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Zusammenfassung

Quantenchromodynamik (QCD) ist die etablierte Theorie zur Beschreibung der starken
Wechselwirkung zwischen den Konstituenten der hadronischen Materie. Die elementaren
Freiheitsgrade in der QCD-Wirkung sind dabei Quarks und Gluonen. Die Existenz der
Quarks wurde erstmals von Gell-Mann und Zweig in den 1960er Jahren postuliert. In
diesem Zusammenhang beschreibt der Begriff confinement die Erfahrungstatsache, dass
freie Quarks nicht beobachtet werden.

Bei der QCD handelt es sich um eine nicht-Abel’sche Eichtheorie bzgl. der Gruppe
SU(3) und der zugehorigen Farbladung. Das bedeutet, dass die QCD eine lokale Ei-
chinvarianz unter SU(3)-Farbtransformationen aufweist. Insofern lisst sich confinement
auch so formulieren, dass nur Farbsingulett-Zustinde beobachtbar sind. Ein wesent-
liches Merkmal der QCD ist die asymptotische Freiheit, d.h. das Verschwinden der
Kopplungsstarke, ag, fiir wachsende Impulsiibertrige bzw. Energieskalen,

as(Q* = 00) = 0.

In Umkehrung dieser Beziehung wichst die Kopplung fiir grofse Absténde stark an, so
dass eine perturbative Beschreibung auf Basis der urspriinglichen Freiheitsgrade zusam-
menbricht, was letztlich Voraussetzung fiir das Auftreten von confinement ist.

Wihrend gerade der storungstheoretische Zugang bei sehr hohen Energien erfolgrei-
che Tests der Theorie gegeniiber Experimenten an Teilchenbeschleunigern erlaubt, sind
weite Energiebereiche nicht perturbativ zuginglich. Dies trifft neben der Vorhersage
des Hadronspektrums insbesondere auf die Untersuchung des thermischen Ubergangs,
d.h. des Ubergangs von der hadronischen Phase in ein stark wechselwirkendes Plasma,
und der Materieeigenschaften oberhalb dieses Ubergangs zu. Dieser Bereich des QCD-
Phasendiagramms wird durch Schwerionenkollisionsexperimente an modernen Teilchen-
beschleunigern (RHIC, LHC) untersucht. In den Schwerionenkollisionen entsteht Mate-
rie sehr hoher Energiedichte, die dann in einen thermalisierten Zustand oberhalb des
thermischen Ubergangs miindet. Wihrend bei tieferen Temperaturen die beobachteten
Hadronen — Mesonen (wie z. B. Pionen und Kaonen) und Baryonen (z. B. Protonen und
Neutronen) — die relevanten Freiheitsgrade bilden, ist dies oberhalb des Ubergangs nicht
mehr der Fall. Dort interagieren die urspriinglich in der Wirkung auftretenden Quarks
und Gluonen als Teilchen in einem stark gekoppelten Plasma. Tatséchlich hat sich ge-
zeigt, dass dieses Quark-Gluon-Plasma (QGP) zumindest in der Néhe des thermischen
Ubergangs durch ideale Hydrodynamik beschrieben werden kann. Das tatséichliche Auf-
brechen der Beschreibung hin zu wirklich freien Teilchen wird erst bei sehr viel héheren
Temperaturen als Folge der asymptotischen Freiheit erwartet.

Durch die Einfiihrung der Gitterregularisierung durch Wilson 1974 wurde eine Mog-
lichkeit geschaffen, jenseits der Storungstheorie die QCD nicht-perturbativ zu untersu-
chen. Dazu werden die Minkowski-Raumzeit durch Wick-Rotation in eine FEuklid’sche
Metrik iiberfiihrt und das kontinuierliche Raumzeitvolumen durch ein vierdimensionales
hyperkubisches Gitter mit Gitterabstand a ersetzt. Diese Regularisierung der Theorie
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mit einem Abschneiden der Impulse bei 1/a bricht die Lorentz-Invarianz und fiihrt zu
einer komplizierten Behandlung in Stérungstheorie. Der eigentliche Grund, die Gitter-
formulierung der QCD zu verwenden besteht vielmehr darin, dass fiir endliches Vo-
lumen numerische Berechnungen unter Zuhilfenahme von leistungsfahigen Computern
bzw. Grofsrechnern durchgefithrt werden kénnen. Der dabei typischerweise verwendete
hybride Monte-Carlo Algorithmus erzeugt eine Markov-Kette von Eichfeldkonfiguratio-
nen, die gegen die entsprechende Gleichgewichtsverteilung konvergieren. Derart lassen
sich statistische Mittelwerte fiir primére Observablen, die als Funktion des Eichfeldes
aufgefasst werden kénnen, bestimmen.

Auf diese Weise werden im Rahmen der Gitter-QCD, bzw. allgemeiner in Gittereich-
theorie, Vakuumerwartungswerte und auch thermische Gleichgewichtserwartungswerte
berechnet. In thermische Systemen wird iiber die Lange der (Euklid’schen) Zeitrichtung
mit N, Gitterpunkten eine Temperatur eingestellt, d.h. "= 1/(aN;). Dabei sind die
entsprechenden Randbedingungen der Felder in Zeitrichtung zu beachten.

Waihrend die Diskretisierung der reinen Eichtheorie keine weiteren konzeptionellen
Probleme aufweist, ist die Situation fiir Fermionen wesentlich komplizierter. Eine naive
Diskretisierung der fermionischen Ableitungsterme fithrt dazu, dass sich die Anzahl
der Freiheitsgrade im Kontinuumslimes fiir jede Raumdimension verdoppelt. Diesem
Dopplerproblem wird durch verschiedene Methoden der Fermiondiskretisierung entgegen
getreten, die jeweils andere Vor- und Nachteile besitzen.

Gegenstand dieser Dissertation ist die Anwendung einer speziellen Variante gitterre-
gularisierter Fermionen mit sogenanntem chiral verdrehtem Massenterm (twisted mass)
fiir Studien der thermischen Eigenschaften der Quantenchromodynamik. Wahrend diese
Fermionen zur Berechnung von Vakuumeigenschaften der QCD bereits erfolgreich durch
die European Twisted Mass Collaboration (ETMC) eingesetzt worden sind, ist die erst-
malige Anwendung auf physikalische Fragestellungen bei endlichen Temperaturen in
dieser Arbeit enthalten. Neben konkreten physikalischen Problemen geht es also insbe-
sondere darum, die spezifischen Eigenschaften der twisted mass-Formulierung jenseits
des Vakuums zu untersuchen und ein Simulationskonzept zu erstellen.

Dabei liegt der Fokus im Wesentlichen auf der einfachsten Formulierung der twisted
mass QCD (tmQCD), die ein massenentartetes leichtes Quarkdublett beriicksichtigt.
Dies ist der natiirliche Anfangspunkt fiir Untersuchungen mit twisted mass Fermionen,
da diese Fermiondiskretisierung auf Basis solcher flavour-Dubletts konstruiert wird. Die
Grundlage fiir die Massenverdrehung bilden Gitterfermionen vom Wilson-Typ. Dieser
Typus vermeidet das Dopplerproblem, indem die chirale Symmetrie durch einen zusétz-
lichen Term in der Wirkung explizit gebrochen wird. Dies fithrt neben einer additiven
Massenrenormierung insbesondere dazu, dass Gitterartefakte bereits in einer Ordnung
frither als bei anderen Fermionen auftauchen, d.h. in O(a). Derartige Probleme ha-
ben andere Arten der Fermiondiskretisierung nicht. Insbesondere staggered Fermionen
sind sehr oft fiir thermische Studien verwendet worden. Allerdings ist die Giiltigkeit der
staggered Fermionformulierung jenseits der Storungstheorie umstritten, so dass weitest-
gehend anerkannt ist, dass die staggered-Ergebnisse durch Untersuchungen mit alterna-
tiven Fermiontypen kontrolliert werden miissen.

Die Modifikation der Wilson’schen Fermionen durch den chiral verdrehten Massen-
term erlaubt nun, zumindest die filhrende Ordnung der Diskretisierungsartefakte wieder
zu O(a?) 7zu korrigieren, wenn man den unverdrehten Anteil der Quarkmasse zu Null
einstellt. Diese spezielle Wahl, die letztlich zu einer Verdrehung um 7 /2 korrespondiert,
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bezeichnet man iiblicherweise als maximale Verdrehung bzw. maximal twist. Maximal
verdrehte Wilson-Fermionen bilden damit — neben den auch benutzten clover Fermio-
nen — eine vielversprechende Wahl fiir die Anwendung auf thermische Systeme, die
typischerweise stark durch Diskretisierungeffekte beeintréichtigt sind.

Diese Dissertation ist wie folgt strukturiert. Die bisherigen einleitenden Erlduterungen
entsprechen den Kapiteln 1 bis 3, wobei dort natiirlich in weit groferem Mafe auf die
theoretischen Grundlagen eingegangen wird. Dies schliefst insbesondere die Diskussion
der laufenden Kopplung und chiraler Symmetrien in Kapitel 2 ein. Bei den Erlauterun-
gen der Gitter-QCD wird insbesondere die tmQCD mit ihren besonderen Eigenschaften
betrachtet. Neben der automatischen O(a)-Verbesserung bei maximalem #wist umfasst
dies auch die ETMC-Untersuchungen zu der nicht-trivialen Vakuumstruktur im Raum
der unrenormierten Parameter x, 8 und . k = (2amg + 8)~! ist dabei der Hopping-
parameter, 3 = 6/¢g? die Gitterkopplung und s der twisted mass-Parameter.

In Kapitel 4 werden anschlieffend einige generelle Eigenschaften der tmQCD bei nicht-
verschwindender Temperatur behandelt. Dies betrifft zum einen die zuvor genannte Pha-
senraumstruktur. Bei endlichen Temperaturen kommt als neues Element der thermische
Ubergang hinzu. Tatséchlich konnten wir basierend auf einer Vermutung von Creutz den
thermischen Ubergang als Fliche im Phasendiagramm ausmachen, die sich kegelartig
um den kritischen Hoppingparameter windet und zu gréferen Temperaturen — sprich
B — immer grofser wird. Die entsprechenden Simulationen wurden vor dieser Dissertati-
on begonnen. Allerdings machen wir deutlich, welche wesentlichen Aspekte tatsichlich
Teil dieser Arbeit sind. Alles in allem ist es wichtig anzumerken, dass die unphysika-
lischen Phasen verstanden sind und fiir den eigentlich interessanten Kontinuumslimes
kein bedeutendes Hindernis darstellen.

Der zweite Zugang, der in Kapitel 4 verfolgt wird, besteht in storungstheoretischen
Berechnungen des Drucks. Hierbei extrahieren wir die Abhéingigkeit von den fithrenden
Ordnungen in a explizit fiir den freien Druck und finden, dass sich die verschiedenen
Diskretisierungen im a?-Skalierungsbereich nicht stark unterscheiden. Allerdings bleibt
festzuhalten, dass a’-Verhalten nicht vor N, ~ 10 beobachtet wird. Qualitativ gleiche
Schlussfolgerungen lassen sich auch aus der nichsten Ordnung, den Zweischleifendia-
grammen, ziehen.

Kapitel 5 enthélt unsere Untersuchung des Ny = 2 thermischen Ubergangs. N + be-
zeichnet hierbei die Anzahl der Quark-Arten bzw. flavours. Wahrend sowohl fiir den
Ny = 3 chiralen Limes als auch fiir die reine Eichtheorie klar ist, dass der thermische
Ubergang ein echter Phaseniibergang erster Ordnung ist, bleibt die Situation fiir den
thermischen Ubergang im chiralen Limes zweier Quark-Arten unklar. Es gibt zwei mog-
liche Szenarien, die von Pisarski und Wilczek identifiziert wurden. Das erste Szenario
sieht einen Ubergang zweiter Ordnung im chiralen Limes vor. Dieser wiirde in der drei-
dimensionalen O(4)-Universalititsklasse liegen. Die zweite Moglichkeit ist ein Ubergang
erster Ordnung gerade so wie in den zuvor genannten zwei anderen Grenzféllen. Ent-
scheidend ist hier die Stérke der U4(1)-Anomalie, die stark genug durch thermische
Effekte unterdriickt sein muss, damit es zu einem Ubergang erster Ordnung kommen
kann.

Im ersten Teil von Kapitel 5 présentieren wir unsere Simulationsldufe. Dabei handelt
es sich um Léaufe mit verschiedenen Werten der Gitterkopplung 3 bei konstanter Pion-
masse und maximaler chiraler Verdrehung. Durch die Verdnderung von § verdndern wir
tiber den Gitterabstand letztlich die Temperatur 7' = 1/(aN;). Fiir die Analyse relevant
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sind vier Datensétze bei drei verschiedenen Pionmassen, 300 MeV < m, < 500 MeV.
Viel kleinere Massen, womoglich sogar die physikalische Pionmasse, sind mit Fermio-
nen vom Wilson-Typ derzeit nicht zu erreichen. Die einzelnen Datensétze werden von
uns mit A12, B10, B12 und C12 benannt; die Zahl gibt die Anzahl der Gitterpunkte
in Zeitrichtung N, an, so dass bei physikalisch konstanten Bedingungen grofere N, in
den Kontinuumslimes fiithren. Die Pionmassen sind im Einzelnen 316(16) MeV (A12),
398(20) MeV (B10, B12) und 469(24) MeV (C12). Die Ausdehnung des Gitters in die
rdumlichen Richtungen betrégt in allen Féllen L = aN, mit N, = 32 Gitterpunkten.

Fiir die mittlere Masse gibt es zwei Gitterabsténde, so dass sich die Grofe der Dis-
kretisierungseffekte abschétzen lésst. Es zeigt sich, dass diese klein sind im Vergleich zu
den Unsicherheiten, die durch Statistik und Skalensetzung auftreten.

Um den Gitterabstand und die Pionmasse fiir unsere Simulationsldufe zu bestimmen
sowie um den kritischen Hoppingparameter als Bedingung fiir maximalen twist einzu-
stellen, haben wir auf die Daten zuriickgegriffen, die ETMC publiziert hat. Basierend
auf den -Werten von ETMC, g € {3.8,3.9,4.05,4.2}, konnen wir so die fiir uns inte-
ressanten Grofen zuverldssig interpolieren.

Die betrachteten Observablen sind das chirale Kondensat, die Plakette und der Polya-
kov-loop (Wilson-Linie). Letzterer ist in der reinen Eichtheorie der Ordnungsparameter
fiir den Phaseniibergang von confinement zu deconfinement. Von weiterem besonderen
Interesse ist das chirale Kondensat, das im Grenzfall masseloser Quarks den Ordnungs-
parameter des chiralen Phaseniibergangs darstellt.

Die Kategorisierung der verschiedenen Moglichkeiten von Phaseniibergdngen zwei-
ter Ordnung in Universalitidtsklassen erfolgt nach Spinmodellen. Im chiralen Limes der
zwei-flavour-Theorie konnte die dreidimensionale O(4)-Universalitédt vorliegen, wenn die
Anomalie geniigend stark ist. Andererseits konnte es zum Phaseniibergang erster Ord-
nung kommen, der sich zu endlichen Quarkmassen erstrecken wiirde. Dann miisste ein
Endpunkt zweiter Ordnung in der 3d-Ising Universalititsklasse existieren. Da unsere Si-
mulationen deutliches Verhalten eines analytischen Uberganges aufweisen, erwartet man
folglich fiir die Anndherung an den chiralen Limes entweder O(4)- oder Z(2)- (Ising)
Verhalten, wobei der Z(2)-Punkt bei endlicher Pionmasse zu finden wére.

Diese Beobachtung der Universalititsklasse macht sich zu Nutze, dass Skalenverhalten
schon in einem kritischen Bereich um den eigentlichen Ubergangspunkt vorherrschend
ist. Die erste von uns angewandte Extrapolationsmethode basiert auf dem Verhalten
der pseudokritischen Temperatur als Funktion der Pionmasse,

Te(my) =T.(0) + A(mw)2/(55) ,

wobei 8 und ¢ die fiir die Universalitdtsklasse charakteristischen kritischen Exponenten
sind. Ein Fit mit freien Exponenten erweist sich als nicht aussagekriftig. Tatséchlich
sind die Exponenten zu nah bei einander, um die verschiedenen Szenarien zu trennen.
Allerdings finden wir aufgrund der Grofe der extrapolierten Temperatur im Vergleich
zu anderen existierenden Untersuchungen eine leichte Préferenz fiir O(4)-Verhalten.
Zu beachten ist, dass das Quadrat der Pionmasse als Argument die Quarkmasse er-
setzt, die dem eigentlichen symmetriebrechenden duferen Feld entspricht. Die verwen-
dete Beziehung, m2 ~ my, stellt allerdings nur die fithrende Ordnung in der sogenann-
ten chiralen Stérungstheorie dar, weshalb die Giiltigkeit der obigen Formel fiir Massen
my 2 500 MeV nicht erwartet werden kann. Dies begriindet insbesondere unsere Wahl
der oberen Grenze der betrachteten Pionmassen.
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Eine zweite Moglichkeit, Skalenverhalten zu untersuchen, ist die magnetische Zu-
standsgleichung,

() = WO f(a),

mit der Skalenvariablen = = (8 — Bchiral)/ h/®B)  wobei der kritische Exponent von der
Gitterkopplung im Z&ahler zu unterscheiden ist. Die obige Gleichung setzt den Ordnungs-
parameter, das chirale Kondensat, mit einer Skalenfunktion in Verbindung, die fiir O(4)
bekannt ist. Das die Symmetrie explizit brechende &dufsere Feld ist hier wiederum durch
die Quarkmasse gegeben, die aber nicht wie zuvor durch die Pionmasse ersetzt wird.
Insgesamt erlaubt die magnetische Zustandsgleichung die Betrachtung etwas groferer
Temperaturbereiche und ist nicht unmittelbar auf die Bestimmung der pseudokritischen
Temperatur bei gegebener Pionmasse angewiesen.

Wir stellen fest, dass wir die beiden leichteren Massen durch die magnetische Zu-
standsgleichung unter Zuhilfenahme fithrender Skalenverletzungen fiir O(4)-Verhalten
beschreiben konnen. Aufgrund der Ahnlichkeit der Exponenten fiihrt dies aber keines-
wegs zu einem Ausschluss der anderen moglichen Szenarien. Jedoch kénnen wir feststel-
len, dass wir ein selbstkonsistentes Bild mit O(4)-Verhalten im chiralen Limes erhalten.

Einen direkten Zugang, die Stéirke der Anomalie zu untersuchen, bieten sogenann-
te screening-Massen. Diese schirmen Mediumanregungen mit entsprechenden Quanten-
zahlen rdumlich ab. Neben den Massen bietet es sich auch an, das Integral iiber die
Korrelatoren, aus denen die Massen bestimmt werden, zu betrachten, da hier ohne die
Notwendigkeit eines Fits weniger systematische Effekte auftreten kénnen. Tatséchlich
zeigt sich, dass wir auf dieses Vorgehen angewiesen sind, da auf Basis der uns zur Verfii-
gung stehenden Datenmenge die screening-Massen selbst nicht genau genug bestimmt
werden konnen. Wir verwenden die Korrelatoren, die den geladenen flavour-Multiplett-
Teilchen entsprechen. Dies erleichtert die Auswertung, da keine unverbundenen Beitréige
vorkommen, die sehr stark durch numerisches Rauschen beeintréichtigt sind.

Neben der Analyse auf Grundlage der in unseren o.g. Simulationen erzeugten Eich-
feldkonfigurationen betrachten wir auferdem den freien Limes der Theorie. In diesem
Grenzfall lassen sich Diskretisierungs- und Volumeneffekte untersuchen. Zumindest fiir
diese Theorie ohne Wechselwirkungen finden wir, dass Korrekturen durch den Gitter-
abstand die Massen verringern, wihrend Volumeneffekte zu einer Vergoferung fiihren.

Die Aufspaltung der pseudoskalaren und skalaren screening-Observablen ist ein Malfs
fiir die Anomalie, da es sich um Partner unter Transformationen der Ua(1) handelt.
Zum chiralen Limes hin beobachten wir sogar eine anwachsende Stérke der Anomalie,
was wiederum auf das O(4)-Szenario hinweist, ohne dass letztgiiltige Schliisse gezogen
werden konnten, da keine absolute Skala fiir die Anomaliestérke zur Verfligung steht.

In Kapitel 6 diskutieren wir die Erweiterung auf den Fall Ny = 2 +1 + 1, d.h. die
Beriicksichtigung von dynamischen strange und charm Quarks. Dies ist von theoreti-
scher Seite kein Problem, da sich ein massenaufspaltender Term in die tmQCD-Wirkung
integrieren liisst. Gerade das strange Quark hat eine Masse im Bereich der Ubergang-
stemperatur, so dass man generell einen starken Einfluss vermuten kann. Wir betrachten
wiederum den freien Druck, fiir den wir die freie, in diesem Fall allerdings aufgespalte-
ne Dispersionsrelation in Ordnungen des Gitterabstandes entwickeln. Die zusétzlichen
Gitterartefakte durch die Aufspaltung erweisen sich als sehr klein.

Letztlich geben wir mogliche Parameterwerte fiir einen ersten Simulationslauf im
Ny = 241+ 1 Rahmen an. Aufgrund der Erfahrung fiir Ny = 2 und basierend auf
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den Daten, die bereits von ETMC publiziert worden sind, ist die Wahl eines vielverspre-
chenden Bereichs mdglich.

Zusammenfassung und Ausblick geben wir in Kapitel 7. Diese Dissertation stellt die
erste Anwendung von gitterregularisierten Fermionen mit chiral verdrehtem Massen-
term auf physikalische Fragestellungen im Rahmen der thermischen QCD dar. Unsere
Untersuchungen liefern erste Ergebnisse, die untermauern, dass die tmQCD einen viel-
versprechenden Ansatz fiir diese Art physikalischer Probleme zur Verfiigung stellt. Dar-
iiber hinaus erlauben die hier vorgestellten Resultate die Vertiefung und Erweiterung
der bisherigen Studien in zukiinftigen Projekten.

Angefiihrt sind noch einige Anhénge, in denen wir zusétzliche Informationen zur ver-
wendeten Notation (A) und Details fiir Rechnungen im Grenzfall der freien Theorie (C)
sowie Simulationsdetails (B, D) sammeln.
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1. Introduction

Since the rapid development of quantum field theories in the 1960’s and 1970’s and the
discovery of asymptotic freedom in 1973 [1, 2] quantum chromodynamics (QCD) has
been established as the theory of strong interaction. The main source of confidence
for the validity of QCD is the high energy regime in which collider experiments can
be compared to perturbative calculations. The outcome of these experiments can be
described to very high accuracy by QCD together with the electroweak theory forming
the so-called Standard Model of particle physics; for a collection of those results see
e.g. [3]

For lower energies perturbation theory is not applicable due to the increasing cou-
pling strength. This prohibits, for instance, perturbative calculations of hadron masses.
The coupling as a function of temperature is already too large for temperature scales
that are relevant to studies of thermal QCD systems. Moreover, perturbation theory
at finite temperature beyond the leading orders is in general obstructed by infrared
divergences. This phenomenon is known as the Linde problem [4]. Thermodynamics
of strongly interacting matter is experimentally studied at the colliders RHIC ! and
LHC 2. The heavy ion collisions at those colliders are meant to produce a very hot state
of matter in which quarks and gluons are at least partially deconfined, the so-called
quark-gluon plasma (QGP). Of course, since the evolution of the universe is a history
of decreasing temperature, at some early stage the QCD transition from a QGP-like
state to the hadronic phase as we observe it in today’s universe must have occurred
and thus knowledge about that transition is important for cosmology. A second family
of experiments, especially FAIR at GSI 3, addresses matter with higher density. This
regime, too, is not accessible for perturbation theory. Model studies suggest a phase
structure similar to the one depicted in figure 1.1, which is based on the review in [5].

Lattice gauge theory was introduced in the 1970s and early 1980s as a tool that allows
to investigate QCD non-perturbatively by numerical means [6, 7, 8, 9]. This applies
to both zero and non-vanishing temperature but is restricted to small baryon density
or equivalently small chemical potential. The latter is the more appropriate quantity
in terms of the grand canonical partition function usually used in lattice QCD. The
restriction is due to the so far unsolved sign-problem, see e.g. [10]. This thesis focuses
on the first application of a particular formulation of lattice fermions with a so-called
chirally twisted mass term to simulations addressing questions of finite temperature
QCD. Twisted mass fermions overcome some problems of ordinary (unimproved) Wilson
fermions and offer a theoretically sound continuum limit. We demonstrate that twisted
mass fermions are well applicable to study thermal problems.

The physical object of interest for this work is the thermal transition itself. The
transition between the deconfined and confined phase is, as explained above, under in-

'See the RHIC website, www.bnl.gov/rhic .
2See the LHC website, 1hc.web.cern.ch/lhc .
3See the FAIR portrait on the GSI homepage, http://www.gsi.de/portrait/fair.html .
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m

Figure 1.1.: Conjectured phase diagram of QCD. The axis of vanishing chemical potential is
accessible by non-perturbative lattice simulations. Most features of the phase
structure are expected from model studies. This visualisation is based on the
review by Fukushima and Hatsuda [5].

vestigation in modern collider experiments. Its apparent entanglement with chiral sym-
metry breaking poses further questions to theoretical research. The thermal transition
has been studied in lattice simulations utilising different types of fermion discretisations,
the most detailed studies relying on the staggered fermion formulation by Kogut and
Susskind [11] as well as improved versions thereof. Exhaustive reviews can be found in
the proceedings of the annual Lattice conferences, e.g. [12|. Various attempts to go to
finite chemical potential based on different techniques have been made and are currently
being pursued [10, 13]. Whereas in principle those methods are applicable to twisted
mass fermions as well as to any other fermion discretisation, this thesis is only concerned
with vanishing chemical potential pioneering the use of twisted mass fermions at finite
temperature.

Particularly important is to know the nature of the phase transition depending on
the quark mass. That is because computational cost varies with a negative exponent
for the quark mass and for a long time the point of physical quark masses has only been
accessible by extrapolations [14]. For Wilson type fermions physical quark masses are
still beyond reach for practical purposes whereas staggered fermions are a lot cheaper in
terms of computing time. However, the computational advantage of staggered fermions
comes with an on-going dispute about their validity [15, 16].

The current understanding of the nature of the phase transition in the plane spanned
by the mass of up and down quarks m,; — taken to be degenerate — and the strange
quark mass mg is sketched in figure 1.2 in the popular way. It has been demonstrated
that the transition at the physical point is really an analytical crossover [17, 18| that
takes place in a temperature interval 7' ~ 150 — 200 MeV [19, 20, 21]. On the other
hand, the temperature of the first order transition for infinite quark masses, i.e. in pure
SU(3) gauge theory, is about 280 MeV [22]. We give more details with focus on the
two-flavour limit later when discussing our results in chapter 5.

Twisted mass fermions have been used successfully by the European Twisted Mass
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Figure 1.2.: The nature of the phase transition in the m,q — ms plane as it is often shown
in reviews, see e.g. [12]. The upper right corner corresponds to SU(3) pure
gauge theory with a first order deconfinement transition. The massless limit in
the lower left corner exhibits the first order transition due to chiral symmetry
breaking. The situation for the two flavour chiral limit, i.e. the upper left corner,
is not completely clear. One possibility is shown in the plot with the second order
transition of the 3d O(4) universality class that extends down to some tricritical
strange quark mass. But also a first order transition with a Z(2) boundary as in
the two previously mentioned cases is not ruled out.

Collaboration (ETMC) to calculate vacuum properties of QCD such as hadron masses or
decay constants [23, 24]. Application of these fermions to finite temperature systems has
been pursued by the twisted mass finite temperature (tmfT) collaboration [25, 26, 27,
28, 29, 30] as part of which the work for this thesis has predominantly been performed.
The properties of twisted mass fermions at finite temperature and the physical results
obtained and presented here can serve for further research relying on this particular
type of fermions.

This thesis is structured as follows. The next chapter contains a presentation of Quan-
tum Chromodynamics as a part of the Standard Model. This includes the continuum
action, chiral symmetries and the treatment in thermal field theory. We also give a
short overview about the relevant heavy ion collision experiments.

Chapter 3 is used to introduce the lattice discretisation of fermions and in particular
Wilson type fermions with twisted mass term. The following chapter 4 continues the dis-
cussion of twisted mass QCD by presenting our studies of the non-trivial phase structure
in bare parameter space [29] and of the perturbative properties of improvement [31].

Chapter 5 is devoted to simulations with two flavours of mass degenerate quarks. For
this setup the nature of the transition in the chiral limit is still an open question that
we discuss in the light of our results. We assess the potential of possible approaches to
solve that question, viz. extrapolations of the pseudo-critical temperature as a function
of pion mass and comparison of the chiral condensate to universal scaling. Moreover,
we investigate the splitting in the spectrum of screening masses that gives indirect
information on the nature of the transition by the strength of the axial anomaly. We
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spend part of the chapter to discuss possible systematic errors in the determination of
screening masses by looking at the infinite temperature limit.

In a short chapter 6, we consider the extension of twisted mass QCD to strange and
charm quarks in the so-called Ny = 2+1+1 setup. Although so far no numerical simu-
lations are available, we present some thoughts on possible strategies and the expected
size of cutoff effects. Finally, conclusions are drawn and perspectives for future research
are given in chapter 7.



2. Quantum Chromodynamics in the
Continuum

This chapter serves to present Quantum Chromodynamics (QCD) as a quantum field
theory in its continuum formulation. We begin in the following section by introducing
the action of QCD, being part of the Standard Model. The crucial concept of chiral
symmetry is then discussed in section 2.2. Section 2.3 contains the treatment of ther-
mal QCD systems and is used to give a short overview about the heavy ion collider
experiments complementing the theoretical study of hot nuclear matter.

For the basics of quantum field theory and the Standard Model, we refer to the
textbook by Peskin and Schroeder [32], additional inspiration has been taken from [33].
Our presentation of thermal field theory is based on Kapusta’s book [34].

2.1. QCD and the Standard Model

The Standard Model of elementary particle physics combines the strong, weak and
electromagnetic interactions into the common framework of quantum field theory. The
fourth fundamental interaction, gravity, stands apart because a comparable quantisation
has not been accomplished up to the present.

The key concept that renders quantum field theory interacting is the principle of
local gauge invariance. The gauge groups are characteristic for the particular type of
interaction, i.e. SU(3) for the strong interaction and SU,,(2) x Uy (1) for the electroweak
sector. The latter symmetry group is broken to the electromagnetic Uey,(1) allowing
the W* and Z bosons to be massive. It is hoped that the outcome of the current
LHC experiments will shed light on the mechanism of this symmetry breaking, which
can be described by introducing the so-far unobserved Higgs particle into the theory,
cf. e.g. [35]. In the following, we concentrate on QCD which this thesis is concerned
with.

An early stage in the development of QCD as theory of the strong interaction was
the identification of quarks as constituents of hadronic matter by Gell-Mann [36] and
Zweig [37] motivated by the classification of hadron multiplets that are at least ap-
proximately mass degenerate. The dynamical description of strong interaction is then
obtained in terms of a Yang-Mills theory [38] with a gauge group SU(N,) for three so-
called colour degrees of freedom, N, = 3. Although Yang-Mills theories had been known
since the 1950s, their true relevance only became clear due to the discovery of asymp-
totic freedom by Politzer [1], Gross and Wilczek [2]. Asymptotic freedom describes a
decreasing interaction strength for large momentum transfer, i. e. on small length scales.
Accordingly, interactions become stronger and stronger for large distances. This prop-
erty of the non-Abelian Yang-Mills theory allows for confinement, i.e. the experimental
fact that quarks are never observed as free particles.
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2.1.1. Action of QCD

We begin the discussion of QCD by giving its action functional,

S A = [dn | S 04(e) (97D — mg) (o) = @) | L (21)
f

In more detail, we can identify the integrand to consist of fermionic and pure gauge
(Yang-Mills) Lagrangian densities,

Lrp =Y ¥sx) (" Dy — mys) ps(), (2.2a)
7
Lya = —iFﬁy(x)F“’“”(x) . (2.2b)

Concentrating on the fermionic part first, we see that the quarks as elementary fermions
are expressed by the continuous spinor fields v ¢(x), one for each quark flavour f. The
Dirac y-matrices act in spinor space and have to fulfil

{Vu Wt =29 , (2.3)

with the Minkowski metric g,,,. Note that the right hand side is really proportional
to the unit matrix in spinor space on which also the Dirac matrices act. However, we
follow the common convention and usually suppress the explicit appearance of such unit
matrices in our formulae.

Interactions are mediated by the gluons which are described by means of the gauge
fields Af(z), a=1,... ,N2 — 1. The coupling appears in terms of the covariant deriva-
tive,

D, =0, —igA;T". (2.4)
The generators of SU(N.), T*, form a Lie algebra with the proper commutation rela-
tions,

[T, T = ifebere . (2.5)

The second part of the QCD action — corresponding to the Yang-Mills Lagrangian

density given in equation (2.2b) — accounts for the pure gauge dynamics. The field
strength F}j, can be defined by the covariant derivative,

[Dy, D] = —igFe,T* . (2.6)

Since the gauge group is non-Abelian, the Yang-Mills action contains three- and four-
gluon self-interactions. This is the essential difference between the Abelian Quantum
Electrodynamics and the non-Abelian QCD.

The spinor fields transform in the fundamental representation of colour SU(3). The
gauge fields, A7, ensure local gauge invariance through the covariant derivative and have
to transform themselves in the adjoint representation of SU(3). Correspondingly, the
infinitesimal gauge transformations read

Y(z) = (1 +ia®(x)T)Y(x) , (2.7a)

Al(z) — Aj(z) + iauoﬂ(x) + f“bCAZ(x)aZ(x) , (2.7b)
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corresponding to a global transformation matrix exp (ia®(z)T%) € SU(3).

Once the action is given, the expectation value for some primary observable, K, can
be expressed as a path integral, i.e. as an integral that is defined on the space of all
possible field configurations,

(1) = 5 [DE.0.4 K50, A)eSF0A, (28)

with the normalisation given by

2= [0 4, T, 2.9)

For later purposes it is useful to note that the fermionic part of the action can be
rewritten by means of a fermion kernel, the Dirac operator, Mg,

SefG.0 A = [t | Y5(@) (9D~ mg) vy@) | = (0 MelAuJu) . (210)
f

Since the fermionic path integral is quadratic in the fields, it can be evaluated explicitly,
rendering

/ D[, y] el MrlAul) = Det Mp[A,] . (2.11)

2.1.2. Running Coupling

It is possible to perform perturbative QCD calculations for a small coupling strength
as = g% /(4n). However, one has to take into account the running of the coupling which
is governed by the renormalisation group equation with respect to some renormalisation
scale up,

d
2 s = B(as 2.12
MRdM%a Blas) , (2.12)

where we use the notation as in the review on QCD by the Particle Data Group [39]. In
this context, asymptotic freedom corresponds to a negative S-function. If Q2 denotes the
scale of momentum transfer in some process of interest, then a(u% ~ Q*) determines
the effective interaction strength and the negative [-function leads to a stable fixed
point for Q% — oo,
as(Q? — 00) =0. (2.13)

In case of QCD with N. = 3 and Ny fermions, the S-function to leading order,

2

S

Blas) = —1O;7T (11N, — 2N) | (2.14)

ensures asymptotic freedom as long as Ny < 17. Solving equation (2.12) explicitly to

leading order,
1
g = , (2.15)
o (11N. — 2Ny) In (ug/A)

the coupling approaches its asymptotic value logarithmically for large scales. On small
scales, the divergence for pr/A — 1 indicates that the leading order approximation
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becomes insufficient. The integration constant A introduces a typical scale into the
theory, for QCD Aqcp ~ 200MeV (see e. g. [32]).

In particular, as(M%) ~ 0.12 with a Z boson mass My ~ 91 GeV [39]. This already
indicates that calculations of hadron masses and related quantities on much lower scales
fall in the non-perturbative regime of QCD with couplings too large for an expansion in
as to be valid and thus necessitating a non-perturbative approach as we pursue in this
thesis by means of lattice QCD.

2.2. Chiral Symmetry

In this section, we discuss the chiral symmetries of QCD. The notion of chiral symmetry
will be important for the later analyses in chapter 5. Our compilation concentrates
on well established properties of QCD, an extensive review that goes far beyond the
scope of this introduction was given by Gasser and Leutwyler [40]. Additionally, we
continue to use the book by Peskin and Schroeder [32] as the standard reference. For
the following, we consider the spinor fields ¢ to be vectors in flavour space with Ny = 2
or 3 components, i.e. we concentrate on the light quarks — up, down and strange —
relevant in this context.

Introducing left and right handed projection operators,
P =

(I1—7) and Pp=5(1+7), (2.16)

N | —
N | —

we can rewrite the fermionic part of the QCD action from equation (2.1) for v, = Pry
and ¥ r = PR, obtaining a separation of ¥, and @pg for massless fermions,

Sr(v, ¥, Au] = /d49€ (¢L(@)iy" Dptbr (@) + ()i Duor(w)) - (2.17)

The massless action possesses a global SUL(Ny) x SUr(Ny) x Ur(1) x Ur(1) symmetry.
However, this symmetry is not completely realised by the QCD vacuum as the corre-
sponding order parameter, the chiral condensate <Ew>, does not vanish. This breaks
the symmetry for separate left and right handed transformations of the fermion fields.
For the following discussion it is thus advantageous to identify the relevant subgroups,

SUL(Nf)xSUR(N¢)xUrL(Nf)xUg(1) = SUA(Nf)xSUy (Nf)xUa(1)xUy (1) , (2.18)

where <@1/)> # 0 induces spontaneous breaking of the subgroup SU4(Nyf). The corre-
sponding symmetry breaking pattern reads

SUL(Nf) X SUR(Nf) — SUv(Nf) . (2.19)

To discuss the symmetries and in particular the special situation of Uy (1) in more
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detail, we begin by stating the related symmetry transformations.

SUA(Ny) : {% : %a;zfjif , (2.20a)
SUV(Ny) - {% j %ia:;?ﬂ , (2.20b)
Ua(l) : {% : %a;ljf , (2.20c)
Uy (1) : {% : %iaei/’ia . (2.20d)

The matrices 7/ generate SU(Ny).
Explicit breaking of chiral symmetry due to finite quark masses can be investigated
by means of the chiral currents,

g =y, (2.21a)
i = vy sy (2.21b)
gt =y, (2.21c)
I = Pyt (2.21d)
From the classical Dirac equation,
107" = My, (2.22)

where we now allow the mass, M, to be a matrix in flavour space, we have

Oujty =0, (2.23a)
0,3" = 2 My (2.23h)
gty =i [M, 79, (2.23c)
iy =i {M, 7} v5¢ . (2.23d)

As can be seen from (2.23a), Uy (1) is always conserved which corresponds to baryon
number conservation. Although (2.23b) indicates U4 (1) symmetry for vanishing quark
masses, this is only true on the classical level. The interacting theory explicitly breaks
U4 (1) by quantum corrections even in the chiral limit,

_oNy

e FagFag (2.24)

Oufly =
This is known as the Adler-Bell-Jackiw anomaly of QCD. This anomaly is expected to
be restored at high temperatures [41] with possible implications on the Ny = 2 chiral
transition that are discussed in chapter 5.

Such an anomaly does not exist for the flavour-multiplet axial current (2.23d) since
the corresponding calculation is proportional to Tr 7* = 0. In fact, SU4(NNy) is sponta-
neously broken by the non-vanishing chiral condensate. The explicit symmetry breaking
for SUA(Ny) sets in as soon as the quark mass is non-zero. This is different from the
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situation for the vector symmetry and its current, (2.23c), which is conserved even for
non-vanishing quark masses as long as the quark mass matrix is proportional to 1, i.e.
as long as all considered flavours are mass degenerate.

In nature neither condition is realised. We have non-zero, non-degenerate quark
masses, vViz.

my ~ (1.7-3.3) MeV | (2.25a)
mg ~ (4.1-5.8) MeV | (2.25b)
my ~ (80-130) MeV (2.25¢)

~ (22-30) - “u T Td ;r T (2.25d)

where we quote the numbers as given by the Particle Data Group [39] in the MS scheme
at a renormalisation scale of 2GeV. One can still consider the symmetries to be ap-
proximately realised with the masses introducing relatively small corrections. This is in
particular true for Ny = 2 with m,, mq, mq — m, < Aqcp. From this point of view,
the three pions are the almost massless pseudo-Goldstone bosons for the spontaneously
broken SU4(2) symmetry with

m2 = B(my, +myq) . (2.26)
To a lesser accuracy this also holds for SU4(3) augmenting the set of pseudo-Goldstone
bosons by the pseudo-scalar mesons with strange valence quarks, Ko, Kg, KT, 1. Ac-
cordingly, we can expect the kaon mass to be determined via

m = Blmy +my) ; (2.27)
also cf. the discussion on chiral symmetry breaking in [42]. Note that in later parts of
this thesis we will always consider the light up and down quarks to be mass degenerate
so that it is not necessary to further distinguish their masses in the above formulae.

The approximate SUy (2) and SUy (3) symmetries allow to classify the hadrons ac-
cording to multiplets in the sense of Gell-Mann and Ne’eman. We show as an ex-
ample the multiplet of pseudo-Goldstone bosons in figure 2.1. The isospin triplet of
pions for SUy(2) is realised to a good accuracy, with m + = 139.57018(35) MeV and
myo = 134.9766(6) MeV, whereas the difference to the other particles in the enlarged
SUy (3) multiplet, with masses of the order of 500 MeV, is much larger. The experimen-
tal values have been taken from [39].

Finally, we mention that equations (2.26) and (2.27) can be understood in the context
of a systematic approach. This is achieved by means of a low energy effective theory,
viz. chiral perturbation theory (yPT). For an extensive review, also including lattice
regularisation, we refer to the lectures by Sharpe [43]. The effective theory is built
according to the chiral symmetry of QCD utilising the fields ¥(x) € SU(Ny) that
transform as

2 = UpS(2)U), (2.28)

where Ur,, Ug € SU(Ny). Those fields are related to the (pseudo-)Goldstone particles,

Y(x) = exp 2in*(z)T*/f) , (2.29)

10
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Figure 2.1.: Pseudo-scalar meson multiplet. The horizontal axis marks the third component
of SU(2) isospin, I3, for the (u,d) quark doublet. Along the vertical axis, the
strangeness S of the particles increases. The particular visualisation chosen here
is commonly found in textbooks, see e.g. figure 4.14a in [3].

following the notation in [43] for a field with vacuum expectation value (¥) = 1. The
constant f balances dimensions and can eventually be associated with the pion decay
constant. To construct the Lagrangian density that determines the low energy effective
theory, one has now to consider all terms that are allowed by the symmetries of QCD
to a given order in the power counting for derivatives and masses, 9> ~ M. To leading
order one obtains
f? n_ 1 f syt

Lo=1m (,20,51) - Lo (x=!+ ) | (2.30)
with x = 2ByM. Expanding the above Lagrangian density for the Goldstone fields,
equation (2.29), leads to the relations between quark and Goldstone masses, i.e. the
previously mentioned equations (2.26) and (2.27).

We rely on results obtained in xPT several times later on. This includes in particular
the discussion of the structure of bare parameter phase space for twisted mass fermions
in section 4.1 and the crucial determination of the pion mass from the simulation pa-
rameters as explained in section 5.3.1.

2.3. Thermal Systems

Section 2.3.1 contains a summary of thermal field theory for QCD, based on [34], as far
as we need it for this thesis. Connections to experiment are then drawn in section 2.3.2.

2.3.1. Thermal Field Theory

To describe thermal systems in equilibrium, we start with the grand-canonical partition
function,
Z = Tr e BH=1N;) | (2.31)

where pi; are the chemical potentials for conserved particle numbers n; = (N;). How-
ever, for numerical simulations the inclusion of a non-zero chemical potential is a very
intricate task due to the so-called sign problem of hybrid Monte-Carlo simulations. A

11
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number of possible approaches to include at least small values of 1/T for the quark- or
baryon-chemical potential have been pursued, for reviews see [10, 13]. Since this thesis
concentrates on the first application of twisted mass fermions to thermodynamics of
QCD, we will from now on work with zero chemical potential.

It is necessary to connect equation (2.31) to quantum field theories and in particular
to QCD. This relation is known from textbooks [34]. The partition function is then
written as a path integral over all degrees of freedom,

Z = /D[w,a, Ay e SelP Al (2.32)

The time direction which is meaningless to systems in equilibrium is traded for an
additional Euclidean dimension of finite extent, 8 = 1/T', defining the temperature. The
Euclidean action Sg can be obtained from its Minkowski counterpart in equation (2.1)
by means of a Wick rotation from real to imaginary time, i.e. 7 = —it, where we identify
the Euclidean time 7 to be the fourth component of a four dimensional Euclidean vector
xg = (r1,2,23,24), see appendix A.2. Finally, the Euclidean action reads

1T

Se= [ [ar Efij)(quWmf)w(x)+§ng<x>F5y<x> 3
0

The finite extent in time direction leads to discrete energy levels determined by the
so-called Matsubara frequencies,

o = { 2mnT (bosons)  nez. (2.34)

(2n+ 1)nT (fermions)

Correspondingly, integrals in time direction are turned into discrete Matsubara sums.
The difference between bosons and fermions is introduced by the boundary conditions
for the fields in temporal direction. Whereas bosonic fields are periodic, fermions obey
antiperiodic boundary conditions, i.e.

Wz +1/Teéy) = —(z) . (2.35)

This difference is ultimately related to the different statistics of the two types of particles
leading to Fermi-Dirac and Bose-Einstein occupation numbers respectively.

Given the path integral representation of the grand canonical partition function, the
thermal expectation value for a primary observable, K, is obtained as

(1) = 5 [P0, A4,] K[p. . 4,)e 55w, (2.36)

Moreover, basic thermodynamic quantities can be calculated from the standard rela-
tions. For instance, the pressure of a homogeneous system is related to the partition
function by

T
P=7 InZ . (2.37)

Note however, that in particular for numerical calculations in lattice QCD the overall
normalisation of the partition function is not known. This poses no problem to expecta-
tion values as in equation (2.36). But to calculate the pressure or similar thermodynamic

12
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Figure 2.2.: Time evolution of relativistic heavy ion collisions (from [50]). The heavy nuclei can
collide with different centrality. Shown is the evolution of the collision region. The
first two stages refer to the early out-of-equilibrium situation before the Quark-
Gluon Plasma is formed. With decreasing temperature the QGP undergoes a
transition or crossover to the hadronic phase which finally freezes out.

quantities, a detour via derivatives and subsequent integration has to be followed since
those derivatives can then be expressed in terms of standard expectation values which
are accessible by the numerical simulations.

For the perturbative treatment of thermal systems, the relevant scale for the running
coupling is set by the temperature [34, 44|, ug ~ T. According to equation (2.15) the
coupling becomes temperature dependent, vanishing in the infinite temperature limit.
This is the reason to expect a free gas of quarks and gluons for very high temperatures.
However, close to the thermal transition the coupling is still large. Perturbative be-
haviour is not expected before temperatures many times larger than the transition tem-
perature. Moreover, due to the Linde problem [4], a straightforward expansion into small
couplings is in general not possible to arbitrary orders. Therefore, perturbation theory
at finite temperature needs more sophisticated techniques to lead to results away from
asymptotically large temperatures such as dimensional reduction or hard thermal loop
calculations. For recent perturbative calculations of the pressure, see e.g. [45, 46, 47].

2.3.2. Heavy lon Collisions and the Quark-Gluon-Plasma

Heavy ion collisions studied at the large colliders, RHIC and LHC, provide experimental
insight — among others — into the physics accessible to lattice QCD simulations at
vanishing chemical potential. Here we collect some information on heavy ion collisions in
order to sketch the connection of these experiments and the related physics to this thesis.
We base our collection mainly on the reviews by Braun-Munzinger and Stachel [48] as
well as by Braun-Munzinger and Wambach [49].

In collisions of heavy ions, such as gold or lead, the overlapping parts of the nuclei
create some intermediate partonic matter of high energy density far from equilibrium.
The physics of this stage is not very well understood but there are models such as the
colour glass condensate that are capable to provide initial conditions for the subsequent
evolution (see e.g. [50]). For an illustration, see figure 2.2. It is supposed that shortly
after the collision this matter reaches the (locally) equilibrated state of a quark-gluon
plasma (QGP), i.e. a thermal system with quarks and gluons as relevant degrees of
freedom. Note that this does not imply that the system can be described by a weakly
coupled theory. In fact, the opposite is true and in the QGP just above the transition
non-perturbative effects must not be neglected. Lattice simulations — which are at least

13
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in their standard version restricted to thermal equilibrium — are capable to describe
properties of this stage of evolution. The QGP formed in the collision is rapidly ex-
panding and the description by hydrodynamic evolution has been successful, assuming
an ideal fluid, i.e. vanishing viscosity.

The most prominent input of lattice QCD to the study of QGP so far has been the
equation of state that is needed for a complete hydrodynamical treatment. The diffi-
culties that can arise for mapping lattice results to the experiment are illustrated by
another quantity, the transition temperature 7,.. Lattice simulations allow to calculate
this temperature associated with the thermal transition or crossover. The latter case
is already ambiguous in itself since a crossover temperature necessarily dependends on
the chosen observable. In any case, experiments actually measure something different,
the so-called freeze-out temperature Tg,. The freeze-out temperature can be deter-
mined from particle multiplicities by applying a statistical model that assumes chemical
equilibrium has been reached after entering the hadronic phase [51]. Due to the close
agreement between the range of lattice values for 7. and experimental results on T¢y, at
least for small chemical potential where lattice QCD is most reliable, it has hence been
argued that T, 2 T, should indeed be expected for general reasons [52].

Since neither lattice QCD nor perturbative techniques can be used to investigate the
phase transition of QCD for smaller temperatures but larger chemical potential, this
regime can only be studied from models that have common symmetries with QCD or
from some kind of generalisation such as the limit of large N.. For a collection of results,
we refer to the review by Fukushima and Hatsuda [5]. Whereas for vanishing chemical
potential the thermal transition seems to combine the deconfinement of quarks and the
restoration of chiral symmetry, there could be separate transitions at larger values of
the chemical potential, possibly exhibiting different orders of phase transitions. For
instance, based on calculations at large V. it has been speculated that the parting of
the two transitions introduces a new, chirally restored but still confined phase into the
phase diagram of QCD [53, 54].

14



3. Quantum Chromodynamics on the
Lattice

In this chapter we collect the necessary pieces to describe thermal systems of QCD by
means of numerical simulations in the lattice framework. The introduction of lattice
gauge theory dates back to the 1970s. The milestone work is credited to Wilson [6]. The
application of numerical Monte-Carlo methods started some years later with the work
of Creutz et al. [7, 8, 9]. Today a number of textbooks on the topic are available [55,
56, 57, 58]. For a presentation of lattice QCD at finite temperature, see [59].

Concerning the quark content of our study, we restrict ourselves to the up and down
quarks as dynamical ingredients of our simulations. Eventually, dynamical strange
as well as charm quarks should also be taken into account. We discuss the possible
extension to four quark flavours in twisted mass QCD in chapter 6. In general, one
can state that including quarks is numerically very expensive. Moreover, if one tried
to consider all quark flavours, one would run into trouble to accommodate the large
range of scales from a few MeV for the up and down quarks up to m; ~ 170 GeV on
the lattice. Therefore all lattice simulations so far are restricted to a relevant subset
of quark flavours, usually up, down and possibly strange assuming heavier flavours to
be dynamically irrelevant. Furthermore, for our two flavour case we adopt the general
approach to take the quark masses to be degenerate m, = mq =: myq4. This assumption
is justified since the scale of mass splitting is much smaller than the one set by the
temperature.

To illustrate the potential of lattice simulations, one can for instance refer to the
agreement between lattice results and experimental values for the hadron spectrum in
the light quark sector, see e.g. [61] for a recent review. As an example, we show the
result by the Budapest-Marseille-Wuppertal collaboration in figure 3.1.
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0

Figure 3.1.: Hadron spectrum determined by the BMW collaboration. The blue points have
been used to set the scale, the red ones are lattice predictions. The gray entries
are the experimentally determined masses. (from [60])
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3. Quantum Chromodynamics on the Lattice
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Figure 3.2.: Sketch of the lattice framework. The continuous Euclidean spacetime is replaced
by a hypercubic lattice (here represented in two dimensions). The fermion fields
¥(x) live on the lattice sites whereas the link variables U, (z) connect one site to
another. The closed loop of links represents a plaquette.

We introduce the lattice discretisation for the pure gauge theory in the following sec-
tion. The three sections that follow serve to discuss lattice fermions: Section 3.2 is
devoted to general aspects of Wilson type fermions before we give a detailed overview
on twisted mass fermions in section 3.3. In section 3.4 we include a short summary of
alternative fermion discretisations. Afterwards, section 3.5 is used to explain the realisa-
tion of non-perturbative calculations in lattice QCD by means of computer simulations
as well as the statistical analysis of the resulting numerical data.

3.1. Lattice Gauge Theory

To put QCD into the lattice framework, the rotation to Euclidean spacetime is manda-
tory even for calculating vacuum expectation values. Then the four-dimensional space-
time R* with Euclidean metric can be replaced by a hypercubic lattice I' = aZ* with
lattice spacing a as sketched in figure 3.2. Here we always consider a lattice spacing
which is the same for all four directions.

The lattice works as a momentum cutoff 1/a that regulates the theory. The relation
between coupling and lattice spacing is governed by the renormalisation group equation

dg
() (31)
where (g) is the QCD S-function. Since QCD is asymptotically free, we have thus a
fixed point g*(a = 0) = 0 that determines the continuum limit of the lattice theory.
Since the cutoff imposes a minimal distance, local gauge invariance can no longer be
an infinitesimal concept as in equation (2.4). Instead a finite parallel transport between
neighbouring lattice sites x and = + & has to be used (where [ denotes the vector
of minimal length a along the p-th direction). The corresponding link variables are

members of the fundamental representation of SU(N,) and are connected to the gauge
fields A, via

Uy (z) = 9T Au@) (3.2)

The simplest gauge invariant quantity that can be built out of the link variables is the
trace of the plaquette. The plaquette itself is defined to be the product of link variables
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3.1. Lattice Gauge Theory

along one square of lattice sites, i.e.
Uy () = Up(@)U, (z + @)U (x + 0)U (@) - (3-3)

Therefore U, can be used to construct the Wilson gauge action,

Se = Ba* Z Z <1 — NiReTr UW(x)> : (3.4)

r pu<v

It is important to note that the path integral calculations for the determination of
expectation values, such as equation (2.8) for zero temperature or equation (2.36) for
thermal systems, have now to be performed using the group measure DU with the link
variables instead of the continuum form DA,,.

Expanding all links in powers of the lattice spacing yields the continuum Yang-Mills
action as leading order,

1 a a
Sa = B Fla, + O(a?) , (3.5)

if the lattice gauge coupling is set to
2N,

B = 7

(3.6)

To avoid confusion between the g-function, inverse temperature and the lattice coupling
we use (3 only in its meaning of the gauge coupling for the rest of this work.
In thermal systems, the temporal extent, alV,, determines the temperature,

y (3.7)

which ultimately defines a relation between lattice spacing and number of sites in tem-
poral direction for a fixed physical situation. This is important as we adopt the common
point of view for finite temperature lattice QCD that the lattice spacing is set by N,
whereas a change in a, induced by a variation of the lattice coupling 8, amounts to a
change of temperature. The continuum limit is then reached as 1/N, — 0 for fixed
temperature.

As for any other type of regularisation, it is possible though cumbersome to perform
perturbative calculations with the lattice regulator. The expansion is performed for
small couplings, i.e. around the continuum limit so that the relevant degrees of freedom
are once again the gauge fields A,. However, the crude momentum cutoff breaks Lorentz
symmetry and is by no means intended to provide a simple scheme for perturbative cal-
culations. It especially causes momenta to enter embedded into trigonometric functions
so that one has to identify lattice momenta,

p = 2sin (%) and P = sin (ap) (3.8)

which can complicate calculations severely. Note that we use dimensionless lattice mo-
menta which we find more convenient for later calculations. Alternatively, they are often
dressed by an extra factor a~! to have the mass dimension of continuum momentum.
Besides the more complicated momentum dependence, the expansion of the link vari-
ables leads to vertices with any number of gluon lines. Finally, the need to resubstitute
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3. Quantum Chromodynamics on the Lattice

the measure DU by DA, introduces a non-trivial Jacobian that also adds new vertices.
An extensive review on perturbation theory on the lattice is available from Capitani [62]
where it is also clarified that perturbative lattice calculations are needed for at least two
reasons. The first one is the assessment of lattice artefacts which can be worked out
explicitly in perturbative calculations, see also section 4.2. The second one is the need
to obtain matching coefficients between continuum renormalisations schemes such as
MS and the lattice scheme.

We now discuss the possibility for improvement of the continuum approach. If lattice
artefacts are known exactly, one can try to remove them a priori. The gauge action,
equation (3.4), can be improved by adding higher dimension operators in the spirit of a
Symanzik expansion [63], for details see [62]. The simplest terms that can be added are
constructed from links along a rectangle, i.e. a closed planar path of length six. Indeed
at tree-level these are the only relevant leading order operators to be added and the
corresponding action can be expressed as

Se=pa"> ) <1 — NicReTr UW(:E)> ey <1 — NicReTr U;VX?) . (3.9)

T u<v nF Y

One has to set ¢g = 1 — 8¢ in order to have the correct continuum limit. At tree-level
all O(a?) terms are removed if ¢; = —1/12. The corresponding action is called tree-
level Symanzik improved (t1Sym) [64, 65]. Relying on other arguments than tree-level
improvement different choices for ¢; have been considered. Based on renormalisation
group arguments, the Iwasaki action is obtained for ¢; = —0.331 [66, 67].

3.2. Wilson Fermions

Much more problematic than the treatment of the pure gauge sector is the discretisation
of fermions. The core of the problem is sketched straightforwardly if one attempts a
naive discretised version of the continuum derivative, cf. [62] for the following discussion,

1 R N
Vip(z) = o (@ + ) = ¢(z = ) = (@) + O(a®) . (3.10)
The above relation provides the correct continuum limit but leads to a massless propa-
gator in momentum space,

. -1
1
== i 11
S (azu Wmapu> , (3.11)

which has zeroes at the origin and in the edges of the first Brillouin zone which cor-
respond to 24 fermions instead of the one originally intended. These fermions come in
pairs of opposite chirality which is due to the fact that the Dirac equation, unlike those
for scalar or vector particles, is of first order. Therefore in each direction the resulting
first order zero of the inverse propagator needs to be accompanied by another zero with
opposite slope.

The theoretical basis for understanding this so-called doubler problem is given by the
no-go theorem by Nielsen and Ninomiya [68, 69] which can be summarised such that it
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3.2. Wilson Fermions

is impossible to find a lattice version of the Dirac matrix that is at the same time local,
has the correct continuum limit, is free of doublers and respects chiral symmetry. The
last condition can be expressed by the equation

{D,v%}=0. (3.12)

Therefore, in order to remove the doublers from dynamical simulations, one has to
violate one of the prerequisites of the theorem in one way or the other. The route taken
by Wilson type fermions is to add an extra term to the fermion matrix,

r

1
—§arD1/J(x) =5 a

(@ + ) + Pz — i) — 2¢(x)) (3.13)
the so-called Wilson term. This operator is irrelevant in the continuum limit but gives
an extra mass to the doublers which is proportional to 2r/a so that they decouple from
the physical content of the theory for ¢ — 0. However, the Wilson term acts as a
coupling dependent mass term so that chiral symmetry is explicitly broken for Wilson
fermions at finite lattice spacing.

The complete Wilson lattice action including covariant derivatives reads

plU ¢, 9] = Zw (1 — kDw[U]) ¥(x) (3.14)
with the Wilson derivative acting as
Dw[Ul(z) =3 ((r — U (@)@ + ) + (7 +3) Ul (x — @) — ,:L)) . (3.15)
o

In the above formulae we have already used the field normalisation with hopping param-
eter x that is commonly used for numerical simulations. It is connected to the notation
based on the standard quark mass via

Y = V2kaT?y (3.16a)
- (3.16D)
- 2amg + 8r '

Explicit chiral symmetry breaking for Wilson fermions has some inconvenient conse-
quences for practical applications. First of all, since the Wilson term acts like a mass
that depends on the gauge coupling there is an additive mass renormalisation so that
the chiral theory is realised for some non-vanishing value m.(g?) of the bare quark mass.
Furthermore, via the Wilson term discretisation artefacts that are linear in the lattice
spacing are introduced. This complicates the continuum approach considerably and is
the reason for the development of improved Wilson fermion formulations such as the
maximally twisted mass fermions, which is discussed in the following section, and clover
improved fermions.

Clover improvement works by adding a counterterm in the sense of Symanzik’s ex-
pansion to the fermion action, the so-called Sheikholeslami-Wohlert term [70],

SSW = CSWIaK Z Z Uuu ;,LV ) (317)

T
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3. Quantum Chromodynamics on the Lattice

where o0, = i/2[y,,7] and Fj,, is the clover-leaf representation of the gluon field
strength,
1

F Sioa2
iga ot

MV(x) =

(U,w(x) ~ U;V(x)) . (3.18)

In order to achieve full improvement, i.e. remove all cutoff effects of O(a), besides
the action each operator has to be modified by the appropriate higher order terms.
Then, finally it is necessary to adjust the parameters of the action, mqg, me, go, Csw as
functions of the quark mass and the coupling. These relations have been worked out
perturbatively [71, 72, 73, 74]. The relations for the quark mass and bare coupling read

mp = Zm(9%)(mo — me(g°)) (1 + bm(g°)am) (3.19a)
ggw = 92(1 + bg(92)amq) . (3.19b)

It must be noted that even the limit of a free theory needs a shift in the bare quark
mass in order to be improved, mgr(g = 0) = mo(1 + by, (g = 0)am).

The clover coefficent needed to improve the theory is known in perturbation theory.
In leading order it is csw = 14+ O(g?). However, more appropriate for actual simulations
is the non-perturbative determination by Jansen and Sommer [75]. Recent studies of
thermal QCD with clover improved Wilson fermions can be found in [76, 77, 78, 79, 80].

3.3. Twisted Mass Fermions

The modification of Wilson type fermions by a chirally twisted mass term has been
introduced about a decade ago [81, 82]. Some years later Frezzotti and Rossi realised
that the theory is automatically O(a)-improved if the original untwisted mass is set to
its critical value [83]|. Our presentation of twisted mass lattice fermions is based on the
review by Shindler [84].

3.3.1. Twisted Mass Formulation

The central key to the introduction of twisted mass fermions is the transformation
S eiw%TS/QX and ¢ = Yei“'y573/2 (3.20)

which is a symmetry of the continuum action if the mass term is reinterpreted appropri-
ately. 1, in the so-called physical basis, and y, in the twisted basis, are flavour doublets
and the third Pauli matrix 73 acts in the according flavour space. It is then possible to
reformulate the QCD action as

Sp = /d%y(x) (vuDy + mo + ipoysm) X () - (3.21)
The bare quark mass is related to the untwisted and twisted components,

po = mgsinw , (3.22a)

Mo = My COSW (3.22b)

mg = \/mé + ud, (3.22¢)
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3.3. Twisted Mass Fermions

with the corresponding twist angle w,

Ho
mo.

tanw =

(3.23)

The twist angle obviously changes under renormalisation as the untwisted and twisted
mass components do not share the same renormalisation factor. The renormalised quark
mass is determined as

mp = \/an(mo —me)? + Z2uf - (3.24)

Only if the untwisted quark mass is set to its critical value, the angle, w = 7/2, is
independent of renormalisation. This case is called maximal twist.

Applying the Wilson discretisation to the continuum action with twisted mass term,
we obtain

Se(U, ¢, 9] =Y X(@) (1 — kDw[U] + 2ikapoys7) x(x) - (3.25)
x
A particular feature of the twisted mass fermion matrix,
Mim = 1 — 6Dy [U] 4 2ikapoysm (3.26)

that was important for the original motivation to introduce this modification of Wilson
fermions is that the twisted mass parameter acts as a regulator protecting simulations
from zero modes. These zero modes have been a source of concern in the untwisted the-
ory [82]. This property can be seen when evaluating the flavour determinant explicitly,

Detaavour Mim = MWMIJEV + (CLMO)2 > (327)

where My denotes the standard Wilson fermion matrix for one flavour.
Inversion of equation (3.26) in momentum space for a free field leads to the determi-
nation of the propagator,

—13, Wby, + 39% + amg — lapysT?
. N 2
P2+ (%p2 + amo) + (app)?

Stm(p) = a ) (3.28)

which is important for the later analytical calculations in the free and weakly coupled
limits.

3.3.2. Automatic Improvement

Since the twist rotations (3.20) are no more a symmetry of the lattice action due to the
Wilson term, the fermion discretisation provides different regularisations depending on
the twist angle. That means in particular that the cutoff effects are functions of the twist.
It has been shown that the leading O(a) effects vanish in most relevant quantities if the
action is tuned to maximal twist. More precisely, this statement applies to parity even
quantities as can be derived from the symmetries of the Symanzik expansion [84, 85].
This feature is known as automatic O(a)-improvement and is the crucial property for
current applications of twisted mass fermions.

We now briefly sketch the main idea for the proof of automatic O(a) improvement
following the review by Shindler [84]. The starting point is the Symanzik expansion for
the lattice action,

Set=So+aS1+ ..., (3.29)
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3. Quantum Chromodynamics on the Lattice

where Sp is the continuum action. The higher order contributions,

S, = /d4y Ly, (3.30)

are constructed from all possible counterterms. Especially, we have in next-to-leading
order

5
ﬁl = ch(’)k . (3.31)
k=1

We do not give the explicit form of the operators Oy here but refer to [84] where the
complete set is given. The coefficients ¢; have then to be tuned such that continuum
calculations with Seg reproduce the lattice theory up to the chosen order of a. A similar
expansion holds for any field observable,

Geft = Po + a1+ ... . (3.32)

With the above expansions, one can identify the possible discretisation effects to O(a)
for an arbitrary expectation value,

(O1).-6(wn)) =5 [P0 4] o) . o(an)e (1= aSy+ ..
= (¢o(w1) - .- do(Tn))o
—a [aty (o). ool Ea(w)y (3.33)

+aY (go(x1)... 1(xk) .. do(an)) + Oa®)
h—1

where contact terms can be absorbed into a redefinition of the fields. For the proof of
automatic improvement one can utilise the following symmetry of the lattice action,

RIxDx[u— —ul, (3.34)

where D multiplies all terms by (—1)% according to their mass dimension d,,. R}

transforms the fields as

X = 7' (3.35a)
X = X157 - (3.35b)

This symmetry holds for the lattice action even in the infinite volume limit. Therefore
all terms on the right hand side of equation (3.33) have to respect the symmetry. This
necessitates the absence of O(a) terms for any field ¢ that respects Ré since then both
contributions to that order in equation (3.33) are odd under the above symmetry. For
the first part, ¢o(z1) ... do(x,)L1(y), this is true because of the operator insertions in
L. The second part, ¢o(z1) ... ¢1(xk) ... ¢o(xy,) is odd because of the mass dimension
of ¢1 that has to be different by 1 from that of ¢g so that all terms in equation (3.32)
possess the same symmetries. Introducing an untwisted quark mass to the lattice ac-
tion explicitly breaks the crucial symmetry (3.34) and therefore there is no automatic
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3.3. Twisted Mass Fermions

improvement except for maximal twist. Note that according to the above arguments
also quantities with vanishing expectation value can have discretisation effects in O(a).

A possible caveat is posed by pion poles, i.e. by cutoff effects that are of O(a?* /m2")
with 2k > h > 1. These poles can be avoided by a suitable definition of maximal twist.
For this reason ETMC have adopted the condition of a vanishing PCAC (partially
conserved axial current) quark mass [86],

o Y (%A, 1) P(0)
POAC T oy (Pa(x, ) Pe(0))

(3.36)

where P® = ¢ry57%/21), Al = ¥y, v57%/2¢. From the numerical side a quenched test of
a®-scaling with this condition has been presented in [87, 88, 89].

On the level of free lattice fermions the improvement can be observed easily, for
instance, for the dispersion relation that is obtained from the pole of the propagator,

SF(pap4 = 1E)7
3
/ m COs(w
p? + m2

The improvement for maximal twist, w = 7/2 is apparent. Note that for a theory
without spontaneous breaking of chiral symmetry, like in the free limit, the linear cutoff
effects have to be proportional to the quark mass. This is not necessarily the case in
the presence of spontaneous chiral symmetry breaking [85].

Automatic improvement also holds at finite temperature. This is expected since the
relevant symmetries do not mix spatial and temporal directions so that the finite time
extent which characterises simulations at finite temperature does not interfere with the
improvement. A report of observed a’-scaling at finite temperature in the quenched
case has been given by our tmfT collaborators [90]. Our perturbative analysis of the
pressure, discussed in section 4.2, finds improvement at maximal twist as well.

Another possible drawback of twisted mass fermions is the breaking of flavour sym-
metry. Flavour singlet and doublet quantities such as mY and m* may show large
splittings for finite lattice spacing. Indeed in case of the pion these large splittings have
been observed [91]. A theoretical analysis in the Symanzik expansion scheme allows to
identify the leading orders of cutoff effects [92],

™

(mi)2 = mZ + O(a*m2,a") . (3.38b)

s

(m0)2 = m72r + a2<7r + O(G/Zmﬂa a4) Y (3388.)

The leading order of the splitting, (., originates solely in the neutral sector and turns
out to be large. Important to note is that the large size of splitting cutoff effects is
restricted to the pion mass and related quantities.

3.3.3. Phase Diagram

As for all Wilson type fermions, twisted mass fermions can exhibit unphysical phases
in their bare parameter space that is spanned by the hopping parameter, the lat-
tice coupling and the twisted mass. Its vacuum structure has been studied exten-
sively [93, 94, 95, 96, 97, 98]. From ordinary Wilson fermions it is known that there is
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I Acki phase
[ 1%t order phase transition plane

Figure 3.3.: Phase diagram in (k, 3, po) parameter space, from [96]. The strong coupling re-
gion, i.e. the region of small lattice coupling g, exhibits the Aoki phase in the
plane of vanishing twisted mass parameter pg. For weaker couplings a surface of
bulk transitions is encountered that contains the line of critical hopping parame-
ter, ke(3) and extents to po # 0. The width of this surface vanishes towards the
continuum limit.

the so-called Aoki phase of broken parity-flavour symmetry in the strong coupling re-
gion [99, 100]. For twisted mass fermions, that additionally have the pp-axis in their bare
parameters phase diagram, another unphysical phase appears for intermediate couplings
that shrinks towards the continuum limit. This phase is a surface of first order transi-
tions that incorporates the line of critical hopping parameters k.(3). These findings are
summarised in the sketch in figure 3.3.

The theoretical explanation for these two phases can be worked out in the framework
of chiral perturbation theory [101, 102] which allows to investigate the vacuum structure
of its effective Lagrangian by means of minimising the corresponding potential. For
this purpose, the continuum Lagrangian given in equation (2.30) has, of course, to be
supplemented by the leading cutoff effects,

f? NS AN ty oyt
Ly="T (auzauz ) ~ T (Xz Yy ) ~ (pz +yp ) . (339)
with x = 2Bg(m1 — iur3) and p = 2aWp1, slightly adjusting the notation in [102]. p
parametrises the cutoff effects. Note that it enters the Lagrangian in the same way as the
quark mass so that the leading cutoff effects essentially lead to a shift in the bare quark
mass, cf. also the discussion in [101]. The potential that can be extracted from the above
Lagrangian can be expressed in terms of a unit four vector, u = (ug, u, ug, us) [102],

V = —ciug + czug + c3us . (3.40)
This vector parametrises 3,
¥ =wuol +iu, ", (3.41)
so that its components determine the vacuum structure, in particular,
ug ~ () (3.42a)
ug ~ (Pys7°0) (3.42b)
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Figure 3.4.: Possible phase transition scenarios for Wilson fermions with twisted mass term.
Left: Aoki phase. Right: Normal scenario, also called Sharpe-Singleton scenario.
(from [102])

The coefficients ¢; = 2f?(Bym, + Woa) and c3 = 2f2Bypg are directly related to the
quark mass and cutoff effects. However, the crucial observation is that the sign of
c2 is not determined from the Lagrangian. Therefore, the vacuum structure can be
qualitatively different depending on that sign. The two possible scenarios have been
mapped out in [102]. The first possibility, ca > 0, leads to the previously known Aoki
phase of broken flavour symmetry, <E757'31/)> = 0, if the twisted mass vanishes. The
second scenario, ¢y < 0, corresponds to the Sharpe-Singleton plane of bulk transitions
that has been found for weaker couplings numerically. This plane incorporates the
critical untwisted quark mass and extends to non-vanishing twisted mass. It ends for
some critical g, ~ a? and thus vanishes in the continuum limit. A sketch of the two
scenarios is shown in figure 3.4.

3.4. Alternative Fermion Discretisations

Although this thesis deals with Wilson type fermions only, we include a short presen-
tation of alternative formulations for the sake of comparability. The so-called stag-
gered fermions [11] and in particular improved versions thereof are the second major
type of fermions that is frequently used for numerical simulations, for modern expla-
nations see e.g. [57, 62]. Many results concerning QCD thermodynamics have been
obtained relying on staggered fermions, for example the prediction of a crossover for
the thermal transition with physical quark masses [17]. For recent work the Budapest-
Wuppertal [19, 21, 103, 104| and HotQCD |20, 105, 106] collaborations should be named.

Staggered fermions are constructed from the naive action by means of a spinor trans-
formation that untangles the four components of the spinor fields ¢. This reduces the
number of doublers from 16 to 4. The remaining degrees of freedom are labeled by
‘tastes’.

The major advantage of staggered fermions is that they have a residual chiral sym-
metry at finite lattice spacing that protects the mass from additive renormalisation.
However, in order to have individual degrees of freedom, one still has to remove the
remaining four-fold degeneracy. This is usually done by adding a fourth root to the
fermion determinant for staggered fermions, i.e.

/D[U] Det (MyagglU]) e~ 501") — / DIU) Det (Maagg[U) 4 =501 | (3.43)
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where Mgiag, represents the staggered fermion matrix. In perturbation theory this
procedure works without problems since order by order the number of flavours is just
divided by 4. But there is an on-going controversy on whether non-perturbative effects
might hamper the correct continuum limit [15, 16, 107]. Rossi and Testa have provided
a zero-dimensional example where the rooting procedure fails non-perturbatively [108].
Furthermore, staggered fermions are not free of some particular systematic effects that
need to be controlled. Most prominently taste breaking has to be named, see e.g. [109]
for a report that also considers thermodynamic quantities.

A possibility to avoid fermion doublers at all and to maintain some kind of chiral
symmetry at the same time is to change equation (3.12) to the Ginsparg-Wilson rela-
tion [110],

a
V5D + Dvys = ;D%D ; (3.44)

This allows for a redefined chiral symmetry that holds for finite lattice spacing. Neu-
berger provided a solution to the Ginsparg-Wilson equation with the so-called overlap
fermions [111, 112]. The drawback of this type of fermions is that they are computa-
tionally very expensive. The same is true for domainwall fermions which also satisfy the
Ginsparg-Wilson relation but are constructed in five space time dimensions [113, 114].
Since chiral fermions are very expensive to simulate, there have been only few finite
temperature studies so far [115, 116, 117].

An alternative to the established fermion types that has become popular recently
avoids the doubler issue by changing the lattice geometry. The first action of this type
goes back to Karsten and Wilczek [118, 119] but the current interest in those minimally
doubled fermions is due to a suggested action by Creutz [120, 121] who proposed a four
dimensional generalisation of a graphene model. Lattice cutoff effects at tree-level have
been investigated early on and seem to be under control [122, 123]. However, the lack
of symmetries leads to new relevant operators that have to be controlled by appropri-
ate counterterms [124]. Progress on the way to a dynamical simulation with minimally
doubled fermions has been reported recently [125, 126]. In absence of dynamical simu-
lations there are, of course, no thermal QCD studies so far. We have calculated the free
pressure for chiral fermions which indicates that lattice artefacts might be small, see fig-
ure 3.5. However, the understanding of minimally doubled actions is still developing.
Especially the implications of a non-hypercubic lattice symmetry need to be carefully
controlled before these fermions can be applied to large scale simulations. Note that
usually the time direction is in some way special for these discretisation schemes with
possible non-trivial implications for finite temperature QCD where the Euclidean time
extent determines the temperature.

3.5. Numerical Simulations

In this section we present the Hybrid Monte-Carlo algorithm that we have used for our
simulations and discuss important issues about the statistical analysis of the obtained
data as well as sources for systematic errors.
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Figure 3.5.: Free pressure for massless fermions normalised to the continuum limit for naive,
standard Wilson and Creutz fermions (the latter according to [120] with param-
eters B =1 and C = 1/v/2).

3.5.1. Hybrid Monte-Carlo

We now explain how actual simulations are performed, i.e. how an expectation value,

(1) = 5 [Pl.5.U) Klp. 5,0l S)-Srv50

_ % /D[U] Det (Mp[U]) K[U]e5IV] (3.45)

is calculated numerically. As indicated above, it is always possible to integrate out
the fermionic fields analytically, cf. equation (2.11). For finite volume there is a high-
dimensional integral left for numerical integration so that a representative subset of
configuration space has to be chosen in order to reach a result in finite time. This is
done by means of the so-called importance sampling, i.e. by applying an algorithm that
generates a set of gauge fields {U,,} with the correct probability measure so that for any
observable the correct expectation value is obtained,

1 Nmeas
Nmeas

A[U,] 2% gy (3.46)
n=0

The corresponding probability measure is given by the action,
P[U] = Det (Mp[U]) e~5lV] (3.47)
and is realised by means of a molecular dynamics evolution combined with a Metropolis

accept/reject step, the so-called hybrid Monte-Carlo (HMC) algorithm [127]. Since a
probability measure has to be real, it is obvious that importance sampling only works
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3. Quantum Chromodynamics on the Lattice

for a real fermion determinant. That is the cause for the breakdown of HMC algorithms
at finite chemical potential u since the determinant turns complex,

Det Mp(p) = (Det Mp(—u*))* . (3.48)

Our work is based on the algorithm described in [128]. It is improved as compared
to the standard HMC, e.g. by the choice of a multiple time scale integrator and the
application of mass preconditioning. This means that in order to optimise the algorithm
for a particular simulation one can adjust five parameters: the preconditioning mass, the
step numbers for three integrators and the trajectory length. After initial optimisation
of the parameters we have kept them fixed for each simulation at one pion mass so that
properties of the algorithm, especially the length of autocorrelations, can be interpreted
as supplementary signals of physical criticality.

The implementation in a C code is described in [129]. This is the very code we have
used for our simulations on the HLRN machine in Berlin '. Additionally, we have
performed simulation on the APEnext at INFN in Rome 2. For the APE machine, we
have an earlier version of the same program written specifically for APE computers.

3.5.2. Data Analysis

Since the configurations from a Monte-Carlo simulation are generated consecutively,
each one based on its predecessor, the generated data form a Markov chain. The sta-
tistical analysis thus has to take into account correlations. The following summary is
based predominantly on [130] but see also [55, 131].

For the following, we consider the primary observable A which can be expressed as a
function of the gauge field configurations, identifying

A; = A[U;] (3.49)

for a given configuration U;. The estimator for the mean (A) is the average A,
LN
A= NZAJ. (3.50)
j=1

The correct estimate for the variance of A needs to take autocorrelations into account
which can be quantified by the integrated autocorrelation time iy,

1 o
int = 57y I'(t), .51
Tint = 91 (0) tz_:oo (*) (3.51)
with the autocorrelation function
Lt) = ((Ai— < A>)(Ai— < A>)) . (3.52)

The above definitions allow to express the variance of A,

2Tint
N

!For more information, see https://www.hlrn.de/ .
2For more information, see http://apegate.romal.infn.it/APE/ .

T(0). (3.53)

UZ:
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3.5. Numerical Simulations

This can be interpreted so that the effective amount of data is reduced by a factor of
27int as compared to the uncorrelated case. With our definition uncorrelated data have
an integrated autocorrelation time of 1/2.

Suitable estimators for a set of N data points are

Nt
fi(t) = N%m Z: (A; — A) (A — A) (3.54)
and
N
Fint = O t:Z:MF(t) . (3.55)

The truncation M is needed since for arbitrarily large ¢ the noise dominates the expo-
nentially weak signal. M must be adjusted in practice by estimating a plateau behaviour
as a function of this cutoff. In our later data analysis, we will supplement our set of
observables by the the integrated autocorrelation time to find pseudo-critical points.
This is because Tiy defines a length scale of the system that should clearly peak close
to critical or pseudo-critical points if all algorithmic parameters are kept constant.

In order to reliably calculate the variance of our data sets, we have chosen to apply
the standard method of jackknife binning, i.e. one uses prebinned block averages,

1
J¢[kNp,(k+1)Np]

that can be assumed to be free of correlations,

Np—1 N5
2 B 2
oG = kg 1(bk —-b)”. (3.57)

The number of bins Np needs to be large enough in order to reliably allow for a
Gaussian treatment based on the central limit theorem. At the same time Np should
be small so that correlations between the bins are really removed. The best value can be
adjusted by searching for a plateau of the error as a function of the bin size very similar
to what we have mentioned above for the integrated autocorrelation time. Actually,
once Np is fixed, one can use equation (3.53) in order to obtain 7. For an error
estimate for Tin, we follow [131].

We show an example in figure 3.6. The plateau behaviour is identified consistently for
a bin size of 325 corresponding to Np = 20. The remaining fluctuations in that region
indicate the uncertainty in the determination of the error and 7, estimates. Of course,
alternative approaches such as Wolf’s I'-method [132] are consistent with our choice of
the jackknife binning.

Aside from the statistical errors, there are two major sources of systematic effects
for lattice simulations. The first one is given by the cutoff effects. Results at several
values of the lattice spacing have to be extrapolated to the continuum limit relying
on the assumed functional dependence of the quantity on the lattice spacing, usually
Alati = Acont + a®ca + .... Even then, it is important that the a?-scaling region has
already been reached for the lattice spacings under consideration, i.e. the cutoff effects
need to be dominated by the leading a? corrections to the continuum value.
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3. Quantum Chromodynamics on the Lattice
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Figure 3.6.: Example of estimates of the error and the integrated autocorrelation time as a
function of jackknife bin size. The data sample has a statistics of 6500 points and
corresponds to the real part of the Polyakov loop of one of our scans (8 = 3.9675
of A12). The chosen Np = 20 corresponds to a bin size of 325.

The second source of systematic effects is due to the finite volume that is necessary
for computer simulations. Often finite volume effects can be expected to be small. For
instance it has been shown by Liischer [133] that finite volume corrections to the hadron
spectrum are exponentially suppressed. For these considerations to hold, the volume
has to be larger than some minimal size. A quantity that can be used to assess whether
this condition is fulfilled is the product of the pion mass m, and the spatial extent L.
Since the pion wavelength is determined by 1/m, the combination m,L is suitable to
decide if the pion — and thus any heavier particle — fits into the simulated box. A rule
of thumb is that m,L should be larger than 3, at least.
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4. Properties of Twisted Mass QCD at
Finite Temperature

In this chapter we present results on properties of twisted mass fermions at finite tem-
perature that have been obtained in direct continuation of the diploma thesis [134] and
have been published in [29, 31]. The first part, section 4.1, presents the relevant con-
tributions to [29] by this thesis, i.e. simulations scanning the space of bare parameters
of twisted mass QCD — pug, 8, Kk — are compared to theoretical expectations based on
chiral perturbation theory in order to develop an understanding for the implications of
the non-trivial phase structure. The second part, section 4.2, summarises what we have
found out about cutoff effects of twisted mass QCD at finite temperature by means of
perturbative calculations of the pressure.

4.1. Phase Diagram

We sketch the theoretical expectations for the properties of the (ug, 5, k)-phase diagram
(section 4.1.1) before we confront them with the outcome of our Monte-Carlo simulations
in section 4.1.2.

4.1.1. Theoretical Expectations

Since the critical temperature depends on the quark mass, the thermal transition in-
troduces a critical line x¢(53) into the (k,3)-phase space of standard Wilson fermions.
Furthermore, because there is also a thermal transition in pure gauge theory, i. e. at infi-
nite quark mass, x; must eventually end for k = 0 at some finite Sqy, cf. the qualitative
discussion by Creutz [135]. This phase structure has been found along with a persisting
Aoki phase in numerical investigations, cf. [136, 137] and figure 4.1.

For the enlarged phase space of twisted mass fermions, Creutz has given a prediction
based on continuum limit arguments [138]. The crucial point is that the continuum
theory is invariant under twist rotations. Hence, there have to be closed lines in (m, u)-
space where the thermal transition is situated, cf. figure 4.2, left. Creutz argued that
this situation should also hold on the lattice when approaching the continuum limit up
to some unknown distortions by lattice artefacts. This implies that the thermal line
kt(B) for vanishing twist is part of a closed conical surface that wraps around the zero
temperature chiral critical line k.(8). For a fixed lattice coupling g a slice of this surface
has to form a distorted ellipse. A sketch of this conjectured phase diagram is presented
in figure 4.2, right.

At tree-level, this conjecture consequently leads to lines of constant physics defined
by

1/1 1

2
a’ud + 1 (E - K—) = const . (4.1)
C

31



4. Properties of Twisted Mass QCD at Finite Temperature

deconfined

confined

Figure 4.1.: Sketch of the Aoki phase and the finite temperature transition x:(3) in (x, 3) space
for standard Wilson fermions. x.(3) indicates the critical hopping parameter for
a massless theory.

However, since this is a tree-level prediction, it is clear that distortions due to cutoff
effects might be large. Going further, one can use the corresponding formula derived in
next-to-leading order chiral perturbation theory [139, 43],

1 -
m?, = M + f—g ((2Les — Lis) (M) + M cos(w) (2 — W) + 207 cos” ()W)
(M/)2 M/
m (L 42
Ton M\ag ) (4.2)

where M’ = \/ji? + (1/)?, & = 2Wya and 1 = 2By Z,,po, 1 = 2By Zy,(mo — me). The
W’s and L’s as well as By can in principle all be fixed by fitting lattice chiral perturbation
theory to zero temperature simulation results. For our purposes we can take them from
literature [43, 139, 140] where they are mostly known by order of magnitude,

W, W, W'~ 1/(4m)?% , (4.3a)
Wo ~ Adep (4.3b)

al, = 4maf =~ 0.068 , (4.3¢)

alg = 4maf =~ 0.065 , (4.3d)

2L6s — Lys ~ —4 - 1074 . (436)

All remaining quantities, needed for renormalisation, are known from ETMC [141]. Once
all parameters are fixed, equation (4.2) constitutes lines of constant mass for given pion
mass and lattice spacing.

4.1.2. Comparison to Simulations

The simulation results on which we report in the following have been published in [29].
The investigations in the weak coupling regime have been performed on the APEnext
of INFN in Rome with a tree-level Symanzik improved gauge action and a lattice size
162 x 8. As discussed in [29)] for strong couplings 8 < 3.0 the Aoki phase is found whereas
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Figure 4.2.: Sketch of the thermal transition surface. Left: Thermal transition surface from a
rotation in the mass plane (from [138]). Right: Schematic view of the conjectured
cone. (from [29])

for intermediate couplings 5 = 3.4 metastabilities are observed that are interpreted as
remainders of the zero temperature surface of unphysical bulk transitions, cf. also the
zero temperature situation depicted in figure 3.3. For 8 2 3.65 the phase structure is
dominated by the thermal transition. We now discuss the last region in more detail as
this thesis’ contribution is focused there. It also is the region relevant for approaching
physical questions in the context of the thermal transition and the continuum limit.

The analysis of the numerical data is based on the plaquette and real part of the
Polyakov loop, their respective susceptibilities and the pion norm. For details on the
observables, see section 5.2. In spite of the quite reasonable statistics of typically O(15k)
the results remain somewhat noisy and qualitative. We interpret this as a signal of a
soft crossover rather than a sharp transition. A further reason lies in the fact that for
simulations close to the axis pg = 0 and x > k. the spectrum of the Dirac operator
is shifted in the negative real direction, thus implying the occurrence of very small
eigenvalues [142].

What we present here in detail is a set of scans in the hopping parameter s across
its critical value at fixed § = 3.75 where we have identified a slice of the conjectured
cone, i.e. while varying x we find entrance to and exit from the deconfined region inside
the cone. This can be seen in figure 4.3, left, where the real part of the Polyakov loop
is shown for increasing values of pg. The rise and fall of the Polyakov loop indicate
the change from confinement to deconfinement and vice versa. Whereas the qualita-
tive behaviour remains unchanged, the two transitions for K < k. and k > k. should
approach each other for increasing pg. Finally, the ellipse’s largest extent is reached
and the transition accordingly lost, which can be seen in figure 4.3, left for the largest
masses aug = 0.025,0.035.

For the Polyakov loop and plaquette susceptibilities as well as from the mass depen-
dence of the pion norm we expect peak signals for the thermal transition in k-scans.
Whenever those signals are adequate, we have obtained values for x;, see table B.1 in
the appendix. For signals from more than one observable, they are always mutually
consistent. Thus we have used the best signal in each case for a rather qualitative com-
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Figure 4.3.: Left: The real part of the Polyakov loop for different values of ug. For apg >
0.025 the transition is lost. Right: Data points represent the phase boundary
at f = 3.75, estimated from the peaks of susceptibilities. The leading order
formula equation (4.1) cannot fit the data, the NLO-formula, equation (4.2),
contains constants that are only known by order of magnitude but is capable
of describing the numerically found structure. The vertical line marks maximal
twist. Both plots show results at 5 = 3.75. (as published in [29])

parison of equations (4.1) and (4.2), see figure 4.3, right. Obviously, the leading order
formula (4.1) is not capable of describing the data. The generic problem lies in the fact
that the tree-level formula always places the cusp of the ellipse at k. which does not
allow for a correct description of our data.

On the other hand, making some rough assumption about the unknown constants
in equation (4.2), it is possible to describe the data using that formula. This leads to
our conclusions drawn in [29], that the Creutz scenario of a conical surface of thermal
transitions widening towards the continuum limit as sketched in figure 4.2 is indeed
realised.

As a supplement, we show scans in s for different values of 8 at aug = 0.005 in
figure 4.4 that are published in [29] (and have been obtained previous to this thesis’
work). The same double signal is repeated for the different 3 values, where only the
range for the scan at § = 3.9 is not large enough to include the second transition.
Moreover, the larger the lattice coupling the wider the deconfined region, which agrees
perfectly with the expectation .

This understanding of the bare parameter phase space of finite temperature twisted
mass QCD is the foundation for the simulations presented in chapter 5. On the one
hand, we know how the thermal transition appears in the bare parameter phase space
allowing for simulations at maximal twist by varying the lattice coupling. On the other
hand, it has become clear that in the range of lattice spacings that are accessible from
the ETMC vacuum information [23] finite temperature simulation are not affected by
the unphysical bulk transitions.

4.2. Weak Coupling Limit

In this section, we discuss our study of the fermionic contribution to the pressure in
the weak coupling limit [31]. This regime can be used to obtain information on the
leading order cutoff effects and thus the degree of improvement at finite temperature.
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Figure 4.4.: Real part of the Polyakov loop for different values of 5 at auy = 0.005. Rise and
fall of the expectation value indicate entrance to and exit from the deconfined
phase. (as published in [29])

Improvement is particularly important for studies of the QCD equation of state at
finite temperatures since the pressure and related thermodynamic quantities are heavily

affected by discretisation effects, p ~ a?.

We start with a discussion of the free pressure and the effects due to a finite quark
mass. Earlier perturbative investigations of the pressure at high temperature on the
lattice had been restricted to the ideal gas and chiral limits, cf. [143] and references
therein. Thus unlike in the zero temperature and tree-level case [122, 123], there are no
earlier perturbative studies that consider a twisted mass at finite temperature. Most
importantly, for the free pressure it is possible to disentangle the coefficients for the
different contributions to the expansion in powers of the lattice spacing a.

In the second part of this section, we expand the investigation to the leading correc-
tions due to interactions, i.e. to O(g?). This second part originates mainly from work
previous to this thesis and can be understood to supplement our analytical investiga-
tion at tree-level. The fermion actions that are compared are the standard, maximally
twisted mass and clover improved Wilson action as well as the standard staggered ac-
tion. The leading cutoff effects of the latter three should be of O(a?), whereas standard
Wilson fermions have O(a) effects introduced by finite quark mass. To compare the
Wilson type fermions with staggered fermions, formulae from [144] are used.

4.2.1. Ideal Gas

As is well known, the thermodynamic pressure is determined by the logarithm of the
partition function as p = (8V)~'1n Z [34]. The contribution of N; = 2 free Wilson or
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Figure 4.5.: Stefan-Boltzmann limit normalised to the continuum result. The solid line is the
analytic O(1/N?2) prediction. Left: Massless quarks. Right: mpg/T = 0.03, where
the quark mass is the standard mass for staggered and Wilson fermions. For
maximally twisted mass fermions it is determined by the twisted mass parameter
o whereas for clover improvement an O(a) shift in the bare mass is needed. (as
published in [31])

twisted mass fermions to the ideal gas is immediately obtained as

e’ = 4(aN;)'N, / o | L Mz_lln(\G(p —wn)|* + (apo)?)
T4 T c 3 (27‘(‘)3 G,NT i ) n 0
[~aa)
w/a
~ [ d i (G0 + (ano)?) | (4.4)
—7/a

with the fermionic Matsubara modes w,, = (2n+1)7/(aN;), and the inverse propagator
IG(p)|? =p*+ (amo + 3 ]52)2. As usual divergent vacuum pressure has to be subtracted.
In order to evaluate the above integrals numerically, we evaluate the corresponding sums
for finite volume explicitly, finding that a smooth extrapolation to the thermodynamic
limit can be done.

Cutoff effects for the free gas are obtained by comparison with the continuum Stefan-
Boltzmann or ideal gas limit,

psp _ TNe (360 [ o oy |
T =g f - /dxm 22— (my/T)?In (1+e7%) 90 - (4.5)

my /T

For massless fermions, the expression in brackets gets replaced by the number of flavours
Ny (cf. also [145]).

The mere numerical integration of equation (4.4) does not allow to identify the sep-
arate contributions order by order in the lattice spacing. To achieve this, an analytical
approach is mandatory. In [143] the integral (4.4) for massless quarks has been expanded
into a power series in 1/N; by means of contour integration and neglecting finite volume
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effects,

3
2= (“;Zg) N. /d3/<: In (14 ¢~ NreB0m)
R3
(@) (ah) (@)
_0m)  pOm) 1 m) 1
T " N, T' N2

+. (4.6)

This establishes a direct correspondence of cutoff effects in the dispersion relation
E(p,m) to those in the pressure. In fact, improvement in the dispersion relation,
which is a vacuum quantity, directly leads to improvement for the pressure at finite
temperature.

2 4
Remarkably, for massless quarks, the coefficients p;l) and p;;) can be calculated
explicitly [143] and are the same for standard staggered and Wilson type fermions.
Differences between these discretisation schemes are only introduced in higher orders
of the lattice spacing. We have repeated this procedure for massive fermions. In this
case, one is left with one-dimensional integrals for the expansion coefficients depending

on the quark mass,

(a®)
b /dyy In 1+e €<0><yvm/T>> , (4.72)
0
(ah) 7 T
p®J)(m) 2N, 5 €y(y,m/T)
T 2N, dyy 1 + ef© ym/T) (4.7b)
0
pm) _ N, 7yyzea)(y,m/T>e€<0><yvm/T>
N, yi r 2 . 8(2)(y7797m/T)
e /dy /dﬂy 51n(19)—1 @D (4.7¢)
0 0
where
1 1
e(p/T,m/T) = eo(lpl/T;m/T)+er(Ipl/T,m/T) - +ea(Ipl/T. 0, m/T) 55+ .. (4.8)

can be determined from the dispersion relation E(p,m)/T = e(p/T,m/T). Details
are explained in appendix C.1; especially equation (4.7c¢) can also be cast to a one-
dimensional integral. The remaining integrations can easily be performed numerically,
cf. figure 4.6.

We beginn the discussion of results with figure 4.5, where the fermionic contribution
to the free pressure on the lattice is shown normalised to the continuum one. The
chiral limit is reproduced from [143] for comparison on the left. In this case there is
no difference between the Wilson formulations. Even though in the chiral limit the
leading cutoff effects are found to be identical for both types of discretisation, staggered
fermions show a more rapid convergence to the continuum than Wilson fermions, which
is caused by higher order corrections. The comparison of the numerical values to the
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Figure 4.6.: Leading orders of cutoff effects for different types of fermions. Left: Mass depen-
dence of the O(a?) contribution to the pressure. Right: Comparison of the O(a)
and O(a?) expansion coefficients for the pressure series in 1/N,. (as published
in [31])

analytical formula to O(a?), which is depicted by the solid line in figure 4.5, reveals that
the O(a?) effects are only dominant for lattices with N, > 12.

As expected from the dispersion relation (3.37), switching on a mass increases the
cutoff effects for Wilson fermions to O(a) although the effect is very weak. Massive
staggered fermions keep scaling as O(a?). Figure 4.5, right, shows that finite mass
effects for a reasonable value of mpr/T = 0.03 are rather small. We use the notion
of a renormalised quark mass although we are at the non-interacting level in order to
account for the shift in the clover quark mass (3.19a). Note also that for maximally
twisted mass fermions, mp is solely determined by the twisted mass parameter.

In figure 4.6, we present the mass dependence of the leading order contributions
obtained from the analytical approach. Up to large quark masses the differences between
the O(a?) contributions for the different fermion formulations as well as the deviation
from the massless case are very small (see figure 4.6, left). Furthermore, the O(a)
contribution to pure Wilson fermions is almost negligible when compared to the one of
O(a?) (see figure 4.6, right). This will only change on very fine lattices, N- < 1/100.

4.2.2. Two-loop Contribution

Turning to the interacting theory, the leading O(g?) corrections to the fermionic pressure
due to interactions have been calculated in the diploma thesis [134], cf. also [31]. The
one-loop pressure contributes due to mass renormalisation. Twisted mass fermions and
ordinary Wilson fermions can be treated simultaneously using the propagator given
in equation (3.28) with identical vertices from the standard Wilson action. We use the
expressions as given in [62] with the gauge propagator from the Wilson plaquette action.
The resulting integrals need to be solved numerically, a task that has been achieved in
our study [31] using integration routines of the CUBA-library [146]. Unfortunately, the
difference between the finite NV, and the vacuum contributions, which is the quantity of
interest, shrinks rapidly ~ 1/N2 and for N, = 8 is only about 6 % of the numerically
evaluated integrals, rendering an accurate evaluation difficult. In any case, in order to
extract cutoff effects we need the continuum corrections to the free pressure which have
been calculated in [34, 147].
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Figure 4.7.: Two-loop contribution to the pressure normalised to the continuum result. Left:
Massless fermions. Right: Massive case with mp/T = 0.03. (as published in [31])

The behaviour of the two-loop contribution is shown in figure 4.7, the chiral limit on
the left. As in the non-interacting case, staggered fermions have smaller cutoff effects
on coarse lattices. Comparing the scales of figure 4.7 and figure 4.5 interactions indeed
appear to increase this difference. However, also for staggered fermions a’-scaling does
not set in until N, > 8 at least, where the cutoff effects of the Wilson discretisations
are comparable.

The right panel of figure 4.7 shows the two-loop results for a non-vanishing renor-
malised quark mass mp/T = 0.03. Despite the rather large numerical uncertainties,
one finds a qualitative correspondence to the one-loop case, figure 4.5, right. This
correspondence applies especially to the small dependence on the quark mass and the
particular discretisation. As in the free case, on lattices N, > 8 Wilson fermions are
found to be competitive with staggered fermions in terms of the size of cutoff effects.
However, a?-scaling is not observed for any of the discretisations before N, > 10. Up
to that, O(a) effects for unimproved Wilson fermions are negligible as can be seen from
comparison to the maximally twisted mass fermions. Note that the absolute size of the
cutoff effects for the unimproved action appears smaller than for the clover action. This
indicates significantly higher order contributions for the N, considered here.

Approaching T, from the high temperature limit, perturbation theory will become
inapplicable. However, for the perturbative expansion this indicates that higher order
terms become more and more important. Therefore, given the qualitative correspon-
dence between one-loop and two-loop results, our analysis suggests that, for simula-
tions near T, O(a)-improved Wilson fermions scale comparably to standard staggered
fermions for fine enough lattices, N, > 8. However, independent of the improvement
scheme chosen, a®-scaling appears to set in only on lattices N, > 10.
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5. Thermal Transition for Two Quark
Flavours

In this chapter we present simulations with Ny = 2 maximally twisted mass fermions
and the corresponding analysis in search for the thermal transition of QCD. We discuss
the possible impact of our results on the knowledge of the transition in the two flavour
chiral limit.

As already noted in the introduction, it is well established that the QCD phase tran-
sition for physical quark masses is really a continuous crossover [17]. However, for
simulations of lattice QCD the nature of the transition for varying quark masses is of
particular importance since a direct access to the physical point is often not feasible.
This is especially true for Wilson type fermions. For our case of a degenerate quark
doublet and maximally twisted mass simulation, ETMC have not reached pion masses
below 280 MeV [23]. Moreover, knowledge about the phase transition in the two flavour
chiral limit influences the understanding of global properties of the phase diagram in an
enlarged phase space where additionally chemical potential is taken into account [148].

Despite all efforts, the nature of the transition in the two flavour chiral limit is still a
question which has not been completely settled. Most investigations have concluded a
second order transition [105, 149, 150, 151, 152, 153] but there are also claims for a first
order scenario [154, 155, 156]. According to the prediction by Pisarski and Wilczek [41]
one of the two scenarios must be realised. Their argument relies on the strength of the
axial anomaly. If the anomaly remains strong enough close to the thermal transition,
the symmetry breaking pattern for chiral restoration in the two flavour chiral limit
corresponds to the one at zero temperature discussed in section 2.2,

SUL(2) x SUR(2) — SUw(2) , (5.1)

which would favour a second order transition in the O(4) universality class. However,
it is also possible for the anomaly to be sufficiently suppressed by thermal effects. In
that case, the additional Uy (1) x Uy (1) symmetry has to be taken into account such
that the breaking pattern turns out to be

UL(2) x Ur(2) = Uy (2) (5.2)

implying a first order transition similar to the three flavour chiral and pure gauge limits.
For further discussion see [157].

Since it is not possible to perform simulations for zero quark mass, which is true even
for staggered fermions that generally reach lighter masses than Wilson type fermions,
the task for analyses based on lattice simulations is to find some way to extrapolate
from relatively large pion masses in the crossover regime of thermal transitions to the
chiral critical point. This is — at least in principle — possible since any critical point
has some neighbourhood in which universal scaling behaviour is observable. One can
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5. Thermal Transition for Two Quark Flavours

hope to access this scaling regime with the simulations and thus infer the universality
class from comparison of scaling laws.

We start with a general discussion of universality in section 5.1 before we introduce
our observables, section 5.2. This involves the chiral condensate as the order parameter
of chiral symmetry breaking as well as gauge observables, in particular the Polyakov
loop that indicates deconfinement.

In section 5.3 we present our simulation setup including the issues of scale setting and
signal extraction. Section 5.4 is devoted to extracting information about the chiral limit
from our data by utilising scaling properties of the order parameter. In section 5.5, we
try to quantify the strength of the axial anomaly in the chiral limit. For this purpose
we introduce screening masses and the corresponding integrated correlators as further
observables. We also include a discussion of some of the properties of screening masses
in the infinite temperature limit. Finally, section 5.6 contains a summary and discussion
for our Ny = 2 maximally twisted mass simulations.

The presentation of our simulation setup as well as the analysis and considerations
concerning the chiral limit accessed by scaling properties can also be found in a recent
tmfT preprint [158].

5.1. Scaling Properties

Close to a second order critical point correlation lengths diverge so that microscopic
properties of the underlying theory become unimportant and the dynamics are gov-
erned solely by some global properties such as symmetries and spatial dimension. This
allows to classify very different physical systems according to their universality class.
We refer to Fisher [159] for a general review on critical phenomena. A more recent
overview including precise estimates for critical exponents has been given by Pelissetto
and Vicari [160]. For QCD universality is important as it allows to extract some of
its properties from theories such as spin models that can be treated more easily by
analytical or numerical methods.

Scaling behaviour is determined by critical exponents. Important for the following
analysis of Ny = 2 chiral QCD are in particular those that govern the order parameter
M, i.e. B in the phase with broken symmetry and § at critical temperature,

M ~ '/ (5.3b)

7= (T—-1T.)/T. ~ B — B is the reduced temperature that can be related to the lattice
coupling 3 as indicated and h is the external field which introduces an explicit symmetry
breaking. In case of QCD it can thus be identified with the quark mass [151, 161]. Note
that we now use 8 to name two different quantities, i.e. the lattice coupling and the
critical exponent. Since both notations are well-established in the literature, we keep
them here. What is really meant is clear in each case from the context.

A third exponent, ~, is important for possible future analysis based on finite size
scaling, see e. g. [162], as it determines the divergence of the susceptibility x = dM/dh,

X~ |77 (5.3¢)
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5.1. Scaling Properties

UNIVERSALITY B ¥ 0 v Reference
3d Ising, Z(2)  0.3265(03) 1.2372(5) 4.789(02) 0.6301(04) [160]
3d O(4) 0.3836(46) 1.477(18) 4.851(22) 0.7479(90) [162]

Table 5.1.: Critical exponents for the two universality classes of interest.

For a finite lattice volume the partition function is completely regular being a trace over
all degrees of freedom and thus a finite sum. Non-analyticities in the thermodynamic
observables can only be recovered in the infinite volume limit. The approach to this
limit close to critical points is known and can be used to identify the nature of the
transition by means of finite size scaling. For the peak that is observed at finite volume,
one has

Xmax ™~ LW/V (5.4)

for a second order critical point whereas the peak height for a crossover saturates to a
finite value. In case of a first order transition the peak should grow linearly with the
volume, V = L% A list of critical exponents for the universality classes of interest is
shown in table 5.1.

The scaling of the order parameter is encoded in a universal scaling function, see
e.g. [163],

M =h'f(z), (5.5)
with the scaling variable
-
T e >0

An accurate numerical interpolation of the scaling function is known for the relevant
case of O(4) symmetry [164, 165]. From this scaling law it is possible to deduce the
dependence of the pseudo-critical temperature on the field h [161]. To see this, one
realises that also the susceptibility can be expressed by a scaling function,

=G = (10 - s @) = ala) 5:7)

The pseudo-critical temperature is defined to be the peak of the susceptibility as a
function of temperature. Therefore, we need to find a scaling variable that satisfies

0g(x

) _ g'(w)% ~0. (5.8)

For general h, the above relation can only be fulfilled by a constant value, i.e. z = B.
Hence, using 7 = 6 — S,

B(h) = B. + BhY/©P) (5.9)
With the proper scale setting and relying on the leading order of yPT, i.e. m2 ~ Mg,
the above relation can also be rewritten for the temperature T.(m,) in physical units,

Te(my) = To(0) + Am%/ P . (5.10)
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5. Thermal Transition for Two Quark Flavours

2" order O(4)

@ - emeeemmeeaaaaaas >
may
Mzrc
T — >
15t order Z(2)

Figure 5.1.: Illustration of possible scenarios for the Ny = 2 chiral limit.

5.2. Observables

We present the observables relevant for our study of the thermal transition beginning
with the chiral condensate in continuation of the last section. We then introduce the
gauge observables, in particular the Polyakov loop that is sensitive to deconfinement.

5.2.1. Chiral Condensate

The most important observable for our analysis approaching the massless limit is the
chiral condensate,
TOolnZ

) - por.

(5.11)

that is the order parameter for chiral symmetry. Thus it can be associated with the
magnetisation M of a spin model of the same universality class applying all the scaling
properties presented in section 5.1.

If the anomaly is sufficiently strong to break the Uy (1) symmetry, the universality
class according to Pisarski and Wilczek is the three-dimensional O(4). Also in case of
a first order transition some kind of effective scaling behaviour can be expected [166].
More importantly, the first order scenario includes a second order endpoint in the 3d-
Ising (Z(2)) universality class, cf. figure 5.1. In this case, one should thus encounter
a situation that is dominated by Z(2)-scaling for a critical point at finite quark mass
when approaching the chiral limit from the crossover regime. A subtlety in the latter
case is that for the critical point at finite mass no exact chiral symmetry of the action
exists. Thus <E1/1> is no longer an exact order parameter and the quark mass cannot be
identified to be the symmetry breaking field. The induced uncertainty might be small
as we could think of it as a perturbation due the small quark mass just like in chiral
perturbation theory. Since our data are not accurate enough to catch such effects, we
do not consider them for the rest of this work. They must, however, be kept in mind
for future work with increased accuracy.

The appropriate quantity to locate the chiral phase transition is the chiral suscepti-
bility,

0 (dy)

omy

Xo = (5.12)

Evaluating the derivative with respect to the quark mass, one obtains two different con-

tributions to y., see e.g. [150]. We neglect the piece that is proportional to <Tr M*2>,
where M is the fermion determinant, and consider only the remaining part, which is
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Figure 5.2.: Check for the consistency between (1) and |r|? by comparing the expectation
values (11)) and 2ug|m|? for our simulation runs.

the variance per configuration,

o2, =V/T (< )2) — () ) (5.13)

This quantity shows a peak associated with the chiral transition. Moreover, it is ex-
pected to dominate the signal of x,, see e.g. [167].
The pion norm,

2 = X (Blo)gnr v B0 60)) (5.14)

T

is interesting for twisted mass simulations because its definition is independent of the
twist angle. It is connected to the chiral condensate via a Ward identity,

2mg|m|* = — (Yy) | (5.15)

which has been proven for twisted mass QCD by Frezzotti et al. [85].

The condensate that we have used for analysis has been calculated as <E¢> by our
collaborators in Berlin from stochastic noisy estimators, cf. [86], on all available con-
figurations. We have performed a double check by comparing these results to the pion
norm. At least for the runs in Rome, B10 and C12 (see section 5.3), the two calcula-
tions are completely independent of each other. Most importantly, the code in Rome
performs the calculation of the pion norm with point sources. In any case, pion norm
and <E1/1> can be used to check for consistency since they describe the same physical
quantity based on different operators. We show corresponding checks in figure 5.2 and
figure 5.3.

Note that we use the unrenormalised <Ew> which is related to the renormalised chi-
ral condensate by both multiplicative and additive renormalisation [85]. The additive
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Figure 5.3.: Check with B12 data for the consistency between the variances of (¢1)) and |r|?
where the latter one has been rescaled by a constant factor.

renormalisation is proportional to the mass and affects scaling violations — if present —
only quantitatively, cf. [105]. Therefore a scaling analysis based on our <ww> is perfectly
admissible if we keep N, fixed.
5.2.2. Gauge Observables
The gauge observables that we consider are the traced plaquette
1
Nyt N T

P= SNV N3ReTr ;;VU Uy(z + @)U (z + 0)UJ () (5.16)

and the real part of the Polyakov loop, i.e. the real part of

Nr—1
= N3Tr ST Usxoza) - (5.17)

X x4=0

Along with the above observables, we look at their susceptibilities,
xo = N3 <<o2> - <0>2) . (5.18)

The Polyakov loop is of particular interest since it is the order parameter of the pure
gauge deconfinement transition. This transition is related to the breaking of centre
symmetry [168]. The transformation for this symmetry is given by

Uu(z) = 31 gy vy Uu(z), neN, (5.19)
where the factor multiplying the link is from the centre of SU(N,.), i.e. from

C(SU(N.)) = {z € SU(N,)|VU € SU(N,) : zUz"' =U} . (5.20)
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Figure 5.4.: Real part of the Polyakov loop (left) and its susceptibility (right) at aue = 0.040
for £.(B) on a lattice of extent 163 x 8.

The gauge action itself is invariant under centre transformations but the Polyakov loop
picks up a phase factor. Thus for unbroken centre symmetry the Polyakov loop expec-
tation value has to vanish, which corresponds to confinement. In the high temperature
phase where the Polyakov loop is non-zero, centre symmetry is accordingly broken. The
connection to confinement can be read off easily from the relation to the quark free
energy,

(L)) ~ e PFa=Fo) (5.21)

Fp is the necessary vacuum subtraction. In case of perfect confinement, a single quark
acquires an infinite free energy such that (|L|) = 0. Note that the explicit centre
symmetry breaking for small quark masses is so severe for the volumes relevant to our
studies that out of the three possible phases for L only the one on the real axis as
dictated by the quark mass persists. Therefore it is sufficient to use the real part of the
Polyakov loop as the quantity signalling confinement for our simulations.

5.3. Simulations

Our dynamical Ny = 2 simulations of twisted mass fermions at maximal twist have
been performed on lattices with temporal extent N, = 10, 12 and spatial size N, = 32.
The lattice spacings were in the range 0.06 — 0.08 fm. With pion masses between 300
and 500 MeV we have thus m,;L ~ 3 — 5. The gauge action was tree-level Symanzik
improved and all necessary vacuum information have been taken from ETMC [23].

Our strategy is based on scans in § which amount to a variation of temperature
T = (a(B)N,) ™! for a pion mass that is determined solely by the twisted mass parameter
to. We have tested this strategy on smaller lattices with N, = 8, N, = 16 and larger
masses aug = 0.025, 0.040 [90]. These masses correspond to pion masses of roughly
800 MeV — 1GeV. For aug = 0.040 we show the Polyakov loop and its susceptibility
in figure 5.4. The resulting pseudo-critical point can be identified very well from the
peak of x(Re(L)) and gives a temperature in the range of the pure gauge transition,
T, < 300 MeV.
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Figure 5.5.: Left: Interpolation for the critical hopping parameter, £.(3). Right: Interpolation
of the lattice spacing as a function of the coupling

5.3.1. Setup

In order to be able to perform §-scans at maximal twist, we need to interpolate the values
of k. given by ETMC, see figure 5.5, left. We have resorted to a Padé approximation
that is rather robust in the sense that it can be replaced by different Padés or even
a polynomial without changing the resulting values. The Padé for k. can be found in
appendix D.1 along with the ETMC values.

For the interpolation of the lattice spacing we use the values ETMC give based on
the combined fits to their data [23],

a(B = 3.90) = 0.0801(14) fm |, (5.22a)
a(B = 4.05) = 0.0638(10) fm | (5.22b)
a(B = 4.20) = 0.05142(83) fm . (5.22¢)

The interpolation is done using a quadratic polynomial. The error bars are determined
from the according interpolations of upper and lower bounds, see figure 5.5, right. There
are also estimates for lattice spacings available at 8 = 3.8 (0.0998(19) fm) and at 3.75
(~ 0.1fm, from personal communication with K. Jansen) which can be used to check
the reliability of our formula even for somewhat coarser lattices. However, any smaller
value of 8 can only be related to a lattice spacing in physical units by a very crude
extrapolation.

Finally, the pion mass is needed. Calculating m, from the twisted mass parameter
apo at the couplings used by ETMC can be done using their yPT formulae. For a
(-scan these points need to be interpolated. We have chosen the ansatz to use one of
the existing values of aug(f) to fix the only free parameter in the one-loop relation,

ato(8) = Cexp (—%@) | (5.23)

and determine the line ayuo(3) for the given pion mass from it. Since our simulations
are always restricted to a relatively small range of lattice couplings in the regime close
to T¢ this approach works very well. Figure 5.6 shows a check for m, = 316 MeV. The
starting point is 8 = 3.9, the simulations are performed for 3.9 < § < 4.05.
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5.3. Simulations

RUN N2 x N, RANGE m, (MeV)
A12 323 x 12 3.900 < 3 <4.015 316(16)
B12 323 x12 3.950 < 3 <4.050 398(20)
C12 323 x12 4.010 < 5 <4.090 469(24)
B10 323 x 10 3.850 < 3<3.930 398(20)

Table 5.2.: Naming scheme for our scans in 3. See text for further explanations.
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3.8 3.85 39 395 4 405 41 415 4.2
B

Figure 5.6.: Check of estimated values of aug for a line of constant pion mass m, =
316(16) MeV. Our line auo(f) is based on the point at § = 3.9 according to
equation (5.23). The pion masses at § = 3.8, 4.05 and 4.2 have been calculated
using the corresponding apo(S) as input for the relation given by ETMC at these
couplings.

Altogether, we have simulated with three different pion masses. For the sake of
simplicity we have introduced the naming scheme presented in table 5.2. The masses
316(16), 398(20) and 369(24) MeV have been labelled A, B, C respectively. For all
masses we have results on N, = 12, for the intermediate mass there is also a simulation
at IV, = 10 available.

5.3.2. Signal Extraction

For the susceptibilities and variances of our data, we find the signals for the transition
to be rather weak and noisy, which is probably related to the fact that we are merely
probing a very soft crossover in our range of pion masses. To illustrate this assumption,
we show a set of scatter plots for the Polyakov loop along with histograms of Re(L)
in figure 5.7 for run A12 that indicate a very smooth transition. Scatter plots and
histograms for the remaining runs as well as additional information are collected in
appendix D.2.

In order to get an estimate for the pseudo-critical coupling ., we fit the peak of the
susceptibilities to Gaussians. Although the shape of the critical region for the different
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Figure 5.7.: Scatter plots for Im(L) vs. Re(L) (left) and histograms for Re(L) (right) from
run Al12. From top to bottom we show the plots for the smallest value of 8 in
our simulation, 3.900, one close to the identified transition, 3.960 and the largest
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Figure 5.8.: Comparison of pseudo-critical couplings obtained from the various observables
and autocorrelation times for runs with different pion masses.

observables cannot be expected to be Gaussian, we have chosen this procedure in order
to provide a clear definition of the peak position. The fitted error on [, definitely
underestimates the true uncertainty. Neither is the Gaussian width a good estimate
which is due to the background. In order to still get conservative error estimates from
our data, we use the width of the fitted region in each case. In this context it is important
to note that the scale setting causes the major fraction of the final error on 7,. This
is because of the interpolation of the lattice spacing rather than employing dedicated
zero temperature runs at the given S.. In practice, we have included between 3 and 8
points for the fits. The quality of the signals differs strongly for the different quantities
and simulation runs. We crosscheck the values that we obtain from the observables by
corresponding fits to their integrated autocorrelation times, which similarly show peaks
in the transition region due to maximal fluctuations of the system.

All plots for real part of Polyakov loop and <@¢> are collected in appendix D.3. The
obtained pseudo-critical couplings and corresponding temperatures have been collected
in table 5.3. Although we are testing a crossover so that the signals cannot be expected
to agree among each other, we find a good agreement between our different estimates
for the pseudo-critical couplings, see also figure 5.8.

Since the runs B10 and B12 share a common pion mass and differ only by N, they
can be used in order to assess the magnitude of cutoff effects. We show the obtained
pseudo-critical temperatures in figure 5.9. For better visibility, the points from different
observables at the same lattice spacing are slightly shifted. The N.-dependence of T,
appears to be contained within the rather large error bars. This indicates that the size
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5. Thermal Transition for Two Quark Flavours

QUANTITY RUN N, B, T. (MeV)
x(Re(L))  A12 12 3.960(15) 225(7)
x(P) Al12 12 3.959(15) 225(7)
g (Re(L)) A12 12 3.965(30)  227(12)
Tint (P) A12 12 3.956(23) 224(9)
0%, Al2 12 3.940(23)  218(9)
Tint (V) A12 12 3.960(15) 225(7)
x(Re(L)) B10 10 3.893(13) 244(7)
x(P) B10 10 3.881(15) 239(9)
mins(Re(L)) B10 10 3.890(13) 243(8)
Tint (P) B10 10 3.881(05) 239(7)
a%w B10 10 3.880(05) 239(7)
x(Re(L))  BI12 12 4.021(13) 247(7)
x(P) B12 12 4.014(05) 244(5)
ming(Re(L)) B12 12 4.006(07) 241(5)
Tint (P) B12 12 4.015(08) 244(5)
a%w B12 12 4.015(05) 245(5)
Tint (V) B12 12 4.018(08) 246(5)
x(Re(L))  C12 12 4.043(20) 255(9)
x(P) C12 12 4.027(20) 249(9)
mins(Re(L)) C12 12 4.031(30)  251(13)
Tint (P) C12 12 4.026(20) 249(9)
a%w C12 12 4.030(20) 250(9)

Table 5.3.: List of all pseudo-critical points from our data.
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Figure 5.9.: N .-dependence of pseudo-critical temperature obtained from the fluctuations of
the three observables for B10 and B12. The points for the chiral condensate and
the plaquette have been shifted by 40.0002.

of cutoff effects in our simulations is small compared to the combined uncertainties from
statistics and scale setting.

5.4. Transition in the Chiral Limit

We now turn to the analysis of our data with respect to the nature of the phase transition
in the two flavour chiral limit. We check whether our data are consistent with any of
the possible transition scenarios. Note however, that chiral symmetry for Wilson type
fermions is broken explicitly so that any universal behaviour that we can hope to observe
is continuum behaviour modified by lattice artefacts. This immediately emphasises the
need for fine lattices. Moreover, our lattice simulations are performed with finite volume
and thus outside the thermodynamic limit in which the universal scaling description
strictly holds. Nevertheless, with box sizes L 2 2fm, we have reason to expect finite
volume corrections to be subleading. In any case, one will finally need to accompany our
study by finite size scaling analyses and more severe checks on the size of discretisation
errors. All this is beyond the scope of our present study which offers a first access to
this field of research with maximally twisted mass fermions.

In a first attempt, one can try and fit ! the values of T.(m,) to the scaling form,
equation (5.10). It has proven to be infeasible to determine the critical exponents from
a fit, see e.g. [79, 171]. This is true for our data as well so that we have to fix the
exponents to the given values and check the results for consistency. For 1/(50) we have
used 0.54 for the O(4) scenario, 0.64 for Z(2) and 1 for the first order case. For a first
order transition, there is no scaling in a strict sense, but 1/(5d) = 1 has been deduced to

'For the fits in this section which go beyond straight lines, we rely on the implementation of the
Levenberg-Marquardt algorithm by gnuplot [169]. For a general summary of least square fitting we
refer to [170].
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Figure 5.10.: Chiral extrapolation for T, (m). The fits assuming second order O(4) or first or-
der exponents are based on the critical temperatures from the chiral condensate.
The Z(2) fit is based on all available data points.

mimic the correct behaviour [79, 171]. For the possible critical Z(2) point at finite quark
mass, we have to replace m, — m2 — mgw. Since the value of my . is not restricted by
our fits either, we have looked at two extremal situations: m, . = 0 and 200 MeV.

The resulting extrapolations for all scenarios are shown in figure 5.10. Obviously
our data are not capable of a clear separation of the different scenarios. Assuming
O(4) universality, we obtain a chiral critical temperature T, = 154(38) MeV. The other
possible universality classes lead to slightly different values. Most importantly, the
value for the first order fit, 7, = 191(23) MeV, seems to be slightly above the values
expected in other investigations [12]. But the extrapolation relying on the “first order
exponents” that we have applied for the sake of comparison since it has also been
introduced elsewhere [79, 171] should really be questioned as we have — based on the
smoothness of our signals — strong reason to think that our pion masses fall into the
crossover regime and thus, before entering the first order region, the critical end point
has to be encountered. Note that the existence of a critical point at finite mass also
renders a chiral extrapolation impossible.

For fixed N, = 12, assuming to be close enough to the continuum, we can also apply
equation (5.9) with external field h = 2aug, see figure 5.11. A fit to all three masses is
not feasible with O(4) coefficients indicating large scaling violations in the heaviest mass.
Restricting to the two lighter masses, there are as many data points as fit parameters.
However, we can still estimate

Beniral (Nr = 12) ~ 3.63 . (5.24)

This corresponds to T,.(m, = 0) ~ 138(54) MeV where the errors are due to the extrap-
olation of the scale setting to very small values of 3. In any case, this value of T, is
consistent with the one obtained from the previous fit. We use that estimate for Seniral
to compare our data with the magnetic equation of state (5.5), where we follow previous
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Figure 5.11.: Critical couplings (3 as function of the external field h = 2auo at N, = 12. The
fit includes the couplings obtained from the variance of <1/)1/1> for the two lightest
masses, A12 and B12.

studies [161, 151, 105|. Including possible scaling violations [105] and printing all fit
parameters explicitly, we have

<E¢> = hl/écf(dT/hl/(éﬁ)) +a;th +bith+ ... . (5.25)

We have fitted our data by using either one or both violation terms. The data set
C12 cannot be accommodated by any of these possibilities, leading to large values of
x2. On the other hand, fits to A12+B12 are feasible in all combinations, giving a Behiral
consistent with our previous determination. The fits work with either correction term
alone, but when both are admitted a; = 0 within errors, see table 5.4. In figure 5.12,
we show a combined fit to A12 and B12 fixing Benirar = 3.63 from our independent
determination and a; = 0 with y?/dof = 0.52. The fact that these fits are not able to
include the C12 data indicates a mass which is outside the regime where the leading
corrections, equation (5.25), are applicable. This is in agreement with figure 5.11, where
also the heaviest point cannot be included in the scaling description. Furthermore,
the relation for the pseudo-critical coupling, S(h), has been derived using a double
derivative,

9*xo (2(h,7)))
ohoT
and thus from the leading corrections of equation (5.25) only the term proportional to a;
contributes to violations in B(h). As we expect a small a; from our fits, this observation
strengthens the confidence that the two lighter masses are properly discribed by the
scaling fit as shown in figure 5.11, and that the point for the heaviest mass, C12, suffers
from higher order violations.

Since we are in a range of the scaling variable 7/hY/(%%) where the scaling function is
rather flat, judgement on whether there are additional violations of the O(4) behaviour
or not is difficult. Repeating this exercise for the first order scenario with endpoint does

=0, (5.26)
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Figure 5.12.: Scaling for the bare (¢1)) for the data at N, = 12 and modelling of scaling
violations. The fit shown is for the combined A12 and B12 data.

ID data Behiral c d ay b1 x?/dof
1 AL2 353(13) 0.149(72) 0.354(45) 0 0 0.44
2 B12 3.38(19)  0.24(20)  0.38(14) 0 0 098
3 C12 4(18)  0.2(18.1)  0.5(12.2) de+8
4 Al24B12  3.29(2) 1(2)  1.0(1.3) 0 0 18
5 Al2/Bl2 3634 037(62) L5(L.7) 0 122 055
6  Al124BI2  355(4) 0.8(1.6) 16(21)  1.2(3) 0 0.8
7 AI24B12  367(7)  0.4(1.3) 2(5) -0.79(99) 1.8(7)  0.52
8  Al24BI2 3.63  0.6(1.3) 21(34)  -03(5) 14(3)  0.52
9 A124BI12 3.63  0.4(4) 16(1.2) 0 119(2)  0.52

10 A124BI2 3.63  0.7(1.7) 23)  1.97(4) 0 13

11 A124+B12+C12 3.63 0 Se+7

12 Al12+BI12+C12 3.63 Se+7

13 A12+B12+C12 Se+7

Table 5.4.: Fits for the (violated) scaling function cf(dz) + a;7h'~/% 4 byh'~1/%. Numbers
in bold face have been fixed before fitting. The C12 data cannot be brought into
agreement with the scaling function. If the violating terms b; and a; are omitted,
the scaling violations seem to be absorbed by Bcpirai that becomes considerably
smaller (see fits 1,2,4). We cannot disentangle the terms b; and a; but the fits 7
and 8 where both parameters are free seem to suggest a; ~ 0.
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5.5. Strength of the Anomaly

not give further insight as the combinations of exponents are too close. Therefore our
data are fully consistent with the O(4) scenario, but do not rule out the possibility of
the first order case. This would require drastically smaller pion masses combined with
finite size studies, as the chiral scaling seems to be valid if m, < 300 MeV.

~

5.5. Strength of the Anomaly

Pisarski and Wilczek argued that the strength of the anomaly is driven by the instanton
density which vanishes for infinite temperature [41]. Thus the temperature scale at
which the axial symmetry is effectively restored needs not to be the same as for the
deconfinement or chiral transition. This interconnection between the nature of the
two flavour chiral transition and the strength of the anomaly has been demonstrated
in a model study [172]. As an indicator for the strength of the anomaly, a recent
work [173] has calculated the parametric form of the splitting of pseudo-scalar and
scalar screening masses at asymptotically large temperatures, AM/M ~ (Aqcp/T)%,
with bo - (11Nc - 2NF)/3

In any case, it is not known a priori whether the axial anomaly in the range of T, is
effectively restored or not. Existing investigations [150, 174, 175] find a non-restoration
of the axial symmetry near T.. However, none of these studies has complete control of
systematic effects.

Screening masses have been used as an observable for finite temperature QCD for
a long time [176]. Our findings are in agreement with different recent studies on the
subject [177, 178, 179, 180, 181, 182] that usually focus on the behaviour in a larger
temperature interval extending into the QGP phase. Here we look at the screening
masses and their splittings close to T,. We start by introducing the screening mass
correlators and corresponding quantum numbers. We then continue with a discussion
of the properties of free screening masses in section 5.5.2 before we turn to the results
from the (S-scan at large mass, m, ~ 1GeV. Finally, we present the results from our
simulations with lighter pion masses aiming to identify the strength of the anomaly
towards the chiral limit in section 5.5.4.

5.5.1. Screening Correlators

Screening masses are defined as the inverse length scale controlling the spatial damping
of corresponding medium excitations, i.e. they are determined from the asymptotic
behaviour of suitable meson correlators,

Cr(z) ~ e Mserz (5.27)

for large enough spatial separation z. Because of the periodicity of the lattice, this
expression can be related to a hyperbolic cosine via

Cp(z) ~ e Mserz o= Mser(L=2) — 9o=MserL/2 o6 (Mo (2 — L/2)) . (5.28)

From equation (5.27) one can define an effective mass,

Mefr(2) = %log <%> , (5.29)
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5. Thermal Transition for Two Quark Flavours

with
Mmefi(z — 00) = Mger (5.30)

For lattice simulations at finite volume, one also has to consider the periodic boundary
conditions for the effective mass. Therefore, a suitable definition for a local effective
mass,
C(z+a)  cosh (meg(2)(z +a— L/2))
C(z)  cosh(meg(2)(z — L/2))

needs to be inverted numerically.

We consider flavour non-singlet correlators in this work, i.e. all correlators are of the
form

(5.31)

Cr(z) = (Y ()T (2)d (0)T+4(0))
= (@(2)ld(2)d(0)T'u(0)) | (5.32)

which correspond to the charged mesons formed by up and down valence quarks.
The computational advantage of flavour-multiplet correlators is the absence of quark-
disconnected contributions. These disconnected pieces render a numerical evaluation
very difficult due to large statistical noise. For details of the correlator calculation, we
refer to [86]. The correlators can be related to the up-quark propagator S, alone rather
than to both up and down propagator,

Cr(z) = Tr <Su(0,x)l’755£(0,x)75f) , (5.33)

where we have made use of the relation Sy(z,y) = V554 (y, z)7s as suggested in [86].
The T refers to the spinor and colour components.

The naming scheme for correlators — together with the experimentally determined
vacuum mass — is given in table 5.5 including flavour singlets. The scalar and pseudo-
scalar quantities of the same flavour content are partners by means of axial U(1) trans-
formations. Therefore, their non-degeneracy signals the axial anomaly, i. e. the breaking
of Ua(1).

NAME oPERATOR  T¢(JPICl)  mass (MeV)
t 5T T 17(07) 139.57018(35)
70 Y573 17(0=%)  134.9766(6)
n 75 0T (0~F)  547.853(24)
o, fo(600) 1 0t (0*H) (400-1200)
(a®, a®) (73, 77%) 1=(0%) 980(20)
ot YiyaTE 1H(177) 775.11(34)
b Y YaYsTE 1t(177) 1229.5(3.2)

Table 5.5.: Naming scheme for meson states. The operators are to be understood in the
physical basis. The masses are the lightest masses in the corresponding channels,
taken from [39].

Besides the screening masses, extracted from asymptotic behaviour, also the correla-

tors themselves are indicative of the axial anomaly. In order to avoid systematic uncer-
tainties from the screening mass fits, it is thus advantageous to take the susceptibilities
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5.5. Strength of the Anomaly

or integrated correlators into account as well,

xr=> Cr(z), (5.34)
z#0

where we neglect the contribution at zero distance which is dominated by contact terms.

5.5.2. Free Screening Masses

Screening masses from the free theory are expected to be realised for asymptotic tem-
peratures T' — co. Besides providing a limiting value they can also be looked at to learn
about volume and cutoff dependence.

As for infinite temperature there are no interactions, screening masses from all chan-
nels are expected to be degenerate. This is illustrated by figure 5.13, where free cor-
relators for the pseudo-scalar and scalar flavour non-singlet channels are shown. They
have been calculated by a numerical inversion of the propagator with respect to the free
gauge field, U = 1.

1F % :
8 8
0.01 ¢ ;a;% %%g 1
BB BB
0.0001 t 5 i, e
s By K E 5
18-06 | @6 %%%%EE%%EE% 6@ i
1e-08 | i o .
& &
le-10 % % 1
& &
le-12 + ps, N=2 x% ;ﬁ i
» Ni= X 3
le-16 | sc,N;=12 - .

0 5 10 15 20 25 30 35

Figure 5.13.: Free pseudo-scalar and scalar correlators for N, = 32, N,=2,12.

The value for the free continuum meson screening mass was first conjectured by
Eletsky and Ioffe [183]. A complete continuum calculation was then given in [184].
Accordingly, the free screening mass is defined by

D(p1 =p2 =0,p3 =iMser/2,ps =7T) =0, (5.35)

where D(p) is the propagator’s denominator for the respective fermion formulation under
consideration. The factor 2 in the above relation can be interpreted physically from the
fact that the screened mesonic degrees of freedom are constituted by two valence quarks.
We give a calculation for the lattice in appendix C.2 which is based on mapping the
integration variables onto a unit circle. By inspection of the pole structure, we can then
relate the correlator to an exponential decay governed by a screening mass in accordance
with equation (5.35).
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5. Thermal Transition for Two Quark Flavours

For free staggered fermions, the leading order cutoff effects must be of O(1/N2).
Accordingly, the screening mass has the form

m2
( scr stagg 2 m2 1 277 + Tff + 277 q 1
+ - \/W ERaE (5.36)

where my is the free quark mass. Wilson fermions, on the other hand, suffer from O(a)
effects that are introduced by a finite mass. Taking into account a possibly twisted mass
with mg = pu? + m3, the screening mass is given by

—1/2
Meer)™ _ | 5 mi (5, M momyg 1
T T2 T2 T3 N,

-3/2 2 4
T2 T6 '

2\ ! 2 2 22 2.2
7 m mom mgm 1
+<7r +—> ( el 0 q) IR

QN

o |

T2 12 48 =~ 48T? 272 T4

Thus at maximal twist, i.e. my = 0, the quantity is O(a)-improved,

2\ 2 2 2,2
2, My T 4 Mg | My™ 1
_ iy . (538
(” +T2> (12 T®twrE T Nt (5:38)

From the above formulae it can be seen that the leading discretisation artefacts of all
considered lattice formulations are negative, i.e. — at least in leading order and non-
interacting limit — the lattice screening mass underestimates its continuum counterpart.
Contrary to that, perturbative continuum calculations [185, 186| indicate a positive
contribution introduced by interactions.

Another source of deviation from the continuum interacting value stems from the finite
volume used in lattice simulations. To get an estimate for this effect, we have obtained
values for the free screening mass on lattices of different extent with a maximally twisted
mass propagator using ug/7 = 0.006, see figure 5.14. In this case we have used the
effective mass as defined in equation (5.29) at z = L/4 to determine the screening
mass. Whereas we do not find promiment plateau behaviour for small lattices, we find
agreement between the effective masses from equation (5.29) and equation (5.31) at
the given position. From Florkowski and Friman [184] we know that the asymptotic
behaviour of the massless meson correlator at high temperatures is given by

1
C(z) ~ ;e_%TZ (1+27T%) . (5.39)

This ensures the correct infinite distance behaviour, i.e. meg(z — o0) = 277. How-
ever, for actual simulations, one has to deal with a finite extent in z-direction. If the
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Figure 5.14.: Free screening mass as a function of the lattice spacing squared, ~ 1/N2, for four
values of the aspect ratio. The data have been obtained by numerical inversion of
the free propagator, the solid lines consider all cutoff effects whereas the dashed
lines only consider the leading 1/N2 contributions.

screening mass is obtained from the effective mass at a given distance, z = L/n, the dis-
crepancy can be calculated, cf. [177]. For this purpose, one has to expand the difference
meg(L/n) — 27T for a small inverse spatial extent finding

Mer Mer N,
—_— = — +n— 4
n (5.40)

V—oo

for massless quarks.

In figure 5.14 and 5.15 we show corresponding fits to the free screening masses. Fig-
ure 5.14 shows the N -dependence at fixed aspect ratio. For the lattice spacing depen-
dence we use the complete functional form as implicitly defined by equation (5.35) in
order to take points at all lattice spacings into account. The thinner dashed lines corre-
spond to the formula up to O(1/N?). They seem to be an appropriate description of the
data points for lattices with N, = 6. This situation is somewhat better than for the free
pressure, discussed in section 4.2, where finer lattices are needed to achieve a?-scaling.
The only free fit parameter left is the coefficient of the contribution linear in 1/N,, see
equation (5.40). According to the above considerations, this parameter should be equal
to 4, we actually fit 4.362(22). For this fit we have included all points but the one at
N, = 4 with aspect ratio 2 that is clearly out of the range of any approximation.

The discrepancy of approximately 9% between the expected value and the fitted
one might be explained by finite mass effects which are not included in equation (5.40).
However, modifications due to a finite mass p9/7 < 7 should be rather small. Therefore,
it is more likely that we see higher orders of the double expansion in 1/N; and the aspect
ratio.

Figure 5.15 shows the volume dependence at fixed lattice spacing N, = 4. As before,
the point with an aspect ratio of 2 has been omitted from the fit. The remaining points
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Figure 5.15.: Free screening mass as a function of the inverse spatial extent for N, = 4 and
linear fit to all points except the one for the smallest volume.

give a linear behaviour with fitted ordinate 5.28812(21) and slope 4.30(11) - N,. The
slope is off the naive prediction of 4 but is in fine agreement with the previously obtained
value for the data at fixed aspect ratio.

In conclusion the leading order cutoff and finite volume effects for free screening
masses can be modelled,

1

1 1 N
M. = Myer(0,0) + (1) — — C(g)~—= ,
scr ( > SCI‘( ) (L) N, (a) Ng

NN, (5.41)
with positive coefficients ¢(z, ,) that depend solely on the fermions’ discretisation scheme
— that needs to be O(a)-improved, of course.

Note that contrary to the above findings, one expects exponentially suppressed finite
volume effects for the zero temperature interacting spectrum [133]. However, the cor-
responding proof is based on the calculation of zero temperature scattering amplitudes.
The linear dependence of free screening masses has also been found in [177] where also
a restoration of the exponential behaviour is observed when approaching 7, from above.
Therefore we do not expect finite volume effects as severe as in the free case for our
dynamical screening masses at T' ~ T.

5.5.3. Large Mass Regime

We have obtained first results for dynamical screening masses from our simulations at
larger masses, m, ~ 1GeV, where simulations are rather cheap, cf. [28]. Due to the
large quark mass, the estimate for the conversion to physical units using ETMC data
is not very reliable. For apg = 0.04 the transition is found at 8. = 3.875(13) which
roughly corresponds to a pion of 1GeV and a temperature slightly below 300 MeV.
For the lighter apg = 0.025 the determination of 8. is more difficult because of lower
statistics. However, the transition appears to happen in the same S-regime.
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Figure 5.16.: Left: Behaviour of screening masses on a 162 x 8 lattice for ay = 0.04 at critical
hopping parameter. Right: Same as before for pseudo-scalar screening mass
only. The transition is located at . = 3.875(13).

Note that the determination of screening masses from the asymptotic behaviour at
such small volumes is not expected to work very well. However, we have found the
cosh-fits to give quite reliable results. Figure 5.16 shows the resulting behaviour of the
screening masses for aug = 0.04. As can be seen, the spin zero mesons behave quite
smoothly whereas the vector meson is rather affected by noise. Especially the charged
pion mass, which is shown in the right panel, indicates the transition very well.

Figure 5.17 shows the difference of scalar and pseudo-scalar flavour multiplet screening
masses for apg = 0.025 and apg = 0.04, i.e. a measure for the Ug(1) splitting. As
expected, the symmetry splitting is lowered for rising temperature. However, in the
transition regime it is clearly non-zero. Furthermore, the effect of reducing the pion
mass by approximately a factor 1/(0.025/0.040) ~ 0.79 seems to be negligible.

In conclusion, these results can already be taken as a hint that the U4 (1) anomaly is
not restored at the transition temperature. Of course, the large mass ~ 1 GeV prevents a
stronger statement. Accordingly, we present the results based on our runs A12, B12 and
C12 in the following section aiming at the chiral limit. The most important observation
of this section is certainly the very weak mass dependence.

5.5.4. Towards the Chiral Limit

Our runs at pion masses below 500 MeV (A12, B10, B12, C12) form the basis for our
investigations of properties towards the chiral limit. Unfortunately, not always large
statistics from the existing tmfT configurations are available for the determination of
screening masses. Therefore, the necessary fits are affected by rather large uncertainties.
We have found that applying the cosh-relation given in equation (5.28) to our data with
fit ranges from an optimisation of y2/dof leads to mass values which are systematically
about 10 % larger than the results based on the long distance behaviour of the local
effective masses, equation (5.31). We attribute this to the rather large error bars due
to small statistics. This implies that the cosh-fit appears to be reliable even in z-ranges
where the description by a single exponential decay is no longer valid. For this reason,
we have resorted to determine the screening masses from fits of a constant to the tails of
the local effective masses. Figure 5.18 gives an example for our run A12. The left hand
panel shows the fitted constant whereas the right hand side presents the application of
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Figure 5.17.: Difference of scalar and pseudo-scalar flavour multiplet screening masses for
apo = 0.025 and app = 0.04 on a 163 x 8 lattice.
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Figure 5.18.: Comparison of local effective masses and correlators for three values of the lattice
coupling in run A12.

the fit result to the cosh-behaviour (with an additionally determined prefactor for the
cosh).

All fits are collected in appendix D.4. Nevertheless, the possibly large intrinsic un-
certainties from the available data samples — also reflected by poor values of y? for
some of the screening masses — must be considered before drawing strong conclusions
from those results. We give an example for scalar and pseudo-scalar charged screening
masses in figure 5.19, left. Especially the large fluctuations of the scalar mass indicate
the problematic situation for the fitting procedure. Note that a firm determination of
the scalar mass has not been possible in all cases.

The right hand side of figure 5.19 shows the pseudo-scalar screening mass for the two
runs B10 and B12. In the (pseudo-)critical region, these masses are expected to show
an increase which we indeed observe. From comparison of the B10 and B12 data, it is
also clear that the discretisation errors are smaller than the combined statistical and
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Figure 5.19.: Screening masses for different runs. We have neglected the uncertainty in T
from the scale setting for these plots. Left: Charged scalar and pseudo-scalar
masses for A12. Right: Charged pseudo-scalar mass for B10 and B12.
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Figure 5.20.: Comparison of local effective masses for the vector and axial vector channels.
Left: A12, 5 = 3.960. Right: B12, 8 = 4.000.

systematic errors. For the following we concentrate on the scalar and pseudo-scalar
masses which are important to quantify the axial anomaly. For the vector and axial
vector channels, we find degeneracy close to and above T, see figure 5.20 for examples
at S-values close to 5. for A12 and B12.

The splitting of the pseudo-scalar and scalar screening masses from runs A12, B12 and
C12 is shown in figure 5.21, left. Not surprisingly, the results are very noisy. However,
comparing to figure 5.17 the splitting seems to be slightly enhanced for the smaller
masses even though the lattice spacing is different. In order to get more stable results,
we consider the integrated susceptibilities for the screening correlators as defined in
equation (5.34). For those quantities no fits are needed. Hence the main source of
uncertainty for the screening masses is discarded. Consequently, the splitting of the
scalar and pseudo-scalar susceptibilities as shown in figure 5.21, right, gives a much
more coherent picture than the mass splitting does.

For both the splitting of screening masses and susceptibilities, we have determined
the value in the transition region. For this purpose we have used the pseudo-critical
temperatures related to o2 as collected in table 5.3. In figure 5.21, this is indicated

by the correspondingly shaded areas. The result is shown in figure 5.22. Whereas all
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Figure 5.21.: Strength of the anomaly as a function of temperature determined from the split-
ting of screening masses (left) and their susceptibilities (right) for runs A12, B12,
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Figure 5.22.: Strength of the anomaly as a function of pion mass determined from the splitting
of screening masses (left) and their susceptibilities (right).

that can be read off from the mass splittings is that they seem to be more or less
consistent within error bars, the splitting from the susceptibilities exhibits an increase
towards smaller pion masses. This is an important observation indicating that the axial
anomaly might not be negligible in the chiral limit.

Concentrating on the susceptibilities, we accompany our previous plots by the ratio
Xr/Xa, Which approaches 1 for vanishing anomaly. Figure 5.23, left, presents the ratio
for all of our runs. The data for B10 are more scattered than those for the runs at NV, =
12. The conclusions for N, = 12 are the same as those from figure 5.21. Furthermore,
the lattice spacing dependence judged by runs B10 and B12 again appears to be small
compared to other uncertainties. Note however, that an extrapolation to vanishing
anomaly — i.e. unit ratio — in the continuum limit is not excluded as can be estimated
from figure 5.23, right. Especially, the B10 point has too large errors to pose a strong
constraint on the extrapolation.

The remaining question is whether our numbers for the U(1) splitting have to be
considered large or small. There is no unique answer and different studies have proposed
one interpretation or the other, see e.g. [150] and [187] respectively. Chandrasekharan
and Mehta have found in their model study that the anomaly has to be quite strong in
order to change the nature of the transition from first to second order [172], possibly
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Figure 5.23.: Ratio of the pseudo-scalar and scalar susceptibilities. Left: Temperature depen-
dence for all available pion masses. Right: Lattice spacing dependence for the
intermediate pion mass (runs B10 and B12).

larger than in QCD. However, as they argue themselves, the strength of the anomaly is
calculated from non-critical scales so that a direct comparison to QCD is not admissible.
Altogether, we interpret our findings, in particular the rising behaviour towards smaller
pion masses, such that the anomly might not be negligible in the chiral limit.

5.6. Summary and Discussion

In this chapter we have presented the first simulations employing maximally twisted
mass fermions at finite temperature that aim to extract physical results. For all neces-
sary zero temperature information we can rely on ETMC [24]. Given their results, we
have interpolated critical hopping parameters, lattice spacings and pion masses in order
to set up scans in the lattice coupling § at maximal twist. These § scans have been
performed at N, = 12 for three pion masses in the range 300 < m, < 500MeV. For
the intermediate pion mass we have additionally simulated at N, = 10 which allows to
estimate that cutoff effects are smaller than our combined statistical and scale setting
errors. Altogether, we have designed a framework based on zero-temperature input from
ETMC that allows to perform Ny = 2 finite temperature simulations towards the chiral
limit with maximally twisted mass fermions.

It has to be mentioned that our values for the pseudo-critical temperatures are some-
what above those of comparable simulations with clover improved fermions by the
QCDSF/DIK collaboration [79, 80]. The source for this discrepancy remains unknown
but could be connected to remaining discretisation effects and uncertainties in the scale
setting. Note that there is already a difference by about 10 % in the Sommer parameter
ro from ETMC and QCDSF. In any case, the corresponding chiral extrapolations lead
to comparable results for the chiral critical temperature within errors. Furthermore,
the quality of signals for the pseudo-critical point seems to be comparable between the
clover study and our twisted mass simulations.

We have shown a first application of studies based on universal scaling for maximally
twisted mass fermions. Owur results indicate that the scaling window is not reached
before m,; < 300 MeV. Therefore, in order to uniquely determine the nature of the two
flavour chiral transition clearly much lighter pion masses are needed. Our data cannot

67



5. Thermal Transition for Two Quark Flavours

discriminate the different scenarios for the transition in the chiral limit. However, we
find that the scaling description with O(4) exponents causes less tension within our
data than other assumptions. The corresponding extrapolation yields a chiral critical
temperature T, = 154(38) MeV.

The apparent preference for the second order transition can also be found in our study
of screening properties. The determination of screening masses themselves has proven to
be very error-prone due to small data sets. But the splittings of the integrated correlators
might indicate that the strength of the anomaly is not negligible, even increasing towards
the chiral limit.

68
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In this chapter, we discuss the inclusion of heavier quark flavours. Relevant for the QCD
thermal transition is in particular the strange quark with a mass that is comparable to
the transition temperature. But also effects in thermal QCD caused by the charm quark
have been of some interest recently [188].

For twisted mass QCD the extension by two more flavours at once is natural as the
theory is formulated in terms of flavour doublets. Simply adding a copy of the action
for up and down quarks, equation (3.21), is not sufficient since a degeneracy of strange
and charm masses is not acceptable. However, the possibility to include a mass splitting
for the doublet partners has been known for some time [189].

Based on the existing zero temperature work by ETMC [24, 190, 191] we are in the
position to set up simulation runs at finite temperature with this so-called Ny = 24+1+1
twisted mass QCD. There are no dynamical simulations at finite temperature to report
on yet. However, in the following section, we collect the action and information available
from ETMC. In section 6.2 we then discuss the perspectives for finite temperature
simulations by looking at the behaviour of the free pressure and giving a possible set of
parameters.

6.1. Twisted Mass Action with Four Flavours

If we want to apply the ETMC results at zero temperature, the gauge action has to
be Iwasaki improved. This choice is motivated in order to minimise the size of the
unphysical first order transition plane in bare parameter space. The extent of this plane
imposes a lower bound on the quark mass that can be used with the twisted mass action.
The fermion action for the heavy doublet, xp, is given by

Sn=" " %u(x) (1 - xpDw (U] + 2ikpapost" + 2eppsm®) xa(z) . (6.1)

where we employ the same notation as ETMC [24]. The renormalised strange and quark
masses are determined by the heavy twisted mass u, and the splitting s,

(mstrange)R = ZI;I (,Uﬂ - ZP/ZSN(S) s (6.2&)
(mcharm)R = ZI;I (,Uﬂ + ZP/ZSN(S) . (62b)

Note that at tree-level p, = (mstrange + mcharm)/2 and ps = (mcharm - mstrange)/z-
Cichy and Luschevskaya have investigated O(a)-improvement at tree-level [192] and
found everything in accordance with the theoretical expectation. However, they suspect
that cutoff effects introduced by the large charm mass might be quite severe and depend
crucially on the chosen improvement condition for the critical hopping parameter.

ETMC have fixed the heavy hopping parameter s by the same condition as the light
one, Ky,

K = Ky = Ke(By ) 5 (6.3)
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Figure 6.1.: Tuning of strange and charm quark mass. (from [24])

i.e. both parameters are tuned to the same critical value by means of the PCAC relation,
equation (3.36). Unlike the two flavour case, one has to take into account the non-trivial
dependence on the light quark mass ;.

ETMC adjust strange and charm quark masses via the quantities 2m%( — m?gs and
mp. The D mesons are bound states of a charm quark and a light, up or down, partner
so that their mass is indicative for the charm quark mass. According to leading order
chiral perturbation theory, the ratio Qm%( — m%s ~ Mistrange 15 sensitive to the strange
quark mass, cf. (2.26) and (2.27). Figure 6.1, which has been taken from ETMC [24],
illustrates this procedure. As can be seen from the figure, the accuracy of the adjustment
differs among their data sets where the one at § = 1.95 gives the best agreement for the
whole range of pion masses.

Finally, the reported lattice spacings are [24, 191]

a(f =1.90) = 0.086 fm , (6.4a)
a( = 1.95) = 0.078fm , (6.4D)
a(B = 2.10) = 0.060 fm . (6.4c)

6.2. Four Flavours at Finite Temperature

In order to get an idea of cutoff effects for Ny = 2+1+1, one can repeat the calculation
of the free pressure, see section 4.2. We explain the adjustment of that calculation
for the mass non-degenerate case in the following section 6.2.1. A possible setup for
non-perturbative simulations is then proposed in section 6.2.2.

6.2.1. Cutoff Effects for the Non-Interacting Pressure

To calculate the free pressure, we need to deal with the fermion determinant. However,
since the fermion matrix for the mass split doublet is no longer diagonal in flavour space
the evaluation of In Z = In Det M is more complicated.

The fermion matrix for the heavy doublet can be written as

My, = My +iapeyst' + apst” (6.5)

using the parametrisation in which the quark mass mg appears rather than the hopping
parameter. My is the standard Wilson part of the matrix. The fermion determinant
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can then be expressed as

_ My +aps  iapsys
Det M}, = Det ( iapgys My —aps ) (6.6)

where the right hand side explicitly shows the flavour structure. Evaluation of equa-
tion (6.6) involves some non-trivial steps as explained by Frezzotti and Rossi [189].
Following their solution, we can compute the flavour determinant straightforwardly and
rewrite the remaining part in spinor space using the explicit form of the Wilson fermion
matrix in momentum space,

My — M, = 25,7, , (6.7)

so that one gets

21D, Yuaps
Det My, = (|Mw|? + (apto)? — 2NSDet<1+ — > 6.8
= (IMwl]* + (ape)” — (aps)*) | My |2 — (aps)? + (aps)? 08

The latter part can be expanded in powers of aus using
Det (1 4 2apusB) = e (es(1+2a1s B)) (6.9)
with .
o lpMPYM
[Mw |* = (aps)? + (apq)?
Finally, the determinant can be expressed as

B

N,
Det My, = (|Mw|* + (apq)? = (aps)?)

pQ

N /2
(IMw[* + (apo)? — (aué)2)2> '
The pressure for a mass non-degenerate doublet is accordingly given by

1 dp 1
= —N,N, —
P=5%s ‘3/(277)3NTH

- <1+4a2,u§ (6.11)

N,—

1
I (1M + (apo)® — (ass)?)’ +4239%)  (6.12)
=0

if the proper vacuum subtraction is taken into account.

This relation can be used to numerically integrate the free pressure to all orders of
the lattice spacing or to perform the analytical expansion for small 1/N; in the sense
of [143]. The needed dispersion relation follows from the argument of the logarithm as
this is essentially the diagonalised inverse fermion matrix. As needed, two branches can
be identified, that correspond to the strange and charm dispersion relation, respectively,

E* = By +aEj) + ’Ej5 + ... . (6.13)
At maximal twist, to O(a") and for p = 0, this is simply

E(JB) = Wo + 15 = Mcharm » (6-143)
E(o) = llg — 1§ = Msgtrange - (6.14b)
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Figure 6.2.: Free pressure normalised to the continuum value for a twisted mass quark doublet
with different mass splittings. Left: Light u,/7 = 0.00375. Right: Heavier
po /T = 0.75.

For the following, we concentrate on maximal twist to simplify notation. The dispersion
relation to the first orders in the lattice spacing is then determined by

Ejg) = VP? + (ho £ 15)? (6.15a)
+
B =0, (6.15b)
1 (1 41 1, 1 2
+ _ - - + - 4~ 4 12 +
B = 285\ 12 (E<0)) +3;pﬂ 4P TP (E<0))
y M <Ei>2— 2\’ (6.15¢)
REE 1, \\7(@) TP ) '

(0)

The pressure for a mass split quark doublet at maximal twist, resulting from numerical
integration, is plotted together with the analytical O(1/N2) prediction in figure 6.2.
A light average quark mass, u,/T = 0.00375, is shown on the left, a heavier one,
to/T = 0.75, on the right. As can be seen, additional cutoff effects due to the splitting
are mostly negligible. Only in the heavier example and for the coarsest lattice, some
deviations can be identified. This is in accord with the leading corrections for the O(a?)
artefacts from ps with p = 0, which are proportional to mg,u(;. These corrections are
very small so that they are not visible for the analytical prediction shown in figure 6.2.

6.2.2. Simulation Setup

It is now important to formulate sets of parameters for possible simulations with Ny =
2 4+ 1+ 1 maximally twisted mass fermions. Since the critical hopping parameter has
to be considered a function of both the coupling # and the light quark mass y;, an
interpolation for a scan in 3 is affected by larger uncertainties than in the two flavour
case. For a first exploratory study it is thus preferable to work at one of the S values
used by ETMC only and perform scans in ;. Choosing § = 1.95, the tuning to the
physical strange and charm masses is more accurate. One then has [24]

apy =0.170 and aps = 0.135 (6.16)
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Figure 6.3.: Light quark mass dependence for pion mass (left) and critical hopping parameter
(right) at 5 = 1.90. Linear fits are shown.

apy My (MGV) Ke
0.00250 268(3) 0.161242
0.00275 281(3) 0.161241
0.00300 293(3) 0.161241
0.00325 305(3) 0.161240
0.00350 317(3) 0.161249
0.00375 328(3) 0.161239
0.00400 339(3) 0.161239
0.00425 349(3) 0.161238

Table 6.1.: Pion mass and critical hopping parameter for several values of the light quark mass
w as determined from our fits to the ETMC data at 8 = 1.95 [24].

with a = 0.07775(39) fm, where the lattice spacing is determined by ETMC from the
combined data at S = 1.90 and 1.95.

For such a mass scan, only interpolations for the pion mass and the critical hopping
parameter as functions of u; are needed. As is shown in figure 6.3, linear interpolation is
sufficient for the range of quark masses under consideration. The fits shown correspond
to linear functions,

Ke(p, B = 1.95) = by — myapy , (6.17a)
(amw)z(/‘l,ﬁ = 195) = Crapy , (6]_7b)

with b, = 0.161247, m,, = —0.002 and ¢, = 4.45(6).

With the above information, it is possible to identify promising simulation points.
Table 6.1 gives an overview of possible pion masses and critical hopping parameters for
a range of light quark masses. At the chosen value, 5 = 1.95, a lattice of size N, = 12
corresponds to a temperature 7' = 212(1) MeV so that, judging from the T,.(m,) for
Ny = 2, one might expect to find the thermal transition in the accessible range of pion
masses.

Finally, we suggest N, = 32 or 36. With N, = 36, the aspect ratio would be 3 and
mrL 2 3.8 so that finite size artefacts should be under control. Given the necessary
computing time, the proposed simulations could be performed with the existing public
twisted mass code [129].
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7. Conclusions and Research
Perspectives

This thesis provides the first application of twisted mass lattice QCD to thermal systems
of strongly interacting matter. We have worked out the properties of these lattice
fermions at finite temperature and demonstrated their applicability to thermal QCD by
investigating the two-flavour thermal transition. Finally, we have also argued for the
extension to the case of Ny =2+ 1+ 1.

After a summary of known properties of QCD in the continuum we have introduced
the lattice framework spending particular interest on twisted mass fermions and their
known features. The most prominent reason to use twisted mass fermions is their
automatic O(a)-improvement at maximal twist. We have begun the presentation of our
results with chapter 4 where we study properties of the lattice fermions with twisted
mass at finite temperature. The roots of that chapter’s contents date back to the time
before this thesis. However, crucial results and insights have been obtained as part
of this work. On the one hand this concerns the non-trivial phase diagram of twisted
mass fermions in bare parameter phase space. The bulk transitions already present
in the vacuum are accompanied by the thermal transition which appears in form of a
conical surface that wraps around the chiral critical line of hopping parameters. We
have revealed this structure, which had originally been motivated by Creutz, by means
of numerical simulations and comparison to chiral perturbation theory predictions for
lines of constant pion mass. On the other hand, we also discuss our investigations of
the pressure in the weakly interacting limit in chapter 4. The main contribution by this
work has been the analytical calculation of O(a) and O(a?) effects for the free pressure
at a finite mass. By comparison of these results to the numerically integrated lattice
pressure it has become clear that a?-scaling is not present before N, > 10. These findings
are supplemented by the O(g?) corrections obtained from numerical integration which
show qualitatively comparable behaviour. Interesting to note is furthermore that the
differences between the fermion discretisations to leading orders in the lattice spacing
seem to be rather small.

In chapter 5 we turn to the physics of the thermal transition for Ny = 2. We have
performed simulations for three pion masses in the range 300 MeV < m, < 500 MeV.
The scale setting and tuning to maximal twist have been achieved by interpolation
of ETMC data. This procedure saves a vast amount of computing time, of course.
Signal extraction from the different observables — real part of the Polyakov loop, chiral
condensate and plaquette — has proven to be rather difficult. We attribute these
difficulties to the crossover nature of the transition in our mass range. However, beyond
the level of single observables, i.e. when comparing several signals at a time, we have
strong confidence in the reliability of our (pseudo-)critical temperatures. For future
projects, our experience with signals of Wilson type fermions strongly recommends to
study several observables from the beginning and not to perform too large leaps at once
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when changing parameters such as the pion mass or lattice spacing.

Given our values for the pseudo-critical temperature, we have tried to extrapolate to
the chiral limit based on the scaling formula (5.10). An unambiguous discrimination of
the nature of the chiral transition from the difference in the critical exponents has not
been possible. This is not too much of a surprise since this kind of analysis has proven to
be difficult in earlier studies with different types of lattice fermions as well. In the end,
the critical exponents are too close in order to draw definite conclusions on a firm ground.
However, our data seem to prefer the O(4) scenario if we compare our temperatures to
other results. We then get a chiral critical temperature T, = 154(38) MeV. The task
for future work will be to decrease the uncertainty of that number. On the one hand,
one needs to reduce the sources of uncertainty for the pseudo-critical temperatures at
finite pion mass. Besides the determination of the critical couplings themselves this
particularly requires an improved scale setting. This can be achieved by dedicated zero-
temperature runs at the critical couplings so that the interpolation of ETMC input is no
longer needed. On the other hand one needs to include lighter pion masses into the study
since this leads to a stronger constraint of the fits. Indeed, by inspection of figure 5.10,
my ~ 200 MeV might be necessary to discriminate the different scenarios. For twisted
mass fermions this pion mass seems to be very ambitious today. However, given the
ongoing increase in computing power, simulating pions at 200 MeV is not completely
out of bounds.

A complementary approach to the chiral limit is opened by the magnetic equation of
state, (5.5), which does not necessarily need a priori information of critical points. In
principle, a fit to a number of free parameters, including the chiral critical coupling, is
sufficient. Our inspection of this route has shown that we need to include leading orders
of scaling violations. Accordingly, our masses are still to be considered large with respect
to the regime of critical scaling. Concluding our study of the magnetic equation of state,
we find again consistency with the O(4) scenario. Finally, one would like to judge from
the quality of the fits if the O(4) scenario is truly realised and other possibilities are
ruled out. However, keeping in mind that one also has to consider the Ising universality
class with exponents that differ by less than 20 % from the O(4) exponents, a final
statement would need an unprecedented level of accuracy. Nevertheless, this kind of
scaling study has appealing features and might even be generalised so to consider leading
order coefficients for the expansion in finite chemical potential (see [193]). In order
to improve this part of our work it is highly recommended to enlarge the range of
temperatures scanned for a fixed pion mass so that one maps out a larger section of
the scaling function. Moreover, for approaching the continuum limit and assessing
cutoff effects one should eventually apply the scaling study to the renormalised chiral
condensate. Since the necessary information might not be available from ETMC, this
also introduces the need for dedicated zero-temperature simulations as already suggested
before with respect to an improved scale setting.

Our study of the strength of the anomaly has applied screening observables, i. e. both
screening masses and the corresponding susceptibilities. The bottom line of this study
supplements our previous findings. The anomaly seems to be important at the critical
point and thus the O(4) scenario is favoured. Note however, that no measure for the
relative strength of the anomaly is available. What we can say is that the anomaly
towards the chiral limit even rises. Thus it is hard to think of it as being heavily
suppressed near T.. Whether this trend of a rising anomaly sustains, should also be
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investigated with smaller pion masses further lattice spacings.

Concluding our Ny = 2 scans, we stress that our pioneering study of thermal QCD
with twisted mass fermions has shown that this fermion formulation is indeed suited
for this kind of investigations. The explicit breaking of chiral symmetry is, of course,
a severe problem which however comes with the advantage of a firm theoretical under-
standing of the continuum limit. This is very different from staggered fermions which
have been predominantly applied up to the present. We think that our physical re-
sults are quite reasonable for the first application of a new type of fermions. We find a
chiral critical temperature in the expected range and observe behaviour which can be
explained by a second order transition of the O(4) universality class in the chiral limit.
Very promising is also that cutoff effects seem to be of an acceptable size, cf. figure 5.9,
i.e. almost negligible for our current uncertainties and still small for future work with
possibly reduced error bars.

Chapter 6 contains our suggestion for the application of Ny = 2 4+ 1 4+ 1 maximally
twisted mass fermions to thermal QCD. This setup is ultimately required for addressing
the physical point. Our calculation of the free pressure indicates that additional cutoff
effects due to the mass splitting might be rather unimportant for simulations and that
thus the observed behaviour might be comparable to the Ny = 2 case without further
complications.

Overall, in this thesis we provide an extensive study of twisted mass fermions at finite
temperature. Work on thermal lattice QCD with Wilson type fermions is very important
in order to solidate or revise the results obtained with staggered fermions. This is in
particular true as more and more lattice results are used for comparison with heavy ion
collisions and as an input to e.g. hydrodynamical descriptions of the QGP. The quality
of our results is comparable to current work using clover improved Wilson fermions and
our experience reported in this thesis will allow to continue and apply twisted mass
QCD to a number of physical questions at finite temperature and eventually even finite
chemical potential.
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A. Notations and Conventions

A.1l. Natural Units
We apply so-called natural units throughout this thesis, i.e. we set
h=c=kp=1, (A.1)

where all physical quantities are given by some power of energy, usually in MeV, accord-
ing to their mass dimension. This unit system can be related to the standard SI system
by introducing the corresponding values of the constants as quoted e. g. in [39],

h = 1.054571628(53) - 1074 Js , (A.2a)
c=299792458ms !, (A.2b)
kp = 1.3806504(24) JK~! . (A.2¢)

The only exception from natural units are lattice spacings which are usually given in
‘fm’. Calculating forth and back can be achieved with [39]

he = 197.3269631(49) MeV fm . (A.3)

A.2. Dirac Matrices and Euclidean Spacetime

The explicit choice of Dirac y-matrices is not important for this thesis. However, we want
to stress the difference between the matrices in Euclidean and Minkowski spacetime. In
Minkowski spacetime, following [32], the metric is given by

1 0 0 0
0O -1 0 0
0O 0 0 -1
and the Dirac matrices fulfil
{'Y;La%/} =29w , (A.5)
with {A, B} = AB + BA. Finally, 75 is defined via
v =iy (A.6)
Performing the Wick rotation 7 = —it, we have the Euclidean four-dimensional vector
rp = (v1, 22,73, 24) from the Minkowski vector zp; = (20, 2!, 22, 23) so that
ep|? = (25)u(rE)y = —leml® = —(@r)u(@m)" - (A7)
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The corresponding metric is simply

1 0 0O
01 0O
(6#«1/) - 00 10
00 0 1

and we have
{'Y;La 71/} = 25;w

for the Dirac matrices. The Euclidean 5 is given by

V5 = V1727374 -
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B. Thermal Transitions in the Bare
Phase Diagram

Table B.1 collects the resulting thermal transitions, i.e. the location in (k, ug)-space,
from Gaussian fits to signals in our data along with the quantity that gives the best
signal. For more details, see the published work [29].

I} Kt Lt ke(T =0) OBSERVABLE
3.75  0.1656(8) 0.005 0.1660 x(P)
3.75  0.1677(24) 0.005 |7 |?
3.75  0.1657(5) 0.007 x(P)
3.75  0.1675(4) 0.007 x (Re(L))
3.75  0.16574(24) 0.008 |2
3.75  0.1658(4) 0.010 x(P)
3.775  0.1645(1)  0.005 x(P)
3.8  0.16361(4) 0.005  0.164111 |2
3.8 0.16621(5) 0.005 x (Re(L))
3.9  0.1597(3) 0.005 0.160856  x (Re(L))
3.95(10) 0.17  0.005 x (Re(L))
4.50(5) 0.0001 0
4.45(5) 0.05 0
4.43(5) 0.1 0

Table B.1.: List of identified thermal transitions, x; and — for the S-values discussed here
— the observables from which they are extracted. The values of k. at zero tem-
perature from ETMC [91] have been added where they are known (as published

in [29]).
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C. Calculations in the Non-Interacting
Limit

C.1. Integrals for the Free Pressure

In order to analytically evaluate the free pressure for lattice fermions from equation (4.4)
in analogy to [143], arriving at equation (4.6), one has to solve the finite sum over
Matsubara modes w,. This is done by means of contour integration as depicted in
figure C.1. For inifinite Matsubara sums in the continuum a similar procedure is well
documented in textbooks [34], for the finite sum on the lattice we are not aware of any
earlier application but by Rothe and Kaste [194|. By mapping the discrete sum to an
integral along the unit circle they provide an identity for meromorphic functions g(z)
that are bounded for |z| — oo and free of singularities for |z| = 1,

1 i(wnti res (39(2))
s Z]; g <e( +u)) = g s (C.1)

n=—Nr/2 z

where w, = (2n + 1)7/N;, p € R and N; even.

With the method above, applied to the derivative of the pressure with respect to
w = sinh(aF), one can get equation (4.6) for the pressure [143] and rewrite it for
dimensionless integration variables, y = p/T,

P _Ne [ —e(y,m/T)
1= 5.3 dyln(1+e ) , (C.2)
]R3
where
e(y,m/T) = E(p,m)/T . (C.3)

Note that the integration range for the spatial momenta has been extended from
[—7/2N;,m/2N;] to R. This is allowed for calculations of the power series in 1/N;
since any further corrections are exponentially suppressed ~ e~™V=. The advantage of
the new integration range is that one can now substitute the Cartesian coordinates by
spherical ones. This allows to solve the occurring integrals analytically if m = 0 or
at least faciliates the numerical integration drastically because of a reduction to one
dimension.

In order to expand equation (4.6) or equation (C.2) one needs to identify the contri-
butions of the lattice dispersion relation in powers of the lattice spacing,

E(p) = E(O) + aE(l) + (IQE(Q) + ... (04)
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C. Calculations in the Non-Interacting Limit

Im w

Figure C.1.: Contour integration for finite Matsubara sum on the lattice. In this case we have
considered the possibility of a non-vanishing value for the chemical potential p.

The dispersion relation is obtained from the zeroes of the inverse Euclidean propagator,
S;l(p,p4 = iF), so that for Wilson type fermions one gets

=,/p?+ mg , (C.5a)

Eqy = = (C.5b)
+m
2 mg m mg
£ 4,1 +Zp2m? 4 S 22 4 10 q
2 = QW p ij p 12 0" T T B m2
(C.5¢)

Simplifications and improvement are apparent for maximal twist, i.e. for vanishing
untwisted quark mass component mg = 0. For clover improved fermions m, has to be
replaced by the accordingly shifted quark mass to remove the O(a) terms, of course.

The only term that breaks rotational invariance to this order of the lattice spacing is
the one proportional to j p;* in E(9). All other terms are independent of the angles of
spherical coordinates.

The expansion of E = Eg) + aE) + agE(Q) + ... corresponds to an expansion of the
dimensionless function

+ —8( )+ (C.6)

so that one gets the contributions to the pressure as already stated in section 4.2.1 order
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C.2. Free Lattice Screening Masses

by order from expanding the logarithm of equation (C.2),

(a®)
b _ 2 c/dyy ln 1+ef€(°>(ym/T)> ) (C.7a)
72
0
(a!) T T
D (m) o 2N, 2 5(1)(y7m/ )
T4 _7T2N7— dyy 1 + ef©m/T) 7 (C.Tb)
0
) e T patom/ T
= vy
_ 2 . 6(2)(y,19’m/T)
WQNTQ /dy /dﬂy Sm(ﬂ)—l_,_ef?m)(y,m/T) . (C.7c)

0 0

The improvement of the pressure is thus directly linked to the improvement of the
dispersion relation as the pressure contribution linear in the lattice spacing vanishes if
the linear contribution to the dispersion relation is zero. The J-dependence of £(3) poses
no problem since

™

1
Javsin@)0) 3 ot =3 [au sty = $u50). (©3)
J 21

0

Thus all integrals can be solved by one-dimensional numerical integration. For vanishing
mass, one finds analytic solutions,

(a®) 2
p0) 7
T4 = N, 550’ (C.9a)
@) (o
P
T4( ) _ 0, (C.9b)
PO _ 28 p(0) (.90

T4 147 T4

C.2. Free Lattice Screening Masses

The purpose of this section is to give reasoning for the determination of the free screening
mass on the lattice from equation (5.35). For the sake of simplicity, we start with
staggered fermions and explain the necessary modifications for Wilson type fermions in
the end. The staggered fermion propagator is given by

—iﬁ + amy
Sp)=0——— . C.10
(p) a}_92 Faom3 ( )
Of special importance is the denominator
D(p) =7* + a*m} . (C.11)
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Figure C.2.: Integration contours for the z_ (left) and y_ (right) integration. The poles of the
x-integration +yx 4 lie on the dashed circles rotated from the indicated positions
by the phase factor y € 9D1(0).

Two more shorthand notations that will be convenient from now on are

A*(p1,ps) =i + D5 + sin®(aps) + a®m§ (C.12)
F(g3,p3.p1,ps) = sin(aps) sin(aps — ags) + A*(p1, ps) (C.13)

where we will usually suppress the reference to p; = (p1,p2) and py. The sum over
the Matsubara modes which we denote by Zm will be left for evaluation till later.
Hence, the following expression can be constructed from the free propagator for the
pseudo-scalar correlator,

Crt(z) =
w/a 3 7 ay
8Nc o2 Z / dgs qu,z/ PBp 2j=1P; (p— (J33) + sin®(apy) + a®mj (C.14)
(2m)? D(p)D(p — 433) ' '
P4 _r/a BZ
Now we can transform the variables as
T = e, y = elaps (C.15)
switching to closed contours of integration along 0D (0).
As functions of  and y we have
1
D(p+4q) — —W(w —yz_)(z+yr_)(z —yrq)(@ +yzy) (C.16)
1
D(p) — —@(y—w—)(erx—)(y—w+)(y+w+), (C.17)
- 1 [(y? 1 T
F F H=A?- (-4 ). C.18
x4 are the positive roots as obtained from
i =1+242+24/1+ A2, (C.19)
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It is important to note that

22 <1424% -24VA2=1 (C.20a)
23] = |1 +24% + 241 + A% > 1 (C.20b)

since A is strictly positive. Furthermore, 22 can be shown to be positive because
assuming otherwise, we have

22 <01 +242 - 241+ A2 < 0
& 1+ 242 <241+ A2 (C.21)
= 1+4A2% 4 4A% < 4A% + 444
& 1< 0 4.

Because we really look at both roots, we are free to define x_ to be positive. Afterall this
gives a pole structure where x = +yx_ are within 9D (0) and have thus to be considered
for the sum of residues for the x-integration. Evaluating the x- and y-integrals, the
correlator can be expressed as

d pi F(a? 22 )(x_ )%/
- —wy ) (- +ay)?

+8F(—x2,x2)(x)Z/“(—w))z/“} (C.22)

(- — 4@ T 1)

where the term in the second line vanishes because F(—z%,22) = 0. On the other hand
F(z%,22) = 242, thus one finally gets

d DL (L’ 2z/a
Crx 2 1 + T Az (C.23)
The z-dependence can now be rewritten as
(ﬂ:%)z/a = exp (z/a In (x%)) = exp (—2 Sinhfl(A)z/a) . (C.24)

Therefore up to the p | -integration, there is an exponential decay for each Matsubara
mode. The p,-dependence of the exponent can be expressed in a power series so that
for arbitrarily large z this dependence is exponentially suppressed and it is sufficient
to look at p; = 0. Furthermore, since the Matsubara modes give contributions to the
bare quark mass as amg + sin(apy), the exponential decay is governed by the smallest
possible values py = =71 only. Afterall, the final result is

Myer = 2sinh ™! (A(py = 0,ps = +7T)) (C.25)

which is the same screening mass as defined by equation (5.35) for staggered fermions.
The difference for Wilson type fermions is that their denominator D really is a function
of p/2 due to the Wilson term. Thus it can be written as

D(p—q) =41+ M(pL,ps)) (sin’(aps/2 — aq/2) + Afy(pL,p4)) (C.26)
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where M (p,ps) = 12 +amp+2sin®(aps/2). The definition of Ay for Wilson fermions

has to be ) 2( ) 5 9 2( )
P+ M= (p1,pa) + a®ps + sin®(apy
A% (pL,ps) = =L . C.27

Using
7= eiaq3/2, y = eiap3/2 , (028)

the same integration contours and pole structure as before for staggered fermions are
obtained when making use of the periodicity of the integrand, i.e. when employing

w/a 1 2m/a
/ dq...:i/ dg ... . (C.29)

—7/a —27/a
The only remaining difference is a factor of 2 in the exponential z—dependence:
Cpi(2) ~ e2/alma” (C.30)

This is exactly the relation that is needed to reproduce the definition from equa-

tion (5.35),
(aMser)w = —21n <1 + 2A12/V — 2Awm>
p1=0,pa=x7T

= 4sinh Y (Aw(pL = 0,ps = £7T)) . (C.31)
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D. Simulation Details

D.1. Interpolation of k.
Our interpolation of . is done by the Padé

. 1+ a1+ az?

K = D.1
with
a1 = —0.6657552988487317 , (D.2a)
az = 0.11369888737867674 , (D.2b)
bp = 7.644906897056625 , (D.2c)
b1 = —5.022518375934722 | (D.2d)
be = 0.8395272298528993 . (D.2e)

The values of k. from ETMC are listed in table D.1.

B Ke

3.75  0.1660
3.8 0.164111
3.9 0.160856
4.05 0.157010
4.2 0.154073

Table D.1.: Values of k.(8) from ETMC [23], k.(8 = 3.75) is known from personal communi-
cation with K. Jansen.

D.2. Monte-Carlo Data

Figures D.1, D.2 and D.3 supplement figure 5.7. Runs A12, B12 and C12Q(8 = 4.060)
have been performed on the HLRN cluster in Berlin, runs B10 and all other points of
C12 on the APEnext in Rome. The runs do not share the same algorithmic parameters
such as trajectory length or number of integration steps in the leapfrog integrator. In
particular, the trajectory length was 1 on the HLRN cluster and 0.5 on the APE. The
statistics that the different simulation points have reached are summarised in table D.2.
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Figure D.1.: Scatter plots for Im(L) vs. Re(L) (left) and histograms for Re(L) (right) from
run B10. From top to bottom we show the according plots for 8 = 3.850, 3.885
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Figure D.2.: Scatter plots for Im(L) vs. Re(L) (left) and histograms for Re(L) (right) from
run B12. From top to bottom we show the according plots for 5 = 3.995, 4.015
and 4.025.
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Figure D.3.: Scatter plots for Im(L) vs. Re(L) (left) and histograms for Re(L) (right) from
run C12. From top to bottom we show the according plots for 5 = 4.020, 4.040
and 4.070.
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Al12 B10 B12 C12
I3 STAT I3 STAT I5] STAT I5] STAT
3.9000 3747 3.8500 1900 3.9500 2783 4.0100 4040
3.9300 3447 3.8650 1950 3.9700 3268 4.0200 4520
3.9450 4339 3.8700 4400 3.9900 5089 4.0300 5640
3.9525 5461 3.8750 2100 3.9950 6486 4.0400 3480
3.9600 5516 3.8800 4058 4.0000 6298 4.0500 4640
3.9675 6612 3.8850 4900 4.0100 6403 4.0600 5523
3.9750 4005 3.8900 6289 4.0125 10139 4.0700 2790
3.9900 4296 3.8950 2950 4.0150 8950
4.0150 2060 3.9000 4473 4.0175 11673
3.9100 5750 4.0200 10003
3.9300 6550 4.0250 9878
4.0300 5245
4.0400 5350

Table D.2.: Statistics for gauge observables from our simulations. Note that trajectory length
differs between the runs.

D.3. Gaussian Fits

In this section, we collect the fits to Gaussians,

16) = Aewp (Lol | (D.3)

202

for the critical regions of our observables and show them together with the data. Note
that in the following tables we give the fitted peak position Bpeax With the according
error. This determines the central value for the critical coupling B.. Our error estimate
for B, is then obtained from the total width of the identified fit region in order to have
a reliable value, see table 5.3. We also include some examplary plots in which the
uncertainty assigned to f. is visualised by the range for the Gaussian function.

D.3.1. Run A12

QUANTITY Bpeak A o X2 /dof
XRe(r) 3-9604(31) 1.986(34)-107°  0.049(17) 0.524514
o?(Prp)  3.9400(96)  2.65(34) - 10~ 0.030(15) 0.208793

xp  3.9590(17)  6.71(63) - 1078 0.0164(79) (three point fit)

mint(P)  3.9562(193) 15.2(4.4)  0.036(45) 0.146516

Tt (Re(L))  3.9651(90) 4.6(1.2)  0.029(12) 0.083121
Tins (V) 3.9601(47) 2.43(62)  0.018(11) 0.148487

93



D. Simulation Details
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Figure D.4.: Signals of Re(L) from run A12. Susceptibility (left) and integrated autocorrela-
tion time (right).
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Figure D.5.: Signals of (¢1) from run A12. Variance (left) and integrated autocorrelation
time (right).

D.3.2. Run B10
QUANTITY Bpeak A o x2/dof

XRe(r) 3-8931(49) 2.432(58)-107%  0.037(14) 1.35185
o?(YPrp)  3.8804(4) 4.54(496) - 10~*  0.0038(4) (three point fit)
xp 3.8807(34)  7.85(29)-10"%  0.038(16) 0.978101
Tint(P)  3.8807(6) 33(19)  0.033(91) (three point fit)
Tint(Re(L))  3.8898(68) 9.9(1.8) 0.0158(54) 2.24444
D.3.3. Run B12
QUANTITY Bpeak A o x?2/dof
Xre(r) 4.02053(86) 2.115(34)-107°  0.050(25)  0.454302
o?(p)  4.0150(11)  1.36(17)-10~* 0.0072(27) 0.0235771
xp  4.0140(13)  5.08(17)- 1078 0.0125(41) 0.0464607
Tt (P)  4.0147(49) 7.2(2.1) 0.0089(66)  0.395145
Tint(Re(L))  4.0060(16) 9.3(4.2) 0.0056(27) 0.0772021
Tint (V) 4.0176(48) 7.7(1.4)  0.014(14)  0.814068
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Figure D.6.: Run B10. Left: Susceptibility of Re(L). Right: Variance of (11)).
16
0.074 |
0.072 | 14 1
0.07 | 12
0.068 | —~
- g 107
2 0.066 | =
g x 8
I 0064 | <
0.062 I e 67
0.06 | 4
0.058 | 2 %
0.056 |

3.96 3.97 3.98 3.99 4 401 4.02 4.03

B

3.96 3.97 3.98 3.99

4 401 4.02 4.03

B

Figure D.7.: Signals of Re(L) from run B12. Susceptibility (left) and integrated autocorrela-

tion time (right).

D.3.4. Run C12

QUANTITY Bpeak A o x2/dof
Xre(r)  4.0432(60) 2.136(56) - 107°  0.074(38) 0.110543
o2(yPyp)  4.0298(11)  1.48(16) - 10~*  0.0164(16) 0.189259

xp  4.0268(42)  4.70(16) - 107®  0.056(19)  0.49604

Tint(P)  4.0262(47) 12(5) 0.017(6) 0.212751
7int(Re(L))  4.0312(110) 13(4)  0.028(12)  0.22671
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Figure D.8.: Signals of <E@/}> from run B12. Variance (left) and integrated autocorrelation
time (right).
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Figure D.9.: Run C12. Left: Susceptibility of Re(L). Right: Variance of (¢1)).
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D.4. Results of Screening Mass Fits

The fit results are based on the local effective mass, cf. equation (5.31). Pseudo-scalar
and scalar screening masses refer to the charged flavour multiplet channel. Determina-
tion of the scalar mass has not always been possible. The number of available correlators
from individual configurations is given in table D.3.

Al12 B10 B12 C12
I3 #data I5] #data I5] #data I5] #data
3.9000 653 3.8500 360 3.9500 261 4.0100 464
3.9300 678 3.8650 345 3.9700 299 4.0200 512
3.9450 738 3.8700 545 3.9900 349 4.0300 624
3.9525 530 3.8750 380 4.0000 576 4.0500 524
3.9600 744 3.8800 574 4.0100 391 4.0600 1430
3.9675 1316 3.8850 640 4.0200 450
3.9750 925 3.8900 778
3.9900 1017 3.8950 445
4.0150 438 3.9000 567
3.9100 725
3.9300 805

Table D.3.: Number of correlators from individual configuration available for the screening

mass fits.

D.4.1. Run A12

Pseudo-scalar screening mass from A12

3 aMger x%/dof RANGE
3.0000 0.1667(16)  0.18  [10,15]
3.9300 0.1704(16) 0.80 [10,15]
3.9450 0.1662(35) 0.71 [10,15]
3.9525 0.1721(25)  1.09  [10,15]
3.9600 0.2067(24)  1.82  [10,15]
3.9675 0.1955(19)  0.11  [10,15]
3.9750 0.2015(21)  0.80  [10,15]
3.0900 0.1949(34)  1.50  [10,15]
4.0150 0.2448(40) 1.06 [10,15]

Scalar screening mass from A12

B aMser  x?/dof RANGE
3.9000 052(17) 0.7 [S,11]
3.9300 0.87(51) 0.02 [8,9]
3.9450
3.9525 0.51(10) 0.04 [8,13]
3.9600 0.42(05) 108  [8,10]
3.9675 0.56(07) 041  [8,10]
3.9750 0.54(13) 021 [8,12]
3.9900
40150 0.44(03) 032 [8,13]
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D. Simulation Details

D.4.2. Run B10

Pseudo-scalar screening mass from B10
B aMger x%/dof RANGE

3.8500 0.2360(24) 0.91 [8,15]

3.8650 0.2527(25) 2.07 [8,15]

3.8700 0.2456(26) 1.98 [10,15]

3.8750 0.2674(22) 0.85 [8,15]

3.8800 0.2386(26) 1.01 [10,15]

3.8850 0.2623(20) 2.49 [8,15]

3.8900 0.2831(18) 1.34 [8,15]

3.8950 0.2897(38) 0.75 [10,15]

3.9000 0.2944(21) 1.67 [10,15]

3.9100 0.2787(23) 2.61 [8,15]

3.9300 0.3197(35) 7.08 [10,15]
D.4.3. Run B12
Pseudo-scalar screening mass from B12 Scalar screening mass from B12

] aMser x2/dof RANGE B aMse:  x?/dof RANGE
3.9500 0.2015(22) 0.63 [10,15] 3.9500 0.32(5) 0.15  [10,15]
3.9700 0.1997(22) 0.23 [8,15] 3.9700 0.32(4) 0.51 [8,15]
3.9900 0.2161(21) 0.97 [9,15] 3.9900
4.0000 0.2085(22) 1.38 [8,15] 4.0000
4.0100 0.2200(30) 2.14 [10,15] 4.0100 0.34(2) 0.90  [10,15]
4.0200 0.2199(21) 3.32 [8,15] 4.0200
D.4.4. Run C12
Pseudo-scalar screening mass from C12 Scalar screening mass from C12
B aMer x%/dof RANGE B aMger x%/dof RANGE

4.0100 0.2435(18) 4.03 [10,15] 4.0100  0.408(13) 0.28 [8,11]
4.0200 0.2093(19) 2.07 [9,15] 4.0200
4.0300 0.2378(21) 0.98 [10,15] 4.0300
4.0500 0.2742(30) 1.34 [10,15] 4.0500 0.680(120) 0.13 [8,11]
4.0600 0.2742(30) 5.36 [10,15] 4.0600 0.540(030) 0.52 [8,11]
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