organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Propane-1,3-diyl bis(pyridine-4carboxylate)

Iván Brito,^a* Javier Vallejos,^a Michael Bolte,^b Matías López-Rodríguez^c and Alejandro Cárdenas^d

^aDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, ^bInstitut für Anorganische Chemie der Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany, ^cInstituto de Bio-Orgánica 'Antonio González', Universidad de La Laguna, Astroífsico Francisco Sánchez N°2, La Laguna, Tenerife, Spain, and ^dDepartamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile

Correspondence e-mail: ivanbritob@yahoo.com

Received 16 March 2010; accepted 28 March 2010

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.043; wR factor = 0.094; data-to-parameter ratio = 13.0.

The title compound. $C_{15}H_{14}N_2O_4$, (I), has a gauche–gauche (O/C/C/C–O/C/C/C or GG) conformation and is a positional isomer of propane-1,3-diyl bis(pyridine-3-carboxylate), (II). The molecule of (I) lies on a twofold rotation axis, which passes through the central C atom of the aliphatic chain, giving one half-molecule per asymmetric unit. There is excellent agreement of the geometric parameters of (I) and (II). The most obvious differences between them are the O/C/C/C–O/C/C/C torsion angles [56.6 (2)° in (I) and 174.0 (3)/70.2 (3)° in (II) for GG and TG conformations, respectively] and the dihedral angle between the planes of the aromatic rings [80.3 (10)° in (I) and 76.5 (3)° in (II)]. The crystal structure is stabilized by weak C–H··· N and C–H··· O hydrogen bonding.

Related literature

The title compound can be used as a nucleophilic tecton in self-assembly reactions with metal centres of varying lability. For conformation definitions see: Carlucci *et al.* (2002). For related structures, see: Brito *et al.* (2010); Chatterjee *et al.* (2004).

Experimental

Crystal data

$\begin{array}{l} C_{15}H_{14}N_{2}O_{4} \\ M_{r} = 286.28 \\ \text{Monoclinic, } C2/c \\ a = 23.022 \ (4) \\ \AA \\ b = 4.9336 \ (5) \\ \AA \\ c = 11.9604 \ (18) \\ \AA \\ \beta = 98.118 \ (13)^{\circ} \end{array}$	$V = 1344.9 (3) \text{ Å}^{3}$ Z = 4 Mo K α radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 173 K $0.18 \times 0.15 \times 0.09 \text{ mm}$
Data collection	
Stoe IPDS II two-circle diffractometer 4231 measured reflections	1251 independent reflections 799 reflections with $I > 2\sigma(I)$ $R_{int} = 0.070$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.094$ S = 0.87 1251 reflections	96 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.16 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C13-H13···N14 ⁱ	0.95	2.65	3.505 (3)	151
$C15-H15\cdots N14^{ii}$	0.95	2.72	3.496 (3)	139
$C3-H3A\cdots O1^{iii}$	0.99	2.98	3.516 (3)	115
$C3-H3B\cdots O1^{iv}$	0.99	2.62	3.521 (3)	152

Symmetry codes: (i) $-x + \frac{1}{2}, -y - \frac{1}{2}, -z + 1$; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) -x + 1, -y + 2, -z + 1; (iv) -x + 1, -y + 1, -z + 1.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD system. JV thanks the Universidad de Antofagasta for PhD fellowships.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2297).

References

- Brito, I., Vallejos, J., Bolte, M. & López-Rodríguez, M. (2010). Acta Cryst. E66, 0792.
- Carlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. (2002). *CrystEngComm*, **22**, 121–129.
- Chatterjee, B., Noveron, J. C., Resendiz, M., Liu, J., Yamamoto, T., Parker, D., Cinke, M., Nguyen, C., Arif, A. & Stang, P. (2004). J. Am. Chem. Soc. 126, 10645–10656.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.

supplementary materials

Acta Cryst. (2010). E66, o1015 [doi:10.1107/81600536810011700]

Propane-1,3-diyl bis(pyridine-4-carboxylate)

I. Brito, J. Vallejos, M. Bolte, M. López-Rodríguez and A. Cárdenas

Comment

The propanediyl group can adopt four possible conformations: trans-trans (TT), trans-gauche (TG), gauche-gauche (GG), and gauche-gauche' (GG') (Carlucci *et al.*, 2002). The title compound $C_{15}H_{14}N_2O_4$, (I) has a gauche-gauche (GG) conformation and is a positional isomer of the previously reported propane-1,3-diyl bis(pyridine-3-carboxylate), (II), (Brito *et al.*, 2010). Similar compounds have also been reported by Chatterjee *et al.* (2004).

The molecules of the title compound lie on a twofold rotation axis passing through the central carbon atom of the aliphatic chain such that one half of the title compound forms the asymmetric unit (Fig. 1). Both compounds shows excellent agreement of their geometric parameters. The most obvious differences between them are in the torsion angles O/C/C/C—O/C/C/C[56.6 (2)° in (I) and 174.0 (3);70.2 (3)° in (II), GG and TG conformation, respectively] and the angle between the planes of aromatics rings [80.3 (10)° (I) and 76.5 (3)° (II)]. The crystal structure is stabilized by weak C—H… N and C—H… O hydrogen bonding (Table 1, Fig. 2). The title compound can be used as a nucleophilic tecton in self-assembly reactions with metal centres of varying lability.

Experimental

Isonicotinic acid (15 g, 0.122 mol) was stirred in SOCl₂ (40 ml) in the presence of DMF (0.6 ml) at 60°C for 12 h. Excess thionyl chloride was removed in vacuo. Dried 1,3-Propanediol (4.9 ml, 0.061 mol) was added. After the evolution of hydrogen chloride ended, the mixture was heated at 110°C for 2 h. The mixture was then dissolved in water, and NH₄OH was added. After filtration, recrystallization in ethyl acetate gave colorless crystals suitable for X-ray analysis. Yield 8.23 g(24%). Analysis calculated for $C_{15}H_{14}N_2O_4$:*C*: 62.9, H: 4.89, N: 9.68; found: C: 62.45, H: 4.85, N: 9.85. IR (KBr, cm⁻¹):(C=O) 1727 s, (C=C) 1596 s, (Ar C—C, C=N) 1408 s, (C—O) 1278 m.

Refinement

H atoms were placed in idealized positions and treated as riding atoms with C—H distances in the range 0.95-0.99 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. Displacement ellipsoid plot at the 50% probability level for the non-H atoms. Symmetry operator for generating equivalent atoms: (A) 1-x, y, -z+3/2.

Fig. 2. Packing diagram of the title compound with view onto the ab plane.

Fig. 3. Schematic representations of (I) and (II).

F(000) = 600

 $\theta = 3.5 - 25.9^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

Plate, colourless $0.18 \times 0.15 \times 0.09 \text{ mm}$

T = 173 K

 $D_{\rm x} = 1.414 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2383 reflections

Propane-1,3-diyl bis(pyridine-4-carboxylate)

 $\mathrm{C_{15}H_{14}N_{2}O_{4}}$ $M_r = 286.28$ Monoclinic, C2/c Hall symbol: -C 2yc a = 23.022 (4) Åb = 4.9336(5) Å *c* = 11.9604 (18) Å $\beta = 98.118 \ (13)^{\circ}$ V = 1344.9 (3) Å³ Z = 4

Data collection

Stoe IPDS II two-circle diffractometer	799 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.070$
graphite	$\theta_{\text{max}} = 25.6^{\circ}, \ \theta_{\text{min}} = 3.4^{\circ}$
ω scans	$h = -22 \rightarrow 28$
4231 measured reflections	$k = -5 \rightarrow 5$
1251 independent reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.094$	H-atom parameters constrained
<i>S</i> = 0.87	$w = 1/[\sigma^2(F_o^2) + (0.0427P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

1251 reflections	$(\Delta/\sigma)_{max} < 0.001$
96 parameters	$\Delta\rho_{max} = 0.16 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.43077 (7)	0.6064 (3)	0.47123 (12)	0.0356 (4)
C1	0.41465 (9)	0.5769 (4)	0.56249 (16)	0.0270 (5)
O2	0.43693 (6)	0.7138 (3)	0.65570 (11)	0.0300 (4)
C3	0.48573 (9)	0.8943 (4)	0.64276 (16)	0.0287 (5)
НЗА	0.4748	1.0166	0.5775	0.034*
H3B	0.5204	0.7871	0.6291	0.034*
C4	0.5000	1.0584 (6)	0.7500	0.0292 (7)
H4	0.4661	1.1769	0.7579	0.035*
C11	0.36822 (9)	0.3801 (4)	0.58462 (16)	0.0276 (5)
C12	0.34752 (9)	0.1948 (4)	0.50109 (17)	0.0299 (5)
H12	0.3621	0.1949	0.4307	0.036*
C13	0.30531 (10)	0.0107 (4)	0.52223 (17)	0.0323 (5)
H13	0.2921	-0.1177	0.4651	0.039*
N14	0.28183 (8)	0.0018 (4)	0.61815 (14)	0.0337 (5)
C15	0.30185 (10)	0.1843 (5)	0.69753 (18)	0.0360 (5)
H15	0.2857	0.1832	0.7663	0.043*
C16	0.34464 (10)	0.3735 (4)	0.68496 (17)	0.0326 (5)
H16	0.3577	0.4971	0.7441	0.039*
Atomic displacemer	nt parameters (\AA^2)			

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

I I I I I I I I I I I I I I I I I I I	I I I I I I I I I I I I I I I I I I I					
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0412 (9)	0.0404 (9)	0.0264 (7)	-0.0035 (8)	0.0090 (6)	-0.0045 (7)
C1	0.0279 (11)	0.0268 (11)	0.0257 (10)	0.0040 (9)	0.0018 (8)	-0.0001 (8)
O2	0.0321 (8)	0.0326 (8)	0.0247 (7)	-0.0054 (7)	0.0021 (6)	-0.0008 (6)
C3	0.0268 (11)	0.0321 (11)	0.0274 (10)	-0.0021 (9)	0.0045 (8)	0.0024 (9)
C4	0.0307 (16)	0.0280 (16)	0.0286 (14)	0.000	0.0034 (12)	0.000
C11	0.0281 (11)	0.0283 (11)	0.0256 (9)	0.0053 (9)	0.0010 (8)	0.0019 (8)
C12	0.0352 (12)	0.0314 (11)	0.0227 (9)	0.0009 (10)	0.0033 (8)	0.0007 (8)

supplementary materials

C13 N14 C15 C16	0.0338 (12) 0.0343 (11) 0.0396 (13) 0.0364 (13)	0.0309 (11) 0.0326 (10) 0.0401 (13) 0.0333 (12)	0.0308 (10) 0.0338 (10) 0.0294 (11) 0.0280 (10)	-0.0012 (10) -0.0010 (9) -0.0008 (11) -0.0018 (10)	-0.0001 (9) 0.0029 (8) 0.0085 (9) 0.0042 (9)	-0.0029 (9) 0.0013 (8) -0.0004 (10) -0.0050 (9)
Geometric param	neters (Å, °)					
01—C1		1.210(2)	C11			1.388 (3)
C1—O2		1.342 (2)	C12			1.379 (3)
C1—C11		1.495 (3)	C12	—H12	(0.9500
O2—C3		1.459 (2)	C13	—N14		1.336 (3)
C3—C4		1.513 (2)	C13	—Н13	(0.9500
С3—НЗА		0.9900	N14	—C15		1.342 (3)
C3—H3B		0.9900	C15	—C16		1.381 (3)
C4—C3 ⁱ		1.513 (2)	C15	—H15	(0.9500
C4—H4		0.9900	C16	—H16	(0.9500
C11—C16		1.386 (3)				
O1—C1—O2		124.0 (2)	C12	C11C1		118.80 (18)
01—C1—C11		123.76 (18)	C13			118.75 (19)
O2—C1—C11		112.26 (17)	C13	—С12—Н12		120.6
C1—O2—C3		115.39 (15)	C11			120.6
O2—C3—C4		108.35 (15)	N14			124.04 (19)
O2—C3—H3A		110.0	N14	—С13—Н13		118.0
C4—C3—H3A		110.0	C12	—С13—Н13		118.0
O2—C3—H3B		110.0	C13	—N14—C15		116.44 (19)
C4—C3—H3B		110.0	N14			123.7 (2)
НЗА—СЗ—НЗВ		108.4	N14			118.1
C3 ¹ —C4—C3		115.3 (2)	C16			118.1
C3 ⁱ —C4—H4		108.3	C15			118.88 (19)
C3—C4—H4		108.5	C15	—С16—Н16		120.6
C16-C11-C12		118.1 (2)	C11			120.6
C16—C11—C1		123.08 (18)				
O1—C1—O2—C	3	-3.7 (3)	C16		-	-1.0 (3)
C11—C1—O2—O	23	175.34 (17)	C1-	-C11-C12-C13		179.05 (19)
C1—O2—C3—C4	4	172.61 (16)	C11			1.4 (3)
O2—C3—C4—C	3 ⁱ	56.56 (11)	C12			-0.7 (3)
01—C1—C11—C	216	-171.1 (2)	C13	—N14—C15—C16		-0.5 (3)
O2—C1—C11—C	216	9.9 (3)	N14		(0.8 (3)
01—C1—C11—C	212	8.9 (3)	C12		(0.0 (3)
O2—C1—C11—C	212	-170.21 (18)	C1-	-C11-C16-C15		179.9 (2)
Symmetry codes:	(i) $-x+1$, y , $-z+3/2$.					
Hydrogen-bond g	geometry (Å, °)					
D—H···A		D	—Н	H…A	$D \cdots A$	D—H···A
C13—H13…N14 ⁱⁱ		0.	95	2.65	3.505 (3)	151
С15 Ш15 М14	i	0	95	2 72	3 496 (3)	139
C15—n15…N14		0.	,,	2.12	J. 770 (J)	157

supplementary materials

C3—H3A···O1 ^{iv}	0.99	2.98	3.516 (3)	115
C3—H3B…O1 ^v	0.99	2.62	3.521 (3)	152
Symmetry codes: (ii) $-x+1/2$, $-y-1/2$, $-z+1$; (i	ii) -x+1/2, y+1/2, -z	x+3/2; (iv) $-x+1$, $-y+1$	2, $-z+1$; (v) $-x+1$, $-y+1$	l, <i>−z</i> +1.

Fig. 1

Fig. 3

