in Definition 4.6. Building on Theorem 4.14 and Lemma 4.10, we can
almost immediately state this section’s main theorem:

Theorem 4.15. For RegEx(1), universality is not decidable; and regularity, cofiniteness,
and their complements are not semi-decidable.

Proof. We prove each of the claims by reduction from one of three problems for extended
Turing machines that are listed in Lemma 4.10 (these being emptiness, finiteness, and
the complement of finiteness). Each reduction uses the same construction: Given an
extended Turing machine X , we construct an extended regular expression αX ∈ RegEx(1)
with INVALC(X ) = L(αX ) (this is possible according to Theorem 4.14).

Then domX(X ) = ∅ if and only if VALC(X ) = ∅, which holds if and only if
INVALC(X ) = {0, #}∗, which holds if and only if L(αX ) = {0, #}∗. Thus, any algorithm
that decides universality for RegEx(1) could be used to decide the emptiness of the
domain for extended Turing machines, which is not decidable according to Lemma 4.10.

Furthermore, domX(X ) is finite if and only if VALC(X ) is finite, which holds if
and only if VALC(X ) is regular (according to Lemma 4.13), which holds if and only if
INVALC(X ) is regular (as the class of regular languages is closed under complementa-
tion), which holds if and only if L(αX ) is regular. Hence, semi-decidability of regularity
for RegEx(1) would lead to semi-decidability of finiteness of domX, a problem that is
not semi-decidable (according to Lemma 4.10)

Likewise, as domX(X ) is finite if and only if L(αX ) is regular, domX(X ) is infinite
if and only if L(αX ) is not regular. Therefore, semi-decidability of non-regularity for
RegEx(1) contradicts the fact that the complement of finiteness of domX is not semi-
decidable (see Lemma 4.10).

As INVALC(X ) is cofinite if and only if INVALC(X ) is regular, the results for reg-
ularity and non-regularity also show that neither cofiniteness nor non-cofiniteness is
semi-decidable for RegEx(1).
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Of course, all these undecidability results also hold for every RegEx(k) with k ≥ 2,
and for the whole class RegEx of extended regular expressions (as RegEx(1) is contained
in all these classes)3. Theorem 4.15 also demonstrates that inclusion and equivalence
are undecidable for RegEx(1) (and, hence, all of RegEx). We also see, as an immediate
consequence to Theorem 4.15, that there is no algorithm that minimizes the number of
variables in an extended regular expression, as such an algorithm could be used to decide
regularity4.

Note that in the proof of Theorem 4.15, the single variable x is bound only to words
that match the expression 0∗. This shows that the “negative” properties of extended
regular expressions we derive from Theorem 4.15 hold even if we restrict RegEx(1) by
requiring that the variable can only be bound to a very restricted proper regular expres-
sion. Furthermore, the proof also applies to the extension of proper regular expressions
through numerical parameters that is proposed in Della Penna et al. [23]. In addition
to this, the construction from Theorem 4.14 (which we shall use to prove Theorem 4.15,
and consequently, all other results in the present chapter) can be refined to also include
bounds on the number of occurrences of the single variable – see Section 4.3.1. Further-
more, as explained at the end of Section 4.2.5, we can adapt these proofs to the class
H(REG,REG) of H-system languages, and conclude the same levels of undecidability of
the respective decision problems for H(REG,REG). As H(REG,REG) is a subclass of
the class of H-expression languages (cf. Bordihn et al. [9]), this also proves that equiva-
lence for H-expression languages is undecidable, a problem that was explicitly left open
in [9].

From the undecidability of universality, we can immediately conclude that RegEx(1)
cannot be minimized effectively:

Corollary 4.16. Let c be a complexity measure for RegEx(1). Then there is no recursive
function mc that, given an expression α ∈ RegEx(1), returns an expression mc(α) ∈
RegEx(1) with

1. L(mc(α)) = L(α), and

2. c(β) ≥ c(mc(α)) for every β ∈ RegEx(1) with L(β) = L(α).

3Note that cofiniteness for extended regular expressions is a more general case of the question whether
a pattern is avoidable over a fixed terminal alphabet, an important open problem in pattern avoidance
(cf. Currie [20]). Example 4.2 illustrates this relation for the pattern xx over a binary alphabet. See
Reidenbach [85] (Proposition 3.4) for a more detailed explanation.

4Those who are interested in the exact position of these problems in the arithmetical hierarchy (cf.
Odifreddi [77]) can conclude that universality is Π0

1-complete, while regularity and co-finiteness are
Σ0

2-complete. For each of these problems, hardness for the respective class follows from the respective
completeness of each of the problems on extended Turing machines used in the proof of Theorem 4.15 (see
the remark at the end of the proof of Lemma 4.10). Membership in the respective level of the hierarchy
is easily proved using the appropriate representation for that class; e. g., universality of some L(α) can
be expressed as ∀w ∈ Σ∗ : w ∈ L(α). As the membership problem for extended regular expressions is
decidable, this proves that universality is in Π0

1. Likewise, non-regularity can be expressed as

∀β ∈ RegEx(0) : ∃w ∈ Σ∗ : [w ∈ L(α)⇔ w /∈ L(β)],

which shows that non-regularity is in Π0
2. Actually, under a strict interpretation of the definition given by

Odifreddi [77], we would need to quantify over natural numbers; but as there are computable bijections
between N and Σ∗, as well as between N and RegEx(0), we can omit this technical detail.
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Proof. Let c be a complexity measure for RegEx(1) and assume there is such a function
mc. Let Σ be any finite alphabet with |Σ| ≥ 2, and let

Uc:= {mc(α) | L(α) = Σ∗} .

By definition of c, Uc is a finite set, and therefore recursive. As L(α) = Σ∗ if and
only if mc(α) ∈ Uc, mc and the characteristic function of Uc can be used to decide
universality for RegEx(1), a problem that is not decidable (cf. Theorem 4.15). This is a
contradiction.

Following the classic proof method of Hartmanis [41] (cf. Kutrib [61]), we can use
the fact that non-regularity is not semi-decidable to obtain a result on the relative
succinctness of extended and proper regular expressions:

Corollary 4.17. There are non-recursive tradeoffs between RegEx(1) and RegEx(0).
This holds even if we consider only the tradeoffs between CoFRegEx(1) and CoFRegEx(0),
using a complexity measure for RegEx(1).

Proof. The result for RegEx(1) and RegEx(0) follows immediately from Theorem 4.15
and Theorem 4 in Hartmanis [41]5: As non-RegEx(0)-ity is not semi-decidable for
RegEx(1), the tradeoff between RegEx(1) and RegEx(0) is non-recursive.

Thus, in order to prove the existence of non-recursive tradeoffs between RegEx(1)
and RegEx(0), it would suffice to invoke Theorem 4 from Hartmanis [41]. This does not
apply for the claimed non-recursive tradeoff between CoFRegEx(1) and CoFRegEx(0),
as it is not possible to define a complexity measure for CoFRegEx(1), as our definition
of complexity measures requires that the expressions can be enumerated effectively in
order of increasing size. According to Theorem 4.15, non-cofiniteness for RegEx(1) is
not semi-decidable, hence, this enumeration criterion cannot be satisfied.

Nonetheless, this problem can be solved using a slight adaption of Hartmanis’ proof
scheme. Therefore, we first consider the canonical proof for the existence of non-recursive
tradeoffs between RegEx(1) and RegEx(0), and then state the necessary modifications.

Applied to RegEx(1) and RegEx(0), Hartmanis’ proof scheme gives the following
proof: As non-regularity is not semi-decidable for RegEx(1), the set

∆:={α ∈ RegEx(1) | L(α) is not regular}

is not partially recursive. Now assume that, for a given complexity measure c, the
tradeoff from RegEx(1) to RegEx(0) is recursively bounded by some recursive function
fc. We can then use fc to construct a semi-decision procedure for ∆ as follows: Given
some α ∈ RegEx(1), we compute n:=fc(c(α)), and let

Fn:={β ∈ RegEx(0) | c(β) ≤ n}.
5As it would require considerable additional definitional effort, the author decided against including

an exact formulation of Hartmanis’ theorem in the present thesis (e. g., we defined complexity measures
and tradeoffs only for classes of regular expressions, not for arbitrary description systems). Basically,
Hartmanis’ theorem states that, for two description systems D1, D2 and respective complexity mea-
sures c1, c2, non-recursive tradeoffs between D2 and D1 exist if non-D1-ity is not semi-decidable for
descriptions from D2. See also Kutrib [61] for more detailed explanations than in [41].
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As c is a complexity measure, Fn is finite, and we can effectively list all its elements
(as we can effectively list all β ∈ RegEx(1) with c(β) ≤ n, and we can decide whether
β ∈ RegEx(0) by searching β for occurrences of variables or the metacharacter %). For
each β ∈ Fn, we then semi-decide L(β) 6= L(α) by checking w ∈ L(α) and w ∈ L(β) for
all w ∈ Σ∗ successively.

If L(α) is not regular, then for every β ∈ Fn, we find some wβ in finite time that
proves L(β) 6= L(α) (as wβ is not contained in one of the two languages, but in the
other), and we can proceed to the next expression in Fn. If L(α) is regular, and fc is a
bound on the tradeoff from RegEx(1) to RegEx(0), there is a β ∈ Fn with L(β) = L(α),
and the procedure will never terminate. If no such β can be found, we know that α ∈ ∆,
and the procedure can return 1. Thus, we can construct a semi-decision procedure for
∆, which contradicts the established fact that ∆ is not partially recursive.

Likewise, we can still prove the existence of non-recursive tradeoffs if we restrict the
claim to expressions from CoFRegEx(1) and CoFRegEx(0). According to Theorem 4.15,
non-cofiniteness for RegEx(1) is not semi-decidable. Thus, given a complexity measure
c for RegEx(1), a bound fc on the tradeoff from CoFRegEx(1) to CoFRegEx(0) could
be used to give a semi-decision algorithm for the set

∆C :={α ∈ RegEx(1) | L(α) is not cofinite}.

First, note that (as mentioned above) the use of a complexity measure for RegEx(1)
instead of CoFRegEx(1) is intentional and serves to avoid complications with the fact
that cofiniteness is not decidable for RegEx(1) (recall Theorem 4.15). We can construct
a semi-decision procedure for ∆C from fc using almost the same reasoning as above:
Given an α ∈ RegEx(1), we define n:=f(c(α)), and let

FC,n:={β ∈ RegEx(0) | c(β) ≤ n, L(β) is cofinite}.

Enumerating all elements of FC,n is slightly more difficult than enumerating all elements
of Fn (see above), as we also need to decide whether L(β) is cofinite for every β ∈ Fn.
Luckily, this is not a problem, as cofiniteness is decidable for RegEx(0) (e. g., given a
β ∈ RegEx(0), one could convert β into an equivalent DFA, compute its complement,
and check the resulting DFA for loops that contain a final state and are reachable from
the initial state). From here on, the proof continues as above, mutatis mutandis.

Thus, no matter which complexity measure and which computable upper bound we
assume for the tradeoff, there is always a regular language L that can be described by an
extended regular expression from RegEx(1) so much more succinctly that every proper
regular expression for L has to break that bound. Obviously, this has also implications
for the complexity of matching regular expressions: Although membership is “easier”
for proper regular expressions than for extended regular expressions, there are regular
languages that can be expressed far more efficiently through extended regular expressions
than through proper regular expressions.

Recall Example 4.1, where we gave extended regular expressions that describe finite
languages. In this restricted case, there exists an effective conversion procedure – hence,
the tradeoffs are recursive:

Lemma 4.18. For every k ≥ 1, the tradeoff between FRegEx(k) and FRegEx(0) is recur-
sive (even when considering complexity measures for RegEx(k) instead of FRegEx(k)).
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Proof. Let k ≥ 1, and let c be a complexity measure for RegEx(k). By definition, no
α ∈ FRegEx(k) contains a Kleene star (or Kleene plus). Thus, given an α ∈ FRegEx(k),
we can effectively compute the finitely many words in L(α) by exhausting all possible
combinations of choices for each alternation symbol in α, and computing the correspond-
ing word for each combination, handling all bindings accordingly.

For example, the expression α:=(a | b)(a | b)%x(a | b)%y x y contains three alter-
nation symbols, totaling 23 = 8 possible combinations of choices, each corresponding
to one of the words in L(α). More generally, if α ∈ FRegEx(k) contains n alternation
symbols, L(α) contains at most 2n words w1, . . . , wi (i ≤ 2n), and we can compute an
α̂ ∈ FRegEx(0) with L(α̂) = L(α) simply by computing these words w1, . . . , wi and
defining α̂:=w1 | . . . | wi.

Fixing an effective procedure that computes α̂, we can directly define the recursive
bound fc : N→ N as follows: For n ≥ 0, we define

Fn:={α̂ ∈ FRegEx(0) | α ∈ FRegEx(k), c(α) = n}.

By definition of complexity measures, every Fn is finite, and given any n, we can effec-
tively list all patterns from Fn (again, as c is a complexity measure, and membership in
FRegEx(k) is decidable in a straightforward manner for RegEx(k)). For any n ≥ 0, we
define

fc(n):= max{c(α̂) | α̂ ∈ Fn}.
As every Fn can be listed effectively, every Fn is finite, and as c(α̂) can be computed
effectively, fn is a recursive function. Furthermore, fc is a bound on the tradeoff from
FRegEx(1) to FRegEx(0) by definition.

Although the class of RegEx-languages is not closed under complementation (Lemma 2
in Câmpeanu et al. [13]), there are languages L such that both L and its complement
Σ∗ \ L are RegEx-languages (e. g., all regular languages). Combining Lemma 4.18 and
Corollary 4.17, we can immediately conclude that there are cases where it is far more
efficient to describe the complement of a RegEx(1)-language, as opposed to the language
itself:

Corollary 4.19. Let Σ be a finite alphabet. Let c be a complexity measure for RegEx(1).
For any recursive function fc : N→ N, there exists an α ∈ RegEx(1) such that Σ∗ \L(α)
is a RegEx(1)-language, and for every β ∈ RegEx(1) with L(β) = Σ∗ \ L(α), c(β) ≥
fc(c(α)).

Proof. Assume to the contrary that, for some complexity measure c for RegEx(1), there
is a recursive function f1 : N → N such that for every α ∈ RegEx(1), if Σ∗ \ L(α) is a
RegEx(1)-language, there is a β ∈ RegEx(1) with L(α) = L(β) and c(β) ≤ f1(c(α)) (in
other words, f1 is a recursive bound on the blowup of complementation for RegEx(1)).

We can now use f1 and Lemma 4.18 to obtain a recursive bound on the tradeoff
between CoFRegEx(1) and CoFRegEx(0), which contradicts Corollary 4.17.

First, note that according to Lemma 4.18, there is a recursive bound f2 : N→ N on
the tradeoff between FRegEx(1) and FRegEx(0).

Furthermore, we can easily prove that there is a recursive bound f3 : N→ N on the
blowup that occurs in the complementation for FRegEx(1), as f3 might be computed
as follows: For every input n, there are finitely many α ∈ RegEx(0) with c(α) = n.
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CoFRegEx(1) CoFRegEx(0)
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Figure 4.4: An illustration of the functions that are used in the proof of Corollary 4.19.

Finiteness for RegEx(0) is obviously decidable; thus, we can effectively construct the
finite set

Fn:={α ∈ FRegEx(0) | c(α) = n}.

For every α ∈ Fn, we (effectively) construct an α ∈ RegEx(0) with L(α) = Σ∗ \L(α), for
example, by converting α into a DFA, complementing it, and converting the resulting
DFA into a proper regular expression, all using the standard techniques as described in
Hopcroft and Ullman [46]. We then check all β ∈ RegEx(0), ordered by growing size of
c(β), until we find the smallest β (w.r.t. c) with L(β) = Σ∗ \ L(α), and refer to this β
as α̃ (again, this is possible due to the decidability of equivalence for RegEx(0), cf. [46]),
and define

Cn:={α̃n | αn ∈ Fn}.

Finally, we define f3(n) to be the maximum of all c(β̃) with β ∈ Cn. By definition, f3 is
recursive, and serves as an upper bound for the blowup that occurs when complementing
expressions from FRegEx(0).

Now, consider the function f : N → N that is defined by f(n):=f3(f2(f1(n))) for
every n ∈ N. We shall see that our assumption implies that f is a recursive bound on
the tradeoff between CoFRegEx(1) and CoFRegEx(0), which contradicts Corollary 4.17.
An illustration of this argument can be found in Figure 4.4.

First, observe that f is a recursive function, as f1, f2, and f3 are recursive functions.
Due to Corollary 4.17, there is an αfc ∈ CoFRegEx(1) such that L(αfc) is regular,
but for every β ∈ RegEx(0) (and hence, β ∈ CoFRegEx(0)) with L(αfc) = L(β),
c(β) > f(c(αfc)).

By our assumption, there is an αfc ∈ FRegEx(1) with L(αfc) = Σ∗ \ L(αfc) and
c(αfc) ≤ f1(c(αfc)).

According to Lemma 4.18, there is a βfc ∈ FRegEx(0) with L(βfc) = L(αfc) =

Σ∗ \ L(αfc), and c(βfc) ≤ f2(c(αfc)).

Finally, as explained above, there is a βfc ∈ CoFRegEx(0) with L(βfc) = Σ∗\(βfc) =
L(αfc) and

c(βfc) ≤ f3(c(βfc))

≤ f3(f2(c(αfc)))

≤ f3(f2(f1(c(αfc))))

= f(c(αfc)).

This contradicts our choice of αfc and concludes the proof.
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With some additional technical effort, we can extend the previous results on unde-
cidability of RegEx(l)-ity and on tradeoffs between RegEx(k) and RegEx(0) to arbitrary
levels of the hierarchy of RegEx(k)-languages:

Lemma 4.20. Let k ≥ 1. For RegEx(k+ 1), both RegEx(k)-ity and its complement are
not semi-decidable.

Proof. We adapt the construction from the proof of Theorem 4.14 to the larger alpha-
bet Σk:={0, #, $, a1, b1, . . . , ak, bk}, where 0, #, $, all ai, and all bi are pairwise distinct
letters. For every i with 1 ≤ i ≤ k, let Σi:={ai, bi}. Given an extended Turing ma-
chine X , we construct the extended regular expression αX ∈ RegEx(1) as in the proof
of Theorem 4.14. For every i with 1 ≤ i ≤ k, we define an expression αi ∈ RegEx(1) by

αi:=((ai | bi)∗)%xixi,

where every xi is distinct from the variable x in αX , and from all xj with j 6= i. Finally,
we define αX ,k ∈ RegEx(k + 1) by

αX ,k:=αX$α1$ . . . $αk

= αX$((a1 | b1)+)%x1x1$ . . . $((ak | bk)+)%xkxk.

Thus, αk,X ∈ RegEx(k + 1). It suffices to show that L(αk,X ) is a RegEx(k)-language if
and only if L(αX ) is regular, as neither regularity nor non-regularity are semi-decidable
for RegEx(1), cf. Theorem 4.15.

The if direction is obvious: If L(αX ) is regular, we can (non-effectively) replace that
part of αX ,k with an appropriate proper regular expression, and obtain an expression
from RegEx(k) for L(αX ,k).

For the only if direction, first note that, for every i, L(αi) = {ww | w ∈ {ai, bi}+}, a
language that is well known to be not regular (as can be easily verified with the Pumping
Lemma, cf. Hopcroft and Ullman [46]). Likewise, note that Lk:=L(α1$ . . . $αk) is not
a RegEx(k − 1) language, as can be seen by the following line of reasoning: Assume
there is an α ∈ RegEx(k − 1) with L(α) = Lk. By definition, α contains at most k − 1
different variables. Note that, whenever α is matched to a w ∈ Lk, every variable x
in α that is bound and also referenced when matching w contains only terminals from
a single set Σi ∪ {$}, as Lk ⊂ {a1, b1}+$ . . . ${ak, bk}+, and repeating any string that
contains some aj or bj with j 6= i would break this structure. As every L(αi) needs to
use at least one variable, and no variable that is matched to a letter other than $ can
cross the boundaries between the different L(αi), there can be no α ∈ RegEx(k−1) with
L(α) = Lk.

If L(αX ) is not regular, this reasoning extends to L(αk,X ) and RegEx(k), as we need
at least one variable to generate L(αX ), and k variables for Lk, for a total of k + 1
variables.

Thus, L(αX ,k) is a RegEx(k)-language if and only if αX is regular. As seen in the
proof of Theorem 4.15, neither RegEx(k)-ity nor its complement is semi-decidable for
RegEx(k).

Non-recursive tradeoffs between RegEx(k + 1) and RegEx(k) for every k ≥ 1 follow
immediately, using Hartmanis’ proof technique as in the proof of Corollary 4.17.
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4.3.1 A Technical Note on Bounded Occurrences of Variables

Although the extended regular expressions αX that follow from the construction in the
proof of Theorem 4.14 use only one variable x, there is no bound on the number of
occurrences of x in αX . In fact, the number of occurrences grows with the number of
fields in the transition table δ of X , and limiting that number would not allow to simulate
infinitely many extended Turing machines, which is required to obtain the results in the
present chapter.

Nonetheless, similar to the proof of Theorem 3.10, these limitations can be overcome
by using a single universal Turing machine: First, let ψ : N × N → N be a universal
partially recursive function, i. e, for every partially recursive function φ : N→ N, there is
a m ≥ 0 such that ψ(m,n) = φ(n) for every n ≥ 0. It is an elementary fact of recursion
theory that such a function exists (cf. Cutland [21], Odifreddi [77]), and moreover, there
is a Turing machine U over some tape alphabet Γ̂ ⊆ {0, ¢, $, a, b} such that

domT(U) = {am 0 bn | ψ(m,n) is defined}.

Using the same construction as in the proof of Lemma 4.10, we can build an extended
Turing machine Û = (Q, q1, δ) that simulates U , using an appropriate injective function
bk : Γ̂ → Γk with bk = 0k, for some appropriate k ≥ 3. Instead of constructing a single
extended regular expression αÛ , we construct an expression αÛ ,m for every function
number m, using a slight modification of the proof of Theorem 4.14. Instead of allowing
arbitrary contents for the right tape word in the initial configuration (as can be seen in
the second line of the definition of the language SX ), we define

SÛ ,m:=
(
##0+#0+#0{λ, 0}#

{
0i | 1 ≤ i ≤ ν

})+
##

∩ ##0#0e(bk(¢ am 0))
(

02(2+m)k
)+

#0#0##{0, #}∗

∩ {0, #}∗#
{

00a#0i## | a ∈ Γ̂, δ(a, qi) = HALT
}
.

The only difference to the definition of SX is the second line. Evidently, the new definition
allows exactly those initial right tape sides tR for which e(tR) = e(bk(¢ am 0))+ i(2(2+m)k)
for some i ≥ 0. As |bk(¢ am 0)| = (2 + m)k, these are exactly that tR have bk(¢ a 0m) as
a prefix.

The construction of αÛ ,m then uses SÛ ,m to construct αstruc, and proceeds as in the
original proof. Thus, {0, #}∗ \ L(αÛ ,m) is exactly that set that corresponds to the valid
computations of U on some input that starts with am 0. Furthermore, the number of
occurrences of x in every αÛ ,m depends only on δ, not on m, which means that we can
bound that number.

For any partially recursive function φ : N→ N, let dom(φ):={n ≥ 0 | φ(n) is defined},
and, for every m ≥ 0, let ψm denote the function that is defined by ψm(n):=ψ(m,n) for
every n ≥ 0. Then L(αÛ ,m) is

• regular if and only if dom(ψm) is finite,

• cofinite if and only if dom(ψm) is finite,

• universal if and only if dom(ψm) is empty,
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following the same reasoning as for L(αX ). As finiteness of dom is not semi-decidable, and
emptiness not decidable (cf. Odifreddi [78] or the analogous results for Turing machines in
Lemma 4.10), we arrive at the same conclusions as in Theorem 4.15 and Corollaries 4.17
and 4.19 for RegEx(1) with a limited number of occurrences of the single variable.
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Chapter 5

Existence of Descriptive Patterns

5.1 On Patterns Descriptive of a Set of Strings

The study of pattern languages was initiated by Angluin [4] in the context of Gold’s
intensively studied learning paradigm of language identification in the limit from positive
data (Gold [39], cf. Section 6.2.1). In this model, it is a requirement for the computational
learner to infer, for any positive presentation of any language in some class, an exact
description of that language.

While this maximum accuracy of the output of the inference procedure is clearly
a natural goal, it has a number of downsides, the most obvious one being the fact
that it can lead to significant limitations to the learning power of the model. From
a more applied point of view, there is another important reason why one might wish
to relax it and settle for receiving an approximation of the language from the learner:
depending on the class of languages to be inferred, the corresponding grammars or
acceptors might have undesirable properties, i. e., they might have computationally hard
decision problems or be incomprehensible to a (human) user. Thus, in various settings
it might be perfectly acceptable for an inference procedure to output a compact and
reasonably precise approximation of the language instead of producing a precise yet
arbitrarily complex grammar.

The problem of finding a consistent pattern α for an arbitrary set S of strings (i. e.,
a pattern α with L(α) ⊇ S) is often referred to as (string) pattern discovery , and many
of its applications are derived from tasks in bioinformatics (cf. Brazma et al. [10]). In
contrast to the inductive inference approach to pattern languages, where a pattern shall
be inferred that exactly describes the given language, string pattern discovery faces
the problem that S can typically have many consistent patterns showing very different
characteristics. For instance, both

α1:=xyxyx and

α2:=x a b y

are consistent with the language

S0:={a b a b a,
a b a b b a b a b b a b,

b a b a b},

73
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and the pattern α0:=x is consistent with every set of strings, anyway. Hence, the algo-
rithms of string pattern discovery require an underlying notion of the quality of a pattern
in order to determine what patterns to strive for. With regard to the above example set
and patterns, it seems quite likely that one might not be interested in a procedure out-
putting α0 when reading S0. Concerning α1 and α2, however, it is, a priori, by no means
evident which of them to prefer. Thus, the definition of the quality of a pattern might
often depend on the field of application where string pattern discovery is conducted. In
addition to this, it is a worthwhile goal to develop generic notions of quality of consistent
patterns that can inform the design of pattern discovery algorithms (we expand on the
topic of finding patterns common to sets of strings in Chapter 6).

In this regard, the descriptiveness of patterns is a well-known and plausible concept,
that is also used within the scope of inductive inference (cf. Ng and Shinohara [76]). A
pattern δ is said to be descriptive of a given set S of strings if there is no pattern α
satisfying L(δ) ⊃ L(α) ⊇ S. Intuitively, this means that if δ is descriptive of S, then
no consistent pattern for S provides a strictly closer match than δ. Thus, although δ
does not need to be unique (as to be further discussed below), it is guaranteed that it is
one of the most accurate approximations of S that can be provided by patterns. While
descriptiveness is unquestionably an appropriate notion of quality of consistent patterns,
the fact that inclusion is undecidable in general (the main topic of Chapter 3, as the
reader is probably aware) and still combinatorially involved for certain classes where it
is decidable (cf. Theorem 2.4) leads to major technical challenges. This aspect is crucial
to the subsequent formal parts of this chapter.

Since the definition of a descriptive pattern is based on the concept of pattern lan-
guages, the question of whether NE- or E-pattern languages are chosen can have a sig-
nificant impact on the descriptiveness of a pattern. This is reflected by the terminology
we use: we call a pattern δ an NE-descriptive pattern if it is descriptive in terms of its
NE-pattern language and the NE-pattern languages of all patterns in (Σ∪X)+; accord-
ingly, we call δ E-descriptive if its descriptiveness is based on interpreting all patterns
as generators of E-pattern languages. In order to illustrate these terms, we now briefly
discuss the descriptiveness of the example patterns introduced above (though the full
verification of our corresponding claims is not always straightforward and might require
certain tools to be introduced later). If we deal with S0 and the patterns in the context
of NE-pattern languages, then it can be stated that both α1 and α2 are NE-descriptive of
S0, since no NE-pattern languages can comprise S0 and, at the same time, be a proper
sublanguage of the NE-pattern languages of α1 or α2. If we study S0 in terms of E-
pattern languages, it turns out that α1 is also E-descriptive of S0, i. e. there is no pattern
generating an E-pattern language that is consistent with S0 and strictly included in the
E-pattern language of α1. However, the second NE-descriptive example pattern α2 is
not E-descriptive of S0, since the E-pattern language generated by

α3:=x a b a b y

is a proper sublanguage of the E-pattern language of α2 and comprises S0. The pattern
α3, in turn, is even E-descriptive of S0, but not NE-descriptive, since it is not consistent
with S0 if we disallow empty substitutions. Exactly the same holds for α4:=x b a b a y,
which also is consistent with S0 if we allow the empty substitution of variables, generates
an E-pattern language that is strictly included in the E-pattern language of α2 and is
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E-descriptive, but not NE-descriptive of S0.
The present chapter examines the basic underlying problem of descriptive pattern

discovery, namely the existence of such patterns; this means that we study the question
of whether or not, for a given language S, there is a pattern that is descriptive of S
(we examine aspects of the actual problem of finding descriptive patterns in Chapter 6).
Regarding the existence of a descriptive pattern, four different cases can be considered:
NE-descriptive patterns of finite languages, NE-descriptive patterns of infinite languages,
E-descriptive patterns of finite languages and E-descriptive patterns of infinite languages.
The problem of the existence of the former three types of descriptive patterns is either
trivial or has already been solved in previous publications. We therefore largely study
the latter case, and the corresponding main result answers a question posed by Jiang,
Kinber, Salomaa, Salomaa and Yu [50]. Our technical considerations do not only provide
insights into the actual topic of this chapter, but – due to the definition of descriptive
patterns – also reveal vital phenomena related to the inclusion of E-pattern languages
and, hence, the topology of the class of terminal-free E-pattern languages; both inside
the class, and in relation to all languages. Due to the way the inclusion of terminal-free
E-pattern languages is characterized (cf. Theorem 2.4), this implies that we have to deal
with combinatorial properties of morphisms in free monoids. Furthermore, crucial parts
of our reasoning are based on infinite unions of pattern languages, which means that the
work in this chapter shows additional connections to so-called multi-pattern languages
(cf. Dumitrescu et al. [25]). While [25] features unions of pattern languages where the
generating patterns form a context-free language, the material presented in this chapter
is essentially based on multi-pattern languages where the underlying set of patterns –
apart from an infinite variable alphabet we have to use – is defined similarly to an
HD0L language over an infinite alphabet (see Section 5.2.2). We extend this connection
in Chapter 7.

Finally, in Section 5.5, we study the question whether descriptive patterns can be
derived effectively, or even efficiently. There, we answer another question posed by Jiang,
Kinber, Salomaa, Salomaa and Yu [50] and show how a related question is connected
to the open and infamous question on the decidability of the equivalence problem for
E-pattern languages.

5.2 Preliminaries

We now can introduce our terminology on the main topic of the second part of this thesis,
namely the descriptiveness of a pattern. For any alphabet Σ and any language S ⊆ Σ∗,
a pattern δ ∈ PatΣ is said to be NE-descriptive (of S) provided that LNE,Σ(δ) ⊇ S
and, for every α ∈ PatΣ with LNE,Σ(α) ⊇ S, LNE,Σ(α) 6⊂ LNE,Σ(δ). Analogously, δ is
called E-descriptive (of S) if LE,Σ(δ) ⊇ S and, for every α ∈ PatΣ with LE,Σ(α) ⊇ S,
LE,Σ(α) 6⊂ LE,Σ(δ).

More generally, let PAT?,Σ be a class of NE-pattern languages or a class of E-pattern
languages over Σ, and let Pat?,Σ be the corresponding class of generating patterns. We
say that a pattern δ ∈ (Σ ∪X)+ is PAT?,Σ-descriptive of a language L ⊆ Σ∗ if and only
if L(δ) ∈ PAT?,Σ, L(δ) ⊇ L, and there is no pattern α with L(α) ∈ PAT?,Σ satisfying
L ⊆ L(α) ⊂ L(δ). Furthermore, DPAT?,Σ

(L) denotes the set of all patterns that are
PAT?,Σ-descriptive of L.
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5.2.1 Properties of Terminal-Free E-Pattern Languages

Obviously, the definition of a descriptive pattern is based on the inclusion of pattern lan-
guages, which is an undecidable problem for both the full class of NE-pattern languages
and the full class of E-pattern languages (cf. Chapter 3). A significant part of our sub-
sequent technical considerations, however, can be restricted to terminal-free E-pattern
languages, and here the inclusion problem is known to be characterized by the existence
of a morphism between the patterns and, hence, decidable. This directly results from
the characterization given in Theorem 2.4. While Theorem 2.4 is a powerful tool when
dealing with the inclusion of terminal-free E-pattern languages, the examination of the
descriptiveness of a pattern requires insights into proper inclusion relations, and there-
fore we use some further combinatorial results on morphisms in free monoids to give a
more convenient criterion that can replace the use of Theorem 2.4.

In accordance with Reidenbach and Schneider [90], we designate a terminal-free pat-
tern α ∈ X+ as morphically imprimitive if there is a pattern β ∈ X∗ satisfying the
following conditions: |β| < |α| and there are morphisms g, h : X∗ → X∗ such that
g(α) = β and h(β) = α. Otherwise, α is morphically primitive. Let α ∈ X+ be morphi-
cally primitive. For any α ∈ X+, a morphic root of α is any morphically primitive β for
which there is a morphism φ : X∗ → X∗ with φ(α) = β.

A morphism h : X∗ → X∗ is said to be an imprimitivity morphism (for α) provided
that |h(α)| > |α| and there is a morphism g : X∗ → X∗ satisfying (g ◦ h)(α) = α.
Referring to these concepts, we now can give a characterization of certain proper inclusion
relations between terminal-free E-pattern languages:

Lemma 5.1. Let Σ be an alphabet, |Σ| ≥ 2, α ∈ X+ a morphically primitive pattern
and h : X∗ → X∗ a morphism. Then LE,Σ(h(α)) ⊂ LE,Σ(α) if and only if h is neither
an imprimitivity morphism for α nor a renaming of α.

Proof. We first consider the if direction: If h is neither an imprimitivity morphism for α
nor a renaming of α, then |h(α)| ≤ |α| or there is no morphism g mapping h(α) to α. In
the latter case, due to Theorem 2.4, LE,Σ(h(α)) 6⊇ LE,Σ(α). In the former case, if there is
a morphism g mapping h(α) to α, then α is not morphically primitive, which contradicts
the condition of the lemma. Hence, there is no such morphism, and this again implies
LE,Σ(h(α)) 6⊇ LE,Σ(α). Since Theorem 2.4 shows that LE,Σ(h(α)) ⊆ LE,Σ(α), we have
LE,Σ(h(α)) ⊂ LE,Σ(α).

We proceed with the only if direction: If LE,Σ(h(α)) ⊂ LE,Σ(α), then there is no
morphism mapping h(α) to α. However, the definition of an imprimitivity morphism
mapping α to some pattern β implies the existence of a morphism mapping β to α again.
The same trivially holds for any renaming of α. Thus, h is neither an imprimitivity
morphism for α nor a renaming of α.

The question of whether a given morphism is an imprimitivity morphism for a pattern
can be easily answered using the following insight:

Theorem 5.2 (Reidenbach and Schneider [90]). Let α ∈ X+ be a morphically primitive
pattern. Then a morphism h : X∗ → X∗ is an imprimitivity morphism for α if and only
if

1. for every x ∈ var(α), there exists an xh ∈ var(h(x)) such that |h(x)|xh = 1 and
|h(y)|xh = 0 for every y ∈ var(α) \ {x}, and
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2. there exists an x ∈ var(α) with |h(x)| ≥ 2.

Evidently, Lemma 5.1 can only be applied if there is a tool for checking whether a
terminal-free pattern is morphically primitive. This is provided by the following charac-
terization:

Theorem 5.3 (Reidenbach and Schneider [90]). A pattern α ∈ X+ is morphically prim-
itive if and only if there is no factorization

α = β0 γ1 β1 γ2 β2 . . . βn−1 γn βn

with n ≥ 1, βk ∈ X∗ and γk ∈ X+, k ≤ n, such that

1. |γk| ≥ 2 for every k, 1 ≤ k ≤ n,

2. var(β0 . . . βn) ∩ var(γ1 . . . γn) = ∅,

3. for every k, 1 ≤ k ≤ n, there exists an xk ∈ var(γk) such that |γk|xk = 1 and, for
every k′, 1 ≤ k′ ≤ n, if xk ∈ var(γk′) then γk = γk′ .

Reidenbach and Schneider call such a factorization for a pattern α an imprimitivity
factorization (of α). Thus, with Lemma 5.1, Theorem 5.2 and Theorem 5.3 we now
have an appropriate tool for deciding on particular proper inclusion relations between
terminal-free E-pattern languages.

Note that there are further characterizations of morphically primitive (or imprimi-
tive) patterns. For example, as shown by Head [42], a pattern α has an imprimitivity
factorization if and only if it is fixed point of a nontrivial morphism (i. e., a morphism that
is not the identity morphism). Another characterization via the existence of so-called
unambiguous morphisms is due to Freydenberger et al. [35].

Furthermore, we say that a pattern α ∈ X+ is succinct if it is the shortest generator
of its E-pattern language LE,Σ(α) (in other words, |β| ≥ |α| for every β ∈ X+ with
LE,Σ(β) = LE,Σ(α)). Then the following holds:

Theorem 5.4 (Reidenbach [88]). A pattern α ∈ X+ is succinct if and only if it is
morphically primitive.

An immediate consequence of Theorem 2.4 is not only that inclusion for terminal-
free E-pattern languages is decidable, but also that it cannot be decided effectively (if
P 6= NP):

Corollary 5.5. Let Σ be an alphabet with |Σ| ≥ 2. Then the inclusion problem for
ePATtf,Σ is NP-complete.

Proof. As shown by Ehrenfeucht and Rozenberg (cf. Theorem 2.2), it is NP-complete to
decide, given patterns α, β ∈ X+, whether there is a morphism mapping β to α.

Note that Corollary 5.5 crucially depends on the fact that, when deciding LE,Σ(α) ⊆
LE,Σ(β), | var(β)| is unbounded.

Although membership and inclusion problem for terminal-free E-pattern languages
are NP-complete (cf. Theorem 2.2 and Corollary 5.5, respectively), the situation is dif-
ferent for the equivalence problem.

In conjunction with Theorem 5.4, a recent result by Holub [44] demonstrates that
the equivalence problem can be decided in polynomial time:
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Theorem 5.6. There is a polynomial-time algorithm deciding, for any pair of terminal-
free patterns α, β and for any alphabet Σ with |Σ| ≥ 2, on whether LE,Σ(α) = LE,Σ(β).

Proof. As mentioned by Reidenbach [88], two succinct terminal-free patterns generate
the same E-pattern language if and only if they are identical up to a renaming or, in
other words, if they have the same canonical form.

According to Holub [44], given a pattern α ∈ X+, one can compute a morphic root
in polynomial time. Thus, to decide whether LE,Σ(α) = LE,Σ(β) holds for patterns
α, β ∈ X+, one first computes morphic roots αρ and βρ of α and β, respectively. As
mentioned in Theorem 5.4, αρ and βρ are succinct patterns. One then converts αρ and βρ
into canonical form. Taking into account that | var(αρ)| and | var(βρ)| are bounded by the
lengths of the patterns, this can be done in log-linear time. Finally, LE,Σ(α) = LE,Σ(β)
holds if and only if the canonical forms of αρ and βρ are identical, this can be checked
in linear time. Thus, the whole procedure works in polynomial time.

5.2.2 L Systems

From time to time, we shall mention relations or similarities between the content of
Chapters 5 to 7 to so-called L systems. As a service to the reader, the present section
provides a very short overview over the types of L systems we shall refer to. L systems
were a very active area of Formal Language Theory from the late 1960s deep into the
1990s, and were topic of thousands of articles. This section only visits the aspects that
are relevant to the present thesis; a far more extensive introduction with pointers to
various surveys and bibliographies is Kari et al. [53].

In principle, most L systems can be considered a parallel variant of Chomsky gram-
mars. In contrast to this more general view, we consider only deterministic L systems,
which can be understood as iterating one or multiple morphisms, instead of using a set
of rules (i. e., in deterministic L systems, in every step, every letter is replaced in the
same way).

The most basic type of L system considered in this thesis is the D0L system. A
D0L system over some alphabet Σ consists of a morphism φ : Σ∗ → Σ∗ and a word w ∈ Σ∗

(the axiom). A D0L system G = (φ,w) generates the language L(G):={φi(w) | i ≥ 0} –
in other words, L(G) consists of all the words that can be obtained from w by iteration
of φ. We illustrate this definition using the following examples from Rozenberg and
Salomaa [93]:

Example 5.7. Let Σ:={a} and define the morphism φ : Σ∗ → Σ∗ through φ(a):= a2.
Then D0L system G1:=(φ, a) generates the language L(G1) = {a2i | i ≥ 0}.

Let Σ:={a, b} and define φ : Σ∗ → Σ∗ by φ(a):= a b2 a and φ(b):=λ. The D0L system
G2:=(φ, a b2 a) generates the language L(G2) = {(a b2 a)2n | n ≥ 0}. 3

Section 1.2 of [53] shows a D0L system that models the development of a red alga and
explains how L systems are often used as models of plant growth. Each application of
the morphism (or, for nondeterministic L systems, a rewriting rule) can be understood
as the passage of one time step, and each of the images φi(w) corresponds to one stage
of the growth of a plant. In Chapter 7, we pick up this growth metaphor.

The theory of L systems uses a mostly uniform terminology; each class of L systems
is identified by the combination of letters appended in front of the L. For example,
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D0L systems are L systems that are deterministic (hence ‘D’) and context-free in the
application of rules (hence the ‘0’, see below). Of the commonly used letters listed at
the end of Section 2.3 in [53], the present thesis uses the following subset:

D. deterministic, only one choice, only one choice in each table

F. finite set of axioms, rather than only one axoim

H. homomorphism, morphism, image under morphism

L. Lindenmayer, appears in the name of all developmental systems

O. actually number 0 but often read as the letter, information 0-sided, no interaction,
rewriting context-free

T. tables, sets of rules, diversification of developmental instructions1

Of the possible combinations of these letters, we use D0L (as introduced above), HD0L,
DT0L, DF0L, and DTF0L. An HD0L system over an alphabet Σ consists of two mor-
phisms φ, ψ : Σ∗ → Σ∗ and an axiom w ∈ Σ∗. The HD0L system G = (φ, ψ, w) generates
the language L(G):={ψ(φi(w)) | i ≥ 0}. In other words, G applies ψ to every word of the
language that is generated by the D0L system (ψ,w). For further illustration, consider
the following example:

Example 5.8. Let Σ:={a, b, c} and consider the morphisms φ, ψ : Σ∗ → Σ∗ that are
defined by φ(a):= a b b c, φ(b):= b c, φ(c):= c, and ψ(a):=ψ(b):=ψ(c):= a. Then the
HD0L system G:=(φ, ψ, a) generates the language L(G) = {ai2 | i ≥ 0}, as can be easily
verified by considering that, for every i ≥ 0, both |φi+1(a)|a + |φi+1(a)|b = 2i + 1 and
|φi+1(a)|c = i2 hold. 3

Furthermore, a DF0L system is defined by a single morphism φ and a finite set of
axioms, and generates the language that consists of all words that can be obtained from
any of the axioms through iteration of φ.

Analogously, a DT0L system uses only a single axiom, but a finite set of morphisms,
and its language contains all words that can be obtained by applying any combination
of these morphisms to the axiom (where each morphism may be used an unbounded
number of times).

Finally, a DTF0L system uses a finite set of axioms and a finite set of morphisms.
As is to be expected, its language consists of all words that can be obtained from any of
the axioms through any combination of the morphisms.

As a side note on the wider context, see Harju and Karhumäki [40] for a short
explanation how questions on D0L systems and HD0L systems have been shown to be
related to the satisfiability problem for word equations (cf. Section 3.4.1).

1The author would like to use this as an occasion to repeat an anecdote on the origin of L systems,
and a different explanation of the letter ‘L’, quoted directly from Rozenberg and Salomaa [94]:

Aristid Lindenmayer was passing by a lecture room where a lecture about formal languages
was being held. The lecturer was speaking of L(G). “Algae!” was Aristid’s immediate
reaction. (The pronounciations of “L(G)” and “algae” are very similar, at least for most
of us.) After that Aristid started to investigate applications of language theory to develop-
mental biology. [..] The following (true) story is an example of Aristid’s modesty. At one
of the American conferences somebody asked Aristid what the L in “L systems” stands for.
This happened at a time when L systems where already well-known. Aristid’s answer was
“languages”!
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5.3 Descriptive Patterns and Infinite Strictly De-

creasing Chains of Pattern Languages

Before we state and prove the main results of the present chapter, we discuss some
simple yet enlightening observations that establish a connection between descriptiveness
of patterns and infinite strictly decreasing chains of pattern languages over some fixed
alphabet, i. e. sequences (Li)

∞
i=0 of pattern languages satisfying, for every j ≥ 0, Lj ⊃

Lj+1. This aspect is already briefly mentioned by Jiang et al. [50].
Since, by definition, a descriptive pattern generates a smallest pattern language com-

prising a language S, S does not have a descriptive pattern if and only if no pattern
language L satisfying L ⊇ S is smallest. Hence, the existence of a descriptive pattern
essentially depends on the existence of a pattern language that is not contained in an
infinite strictly decreasing chain:

Observation 5.9. Let Σ be an alphabet with |Σ| ≥ 2 and let S ⊆ Σ∗ be a language.
Then there is no pattern that is NE-descriptive (or E-descriptive) of S if and only if, for
every pattern α with LNE,Σ(α) ⊇ S (or LE,Σ(α) ⊇ S, respectively) there is

• a sequence of patterns αi ∈ PatΣ, i ≥ 0, satisfying, for every j ≥ 0,

– LNE,Σ(αj) ⊃ LNE,Σ(αj+1) (or LE,Σ(αj) ⊃ LE,Σ(αj+1), respectively) and

– LNE,Σ(αj) ⊇ S (or LE,Σ(αj) ⊇ S, respectively)

and

• an n ≥ 0 with LNE,Σ(αn) = LNE,Σ(α) (or LE,Σ(αn) = LE,Σ(α), respectively).

Proof. Directly from the definition of an NE-descriptive (or E-descriptive) pattern.

Consequently, the question of whether there is a descriptive pattern for a language
S requires insights into the inclusion problem for pattern languages. As discussed in
Chapter 3, this problem is undecidable in the general case, but it is decidable for the
class of terminal-free E-pattern languages (though NP-complete, cf. Section 5.2.1).

In order to illustrate and substantiate Observation 5.9 and as a reference for further
considerations in Section 5.4, we now give some examples of strictly decreasing chains
of pattern languages. We begin with a sequence of patterns that has almost identical
properties for both NE- and E-pattern languages:

Example 5.10. Let Σ be any alphabet. For every i ≥ 0, we define αi:=x
2i

1 , i. e. α0 = x1,
α1 = x2

1, α2 = x4
1, α3 = x8

1 and so on. It can be easily seen that, for every j ≥ 0, there is
a morphism h : {x1}+ → {x1}+, defined by h(x1):=x2

1, satisfying h(αj) = αj+1. Since,
for both NE- and E-pattern languages, the existence of such a morphism is a sufficient
condition for an inclusion relation (cf. Lemma 3.1 by Angluin [4] and Theorem 2.3 by
Jiang et al. [50], respectively), LNE,Σ(αj) ⊇ LNE,Σ(αj+1) and LE,Σ(αj) ⊇ LE,Σ(αj+1) are
satisfied. In the given example, it is evident that all inclusions of NE-pattern languages
are strict. The same holds for the inclusion of E-pattern languages; alternatively, for
all but unary alphabets Σ, it is directly proven by Lemma 5.1 (using Theorem 5.2 and
Theorem 5.3) given in Section 5.2.1. Hence, the sequence of αi leads to an infinite
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strictly decreasing chain for NE-pattern languages as well as for E-pattern languages.
Nevertheless, the sequence of patterns is irrelevant in the context of Observation 5.9, as
the sets SNE:=

⋂∞
i=0 LNE,Σ(αi) and SE:=

⋂∞
i=0 LE,Σ(αi), i. e. those languages all patterns

are consistent with, satisfy SNE = ∅ and SE = {λ}. 3

Our next example looks quite similar to Example 5.10, but here a difference between
NE- and E-pattern languages can be noted:

Example 5.11. Let Σ be an alphabet with |Σ| ≥ 2. For every i ≥ 0, we define αi:=x
2i

1 y
2,

i. e. α0 = x1y
2, α1 = x2

1y
2, α2 = x4

1y
2, α3 = x8

1y
2 and so on. Referring to the same facts

as mentioned in Example 5.10, it can be shown that the patterns again define one infinite
strictly decreasing chain of NE-pattern languages and another one of E-pattern languages.
However, while the set SNE:=

⋂∞
i=0 LNE,Σ(αi) again is empty, SE:=

⋂∞
i=0 LE,Σ(αi) now

equals LE,Σ(y2). Hence, we have a chain of E-pattern languages that are all consistent
with a nontrivial language. Nevertheless, LE,Σ(y2) obviously has a descriptive pattern,
namely δ:=y2, and this of course holds for all infinite sequences of patterns where SE

equals an E-pattern language. Consequently, the existence of a single infinite strictly
decreasing chain of E-pattern languages Li satisfying, for every i ≥ 0, Li ⊇ S, does not
mean that there is no E-descriptive pattern for S. Furthermore, it is worth mention-
ing that we can replace SE with a finite language and still preserve the above described
properties of the αi and δ. For Σ ⊇ {a, b}, this is demonstrated, e. g., by the language
S:={a a, b b}, which satisfies, for every i ≥ 0, S ⊆ LE,Σ(αi) and has the E-descriptive
pattern δ. 3

Our final example presents a special phenomenon of E-pattern languages, namely the
existence of bi-infinite strictly decreasing/increasing chains of such languages:

Example 5.12. Let Σ be an alphabet with |Σ| ≥ 2. For every i ∈ Z, we define

αi:=

{
x2−i

1 if i is negative,

x2
1x

2
2 . . . x

2
i+2 else.

Hence, for example, from i = −3 to i = 2 the patterns read α−3 = x8
1, α−2 = x4

1,
α−1 = x2

1, α0 = x2
1x

2
2, α1 = x2

1x
2
2x

2
3, and α2 = x2

1x
2
2x

2
3x

2
4. Using Theorem 5.3, it is easy

to show that all patterns are morphically primitive. Theorem 5.2 demonstrates that all
morphisms mapping an αk to an αj, j < k, are not imprimitivity morphisms. Therefore
we can conclude from Lemma 5.1 that LE,Σ(αj) ⊂ LE,Σ(αk) if and only if j < k. For
the given patterns, SE:=

⋂∞
i=−∞ LE,Σ(αi) equals {λ}, but if we define, for every i ∈ Z,

α′i:=y
2αi, then these α′i generate a bi-infinite strictly decreasing/increasing chain of E-

pattern languages where SE:=
⋂∞
i=−∞ LE,Σ(α′i) = LE,Σ(y2) is an E-pattern language. 3

Note that the example patterns given above are terminal-free merely for the sake of
convenience. They can be effortlessly turned into certain patterns containing terminal
symbols and still showing equivalent properties.

5.4 Existence of Descriptive Patterns

In the present chapter we study the existence of patterns that are descriptive of sets S
of strings. According to the remarks in Section 5.1, four main cases can be considered,
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depending on whether S is finite or infinite and whether NE- or E-descriptiveness is
examined. We focus on the existence of E-descriptive patterns for infinite languages since,
for the other three cases, answers are absolutely straightforward or directly or indirectly
provided by Angluin [4] and Jiang et al. [50]. In order to give a comprehensive description
and further explain some of the formal concepts and statements we nevertheless also
briefly describe the known or trivial cases.

Using Observation 5.9, the question of the existence of NE-descriptive patterns can
be easily answered for all types of languages S. We begin with the case of a finite S.
Here, it is primarily necessary to observe that a word w can only be covered by a pattern
α through nonerasing substitutions if α is not longer than w. Hence, for any finite
alphabet Σ and any word over Σ, there are only finitely many NE-pattern languages
over Σ covering this word; this property of a class of languages is commonly referred
to as finite thickness (cf. Wright [105]). Quite obviously, the same holds for infinite
alphabets Σ, since the number of different terminal symbols that can occur in patterns
covering w is limited by the number of different terminal symbols in w. With regard to
infinite sequences of patterns (generating languages that all differ from each other) over
a fixed alphabet, this means that none of them can contain infinitely many patterns that
cover, e. g., the shortest word in a given finite set of strings. This immediately shows
that, for every finite S, there exists an NE-descriptive pattern:

Corollary 5.13 (Angluin [4]). Let Σ be an alphabet and S ⊆ Σ+ a finite language. Then
there is a pattern δ ∈ PatΣ that is NE-descriptive of S.

Note that Angluin [4] does not explicitly state Corollary 5.13, but directly studies
more challenging questions by introducing a procedure computing an NE-descriptive
pattern for any finite language S and examining the computational complexity of the
problem of finding such patterns for finite languages (cf. Theorems 5.29 and 5.30 in
Section 5.5.1).

With regard to NE-descriptive patterns for infinite languages S, the same reasoning
as for finite languages S leads to the analogous result:

Proposition 5.14. Let Σ be an alphabet and S ⊆ Σ+ an infinite language. Then there
is a pattern δ ∈ PatΣ that is NE-descriptive of S.

Proof. Directly from Observation 5.9 and the finite thickness of the class of NE-pattern
languages.

A closer look at the underlying reasoning proving Corollary 5.13 and Proposition 5.14
reveals that it does not need to consider whether any infinite sequence of patterns leads
to an infinite strictly decreasing chain of NE-pattern languages (as featured by Ob-
servation 5.9), but can be completely based on the concept of finite thickness. If we
nevertheless wish to examine the properties of such chains, then we can easily observe
that, for every sequence of patterns αi, i ≥ 0, with LNE,Σ(αi) ⊃ LNE,Σ(αi+1), the set
SNE:=

⋂∞
i=0 LNE,Σ(αi) necessarily is empty. Hence, Examples 5.10 and 5.11 illustrate the

only option possible.
With regard to E-descriptiveness, the situation is more complex. As shown by Ex-

amples 5.11 and 5.12, the class of E-pattern languages does not have finite thickness and
there are even finite and infinite languages that are contained in all E-pattern languages
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of an infinite strictly decreasing chain. Nevertheless, it is known that every nontrivial
finite language has an E-descriptive pattern:

Theorem 5.15 (Jiang et al. [50]). Let Σ be an alphabet and S ⊆ Σ∗ a finite language,
S 6= {λ}. Then there is a pattern δ ∈ PatΣ that is E-descriptive of S.

The proof for Theorem 5.15 given by Jiang et al. [50] demonstrates that for every
finite language S an upper bound n can be given such that, for every pattern α consistent
with S, there exists a pattern β satisfying |β| ≤ n and S ⊆ LE,Σ(β) ⊆ LE,Σ(α). So if,
for any finite S, there is a sequence of patterns αi, i ≥ 0, leading to an infinite strictly
decreasing chain of E-pattern languages comprising S – which implies that there is no
upper bound for the length of the αi – then all but finitely many of these patterns need
to have variables that are not required for generating the words in S. This phenomenon
is illustrated by Example 5.11, where only the subpattern y2 of all patterns is necessary
in order to map the patterns to the words in SE.

In the proof for Theorem 5.15, the upper bound n for the length of the αi equals
the sum of the lengths of the words in S. Thus, this method cannot be adopted when
investigating the existence of E-descriptive patterns for infinite sets of words. In fact,
as to be demonstrated below, we here need to consider two subcases depending on the
number of different letters occurring in the words of S. If the underlying alphabet is
unary, then the descriptiveness of a pattern is related to the inclusion relation of E-
pattern languages over this unary alphabet. The structure of such E-pattern languages,
however, is significantly simpler than that of E-pattern languages over larger alphabets;
in particular, the full class of these languages is a specific subclass of the regular lan-
guages (namely the linear unary languages). Therefore it can be shown that, for every
sequence of patterns (αi)

∞
i=0 leading to an infinite strictly decreasing chain of E-pattern

languages over a unary alphabet, the language SE:=
⋂∞
i=0 LE,Σ(αi) is finite. Referring to

Observation 5.9, this directly leads to the following result:

Theorem 5.16. Let Σ be an alphabet, |Σ| = 1, and S ⊆ Σ∗ an infinite language. Then
there is a pattern δ ∈ PatΣ that is E-descriptive of S.

The proof for Theorem 5.16 is given in Section 5.4.1.
In contrast to this, Example 5.11 demonstrates that, for alphabets with at least two

letters, there is an infinite strictly decreasing chain of E-pattern languages such that
the intersection of all these languages is infinite. Since this intersection is an E-pattern
language, Example 5.11 can nevertheless not be used to establish a result that differs
from those given for the other cases. In order to answer the question of whether this
holds true for all such chains, we now consider a more sophisticated infinite sequence of
patterns, that is defined as follows:

Definition 5.17. We define the pattern

α0:=y2z2

and the morphism φ : X∗ → X∗ (note that we assume X ⊇ {y, z, x0, x1, x2 . . .}) through,
for every i ≥ 0,

φ(xi) := xi+1,

φ(y) := y2x1,

φ(z) := x1z
2.
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Then, for every i ≥ 0, the pattern αi+1 is given by

αi+1:=φ(αi) = φi(α0).

This means that, for example,

α1 = y2x1 y
2x1 x1z

2 x1z
2,

α2 = (y2x1y
2x1x2) (y2x1y

2x1x2) (x2x1 z
2x1z

2) (x2x1z
2x1z

2),

α3 = (y2x1y
2x1x2 y

2x1y
2x1x2 x3) (y2x1y

2x1x2 y
2x1y

2x1x2 x3)

· (x3 x2x1z
2x1z

2 x2x1z
2x1z

2) (x3 x2x1z
2x1z

2 x2x1z
2x1z

2),

and, for sufficiently large i,

αi = (((((. . . ((((y2x1)2x2)2x3)2x4)2 . . . xi−4)2xi−3)2xi−2)2xi−1)2xi)
2

· (xi(xi−1(xi−2(xi−3(xi−4 . . . (x4(x3(x2(x1z
2)2)2)2)2 . . .)2)2)2)2)2.

It can be shown that this sequence (αi)
∞
i=0 defines an infinite strictly decreasing chain

of E-pattern languages. Furthermore, if we define the morphism ψ : X∗ → X∗ through
ψ(xi):=xi and ψ(y):=ψ(z):=x0, then, for every alphabet Σ with |Σ| ≥ 2,

LΣ:=
∞⋃
i=0

LE,Σ(ψ(αi))

satisfies LΣ ⊆
⋂∞
i=0 LE,Σ(αi). As a side note, it is worth mentioning that LΣ is a multi-

pattern language (cf. Dumitrescu et al. [25]) where the set {ψ(αi) | i ≥ 0} of generating
patterns is defined similarly to an HD0L language (albeit over an infinite alphabet of
variables); such a concept has not been considered by previous literature2. Finally, it
can be demonstrated that the sequence (αi)

∞
i=0 has a very particular property, since for

every pattern γ with LE,Σ(γ) ⊇ LΣ there exists an αi satisfying LE,Σ(γ) ⊇ LE,Σ(αi).
Referring to Observation 5.9, this implies the main result of the present chapter:

Theorem 5.18. For every alphabet Σ with |Σ| ≥ 2 there is an infinite language LΣ ⊂ Σ∗

that has no E-descriptive pattern.

The proof for Theorem 5.18 is given below in Section 5.4.2. Consequently, when
searching for descriptive patterns, the case of E-descriptive patterns of infinite languages
over alphabets of at least two letters is the only one where the existence of such patterns
is not always guaranteed. This directly answers a question posed by Jiang et al. [50].

Consequently, when searching for descriptive patterns, the case of E-descriptive pat-
terns of infinite languages over alphabets of at least two letters is the only one where the
existence of such patterns is not always guaranteed. This directly answers a question
posed by Jiang et al. [50].

Finally, it can be shown that, while the proof of Theorem 5.18 is based on the
particular shape of the infinite union LΣ of E-pattern languages described above, LΣ

can be replaced by a language LtΣ which, for every pattern ψ(αi), i ≥ 0, contains just a
single word. In order to describe this insight more precisely, we have to introduce the
following concept:

2We revisit this observation in Chapter 7, especially in Section 7.2.
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Definition 5.19. A language L is called properly thin if, for every n ≥ 0, L contains
at most one word of length n.

Referring to this definition, we can strengthen Theorem 5.18 as follows:

Corollary 5.20. For every alphabet Σ with |Σ| ≥ 2, there is an infinite properly thin
language LtΣ ⊂ Σ∗ that has no E-descriptive pattern.

The proof of Corollary 5.20 is given in Section 5.4.3. Note that Section 7.3.1 in
Chapter 7 contains the sketch of a modification to the proof of Theorem 5.18 that uses
a variation of the chain.

5.4.1 Proof of Theorem 5.16

Before we give the actual proof of Theorem 5.16, we introduce some concepts that are
only relevant to this section.

To begin with, we extend the operations addition, subtraction, multiplication and
division from the natural numbers to operations on natural numbers with sets of natural
numbers in the canonical way; i. e., for ? ∈ {+,−, ·, /} and M ⊆ N, b ∈ N let M?b:={m?
b | m ∈ M}. Note that in all cases where we use division or subtraction, the results
will always be natural numbers; furthermore, we make free use of the commutativity
of multiplication and addition and write b + M or b · M instead of M + b or M · b,
respectively. For any (possibly infinite) M ⊆ N, let gcd(M) denote the greatest common
divisor of all elements of M .

Let n ≥ 1 and M = {m1, . . . ,mn} ⊂ N1. We define the linear hull of M as
lin(M):={m | m = k1m1 + . . .+ knmn for some k1, . . . , kn ∈ N}, and lin(∅):={0}.

It is obvious that every unary language L is isomorphic to its Parikh set P (L):={|w| |
w ∈ L} ⊆ N. We say that a unary language L is linear if there is a b ≥ 0 and a finite set
G ⊂ N such that P (L) = b + lin(G). This allows us to state the following observation
on unary pattern languages:

Proposition 5.21. A unary language is linear if and only if it is a pattern language.

Proof. Let Σ = {a}. We begin with the if direction. Let α ∈ PatΣ with var(α) =
{x1, . . . , xn} for some n ≥ 0. Let b:=|α|a and, for 1 ≤ i ≤ n, gi:=|α|xi ; furthermore, we
define β:= ab xg1

1 . . . xgnn . As Σ is unary, LE,Σ(α) = LE,Σ(β) holds, and it is easy to see
that P (LE,Σ(β)) = b+ lin({g1, . . . , gn}).

Conversely, if some language L ⊆ Σ∗ is linear, then there exist a b ≥ 0 and a finite
set G = {g1, . . . , gn} ⊃ N (with n ≥ 0) satisfying P (L) = b + lin(G). If we define β as
above, P (LE,Σ(β)) = b+ lin(G) = P (L) leads to LE,Σ(β) = L.

Also, note this important fact on linear hulls:

Lemma 5.22. For every finite M ⊂ N, there exists an n ≥ 1 with lin(M) ⊇ gcd(M)·Nn.

Proof. The case of gcd(M) = 1 is well known, a proof can be found in Chapter 3.15 of
Wilf [104]. If gcd(M) > 1, let M ′:=M/ gcd(M). Then, as gcd(M ′) = 1, there is an n ≥ 1
such that lin(M ′) ⊇ Nn, and therefore, lin(M) = gcd(M) · lin(M ′) ⊇ gcd(M) · Nn.
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Now that all necessary tools have been introduced, we are ready for the proof of
Theorem 5.16:

Proof. Let Σ:={a}. Furthermore, let

b:= min(P (S)),

P ′S:=P (S)− b,
g:= gcd(P ′S),

P ′′S :=P ′S/g

and α:= ab xg1. It is easy to verify that LE,Σ(α) ⊇ S, P (LE,Σ(α)) = b + g · N and
P (S) = b + g · P ′′S . Although α is not necessarily E-descriptive of S, we shall see that
there is always only a finite number of pattern languages between LE,Σ(α) and S.

Since Σ is unary, we have, for every pattern β ∈ PatΣ with LE,Σ(α) ⊃ LE,Σ(β) ⊇ S,

P (LE,Σ(α)) ⊃ P (LE,Σ(β)) ⊇ P (S).

This, in turn, is equivalent to

b+ g · N ⊃ P (LE,Σ(β)) ⊇ b+ g · P ′′S .

Due to this relation and Proposition 5.21, we can conclude with some effort that there
is a finite Gβ ⊃ N with P (LE,Σ(β)) = b+ g · lin(Gβ). Therefore,

b+ g · N ⊃ b+ g · lin(Gβ) ⊇ b+ g · P ′′S ,

which is equivalent to

N ⊃ lin(Gβ) ⊇ P ′′S .

As gcd(P ′′S ) = 1, there is a finite CS ⊂ P ′′S with gcd(CS) = 1. We observe that

lin(Gβ) ⊇ P ′′S ⊃ CS,

and, as CS is a finite subset of lin(Gβ),

lin(Gβ) ⊇ lin(CS).

Due to Lemma 5.22, there is an n ≥ 0 such that lin(CS) ⊇ Nn, and thus, lin(Gβ) ⊇ Nn,
which leads to P (LE,Σ(β)) ⊇ b+ g · Nn.

Now, assume that there is an infinite sequence (βi)
∞
i=0 over PatΣ such that LE,Σ(α) ⊃

LE,Σ(βi) ⊃ LE,Σ(βi+1) ⊃ S for every i ≥ 0. Then there is an infinite sequence (Gβi)
∞
i=0

of finite subsets of N with, for every i ≥ 0, P (LE,Σ(βi)) = b+ g · lin(Gβi) and lin(Gβi) ⊃
lin(Gβi+1

) ⊃ Nn. As Nn is cofinite, such an infinite sequence cannot exist – therefore,
due to Observation 5.9, there must be some pattern that is E-descriptive of S.

This concludes the proof of Theorem 5.16.
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5.4.2 Proof of Theorem 5.18

In order to prove Theorem 5.18, we define LΣ through the infinite sequence of patterns
αi, i ≥ 0, given by Definition 5.17 in such a way that the words of LΣ are structurally
so close to the patterns αi that, for every pattern δ ∈ PatΣ with LE,Σ(δ) ⊇ LΣ, there
is a j ≥ 0 with LE,Σ(δ) ⊃ LE,Σ(αj) ⊃ LΣ. Thus, regardless of how closely LE,Σ(δ)
approximates LΣ, there is always an αj that provides a better description of LΣ.

As briefly mentioned above, LΣ is an infinite union of E-pattern languages. The
corresponding patterns are derived from the patterns αi by a morphism ψ : X∗ → X∗,
defined through

ψ(xi):=xi,

ψ(y):=ψ(z):=x0.

Applying ψ to the patterns αi, we receive an infinite sequence of patterns (βi)
∞
i=0; i. e.,

we define, for every i ≥ 0, βi:=ψ(αi). As the rather simple structure of ψ suggests, any
pattern βj, j ≥ 0, is structurally very close to the patterns αj, since the only difference
is that both y and z are replaced by the variable x0:

β0 = x2
0 x

2
0,

β1 = x2
0x1 x

2
0x1 x1x

2
0 x1x

2
0,

β2 = (x2
0x1x

2
0x1x2) (x2

0x1x
2
0x1x2) (x2x1 x

2
0x1x

2
0) (x2x1x

2
0x1x

2
0),

β3 = (x2
0x1x

2
0x1x2 x

2
0x1x

2
0x1x2 x3) (x2

0x1x
2
0x1x2 x

2
0x1x

2
0x1x2 x3)

(x3 x2x1x
2
0x1x

2
0 x2x1x

2
0x1x

2
0) (x3 x2x1x

2
0x1x

2
0 x2x1x

2
0x1x

2
0),

...

βi = (((((. . . ((((x2
0x1)2x2)2x3)2x4)2 . . . xi−4)2xi−3)2xi−2)2xi−1)2xi)

2

(xi(xi−1(xi−2(xi−3(xi−4 . . . (x4(x3(x2(x1x
2
0)2)2)2)2 . . .)2)2)2)2)2.

Finally, for any alphabet Σ with |Σ| ≥ 2, we define LΣ:=
⋃∞
i=0 LE,Σ(βi).

The relation between the patterns βi can again be expressed by a morphism, namely
µ : X∗ → X∗ given by

µ(xi):=

{
λ if i = 0,

xi−1 if i > 0,

µ(y):=y,

µ(z):=z.

Figuratively speaking, the morphism µ permits us to move downward in the sequence
(βi)

∞
i=0 (note that µ is given for the variables y and z due to technical reasons arising

later). This is illustrated by Figure 5.1 and further substantiated by the following lemma:

Lemma 5.23. For all i, j ≥ 0, µj(βi+j) = βi.

Proof. If j = 0, the claim is trivially true. We now consider j = 1. By definition,
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αi+1
ψ

ψ

-

-

φ
?

µ6

αi

βi+1

βi

Figure 5.1: Morphic relations between the elements of the sequences (αi)
∞
i=0 and

(βi)
∞
i=0.

µ(βi+1) = (µ ◦ ψ ◦ φ)(αi). The morphism µ ◦ ψ ◦ φ : X∗ → X∗ works as follows:

(µ ◦ ψ ◦ φ)(x) =


(µ ◦ ψ)(xk+1) if x = xk,

(µ ◦ ψ)((y)2x1) if x = y,

(µ ◦ ψ)(x1(z)2) if x = z

=


µ(xk+1) if x = xk,

µ((x0)2x1) if x = y,

µ(x1(x0)2) if x = z

=

{
xk if x = xk,

x0 if x = y or x = z

= ψ(x).

Therefore, µ(βi+1) = ψ(αi) = βi. For all larger values of j, the claim holds by induction.

Referring to Theorem 2.4, Figure 5.1 already illustrates certain inclusion relations
between the languages generated by the patterns αi and βj, i, j ≥ 0. The following lemma
shows that these inclusions are proper, which in particular means that the patterns
in (αi)

∞
i=0 lead to a strictly decreasing chain of E-pattern languages (as featured by

Observation 5.9). Additionally, the lemma describes the relation of the given E-pattern
languages to LΣ. A summary of selected inclusion relations is provided by Figure 5.2.

Lemma 5.24. For every i ≥ 0, the following statements hold:

1. LE,Σ(αi) ⊃ LE,Σ(αi+1) ⊃ LΣ,

2. LE,Σ(αi) ⊃ LE,Σ(βi),

3. LE,Σ(βi) ⊂ LE,Σ(βi+1) ⊂ LΣ.

Proof. For every i ≥ 0, the proper inclusion relations LE,Σ(αi) ⊃ LE,Σ(αi+1), LE,Σ(βi+1) ⊃
LE,Σ(βi) and LE,Σ(αi) ⊃ LE,Σ(βi) follow from Lemma 5.1: By definition, αi+1 = φ(αi)
and βi = ψ(αi), and, due to Lemma 5.23, βi = µ(βi+1). Furthermore, the following claim
holds true:

Claim. For every i ∈ N, the patterns αi and βi are morphically primitive.

Proof of Claim. According to Theorem 5.3, every morphically imprimitive pattern γ must
– among other requirements that need to be satisfied – contain at least one variable that,
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LE,Σ(α0) ⊃ LE,Σ(β0)
∪ ∩

LE,Σ(α1) ⊃ LE,Σ(β1)
∪ ∩

LE,Σ(α2) ⊃ LE,Σ(β2)
∪ ∩

LE,Σ(α3) ⊃ LE,Σ(β3)
∪ ∩

LE,Σ(α4) ⊃ LE,Σ(β4)
∪ ∩
...

...

Figure 5.2: Inclusion relations between the E-pattern languages of αi and βj, i, j ≥ 0.

for each of its occurrences in γ, has the same left neighbors or the same right neighbors.
More formally, there must be an x ∈ var(γ) such that there exists a factorization

γ = γ̂1 χx,L xχx,R γ̂2 χx,L xχx,R γ̂3 . . . γ̂n−1 χx,L xχx,R γ̂n

with n ≥ 2, χx,L, χx,R, γ̂1, γ̂2, . . . , γ̂n ∈ X∗ \ {x} and χx,L 6= λ or χx,R 6= λ.
If we now consider any pattern αi, i ≥ 0, then neither y nor z nor xi can have

that property, because they have squared occurrences. More precisely, for x ∈ {y, z, xi},
αi = . . . xx . . ., which due to χx,L, χx,R ∈ X∗ \ {x} implies χx,L = λ and χx,R = λ. For
every xj ∈ var(αi) \ {y, z, xi}, αi = . . . xjxj+1 . . . and αi = . . . xjy . . ., and this means
that χxj ,R = λ. Furthermore, for every such xj, αi satisfies αi = . . . xj+1xj . . . and
αi = . . . zxj . . ., and this implies χxj ,L = λ. In other words, there is no variable in αi
that, for each of its occurrences, has the same left neighbors or the same right neighbors.
Consequently, αi is morphically primitive.

If we substitute x0 for y and z in the above reasoning, then it shows that every
βi, i ≥ 0, is morphically primitive, too. This proves the correctness of the Claim.

(Claim)

Finally, according to Theorem 5.2, φ, ψ and µ are not imprimitivity morphisms for
the patterns they are applied to; by definition, none of the morphisms in question is a
renaming of any of the patterns involved. Thus, all conditions of Lemma 5.1 are satisfied,
and this directly proves the correctness of our initial statement. In addition to this, these
inclusion relations immediately imply LE,Σ(αi) ⊃ LE,Σ(βj) for all i, j ≥ 0.

For every i ≥ 0, the inclusion LΣ ⊇ LE,Σ(βi) follows from the definition of LΣ, which
in turn immediately leads to LΣ 6= LE,Σ(βi), as otherwise LE,Σ(βi+1) ⊃ LE,Σ(βi) would
not be satisfied.

By definition, for every w ∈ LΣ, there is an i ≥ 0 with w ∈ LE,Σ(βi); and therefore,
w ∈ LE,Σ(αj) for every j ≥ 0, which implies LE,Σ(αj) ⊇ LΣ. Finally, LE,Σ(αj) = LΣ

would contradict LE,Σ(αj) ⊃ LE,Σ(αj+1) ⊇ LΣ.

Regarding the possible existence of a pattern δ that is E-descriptive of LΣ, the lan-
guage LE,Σ(δ) must, by definition, not be a superlanguage of any of the E-pattern lan-
guages in the strictly decreasing chain established by Lemma 5.24. More precisely, for
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every pattern δ ∈ PatΣ, if there is an i ≥ 0 with LE,Σ(δ) ⊇ LE,Σ(αi), we have

LE,Σ(δ) ⊇ LE,Σ(αi) ⊃ LE,Σ(αi+1) ⊃ LΣ,

which leads to the following lemma:

Lemma 5.25. If δ ∈ PatΣ and LE,Σ(δ) ⊇ LE,Σ(αi) for some i ≥ 0, then δ is not
E-descriptive of LΣ.

Therefore, although the language that is generated by a pattern that is E-descriptive
of LΣ (if any) has to contain every language LE,Σ(βi), it may not contain any single lan-
guage LE,Σ(αi). The main idea of the construction is that this requirement is inherently
contradictory, as we shall see that whenever a pattern δ can generate every language
LE,Σ(βi), then δ can generate almost all of the languages LE,Σ(αi) as well.

We now assume to the contrary that there is a pattern δ ∈ PatΣ that is E-descriptive
of LΣ. As λ ∈ LΣ ⊆ LE,Σ(δ), δ cannot contain any terminals. Therefore, Theorem 2.4
permits us to describe all relevant inclusion relations through morphisms.

According to Theorem 2.4, for every i ≥ 0, there is a morphism θi : X∗ → X∗ such
that θi(δ) = βi, since LE,Σ(δ) ⊇ LE,Σ(βi) holds by definition. We now choose an infinite
sequence of morphisms (θi)

∞
i=0 such that for every i ≥ 0,

1. θi(δ) = βi, and

2. θi erases as many variables of δ as possible; i. e., for every morphism ρ with ρ(δ) =
θi(δ) = βi,

|{x ∈ var(δ) | ρ(x) = λ}| ≤ |{x ∈ var(δ) | θi(x) = λ}|.

Such a sequence must exist, as var(δ) is finite. Furthermore, we choose integers m,n
such that θm and θm+n erase exactly the same variables of δ; i. e., for all x ∈ var(δ),
θm(x) = λ if and only if θm+n(x) = λ. Again, this is possible due to var(δ) being finite.
Due to technical reasons and without loss of generality, we assume m,n ≥ 2.

As we shall see, this choice allows us to modify θm+n in such a way that the result-
ing morphism maps δ to αm+1, which (according to Lemma 5.25) leads to the desired
contradiction. Our modification mostly targets those variables in var(δ) that contain
occurrences of xn−1 in their images under θm+n. To this end, we define

X̂:={x ∈ var(δ) | xn−1 ∈ var(θm+n(x))},
X̂L:={x ∈ X̂ | θm+n(x) contains xn−2xn−1, xn−1xn or xn−1x0 as a factor},
X̂R:={x ∈ X̂ | θm+n(x) contains xn−1xn−2, xnxn−1 or x0xn−1 as a factor}.

In order to construct a well-defined morphism, we need to show that X̂R and X̂L form a
partition of Xκ; as we shall see, X̂L contains exactly those variables that are mapped to
occurrences of xn−1 in the left side of βm+n, while X̂R contains those variables that are
mapped to occurrences on the right side. Then we can use these variables as “anchors”
for a modification of θm+n that permits us to obtain αn+1 from δ.

Our corresponding reasoning is based on the following insight:
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Lemma 5.26. For every x ∈ var(δ), if θm+n(x) contains a variable xi with i < n, then
θm+n(x) also contains a variable xj with j ≥ n.

Proof. First, recall that θm+n(δ) = βm+n and (µn ◦ θm+n)(δ) = βm (cf. Lemma 5.23).
Assume to the contrary that there is an x ∈ var(δ) such that var(θm+n(x)) 6= ∅ and
var(θm+n(x)) ⊆ {x0, . . . , xn−1}. Note that for all n ≥ 0,

µn(xi) =

{
λ i < n,

xi−n i ≥ n.

Therefore, µn(xi) = λ if and only if i < n; and thus (µn ◦ θm+n)(x) = λ.
Moreover, for every y ∈ var(δ), if θm+n(y) = λ, then (µn ◦ θm+n)(y) = λ. But θm

and θm+n erase exactly the same variables of δ. Thus, although µn ◦ θm+n erases more
variables than θm, (µn ◦ θm+n)(δ) = βm = θm(δ) holds, which is a contradiction to the
second criterion in our choice of (θi)

∞
i=0.

Note that this implies that, for all x ∈ Xκ, |θm+n(x)| ≥ 2. Now we can prove that

X̂L and X̂R form a partition of Xκ:

Lemma 5.27. X̂L ∪ X̂R = Xκ and X̂L ∩ X̂R = ∅.
Proof. To see that X̂L ∪ X̂R = Xκ must hold, recall the shape of βm+n:

βm+n =((. . . (((. . . ((x0)2x1)2 . . . xn−2)2xn−1)2xn)2 . . .)2xm+n)2

(xm+n(. . . (xn(xn−1(xn−2 . . . (x1(x0)2)2 . . .)2)2)2 . . .)2)2.

Due to Lemma 5.26, |θm+n(x)| ≥ 2 for each x ∈ Xκ. Thus, every θm+n(x) contains not
only an occurrence of xn−1, but at least one left or right neighbor. If some occurrence of
xn−1 lies in the left half of βm+n, its left neighbor is always an occurrence of xn−2 (recall
that n ≥ 2), and its right neighbor is either xn or x0. On the other hand, if it lies in
the right half of βm+n, its right neighbor is always xn−2, and its left neighbor is either
x0 or xn. Thus, if some x ∈ Xκ is mapped to an occurrence of xn−1 in the left half of
βm+n, θm+n(x) contains a factor xn−2xn−1, xn−1xn or xn−1x0, and x ∈ X̂L. Likewise, if
it is mapped to an occurrence in the right half, θm+n(x) contains xn−1xn−2, xnxn−1 or

x0xn−1, and x ∈ X̂R. Therefore, X̂L ∪ X̂R = Xκ.
In order to prove disjointness, we make another structural observation: We can safely

assume that every variable in δ occurs at least twice – otherwise LE,Σ(δ) = Σ∗ ⊃ LE,Σ(α0)
would hold, and δ would not be E-descriptive of LΣ according to Lemma 5.25. Thus,
there is no variable x such that xm+nxm+n is a factor of θm+n(x), as xm+nxm+n occurs
only once in βm+n. This means that xm+nxm+n forms an insurmountable barrier: For
every occurrence of a variable from var(δ), its image under θm+n lies either in the left
or the right half of βm+n. But if this image is longer than a single letter, the images of
all occurrences of this variable must be mapped to the same side of βm+n. According
to Lemma 5.26, this is true for all variables of Xκ. Therefore, for every x ∈ Xκ, either
x ∈ X̂L or x ∈ X̂R holds, which implies X̂L ∩ X̂R = ∅.

This permits us to define a morphism ρ : X∗ → X∗ through

ρ(x):=


(ρ̂L ◦ θm+n)(x) if x ∈ X̂L,

(ρ̂R ◦ θm+n)(x) if x ∈ X̂R,

θm+n(x) otherwise,
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where the morphisms ρ̂L, ρ̂R : X∗ → X∗ are given by

ρ̂L(x):=

{
y if x = xn−1,

x otherwise,
ρ̂R(x):=

{
z if x = xn−1,

x otherwise.

According to Lemma 5.27, the morphism ρ is well-defined, and, as to be proven next,
(µn−1 ◦ ρ)(δ) = αm+1. Applying ρ to δ leads to

ρ(δ) =((. . . (((. . . ((x0)2x1)2 . . . xn−2)2y)2xn)2 . . .)2xm+n)2

(xm+n(. . . (xn(z(xn−2 . . . (x1(x0)2)2 . . .)2)2)2 . . .)2)2,

and, as (m+ n)− (n− 1) = m+ 1 and µ(xi) = λ for every i ≤ n− 2, we obtain

(µn−1 ◦ ρ)(δ) = ((. . . ((y)2x1)2 . . .)2xm+1)2(xm+1(. . . (x1(z)2)2 . . .)2)2

= αm+1.

The morphism µn−1 ◦ ρ maps δ to αm+1, and, thus, Theorem 2.4 immediately leads
to LE,Σ(δ) ⊇ LE,Σ(αm+1). Therefore, due to Lemma 5.25, the pattern δ cannot be
E-descriptive of LΣ. This contradiction concludes the proof of Theorem 5.18.

5.4.3 Proof of Corollary 5.20

The proof of Corollary 5.20 is based on the following technical lemma, that is given by
Jiang et al. [51] in the context of their proof of Theorem 2.4:

Lemma 5.28 (Jiang et al. [51]). Let Σ be an alphabet, Σ ⊇ {a, b}, and let α, β ∈ X+

be terminal-free patterns, k:=|β|. Let the morphism τk : X∗ → X∗ be given by, for every
i ≥ 0,

τk(xi):= a bki+1 a a bki+2 a . . . a bki+k−1 a a bki+k a .

Then τk(α) ∈ LE,Σ(β) if and only if there exists a morphism h : X∗ → X∗ satisfying
h(β) = α.

Furthermore, we wish to point out that the patterns αi and βi, i ≥ 0, referred to in
the present section are defined in Section 5.4.2.

We prove Corollary 5.20 by giving a thin language LtΣ ⊂ LΣ such that for every δ ∈
PatΣ with LE,Σ(δ) ⊇ LtΣ and for infinitely many i ≥ 0, there is a morphism θi : X∗ → X∗

with θi(δ) = βi. Then for every such δ, there is a j ≥ 0 with LE,Σ(δ) ⊃ LE,Σ(αj) ⊃ LtΣ.

Proof. Let a, b ∈ Σ with a 6= b. For every n ≥ 1, we define a substitution τn : X∗ → Σ∗

by
τn(xi):= a bni+1 a a bni+2 a . . . a bni+n−1 a a bni+n a,

and we assume that τ0 denotes the constant λ-function. We then define

LtΣ:=
∞⋃
n≥0

τn(βn).

It is easy to see that LtΣ is properly thin, as for every n ≥ 0, |τn(βn)| < |τn+1(βn+1)|.
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We assume to the contrary that there is a pattern δ ∈ PatΣ that is E-descriptive
of LtΣ. First note that – since LE,Σ(αi) ⊃ LE,Σ(αi+1) ⊃ LΣ ⊃ LtΣ for every i ≥ 0 (see
Lemma 5.24) – there is no j ≥ 0 with LE,Σ(δ) ⊇ LE,Σ(αj) (as described by Lemma 5.25).
Furthermore, as τ0(β0) = λ, λ ∈ LtΣ ⊆ LE,Σ(δ) holds, and therefore δ must be terminal-
free.

According to Lemma 5.28, for every δ ∈ X+ and every n ≥ |δ|, τn(βn) ∈ LE,Σ(δ) if and
only if there is a morphism θn : X∗ → X∗ such that θn(δ) = βn. Furthermore, for every
m < n and the morphism µ introduced in Section 5.4.2, (µn−m ◦ θn)(δ) = µn−m(βn) =
βn−(m−n) = βm holds. Thus, there is an infinite sequence (θi)

∞
i=0 with θi(δ) = βi for

all i ≥ 0, which allows us to construct a morphism that maps δ to some αj just as in
the proof for Theorem 5.4.2. Thus, LE,Σ(δ) ⊃ LE,Σ(αj) ⊃ LtΣ, and this contradicts our
assumption of δ being E-descriptive of LtΣ.

In the same way, we can also remove an arbitrary infinite number of words from LtΣ,
as long as infinitely many words τn(βn) remain.

5.5 Computing Descriptive Patterns

In addition to the question whether a set has a descriptive pattern, it is also of interest
to ask whether such a pattern can be derived effectively, and if so, efficiently. Naturally,
this question needs to specify for which kind of sets we consider.

5.5.1 Computing Descriptive Patterns for Finite Sets

In this section, we discuss the effective and efficient solvability of computing a pattern
that is descriptive of a finite set. As for many questions on pattern languages, the first
results are due to Angluin:

Theorem 5.29 (Angluin [4]). Let Σ be an alphabet. There is an effective procedure
which, given a finite S ⊆ Σ∗ as input, outputs a pattern α that is NE-descriptive of S.

On the other hand, with an additional restriction that is used to circumvent the prob-
lem of the undecidable inclusion problem, NE-descriptive patterns cannot be computed
effectively (assuming P 6= NP):

Theorem 5.30 (Angluin [4]). Let Σ be an alphabet with |Σ| ≥ 2. If P 6= NP, then
there is no polynomial-time algorithm that, given a finite set S ⊂ Σ∗, finds a pattern δ
of maximum possible length that is NE-descriptive of S.

The situation for the E-case is a little bit less clear. As mentioned in Section 5.4,
Jiang et al. [50] claim after the proof of Theorem 5.15 that this proof also provides an
algorithm that, given a finite language S, computes a pattern that is E-descriptive of
that language. But, even as the search space is finite for every S (as the proof only
considers patterns of a restricted length), a general algorithm as described in [50] would
still require an algorithm that solves the inclusion problem for E-pattern languages.
There is no indication in [50] how such an algorithm could be implemented without
using a procedure that decides the inclusion for E-pattern languages (cf. Salomaa [100]).
Therefore, the following question has to be considered open:
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Open Problem 5.31. Let Σ be a finite alphabet, |Σ| ≥ 2. Is there an effective procedure
which, given a finite S ⊆ Σ∗ as input, outputs a pattern α that is E-descriptive of S?

As we shall see, such an algorithm, even if it should exist, is probably not efficient (cf.
Theorem 5.33). Of course, as inclusion is decidable for terminal-free E-pattern languages,
we can answer this question positively for this restricted class:

Proposition 5.32. For every Σ with |Σ| ≥ 2 and every finite nonempty S ∈ FINΣ,
DePATtf,Σ

(S) 6= ∅, and a δ ∈ DePATtf,Σ
(S) can be effectively computed.

Proof. This can be shown using the same reasoning as in the proof of Theorem 8.1 by
Jing et al. [50]. Let S = {w1, . . . , wn} ⊂ Σ∗ for some n ≥ 1 and denote

cS:=
n∑
i=1

|wi|.

Our claim is that for every α ∈ X+ with LE,Σ(α) ⊃ S, there is a β ∈ X+ with LE,Σ(α) ⊇
LE,Σ(β) ⊇ S and |β| ≤ cS. If LE,Σ(α) ⊃ S, there are morphisms φ1, . . . , φn : X∗ → Σ∗

with φi(α) = wi for i ∈ {1, . . . , n}. Let R:={x ∈ var(α) | φi(x) = λ for all i}, define the
morphism ρ : X∗ → X∗ through

ρ(x):=

{
λ if x ∈ R,
x if x /∈ R,

and let β:=ρ(α). It is easily seen that |β| ≤ cS and φi(β) = (φi ◦ ρ)(α) = φi(α) = wi for
every i. Thus, LE,Σ(α) ⊇ LE,Σ(β) ⊃ S holds.

As there are only finitely many terminal-free patterns (modulo renaming) of length
at most cS, there must be a pattern δ ∈ X+ with |δ| ≤ cS, LE,Σ(α) ⊇ LE,Σ(δ) and
δ ∈ DePATtf,Σ

(S).
This also leads to the desired effective procedure that returns a δ ∈ DePATtf,Σ

(S):
As an initial value, choose α:=x1. In every step, try to find a pattern β ∈ X+ with
LE,Σ(α) ⊃ LE,Σ(β) ⊇ S and |β| ≤ cS. If such a pattern is found, let α:=β, and search
again. If no such pattern is found, δ ∈ DePATtf,Σ

(S) must hold. As the search space is
finite, and all involved inclusions problems are decidable (cf. Theorem 2.4), the whole
procedure is effective.

Similar to the case of NE-pattern languages, even if the problem can be solved ef-
fectively for the whole class of E-pattern languages, any such algorithm would not be
efficient (unless P = NP):

Theorem 5.33. If P 6= NP, then there is no polynomial-time algorithm that, for any
alphabet Σ and every finite set S ⊂ Σ∗ of words, computes a pattern that is ePATΣ-
descriptive of S.

Proof. We prove the contraposition of the theorem. Thus, we assume that there is an
algorithm χδ computing, for any alphabet Σ, any finite set S ⊆ Σ∗ of words, a pattern
that is ePATΣ-descriptive of S, and we shall use χδ to decide the inclusion problem for
terminal-free E-pattern languages in polynomial time. Since this problem is NP-complete
(see Corollary 5.5), we can conclude P = NP.
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Let α, β ∈ X∗ be any patterns. W. l. o. g., we assume that var(α) ∩ var(β) = ∅. Let
Σ be an alphabet with |Σ| = | var(α)| + | var(β)|, and let the morphism r : (var(α) ∪
var(β))∗ → Σ∗ be a renaming. This implies that there is an inverse morphism r−1

with r−1(r(α)) = α and r−1(r(β)) = β, and symb(r(α)) ∩ symb(r(β)) = ∅. We define
S:={r(α), r(β)}, and we use χδ to compute a pattern δ that is ePATΣ-descriptive of
S. Since symb(r(α)) ∩ symb(r(β)) = ∅, δ is terminal-free. Furthermore, we can use the
reasoning given by Jiang et al. [50] on their Theorem 8.1 to verify that |δ| ≤ |r(α)|+|r(β)|.
We can therefore use a polynomial-time algorithm χ= (the existence of which is ensured
by Theorem 5.6) to decide on whether LE,Σ′(β) = LE,Σ′(δ) for any alphabet Σ′ with
|Σ′| ≥ 2. Since the question of whether LE,Σ′(β) equals LE,Σ′(δ) does not depend on the
actual size of Σ′ and since |Σ| ≥ 2, we may, w. l. o. g., define Σ′:=Σ.

We now show that LE,Σ(β) = LE,Σ(δ) if and only if LE,Σ(α) ⊆ LE,Σ(β):
If LE,Σ(α) 6⊆ LE,Σ(β), then, according to Theorem 2.4, there exists no morphism

φ : X∗ → X∗ satisfying φ(β) = α. Thus, there does not exist a substitution σ with
σ(β) = r(α), since otherwise the morphism φ:=r−1 ◦ σ would satisfy φ(β) = α. On the
other hand, by definition, there exists a substitution τ with τ(δ) = r(α), and therefore
r(α) ∈ LE,Σ(δ) \ LE,Σ(β). This immediately implies LE,Σ(β) 6= LE,Σ(δ).

If LE,Σ(α) ⊆ LE,Σ(β), then there exist substitutions σ, σ′ with σ(β) = r(α) and
σ′(β) = r(β). Hence, S ⊆ LE,Σ(β). Furthermore, since δ is ePATΣ-descriptive of S, there
exists a substitution τ with τ(δ) = r(β). Thus, r−1 ◦ τ(δ) = β, and therefore, according
to Theorem 2.4, LE,Σ(β) ⊆ LE,Σ(δ). If we now assume to the contrary that LE,Σ(β) 6=
LE,Σ(δ), then this implies LE,Σ(β) ⊂ LE,Σ(δ). Consequently, LE,Σ(δ) ⊃ LE,Σ(β) ⊇ S.
This is a contradiction to the assumption that δ is ePATΣ-descriptive of S. Hence,
LE,Σ(β) = LE,Σ(δ).

Consequently, since |r(α)|+|r(β)| is polynomial in |α|+|β| and the runtimes of χδ and
χ= are polynomial in |r(α)|+ |r(β)|, we have a polynomial-time algorithm deciding the
inclusion problem for the class of terminal-free E-pattern languages over any alphabet
Σ with |Σ| ≥ 2. Due to our initial remarks, this proves the theorem.

Theorem 5.33 addresses a problem left open by Jiang et al. [50], and it provides a
result that is, apart from the fact that it depends on an unbounded terminal alpha-
bet, stronger than Angluin’s corresponding statement on NE-descriptive patterns (cf.
Theorem 5.30).

Since Theorem 5.33 can be proved using terminal-free patterns only, we can strengthen
the corresponding result as follows:

Corollary 5.34. If P 6= NP, then there is no polynomial-time algorithm that, for any
alphabet Σ and every finite set S ⊂ Σ∗ of words, computes a pattern that is ePATΣ-
descriptive of S.

5.5.2 E-Descriptive Patterns and the Equivalence Problem

For every class of pattern languages, the question whether a pattern is descriptive of a
language is related to the inclusion problem, and, as the proof of Theorem 5.33 illustrates,
to the equivalence problem. We consider the following question:

Open Problem 5.35. Let Σ be a finite alphabet with |Σ| ≥ 2.
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1. Are there patterns α, β ∈ PatΣ such that no pattern is E-descriptive of LE,Σ(α) ∪
LE,Σ(β)?

2. Assuming that for all α, β ∈ PatΣ there is a pattern that is E-descriptive of
LE,Σ(α) ∪ LE,Σ(β), can such a pattern be obtained effectively?

Purely from intuition, it seems plausible that such a E-descriptive pattern exists
for all pairs of patterns, and in principle, the idea that it can be computed is not too
improbable. On the other hand, the existence of such an algorithm D and the decidability
of the equivalence problem are mutually exclusive:

Theorem 5.36. Let Σ be a finite alphabet with |Σ| ≥ 2. Assume there is an algorithm
D that, given α, β ∈ PatΣ, outputs a pattern D(α, β) that is E-descriptive of LE,Σ(α) ∪
LE,Σ(β). Then the equivalence problem for ePATΣ is undecidable.

Proof. Let Σ be a finite alphabet with |Σ| ≥ 2, assume such an algorithm D exists, and
assume for the sake of contradiction that the equivalence problem for ePATΣ is decidable.

Then inclusion for ePATΣ is decidable in the following straightforward way: Given
any two patterns α, β ∈ PatΣ, we compute δ = D(α, β). By definition, δ is E-descriptive
of LE,Σ(α) ∪ LE,Σ(β).

We now prove that LE,Σ(δ) = LE,Σ(β) if and only if LE,Σ(α) ⊆ LE,Σ(β). For the
only if direction, assume LE,Σ(δ) = LE,Σ(β). As δ is E-descriptive of LE,Σ(α) ∪ LE,Σ(β),
LE,Σ(δ) ⊇ LE,Σ(α) ∪ LE,Σ(β), and thus, LE,Σ(β) ⊇ LE,Σ(α).

For the if direction, if LE,Σ(α) ⊆ LE,Σ(β), then LE,Σ(α) ∪ LE,Σ(β) = LE,Σ(β), and if
LE,Σ(δ) is E-descriptive of LE,Σ(β), LE,Σ(δ) = LE,Σ(β) must hold.

Therefore, deciding LE,Σ(δ) = LE,Σ(β) allows to decide LE,Σ(α) ⊆ LE,Σ(β). As the
inclusion problem for ePATΣ is undecidable (cf. Theorem 3.3), the claim follows.

As a contraposition of this result, if equivalence for ePATΣ is decidable, no such
algorithm exists, either because there are patters α, β ∈ PatΣ such that no pattern is E-
descriptive of LE,Σ(α)∪LE,Σ(β), or because, although there is always such a descriptive
pattern, it can not be found effectively.

Therefore, research in this direction might offer an alternative angle to attack the
equivalence problem for E-pattern languages, which is still open (and considered the
central open problem for pattern languages). Although it has been conjectured that this
problem is decidable (e. g. by Salomaa [96], Ohlebusch and Ukkonen [79]), the proof
methods proposed by Ohlebusch and Ukkonen have been disproven (cf. Reidenbach [87],
Freydenberger and Reidenbach [32]).



Chapter 6

Inferring Descriptive
Generalizations

6.1 On Descriptive Generalizations

While Chapter 5 is mostly concerned with the existence of descriptive patterns, the
present chapter expands on the topic of finding descriptive patterns for certain languages.
As mentioned in the introduction to Chapter 5, descriptive patterns have applications
(or at least potential applications) in inductive inference and pattern discovery.

This chapter revisits and expands this notion. More specifically, we already men-
tioned in Section 5.1 that Gold’s model of inductive inference, the model of language
identification in the limit from positive data (cf. Section 6.2.1), requires the learner to
derive exact descriptions of the target languages, and that it can be worthwhile to re-
lax this requirement to a learner that merely approximates the languages using easily
interpretable approximations.

In the present chapter, we introduce and study such a variant of Gold’s model, where
the requirement of exact language identification is dropped and replaced with that of
inference of patterns that are descriptive of the target languages (with respect to a class
PAT? of pattern languages). By definition, descriptive patterns generate supersets of
the languages of which they are descriptive; hence, this approach does not yield an
arbitrary approximation of a language, but rather a generalization. Moreover, as no
other pattern language (in PAT?) provides a stricter generalization, descriptive patterns
can be regarded as least generalizations.

Since descriptiveness captures a natural understanding of patterns providing a desir-
able generalization of languages and, furthermore, descriptive patterns can be used to
devise Gold-style learners precisely identifying classes of pattern languages from positive
data, this concept has been thoroughly investigated (see, e. g., Angluin [4]).

In contrast to Chapter 5 (and most established definitions of descriptiveness in the
literature), we do not restrict our view to the full class of E- or NE-pattern languages as
the class PAT? of admissible pattern languages, but allow the class PAT? to be chosen
arbitrarily.

To summarize the proposed model of inference, we consider a learner that reads a
positive presentation of a language and, after having seen a new input word, outputs a
pattern, the so-called hypothesis . We then say that, for a class L of languages and a
class PAT? of pattern languages, the learner PAT?-descriptively generalizes L if and only
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if, for every positive presentation of every language L ∈ L, the sequence of hypotheses
produced by the learner converges to a pattern δ that is descriptive of L with respect to
the class PAT?. A more formal definition of the model is given in Section 6.2.2.

The main difference between descriptive generalization and related approaches (see,
e. g., Arimura et al. [7], Mukouchi [73], Kobayashi and Yokomori [56, 57] and, indirectly,
Jain et al. [48]) is that we have a distinct split between a class L of languages to be inferred
and an arbitrary class PAT? of pattern languages determining the set of admissible
hypotheses. This leads to a compact and powerful model that yields interesting insights
into the question of to which extent the generalizability of L depends on properties of L
or of PAT?. We briefly discuss this topic in Section 6.2.3, and we mention in Section 6.2.4
that descriptive generalization can be interpreted as a natural instance of a very general
and simple inference model which, to the best of the author’s knowledge, has not been
considered so far.

In Section 6.3, we investigate the model for a fixed and rich class PAT?, namely
the class of terminal-free E-pattern languages. Our studies reveal that, for this choice of
PAT?, descriptive generalization and inductive inference from positive data are incompa-
rable, and they show that there are major and natural classes of formal languages that can
be descriptively generalized according to the proposed model, but not precisely inferred
in Gold’s model. Technically, the decision to focus on terminal-free E-pattern languages
leads to a number of substantial combinatorial challenges for pattern languages, and we
present various respective insights and tools of intrinsic interest. Note that almost all
results in this section can be immediately adapted to all classes of E-pattern languages
for which inclusion is characterized by the existence of a terminal-preserving morphism
between the patterns (for some examples, see the list in Section 3.3, after Theorem 3.5).

6.2 Inferring Descriptive Generalizations

In the present section, we first discuss Gold’s model of language identification in the
limit from positive data (cf. Gold [39]), and provide a short overview of some related
previous results. After that, we formally introduce the notion of inferring descriptive
generalizations, establish some of its basic properties (mainly by characterizing, for any
class of pattern languages determining the set of valid hypotheses, those indexed families
that can be generalized in the proposed model) and, finally, present a much more general
inference paradigm that captures the essence of this new approach.

6.2.1 Inductive Inference in the Limit from Positive Data

This section introduces Gold’s model of language identification in the limit from pos-
itive data, as well as some notions that we shall use in our definition of descriptive
generalization.

Let L be a class of languages over some alphabet A. Then L is said to be indexable
provided that there exists an indexing (Li)

∞
i=0 of languages Li such that, first, L =

{Li | i ≥ 0} and, second, there exists a total computable function χ which uniformly
decides the membership problem for (Li)

∞
i=0 – i. e., for every w ∈ A∗ and for every i ≥ 0,

χ(w, i) = 1 if and only if w ∈ Li. In this case, we call L = (Li)
∞
i=0 an indexed family (of

recursive languages). Of course, in this notation for an indexed family (which conforms
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with the use in the literature) the equality symbol “=” does not refer to an equality
in the usual sense, but is merely a symbol indicating that L contains all languages in
(Li)

∞
i=0 and vice versa.

Example 6.1. The class of context-free languages is indexable. An appropriate indexing
(Li)

∞
i=0 can be constructed in a straightforward manner by defining a computable bijection

f between the set of natural numbers and the set of all context-free grammars, while the
corresponding computable function χ can be derived from f and any parsing algorithm
for context-free grammars.

Likewise, it is easy to see that most natural classes of pattern languages (be it E-
pattern languages, NE-pattern languages, the full class of pattern languages, or any of
its subclasses that arises from a decidable set of patterns) are indexable, as are most of the
classes commonly studied in formal language theory (e. g., regular and context-sensitive
languages). 3

For any alphabet Σ and any nonempty language L ⊆ Σ∗, we call a total function
t : N0 → Σ∗ a text of L if and only if it satisfies {t(i) | i ≥ 0} = L. Moreover, for
every text t and every n ≥ 0, tn encodes the first n values of t in a single string, i. e.,
tn:=t(1)∇t(2)∇t(3)∇ . . .∇t(n) with ∇ 6∈ Σ; additionally, we define t[n]:={t(i) | i ≤ n}.
Finally, text(L) denotes the set of all (computable and non-computable, repetitive and
non-repetitive) texts of a language L.

Let L = (Li)
∞
i=0 be an indexed family of nonempty languages over an alphabet Σ.

Then L is inferrable (from positive data) (or learnable) if and only if there exists a
computable function S : (Σ ∪ {∇})∗ → N0 such that, for every i ≥ 0 and for every
t ∈ text(Li), S(tn) is defined for every n ≥ 0, and there is an m ≥ 0 with LS(tm) = Li
and S(tn) = S(tm) for every n ≥ m.

We call S a (learning) strategy and, for every n ≥ 0, S(tn) a hypothesis of S. The
notation LIM-TEXT refers to the class of all classes of languages that are inferrable from
positive data.

Note that this concept of learnability only requires the learner to converge towards a
correct hypothesis in finite time. While a learning strategy has to produce a hypothesis in
every step, it is not required to decide that this hypothesis is correct (or even consistent
with the available data). Hence, although it is certain that, for every language in the
class, there is a point at which the strategy reaches a correct hypothesis without changing
that hypothesis, we cannot recognize this point.

Furthermore, similarly to the notion of computability1, the mere existence of such an
effective learning strategy does not guarantee that this strategy can be found, or that it
is efficient.

An important topic in [39] are the so-called superfinite classes of formal languages,

1The author considers the following quote by Angluin [6] an apt commentary on the similarity of
inductive inference and computability theory:

Inductive Inference [..] is to computational learning theory roughly as computability theory
is to complexity and analysis of algorithms. Inductive Inference and computability theory
are historically prior to and part of their polynomially-obsessed younger counterparts,
share a body of techniques from recursion theory, and are a source of potent ideas and
analogies in their respective fields.



100 Chapter 6. Inferring Descriptive Generalizations

i. e., those classes that contain all finite languages (over some fixed alphabet) and at least
one infinite language. Gold proved the following negative result:

Theorem 6.2 (Gold [39]). Let L = (Li)
∞
i=0 be an indexable class of languages that

contains all finite and at least one infinite language. Then L /∈ LIM-TEXT.

As the class of regular languages is superfinite, this proves that no level of the Chom-
sky hierarchy is inferrable from positive data. This was taken as an indication that no
rich and natural class of formal languages is learnable in this model, until Angluin proved
(more than a decade later) the following result:

Theorem 6.3 (Angluin [4]). For every alphabet Σ, nePATΣ ∈ LIM-TEXT.

In addition to this, the following characterization of languages that can be inferred
in the limit from positive data is due to Angluin:

Theorem 6.4 (Angluin [5]). An indexed family L = (Li)
∞
i=0 of nonempty recursive

languages is in LIM-TEXT if and only if there exists an effective procedure which, for
every j ≥ 0, enumerates a set Tj such that

• Tj is finite,

• Tj ⊆ Lj, and

• there does not exist a j′ ≥ 0 with Tj ⊇ Lj′ ⊃ Lj.

In contrast to the situation for NE-pattern languages, the learnability of E-pattern
languages was open for two decades, apart from the following result on unary and infinite
alphabets:

Proposition 6.5 (Mitchell [71]). Let Σ be an alphabet with |Σ| ∈ {1,∞}. Then ePATΣ ∈
LIM-TEXT.

But as for many other problems on pattern languages, the most interesting and most
difficult alphabet sizes are those in the (considerable) gap between 1 and ∞. Finally,
Reidenbach proved the following negative results:

Theorem 6.6 (Reidenbach [86]). Let Σ be an alphabet with |Σ| = 2. Then ePATΣ /∈
LIM-TEXT.

Theorem 6.7 (Reidenbach [88]). Let Σ be an alphabet with |Σ| ∈ {3, 4}. Then ePATΣ /∈
LIM-TEXT.

For all larger finite alphabets, the learnability of E-pattern languages remains open.
In contrast to this, the classes of terminal-free E-pattern languages show the following
curious discontinuity:

Theorem 6.8 (Reidenbach [88]). Let Σ be an alphabet. Then ePATtf,Σ ∈ LIM-TEXT if
and only if |Σ| 6= 2.

As we shall see, the phenomena behind Theorem 6.8 also affect our reasoning in the
present chapter.

Further results on inductive inference, in particular from positive data, and pointers
to related learning models can be found in the surveys provided by Reidenbach [85] and
by Ng and Shinohara [76].
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6.2.2 The Inference Paradigm

Building on (some of) the definitions we introduced in Section 6.2.1, we formalize the
explanations on the model given in Section 6.1 as follows:

Let L be a class of nonempty languages over an alphabet Σ, and let PAT?,Σ be a class
of NE-pattern languages or a class of E-pattern languages over Σ. Then L is PAT?,Σ-
descriptively generalizable (or, if PAT?,Σ is understood, (descriptively) generalizable for
short) if and only if there exists a computable function S : (Σ∪{∇})∗ → (Σ∪X)+ such
that, for every L ∈ L and for every t ∈ text(L), S(tn) is defined for every n ≥ 0, and
there is a δ ∈ (Σ ∪X)+ with δ ∈ DPAT?,Σ

(L) and there is an m ≥ 0 with S(tn) = δ for
every n ≥ m.

We call S a (generalization) strategy and, for every n ≥ 0, S(tn) a hypothesis of S.
The notation DGPAT?,Σ

refers to the class of all classes of languages that are PAT?,Σ-
descriptively generalizable.

Consequently, and as already mentioned in Section 6.1, we have an inference model
where the class to be inferred and the hypothesis space (we shall use this term in a
rather informal manner for both the class PAT?,Σ and any set Pat? of patterns satisfying
PAT?,Σ = {LΣ(α) | α ∈ Pat?}) are entirely different objects. The author feels that this
feature precisely reflects the underlying motivation as outlined in Section 6.1, and it
establishes the difference of the proposed approach to a number of related models.

6.2.3 Fundamental Insights into the Model

We now discuss some basic properties of descriptive generalization without considering
a specific class of pattern languages determining the hypothesis space. This discussion
is provided solely to give a more extensive view of the model, and to provide a wider
context for the results presented in Section 6.3. The proof of Theorem 6.12 in this section
and its extension Theorem 6.14 in the following section are due to Reidenbach and not
part of the present thesis. These proofs can be found in [34] (and the upcoming full
version of [34]).

At first glance, the definitions of descriptive generalization and of the LIM-TEXT
model are closely related, and our first observation states that they are indeed equivalent
if they are applied to any class of pattern languages:

Proposition 6.9. Let PAT?,Σ be a class of pattern languages. Then PAT?,Σ ∈ LIM-TEXT
if and only if PAT?,Σ ∈ DGPAT?,Σ

.

Proof. Directly from the definitions of LIM-TEXT and DGPAT?,Σ
.

While descriptive generalization and inductive inference from positive data, thus,
seem to be very similar, there are major differences between these two models. In fact,
there are classes that can be descriptively generalized, although neither the class nor the
hypothesis space can be exactly inferred from positive data:

Proposition 6.10. There exists a class L of languages and a class PAT?,Σ of pattern
languages satisfying L /∈ LIM-TEXT, PAT?,Σ /∈ LIM-TEXT, and L ∈ DGPAT?,Σ

.

Proof. The statement follows from Corollaries 6.27 and 6.32 in Section 6.3 and the fact
that ePATtf,Σ /∈ LIM-TEXT for |Σ| = 2 (cf. Theorem 6.8).
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Since the definition of descriptive generalization allows any class of pattern languages
to be chosen as a hypothesis space, we can even devise a maximally powerful (yet utterly
useless) generalization strategy:

Proposition 6.11. Let Σ be an alphabet. There exists a class PAT?,Σ of pattern lan-
guages such that every class L of languages over Σ satisfies L ∈ DGPAT?,Σ

.

Proof. Let PAT?,Σ :={LE,Σ(x1)}. Since x1 is PAT?,Σ-descriptive of every language L ⊆
Σ∗, a strategy S that constantly outputs x1 generalizes L.

Obviously, the substantial gap between the LIM-TEXT model and descriptive gen-
eralization illustrated by Proposition 6.11 is based on a proof that uses a trivial notion
of descriptiveness. In Section 6.3, we shall demonstrate that there are similarly deep
differences between both models if a natural and nontrivial class of pattern languages,
namely ePATtf,Σ, is used as admissible hypotheses for the generalization process.

The main result of the present section is the following characterization of descriptively
generalizable indexed families of recursive languages. While the model of descriptive
generalizability as well as our studies in Section 6.3 consider descriptive generalizations
of arbitrary classes of languages, this restriction facilitates an interesting comparison of
this result to Angluin’s characterization of those indexed families that are inferrable in
the LIM-TEXT model (see Angluin [5]). It is also worth noting that the subsequent
argument cannot be based on strong insights into the descriptiveness of patterns, since
we deal with arbitrary classes of pattern languages.

Theorem 6.12. Let Σ be an alphabet, let L = (Li)
∞
i=0 be an indexed family of nonempty

recursive languages over Σ, and let PAT?,Σ be a class of pattern languages. L = (Li)
∞
i=0 ∈

DGPAT?,Σ
if and only if there are effective procedures d and f satisfying the following

conditions:

(i) For every i ≥ 0, there exists a δd(i) ∈ DPAT?,Σ
(Li) such that d enumerates a sequence

of patterns di,0, di,1, di,2, . . . satisfying, for all but finitely many j ∈ N0, di,j = δd(i).

(ii) For every i ≥ 0, f enumerates a finite set Fi ⊆ Li such that, for every j ∈ N0 with
Fi ⊆ Lj, if δd(i) /∈ DPAT?,Σ

(Lj), then there is a w ∈ Lj with w /∈ Li.

The author wishes to stress again that the proof of this theorem (as presented in [34])
is due to Reidenbach, and therefore omitted from the present thesis.

We shall briefly discuss in Section 6.2.4 how some observations on Theorem 6.12 and
its proof can be used to define a more general model of inference.

6.2.4 A More General View

While an application of Theorem 6.12 might require profound knowledge on the descrip-
tiveness of patterns, a closer look confirms our above remark that the actual characteri-
zation and its proof do not at all. More precisely, neither the Theorem nor the reasoning
in its proof deal with the properties of the descriptive patterns δd(i), i ≥ 0, but they
merely make use of a notion of the validity of a hypothesis for a given language, i. e.,
a hypothesis is acceptable for a language if it is descriptive, but we do not check for
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descriptiveness. This view is quite convenient to study the difference between descrip-
tive generalization and inductive inference from positive data. In the LIM-TEXT model
when applied to indexed families, a hypothesis i – i. e., the index of the language Li – is
valid for a language Lj, j 6= i, if and only if the hypothesis j is valid for the language Li
(if and only if Li = Lj). In the model of descriptive generalization, this symmetry does
not necessarily exist, as demonstrated by the following example:

Example 6.13. Let Σ:={a, b}. Let

L1 := {a b a b a, b a b a b}, and

L2 := {a b a b a, b a b a b, a b a a b a}.

We state without proof that δ1:=x1 a b a bx2 is ePATΣ-descriptive of L1 and δ2:=x1x2x1x2x1

is ePATΣ-descriptive of L2. While δ2 is also ePATΣ-descriptive of L1, δ1 is not ePATΣ-
descriptive of L2. Hence, a strategy S that ePATΣ-descriptively generalizes a class in-
cluding L1 and L2 can output δ1 or δ2 when reading a text for L1, but it must not output
δ1 when reading a text for L2. 3

Referring to this phenomenon and restricted to indexed families, we can now give
a much more general model of inference than the one of descriptive generalization, and
we can still characterize those indexed families that can be inferred according to this
model in exactly the same way as we have done in Theorem 6.12. Hence, let L = (Li)

∞
i=0

be an indexed family. Furthermore, for any i ≥ 0, let HYP be a function that maps
i to a subset of N0 that consists of all valid hypotheses for Li. Here it is important
to note that the numbers in HYP(i) do normally not refer to indices of the indexed
family L = (Li)

∞
i=0; e. g., in the model of descriptive generalization they would stand for

indices in an arbitrary enumeration of a set of patterns. We then say that L = (Li)
∞
i=0

is inductively inferrable with hypotheses validity relation HYP if and only if there exists
a computable function S : (Σ ∪ {∇})∗ → N0 such that, for every i ≥ 0 and for every
t ∈ text(Li),

1. S(tn) is defined for every n ≥ 0 and

2. there is a j ∈ HYP(i) and there is an m ≥ 0 with S(tn) = j for every n ≥ m.

Our notion of descriptive generalization demonstrates that there are natural instances
of the model of inductive inference with hypotheses validity relation HYP. Nevertheless,
to the best of the author’s knowledge, its properties have not been explicitly studied so
far.

As announced above, we now rephrase Theorem 6.12 so that it characterizes those
indexed families that are inductively inferrable with hypotheses validity relation HYP:

Theorem 6.14. Let Σ be an alphabet, let L = (Li)
∞
i=0 be an indexed family of nonempty

languages over Σ, and let HYP : N0 → P(N0) be a function. L = (Li)
∞
i=0 is induc-

tively inferrable with hypotheses validity relation HYP if and only if there are effective
procedures h and f satisfying the following conditions:

(i) For every i ≥ 0, there exists a ηi ∈ HYP(i) such that h enumerates a sequence of
natural numbers i0, i1, i2, . . . satisfying, for all but finitely many k ∈ N0, ik = ηi.
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(ii) For every i ≥ 0, f enumerates a finite set Fi ⊆ Li such that, for every j ∈ N0 with
Fi ⊆ Lj, if ηi /∈ HYP(j), then there is a w ∈ Lj with w /∈ Li.

Proof (Reidenbach). Minor and straightforward editing of the proof of Theorem 6.12 –
mainly substituting h for d, ik for di,k, ηi for δd(i), and HYP(i) for DPAT?,Σ

(Li) – turns it
into a reasoning suitable for Theorem 6.14.

To conclude this section on basic properties of the proposed model, we note that
descriptive generalization can alternatively be interpreted as inductive inference of classes
of pattern languages from partial texts. Hence, we can understand any language Li as
a tool to define texts that do not contain all words in L(δd(i)), but nevertheless can be
used to infer δd(i). Within the scope of this chapter, we do not explicitly discuss such a
view, but the author expects that it might be a worthwhile topic for further studies. He
anticipates that its analysis might involve substantial conceptual challenges that cannot
be solved using established insights into related approaches (see Fulk and Jain [37]).

6.3 Inferring ePATtf ,Σ-Descriptive Patterns

We now study the model of descriptive generalizability for a fixed hypothesis space,
namely the class ePATtf,Σ. The decidability of the inclusion problem for this class (see
Theorem 2.4) allows us to develop a set of powerful tools.

This section is divided into three parts. In the first part, we consider some questions
on the existence of ePATtf,Σ-descriptive patterns for various classes of languages and
develop a set of tools in order to simplify proofs on the existence and nonexistence of
ePATtf,Σ-descriptive patterns.

The second part deals with a generalization strategy that is based on the procedure
that is described in Proposition 5.32, which the author deems so natural that we call it
the canonical strategy Canon for ePATtf,Σ-descriptive generalizations. Most importantly,
we give a characterization of the class T SLΣ of languages that can be descriptively
generalized with Canon.

In the final part of this section, we examine the relationship of various classes of
languages to T SLΣ in order to gain further insights into DGePATtf,Σ

and the power of
Canon.

6.3.1 Basic Tools

Before we proceed to an examination of ePATtf,Σ-descriptive generalization in the next
part of this section, we develop some tools and techniques that simplify the work with
ePATtf,Σ-descriptive patterns, and gather some results on the existence and nonexistence
of such patterns for some classes of languages. We begin with the following result:

Lemma 6.15. Let Σ be an alphabet with |Σ| ≥ 2, and let L1, L2 ⊆ Σ∗ with L1 ⊇ L2. If
there is a δ ∈ DePATtf,Σ

(L2) with LE,Σ(δ) ⊇ L1, then δ ∈ DePATtf,Σ
(L1).

Proof. Assume there is a γ ∈ X+ with LE,Σ(δ) ⊃ LE,Σ(γ) ⊇ L1. Due to L1 ⊇ L2, this
would imply LE,Σ(δ) ⊃ LE,Σ(γ) ⊇ L2 and contradict δ ∈ DePATtf,Σ

(L2). Therefore, δ is
descriptive of L1.
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This observation might seem to be elementary, but together with Lemma 6.18, it
forms the fundament of the proof of almost every result in this section. The technical
base of that Lemma derives from a phenomenon that often arises when dealing with
ePATtf,Σ-descriptive patterns. We consider the following example:

Example 6.16. Let Σ:={a, b} and let

L1:={a2},
L2:={(a b1 a a b2 a . . . a bn a)2 | n ≥ 2},
L3:=LE,Σ(x2

1) \ {a2, b2}.

It is easy to see that all three languages are included in LE,Σ(x2
1). However, in addition

to this, for every α ∈ X+ with LE,Σ(α) ⊇ Li (with 1 ≤ i ≤ 3), LE,Σ(α) ⊇ LE,Σ(x2
1) holds

as well. For L1, this is obvious. For L2, assume that LE,Σ(α) ⊇ L2 for some α ∈ X+,
let n:=| var(α)| and w = (a b1 a a b2 a . . . a bn a)2 ∈ L2, and choose any morphism φ with
φ(α) = w. As w contains n distinct factors of the form a b+ a, each occurring exactly
twice, there must be an x ∈ var(α) that contains at least one complete occurrence of
such a segment, which implies |α|x ∈ {1, 2}. In both cases, we can construct a morphism
ψ with ψ(α) = x2

1 (by mapping x to x1 or x2
1 and erasing all other variables), which

(according to Theorem 2.4) leads to LE,Σ(α) ⊇ LE,Σ(x2
1). Finally, as L3 ⊃ L2, this also

proves the claim for L3.
As LE,Σ(x2

1) and all three Li have exactly the same superpatterns, we are able to
conclude that, for every i ∈ {1, . . . , 3}, DePATtf,Σ

(LE,Σ(x2
1)) = DePATtf,Σ

(Li). Although the
four languages might seem rather different, they have exactly the same sets of ePATtf,Σ-
descriptive patterns. 3

When generalizing languages using ePATtf,Σ-descriptive patterns, every language has
a certain superset that is covered by every descriptive generalization of this language, and
cannot be avoided. In order to formalize this line of reasoning (and in order to use this
phenomenon), we introduce the set of superpatterns Super(L), and the superpattern hulls
S-HullΣ(L), which are defined as

Super(L):={α ∈ X+ | for every w ∈ L, there is a morphism φ with φ(α) = w},

S-HullΣ(L):=
⋂

α∈Super(L)

LE,Σ(α)

for all alphabets Σ,Σ′ and any language L ⊆ (Σ′)∗. Note that, by Theorem 2.4, for every
pair of patterns α, β ∈ X+ and every Σ with Σ ≥ 2, the following three conditions are
equivalent:

1. LE,Σ(α) ⊆ LE,Σ(β),

2. β ∈ Super(LE,Σ(α)),

3. β ∈ Super({α}).

This allows us to state the following corollary:

Corollary 6.17. Let Σ,Σ′ be alphabets with |Σ|, |Σ′| ≥ 2. Then DePATtf,Σ
(L) = DePATtf,Σ’

(L)
for every L ⊆ (Σ ∩ Σ′)∗.
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Although Super(L) and S-HullΣ(L) might appear to be rather simple concepts, they
can be used to establish most of the results in this section. Using Lemma 6.15, we can
develop one of our main tools:

Lemma 6.18. Let Σ be an alphabet with |Σ| ≥ 2. For every L ⊆ Σ∗, DePATtf,Σ
(L) =

DePATtf,Σ
(S-HullΣ(L)).

Proof. Let δ ∈ DePATtf,Σ
(L). Then LE,Σ(δ) ⊇ L, and LE,Σ(δ) ⊇ S-HullΣ(L) by definition

of S-HullΣ. Thus, LE,Σ(δ) ⊇ S-HullΣ(L) ⊇ L, and

δ ∈ DePATtf,Σ
(S-HullΣ(L))

follows by Lemma 6.15.
Assume δ ∈ DePATtf,Σ

(S-HullΣ(L)), and there is a γ ∈ X+ with LE,Σ(δ) ⊃ LE,Σ(γ) ⊇
L. Then, LE,Σ(γ) ⊇ S-HullΣ(L) holds (again by definition of S-HullΣ), and this contra-
dicts the initial assumption.

In a sense, S-HullΣ(L) captures the whole essence of L with respect to ePATtf,Σ-
descriptive patterns, as every ePATtf,Σ-descriptive generalization of L is unable to dis-
tinguish between these two languages. This is illustrated by the following example:

Example 6.19. Let |Σ| ≥ 2 and define L:=LE,Σ(x2
1) ∪ LE,Σ(x3

1). Furthermore, let

δ1:=x2
1x

3
2, δ2:=x1x2x1x

2
2, δ3:=x1x

2
2x1x2, δ4:=x1x

3
2x1, δ5:=x1x

2
2x

2
1,

δ6:=x1x2x1x2x1, δ7:=x1x2x
2
1x2, δ8:=x2

1x
2
2x1, δ9:=x2

1x2x1x2, δ10:=x3
1x

2
2.

Recalling Theorem 2.4, it is easy to see that, for every α ∈ Super(L), there is a δi,
1 ≤ i ≤ 10, with LE,Σ(α) ⊇ LE,Σ(δi) (as, for every α, there must be morphisms mapping
α to both x2

1 and x3
1). By a convention common in the literature, all patterns are given in

canonical form (cf. [90]), where variables names are introduced in increasing lexicographic
order.

This example illustrates two important phenomena. First, note that δi ∈ DePATtf,Σ
(L)

for 1 ≤ i ≤ 10, and for every δ ∈ DePATtf,Σ
(L), there is a δi with LE,Σ(δ) = LE,Σ(δi),

but LE,Σ(δ) 6= LE,Σ(δj) for every j 6= i. Thus, L has ten distinct ePATtf,Σ-descriptive
patterns.

Second, the previous observation leads to S-HullΣ(L) =
⋂10
i=1 LE,Σ(δi). For every

n ≥ 2, there are j, k ≥ 0 with n = 2j + 3k, and therefore, S-HullΣ(L) ⊇
⋃∞
n=2 LE,Σ(xn1 ).

Thus, every ePATtf,Σ-descriptive generalization of L is unable to exclude any language
LE,Σ(xn1 ) with n ≥ 2. In this sense, S-HullΣ(L) provides information on the coarseness
of all descriptive generalizations. 3

Observe that L in the previous example is a finite union of languages from ePATtf,Σ

that has a descriptive pattern, and recall that, according to Proposition 5.32, every
finite set of words has an ePATtf,Σ-descriptive pattern, while (by Theorem 5.18), there
are infinite unions of languages from ePATtf,Σ that have no descriptive pattern.

Using Lemma 6.18, we can extend Proposition 5.32 to show that not only every
finite set of words, but every finite union of languages from ePATtf,Σ has an ePATtf,Σ-
descriptive pattern:
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Proposition 6.20. Let Σ be an alphabet with |Σ| ≥ 2, let A = {α1, . . . , αn} ⊂ X+ and
let L =

⋃n
i=1 LE,Σ(αi). Then DePATtf,Σ

(L) 6= ∅.

Proof. Let A = {α1, . . . , αn} ⊂ X+ and L =
⋃n
i=1 LE,Σ(αi). By Theorem 2.4, the

equation Super({α}) = Super(LE,Σ(α)) holds for every α ∈ X+. Thus,

Super({α1, . . . , αn}) = Super(LE,Σ(α1) ∪ . . . ∪ LE,Σ(αn)),

and therefore S-HullΣ(A) = S-HullΣ(L). This is equivalent toDePATtf,Σ
(A) = DePATtf,Σ

(L)
(by Lemma 6.18). As A is a finite set, according to Proposition 5.32, DePATtf,Σ

(A) is
nonempty, and thus, DePATtf,Σ

(L) is nonempty as well.

Basically, Example 6.19 and Proposition 6.20 are based on the fact that words in
languages from ePATtf,Σ and the generating patterns of these languages can often be used
interchangeably by defining a morphism that maps the words back to their generating
pattern. We proceed to develop this approach into another tool that allows us to make
further statements on the (non-)existence of ePATtf,Σ-descriptive patterns. Let ν : Σ∗ →
X∗ be an arbitrary renaming. We define

V-HullΣ(L):=
⋃
w∈L

LE,Σ(ν(w)).

Like S-HullΣ(L), V-HullΣ(L) is equivalent to L with respect to Super and DePATtf,Σ
:

Lemma 6.21. Let Σ be an alphabet, |Σ| ≥ 2. For every L over Σ,

Super(L) = Super(V-HullΣ(L)), and

DePATtf,Σ
(L) = DePATtf,Σ

(V-HullΣ(L)).

Proof. We first show Super(L) = Super(V-HullΣ(L)).
Let L ⊆ Σ∗ and let ν : Σ∗ → X∗ be a renaming. Naturally, there is an inverse

renaming ν−1 : (ν(Σ))∗ → Σ∗ with (ν−1 ◦ ν)(w) = w for every w ∈ L. Thus, w ∈
LE,Σ(ν(w)) holds for every w ∈ L, which implies L ⊆ V-HullΣ(L), and Super(L) ⊇
Super(V-HullΣ(L)).

For the other direction, consider any α ∈ Super(L). This is equivalent to LE,Σ(α) ⊇
L, and thus, for every w ∈ L, there is a morphism φ : X∗ → Σ∗ with φ(α) = w.
Accordingly, (ν ◦ φ)(α) = ν(w), and thus, LE,Σ(α) ⊇ LE,Σ(ν(w)) for every w ∈ L. This
immediately implies LE,Σ(α) ⊇ V-HullΣ(L), and therefore, α ∈ Super(V-HullΣ(L)).

As Super(L) = Super(V-HullΣ(L)), DePATtf,Σ
(L) = DePATtf,Σ

(V-HullΣ(L)) follows by
definition of DePATtf,Σ

.

This leads us to the following insight into the existence of ePATtf,Σ-descriptive pat-
terns for infinite unions of languages from ePATtf,Σ:

Proposition 6.22. Let |Σ| ≥ 2. Then there is a set of patterns A ⊂ {x1, x2}∗ such that
no pattern is ePATtf,Σ-descriptive of

⋃
α∈A LE,Σ(α).

Proof. Choose any alphabet Σ′ ⊆ Σ with |Σ′| = 2. By Theorem 5.18, there exists a
language L′ ⊂ (Σ′)∗ such that DePATtf,Σ’

(L′) = ∅. Furthermore, let ν : (Σ′)∗ → {x1, x2}∗
be a renaming. We claim that A := ν(L′) fulfils the given requirements. As A ⊂ {x1, x2}∗
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holds by definition, we only need to show that no pattern in X+ is ePATtf,Σ-descriptive
of the language L :=

⋃
α∈A LE,Σ(α).

Assume to the contrary that DePATtf,Σ
(L) 6= ∅. Note that L = V-HullΣ(L′) holds,

which allows us to use Lemma 6.21 to conclude DePATtf,Σ
(L) = DePATtf,Σ

(L′). Further-
more, Corollary 6.17 implies DePATtf,Σ

(L′) = DePATtf,Σ’
(L′). Combining these two equa-

tions and the initial assumption of DePATtf,Σ
(L) 6= ∅, we arrive at DePATtf,Σ’

(L′) 6= ∅,
which contradicts our choice of L′.

Thus, unlike in the case of finite unions of languages from ePATtf,Σ (cf. Proposi-
tion 6.20), even restricting the number of variables in the generating patterns does not
ensure that infinite unions of languages from ePATtf,Σ have a descriptive pattern. The
renaming ν that maps terminals to variables can also be used to obtain the following
technical result:

Lemma 6.23. Let Σ be an alphabet with |Σ| ≥ 2. For every nonempty language L ⊆ Σ∗

with L 6= {λ}, S-HullΣ(L) is infinite.

Proof. Let ν : Σ+ → X+ be a nonerasing morphism and choose any w ∈ L \ {λ}.
For every α ∈ Super(L), there is a morphism ψ : X+ → Σ∗ with ψ(α) = w. Thus,
ν(ψ(α)) = ν(w), and therefore S-HullΣ(L) ⊇ LE,Σ(ν(w)). As ν(w) ∈ X+, this language
is infinite.

This insight shall be used in Section 6.4. We conclude the present part of Section 6.3.1
with a short remark illustrating that there are finite classes of languages which are not
contained in DGePATtf,Σ

:

Proposition 6.24. Let Σ be an alphabet, |Σ| ≥ 2. There exists a class L of nonempty
languages over Σ with |L| = 1 and L /∈ DGePATtf,Σ

.

Proof. As stated in Theorem 5.18, there is a language LΣ with DePATtf,Σ
(LΣ) = ∅. If

we choose L = {LΣ}, then |L| = 1 holds, and no strategy will be able to compute any
hypothesis that is ePATtf,Σ-descriptive of LΣ.

6.3.2 The Canonical Strategy and Telling Sets

According to Proposition 5.32, every finite set has a computable ePATtf,Σ-descriptive
pattern. The author considers it the canonical strategy of descriptive inference on any
text t of a given language L to compute a descriptive pattern of every initial segment
tn, in the hope that the hypotheses will converge to a pattern that is descriptive of
L. As evidenced by the language L:=LE,Σ(x2

1) ∪ LE,Σ(x3
1) (cf. Example 6.19), there are

languages with more than one descriptive pattern. Furthermore, this applies also to
finite languages, as for the set S:={a2, b3} (for arbitrary letters a, b ∈ Σ), DePATtf,Σ

(S) =
DePATtf,Σ

(L) holds. Although S already contains all the information that is needed
to compute a descriptive generalization of L, the ten distinct patterns δ1 to δ10 from
Example 6.19 are all valid hypotheses. In order to allow our strategy to converge to one
single hypothesis, we impose a total and well-founded order <LLO on X+ and let our
strategy return the <LLO-minimal hypothesis.
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Let <LLO denote the length-lexicographic order2 on X+. Note that <LLO is total and
does not contain infinite decreasing chains. Thus, every set has exactly one element that
is minimal with respect to <LLO.

The strategy Canon : (Σ ∪ {∇})∗ → (Σ ∪X)+ is defined by, for every text t,

Canon(tn):=δ, where δ ∈ DePATtf,Σ
(t[n]) and δ <LLO γ for every other γ ∈ DePATtf,Σ

(t[n]).

The computability of Canon follows immediately from the proof of Proposition 5.32,
as all that remains is to sort the finite search space by <LLO. We say that Canon
converges on a text t ∈ text(L) (of some language L over some alphabet Σ) if there
is a pattern α ∈ X+ with Canon(tn) = α for all but finitely many values of n. If, in
addition to this, α ∈ DePATtf,Σ

(L), Canon is said to converge correctly on t. Now, when
considering the languages L and S given in the example above, for every text t ∈ text(L),
there is an n ≥ 0 with S ⊆ t[n]. From this point on, Canon(t[n]) will return the pattern
δ10 = x3

1x
2
2, as δ10 is an element of (DePATtf,Σ

(S) ∩DePATtf,Σ
(L)) and the <LLO-minimum

of the canonical forms of the δi. This phenomenon leads to the definition of what we call
telling sets , which are of crucial importance for the study of descriptive generalizability
with the strategy Canon:

Definition 6.25. Let L ⊆ Σ∗. A finite set S ⊆ L is a telling set for L if (DePATtf,Σ
(S)∩

DePATtf,Σ
(L)) 6= ∅.

Note that telling sets have some similarity to the concept of telltales that is used in
the model of learning in the limit. For a comparison of telltales and telling sets, see the
comments after Corollary 6.33.

Using Lemma 6.15, we are now able to show that the existence of a telling set is
characteristic for the correct convergence of Canon on any text:

Theorem 6.26. Let Σ an alphabet with |Σ| ≥ 2. For every language L ⊆ Σ∗, and every
text t ∈ text(L), Canon converges correctly on t if and only if L has a telling set.

Proof. We begin by proving the only if direction via its contraposition. Assume that
L has no telling set. Then, for every text t of L and every n ≥ 0, DePATtf,Σ

(t[n])
and DePATtf,Σ

(L), by definition, are disjoint, as otherwise t[n] would be a telling set.
Therefore, Canon(tn) /∈ DePATtf,Σ

(L), which means that even if Canon converges on t to
a pattern δ, this pattern is not ePATtf,Σ-descriptive of L.

For the if direction, assume that S is a telling set of L, and consider any text t of L
such that Canon does not converge correctly on t. We first show that if Canon converges,
it always converges correctly. Assume to the contrary that there exist some pattern δ
and some n ≥ 0 such that δ ∈ DePATtf,Σ

(t[m]) for every m ≥ n, but δ /∈ DePATtf,Σ
(L). As

LE,Σ(δ) ⊇ t[m] for every m ≥ n, it follows that

LE,Σ(δ) ⊇
⋃
m≥n

t[m]

= {t[i] | i ≥ 0} = L.

As LE,Σ(δ) ⊇ L ⊇ t[n] and δ ∈ DePATtf,Σ
(t[n]), Lemma 6.15 gives δ ∈ DePATtf,Σ

(L), which
contradicts the initial assumption.

2I. e., α <LLO β if |α| < |β|, or if |α| = |β|, and α precedes β in the lexicographic order.
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Next, assume that Canon does not converge on t at all; i. e., there is an infinite
sequence (δn)n≥0 over X+ with

1. δn = Canon(tn) for every n ≥ 0,

2. for every n ≥ 0, there is an m > n with δm 6= δn.

We first show that at most one pattern occurs twice in (δn)n≥0. Assume that there are
m1 < n1 < m2 < n2 with δm1 = δm2 6= δn1 = δn2 , and observe that

t[m1] ⊆ t[n1] ⊆ t[m2] ⊆ t[n2]

holds. As δm1 is ePATtf,Σ-descriptive of t[m1], and

LE,Σ(δm1) = LE,Σ(δm2) ⊇ t[m2] ⊇ t[n1] ⊇ t[m1],

Lemma 6.15 implies δm1 ∈ DePATtf,Σ
(t[n1]). However, due to Canon(t[n1]) = δn1 6= δm1 ,

δn1 <LLO δm1 must hold. Analogously, one can use Lemma 6.15 and LE,Σ(δn1) ⊇ t[n2] ⊇
t[m2] ⊇ t[n1] to conclude δm1 <LLO δn1 , which leads to the contradictory statement
δm1 <LLO δn1 <LLO δm1 .

We now consider two cases. First, assume there is some δ such that δn = δ for
infinitely many n ≥ 0 (as we have seen, there can be at most one such δ). Then
LE,Σ(δ) ⊇ t[n] holds for infinitely many n ≥ 0, which implies LE,Σ(δ) ⊇ t[m] for every
m ≥ 0. As above, this leads to

LE,Σ(δ) ⊇ {t(i) | i ≥ 0} = L.

In particular, if δn = δ,
LE,Σ(δ) ⊇ L ⊇ t[n],

and the initial assumption δ ∈ DePATtf,Σ
(t[n]) allow us to use Lemma 6.15 to conclude

δ ∈ DePATtf,Σ
(L). But only a finite number of δm can satisfy δm <LLO δ, which means

that Canon converges to δ, and this contradicts our initial assumption.
For the other case, assume that no pattern occurs infinitely often in (δn)n≥0. Then

for every δ ∈ X+, there is a k ≥ 0 such that δ <LLO δn for all n ≥ k. This holds in
particular for that pattern δS ∈ (DePATtf,Σ

(S)∩DePATtf,Σ
(L)) that is minimal with respect

to <LLO (such a pattern has to exist, as we required S to be a telling set of L). Choose
some k such that

1. δS <LLO δn for all n ≥ k, and

2. S ⊆ t[k],

and observe that, due to Lemma 6.15,

(DePATtf,Σ
(S) ∩DePATtf,Σ

(L)) ⊆ DePATtf,Σ
(t[n])

for every n ≥ k. Thus, δS = Canon(t[n]) for every n ≥ k. This contradicts our initial
assumption that Canon does not converge correctly on t.

In the final part of this section, we shall demonstrate that this is a strong result, by
investigating the existence and nonexistence of telling sets for various languages.
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6.4 Examination of the Class T SLΣ

As stated by Theorem 6.26, the existence of telling sets is a strong sufficient criterion for
ePATtf,Σ-descriptive generalizability. Furthermore, generalizability of a class L ⊆ P(Σ∗)
using Canon does not depend on the properties of the whole class, but only on the
existence of a telling set for every single language L ∈ L. Thus, we consider the largest
possible class that can be generalized by Canon and define

T SLΣ :={L ⊆ Σ∗ | L has a telling set}.

Theorem 6.26 immediately leads to the following corollary:

Corollary 6.27. For every alphabet Σ with |Σ| ≥ 2, T SLΣ ∈ DGePATtf,Σ
.

Thus, by examining T SLΣ, we gain insights into the power of Canon and of the whole
model of descriptive generalization. Before we proceed to an examination of the relation
of various classes of languages to T SLΣ, we show that it is not required to choose Σ as
small as possible, a result that is similar to Corollary 6.17, which states that DePATtf,Σ

(L)
is largely independent of the choice of Σ. The same holds for telling sets:

Corollary 6.28. Let Σ,Σ′ be alphabets with |Σ|, |Σ′| ≥ 2. Then L ∈ T SLΣ if and only
if L ∈ T SLΣ′ for every L ⊆ (Σ ∩ Σ′)∗.

Proof. As L ⊆ (Σ ∩ Σ′)∗, the same holds for every telling set S ⊆ L. According to
Corollary 6.17, DePATtf,Σ

(S) = DePATtf,Σ’
(S).

This also implies that, for every Σ′ ⊇ Σ, T SLΣ′ ⊇ T SLΣ. We begin our examination
of T SLΣ by expanding finite languages without losing their telling set properties. The
next result follows immediately from Lemmas 6.15 and 6.18:

Lemma 6.29. Let Σ be an alphabet with |Σ| ≥ 2. Every nonempty S ∈ FINΣ is a telling
set of S-HullΣ(S) and of every L with S ⊆ L ⊆ S-HullΣ(S).

Proof. Due to Lemma 6.18, DePATtf,Σ
(S) = DePATtf,Σ

(S-HullΣ(S)) holds; therefore S is
a telling set of S-HullΣ(S). Now choose any L with S ⊆ L ⊆ S-HullΣ(S) and any
δ ∈ DePATtf,Σ

(S). According to Lemma 6.15, δ ∈ DePATtf,Σ
(L), which means that S is a

telling set of L.

In addition to showing that FINΣ ⊆ T SLΣ, this result allows us (in conjunction with
Lemma 6.23) to make the following statement on the cardinality of T SLΣ:

Proposition 6.30. T SLΣ is uncountable for every alphabet Σ with |Σ| ≥ 2.

Proof. Select a finite nonempty language S ⊆ Σ+. Let

U :={L | S ⊆ L ⊆ S-HullΣ(S)}
= {L ∪ S | L ∈ P (S-HullΣ (S) \ S)} .

Due to Lemma 6.29, S is a telling set of every L ∈ U , and thus, U ⊆ T SLΣ.
As S is nonempty, S-HullΣ(S) must be infinite according to Lemma 6.23. Therefore,

U is uncountable, which means that T SLΣ is uncountable as well.
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This is an uncommon property, as inference from positive data is normally consid-
ered for classes consisting of countably many languages from some countable domain.
Nonetheless, inferrability of uncountable classes has been studied before, see [49].

Next, we shall see that T SLΣ contains a rich and natural class of languages, the
DTF0L languages (cf. Section 5.2.2). We denote the class of all DTF0L languages over
Σ by DTF0LΣ.

Proposition 6.31. Let Σ be an alphabet with |Σ| ≥ 2. Then DTF0LΣ ⊆ T SLΣ.

Proof. Let L ⊆ Σ∗ be a DTF0L-language, where F is a nonempty set of axioms and Φ
a nonempty set of morphisms generating L from F . It suffices to show that Super(F ) =
Super(L), as this shall allow us to use Lemma 6.18 to obtain the desired result.

First, observe that, by definition, F ⊆ L, and thus, Super(F ) ⊇ Super(L). For the
other direction, consider any α ∈ Super(F ). For every w ∈ L, there is a v ∈ F and a
finite sequence of morphisms in Φ that can be composed to a single morphism φ with
φ(v) = w. As v ∈ F and α ∈ Super(F ), there is a morphism ρ with ρ(α) = v. The
composition of these morphisms leads to (φ◦ρ)(α) = w, and (as w was chosen arbitrarily)
α ∈ Super(L).

Now, Super(F ) = Super(L) results in S-HullΣ(F ) = S-HullΣ(L) and, by Lemma 6.18,
in DePATtf,Σ

(F ) = DePATtf,Σ
(L). As F is finite, it has at least one ePATtf,Σ-descriptive

pattern (according to Proposition 5.32), and is a telling set of L.

Lemma 6.29 and Proposition 6.31 both imply that FINΣ ⊆ T SLΣ. Furthermore,
Proposition 6.30 and Proposition 6.31 both demonstrate that T SLΣ contains at least
one infinite language, which leads to the following observation:

Corollary 6.32. The class T SLΣ is superfinite for every alphabet Σ with |Σ| ≥ 2.

Together with Proposition 6.24, this allows us to describe the relation between
DGePATtf,Σ

and LIM-TEXT:

Corollary 6.33. Let Σ be an alphabet, |Σ| ≥ 2. Then DGePATtf,Σ
and LIM-TEXT are

incomparable.

Proof. Directly from Proposition 6.24 and Corollary 6.32, as LIM-TEXT contains every
finite class, but no superfinite classes (cf. Gold [39] and Theorem 6.2).

We now briefly discuss the relation between telling sets and the notion of telltales.
As already mentioned above in Theorem 6.4, an indexed family L = (Li)

∞
i=0 of nonempty

recursive languages is in LIM-TEXT if and only if there exists an effective procedure
which, for every j ≥ 0, enumerates a set Tj such that

• Tj is finite,

• Tj ⊆ Lj, and

• there does not exist a j′ ≥ 0 with Tj ⊇ Lj′ ⊃ Lj.
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If there exists a set Tj satisfying these conditions, it is called a telltale for Lj with respect
to L = (Li)

∞
i=0. Thus, the concepts telltales and telling sets are incomparable, as the

former refers to a language and the class of languages it is contained in, whereas the
latter relates to a language and certain properties of the class ePATtf,Σ. Nevertheless,
for every language L in ePATtf,Σ, a set S is a telling set for L if and only if S is a telltale
for L with respect to ePATtf,Σ (for more details on the existence of telltales for languages
in ePATtf,Σ, see [88]).

As Proposition 6.34 and Proposition 6.35 below show, Reidenbach’s insights into the
nonexistence and existence of telltales lead to the corresponding results for telling sets:

Proposition 6.34. Let Σ be an alphabet with |Σ| ≥ 3. For every α ∈ X+, LE,Σ(α) has
a telling set.

Proof. This follows immediately from Lemma 25 in Reidenbach [88].

On the other hand, it is impossible to encode the structure of comparatively simple
patterns in their languages with only two letters, which leads to the following negative
result:

Proposition 6.35. Let Σ be an alphabet with |Σ| ≥ 2, and let a, b be two distinct letters
from Σ. Then LE,{a,b}(x

2
1x

2
2x

2
3) /∈ T SLΣ.

Proof. This follows immediately from Lemma 7 in Reidenbach [86].

In contrast to this, Lemma 6.21 can be used to show that restricting the number of
variables in the patterns leads to telling sets not only for languages from ePATtf,Σ, but
also for their finite unions:

Proposition 6.36. Let α1, . . . , αn ∈ {x1, . . . , x|Σ|}+, and let L:=
⋃n
i=1 LE,Σ(αi). Then

L ∈ T SLΣ.

Proof. Let Σ be an alphabet, |Σ| ≥ 2. Let X|Σ| = {x1, . . . , x|Σ|}, let α1, . . . , αn ∈
X+
|Σ|, and let L:=

⋃n
i=1 LE,Σ(αi). Choose any renaming ν : X∗|Σ| → Σ∗, let ν−1 the

corresponding inverse renaming and let

S:={ν−1(α1), . . . , ν−1(αn)}.

It is easily seen that V-HullΣ(S) = L holds. By Lemma 6.21, we conclude DePATtf,Σ
(S) =

DePATtf,Σ
(V-HullΣ(S)), and therefore DePATtf,Σ

(S) = DePATtf,Σ
(L). As S is finite, Propo-

sition 5.32 leads to DePATtf,Σ
(S) 6= ∅. Therefore, S is a telling set for L.

Proposition 6.36 is particularly interesting when compared to Proposition 6.22, which
tells us that infinite unions of languages from ePATtf,Σ might not only have no telling
set, but not even a descriptive pattern.

Furthermore, we state that the infinite sequence (βn)n≥0 that is used in the definition
of the languages LΣ for the proof of Theorem 5.18 describes an infinite ascending chain
of languages from ePATtf,Σ; i. e., LE,Σ(β) ⊂ LE,Σ(βn+1) for every n ≥ 0. Although
the presence of such a chain in S-HullΣ(L) for a language L does not necessarily imply
emptiness of DePATtf,Σ

(L), it is a sufficient criterion for L /∈ T SLΣ (again, the proof relies
on Lemma 6.18):
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Lemma 6.37. Let Σ be an alphabet with |Σ| ≥ 2 and let L ⊆ Σ∗. If there is an
infinite chain (βn)n≥0 over X+ with LE,Σ(βn) ⊆ S-HullΣ(L) for every n ≥ 0, LE,Σ(βn) ⊂
LE,Σ(βn+1) for every n ≥ 0, and

⋃
n≥0 LE,Σ(βn) ⊇ L, then L has no telling set.

Proof. Let L ⊆ Σ∗ and (βn)n≥0 a strictly ascending infinite chain over X+ that satisfies
the above criteria. Assume to the contrary there are a finite set S ⊆ L and a pattern
δ ∈ DePATtf,Σ

(L) ∩DePATtf,Σ
(S).

As S ⊆ L, there is an m ≥ 0 such that LE,Σ(βm) ⊇ S, and therefore,

S-HullΣ(L) ⊇ LE,Σ(βm) ⊇ S.

As, due to Lemma 6.18, δ ∈ DePATtf,Σ
(S-HullΣ(L)), we conclude

LE,Σ(δ) ⊇ S-HullΣ(L) ⊇ LE,Σ(βm) ⊇ S.

By definition, βm is part of an infinite ascending chain, and therefore

S-HullΣ(L) ⊇ LE,Σ(βm+1) ⊃ LE,Σ(βm) ⊇ S

holds. This contradicts δ /∈ DePATtf,Σ
(S). Thus, L either has no ePATtf,Σ-descriptive

pattern, or it has an ePATtf,Σ-descriptive pattern, but no telling set.

As a direct application of this result, we can prove that there are regular languages
that have no telling set:

Proposition 6.38. For every alphabet Σ with |Σ| ≥ 2, there is a regular language L ⊆ Σ∗

with L /∈ T SLΣ.

Proof. Let a, b two distinct letters from Σ and define L = (a a+ b b)∗. Next, we shall
show that S-HullΣ(L) = Σ∗. For α ∈ Super(L), let n:=|α| and

w:= a a b b a a a a(b b)2 a a . . . a a(b b)n+1 a a .

As w ∈ L, there is a morphism φ with φ(α) = w. Furthermore, as α has at most n
distinct variables, there is at least one variable x ∈ var(α) such that φ(x) contains a
factor a a(b b)i a a for some i with 1 ≤ i ≤ n + 1. As this factor occurs exactly once in
w, x occurs exactly once in α, and thus, LE,Σ(α) = Σ∗.

Note that this language is also an example of a language L that has no telling set,
although S-HullΣ(L) has a telling set. Furthermore, this is an example of a language L
with x1 ∈ DePATtf,Σ

(L), but no w ∈ L contains a singular letter.



Chapter 7

On a Conjecture on
ePATtf ,Σ-Descriptive Patterns

After developing the proof of Theorem 5.18, the author tried to extend the technique
employed therein to a characterization of all languages that have no ePATtf,Σ-descriptive
pattern. Guided by an elegant but illusive conjecture, he spent six months on this
attempt, only to discover a comparatively compact counterexample. The present chapter
contains the results of this work. As it is mainly a collection of tools and examples, it
diverges in tone and structure from the other chapters in this thesis.

We discuss in Section 7.1 a few technical concepts and the conjectures that were the
main focus of the author’s work on the existence of ePATtf,Σ-descriptive patterns. Most
of these conjectures are disproved by the Loughborough Example, which is explained in
Section 7.4. In order to define and understand this example, we develop various concepts
and tools in Sections 7.2 and 7.3.

Here, Section 7.2 formalizes a few observations on languages that are generated by
strictly decreasing chains of terminal-free E-pattern languages, and introduces so called
chain systems. These chain systems are used in Section 7.3 to define a family of lan-
guages L

(k)
Σ , and to define the languages used in the Loughborough Example, as well

as the Wittenberg Examples1 in Section 7.5, two examples that further illustrate cer-
tain phenomena that are related to strictly decreasing chains and the (non)-existence of
ePATtf,Σ-descriptive patterns.

Although the author considers these named examples in Sections 7.4 and 7.5 the main
results of the present chapter, the tools in Section 7.2 and in Section 7.3 are not only the
fundament on which the examples build, but also a generalization of the phenomena the
author noticed during his work. As such, they might serve as a valuable starting point
for further work on strictly decreasing chains.

As this Chapter is an extension of the work in Chapter 5 and, although far less so,
Chapter 6, it uses various tools and techniques that can be found in Sections 5.2 and
mentions a few concepts used in 6.3.1. Moreover, it is assumed that the reader is familiar
with the material presented in Section 5.3.

1Explanations for these choices of names can be found in the appropriate sections.
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7.1 Technical Preliminaries and Various Conjectures

As explained in Section 5.3, the non-existence of a descriptive pattern for a language L is
inherently related to the existence of a chain of pattern languages that decreases strictly
towards that language – in fact, the existence of such a chain is a necessary condition
for the non-existence of a descriptive pattern. Naturally, every necessary condition leads
to the question which further conditions might lead to a characterization. As inclusion
for general E-pattern languages is undecidable (and thus, hard), we focus on terminal-
free E-pattern languages, as in the proof of Theorem 5.18. Similarly to Section 6.3, the
results in this chapter can be immediately adapted to all classes of E-pattern languages
for which inclusion is characterized by the existence of a terminal-preserving morphism
between the patterns (for some examples, see the list in Section 3.3, after Theorem 3.5).

When working with terminal-free E-patterns, we can restrict the considerations of
Section 5.3, and refine the condition on chains of pattern languages. Due to the fact that
equivalence for terminal-free E-pattern languages is comparatively straightforward and
well-understood (cf. Section 5.2.1), we can consider chains of patterns instead of chains
of pattern languages. Thus, a sequence (αi)

∞
i=0 over X+ is

1. a decreasing chain if LE,Σ(αi) ⊇ LE,Σ(αi+1) for every i ≥ 0,

2. an increasing chain if LE,Σ(αi) ⊆ LE,Σ(αi+1) for every i ≥ 0.

Furthermore, the chain is strictly decreasing (or strictly increasing) if it is decreasing (or
increasing, respectively), and LE,Σ(αi) 6= LE,Σ(αi+1) for every i ≥ 0.

For every Σ with |Σ| ≥ 2, we say that a decreasing chain (αi)
∞
i=0 over X+ generates

the language

LE,Σ((αi)
∞
i=0):=

∞⋂
i=0

LE,Σ(αi).

Hence, one can understand LE,Σ((αi)
∞
i=0) to be the limit of LE,Σ(αi), where i grows

towards infinity.
We say that a language L ⊆ Σ∗ is covered by (αi)

∞
i=0 if L ⊆ LE,Σ((αi)

∞
i=0).

As explained in Section 5.3, we do not want to focus on strictly decreasing chains
that achieve their decrease using redundant variables (e. g., as seen in Example 5.11,
some x1 that is mapped to x2

1, x4
1, x8

1 and, in the limit, is utterly useless).
In order to formalize this notion, we develop the concept of patterns that are reduced

with respect to some language L. To this end, we define, for every A ⊆ X, the projection
morphism πA : X∗ → A∗ by

πA(x):=

{
x if x ∈ A,

λ otherwise.

Let Σ be an alphabet and L ⊆ Σ∗. A pattern α ∈ X∗ with L ⊆ LE,Σ(α) is L-reduced
(or reduced with respect to L) if, for every A ⊂ var(α), L 6⊆ LE,Σ(πA(α)). Intuitively, α
does not contain any redundant letters. Obviously, a morphically primitive pattern that
is ePATtf,Σ-descriptive of some language L must be L-reduced.

We now extend this concept from patterns to decreasing chains of patterns: If L is
covered by a decreasing chain (αi)

∞
i=0, that chain is L-reduced if every αi is L-reduced.
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Furthermore, a decreasing chain (αi)
∞
i=0 is self-reduced if it is reduced with respect to

LE,Σ((αi)
∞
i=0).

By definition, L-reduced patterns are related to morphically primitive patterns, as is
evidenced by the following observation:

Observation 7.1. Let Σ be an alphabet with |Σ| ≥ 2, let L ⊆ Σ∗ and let L ⊆ LE,Σ(α)
for some α ∈ X+. If α is not morphically primitive, then α is not L-reduced.

This follows immediately from the fact that morphically primitive patterns are suc-
cinct, and thus the shortest generators of their pattern languages (cf. Section 5.2.1).
On the other hand, not every morphically primitive pattern is L-reduced; e. g., consider
L:=LE,Σ(x2) and α:=x2y2. In a way, one might consider self-reduced chains as an exten-
sion of succinct patterns, as both use the smallest number of variables to generate their
respective language.

After some experimentation, the author developed the following conjecture:

Conjecture 7.2. Let Σ be an alphabet with |Σ| ≥ 2 and let L ⊆ Σ∗. If a strictly
decreasing chain (αi)

∞
i=0 over X+ is self-reduced, then DePATtf,Σ

(LE,Σ((αi)
∞
i=0)) = ∅.

Of course, according to Lemma 6.18, this would also extend to all languages L for
which S-HullΣ(L) is covered by a strictly decreasing chain. In either case, this conjecture
is too weak to be used to obtain a characterization. As demonstrated by Example 6.19,
for some languages L1, L2 ⊆ Σ∗ and patterns α1, α2 ∈ X+ with LE,Σ(αi) ⊇ Li, there
are multiple ways how α1 and α2 can be merged together to obtain a pattern β with
LE,Σ(β) ⊇ L1 ∪ L2. Likewise, if one chooses L1 and L2 as languages where both do not
have an ePATtf,Σ-descriptive pattern (for example, by changing some exponents of the xi
used in the proof of Theorem 5.18), it might be possible that the two respective chains
can be merged in a multitude of different ways (we revisit this in Section 7.5).

After some experimentation with various examples, the author arrived at the follow-
ing conjecture:

Conjecture 7.3. Let |Σ| ≥ 2 and L ⊆ Σ∗. Then DePATtf,Σ
(L) = ∅ if and only if L is

covered by a strictly decreasing L-reduced chain.

Considering how strongly chains and the languages they cover appear to be related,
it seemed natural to assume that the proof of Theorem 5.18 could be adapted to all
these languages. First, the descending chain could lead to an ascending chain which
every pattern from Super(L) has to cover (similarly to Lemma 5.24), and then, we could
force every pattern from Super(L) somehow into this descending chain (similarly to the
main part of the proof of Theorem 5.18).

As we shall see in Section 7.4, Conjecture 7.3 is disproved by a counterintuitive
example, which we call the Loughborough Example.

Before we continue to Section 7.2, where we develop the tools that we use in the
definition of the Loughborough Example, we take a closer look at another concept related
to the (non-)existence of ePATtf,Σ-descriptive patterns.

Both when finding ePATtf,Σ-descriptive patterns for, or constructing L-reduced strictly
decreasing chains over a language L, it is helpful to consider the set of all patterns that
are potentially suitable for any of these two roles. To this end, we combine the concept
of reduced patterns with Super(L), the set of all patterns in X+ that generate a superset
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of L (cf. Section 6.3.1): For every alphabet Σ and every language L ⊆ Σ∗, let the set of
reduced superpatterns RedSuper(L) be defined as

RedSuper(L):={α ∈ Super(L) | α is L-reduced and in canonical form}.

As explained above, every L-reduced pattern is necessarily morphically primitive. The
additional requirement that all patterns in RedSuper(L) must be in canonical form
ensures that for all α, β ∈ RedSuper(L) with α 6= β, LE,Σ(α) 6= LE,Σ(β) must hold.

This allows us to state the following observation:

Proposition 7.4. Let |Σ| ≥ 2 and L ⊆ Σ∗. For every α ∈ RedSuper(L), there are only
finitely many β ∈ RedSuper(L) with LE,Σ(β) ⊃ LE,Σ(α).

Proof. If L = Σ∗, then RedSuper(L) contains exactly one pattern (e. g., x, depending on
the ordering used in the canonical normal form), and the claim follows immediately.

Assume L ⊂ Σ∗ and let α ∈ RedSuper(L). For every β ∈ RedSuper(L) with
LE,Σ(β) ⊃ LE,Σ(α), according to Lemma 5.1, every morphism φ : X∗ → X∗ with
φ(β) = α is neither a renaming, nor an imprimitivity morphism. Furthermore, as β
is L-reduced by definition, every such φ must be nonerasing.

Thus, |β| ≤ |α| must hold. As RedSuper(L) contains only patterns that are of canon-
ical form, it contains only finitely many patterns of any given length. More specifically,
there are only finitely many |β| ≤ |α|, which proves the claim.

Using Proposition 7.4, we can observe the following:

Observation 7.5. For every L ∈ ePATtf,Σ, RedSuper(L) is finite.

This follows immediately from Proposition 7.4, as for every L ∈ ePATtf,Σ, there is
α ∈ X+ with LE,Σ(α) = L that is morphically primitive (and, thusly, LE,Σ(α)-reduced).

Considering Proposition 7.4 and Observation 7.5, one might think that RedSuper
could be used to obtain a necessary criterion for the existence of ePATtf,Σ-descriptive
patterns, e. g., something like the following conjecture:

Conjecture 7.6. Let |Σ| ≥ 2 and L ⊆ Σ∗. If DePATtf,Σ
(L) 6= ∅, then RedSuper(L) is

finite.

We shall see in Section 7.4 that the Loughborough Example disproves not only Con-
jecture 7.3, but also Conjecture 7.6.

As a side note, Proposition 7.4 allows us to define the inclusion depth (with respect
to L) of a pattern α ∈ RedSuper(L) as the length n of the longest sequence (αi)

n
i=0

over RedSuper(L) with α0 = x, αn = α and LE,Σ(αi) ⊃ LE,Σ(αi+1) for 0 ≤ i < n.
Due to Proposition 7.4, the inclusion depth is always finite and well-defined. In general,
E-patterns do not necessarily have a finite inclusion depth, while the inclusion depth of
NE-patterns is always finite (cf. Luo [66]).

7.2 Chains, Chain Systems, and Their Languages

Given a decreasing chain (αi)
∞
i=0 over X+, we know due to Theorem 2.4 that, for every

i ≥ 0, there is a morphism φi : X∗ → X∗ with φi(αi) = αi+1. Moreover, as we consider
self-reduced chains, all involved φi are nonerasing.
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In order to study the languages that are generated by decreasing chains, it is useful
to consider not only the patterns αi in the chains, but the morphisms φi that connect
these patterns. Note that, even if all involved patterns are morphically primitive, we
cannot assume a priori that φi is unique, as there might be more than one morphism
that maps some αi to its successor αi+1.

To avoid any confusion which morphism we consider for a given chain, we fix the
starting patterns and the morphism, and derive the chain accordingly. As this concept
is very similar to an extension of D0L systems (cf. Section 5.2.2) to infinite alphabets,
we call this concept a chain system:

Definition 7.7. A chain system is a tuple (α0, (φi)
∞
i=0), where α0 ∈ X+, and every φi

is a nonerasing morphism φi : X+ → X+. The corresponding decreasing chain (αi)
∞
i=0

is defined by αi+1:=φi(αi).
For all i, j ≥ 0, we define the morphism φi,i+j : X+ → X+ inductively through

φi,i:= id,

φi,i+j+1:=φi+j ◦ φi,i+j,

where id is the identity morphism on X+ (i. e., id is defined by id(x):=x for all x ∈ X).

It is easily seen by induction that φi,i+j(αi) = αi,j holds for all i, j ≥ 0. In other
words, φi,i+j is that morphism mapping αi to αi+j that is obtained by

φi,i+j = φi+j−1 ◦ φi+j−2 ◦ . . . ◦ φi+1 ◦ φi

for sufficiently large j. Moreover, note that φi = φi,i+1, as (by definition), φi(αi) = αi+1.
The author hopes that the use of the symbol φ in two different roles (with one

index in the definition of chain systems, and with two indices for the resulting combined
morphisms) is not confusing to the reader. In the current chapter, we use φ with one
index mostly solely in the definitions of the chain systems we consider, and mainly
work with the morphism φ with two indices, which we assume are defined according to
Definition 7.7.

We use these morphisms to derive the following classification of variables:

Definition 7.8. Let (α0, (φi)
∞
i=0) be a chain system. For every i ≥ 0, we partition var(αi)

into the three sets Si, Ei and Hi by defining for every x ∈ var(αi):

1. x :∈ Si if ∃c ≥ 1 : ∀j ≥ 0 : [|φi,i+j(x)| ≤ c],

2. x :∈ Hi if x /∈ Si and

∀c ≥ 1 : ∃j ≥ 0 : ∀y ∈ var(φi,i+j(x)) : [y ∈ Si+j ∨ |αi+j|y > c] ,

3. x :∈ Ei if x /∈ Si and x /∈ Hi; i. e., x /∈ Si and

∃c ≥ 1 : ∀j ≥ 0 : ∃y ∈ var(φi,i+j(x)) : [y /∈ Si+j ∧ |αi+j|y ≤ c] .

We call variables from Si stagnant, from Hi hyper-expanding, and from Ei expanding.
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Note that by definition, for every i ≥ 0, Si, Hi and Ei form a partition of var(αi).
The intuition behind the choice of the terms stagnant, hyper-expanding and expand-

ing is as follows: Similarly to L Systems, the application of each morphism φi can be
seen as the passage of one step in time, and every single pattern can be understood
as having grown from its predecessors, such that the whole chain system describes the
growth of the patterns αi towards some unspecified pattern in the limit. Consequently,
each subpattern φi,i+j(x) (with x ∈ var(αi) can be understood as having grown from x,
and furthermore, one might view the variables var(φi,i+j(x)) as successors or children of
x ∈ var(αi).

As such, stagnant variables have a limit on their growth. No matter how much
time passes, the length of their image is always bounded by some constant c. Hyper-
expanding variables show a behavior that is totally opposite to stagnant variables: Not
only is there no limit to their growth, each of their non-stagnant successors continues
to multiply without bound. Finally, expanding variables fall somewhere in the middle
between the other two classes. On the one hand, their growth is not bounded, on the
other hand, they still have something that might be considered a unique successor.

Most examples the author considered prior to the formal definition of these partitions
of var(αi) used only stagnant and hyper-expanding variables. For example, we shall see
in Section 7.3.1 that the patterns used in the proof of Theorem 5.18 did not use any
E-variables, and neither do any of the examples we consider later in this chapter. As we
briefly discuss further down in the present section and also in Section 7.2.1, E-variables
introduce additional technical difficulties.

By their definition, chain systems can be understood as an extension of D0L systems
to infinite alphabets (cf. Section 5.2.2). As we shall see in Theorem 7.19, the languages
that are generated by chains that are defined through chain systems might be understood
as multi-pattern languages (cf. Dumitrescu et al. [25]) that use a set of patterns that is
generated by a restricted kind of HD0L system on an infinite alphabet. We observed a
similar phenomenon in the proof of Theorem 5.18.

The following observation follows immediately when forming the complement of the
definition of Si:

Observation 7.9. Let (α0, (φi)
∞
i=0) be a chain system. For every i ≥ 0, and every

x ∈ var(αi), x /∈ Si holds if and only if

∀c ≥ 1 : ∃j ≥ 0 : [|φi,i+j(x)| > c] .

Furthermore, as all involved morphisms are nonerasing by definition, we observe the
following:

Observation 7.10. Let (α0, (φi)
∞
i=0) be a chain system, and let c ≥ 1, i ≥ 0 and x ∈ Hi.

If

∀y ∈ var(φi,i+j(x)) : [y ∈ Si+j ∨ |αi+j|y > c]

holds for some j ≥ 0, then

∀y ∈ var(φi,i+k(x)) : [y ∈ Si+k ∨ |αi+k|y > c]

holds for every k ≥ j.
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As mentioned above, if we view the application of each morphism φi as one step in
time, we can consider the variables in φi,i+j(x) (in αi+j) as successors of the variable
x (in αi). We can then conclude, almost directly from Definition 7.8, that S-variables
grow only into S-variables, while H-variables never grow into E-variables:

Lemma 7.11. Let (α0, (φi)
∞
i=0) be a chain system. For every i ≥ 0, and every x ∈

var(αi), the following holds:

1. If x ∈ Si, then var(φi(x)) ⊆ Si+1,

2. if x ∈ Hi, then var(φi(x)) ⊆ (Si+1 ∪Hi+1).

Proof. We begin with the first claim. Let i ≥ 0 and x ∈ Si. By definition, there is a
cx ≥ 1 such that |φi,i+j(x)| ≤ cx for all j ≥ 0. For the sake of contradiction, assume there
exists a y ∈ var(φi(x)) with y /∈ Si+1. Then, according Observation 7.9, there is a j ≥ 0
such that |φi+1,i+1+j(y)| > cx. As y is a factor of φi(x), and as φi,i+1+j = φi+1,i+1+j◦φi, we
observe that φi+1,i+1+j(y) is a factor of φi,i+1+j(x). Hence, and as every φi is nonerasing,
it follows that

|φi,i+1+j(x)| ≥ |φi+1,i+1+j(y)| > cx,

which yields the intended contradiction.
The proof for the second claim can be executed analogously: Assume there are an

i ≥ 0, an x ∈ Hi and a y ∈ var(φi(x)) with y ∈ Ei+1. According to the definition of
Ei+1, there is a cy ≥ 1 such that, for every j ≥ i + 1, there is a z ∈ var(φi+1,j) such
that z /∈ Sj and |αj|z ≤ cy. By definition of Hi and Observation 7.10, we can choose
j ≥ i + 1 large enough that, for every z ∈ var(φi,j(x)), z ∈ Sj or |αj|z > cy holds. As
var(φi,j(x)) ⊇ var(φi+1,j(y)), this is a contradiction.

Note that E-variables can be followed by all three variable types. On the other hand,
we can observe that every H-variable and every E-variable must have a successor of the
same type:

Lemma 7.12. Let (α0, (φi)
∞
i=0) be a chain system. For every i ≥ 0 and every x ∈ var(αi),

the following holds:

1. If x ∈ Hi, then φi(x) contains at least one variable from Hi+1,

2. if x ∈ Ei, then φi(x) contains at least one variable from Ei+1.

Proof. We begin with the first claim and consider any i ≥ 0 and any x ∈ Hi. Due to
Lemma 7.11, we already know that var(φi(x)) ⊆ (Si+1 ∪ Hi+1). Assume for the sake of
contradiction that y ∈ Si+1 for every y ∈ var(φi(x)). According to Definition 7.8, for
every such y, there is a cy ≥ 0 such that |φi+1,i+1+j(y)| ≤ cy for every j ≥ 0. We choose

c:= max{cy | y ∈ var(φi(x))}

and observe that, for every j ≥ 0,

|φi,i+1+j(x)| ≤ |φi(x)|c.

Therefore, x ∈ Si holds, which contradicts our initial assumption of x ∈ Hi.
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For the second claim, assume there exist an i ≥ 0 and an x ∈ Ei such that (var(φi(x))∩
Ei+1) = ∅. Let c ≥ 1 be a constant that satisfies the definition of Ei for x. Next, we
consider the set

Hx:={y ∈ var(φi(x)) | y ∈ Hi}.

By Definition 7.8, var(φi(x)) contains at least one variable that is not from Si+1; together
with our assumption that no variable from φi(x) is in Ei+1, it follows that Hx is not empty.
Furthermore, for every y ∈ Hx, there is an ny ≥ i+ 1 such that, for every j ≥ 0 and for
all z ∈ var(φi+1,ny+j(x)), one of z ∈ Sny+j or |αny+j|z ≥ c holds. We choose

n:= max{ny | y ∈ Hx}

and observe that, due to our choice of all ny and due to Lemma 7.11, for every z ∈
var(φi,n(x)), z ∈ Sn or |αn|z > c holds, which contradicts our choice of c and the
definition of Ei.

As mentioned above, the presence of E-variables might lead to technical difficulties.
Therefore, we mostly consider chain systems where no expanding variables are present.
We say that the chain system (α0, (φi)

∞
i=0) is E-free if Ei = ∅ for every i ≥ 0; and a

decreasing chain is E-free if it corresponds to a chain system that is E-free.

The following lemma can be used to simplify the proof that a given chain system is
E-free:

Lemma 7.13. A chain system (α0, (φi)
∞
i=0) is E-free if and only if E0 = ∅.

Proof. The if direction follows from Lemma 7.11, as for every x ∈ (S0 ∪ H0), and for
every i ≥ 0, var(φ0,i(x)) ⊆ (Si ∪Hi). Thus, if E0 = ∅, Ei = ∅ for all i ≥ 0.

We show the only if direction using its contraposition: Assume E0 6= ∅. By Lemma 7.12,
this immediately implies E1 6= ∅, and by induction, Ei 6= ∅ for all i ≥ 0.

One main advantage of E-free chain systems is that in these systems, the behavior of
H-variables is more predictable. We can use this to show that the number of occurrences
of any given H-variable must grow with αi:

Lemma 7.14. Let (α0, (φi)
∞
i=0) be an E-free chain system. For every c ≥ 1, there is an

n ≥ 0 such that |αn+j|x > c for every j ≥ 0 and every x ∈ Hn+j.

Proof. Let c ≥ 1. By Definition 7.8, for every x ∈ H0, there is an nx ≥ 0 such that
y ∈ Snx or |αnx|y > c is satisfied for every y ∈ var(φ0,nx(x)). Less formally, nx is the
point where every successor of x is a stagnant variable, or occurs more frequently than
c times in αnx .

Now let n:= max{nx | x ∈ H0}. According to Lemma 7.11, for every x ∈ S0 and
every j ≥ 0, φ0,j(x) ⊆ Sj (as all successors of S-variables are S-variables as well). Thus,
for every y ∈ Hn, there is an x ∈ H0 with y ∈ var(φ0,n(x)), and by our choice of n,
|αn|y ≥ |αnx|y > c must hold.

As all morphisms φi,i+j are nonerasing, |αn+j|y > c holds for all j ≥ 0 and all
y ∈ Hn+j.
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As an immediate consequence, we observe that if (αi)
∞
i=0 is an E-free chain, for every

w ∈ LE,Σ((αi)
∞
i=0), there is an n ≥ 0 such that LE,Σ(π(Sn)(αn)) (by choosing c:=|w|, and

as every x with |αn|x > |w| must be erased when generating w from αn).

Nonetheless, we cannot simply reconstruct LE,Σ((αi)
∞
i=0) from S-variables, as the

chain might not always be ‘tight’ enough. This is illustrated by the following example:

Example 7.15. Let α0:=y2, αi+1:=φ(αi), where the morphism φ : X+ → X+ is defined
by

φ(y):=y2x2
1, φ(x1):=x2

2, φ(xi+1):=φ(xi+2)

for every i ≥ 2. We now define a second chain (α′i)
∞
i=0 by α′0:=y2 and α′i+1:=φ′(α′i),

where

φ′(y):=y2x4
1, φ′(xi):=xi+1

for every i ≥ 1. Consider the first few patterns of both chains:

α0 = y2, α′0 = y2,

α1 = (y2x2
1)2, α′1 = (y2x4

1)2,

α2 = ((y2x2
1)2x4

2)2, α′2 = ((y2x4
1)2x4

2)2,

α3 = (((y2x2
1)2x4

2)2x4
3)2, α′3 = (((y2x4

1)2x4
2)2x4

3)2,

...
...

αi = ((. . . ((y2x2
1)2x4

2)2 . . . x4
i−1)2x4

i )
2, α′i = ((. . . ((y2x4

1)2x4
2)2 . . . x4

i−1)2x4
i )

2.

It is easy to see that both chains generate the same language

L:=LE,Σ((αi)
∞
i=0) = LE,Σ((α′i)

∞
i=0).

Notice that for both chains in every step, y is a H-variable, while all xi that occur are
S-variables. In Theorem 7.19, we shall see that L can also be expressed as

L =
∞⋃
i=0

LE,Σ(π{x1,...,xi}(α
′
i)).

On the other hand, π{x1}(α1) = x4
1, and we can easily see that L 6⊇ LE,Σ(x4

1), as, for ex-
ample, LE,Σ(α2) 6⊇ LE,Σ(x4

1), while LE,Σ(αi) ⊇ L must hold for every i ≥ 0 by definition.

Intuitively, in every step of the first chain, each variable x1 still needs to “grow” in
another step, while the x1 in the second chain have already reached their final form and
reflect the structure of L. From this point of view, the first chain is not tight enough to
truly reflect the structure of its language. 3

As Example 7.15 shows, in order to obtain the language that is generated by an E-free
chain from that chain, we need to wait until the S-variables have stopped growing. We
formalize this using the concept of adult variables:
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Definition 7.16. Let (α0, (φi)
∞
i=0) be an E-free chain system. For every i ≥ 0, we say

that x ∈ var(αi) is adult (in αi) if x ∈ Si and

∀j ≥ 0 :
[
|φi,i+j(x)| = 1 ∧ |αi+j|φi,i+j(x) = |αi+j|x

]
.

We use Ai to denote the set of all variables that are adult in αi.

The term and notion of adult variables is inspired by the terminology of L Systems (cf.
Section 5.2.2), where a word is called adult if it does not change under any application of
the permitted rules (cf. Kari et al. [53]). Intuitively, adult variables can also be viewed
as having stopped changing: By the first condition, they have reached their maximal
expansion rate (every image is a single variable), and moreover, the second condition
requires that this variable has reached its maximal number of occurrences (although it
might be renamed in every step, like the xi in the chain (α′i)

∞
i=0 Example 7.15).

Adult variables play an important role in E-free chain systems – as we shall see, every
word in LE,Σ((αi)

∞
i=0) is (ultimately) generated only by adult variables. We prove this

using a version of Lemma 7.14 for A-variables:

Lemma 7.17. Let (α0, (φi)
∞
i=0) be an E-free chain system. For every c ≥ 1, there is an

n ≥ 0 such that for all x ∈ var(αn), x ∈ An or |αn|x > c holds.

Proof. Let c ≥ 1. According to Lemma 7.14, there is an n0 ≥ 0 such that |αn0+j|x > c
holds for every j ≥ 0 and every x ∈ Hn0+j. Next, we choose an n1 ≥ n0 such that
|φn1,n1+j(y)| = 1 holds for every x ∈ Sn0 , every y ∈ var(φn0,n1(x)), and every j ≥ 0.
Such an n1 must exist, as |φn1,n1+j(x)| is bounded (following directly from the definition
of Sn1), and all involved morphisms are nonerasing by definition. Less formally, we find
the point n1 at which all variables from Sn0 have reached their maximal expansion.

We now define the set Sn0,n1
:=
⋃
x∈Sn0

var(φn0,n1(x)). In other words, Sn0,n1 contains

all those variables in Sn1 that have grown from variables in Sn0 and have only images of
length 1; meaning that those variables satisfy the first criterion of adult variables.

Now, for every y ∈ Sn0,n1 , we select an ny ≥ n1 such that one of the following two
conditions is met:

1. |αny |φn1,ny (y) = |αny+j|φn1,ny+j(y) for every j ≥ 0, or

2. |αny |φn1,ny
> c.

Recall that, by our choice of n1, |φn1,n1+j(y)| = 1 for every j ≥ 0 and every y ∈ Sn0,n1 .
Also, as all involved morphisms are nonerasing, |αn1+j+1|φn1,n1+j+1(y) ≥ |αn1+j|φn1+j(y)

holds for every j ≥ 0, which means that such a ny can always be found. We define

n:= max{ny | y ∈ Sn0,n1},

and verify that this n satisfies the claim: If x ∈ Hn, then |αn|x > c, as n ≥ n0 and
by our choice of n0. If x ∈ Sn, we distinguish two cases. First, if there is a y ∈ Hn0

with x ∈ var(φn0,n(y)), |αn|x ≥ |αn0|y > c follows. Otherwise, there is a y ∈ Sn0 with
x ∈ var(φn0,n(y)). Therefore, as n ≥ n1 and by our choice of n1, |φn,n+j(x)| = 1 holds
for every j ≥ 0. Finally, as n ≥ nz for every z ∈ Sn0,n1 , we know that x satisfies the
first condition in the choice of the nz, which means that x ∈ An, or the second condition
(and thus, |αn|x > c).
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This implies that, for every w ∈ LE,Σ((αi)
∞
i=0), there is an n ≥ 0 such that w ∈

LE,Σ(πAn(αn)), simply by selecting c:=|w|. Thus, removing from each of the patterns of
the chains all of its non-adult variables does not lead to a loss of expressive power, as
long as all patterns of the chain are available.

As Example 7.15 shows, considering all πSi(αi) might generate words outside of
LE,Σ((αi)

∞
i=0). On the other hand, projecting the patterns only to adult variables leads

to an ascending chain of patterns that is tight enough to stay inside of LE,Σ((αi)
∞
i=0):

Lemma 7.18. Let Σ be an alphabet with |Σ| ≥ 2, and let (α0, (φi)
∞
i=0) be an E-free chain

system. For every i ≥ 0, LE,Σ((αi)
∞
i=0) ⊇ LE,Σ(πAi

(αi)).

Proof. Let i ≥ 0. We assume that πAi
(αi) 6= λ, as otherwise, the claim follows immedi-

ately. In order to show that, for every j ≥ 0, LE,Σ(αi+j) ⊇ LE,Σ(πAi
(αi)), we consider

every x ∈ Ai, and define a respective yx ∈ var(αi+j) in the following way:
As x ∈ Ai, we know by Definition 7.16 that |φi,i+j(x)| = 1, and define yx:=φi,i+j(x).

Note that then, also by definition, |αi+j|yx = |αi|x holds, which implies that yx /∈
var(φi,i+j(z)) for every z ∈ var(αi) with z 6= x.

We now define a morphism ψm : X∗ → X∗ by

ψj(y):=

{
x if y = yx for some x ∈ Ai,
λ otherwise.

As there is a one-to-one correspondence between Ai and {yx | x ∈ Ai}, ψj(αi,i+j) =
πAi

(αi) follows, and according to Theorem 2.4, LE,Σ(πAj
(αj)) ⊆ LE,Σ(αi+j). As j was

chosen freely, we conclude

LE,Σ(πAi
(αi)) ⊆

∞⋂
j=0

LE,Σ(αi+j)

=
∞⋂
j=0

LE,Σ(αj) = LE,Σ((αi)
∞
i=0).

By combining Lemmas 7.17 and 7.18, we are able to show that, for E-free chains,
adult variables allow us to obtain the language that is generated by the chain from the
patterns of the chain:

Theorem 7.19. Let Σ be an alphabet with |Σ| ≥ 2, and let (α0, (φi)
∞
i=0) be an E-free

chain system. Then LE,Σ((αi)
∞
i=0) =

⋃∞
i=0 LE,Σ(πAi

(αi)).

Proof. First, note that LE,Σ((αi)
∞
i=0) ⊇

⋃∞
i=0 LE,Σ(πAi

(αi)) holds due to Lemma 7.18.
In order to show LE,Σ((αi)

∞
i=0) ⊆

⋃∞
i=0 LE,Σ(πAi

(αi)), consider any w ∈ LE,Σ((αi)
∞
i=0).

By definition of LE,Σ((αi)
∞
i=0), w ∈ LE,Σ(αi) for all i ≥ 0. According to Lemma 7.17,

there is a i ≥ 0 such that |αi|x > |w| for every x ∈ var(αi) that is not adult. Thus,
w ∈ LE,Σ(πAi

(αi)) must hold, as for every morphism σ : X∗ → Σ∗ with σ(α) = w,
σ(x) = λ for every x ∈ var(αi) with |αi|x > |w|. As n was chosen freely, this proves
w ∈

⋃∞
i=0 LE,Σ(πAi

(αi)), and, together with the fact that w was chosen freely, concludes
the proof.
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As mentioned before, Theorem 7.19 demonstrates that the language that is generated
by the descending chain that is associated to an E-free chain system can be understood
as a HD0L system over an infinite alphabet, where the final morphism (which puts the
‘H’ in ‘HD0L’) is restricted to be a very specific projection morphism2. First, note that,
as we are dealing with infinite variable alphabets, all involved variables can be renamed,
such that var(αi) and var(αj) are disjoint for all i 6= j. Thus, instead of using an infinite
sequence (φi)

∞
i=0 of morphisms, we can use a single morphism φ for each step of the chain,

and a single morphism π instead of each πAi
.

An application of Theorem 7.19 to the chain used in the proof of Theorem 5.18 in
Section 5.4.2 can be found in Section 7.3.1. Generally, we observe that the phenomenon
we used in Lemma 5.24 (that languages can be expressed using ascending or descending
chain) can be generalized to all E-free chains: A language that is generated by such a
strictly descending chain of patterns can also be expressed as the union of languages
generated by the patterns of an ascending chain. In Section 7.3.1, we briefly sketch how
this result can be used to generalize the proof of Theorem 5.18 to a certain class of
E-free chains. Nonetheless, this does not immediately lead to a proof of Conjecture 7.2,
as Theorem 7.19 does not deal with the more complicated case of chains that are not
E-free.

Before we continue in Section 7.3 (and thereafter) with our observations on the ex-
istence of ePATtf,Σ-descriptive patterns for languages that are generated or covered by
descending chains, we take a brief look at an example of a chain system that uses E-
variables.

7.2.1 A Chain System That Is Not E-Free

The chains we considered up to now and the chains that are used in the following sections
of the present chapter are mostly E-free. In order to give a broader view of chain systems
and their chains, the present section contains a chain system that is not E-free. This
short example is not necessary to understand any other part of the present chapter (or
even the present thesis) and serves solely as additional background for those who are
deeply interested in chain systems. All others are invited to skip the present section,
and to continue in Section 7.3.

Example 7.20. Let z, y and x1, x2, . . . be pairwise distinct variables. We define a chain
system (α0, (φi)

∞
i=0) through α0:=zy2z and φi = φ for all i ≥ 0, where the morphism

φ : X+ → X+ is defined by

φ(y):=y2x2
1, φ(z):=zx2

1, φ(xi):=xi+1

2The most interesting part of this observation is that the final morphism is restricted. If this mor-
phism is not restricted in any way, the observation becomes trivial: Let Σ be any terminal alphabet,
and let X = {x0, x1, . . .} be disjoint from Σ. Consider any language L ⊆ Σ∗, and let (wi)

∞
i=0 be any

sequence with {wi} = L. Let the morphisms φ : X+ → X+ and ψ : X∗ → Σ∗ be defined by φ(xi):=xi+1

and ψ(xi):=wi for all i ≥ 0. Then L is generated by the HD0L system with iterated morphism φ, final
morphism ψ and axiom x0. Thus, it is important to note that we restrict the final morphism to be a
projection morphism.
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for every i ≥ 1. The resulting chain (αi)
∞
i=0 starts as follows:

α1 = zx2
1 · (y2x2

1)2 · zx2
1,

α2 = zx2
1x

2
2 · ((y2x2

1)2x2
2)2 · zx2

1x
2
2,

α3 = zx2
1x

2
2x

2
3 · (((y2x2

1)2x2
2)2x2

3)2 · zx2
1x

2
2x

2
3,

...

Generally, we observe that, for sufficiently large i,

αi = zx2
1x

2
2 . . . x

2
i−1x

2
i · ((. . . ((y2x2

1)2x2)2 . . . x2
i−1)2x2

i )
2 · zx2

1x
2
2 . . . x

2
i−1x

2
i .

Now, note that, for all i, j ≥ 0 and every i ≥ 1, |φi,i+j(xi)| = |xi+j| = 1. Thus, if
xi ∈ var(αi), then xi ∈ Si.

Next, we observe that, for all i ≥ 0, |αi|y = |φ0,i(y)|y = 21+i. Therefore, for every
i ≥ 0 and every c ≥ 1, we can select an appropriate j ≥ 0 with |αi+j|y = 21+i+j > c.
Then var(φi+j(y)) = {y, x1, . . . , xj}, which means that y ∈ Hi for every i ≥ 0.

In order to show that z ∈ Ei for every i ≥ 0, observe that for every j ≥ 0,

1. |φi,i+j(z)| = 2j + 1 (which implies z /∈ Si), and

2. z ∈ φi,i+j(z), z /∈ Si+j, and |αi+j|z = 2.

Hence, z ∈ Ei for every i ≥ 0, and therefore, the chain system is not E-free. 3

If one uses the same definition of adult variables as for E-free chain systems, the chain
system in Example 7.20 would have Ai = Si = {x1, . . . , xi} for every i ≥ 0. On the other
hand, it is easy to see that LE,Σ((αi)

∞
i=0) =

⋃∞
i=0 LE,Σ(πAi∪{z}(αi)). Accordingly, in order

to extend Theorem 7.19 to general chain systems, one would need to extend the notion
of adult variables. Unlike for E-free chain system, this extension would probably need
to include H-variables, as Lemma 7.14 does not apply when E-variables are allowed to
introduce new H-variables.

Also note that, when dealing with L-reduced or self-reduced chains, morphisms in-
volving E-variables are dangerously close to morphic imprimitivity (as briefly explained
in Section 7.3 in the the comment after Lemma 7.23). As E-variables are required to have
a unique successor in every morphic image, it is quite easy to construct examples that
generate chains of patterns that are morphically imprimitive and, thus, not reduced (cf.
Observation 7.1 for a short discussion of reduced patterns and morphic primitivity). The
author spent far too much time on chains of morphically imprimitive patterns without
noticing their imprimitivity; realizing far too often, far too late that each of this chains
was not a strictly descending chain, but a chain of patterns that all generated the same
language.

7.3 The Languages L
(k)
Σ

This section defines the languages L
(k)
Σ , which we later use as building blocks for the

examples in Sections 7.4 and 7.5. In a way, these languages can be viewed as simplified
generalizations of the language LΣ that is used in the proof of Theorem 5.18, as this
language and the languages L

(k)
Σ are generated by chains that arise from similar chain

systems. We define the languages L
(k)
Σ as follows:
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Definition 7.21. Let y and all xi with i ≥ 0 be pairwise distinct elements of X. For
every k ≥ 2, we define the chain system (α̂k,0, (φ̂k,i)

∞
i=0)

α̂k,0:=y2,

φ̂k,i:=φ̂k

for every i ≥ 0, where the morphism φ̂k : X+ → X+ is defined through

φ̂k(y):=y2xk1,

φ̂k(xi):=xi+1

for every i ≥ 0. Accordingly, we define the increasing chain (β̂k,i)
∞
i=0 through β̂k,i:=ψ(α̂k,i),

where ψ(y):=λ and ψ(xi):=xi for every i ≥ 0. Finally, for any alphabet Σ, let

L
(k)
Σ :=

∞⋃
i=0

LE,Σ(β̂k,i).

We illustrate this definition using the following example:

Example 7.22. For example, the chains (α̂3,i)
∞
i=0 and (β̂3,i)

∞
i=0 start as follows:

α̂3,0 = (y)2, β̂3,0 = λ,

α̂3,1 = ((y)2x3
1)2, β̂3,1 = (x3

1)2,

α̂3,2 = (((y)2x3
1)2x3

2)2, β̂3,2 = ((x3
1)2x3

2)2,

α̂3,3 = ((((y)2x3
1)2x3

2)2x3
3)2, β̂3,3 = (((x3

1)2x3
2)2x3

3)2,

...
...

3

Generally, for any k ≥ 2 and sufficiently large values of i, we observe

α̂k,i = ((. . . ((((y2xk1)2)xk2)2xk3)2 . . . xki−1)2xki )
2,

β̂k,i = ((. . . ((((xk1)2)xk2)2xk3)2 . . . xki−1)2xki )
2.

Using the tools we developed in Section 7.2, it is easy to make the following straight-
forward observations on each chain system (α̂k,0, (φ̂k,i)

∞
i=0) and its associated language

L
(k)
Σ :

Lemma 7.23. For every k ≥ 2, let the chain system (α̂k,0, (φ̂k,i)
∞
i=0) be defined as in

Definition 7.21. The following holds:

1. For every i ≥ 0, Si = {xj | 1 ≤ j ≤ i}.

2. For every i ≥ 0, Ai = Si.

3. For every i ≥ 0, Hi = {y}.



7.3 The Languages L
(k)
Σ 129

4. For every i ≥ 0, Ei = ∅.

5. LE,Σ((α̂k,i)
∞
i=0) = L

(k)
Σ .

6. (α̂k,i)
∞
i=0 is L

(k)
Σ -reduced.

Proof. First, observe that one can easily verify by induction that, for all i ≥ 0,

|αi|y = 2i+2,

and, for every j ≥ 1,

|αi|xj =

{
0 if j > i,

k|αi−j|y if j ≤ i.

Moreover, for all i ≥ 0 and all xj ∈ var(αi), φi+l(xj) = xj+l holds for all l ≥ 0, which
immediately gives |φi+l(xj)|xj+l

= 1 and thus proves claim 1. Furthermore, we can also
conclude that |αi|xj = |αi+1|xj+1

for every i ≥ 0 and every xj ∈ Si, which proves claim 2.

Likewise, for all i, j ≥ 0, the above equation gives |φi,i+j(y)|y = |φj(y)|y = 1
2
|α̂k,j|y =

2j+1. Thus, for every c ≥ 1 and every i ≥ 0 we can choose an appropriate j ≥ 0 such
that |φi,i+j(y)|y > c. Together with claim 1, this proves claim 3.

As var(α̂k,0) = {y}, and as y ∈ H0 by claim 3, Lemma 7.13 proves claim 4. Hence,
the chain system is E-free, and claim 5 follows from Theorem 7.19 and claim 2.

Finally, to prove claim 6, consider any i ≥ 0. By claim 5, we know

LE,Σ(α̂k,i) ⊇ LE,Σ(β̂k,i+1)

= LE,Σ(πAi+1
(α̂k,i+1)).

With some straightforward effort, one can easily verify that any morphism τ : X∗ → X∗

with τ(α̂k,i) = β̂k,i+1 must satisfy

τ(y) = xk1,

τ(xi) = xi+1

for every i with 1 ≤ i ≤ n. Especially, this means that no such τ can erase any variable
from var(α̂k,i); in other words, LE,Σ(πA(α̂k,i)) 6⊇ LE,Σ(β̂k,i) for every A ⊂ var(α̂k,i). Thus,

every α̂k,i is L
(k)
Σ reduced, which proves claim 5.

Note that we do not allow k = 1, as the corresponding φ̂1(y) = (y2x1) is an imprimi-
tivity morphism that would lead to LE,Σ(α̂1,i) = LE,Σ(x2) for every i ≥ 0. Furthermore,
the resulting chain system would not be E-free, as y ∈ Ei would hold for every n, with
x1 being the unique successor of y of bounded frequency.

In the following section, we briefly sketch how the languages L
(k)
Σ can be used in the

proof of Theorem 5.18 (from Chapter 6). After that, we use the tools we developed in the
present section to construct the Loughborough Example and the Wittenberg Examples
in Sections 7.4 and 7.5, respectively.
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7.3.1 L
(k)
Σ and the Proof of Theorem 5.18

Recall that the proof of Theorem 5.18 in Section 5.4.2 uses a language LΣ = LE,Σ((αi)
∞
i=0),

where the strictly decreasing chain (αi)
∞
i=0 is defined as in Definition 5.17. In the termi-

nology we developed in the present chapter, that chain is generated by the chain system
(α0, (ψi)

∞
i=0), where α0 = y2z2, and φi = φ for every i ≥ 0, where the morphism φ is

defined by

φ(y):=y2x1, φ(z):=x1z
2, φ(xi):=xi+1

for every i ≥ 1. As we prove in Section 5.4.2, there is a strictly increasing chain (βi)
∞
i=0

with
⋃∞
i=0 LE,Σ(βi), and for every i ≥ 0, βi = ψ(αi), where the morphism ψ : X∗ → X∗

is defined through

ψ(xj):=xj, ψ(y):=ψ(z):=x0

for every j ≥ 1. Using our newfound knowledge, it is easy to see that, Hi = {y, z}, and
Si = Ai = {x1, . . . , xi} hold for every i ≥ 0. We use this and Theorem 7.19 to conclude

LΣ =
∞⋃
i=0

LE,Σ(πAi
(αi)).

At first this might seem like a contradiction, but a closer look reveals that, for every
i ≥ 0, LE,Σ(πAi

(αi)) = LE,Σ(βi+1).
Furthermore, with a little effort, one can adapt the proof of Theorem 5.18 to use any

language L
(k)
Σ with k ≥ 2 instead of LΣ. As in the original proof, the main idea is to

show that, for every δ ∈ Super(L
(k)
Σ ), there is an i ≥ 0 such that LE,Σ(δ) ⊇ LE,Σ(α̂k,i),

and consequently, LE,Σ(δ) ⊃ LE,Σ(α̂k,i+1) ⊇ L
(k)
Σ .

To prove this, one can define a sequence of morphisms (θk,i)
∞
i=0 with θk,i(δ) = β̂k,i,

and each θk,i erases as many variables of δ as possible. We then choose m, i ≥ 1 such
that θk,i and θk,i+j erase exactly the same variables of δ, and observe that Lemma 5.26
applies (mutatis mutandis). I.e., if for some x ∈ var(δ), var(θk,i+j(x)) contains a variable
xi with 1 ≤ i ≤ m, it must also contain a variable xj with m + 1 ≤ j ≤ i + j (as the

variables xm+1, . . . , xi+j in β̂k,i+j are the images of the variables x1, . . . , xi in β̂k,i).
Thus, looking only at each θk,i+j(x) by itself, we can recognize for every occurrence

of x1 whether it is mapped to the leftmost occurrence of a block xk1 in β̂k,i+j. If it is
such a leftmost occurrence, we can modify θk,i+j(x) to include y2 to the left of each such
leftmost x1, and obtain a morphism θ′ with θ′(δ) = α̂k,i+j.

7.4 The Loughborough Example

We now use the language L
(k)
Σ to construct the so-called Lougborough Example3, with

which we then disprove Conjectures 7.3 and 7.6:

3On the name of this example: As mentioned a few times throughout this chapter, the author firmly
believed in Conjecture 7.3, and deeply felt that a proof was within his reach. But six months of hard
work passed, and although he had developed most of the material contained in the present chapter, no
proof had been discovered. During a short research visit to Loughborough, Daniel Reidenbach remarked
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Definition 7.24 (Loughborough Example). Let Σ be an alphabet with |Σ| ≥ 2. Let x,
y, z, z1, z2 and all xi with i ≥ 1 be pairwise distinct elements of X. We define LL ⊂ Σ∗

as follows: First, let αL1
:=x2y3. Next, we define the decreasing chain (αi)

∞
i=0 through

αi:=z
3 · α̂2,i, where each pattern α̂2,i is defined as in Definition 7.21. Finally, let

L1:=LE,Σ(αL1) = LE,Σ(x2y3),

L2:=LE,Σ((αi)
∞
i=0) = LE,Σ(z3) LE,Σ((α̂2,i)

∞
i=0),

LL:=L1 ∪ L2.

According to Lemma 7.23, L2 = LE,Σ(z3) · L(2)
Σ – in other words, L2 consists of a

concatenation of LE,Σ(z3) and the language L
(2)
Σ from Definition 7.21. Thus, we conclude

that L2 =
⋃∞
i=0 LE,Σ(z3 · β̂2,i). Keeping this in mind, we are able to observe the following

result:

Theorem 7.25. Let LL and (α̂2,i)
∞
i=0 be defined as in Definition 7.24. The following

holds:

1. The chain (z2
1 z

3
2 α̂2,i)

∞
i=0 is LL-reduced and covers L, and

2. the pattern δ:=x3y2z3 is ePATtf,Σ-descriptive of LL.

Proof. First, note that as LL = L1 ∪ L2, for every α ∈ sup(L), both LE,Σ(α) ⊇ L1 and

LE,Σ(α) ⊇ LE,Σ(β̂2,i) for every i ≥ 0 must hold.
We begin with the first claim. For i ≥ 0, let γi:=z

2
1 z

3
2 α̂2,i. First, note that LE,Σ(γi) ⊇

LL follows from the definition and from Theorem 7.19, and it is easy to see that the
chain is a strictly decreasing chain. Therefore, we only need to prove that every γi is LL-
reduced. For this, fix any i ≥ 0. By Theorem 2.4, there are morphisms τ1, τ2 : X∗ → X∗

such that τ1(γi) = αL1 and τ2(γi) = z3β̂2,i+1. Now, for all such morphisms, τ1(z2) = y
and τ2(z2) = z must hold, as z2 is the only variable in var(γi) that occurs exactly three
times in γi (and as no variable from var(γi) occurs only once in γi), and there is no
other way to obtain the y3 in αL1 or the z3 in z3β̂2,i+1 from γi. This immediately implies
LE,Σ(πX\{z2}(γi)) 6⊇ LL.

Furthermore, τ1(z2) = y implies τ1(z1) = x; thus, z1 can also not be erased from γi.
Finally, as (α̂2,i)

∞
i=0 is self-reduced (according to Lemma 7.23), τ1(z2) = z implies that

we cannot erase any other variable from γi = z2
1 z

3
2 α̂2,i. Hence, every γi is LL-reduced,

and therefore, (z2
1 z

3
2 α̂2,i)

∞
i=0 is LL-reduced.

For the second claim, LE,Σ(δ) ⊇ L1 ∪ L2 is obvious, as x3y2z3 can be easily mapped
to x2y3 and to z3y2 = z3α̂2,0, which proves LE,Σ(δ) ⊇ L1 and LE,Σ(δ) ⊇ L2, respectively.
Next, note that no variable in δ is LL-redundant: If we erase y, the resulting pattern

that, after all this time, the author should reconsider his convictions, and try equally hard to find a
counterexample. Although he promised to follow this advise, the author also offered to express his
sincere belief in the correctness of Conjecture 7.3 by means of a bet. Reidenbach refused. Fortunately;
as in the very next morning, the author discovered the example that disproved the conjecture he had
so firmly believed in for half a year. After this noteworthy experience, he decided that this example
deserved a name, at least due to its personal importance, and decided on “Loughborough Example”,
with “The Example That Almost Earned Daniel Reidenbach the Easiest Money Ever” being a close but
unwieldy and slightly ungrammatical second, and “That Annonying Example That I Could Have Found
Far Earlier” being a contender.
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can be mapped neither to α = x2z3, nor to any β̂2,i with i ≥ 1. Similarly, πy,z(δ) cannot

be mapped to any z3β̂2,i with i ≥ 0, while πx,y(δ) cannot be mapped to α.
Accordingly, if there is a γ ∈ X+ with LE,Σ(δ) ⊃ LE,Σ(γ) ⊇ L, every morphism

τ : X∗ → X∗ with τ(δ) = γ must be nonerasing. By Lemma 5.1, τ may be neither an
imprimitivity morphism, nor a renaming. But as LE,Σ(γ) ⊇ L1 must hold, there must be
an xy ∈ var(τ(y)) such that |γ|xy = 2, and an xz ∈ var(τ(z)) with |γ|xz = 3. Likewise,

in order to generate the z3β̂2,i from γ, there must be an xx ∈ var(τ(x)) with |γ|xx = 3.
Hence, τ is an imprimitivity morphism, and LE,Σ(γ) = LE,Σ(δ), which means that δ must
be ePATtf,Σ-descriptive of L.

Theorem 7.25 demonstrates that LL disproves Conjecture 7.3. Moreover, as each
z2

1 z
3
2 α̂2,i (or its canonical form) is an element of RedSuper(LL), RedSuper(LL) is infinite,

which disproves Conjecture 7.6.
The basic idea behind LL might be understood as follows: Note that while L1 =

LE,Σ(x3y2), we also have L2 ⊂ LE,Σ(y2x3). Similar to Example 6.19 in Section 6.3.1, the
patterns x3y2 and y2x3 can be merged in different ways, where each resulting pattern
generates a superset of L = L1 ∪ L2.

In δ = x3y2z3, the y2 is used in two different roles. Here, y2z3 is used to generate L1,
while x3y2 is used to generate L2. Seeing δ as the result of merging x2y3 and x3y2 (with a
renaming of variables), the important fact is that the “squared part” of L1 = LE,Σ(x2y3)
(i. e., everything generated by the y2 in αL1) covers the H-variable of the chain that

generates L
(2)
Σ and ‘blocks’ this part of δ. Thus, every morphism that expands y2 in a

non-redundant way loses the expressivity that is needed to generate L1.
In contrast to this, the patterns of the chain z2

1 z
3
2 α̂2,i merge αL1 and the chain z3

2 α̂2,i

on the cubed variable, which allows the chain’s descent to continue undisturbed by L1.
Even though one might argue that LL and the chain that descends toward it can

still be considered to be very similar, the Loughborough Example uses the fact that,
although all variables in every pattern of the chain are indeed necessary to generate LL,
no word needs all of these variables of any of the patterns at once.

In the next section, we discuss two examples that utilize this phenomenon in order
to highlight further difficulties that arise when dealing with chains that cover languages.

7.5 The Wittenberg Examples

One of the questions that arose during the author’s work on decreasing chains that cover
languages and their relation to the existence of descriptive patterns was whether there
is a language that is covered by multiple ‘different’ chains. Of course, this question
first depends on a suitable definition of ‘different chains’ (or, if defining through the
complement, of ‘equivalent chains’) – for example, considering chains as in Example 7.15
as different would answer the question in a positive but not particularly illuminating way,
as would removing an arbitrary number of patterns from any infinite properly descending
chain (as long as infinitely many patterns remain).

As, in the context of the present thesis, chains themselves are of less central impor-
tance than the languages they generate (in the limit), we consider two decreasing chains
(αi)

∞
i=0 and (βi)

∞
i=0 over X+ to be equivalent if LE,Σ((αi)

∞
i=0) = LE,Σ((βi)

∞
i=0) (for any

non-unary alphabet Σ). If one views our definition of the language that is generated
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by a chain of patterns as the limit of the sequence of pattern languages, this definition
might even be considered canonical. Analogously, two chains are different if they are
not equivalent.

On his way back to Frankfurt from Lutherstadt Wittenberg (after attending The-
orietag 2009), the author realized that there are in fact languages L that are covered
by multiple (pairwise) different L-reduced chains – in fact, even uncountably many such
chains. We study an example of these languages (which we call “the first Wittenberg Ex-
ample”4) in Definition 7.26 and Observations 7.28 and 7.29. Furthermore, not only do
such languages exist, some of them even have an ePATtf,Σ-descriptive pattern, as ex-
plained in Example 7.30 (accordingly, “the second Wittenberg Example”).

Through the Loughborough Example (cf. Section 7.4), the author understood that
the existence of ePATtf,Σ-descriptive patterns is more complicated than he had thought
during his work on Conjecture 7.3, but he still had hope that his proof idea could be
saved. But as the two Wittenberg Examples show, a characterization in the spirit of
Conjecture 7.3 that somehow generalizes the proof of Theorem 5.18 (i. e., DePATtf,Σ

(L) =
∅ if and only if S-HullΣ(L) is covered by an S-HullΣ(L)-reduced chain that satisfies certain
criteria) would require considerable effort (for example, some way to reconstruct all other
possible chains from the given chain and L).

After discovering the Wittenberg Examples, and considering the six months he had
already spent on his ill-fated attempt to prove Conjecture 7.3, the author gave up on
finding such a characterization or sufficient criteria, and decided to direct his attention
to different topics.

Like the Loughborough Example, the Wittenberg Examples use a technique that is
similar to Example 6.19: When constructing a pattern that is ePATtf,Σ-descriptive of
the union of two languages L1 and L2, we can construct languages that cover L1 ∪L2 by
merging patterns that cover L1 or L2, respectively. We begin with the first of these two
examples:

Definition 7.26 (First Wittenberg Example). Let LW1
:=L

(2)
Σ ∪ L

(3)
Σ (which are defined

as in Definition 7.21). We define the morphisms φ2 and φ3 through

φ2(x):=(x)2 y2
1 z

3
1 , φ3(x):=(x)2 z3

1 y
2
1,

φ2(yi):=yi+1, φ3(yi):=yi+1,

φ2(zi):=zi+1, φ3(zi):=zi+1

for all i ≥ 0.

For i ≥ 1 and ~s = (s1, . . . , sn) ∈ {2, 3}n, the morphism φ~s is defined as follows: If ~s
is of length 1, let φ~s:=φs1. Otherwise, let φ~s:=φsn ◦ φ(s1,...,sn−1).

This allows us to define the patterns α:=x2 and α~s:=φ~s(α) for every i ≥ 1 and every
~s ∈ {2, 3}n.

This definition is illustrated by Figure 7.1 and the following example:

4After all, a name in the spirit of “the first train back from Wittenberg Example” would have been
unpleasantly ambiguous.
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α()

α(2)

α(2,2)

α(2,2,2)

...

φ2

...

φ3

φ2

α(2,2,3)

...

φ2

...

φ3

φ3

φ2

α(2,3)

α(2,3,2)

...

φ2

...

φ3

φ2

α(2,3,3)

...

φ2

...

φ3

φ3

φ3

φ2

α(3)

α(3,2)

α(3,2,2)

...

φ2

...

φ3

φ2

α(3,2,3)

...

φ2

...

φ3

φ3

φ2

α(3,3)

α(3,3,2)

...

φ2

...

φ3

φ2

α(3,3,3)

...

φ2

...

φ3

φ3

φ3

φ3

Figure 7.1: An illustration of the relation between the patterns defined in Definition 7.26.
The patterns α~s are generated from α using the morphisms φ~s, where ~s is a finite sequence
over {2, 3}. The patterns shown in this illustration are given explicitely in Example 7.27.

Example 7.27. Figure 7.1 contains the first four levels of the resulting tree. The cor-
responding patterns are as follows:

α() = x2,

α(2) = ((x)2 y2
1z

3
1)2, α(3) = ((x)2 z3

1y
2
1)2,

α(2,2) = (((x)2 y2
1z

3
1)2 y2

2z
3
2)2, α(2,3) = (((x)2 z3

1y
2
1)2 y2

2z
3
2)2,

α(3,2) = (((x)2 y2
1z

3
1)2 z3

2y
2
2)2, α(3,3) = (((x)2 z3

1y
2
1)2 z3

2y
2
2)2,

α(2,2,2) = ((((x)2 y2
1z

3
1)2 y2

2z
3
2)2 y2

3z
3
3)2, α(2,2,3) = ((((x)2 z3

1y
2
1)2 y2

2z
3
2)2 y2

3z
3
3)2,

α(2,3,2) = ((((x)2 y2
1z

3
1)2 z3

2y
2
2)2 y2

3z
3
3)2, α(2,3,3) = ((((x)2 z3

1y
2
1)2 z3

2y
2
2)2 y2

3z
3
3)2,

α(3,2,2) = ((((x)2 y2
1z

3
1)2 y2

2z
3
2)2 z3

3y
2
3)2, α(3,2,3) = ((((x)2 z3

1y
2
1)2 y2

2z
3
2)2 z3

3y
2
3)2,

α(3,3,2) = ((((x)2 y2
1z

3
1)2 z3

2y
2
2)2 z3

3y
2
3)2, α(3,3,3) = ((((x)2 z3

1y
2
1)2 z3

2y
2
2)2 z3

3y
2
3)2.

3

Thus, we can use every infinite sequence over {2, 3} to obtain a chain system and
the corresponding chain. From the definitions of the involved morphisms, it should be
obvious that each of these chain systems is E-free, and in all cases, the adult variables
are exactly those yi and zi that occur in the pattern.

Using Theorem 7.19, we can then derive a language from each sequence s, and observe
that different sequences lead to different languages:

Observation 7.28. Let S = (si)
∞
i=0 and T = (ti)

∞
i=0 be infinite sequences over {2, 3}.

For every i ≥ 1, we define ~si:=(s1, . . . , si) and ~ti:=(t1, . . . , ti). Then

LE,Σ((α~si)
∞
i=0) = LE,Σ((α~ti)

∞
i=0)

if and only if S = T .
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Proof. As mentioned above, if we consider the chain systems that can be derived from
each sequences S or T , and corresponding chains (α~si)

∞
i=0 and (α~ti)

∞
i=0, we have Hi = {x}

and Ai = Si = {y1, z1, . . . , yi, zi} for every i ≥ 0.
Thus, according to Theorem 7.19, we can derive the languages that are generated by

the two chains simply by considering the union of all πX\{x}(α~si) and the union of all
πX\{x}(α~ti), and see that the claim follows immediately.

We now show that each of these chains is LW1-reduced and covers LW1 :

Observation 7.29. For every n ≥ 1 and every ~s ∈ {2, 3}n, LE,Σ(α~s) ⊇ LW1, and α~s is
LW1-reduced.

Proof. Let i ≥ 0 and ~s ∈ {2, 3}n. The first part of the claim follows immediately from
the definition of α~s. If ~s ∈ {2, 3}n, we can define the morphisms ψ2, ψ3 : X∗ → X∗

through

ψ2(x):=y, ψ2(yi):=xi, ψ2(zi):=λ,

ψ3(x):=y, ψ3(yi):=λ, ψ3(zi):=xi

for every i ≥ 1. Then ψk(α~s) = α̂k,n holds for every k ∈ {2, 3}, and thus, LE,Σ(α~s) ⊇
L

(2)
Σ ∪ L

(3)
Σ = LW1 .

We can prove that α~s is LW1-reduced by examining the morphisms that map α~s to

the patterns β̂2,i+1 and β̂3,i+1 (which must exist, as the patterns generate subsets of L
(2)
Σ

and L
(3)
Σ , respectively), using a reasoning that is similar to the corresponding reasoning

in the proof of Theorem 7.25.
Let τ2, τ3 : X∗ → X∗ be morphisms with τk(α~s) = β̂k,i+1 for k ∈ {2, 3}. By comparing

the order and frequency of the occurrence of the variables in α~s and both β̂k,i+1, one can
easily verify that

τ2(x) = x2
1, τ2(yi) = xi+1, τ2(zi) = λ,

τ3(x) = x3
1, τ3(yi) = λ, τ3(zi) = xi+1

must hold for all such morphisms and all yi, zi with 1 ≤ i ≤ n.
Thus, if we remove any yi from α~s, the resulting pattern cannot be mapped to β̂2,n+1,

and if we remove any zi, the resulting pattern cannot be mapped to β̂3,n+1. Furthermore,
if we remove y, we lose the possibility to map the resulting pattern to any of the two
β̂k,n+1. Therefore, we cannot remove any variable from α~s, which means that the pattern
is LW1-reduced. As n and ~s were chosen freely, this concludes the proof.

Observation 7.29 shows that each infinite sequence over {2, 3} leads to a chain that
is LW1-reduced and covers LW1 . As there are uncountably many infinite sequences over
{2, 3}, and each of these sequences leads to a different language (cf. Observation 7.28),
there are uncountably many LW1-reduced chains that cover LW1 . Like the Loughbor-
ough Example, the first Wittenberg Example uses the fact that, although all chains are
LW1 reduced (which means that every variable of every pattern in the chain is needed to
generate some word of LW1), no word uses all variables of a given pattern at once.

In fact, it is even possible to combine the approaches from the Loughborough Example
and the first Wittenberg Example to show that there is a language LW2 such that LW2

has an ePATtf,Σ-descriptive pattern, but is covered by uncountably many LW2-reduced
strictly decreasing chains (which converge to pairwise different languages):
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Example 7.30 (Second Wittenberg Example). For any Σ with |Σ| ≥ 2, we define

L1:=LE,Σ(x2y3),

L2:=(LE,Σ(x3)L
(2)
Σ ) ∪ (LE,Σ(x3)L

(3)
Σ ),

LW2
:=L1 ∪ L2.

Thus, LW2 is defined almost as in the Loughborough Example (cf. Definition 7.24), the
only notable difference being that L2 is a modification of the language LW1 from Defini-

tion 7.26 instead of L
(2)
Σ .

For every i ≥ 0 and every ~s ∈ {2, 3}i, let α~s be defined as in Definition 7.26, and let
x1, x2 be new variables from X that are pairwise distinct from x, all yi and all zi.

Using the same reasoning as for Observation 7.29 and for Theorem 7.25, one can
easily verify that, for every i ≥ 0 and every ~s ∈ {2, 3}i, LE,Σ(x2

1x
3
2α~s) ⊃ LW2 holds, while

x2
1x

3
2α~s is LW2-reduced.
On the other hand, one can easily see that δ:=x3y2z3 is ePATtf,Σ-descriptive of LW2,

again using the same reasoning as for Theorem 7.25. 3



Chapter 8

Conclusions and Suggestions for
Future Research

This chapter provides a summary of the contents of the thesis (with the obvious exemp-
tion of Chapters 1 and 2).

Chapter 3

As demonstrated in this chapter, inclusion for pattern languages remains undecidable
even if we bound the number of terminal letters and the number of variables in the pat-
tern. The number of variables where inclusion is provably undecidable that are given in
Theorem 3.10 (and Bremer’s extension to NE-pattern languages) remains comparatively
high. Furthermore, Propositions 3.7 and 3.8 demonstrate that existence of a morphism
between the patterns is not a characteristic inclusion criterion even when we apply com-
paratively small bounds. As suggested in Open Problem 3.9, one possible direction is to
attempt to prove that inclusion is decidable for these classes.

On the other hand, undecidability might be established for far lower bounds than
in Theorem 3.10 by finding a suitable undecidable problem that has a comparatively
compact representation. Possible candidates are universal generalizations of the Col-
latz iteration (cf. Kurtz and Simon [60]) and one-state linear operator algorithms (cf.
Kaščák [54]), which are both based on Conway iterations (cf. Conway [19]). Also note
that it would suffice to find machines with a compact representation in patterns that are
not universal, but have an undecidable halting problem. The existence of non-universal
machines with an undecidable halting problem follows from the existence of undecidable
but non-universal sets of natural numbers, but to the author’s knowledge, there has been
no examination of small machines with this property (see also Margenstern [68]).

Chapter 4

This chapter shows that extending regular expressions with only a single variable already
leads to an immense increase in succinctness and expressive power. The good part of this
news is that in certain applications, using the right extended regular expression instead
of a proper regular expression can lead to far more efficient running times, all with the
matching engine that is already present on the machine. The bad part of this news is
that this additional power cannot be harnessed in full, due to the undecidability of the
corresponding decision problems. Naturally, this greatly diminishes the usefulness of
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extended regular expressions as more efficient alternative to proper regular expressions.
Due to these undecidable problems, some questions of designing “good” extended

regular expressions are of difficulty comparable to designing good programs. For applied
computer scientists, it could be worthwhile to examine heuristics and good practices
to identify cases where the non-conventional use of extended regular expressions might
offer unexpected speed advantages. For theoretical computer scientists, the results in
this chapter highlight the need for appropriate restrictions other than the number of
variables; restrictions that lead to large and natural subclasses with decidable decision
problems. One possible approach that does not extend the expressive power of proper
regular expressions beyond regular languages would be a restriction of the length of the
words on which variables can be bound.

Furthermore, as a very vague proposal, the construction used in Theorem 4.14 could
also offer insights on the undecidability of inherent ambiguity for RegEx(1), similar to
results on context-free languages (cf. Kutrib [61]). Although, to the author’s knowledge,
ambiguity of extended regular expressions has not been examined, research in this direc-
tion has been proposed by Salomaa [99]. It is reasonable to expect that every finite and
every cofinite language should not be inherently ambiguous for most reasonable defini-
tions of ambiguity of extended regular expressions, while non-regular INVALC(X ) might
be inherently ambiguous for most definitions of this concept.

Chapter 5

Theorem 5.18 gives a positive answer to the longstanding open question whether there are
infinite languages for which no pattern is E-descriptive. One possible continuation is the
search for a characterization of these languages. Considering the fact that this problem
is surprisingly hard even for terminal-free E-pattern languages where the inclusion is
decidable, the author considers this problem very hard, and suggests to study it for
that restricted case before attempting the full class of E-pattern languages. Further
suggestions on this topic can be found in the comments on Chapter 7 further down in
the present chapter.

Instead of trying to find such a characterization, it might be worthwhile to examine
the existence of E-descriptive patterns for all languages from various prominent classes;
e. g., the regular languages:

Open Problem 8.1. Is there a regular language L of which no pattern is E-descriptive?

Alternatively, further examination of Open Problem 5.35 could provide new insights
into the equivalence problem for E-pattern languages, and such insights are gravely
needed now that Ohlebusch and Ukkonen’s conjectures (cf. [79]) have been disproven
(cf. [32]). More importantly, it seems more promising to start with the more fundamen-
tal question whether E-descriptive patterns for finite sets can be computed effectively
(Open Problem 5.31).

Chapter 6

In this chapter, we introduced a new inference paradigm, descriptive generalization,
and showed that the loss of precision (in comparison to Gold’s model) that comes with
the use of descriptive patterns as hypotheses can lead to greater power. For inductive
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inference, the author considers it most promising to examine the properties of the more
general model HYP proposed in Section 6.2.4. For formal language theory, an alternative
characterization of T SLΣ or more sufficient criteria for the non-existence of telling sets
as in Lemma 6.37 should be very interesting. Apart from this, the tools developed in
Section 6.3.1 should be of use for further work on ePATtf,Σ-descriptive patterns.

Note that most of the results of this chapter can be adapted to all those classes of
E-pattern languages where inclusion is characterized by the existence of a morphism
between the patterns (for some examples, see the list in Section 3.3, after Theorem 3.5).

Chapter 7

The main insight of Chapter 7 is probably that the question of the existence of descriptive
patterns is hard, even for classes (or at least one class) of pattern languages with a
decidable inclusion problem.

Of the conjectures presented in Section 7.1, only Conjecture 7.2 has not been dis-
proven. The author is still convinced that this conjecture holds, as languages that are
generated by chains, and not simply covered by chains should show sufficient similarities
between the language and the patterns of the chain to adapt the proof of Theorem 5.18
(note that the examples in Sections 7.4 and 7.5 use languages that are covered by chains,
but not generated by chains).

The author thinks that a proof of Conjecture 7.2 might be obtained by extending
Lemma 7.18 and Theorem 7.19 to chain systems with E-variables. As mentioned in
Section 7.2.1, this would require a formalization of the concept of adult H-variables.
If such extensions can be found, a proof of Conjecture 7.2 might still require technical
effort, but be within reach.

Apart from chains and chain systems, the author considers the following question
very interesting, not only due to its relation to Open Problem 5.35:

Conjecture 8.2. Let Σ be an alphabet with |Σ| ≥ 2, and let L1, L2 ∈ Σ∗. If DePATtf,Σ
(L1)

and DePATtf,Σ
(L2) are nonempty, then DePATtf,Σ

(L1 ∪ L2) is nonempty.

Although this conjecture seems fairly obvious, the author was unable to prove it.
Moreover, if it should hold, it would be very interesting to see how the descriptive
patterns for the single languages and the descriptive patterns for the union of these
languages are related.
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[13] C. Câmpeanu, K. Salomaa, and S. Yu. A formal study of practical regular expres-
sions. International Journal of Foundations of Computer Science, 14:1007–1018,
2003.
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[54] F. Kaščák. Small universal one-state linear operator algorithm. In Proc. 17th
International Symposium Mathematical Foundations of Computer Science, MFCS
1992, volume 629 of LNCS, pages 327–335, 1992.



Bibliography 145

[55] S.C. Kleene. Representation of events in nerve nets and finite automata. In C.E.
Shannon; J. McCarthy; W.R. Ashby, editor, Automata Studies, pages 3–42. Prince-
ton University Press, Princeton, 1956.

[56] S. Kobayashi and T. Yokomori. On approximately identifying concept classes in
the limit. In Proc. 6th International Workshop on Algorithmic Learning Theory,
ALT 1995, volume 997 of Lecture Notes in Artificial Intelligence, pages 298–312,
1995.

[57] S. Kobayashi and T. Yokomori. Learning approximately regular languages with
reversible languages. Theoretical Computer Science, 174:251–257, 1997.

[58] Takeshi Koshiba. Typed pattern languages and their learnability. In Computational
Learning Theory, Second European Conference, EuroCOLT ’95, volume 904 of
LNCS, pages 367–379, 1995.

[59] G. Kucherov and M. Rusinowitch. Patterns in words versus patterns in trees: A
brief survey and new results. In Perspectives of System Informatics, volume 1755
of LNCS, pages 283–296, 2000.

[60] S. A. Kurtz and J. Simon. The undecidability of the generalized collatz prob-
lem. In Proc. 4th International Conference Theory and Applications of Models of
Computation, TAMC 2007, volume 4484 of LNCS, pages 542–553, 2007.

[61] M. Kutrib. The phenomenon of non-recursive trade-offs. International Journal of
Foundations of Computer Science, 16(5):957–973, 2005.

[62] J.C. Lagarias. The 3x+1 problem: An annotated bibliography (1963–1999), Aug
2009. http://arxiv.org/abs/math/0309224.

[63] J.C. Lagarias. The 3x+1 problem: An annotated bibliography, II (2000–2009),
Aug 2009. http://arxiv.org/abs/math/0608208.

[64] J.C. Lagarias, editor. The Ultimate Challenge: The 3x + 1 Problem. American
Mathematical Society, Providence, Rhode Island, USA, 2010.

[65] K.S. Larsen. Regular expressions with nested levels of back referencing form a
hierarchy. Information Processing Letters, 65(4):169–172, 1998.

[66] W. Luo. Compute inclusion depth of a pattern. In Proc. 18th Annual Confer-
ence on Learning Theory, COLT 2005, volume 3559 of Lecture Notes in Artificial
Intelligence, pages 689–690, 2005.

[67] G. S. Makanin. The problem of solvability of equations in a free semigroup. Mat.
Sb. (NS), 103(2):147–236, 1977. In Russian. English translation in Mathematics
of the USSR-Sbornik, 32, 129–198, 1977.

[68] M. Margenstern. Frontier between decidability and undecidability: a survey. The-
oretical Computer Science, 231(2):217–251, 2000.

http://arxiv.org/abs/math/0309224
http://arxiv.org/abs/math/0608208


146 Bibliography

[69] A. Mateescu and A. Salomaa. Patterns. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 1, chapter 4.6, pages 230–242. Springer,
1997.

[70] M.L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Upper
Saddle River, NJ, 1967.

[71] A.R. Mitchell. Learnability of a subclass of extended pattern languages. In Proc.
11th Annual Conference on Computational Learning Theory, COLT 1998, pages
64–71, 1998.

[72] V. Mitrana. Patterns and languages: An overview. Grammars, 2(2):149–173, 1999.

[73] Y. Mukouchi. Inductive inference of an approximate concept from positive data.
In Proc. 5th International Workshop on Algorithmic Learning Theory, ALT 1994,
volume 872 of Lecture Notes in Artificial Intelligence, pages 484–499, 1994.

[74] T. Nagell, editor. Selected mathematical papers of Axel Thue. Universitetsforlaget,
Oslo, 1977.

[75] T. Neary and D. Woods. Four small universal turing machines. Fundamenta
Informaticae, 91(1):123–144, 2009.

[76] Y.K. Ng and T. Shinohara. Developments from enquiries into the learnability of the
pattern languages from positive data. Theoretical Computer Science, 397:150–165,
2008.

[77] P.G. Odifreddi. Classical Recursion Theory, volume I. Elsevier, Amsterdam, 1989.

[78] P.G. Odifreddi. Classical Recursion Theory, volume II. Elsevier, Amsterdam, 1999.

[79] E. Ohlebusch and E. Ukkonen. On the equivalence problem for E-pattern lan-
guages. Theoretical Computer Science, 186:231–248, 1997.

[80] T. Oliveira e Silva. http://www.ieeta.pt/~tos/3x+1.html. Retrieved Aug 28th,
2010.

[81] D. Perrin. Words. In M. Lothaire, editor, Combinatorics on Words, chapter 1.
Addison-Wesley, Reading, MA, 1983.

[82] W. Plandowski. Satisfiability of word equations with constants is in PSPACE.
Journal of the ACM, 51(3):483–496, 2004.

[83] W. Plandowski and W. Rytter. Application of Lempel-Ziv encodings to the solution
of word equations. In Proc. 25th International Colloquium on Automata, Languages
and Programming, ICALP 1998, volume 1443 of LNCS, pages 731–742, 1998.

[84] W. V. Quine. Concatenation as a basis for arithmetic. Journal of Symbolic Logic,
11(4):105–114, 1946.

http://www.ieeta.pt/~tos/3x+1.html


Bibliography 147

[85] D. Reidenbach. The Ambiguity of Morphisms in Free Monoids and its Impact on
Algorithmic Properties of Pattern Languages. PhD thesis, Fachbereich Informatik,
Technische Universität Kaiserslautern, 2006. Logos Verlag, Berlin.

[86] D. Reidenbach. A non-learnable class of E-pattern languages. Theoretical Com-
puter Science, 350:91–102, 2006.

[87] D. Reidenbach. An examination of Ohlebusch and Ukkonen’s conjecture on the
equivalence problem for E-pattern languages. Journal of Automata, Languages and
Combinatorics, 12:407–426, 2007.

[88] D. Reidenbach. Discontinuities in pattern inference. Theoretical Computer Science,
397:166–193, 2008.

[89] D. Reidenbach and M.L. Schmid. A polynomial time match test for large classes
of extended regular expressions. In Proc. 15th International Conference on Imple-
mentation and Application of Automata, CIAA 2010, volume 6482 of LNCS, pages
241–250, 2010.

[90] D. Reidenbach and J.C. Schneider. Morphically primitive words. Theoretical Com-
puter Science, 410(21-23):2148–2161, 2009.

[91] H. Rogers. Theory of Recursive Functions and Effective Computability. MIT Press,
Cambridge, MA, 1992. 3rd print.

[92] E. Roosendaal. http://www.ericr.nl/wondrous/index.html. Retrieved
Aug 28th, 2010.

[93] G. Rozenberg and A. Salomaa. The Mathematical Theory of L systems. Academic
Press, New Lork, London, 1980.

[94] G. Rozenberg and A. Salomaa. When L was young. In G. Rozenberg and A. Sa-
lomaa, editors, The Book of L, pages 383–401. Springer, Berlin, 1986.

[95] A. Salomaa. Formal Languages. Academic Press, New York, London, 1973.

[96] A. Salomaa. Patterns. Bulletin of the EATCS, 54:194–206, 1994.

[97] A. Salomaa. Return to patterns. Bulletin of the EATCS, 55:144–157, 1995.

[98] K. Salomaa. Patterns. In C. Martin-Vide, V. Mitrana, and G. Păun, editors,
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equivalence problem, 96

for pattern languages, 7, 96
error of X

behavioral, 55
head, 56
state, 56
structural, 55
tape side, 56

expanding, 119
extended regular expression, see extended
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∞
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PAT?,Σ-descriptive pattern, 75
Pattf , 6
pattern, 6

avoidability, 64
consistent, 73
terminal-free, 6
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prefix predicate, 24
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RedSuper, 118
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RegEx, 44
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superfinite, 99
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symb, 6

taL, 10
tL
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tR
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tR
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tape side error, 56
tape sides

of extended Turing machines, 49
of the universal machine U , 10

telling set, 109
telltale, 113
terminal alphabet, see Σ
terminal-free pattern, 6
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terminal-preserving morphism, 6
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extended, 48
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universal, 10
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universal Turing machine U , 10
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variable alphabet, 6

Wittenberg Examples, 132
word, 6
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1999–2000 Wehrdienst im FmRgt 920, Kastellaun

2000–2006 Studium der Informatik an der TU Kaiserslautern

März 2006 Abschluss als Diplom-Informatiker,
Diplomarbeit bei Prof. Dr. Rolf Wiehagen

2006–2007 Besuch von Vorlesungen der 5th International PhD School in Formal Lan-
guages and Applications, Tarragona, Spanien

März 2007– Promotionsstudent und wissenschaftlicher Mitarbeiter an der Johann Wolf-
gang Goethe-Universität, Frankfurt am Main, in den Professuren von Prof. Dr.
Detlef Wotschke (bis Oktober 2009) und Prof. Dr. Nicole Schweikardt (seit Okto-
ber 2009)


	Zusammenfassung
	Acknowledgements
	Contents
	Introduction
	On Patterns
	On This Thesis

	Preliminaries
	Basic Definitions
	Patterns and Their Languages

	Inclusion of Pattern Languages
	On Inclusion for Pattern Languages
	Definitions and a Preliminary Result
	The Universal Turing Machine U
	The Collatz Function

	The Difficulty of Inclusion
	The Basic Construction
	Undecidability (Proof of Theorem 3.10)
	Simulating Any Collatz Iteration (Proof of Theorem 3.11)
	Simulating All Collatz Iterations (Proof of Theorem 3.12)
	Extensions to Larger Terminal Alphabets

	From Pattern Inclusion to Regular Expressions
	Word Equations and the Theory of Concatenation
	Word Equations and Theorem 3.10


	Real Regular Expressions: Decidability and Succinctness
	On Extended Regular Expressions
	Definitions and Preliminary Results
	Extended Regular Expressions
	Decision Problems and Descriptional Complexity
	Generalized Sequential Machines
	Extended Turing Machines
	The Main Construction

	Undecidability and Its Consequences
	A Technical Note on Bounded Occurrences of Variables


	Existence of Descriptive Patterns
	On Patterns Descriptive of a Set of Strings
	Preliminaries
	Properties of Terminal-Free E-Pattern Languages
	L Systems

	Descriptive Patterns and Infinite Strictly Decreasing Chains of Pattern Languages
	Existence of Descriptive Patterns
	Proof of Theorem 5.16
	Proof of Theorem 5.18
	Proof of Corollary 5.20

	Computing Descriptive Patterns
	Computing Descriptive Patterns for Finite Sets
	E-Descriptive Patterns and the Equivalence Problem


	Inferring Descriptive Generalizations
	On Descriptive Generalizations
	Inferring Descriptive Generalizations
	Inductive Inference in the Limit from Positive Data
	The Inference Paradigm
	Fundamental Insights into the Model
	A More General View

	Inferring `39`42`"613A``45`47`"603AePATtf,-Descriptive Patterns
	Basic Tools
	The Canonical Strategy and Telling Sets

	Examination of the Class `39`42`"613A``45`47`"603ATSL

	On a Conjecture on `39`42`"613A``45`47`"603AePATtf,-Descriptive Patterns
	Technical Preliminaries and Various Conjectures
	Chains, Chain Systems, and Their Languages
	A Chain System That Is Not E-Free

	The Languages L(k)
	L(k) and the Proof of Theorem 5.18

	The Loughborough Example
	The Wittenberg Examples

	Conclusions and Suggestions for Future Research
	Bibliography
	Index
	Lebenslauf

