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Zusammenfassung in deutscher
Sprache
Die vorliegende Arbeit befasst sich mit der Charakterisierung und Optimierung
von Prozessen auf komplexen Netzwerken. In Natur, Gesellschaft und Technik
existiert eine Vielzahl ungeordneter Systeme, für die die Emergenz makroskopi-
scher Eigenschaften aus mikroskopischen Wechselwirkungen charakteristisch sind.
Diese makroskopischen Eigenschaften sind in den einzelnen mikroskopischen Be-
standteilen nicht erkennbar, sondern entstehen erst durch das Zusammenspiel einer
großen Anzahl derselben. Beispiele für emergente Eigenschaften sind Phasenüber-
gänge wie sie im Magnetismus und in der Perkolation, aber auch in biologischen
und sozialen Systemen auftreten. Weitere bedeutende Beispiele sind komplexe
technologische Systeme, insbesondere solche, bei deren Entwicklung eine hohe
Ausfallsicherheit ohne zentrale Kontrollinstanz eine wichtige Rolle spielt. Die
wahrscheinlich prominentesten Beispiele hierfür sind das Internet, bestehend aus
weltweit vernetzten Routern, sowie das World-Wide-Web, die (virtuelle) Struktur,
gebildet von Homepages und ihren Verbindungen durch Hyperlinks. Eine verblüf-
fende Gemeinsamkeit vieler solcher in der Natur auftretender vernetzter Systeme
ist die Struktur der Netzwerke, die sich weder durch reguläre Gitter, noch durch
rein zufällige Verbindungen beschreiben lassen.

Der mathematische Rahmen zur Beschreibung von Netzwerken ist die Graphen-
theorie. Deren Ursprünge finden sich bereits bei Euler [1736], aber auch heute
stellt sie ein aktives Forschungsfeld der Mathematik dar [z.B. Erdös und Rényi,
1960, Bollobás, 1985, 1998]. Im Formalismus der Graphentheorie werden vernetzte
Strukturen als Menge von Knoten dargestellt, welche durch Kanten miteinander ver-
bunden sind. Durch computergestützte Datenaquise und -verarbeitung wurden in
den zwei vergangenen Jahrzehnten empirische Datensätze zu Netzwerkstrukturen
zugänglich, deren Größe die zuvor manuell ermittelten Datensätze um Größen-
ordnungen übertrifft. Exemplarisch für diese Entwicklung ist die Zahl der Knoten
in Soziologischen Studien zu sehen. Untersucht Zachary [1977] das soziale Netz
zwischen 34 Mitgliedern eines Karateclubs und Klovdahl [1985] das Netzwerk
sexueller Kontakte zwischen 40 HIV infizierten Personen, so extrahieren Ebel et al.
[2002] das soziale Netz zwischen 6000 Kieler Studenten durch die Analyse ihrer
eMail-Kommunikation, und Palla et al. [2007] untersuchen ein Netzwerk von über
4 Millionen Nutzern eines Mobilfunkanbieters.

Viele wissenschaftliche Forschungsgebiete, die zuvor vornehmlich im Bereich
der mikroskopischen Wechselwirkungen quantitativ gearbeitet haben, erfahren
durch die Anwendung der Graphentheorie eine Analyse ihres makroskopischen
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German summary

Verhaltens. Den so genannten Small World Effekt, von Milgram [1967] in sozialen
Netzwerken beschrieben als den Umstand, dass jeder Bewohner der USA mit jedem
Anderen im Mittel über eine Kette von ca. 6 Bekanntschaften verbunden ist, finden
Watts und Strogatz [1998] in Netzwerken unterschiedlichsten Ursprungs: Im Netz-
werk der Neuronen des Wurms Caenorhabditis elegans, in der Verbindungsstruktur
des Stromnetzes der westlichen USA, und in einem Graphen, der die Zusammen-
arbeit zwischen Filmschauspielern beschreibt. Watts und Strogatz definieren den
Small World Effekt als das gemeinsame Auftreten enger lokaler Vermaschung (Clu-
stering), und eines kurzen mittleren Abstands zwischen den Knoten des Netzes auf
globaler Ebene. Wenig später folgt die Entdeckung der skalenfreien, d.h. einem
Potenzgesetz folgenden Verteilung der Anzahl der Nachbarn von Knoten in Netz-
werken, im Fall des Internets durch Faloutsos et al. [1999], sowie für das World Wide
Web durch Albert et al. [1999]. Zahlreiche Studien folgen, die sowohl den Small
World Effekt, als auch die Skalenfreiheit als Gemeinsamkeit einer Vielzahl unter-
schiedlichster realer Netze bestätigen. Stellvertretend seien hier soziale Netzwerke
(Zitierungen wissenschaftlicher Artikel Newman [2001a] und die bereits erwähn-
ten Email-Netzwerke [Ebel et al., 2002]), biologische Netzwerke (Interaktionen im
Zellstoffwechsel [Jeong et al., 2000, Wagner und Fell, 2001] und Protein-Protein
Wechselwirkungen [Yook et al., 2004]) und die bereits vorgestellten technologischen
Netzwerke erwähnt, weitere Beispiele finden sich in unterschiedlichsten Bereichen
von Ökologie bis Ökonomie. Aber auch umgekehrt katalysiert die Entdeckung des
Small World Effekts und der Skalenfreiheit in empirischen Netzwerkdaten, die von
dem Standardmodell für zufällige Grafen [Erdös und Rényi, 1960] nicht reprodu-
ziert werden, das Interesse und die Weiterentwicklung der Graphentheorie. Die
interdisziplinäre Vereinigung von Forschungsgebieten durch die Gemeinsamkei-
ten der als Netzwerk abstrahierten Strukturen, sowie die Suche nach Erklärungen
für deren Emergenz bilden das junge Forschungsgebiet der komplexen Netzwer-
ke. Hier helfen Methoden der Physik, wie Generalisierung und Reduktion auf
grundlegende Eigenschaften, die Aufmerksamkeit von implementationsspezifi-
schen Details der mikroskopischen Dynamik auf makroskopische Folgen zu lenken.
Speziell die Konzepte und Methoden der Statistischen Physik erweisen sich im
Umgang mit komplexen Netzwerken als nützlich.

In klassischen Anwendungen der statistischen Physik sind die Wechselwirkun-
gen zwischen den mikroskopischen Bestandteilen durch physikalische Gesetze
gegeben. In Systemen deren mikroskopische Wechselwirkungen beeinflusst wer-
den können, sei es weil sie technologischen Ursprungs sind, oder weil sie eine
(gewisse) Intelligenz besitzen, ergibt sich eine aufregende Perspektive: Werden
die Wechselwirkungen verändert, so kann dies durch die Mechanismen der Emer-
genz und Selbstorganisation das makroskopische Erscheinungsbild des Systems
quantitativ und qualitativ drastisch verändern. Ein physikalisches Beispiel hierfür
findet sich in der Perkolation. In der Nähe einer kritischen Dichte können klei-
ne Änderungen der Dichte einen Phasenübergang, z.B. vom Isolator zum Leiter
bewirken.

Ein mathematischer Formalismus zur Beschreibung von lokalen, eigenständig
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handelnden Entitäten ist die Spieltheorie. Diese beschreibt das Verhalten und die
Entscheidungsfindung von Agenten bzw. Spielern, die eigenständig und eigen-
nützig ihr Verhalten, charakterisiert durch ihre Strategie, optimieren. Zunächst
zur Beschreibung ökonomischer Vorgänge angewandt [von Neuman und Morgen-
stern, 1944] entwickelt sich die Spieltheorie zu einem eigenständigen Gebiet der
Mathematik [z.B. Nash, 1950, Vega-Redondo, 1996], spieltheoretische Prinzipien
werden jedoch auch in der Natur gefunden, wie sie etwa Kerr et al. [2002] in Po-
pulationen des Bakteriums Escherichia coli beschreiben. In der vorliegenden Arbeit
werden Interaktionen zwischen Knoten von Netzwerken durch Spiele im Sinne der
Spieltheorie modelliert.

Ein archetypisches Beispiel eines komplexen, selbstorganisierten Systems, ge-
steuert durch eigennützig handelnde Einheiten, sind Kommunikationsnetzwerke,
insbesondere das Internet. Die vorliegende Arbeit zieht jedoch nicht das Internet
in seiner Gesamtheit mit allen Details als Beispiel heran, sondern beschränkt sich
auf eine höhere organisatorische Ebene des Internets, das so genannte AS-level.
Das AS-level beschreibt die weltweite Verbindungsstruktur der Internetprovider
untereinander.

Für die vorliegende Arbeit wurde aus mehreren Gründen das Internet als Bei-
spielsystem verwendet: Die grundlegende Funktionsweise der Bestandteile (Router
und Datenleitungen) ist bekannt, im Gegensatz zu klassischen Systemen der stati-
stischen Physik ist das makroskopische Verhalten jedoch noch nicht grundlegend
verstanden. Als weiteren Grund ermöglicht die Tatsache, dass es sich um ein tech-
nisches System handelt (wenigstens prinzipiell) ein Eingreifen in die Regeln der
mikroskopischen Wechselwirkungen und damit eine Anwendbarkeit gewonnener
Erkenntnisse. Des weiteren liegt durch die immense Bedeutung von Kommunika-
tionsnetzen im Allgemeinen und die des Internets im Besonderen für die heutige
moderne Gesellschaft die Suche nach Optimierungsmöglichkeiten auf der Hand.
Auch wenn das Internet als Beispiel gewählt wird, schränkt dies die Allgemein-
heit der Betrachtungen nicht ein, da durch die Abstraktion der Annahmen zum
Datenverkehr die Übertragbarkeit auf andere Transportprozesse gewährleistet ist.

In der vorliegenden Arbeit folgt auf eine Einleitung mit Kapitel 2 eine Einführung
in die wesentlichen Konzepte der Graphentheorie und die verwendete Notation,
zusammen mit der Vorstellung einiger Algorithmen zur Generierung zufälliger
Graphen, die verschiedene Charakteristika empirischer Netzwerke reproduzieren.
Weiterhin werden drei Projekte vorgestellt, die sich der Sammlung und Archivie-
rung der Verbindungsstruktur des Internets verschrieben haben und deren Daten
innerhalb der vorliegenden Arbeit als Referenz verwendet werden. Das Kapitel
zur Graphentheorie wird durch die Vorstellung eines eigenen Modells, genannt
geometric-p Modell, zur Generierung skalenfreier Graphen mit wählbarem Clustering
in Kapitel 2.3 abgeschlossen.

Kapitel 3 gibt anhand des Prisoner’s Dilemma (PD) eine Einführung in die Spiel-
theorie und erläutert die Verknüpfung von Spieltheorie und Graphentheorie als
Modell komplex wechselwirkender vernetzter Systeme. Mit numerischen Untersu-
chungen zur Reorganisation vernetzter Systeme durch mit dem Netz gekoppelte
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Spieldynamik in den Kapiteln 3.3 und 3.4 schließt der einführende Teil zur Gra-
phentheorie. Das Konzept der Reorganisation von Netzwerken durch Kopplung an
Spieldynamiken wird durch Kapitel 4 mit einer Variante des Prisoners’s Dilemma,
dem Iterated Prisoner’s Dilemma (IPD), wiederaufgenommen. Im Gegensatz zum PD
erlaubt das IPD eine Beeinflussung der Reorganisationsdynamik durch kontinuier-
liche Änderung der Spielparameter und ermöglicht damit eine Optimierung der
Spieldynamik in Bezug auf Eigenschaften der emergenten Netzstruktur. Die vorge-
stellte Art der selbstorganisierenden Netzwerkoptimierung wird exemplarisch für
eine von Holme und Ghoshal [2006] vorgeschlagene Quantifizierung der Netzwerk-
performanz demonstriert. In Abhängigkeit des gewählten Spielparameters wird
im Vergleich zu Zufallsgraphen eine Erhöhung der Performanz um den Faktor 1.2
bis 1.9 erreicht. Eine andere Herangehensweise zu Spielen auf Netzwerken und
deren Optimierung wird in Kapitel 5 verfolgt, indem die Kooperativität von PD
Spielern auf dem Netz, gemäß Ohtsuki et al. [2006], anhand der fixation probability
quantifiziert wird. Kapitel 5.2 schlägt Strategien zur individuellen Verteilung von
Anreizen vor, die die Kooperativität des Systems in effektiverer Art und Weise zu
erhöhen, als dies durch globale Anreize möglich ist und bestätigen die Wirkung
durch numerische Simulationen. Die vorgeschlagenen Strategien zur individuellen
Anreizverteilung resultieren relativ zur globalen homogenen Verteilung derselben
Summe der Anreize zu einer um den Faktor 5 erhöhten Kooperativität.

An die spieltheoretischen Betrachtungen anschließend liegt das Hauptaugen-
merk der folgenden Kapitel auf Kommunikationsnetzwerken. Nach der Vorstellung
relevanter vorangegangener Arbeiten stellt Kapitel 6 die verwendete Modellierung
des Datenverkehrs vor und leitet einen graphentheoretischen Ausdruck für die
Performanz (Throughput Capacity) entsprechender Kommunikationsnetze her. Kapi-
tel 6.3 untersucht den Einfluss der Netzwerkstruktur, durch Verwendung des in
Kapitel 2.3 eingeführten Netzwerkmodells insbesondere des Clusterings, auf die
Performanz. Die Optimierung von Netzwerken wird in Kapitel 7 erneut aufgenom-
men, hier im Rahmen von Kommunikationsnetzwerken mit gegebener Struktur,
die eine Optimierung durch intelligente Wahl der benutzten Pfade (Routing) er-
möglicht. Die Wahl der benutzten Pfade wird durch Assoziation von Gewichten
zu Kanten des Graphen erreicht und als Metrik des Netzes bezeichnet. Zusätzlich
zu durch andere Arbeiten vorgeschlagenen Metriken, führen die Kapitel 7.4, 7.6
und 7.7 drei weitere Metriken ein, von denen sich zwei, die Hybrid Metrik und die
logkik j Metrik, als äußerst erfolgreich im Sinne einer Optimierung der Throughput
Capacity erweisen, was durch ausführliche numerische Simulationen belegt wird.
Die Vorteile der hier eingeführten Metriken liegen im Fall der Hybrid Metrik in der
unter den verglichenen Metriken besten resultierenden Performanz für Netze mit
mehr als 3000 Knoten, mit einer mittleren Steigerung um den Faktor 7 im Vergleich
zur Performanz ohne Metrik. Für Netze mit bis zu 3000 Knoten erreicht die von
Danila et al. [2006b] vorgestellte Metrik zwar eine leicht höhere Performanz, sie ist
jedoch wegen ihrer extremen numerischen Anforderungen für größere Netze nicht
anwendbar. Im Falle der log kik j Metrik ist die numerische Komplexität vernachläs-
sigbar, dieser Vorteil an vermindertem numerischen Aufwand wird jedoch durch
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eine leichte Reduktion des Performanzgewinns erkauft, nichtsdestotrotz bewirkt
auch diese Metrik eine mittlere Performanzsteigerung um den Faktor 5 und erreicht
damit die Größenordnung der Hybrid Metrik.

Die drei in der vorliegenden Arbeit verfolgten Ansätze zur Charakterisierung
und Optimierung vernetzter Systeme betrachten hochgradige Idealisierungen realer
Systeme. Dies resultiert jedoch nicht in einer Beschränkung der Allgemeinheit, im
Gegenteil, die Abstraktion ermöglicht den Transfer der Methoden und Ergebnisse
auf weiterführende Anwendungen.

So legt schon die Sprache der Spieltheorie auf Netzwerken, die Knoten mit Spie-
lern assoziiert die Verbindung zu sozialen Netzen nahe. Aber obwohl soziale
Netze tatsächlich die Inspiration für die vorliegenden Untersuchungen gaben, sind
Anwendungen auf viele andere Systeme denkbar. Betrachtet man beispielsweise
zelluläre Stoffwechsel oder Protein-Netzwerke, deren mikroskopische Wechsel-
wirkungen von den Gesetzen der Biochemie bestimmt werden, so ist eine globale
Änderung der Spielparameter, wie in Kapitel 4 untersucht, vergleichbar mit unspe-
zifisch wirkenden chemischen Stoffen. Noch prägnanter ist die Ähnlichkeit zu der
individuellen Verteilung von Anreizen in Kapitel 5, die im Kontext biochemischer
Netzwerke der gezielten Wirkung von Medikamenten auf spezifische Proteine
entspricht. In beiden Fällen ist der Einfluss von Änderungen der mikroskopischen
Wechselwirkung auf die emergenten Eigenschaften, hier das Verhalten der Zelle,
von Interesse. Für solche und ähnliche Untersuchungen bieten die vorgestellten
abstrakten Methoden einen Rahmen für ähnliche Optimierungsansätze.

Ähnliches gilt für die Betrachtungen zur Optimierung von Kommunikationsnet-
zen. So gelten die vorgestellten Ansätze für jeglichen Transport von unterscheidba-
ren Gütern mit definiertem Ausgangsort und Ziel und können daher generell auf
vielfache logistische Probleme angewandt werden. Ein Beispiel hierfür mag der
Straßenverkehr sein, wo Gewichte auf Verbindungen durch Ampeln und Geschwin-
digkeitsbegrenzungen realisiert werden können, oder innerhalb der Software von
Navigationsgeräten eingesetzt werden können.

Selbstverständlich ist die Untersuchung detaillierterer und realistischerer Sy-
steme von ebenso großem Interesse, da durch die zum Teil hohe Sensitivität der
emergenten Phänomene auf Änderungen der mikroskopischen Wechselwirkun-
gen ein Einfluss implementationsspezifischer Details zu erwarten ist. Aber auch
für diese Fälle bietet die hier vorgestellte Methodik einen Rahmen und eine Ein-
schätzung der prinzipiellen Möglichkeiten verteilter, selbstorganisierender Ansätze.
Dies bringt uns zu vielen denkbaren Möglichkeiten der Fortsetzung und Vertiefung
der vorliegenden Arbeit. Naheliegend ist eine Anwendung der spieltheoretischen
Ansätze auf ökonomische Systeme, in denen der Gewinn oder Verlust eines Spielers
sich direkt monetär darstellt, das verwendete Spiel aber sicherlich ein Spiel mit un-
vollständiger Information wäre. Eine weitere hochinteressante theoretische Studie
im Bereich der Netzwerkmetriken stellt die Anwendung von Metriken nicht nur
zur Erhöhung der Performanz, sondern für eine Steigerung der Ausfallsicherheit,
beispielsweise gegenüber Kaskadeartigen Ausfällen in vereinfachten Stromnetz-
modellen dar. Für eine solche Anwendung stellt insbesondere die log kik j Metrik
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einen interessanten Kandidaten dar, da sie durch ihre geringe numerische Kom-
plexität Reaktionen auf Ausfälle von Netzwerkkomponenten innerhalb kürzester
Zeiträume ermöglichen kann.
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1. Introduction

In nature, society and technology many disordered systems exist, that show emer-
gent behavior, where the interaction of numerous microscopic agents result in
macroscopic, systemic properties, that may not be present on the microscopic scale.
Examples include phase transitions in magnetism and percolation, for example
in porous unordered media, biological, and social systems. Also technological
systems that are explicitly designed to function without central control instances,
like their prime example the Internet, or virtual networks, like World Wide Web,
which is defined by the hyperlinks from one web page to another, exhibit emergent
properties.

A common theme of many of these systems is the ubiquity of networked struc-
tures, that are neither strictly regular lattices, nor completely random, but show
organization principles beyond the rules that apply on the individual’s level. The
mathematical framework for the description of networks is graph theory, in hind-
sight founded by Euler [1736] and an active area of research in pure mathematics
[Erdös and Rényi, 1960, Bollobás, 1985, 1998] since then.

Applied graph theory flourished through the advent of large scale data set, made
accessible by the use of computers. The availability and tractability of these data sets
ignited the application of graph theory to new scientific disciplines. The increasing
size of the investigated data sets is especially pronounced in mathematical sociology,
where the size of the empirical data sets increased from a network of 40 HIV infected
persons studied by Klovdahl [1985], over the email contacts between approximately
6000 students analyzed by Ebel et al. [2002], to the data acquired by Palla et al.
[2007], which covers a network of over 4 million mobile phone users.

Many fields, that employed quantitative analysis only on the microscopic level,
experienced quantitative, graph theoretic analysis on a coarse grained, system level.
The small world effect described by Milgram [1967] for social networks, has been
found to be the rule, rather than the exception by Watts and Strogatz [1998], who
discovered small-world structure in the neural network of the worm Caenorhabditis
elegans, the power grid of the western United States, and a collaboration graph of
film actors. The discovery of the small world effect was followed by the discovery
of a scale-free degree distribution in the Internet by Faloutsos et al. [1999] and
the World Wide Web by Albert et al. [1999]. Many successive studies confirmed
numerous networks in nature that exhibit the small world effect and scale-free
degree distributions. These networks include social networks (e.g. citation net-
works Newman [2001a] and email networks [Ebel et al., 2002]), biological networks
(e.g. metabolic networks [Jeong et al., 2000, Wagner and Fell, 2001] and protein
interaction networks [Yook et al., 2004]), the previously mentioned technologi-
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1. Introduction

cal networks, and various other networks found across scientific disciplines from
ecology to economy. The study of the common network characteristics found in
previously seemingly unrelated fields of science and the urge to explain their emer-
gence, form a scientific field in its own right, the science of complex networks. In
this field, methodologies from physics, leading to simplification and generalization
by abstraction, help to shift the focus from the implementation’s details on the
microscopic level to the macroscopic, coarse grained system level. By describing
the macroscopic properties that emerge from microscopic interactions, statistical
physics, in particular stochastic and computational methods, has proved to be
valuable tools in the investigation of such systems.

While for classical subjects of statistical physics, the interactions of the basic
constituents at the microscopical level are defined by physical constraints, the
investigation of systems based on man-made basic constituents offers a thrilling
new possibility: If the constituents of a system are man-made, then their rules of
interaction can be changed by the implementer. Through the mechanisms of self-
organization, the (perhaps tiny) changes on the microscopical level may propagate
to the macroscopic scale and result in qualitatively different behavior there. A
prominent example for a physical system that presents similar sensitivity in its
macroscopic behavior to changes on the microscopical level is percolation, where
small modifications of the density around a critical density results in a phase
transition of the material, for example from insulator to conductor.

As paradigm for microscopic interactions among entities that locally optimize
their behavior to increase their own benefit is game theory, the mathematical frame-
work of decision finding. With first applications in economics [e.g. von Neuman
and Morgenstern, 1944], game theory is an approved field of mathematics [e.g.
Nash, 1950, Vega-Redondo, 1996], however there are systems found in nature, that
exhibit typical game theoretic behavior, for example populations of the bacterium
Escherichia coli, discovered by Kerr et al. [2002]. In the present work, game theory is
used to model the interaction of selfish agents that form networks.

The archetypal example of a complex, self organized system, governed by selfish,
local rules, that is used frequently in the present work, are communication networks,
in particular their most prominent instance, called the Internet. In this work, the
Internet will not be treated on its most detailed level, but instead on the so called
AS-level, which represents a coarse grained organizational level of the network
structure. The Internet is chosen as the example system for several reasons. First
it displays a classical parallel to systems subject to classical statistical physics. Its
microscopic constituents are (in principle) well known and understood (obviously,
as its constituents are man-made). In contrast to classical statistical physics, the
properties on the macroscopic scale are not yet well understood. As a second reason,
the fact that it’s constituents are man-made plays another important role, as for
example newly discovered rules can (at least in principle) by applied to the system,
yielding a rather direct applicability of gained insights. As a third reason, the
humongous importance of communication networks in general, and the Internet in
particular, for our modern way of life, makes the importance of possible means of
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optimization apparent for both the lay man and the expert. Although the Internet is
used as an example, the assumptions made for the transported entities, in the case
of the Internet data packets, and the transport mechanisms are rather general, to
assure that other transport processes could be treated es well.

The present work is laid out as follows: Chapter 2 reviews the basic notation
and facts of graph theory, presents several algorithms that allow to create random
graphs, that reproduce stylized facts of empirical graphs, and presents three projects,
that are dedicated to measure the connectivity structure of the Internet, along with
their data sets. The presentation of existing models of networks is accompanied by
the proposition of a new network model, which will be used in the later chapters
of the present work, in Section 2.3. The review of graph theory is followed by
the analog endeavor for game theory in Chapter 3. Using the famous prisoners
dilemma as an example, basic game theoretical concepts like the Nash equilibrium
and how these are merged with graph theory to what we call games on graphs
are described. This review is then rounded off by a numerical study of games that
reshape the network structure in a self-organizing way in Sections 3.3 and 3.4. To
allow for more sophisticated dynamics of reshaping, Chapter 4 proposes to couple
a variant of the prisoner’s dilemma, the iterated prisoner’s dilemma, to the network
structure and thoroughly investigates its influence on the emergent topologies.
Chapter 5 approaches the subject of games on graphs from another perspective.
Here a static network structure is assumed, and strategies of incentive distribution
and their ability to enhance cooperative behavior of the agents is investigated.
The game theory centered studies are followed by investigations that focus on
communication networks, starting in Chapter 6 with a review of previous work
on communication networks and the derivation of a graph theoretical estimate
for the performance of a communication network, the throughput capacity. This
Chapter is topped of by the investigation of the network structure’s influence on
the throughput capacity, using the graph model proposed in Section 2.3. The usage
of weights to influence the paths chosen for packets in communication networks,
known as metrics of networks, is the focus of Chapter 7. Here the concept of metrics
in concert with communication networks, along with some well known metrics is
reviewed. Following this, Sections 7.4, 7.6 and 7.7 introduce three new metrics, two
of which turn out to be very successful with respect to the enhancement of networks
transport capacity, as verified by thorough numerical investigations. A summary,
concluding remarks, and an outlook to interesting possibilities for continuation and
extensions of the present work’s concepts is given in Chapter 8.
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2. Brief Résumé of Graph Theory

The mathematical framework to formally describe and study the structure of net-
works is graph theory. Other than the term network, which refers to the connectivity
structure and further properties of the vertices and edges, that then are called nodes
and links, a graph solely describes the connectivity structure. Nevertheless, the
terms graph and network, and even more frequently vertex and node, and edge and
link are used synonymously in the network literature, since the risk of ambiguities
is small.

2.1. Graph Theory notation

This section gives a short résumé of graph theory, introducing the notation used in
the present work, which mainly sticks to the conventions of Bollobás [1998] and
Diestel [2005], two excellent textbooks on graph theory.

A graph G is an ordered pair G = (V , E) of the sets of vertices V and edges E . The
vertex set of a graph G is referred to as V(G), its edge set as E(G). The order
of a graph is the number of vertices N = |V(G)|, the number of edges M =
|E(G)| is called the size of G. Indices or arguments of expressions, that indicate
the corresponding graph may be omitted, if the correspondence is clear from the
context, for example the vertex set may be referred to as V instead of V(G).

The elements of E ⊆ V2 are the graph’s edges and two vertices a, b ∈ V are joined
by an edge eab if eab := (a, b) ∈ E . Vertices that are joined by an edge are said to
be adjacent. Generally the graphs considered in the present work are undirected
graphs, the edge eab has no direction, i.e. the order of vertices in an edge is of no
relevance, eab = eba. The neighborhood of a vertex a ∈ V is the set of vertices

N (a) := {b ∈ V : eab ∈ E} (2.1)

that are connected to a by an edge. The number of neighbors of a vertex a defines
its degree

ka := |N (a)|. (2.2)

If all vertices of a graph G have the same degree ∀a ∈ V(G) : ka = k, the graph is a
regular graph. We define the edge neighborhood of an edge eab as the set

L(eab) := {eij ∈ E : |{a, b} ∩ {i, j}| = 1} (2.3)

5



2. Brief Résumé of Graph Theory

of edges, that have one common vertex with eab. Analogous to the vertex degree,
we define the edge degree

`eab := |L(eab)| = ka + kb − 2. (2.4)

The line graph Ĝ(G) of a graph G is a graph, whose vertices V̂(Ĝ) are given by
the set of edges of G: V̂(Ĝ) = E(G). Two vertices i, j ∈ V̂ in the line graph are
connected by an edge eij ∈ Ê , if and only if the corresponding edges i and j ∈ E
have exactly one common vertex in V . Using the identity of V̂ = E edge related
properties of G can be related to vertex properties of Ĝ, e.g. N Ĝ(i) = LG(i).

It is often convenient, to write graph theoretic expressions in a algebraic way
using matrices, instead of using the set theoretic notation. The most important
matrix in this respect is the adjacency matrix A(G) of a graph. It is an N × N matrix
with the elements

aij =

{
1 if eij ∈ E(G).
0 else.

(2.5)

For example, the degree of a vertex can be calculated from the adjacency matrix by
column-wise summation ki = ∑N

j=1 aij.
A graph G ′(V ′, E ′) is a subgraph of G(V , E) if V ′ ⊆ V and E ′ ⊆ E , alternatively

denoted by the shorthand notation G ′ ⊆ G. A path P(VP , EP ) ⊆ G is a subgraph
with VP = {v0, v1, . . . , vl} and EP = {(v0, v1), (v1, v2), . . . , (vl−1, vl)} such, that the
vertices vi are all distinct. Note, that from demanding distinct vertices, it follows
immediately, that the edges of a path are distinct as well. The vertices v0 and vl are
the path’s endvertices. Although in principle a path has no direction, sometimes it is
necessary to specify, that a path P is traversed from v0 to vl. In that case v0 will be
referred to as the initial and vl as the terminal vertex of P . The set of all paths in a
graph G is denoted as paths(G). With

paths(s, t) := {P ∈ paths(G) : s = v0 ∧ t = vl} (2.6)

we denote the set of all paths from vertex s to vertex t. The length of a path P ∈
paths(G) is the number of edges contained in the path

length(P) := |E(P)|. (2.7)

An important subset of the set of all paths from s to vertex t is the set of shortest
paths

spaths(s, t) := argmin
P∈paths(s,t)

(length(P)). (2.8)

The length of the shortest paths defines the distance

d(s, t) := min
P∈paths(s,t)

(length(P)) (2.9)
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2.1. Graph Theory notation

of two vertices. If there is no path connecting s and t, paths(s, t) = ∅, the distance
d(s, t) := ∞ is set to infinity.

A graph G is connected, if for every pair of its vertices a and b, a path P exists,
that connects the vertices, paths(a, b) 6= ∅. If for a connected subgraph G ′ ⊆ G
the neighborhoods of each vertex in G ′ and G are identical ∀a ∈ V(G ′) : N ′(a) =
N (a) , then the subgraph is a maximal connected subgraph, called a component. The
component of a graph with the maximal number of vertices is the giant component.

A cycle of length l is a subgraph C ⊆ G with V(C) = {v1, . . . , vl} such that
there exists a path P ⊆ C with V(P) = {v1, . . . , vl}, evlv1 ∈ E(C), and evlv1 /∈ E(P).
Cycles of length l = 3 are triangles. A graph without cycles is a forest and a connected
forest is a tree, in other words: if every component of a graph is a tree, then it’s a
forest.

The properties of graphs introduced up to here are mainly in the form of pred-
icates, for example “Graph G is a cycle”, and the like. There are, however, many
important properties of graphs that quantify the nature of a graph. Instead of
being the subject of pure graph theory, these properties, tend to be used mainly by
branches of science that apply graph theory as a tool of investigation, e.g. social
sciences, biology, and neuro science. Maybe it is the binding region between the
applications of graph theory and pure graph theory, that is best described as the
statistical physics of complex networks. Exhaustive reviews of this field include
Albert and Barabási [2002], Newman [2003], and Dorogovtsev and Mendes [2003].

Here we introduce but a few of the most prominent quantitative properties of
vertices and edges that are used in the following chapters. A property of a vertex,
quantified by a map V 7→ R from vertex space to the real numbers is called a vertex
centrality, or short centrality. Similarly, an edge centrality is determined by a map
E 7→ R. Often there is a straight forward generalization of a vertex centrality to a
corresponding edge centrality, or vice versa. For a thorough collection of centralities
see Koschützki et al. [2005].

The perhaps most trivial centrality is the degree centrality ki of a vertex i, usually
simply called the degree, which has already been introduced in Equation (2.2). Its
counterpart, the edge degree centrality `e, short edge degree, has been defined in
Equation (2.4). A more involved centrality is the clustering coefficient CCi of a vertex
i. In the language of social networks, where people and social interactions among
them, e.g. friendships, are represented by vertices and edges, it quantifies how
likely it is, that two of your friends are friends as well. It is defined as the ratio

CCi =
|{∀eab ∈ E(G) : a, b ∈ N (i)}|

1
2 ki(ki − 1)

(2.10)

of connections between the ki neighbors of a vertex i and the maximal number of
connections among ki vertices. This definition is the same as taking the ratio of the
number of triangles that contain i and the number of paths of length 3 with i as the
central vertex.

An example of a centrality that does not only depend on the immediate neighbor-
hood of a vertex, like the degree and the clustering coefficient, but on the whole
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2. Brief Résumé of Graph Theory

component the vertex is located in, is the so called closeness. For a connected graph
G the closeness of a vertex i is defined as

ci = ∑
j∈V(G)

1
d(i, j)

. (2.11)

Holme and Ghoshal [2006] define a variant of closeness, that normalizes the close-
ness of a vertex by its degree:

si =
ci

ki
. (2.12)

Another commonly used, non-local centrality is the betweenness centrality introduced
by Freeman [1977] in the context of social networks. It quantifies the centrality of a
vertex v ∈ V by the amount of shortest paths that contain the vertex.

bv := ∑
i,j∈V

|{P ∈ spaths(i, j) : v ∈ V(P)}|
|spaths(i, j)| . (2.13)

The betweenness centrality of an edge e ∈ E is defined analogously:

be := ∑
i,j∈V

|{P ∈ spaths(i, j) : e ∈ E(P)}|
|spaths(i, j)| . (2.14)

The sums in these definitions account for the number of shortest paths that contain
the vertex or edge, respectively. If there are multiple shortest paths between a pair
of vertices i, j ∈ V and a vertex or edge is only part of a subset of the shortest paths,
the contribution in the corresponding the term is normalized by the number of
shortest paths |spaths(i, j)|. This normalization is due to the idea, that if a vertex or
edge is central because it is situated on a shortest path, then it is considered less
central if there are alternative shortest paths that do not contain it.

Instead of discussing the values of a centrality C itself, often the probability
distribution of the centrality p(C) is investigated, which denotes the probability of
a randomly chosen vertex i to have centrality C(i). The most prominent example is
clearly the degree distribution

p(k) :=
{i ∈ V : ki = k}

|V| , (2.15)

that is often written as pk.
Using global averages of centralities

〈CV 〉 :=
1
|V| ∑i∈V

C(i) (2.16)

8



2.1. Graph Theory notation

allows to condense centralities into a single number. Global average graph proper-
ties that will be used in the present work include the average degree

〈k〉 :=
1
|V| ∑i∈V

ki (2.17)

=2
|E |
|V| , (2.18)

the average clustering coefficient 〈CC〉, average closeness 〈c〉, Holme and Ghoshal’s
variant of average closeness 〈s〉, and the average distance

〈d〉 = 1
N(N − 1) ∑

i,j∈V
d(i, j). (2.19)

Although here the discussion of distributions and global averages has been
shown for vertex-based centralities, the same is of course possible for edge-based
centralities, by replacing V with E in the definitions.

As the degree is the most basic quantitative property of a vertex, it is commonly
used to condition other observables to get an observable of a functional form, for
example the degree dependent clustering coefficient

CC(k) := 〈CCi|ki = k〉, (2.20)

which is read as the average clustering coefficient of vertices, given the degree is k.
Erdös and Rényi [1960] proposed a simple model of a random graph, the ER-

graph. Generation of an ER-graph is done in the following way: Take a constant
number of vertices N and connect each pair of vertices with probability p. The
number maximal number of edges in a graph is N(N − 1)/2. If each of these edges
is present with probability p, the expectation value for the total number of edges is

〈M〉 = p
N(N − 1)

2
. (2.21)

As the presence or absence of edges is independent, the degree distribution, see
Equation (2.2), is binomial

p(k) =
(

N − 1
k

)
pk(1− p)N−1−k. (2.22)

In the limit N → ∞ and p(N − 1) = 〈k〉, the distribution p(k) takes the form of a
Poisson distribution

p(k) ' 〈k〉
k

k!
e−〈k〉, (2.23)
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2. Brief Résumé of Graph Theory

hence ER-graphs are usually called Poissonian graphs. The standard deviation of k is
σ =

√
〈k〉, so most of the nodes have a degree close to the average.

The average path length 〈d〉 of Poissonian graphs can be estimated [see e.g.
Newman, 2003] as 〈d〉 = log N

log〈k〉 . Let for example a random graph consist of 10000
vertices with an average number of 〈k〉 = 10 neighbors, then the average distance
between two randomly chosen vertices is only 〈d〉 = 4, a surprisingly small number.
Also the cluster coefficient CCi as defined in Equation (2.10) is easily derived for
Poissonian graphs. Vertex i has ki neighbors which can be connected by a maximum
of ki(ki − 1) edges. On average pki(ki − 1) of these edges are present, hence

CCi =
pki(ki − 1)
ki(ki − 1)

= p =
〈k〉
N

, (2.24)

which, for constant 〈k〉, lets CCi → 0 for N → ∞.

2.2. Empirical networks and network models

To compare results of graph theoretical considerations with networks found in
nature, data on these networks has to be gathered. Historically, this had been a
tedious task and data acquisition had been confined to small data sets, for example
the network of sexual contacts of 40 HIV infected persons, collected by Klovdahl
[1985]. About a decade ago, aided by the computerization of data collection, in-
formation on large scale networks became available. Connectivity of the Internet
was investigated by Faloutsos et al. [1999], connectivity of the World Wide Web
through hyperlinks from homepage to homepage by Albert et al. [1999]. Data on
social networks of increasing size became available among others through the work
of Newman [2001a,b] (scientific cooperation networks) and Ebel et al. [2002] (email
network among users of the university of Kiel). Investigated biological networks
include metabolic networks [Jeong et al., 2001] and protein interaction networks
[Yook et al., 2004]. The necessity of automated data acquisition is especially evident
for the network of 4 million mobile phone users by Palla et al. [2007].

Several projects (e.g. ROUTEVIEWS [University of Oregon, 2001], NETDIMES
[Shavitt and Shir, 2005], and CAIDA [CAIDA Macroscopic Topology Project Team,
2000–2006]) have been monitoring the Internet’s structure during the current decade.
This is achieved using different techniques, ranging from distributed traceroute
scans1 to extraction of routing tables from a set of routers [see e.g. Krioukov et al.,
2007]. Chapters 6 and 7 of the present work use the publicly available connectivity
information of the Internet provided by the above projects to demonstrate the
effectiveness the traffic optimization proposed in those chapters. Specifically the
following snapshots of connectivity data are used:

1Traceroute is a standard computer program available in practically every UNIX-like operating
system. It determines the route of a data packet in an Internet Protocol (IP) network in a stepwise
fashion.
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2.2. Empirical networks and network models

ROUTEVIEWS weekly snapshots, Mar–May 2001
NETDIMES monthly snapshots, Oct 2004–Dec 2005
CAIDA monthly snapshots, 2000–2006

For the size of the giant component and the average degree of these snapshots, see
Table A.1 in the Appendix. These Internet scans represent the Internet’s structure
on the level of autonomous systems, the AS-level. An AS is a set of Internet routers
under the control of a single technical administration, using an interior protocol to
route traffic within the AS, and an exterior gateway protocol to route traffic to other
ASs [Rekhter and Li, 1995].

2.2.1. Small world graphs

In their seminal article Watts and Strogatz [1998] show that the neural network of
the worm Caenorhabditis elegans, the power grid of the western United States,
and the collaboration graph of film actors exhibit a property, that cannot be repro-
duced by Erdös and Rényi’s model of random graphs. These graphs have, like the
Poissonean graphs, a small average distance, but in contrast to the former, a large
clustering coefficient, similar to regular grids. For the simultaneous occurrence
of high clustering and short distances, the authors coined the name small world,
inspired by Milgram [1967]. As a model that is able to reproduce this behavior Watts
and Strogatz [1998] propose a model that is able to interpolate between regular
grids and Poissonean graphs.

Construction of the model is done by starting from a regular graph, for example a
ring or a two dimensional grid. Every edge of the initial graph is then rewired with
a probability p, i.e. removed from the graph and reinserted between two random
vertices. For probability p = 0 the outcome is obviously simply the initial regular
graph with high clustering and long average path lengths, while for p = 1 the
result is a Poissonean graph without clustering but with short paths. However,
between these extremes is a regime that shows the small world characteristic.
Figure 2.1 illustrates a few first steps of the rewiring process. For small p the

Figure 2.1.: Random rewiring of a regular network. From left to right random links
of a ring network of average degree 〈k〉 = 4 are rewired. This leads to
small world characteristics of the generated network.

network essentially stays close to the regular network, for p = 1 all links are
rewired, thus the emerging network is a Poissonian network. Choosing the value
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2. Brief Résumé of Graph Theory

of p allows an interpolation between the regular lattice and the completely random
Poissonian network. The effect of rewiring links with an increasing probability
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removed from a clustered neighbourhood to make a short cut has, at

most, a linear effect on C; hence C(p) remains practically unchanged

for small p even though L(p) drops rapidly. The important implica-

tion here is that at the local level (as reflected by C(p)), the transition

to a small world is almost undetectable. To check the robustness of

these results, we have tested many different types of initial regular

graphs, as well as different algorithms for random rewiring, and all

give qualitatively similar results. The only requirement is that the

rewired edges must typically connect vertices that would otherwise

be much farther apart than Lrandom.

The idealized construction above reveals the key role of short

cuts. It suggests that the small-world phenomenon might be

common in sparse networks with many vertices, as even a tiny

fraction of short cuts would suffice. To test this idea, we have

computed L and C for the collaboration graph of actors in feature

films (generated from data available at http://us.imdb.com), the

electrical power grid of the western United States, and the neural

network of the nematode worm C. elegans17
. All three graphs are of

scientific interest. The graph of film actors is a surrogate for a social

network
18

, with the advantage of being much more easily specified.

It is also akin to the graph of mathematical collaborations centred,

traditionally, on P. Erdös (partial data available at http://

www.acs.oakland.edu/�grossman/erdoshp.html). The graph of

the power grid is relevant to the efficiency and robustness of

power networks
19

. And C. elegans is the sole example of a completely

mapped neural network.

Table 1 shows that all three graphs are small-world networks.

These examples were not hand-picked; they were chosen because of

their inherent interest and because complete wiring diagrams were

available. Thus the small-world phenomenon is not merely a

curiosity of social networks
13,14

nor an artefact of an idealized

model—it is probably generic for many large, sparse networks

found in nature.

We now investigate the functional significance of small-world

connectivity for dynamical systems. Our test case is a deliberately

simplified model for the spread of an infectious disease. The

population structure is modelled by the family of graphs described

in Fig. 1. At time t ¼ 0, a single infective individual is introduced

into an otherwise healthy population. Infective individuals are

removed permanently (by immunity or death) after a period of

sickness that lasts one unit of dimensionless time. During this time,

each infective individual can infect each of its healthy neighbours

with probability r. On subsequent time steps, the disease spreads

along the edges of the graph until it either infects the entire

population, or it dies out, having infected some fraction of the

population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................

Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................

Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes �90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L � Lrandom but C q Crandom.
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Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv � 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.

Figure 2.2.: Change of average cluster coefficient and average path length in de-
pendence on the rewiring probability p. With an increasing rewiring
probability p the cluster coefficient C(p) := 〈CC〉(p) and the average
path length L(p) := 〈d〉 both decrease. However, the average path
length decreases rapidly already at small values of p . 0.001, while the
clustering coefficient sustains the large value typical for regular grids
up to p ≈ 0.1. The plot shows values averaged over an ensemble of 20
realizations of graphs with N = 1000 vertices and an average degree
〈k〉 = 10. Figure from Watts and Strogatz [1998].

p on the cluster coefficient and the average path length is shown in Figure 2.2.
With increasing p the average path length drops rapidly to sizes comparable with
Poissonian networks. However, for p ≈ 0.1 the cluster coefficient 〈CC〉 is still almost
as large as for the regular network.

2.2.2. Scale-free graphs

Following the discovery of the apparent ubiquity of the small world property in
natural networks, Faloutsos et al. [1999], Albert et al. [1999], and Barabási and
Albert [1999] found another property of natural networks, that is neither repro-
duced by Poissonean graphs, nor by small world graphs as proposed by Watts
and Strogatz [1998]. Unlike Poissonean graphs, the investigated networks show
a degree distribution pk, see Equation (2.15), that is not peaked around its mean
value 〈k〉, but, at least for large k, follows a power law of the form

pk :=p(k) ∼ k−γ. (2.25)

Graphs whose degree distribution follows a power law are called scale-free graphs.
Subsequent studies, partly already mentioned above, found scale-freeness of

degree distributions to be similarly ubiquitous as the small world property [see
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2.2. Empirical networks and network models

e.g. Albert and Barabási, 2002, Dorogovtsev and Mendes, 2003, Newman, 2003].
Although it is possible to construct a graph that is scale-free, for example using the
configuration model,2 this fails to offer an explanation of the underlying mechanisms
that generate the scale-free degree distributions. Barabási and Albert [1999] propose
two basic principles to be responsible for the emergence of scale free graphs in
nature: growth and preferential attachment. Growth of the network is realized
by starting from an initial seed of m0 connected vertices and subsequent addition
of new vertices, that are connected to m ≤ m0 already existing vertices. When
connecting to the existing vertices, preferential attachment enters the game. The
vertices to connect to are selected randomly with a probability p ∼ k proportional to
their current degree. Figure 2.3 shows a few first steps of a growing a BA-network.
In the limit k� m it approaches a scale-free distribution pk ∼ k−γ, with γ = 3 and
an average degree 〈k〉 = 2m.

0

1

2

3

4

5
0

1

2

3

4

6

5

7

0

1

2

3

4

6

8

5

7

9

Figure 2.3.: Growth Process of a BA-network. The figure shows the growth of a
BA-network with m = 2 at three different time steps t = 3, t = 5, and
t = 7 of the growth process. The vertex labels denote the sequence of
vertex addition. Vertices 0, 1, and 2 are the initial seed of m0 connected
vertices.

The model put forward by Barabási and Albert [1999] emphasizes the importance
of growth and preferential attachment for the emergence of a scale-free degree dis-
tribution. However, even those real world networks that have the same scale-free
exponent γ = 3 differ from the graphs generated by the BA-model significantly in
other graph theoretic observables, which is exemplified in Figure 2.4 by comparing
the average clustering coefficient 〈CC〉 of the CAIDA Internet graphs with cluster-
ing coefficients of BA networks with average degree 〈k〉 and graphs generated by
the configuration model with the same scale-free exponent γ = 2.22. To generate for
example graphs that have similar properties as the measured graphs of the Internet
on AS-level, depending on the desired accuracy of matching certain observables,
there is more than a handful of graph generator to choose from, see e.g. Jin et al.
[2000], Medina et al. [2000], Chang et al. [2003, 2004], Li et al. [2004], Zhou and

2The configuration model is a method to construct graphs with arbitrary degree distributions pk. It
is described in detail in Section 2.3, where a generalization is proposed, that allows to tune the
clustering coefficient.
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Figure 2.4.: Average clustering coefficient 〈CC〉 vs. number of vertices N of CAIDA
Internet snapshots compared with BA networks and networks gener-
ated using the configuration model. The colored lines highlight the
region where most of the CAIDA networks are situated.

Mondragon [2004], Krioukov et al. [2007]. A dedicated generator for synthetic
AS-level Internet topologies that will be used in Chapter 7 of the present work, is
proposed by Zhou and Mondragon [2004]. Based on a nonlinear preferential attach-
ment process, the positive-feedback preference (PFP) model is able to reproduce
the degree distribution, the average clustering coefficient 〈CC〉 and other structural
features of the Internet scans like rich-club connectivity, short cycles, disassortative
mixing, and betweenness centrality [e.g. Newman, 2003].

2.3. Geometric-p model

From Figure 2.4 we learn, that properties of real Internet scans, like the average
clustering coefficient, cannot be reproduced by simple network generators such
as the BA-model or the configuration model. Instead more sophisticated, fine
tuned generators have to be employed, for example the PFP model, presented
by Zhou and Mondragon [2004]. Its parameters are chosen, to reproduce many
statistical properties of the empirical data, once the number of nodes has grown
to approximately 11000, which is roughly the size of the specific snapshot that has
been used to fit the parameters of the model. However, to investigate the influence

14



2.3. Geometric-p model

of a high clustering, it is desirable to have a model, that is not only able to generate
graphs with 〈CC〉 comparable to the empirical data, but also allows to smoothly
adjust the clustering.

For this purpose, here a generalization of the configuration model is proposed that
allows to tune the resulting average clustering coefficient in the range 0 . 〈CC〉 .
0.6. To modify the configuration model to create graphs with high clustering, we use
the fact, that geometric networks, with a connectivity constrained by an underlying
geometry, have a large clustering coefficient naturally. Take as an example disc
graphs. Here vertices are positioned randomly across a plane, and edges are created
between those pairs of vertices that have an euclidean distance less than some
radius r. The radius obviously determines the average degree, but, for sufficiently
large radii, 〈CC〉 ≈ 0.6, independent of r [Dall and Christensen, 2002].

To construct networks with fixed degree distribution, but tunable clustering
coefficient, we interpolate between the configuration model without any geometric
constraints (limN→∞〈CC〉 = 0) and a geometric network. We denote this model as
geometric-p networks, where 0 ≤ p ≤ 1 represents the interpolation parameter. The
construction process consists of four steps:

1. Each of the 1 ≤ i ≤ N vertices is initialized with a random position~ri = (xi, yi)
on a square area drawn from a uniform distribution and a target degree ti
drawn from the desired degree distribution p(t).

2. For every vertex i generate a list ∆i, which contains all other vertices sorted
by ascending Euclidean distance |~rj −~ri|. Periodic boundary conditions are
assumed, which turn the square into a torus.

3. Create for each vertex i, a number of edge stubs corresponding to the node’s
target degree.

4. The vertices are connected according to the following iteration:

a) From all stubs pick one randomly. Let i denote the vertex it is attached
to.

b) With probability p a short-range connection is built by creating an edge
to the first vertex j ∈ ∆i of the sorted list with k j < tj that is not yet in the
neighborhood N (i).

c) With probability (1− p) a long-range connection is built to a vertex j that
belongs to a randomly drawn stub and is not yet linked to i.

d) After the creation of either a short- or long-range connection, the two
used stubs are removed from the respective lists.

Through this iteration scheme, for p = 0 only random links are constructed. This
limit corresponds to random networks with a given degree distribution and the
construction rule is exactly recovering the configuration model as it is defined
in [Newman, 2003]. For p = 1 a selected stub is always connected to the closest
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2. Brief Résumé of Graph Theory

possible vertex and the network closely follows the geometric constraints, respecting
the desired degree distribution. We denote this case the geometric network limit.
Employing parameter values in the range 0 < p < 1, we can generate networks,
that smoothly interpolate between the random and geometric limit.

Figure 2.5 shows the complementary cumulative degree distribution P(k) =∫ ∞
k p(k′)dk′ resulting from a scale-free target degree distribution p(t) ∼ t−γ with

exponent γ = 2.3. The target degrees have been limited to 1 ≤ t ≤ kmax with cutoff
kmax = N1/(γ−1). At this cutoff3 the expected number of vertices with a degree of k
or higher, given by N

∫ ∞
k p(k)dk, drops below 1. The complementary cumulative

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1  10  100  1000

P
(k

)

k

p=0.0
p=0.5
p=0.8
p=1.0

k-1.3

Figure 2.5.: Complementary cumulative degree distribution P(k) of various geo-
metric p networks resulting from a scale-free target degree distribution
p(k) ≈ p(t) ∼ t−γ with γ = 2.3 and N = 8000. For comparison, a
power law with exponent γ− 1 = 1.3, which corresponds to the ex-
ponent of the complementary cumulative target degree distribution is
shown.

distributions of the put in target distribution and the generated degree distribution
shows comfortable agreement. In the small and medium degree range the scale-free
exponent is reproduced. Towards the end of the construction (4a-4d) it may happen
that especially for high-degree vertices some of their prospective links are dropped
because the last remaining stubs would produce either already existing links or
self-links. This explains the bending down of the resulting distribution for very
large k and the slight probability enhancement at small and medium degrees. No
dependence on the interpolation parameter p is observed.

3For γ = 2.3 we get kmax ≈ 200, 700, 1000 for N = 1000, 5000, 8000. A γ = 2.2 yields kmax ≈ 1700
for N = 8000. This is in good agreement with kmax ≈ 1000-2000 for N ≈ 8000 AS scans.
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Figure 2.6.: Clustering coefficient as a function of the interpolation parameter p for
scale-free geometric p networks with γ = 2.3 and N = 1000 (dashed),
N = 8000 (solid). The plotted values are averages from an ensemble of
10 realizations, the error bars show the standard deviation of the mean.

The clustering coefficient of scale-free geometric p networks is illustrated in
Figure 2.6. As expected, it increases from a very small value 〈CC〉 ≈ 0.05 at p = 0
to a large value 〈CC〉 ≈ 0.60 at p = 1. Between p = 0.3 and 1.0 it increases almost
linearly, which makes the model convenient to use for investigations of the influence
of clustering on other network properties.

Figure 2.7 shows the degree-dependent clustering coefficient CC(k). For p = 0
there is no dependence of CC(k) on k for small and medium k, which is the expected
result for random networks generated by the configuration model, see Vázquez
et al. [2002]. The k-dependence observed for large degrees is an effect of the finite
system size. With increasing p the degree-dependent clustering coefficient increases
significantly for small and medium degrees. For p = 1 it exhibits a power-law form
CC(k) ∼ k−β with β ≈ 0.8, which is in good agreement with β ≈ 0.75 reported by
[Vázquez et al., 2002] for Internet scans of the years 1997 to 1999.

To sum up, real networks, like for example the Internet, often exhibit a high
degree of clustering. Neither the BA scale-free graph model, nor the configuration
model generate graphs that reproduce this property. By enforcing geometrical
constraints during the construction, the present section proposes a generalization of
the configuration model, the geometric-p model. This generalization allows to tune
the amount of clustering in the generated graph. The interpolation between the
pure configuration model (p = 0) and the pure geometric case (p = 1) allows for
clustering coefficients in the range of 〈CC〉 ≈ 0 to 〈CC〉 ≈ 0.6.
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Figure 2.7.: Degree-dependent clustering coefficient CC(k) for various scale-free
geometric-p networks with γ = 2.3 and N = 8000. For large degrees it
shows a power law behavior CC(k) ∼ kα. This is especially pronounced
for p = 1, where α ≈ 0.8.
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3. Game Theory on networks

In this and the two following chapters, we address the optimization of networked
systems with respect to global properties of the topology. Performing global opti-
mizations in rugged fitness landscapes typically suffers from a vast search space,
causing the required algorithmic effort to grow to unfeasible extents. Fortunately,
for practical applications, it is often not necessary to find the best solution exactly,
as long as a solution with a performance close to the global optimum can be found
with less effort. Renouncing to find the global optimum, opens up the possibility of
optimizing in a distributed, self organized manner. Instead of a central instance,
that has to know all the details of the whole system and knows which changes
to apply to reach the global optimum, distributed optimization employs a large
number of agents following simple rules while accessing only information about
their immediate environment. Because of the restriction to local information, none
of the agents can actually determine the values of the global properties to be opti-
mized, still, as will be demonstrated in Chapter 4, significant optimization of global
properties may emerge from application of local rules.

As a consequence of the confinement to local information, it is obvious, that
the key to a successful distributed optimization scheme lies in the rules which
determine the agents’ actions. Given a certain global observable to be optimized,
the challenge is to find corresponding local rules. To achieve this, two approaches
are possible: The first, perhaps more obvious, approach is to translate the global
objectives to locale objectives. This however may be difficult or impossible to do,
as for example global information that cannot be approximated locally might be
necessary. The second approach is to neglect the global objective and to come up
with rather arbitrary rules that are tunable by a single or maybe a few parameters.
The values for these parameters are then to be determined by classical optimization
techniques. However, the space of parameters to be searched is reduced from the
high dimensional space of the global optimization, to the space of the handfull of
parameters that tune the local update rules, which ideally is also smoother than the
original space.

Having in mind real networks like the Internet as described in Section 2.2, the
agents driving the optimization are thought of as the economic entities that own
parts of the network and, by establishing business relations among each other,
determine the structure of the network. Assumed to be driven by financial interests,
these intelligent agents will inevitably pursue their own goals and therefore exhibit
selfish behavior. The behavior of agents, their decision making and choice of
strategies, is the subject of Game Theory, developed to a large extent by von Neuman
and Morgenstern [1944], with important contributions by Nash [1950, 1951].
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3. Game Theory on networks

Apart from the pragmatic use as a framework to describe and implement dis-
tributed optimization, more motivation for studying Game Theory on networks is
given by the parallels to social networks, which (for the most part) also consist of
intelligent agents following more or less simple rules. Looking at the structure of
society with network Game Theory in mind, the question if and how changes to
the rules of social interaction, be it by new forms of interaction made possible by
modern technology or by a change of ethics, influence the structure of society.

After a short, non-extensive, introduction of concepts of game theory and game
theory on networks in the present Chapter, the following Chapters will apply it to
networked systems. Chapter 4 investigates the influence of games played on the
network to the network structure and attempts to utilize the game to optimize the
structure. Chapter 5, on the other hand, investigates the influence of the structure on
the behavior of the agents and attempts to use structural information to encourage
cooperation among the players.

3.1. The Prisoner’s Dilemma

The so called Prisoner’s Dilemma is a simple game that demonstrates why two
players might not cooperate, even if it was in the interest of both. We will use this
game as a guide through some basic game theory principles. To get familiar with
the subject of game theory, lets start with the following, close-to-real-life example
of a Prisoner’s Dilemma:

Bank robbery! Two suspects under arrest! —AmyW.

and Bill G. were arrested
after a bank had been robbed,

but the police has insufficient evidence
for a convictio

n,

although
minor char

ges, like
illegal gu

n possessio
n, are ob

-

vious.
The two

suspects
were sep

arated and interroga
ted but

neither m
ade a confessio

n until the
police decided

to offer

both of them
the same deal: T

estify, ge
t mitigating

circum-

stances a
s the principa

l witness
and be set free,

or remain

silent an
d get a full ten-y

ear sente
nce in case the

other sus
-

pect test
ifies agai

nst you.
If both remain silent, th

e minor

charges c
annot be

dropped
, resultin

g in minor sent
ences of

six months for
both. Ho

wever, if
both testify, t

hen only the

minor charges
can be dropped

, resultin
g in sentence

s for

bank robbery,
but beca

use of testify
ing the time to serve

is reduce
d to five years.

Read the full story
and backgrou

nd on pages 20
–22.
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3.1. The Prisoner’s Dilemma

Formally a simple two-player game a(S A, S B, P A, P B) between the players A and
B is defined by the strategy spaces S A and S B, which contain the strategies (actions)
that players can choose from, and the payoff matrices P A : S A × S B → R and
P B : S B × S A → R that map the players choice of strategies to a real valued payoff.
Except for the excursion in Section 5, the games we consider below will be symmetric
games, i.e. both players have the same set of strategies S A = S B =: S to choose
from and the payoffs are determined by identical payoff matrices P A = P B =: P .
In that case, we abbreviate a(S , P ) := a(S , S , P , P ). Note that this does not
imply identical payoffs for both players, as the payoff matrix itself is generally not
symmetric.

In the case of Amy and Bill mentioned above, both have the same two strategies
to choose from. The received sentence depends only on the chosen strategies, not
on some other property of the suspect and both are offered the same deal, resulting
in a symmetric game. The strategies they can choose from are to cooperate (C) with
the other by remaining silent or to testify against, and thereby to defect (D) from the
other. The strategy space S PD = {C, D} of the Prisoner’s Dilemma contains the two
strategies cooperate and defect.

When two players encounter, each player i picks a strategy s i ∈ S i from their
respective strategy portfolio. The outcome of the game is then given by the corre-
sponding entry in the payoff matrix: Player A collects a payoff p

A
= P sA,sB , given by

the entry of the payoff matrix in the row corresponding to his own strategy sA and
the column corresponding to the opponents strategy sB.

Coming back to our real-life example the length of the time in jail has to be
translated in payoffs. P PD is a 2× 2 matrix, in win-loose terminology it reads

P PD =

(
win loose much

win much loose

)
.

According to custom, the entries of the prisoner’s dilemmas payoff matrix are
named T, R, P, and S

P PD =

(
R S
T P

)
. (3.1)

These abbreviations stem from the following names: The payoff both get when
mutually staying silent is called the reward for cooperation R, while the payoff for
mutual defection is simply called punishment P. Naturally the highest payoff from
the perspective of one of our prisoners corresponds to being released right after
the interrogation, this payoff is named the temptation to defect T, the lowest payoff,
which obviously corresponds to the full ten-years sentence, is called the suckers
payoff S. Comparing the magnitudes of the payoffs of Amy and Bill, we find

T > R > P > S. (3.2)

This characterizes a prisoner’s dilemma. The condition

2R > T + S (3.3)
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3. Game Theory on networks

assures that even in a repeated game, the average payoff for mutual cooperation is
greater than the payoff of alternating cooperation and defection.

A frequently used [e.g. Hauert and Doebeli, 2004, Ohtsuki et al., 2006, Szabó and
Fáth, 2007] and beautiful parametrization of the payoff matrix, emphasizes the costs
c of cooperating and the benefits b of encountering a cooperator in the prisoner’s
dilemma:

P PD =

(
b− c −c

b 0

)
. (3.4)

This line of thought assumes, that the player has to invest a certain amount c when
deciding to cooperate, while a defector refuses to invest. When collecting the payoff
however, it’s not the player’s, but the opponent’s strategy, that determines the bene-
fit of the interaction. With a cooperating opponent, a benefit b is collected, but from
the interaction with a defector there is no benefit. Assuming b and c > 0 Inequa-
tion (3.2) is fulfilled if the benefit b > c outweighs the cost, while Inequation (3.3) is
automatically fulfilled by the cost/benefit parametrization

Being offered the deal, which strategies will Amy and Bill choose? To answer this
we have to make assumptions about the players: We assume they behave rationally
on an individual level, an assumption introduced by Nash [1950, 1951]. This
assumption might not be too realistic in the example of our two suspects, especially
if they knew each other beforehand or happened to be friends, but thinking for
example of business interactions between companies, rationality is assumed to be
valid.

Given the payoff matrix P PD as given in Equation (3.1), together with Inequal-
ity (3.2), Amy may assume that Bill will cooperate, then her payoff would be R if
she cooperated as well, but T if she defected. If, however, Bill defects, then Amy’s
payoff as a cooperator would be S, while by defecting she’d get P. As a result, since
T > R and P > S Amy will always choose to defect. From Bill’s perspective the
same arguments hold, so he will choose to defect, too. To summarize, a rational
player will realize, that no matter what strategy the opponent picks, the own payoff
will increase if he chose to defect.

States like this, where no player is able to increase his payoff by an unilateral
change of strategy, are called Nash Equilibria. From above it is obvious, that a Nash
Equilibrium does not have to be anywhere close to the global optimum. In Amys
and Bills case the global optimum in the sense of a minimal overall time to do,
is mutual cooperation, resulting in a 6 month sentence for both. However, even
if they know the global optimum, their selfish behavior makes it impossible for
them to realize that strategy configuration without interaction outside of the game,
for example by promising to each other to remain silent. It is the rationality and
selfishness, that turns the prisoner’s problem into a dilemma.
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Prof. J. F. Nash
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Amy and Bill sentenced for bank robbery! —

At first, the suspects denied any responsibility for

the robbery. Even the officers who arrested them,

considered it “hard to imagine, that these guys

robbed the bank.” However, during the interroga-

tions Amy and Bill changed their minds and got

surprisingly eager to give a full plea of guilty. It

is rumored that they were offered a deal by the

authorities.
Game theory godfather Prof. J. F. Nash: “This

is exactly what my theory predicts. They should

have read my paper: Nash [1950].”

3.2. Games and Graphs

Merging of games and graphs is achieved by explicit identification of n players
P = {p1, . . . , pn} with the N vertices of a graph G, pi ⇔ vi ∈ V(G) and accordingly
n = N = |V(G)|. These players interact pairwise with each other by playing
a game a as sketched in the previous section. However, interactions are only
possible between players that are located on adjacent vertices, i.e. vertices that
are connected by an edge e ∈ E(G) of the graph G(V , E). As a consequence of the
identification of players and vertices, the terms player, vertex, and node are used
synonymously, although player is used to emphasize game theory aspects, vertex
refers to graph theoretical viewpoints, and node tends to be used to point out the
connection of both. In principle the game played among two players can vary from
pair to pair, meaning that each player may have his own set of strategies and is
rewarded according to an individual payoff matrix. Generally the players pi, pj ∈ P,
located at the vertices vi, vj ∈ V(G), engage in the game a(S i, S j, P i, P j). Many
studies restrict themselves to symmetric games, i.e. all players choose from the
same strategy portfolio and receive payoffs determined by the same payoff function.
In this case the common strategy space S = S 1 = · · · = S n and payoff function
P = P 1 = · · · = P n define the game a(S , P ).

The connection of game theory and graph theory in this manner has been pio-
neered by Nowak and May [1992, 1993] who located the players on a two dimen-
sional grid, allowing interactions only between neighbors on that grid. The payoff
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3. Game Theory on networks

of a player is defined as the sum of payoffs

pi := p∗i = ∑
j∈N (i)

P s i,s j , (3.5)

resulting from the interactions with the neighbors. Especially when considering
graphs with a very heterogeneous degree distribution, a common choice is to define
the payoff of a node as the average payoff per interaction

pi := pi =
1
ki

∑
j∈N (i)

P s i,s j , (3.6)

which results from normalization with respect to the node degree ki.
Nowak and May let the players update their strategies by imitating the best

scoring neighbor

s i ← s j : j = argmax
l∈N (i)

p l. (3.7)

To emphasize the motivation from evolution, subsequent work refers to the imita-
tion as a death-birth process [e.g. Ohtsuki et al., 2006] where a node that got vacant
(death) is taken over by the offspring (birth) of the most successful player from the
adjacent nodes. Another common update rule, the best response update

s i ← argmax
s∈S (a)

pi(s), (3.8)

assumes players to know all available strategies and pick the one that yields the
highest payoff, given the neighbors current strategies are fixed. In their seminal
work Nowak and May showed the emergence of complex patterns of cooperators
and defectors caused by the confinement to the underlying geometry. In principle
games on regular lattices are cellular automata like for example John Conway’s Game
of Life [Gardner, 1970], but the interpretation as a game allows for a much more
concise formulation of the update rule, which would “look horrendous if expressed
in canonical cellular automata terms” [Nowak and May, 1992]. This quotation tries
to set apart spatial games from cellular automata by pointing out, that although it
is possible to express the game’s update rule in terms of the canonical description
of cellular automata, as used by Wolfram [1983, 1984], the corresponding code is
lengthy and hard to grasp,1 while the formulation in terms of a game and an update
rule is straight forward and comprehensible. Furthermore, this formulation allows
straight forward generalization to irregular lattices as described by graphs.

1For the case of the square neighborhood the strategy update of a player depends on the state of 25
cells, i.e. the cell itself, its 8 immediate neighbors, and the neighbors’ neighbors. The canonical
code of the update rule is a 225-digits binary number, or 221-digits hexadecimal, whichever the
reader feels more comfortable to visualize.
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Motivated by the abundance of complex network structures found in biological
and social networks [Watts and Strogatz, 1998], the Internet [Faloutsos et al., 1999],
the World-Wide-Web [Albert et al., 1999], and so forth (see Section 2.2), the dynamics
of various games on structures defined by graphs have been explored. Hauert and
Doebeli [2004] confirm that cooperation among the players is enhanced if the
prisoners’ dilemma is played on a regular network, as opposed to the classical
scenario taking place in a well stirred population, represented by a complete graph.
However, they raise the awareness, that this is not the case for all kind of games, by
showing that for the snowdrift game with imitation update given in Equation (3.7)
the evolution of cooperation can even be inhibited by regular spatial structure. On
the contrary, implementing the same game dynamics on scale-free graphs Santos
and Pacheco [2005] find that the heterogeneous structure of graphs grown according
to preferential attachment yields cooperation as the dominant strategy for either
the prisoners’ dilemma or the snowdrift game.

Approaching from the perspective of statistical physics, Ebel and Bornholdt
[2002a] investigate the reaction of the system of prisoners’ dilemma players on
a random network of the Erdös and Rényi [1960] type when perturbed from the
Nash equilibrium state. The perturbation from an equilibrium state is done by
forcing a suboptimal strategy at a random node, as a consequence other nodes
may now adjust their strategies to take advantage of the suboptimal strategy in
the neighborhood. The consecutive changes of strategies propagate through the
network, forming avalanches, whose size distribution depends on the parameter T
in the prisoners’ dilemma payoff matrix. Three phases are identified: A subcritical
phase, with local avalanches that die out fast, a supercritical phase, with avalanches
that span the whole network and die out only after a number of time steps which
are by magnitudes larger than the system size, and a critical phase, between the two
other phases, which exhibits avalanche sizes that follow a scale-free distribution.

While the work mentioned above considers game dynamics that take place on
static graphs, there are two main lines of research, that investigate the interplay of
games with the growth and reshaping of graph topologies. The first line of research
does not identify players and vertices, but considers the graph structure as the
outcome of a game played by n players. Games with more than two players are a
classical field of game theory [von Neuman and Morgenstern, 1944, Nash, 1950],
where n players are facing the problem of competitively optimizing their utilities.
The payoff p

A
of a certain player A depends on his own strategy sA and the strategy

choices of all n− 1 other players.

p
A

:= p
A
(s1, . . . , sA, . . . , sn)

Applied to the creation of network structures, n players engage in a game that
encodes properties of the network, e.g. connectedness [Bala and Goyal, 2000, Haller
and Sarangi, 2005, Schneider and Kirkpatrick, 2005] or the ability to reach certain
vertices on preferably short paths [Anshelevich et al., 2003, Fabrikant et al., 2003],
in the player’s payoff functions. The players may achieve the goals encoded in
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the payoff function by means of changes to the network structure, for example by
adding edges to the graph. Costs incurred by the topology changes reduce the
investing player’s payoff and result in a classical n-player game.

The second line sticks to the identification of players and nodes as put forward
by Nowak and May [1992] and adds a degree of freedom to the nodes behavioral
repertoire: The neighborhood of a node is considered part of the players strategy,
accordingly the player is able to change the members of its neighborhood, i.e. to
change its social environment. Like Ebel and Bornholdt [2002b] put it: “If the fish you
bought on the fish market is spoiled you will probably switch the dealer next time.”

Early studies investigated the propagation of strategy and neighborhood switch
avalanches for the imitation (3.7) and best response (3.8) update rule [see Zimmer-
mann et al., 2001, Ebel and Bornholdt, 2002b, resp.]. The influence of these local
updates on the overall network structure is characterized by changes in global
graph observables, like the cluster coefficient (2.10) [Zimmermann et al., 2004] and
the cluster coefficient and average path length (2.19) [Ebel and Bornholdt, 2002b].
In addition to the dependence on parameters in the payoff matrix Pacheco et al.
[2006a,b] point out the sensitivity of the dynamics on the relative frequency of strat-
egy to topology updates. In terms of the degree distribution (2.15) the emergent
structures of such self organizing topology dynamics have been elaborated upon
by Scholz and Greiner [2007], which will be detailed in Section 4.

Including the closeness (2.11) of the node in its payoff function, Holme and
Ghoshal [2006] create an update rule that depends on the whole network structure,
instead of restricting the needed information to the 1- or 2-hop neighborhood.
Naturally this results in a higher computational complexity, as the computation of
global observables scales at least like O (N), while observables that only depend
on the neighborhood typically do not scale with the system size. By sacrificing
the restriction to local information, Holme and Ghoshal buy the possibility to use
the framework of network game theory to directly optimize for global network
properties.

The global property of guaranteeing network connectivity is of special interest
in wireless communication networks. In wireless communication networks the
existence of edges is determined indirectly by the power level of a node’s radio
transmitter, which defines a sphere of direct reachability. Interpreting its chosen
power level as the strategy of a node, and incorporating the draining of battery
power and the network connectivity in the payoff, Eidenbenz et al. [2003] create a
game dynamics, that ensures a connected wireless communication network. Com-
pared to non-game theoretic approaches [see e.g. Glauche et al., 2003], this approach
has the disadvantage of converging into any of many Nash equilibria, which vary
vastly in the cost, measured by summing up the overall power consumption.

To sum up this sections mini-review of relevant network game theory, the ex-
haustive review of game theory, with an emphasis of games taking place on graphs,
given by Szabó and Fáth [2007] has to be mentioned.
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3.3. Prisoners’ Dilemma Network Game

As a concrete example of a game dynamic coupled to a network, this section investi-
gates the prisoners’ dilemma network game. The system consists of a graph G(V , E)
with N = |V| vertices, connected by the edges E , and N players {p1, . . . , pN} = P.
Each player pi is associated pi ⇔ vi ∈ V with a distinct vertex. The game is symmet-
ric in the sense, that all players can pick their strategy s i ∈ S from the same set of
strategies S := S PD = {C, D} and the payoffs resulting from an interaction between
two players pi and pj is determined by the same payoff matrix P for all interactions.
The payoff matrix P := P PD is the prisoner’s dilemma payoff matrix (3.1), well
known from the example given by Amy and Bill in Section 3.1, with its entries T,
R, P, and S adhering to the inequalities (3.2) and (3.3). With these definitions the
game played is a := a(S , P ). The payoff a player pi collects after playing a round
of games against his neighbors N (vi) is the sum of payoffs pi := p∗i as defined in
Equation (3.5).

The players may now update their strategies according to the best response
update rule (3.8). These updates are done in a round robin fashion, i.e. at every
time step a random player p is allowed to update his strategy. This player then
updates it’s strategy to the strategy that results in the highest possible payoff, given
the neighbors’ strategies are fixed. Analogous to the decision finding process in the
2-players prisoner’s dilemma faced by Amy and Bill in Section 3.1, rational players
that encounter multiple opponents recognize, that no matter what the opponents’
strategies are, the own payoff is greater when defecting, instead of cooperating.
Iteration of the update process results in a network where all players have switched
to defect, the system’s unique Nash equilibrium. The iteration of the update process
until the Nash equilibrium is reached is depicted in Figure 3.1.
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Figure 3.1.: Prisoners’ dilemma on a network. The three pictures show a network at
time steps t0, t1, and tNE. From t0 to t1 the highlighted player updates
his strategy from cooperate (C) to defect (D), thereby changing his payoff
from p = R + 2S to p = T + 2P, which according to Equation (3.2) is an
increase. During the time between t1 and tNE further strategy changes
symbolized by the dotted arrows have occurred, until at at time tNE, the
Nash equilibrium, consisting solely of defectors, has been reached.
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As this is not particularly exciting, we grant the players an additional degree of
freedom: They are allowed to pursue the maximization of their payoff not only by
adjusting their strategy, but they might as well adjust their neighborhood. However,
to avoid explosion or extinction of the number of edges in the network, the players
must not change the number of neighbors they are connected to. To ensure the
fixed number of edges in the network, players who build a new connection have
to remove an old one simultaneously. For the sake of simplicity the number of
neighbor exchanges is limited to one per player and time step. The neighborhood
update is depicted in Figure 3.2.
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Figure 3.2.: Prisoners dilemma neighborhood update. The highlighted player has
already optimized his strategy to defect (D), but is still able to increase
the payoff from p = 2S to p = S + T by connecting to a cooperating
player instead of a defector.

After a sufficient number of update steps, eventually no player will be able to
increase his payoff, neither by a change of strategy nor neighborhood. A network
Nash equilibrium (NNE), as defined by Ebel and Bornholdt [2002b], has been
reached. Despite the greater freedom of choice, for the prisoners’ dilemma the
choice of strategies in the network Nash equilibrium are the same as on the static
network. After a player has exchanged one of his defecting neighbors for one of
the still cooperating players in the network, he will still choose to defect for the
same reasons as before. The possibility of increasing the payoff by creating an
edge to an arbitrary player and removing another edge, lets the updating player
act quite predictably: The player creates an edge to some cooperating player and
removes an edge which connects him to a defector. Therefore, as soon as every
player that has been cooperating initially had the chance to update his strategy and
neighborhood, all players are defecting and no further changes, neither in strategy
nor in connectivity, will increase any player’s payoff.

Although during the neighborhood updates no player has changed his own de-
gree, the degree of the affected neighbors is not conserved, which leads to a change
of the overall topology. To find out the system’s reaction to small perturbations from
the equilibrium, once a network Nash equilibrium is reached, we force a random
player to use a suboptimal strategy, and observe the chain of changes that follows.
As, depending on T, the number of changes until a NNE is reached may be small
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compared to the number of edges in the system, the process of perturbation and
consecutive settling into an equilibrium has to be applied repeatedly until the net-
work configuration reaches a stationary state. This simple rule leads to a network
with a scale-free degree distribution pk ∼ k−γ with γ ≈ 2, shown in Figure 3.3.
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Figure 3.3.: Degree distribution emerging from playing the prisoners’ dilemma
with network topology updates. Here networks with N = 1000 nodes
and an average degree 〈k〉 = 6 have evolved through 3000 consec-
utive NNEs. The degree distribution shown is the average over 40
realizations. Shown as a dotted line is a powerlaw k−γ with γ = 2.03.

3.4. Related network structure modeling

Because of the strict dominance of defection over cooperation in the Prisoners’
dilemma as described in the previous section, it is straightforward to describe the
same dynamics without employing game theory. Consider the following update
rule, that starts from a state corresponding to the all-D Nash equilibrium, but
instead of forcing a random player to use the suboptimal C strategy, we tag the
corresponding vertex v′ ∈ V(G) to make it stand apart from the other vertices of
the graph G. The corresponding topology update process is modeled as follows:

• Generate an initial network
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• iterate the following update rule

– tag a random vertex v′ ∈ V(G)
– select a random vertex w ∈ V(G)
– create an edge (v′, w), but only if there hasn’t been an edge before

– if an edge has been added, remove a random edge from w to one of it’s
neighbors N (w)

– repeat while v′ 6= w

The condition in the update process that terminates the current update round, when
the random vertex w is identical to the tagged vertex v′, corresponds to the situation
in which the player who has been forced to switch his strategy gets the chance to
update and switches back to D. At that point, there are no cooperators left in the
network, the network Nash equilibrium is reached, and the next perturbation is
about to be executed.

To speed up the numerical simulation, instead of randomly picking the vertex w
to update itself from the set of all vertices, pick it only among those that haven’t been
picked yet. This corresponds to putting all vertices into a list lrnd that is randomly
shuffled at the beginning of each update round and then picking w from that list
w ← (lrnd)1, w ← (lrnd)2, . . . , until w = v′. The emerging degree distribution in
Figure 3.4 shows a power law with an exponent of γ = 2 over 4 magnitudes of
degree k.

To investigate the influence of the exact update rule, lets investigate two other,
but similar rules. Both again tag a random vertex v′ at the beginning of an update
round and repeatedly let a random vertex w connect to the tagged vertex if they’re
not yet connected. If an edge has been created, an edge has to be removed from the
graph to conserve the total number of edges. It is the selection of this edge, that
distinguishes the two variants from the original rule, which removes a random
edge from w to one of its neighbors N (w).

In the first variant, variant a, pick another random node w′ and remove a random
edge e ∈ w′ ×N (w′) from w′ to one of its neighbors N (w′). As depicted in Fig-
ure 3.4, the emerging degree distribution deviates drastically from the strict power
law produced by the original update rule, and shows a Poissonian distribution for
the low degrees and a power-law tail with γ = 1 for the high degrees.

The second modified update rule, variant b, does the same as the first, except,
that the edge to be removed from the network is picked randomly from the set
of all edges e ∈ E(G). Although this might seem to be the same at first glance, it
isn’t. Recall from the description of the scale-free networks introduced by Barabási
and Albert [1999] in Section 2.2.2, that following a random edge to its end, the
probability to end at a vertex with degree k is proportional to kp(k), while the
probability of a randomly picked vertex to be k is p(k). This means, that in the first
variant, the degree of one of the vertices that loose a link is distributed according
to p(k) while the other follow kp(k). In the second variant both degrees follow a
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3.4. Related network structure modeling

probability distribution proportional to kp(k). This difference of the update rules
has a major impact on the emerging degree distribution of the networks, as can be
seen in Figure 3.4, where the second variant results in an increased probability for
low degrees, while for the higher degree range, the power law behavior with γ = 2
is preserved. Although here not too much insight in the causes of the different
outcomes of the dynamics of the above network formation processes is offered, the
results point out, that the exact choice of an update rule is crucial for the emerging
network structure.
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Figure 3.4.: Degree distributions emerging from prisoners’ dilemma with topol-
ogy modifications, simulated through the simplified update rule, and
from it’s two variants. The graphs have been initialized as Poissonean
graphs of size N = 10000, with an average degree 〈k〉 = 6. The de-
gree distributions shown here are snapshots of the (N

2 〈k〉)th update
round, averaged over 40 realizations. The dash-dotted lines show fits
of an additive combination of Poisson and power-law distributions
p(k) = εNP

λk

k! + (1− ε)Nsfk−γ where NP, Nsf are normalization con-
stants, and λ is the average degree of the Poisson distribution. The
contribution of the Poisson distribution and amounts to ε = 0.999 with
λ = 1.8 and γ = 1 for variant a, and ε = 0.925, λ = 3.3, and γ = 1.6
for variant b. To indicate the scale free behavior of the whole range of k
for the simplified PD and in the high degree tail of variant a, the dotted
lines show power laws k−γ with γ = 1 and 2, respectively.
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network game

As has been shown in Section 3.4, network game dynamics are able to reorganize
graph structures. Using such update rules to let technological networked systems
organize themselves into a sufficiently optimal graph structure is an easy task from
the implementer’s point of view. Rules, requiring only local information, carried
out by the networked devices themselves instead of a centralized instance, have a
low computational complexity, are therefore easy to implement, and have moderate
hardware demands. The prerequisite for the implementation is of course to find out
the set of rules that yield a graph structure that is (close to) optimal for the given
application. Finding the corresponding rules is the crux of the matter. As we have
seen, minor changes to the update rules of networked game dynamics can result
in significant differences of the emerging network structures. For technological
applications distributed network engineering algorithms are desirable, however,
as applications differ in premises and requirements, update rules will have to be
adapted to specific problems. This suggests to find a more systematic way of
changing the update rules to allow interpolation between the self organized graph
structures, and thereby enable coverage of a broader range of applications.

Trying to find an update rule variant that allows for a smooth interpolation be-
tween classes of emergent network structure, is the subject of this chapter. We will
refer to update rules as tunable update rules, if they allow to interpolate between the
emerging structures in a continuous way by means of few, ideally a single, parame-
ter. As we have seen in the previous chapter, the outcome of the prisoner’s dilemma,
with its unique dominant Nash equilibrium, does not depend on the parameters
in the payoff matrix, as long as they obey the inequalities that characterize the
prisoner’s dilemma. For this reason, here we will use a game with multiple Nash
equilibria for the pairwise interaction between the players, the iterated prisoner’s
dilemma (IPD). The IPD as a two players game and the used neighborhood explo-
ration schemes are described in Section 4.1 and 4.2. The existence of network Nash
equilibria for the given game and neighborhood exploration schemes is shown
in Section 4.3, followed by numerical simulations to show, that these NNEs are
in fact reached by the dynamics. Once more Section 4.4 picks up the concept of
repeatedly perturbing network Nash equilibria until stationary states are reached.
The emerging network structures are characterized in Section 4.5, and Section 4.5
puts the idea of using the described dynamics to influence the global performance
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of a network to a test.1

4.1. Iterated Prisoner’s Dilemma (IPD)

Recall from Section 3.1, that the prisoner’s dilemma is defined by its payoff matrix
P PD (3.1) based on the strategy choices S PD = {C, D}. The Inequalities (3.2) and
(3.3) define the allowed ranges for the entries of P PD and result in the single Nash
equilibrium of defection on both sides. The fact, that the unique Nash equilibrium
of the PD, which is carried over to the networked version with the neighborhood
modifying update rule, and the dynamics from one NNE to the next, are inde-
pendent of the parameters in P PD, makes the networked PD not well suited as a
network creation game, as it can not be adapted to a specific task. Although the
emerging graph structures are an interesting subject to study, for the application as
a network creation game it is important for a dynamic to be tunable, to allow control
of the emerging structures. Through repetitive play of the game, the prisoner’s
dilemma can be turned into such a game, which is the iterated version of the PD,
the so called iterated prisoner’s dilemma (IPD).

Assume, that two players encounter each other an infinite number of times,
playing the prisoner’s dilemma, still the Nash equilibrium is to defect. That changes
when the ability to memorize the strategy choices of the opponent is introduced. In
principle every player could have an arbitrarily large memory, but for simplicity we
will assume, following Ebel and Bornholdt [2002a], a memory of size m = 1, which
enables the player to memorize the opponents last strategy choice. Already this tiny
memory allows the player to react to exploitation by the opponent appropriately.
Now the player, by means of his memory, can be in three different states: remember
being defected by the opponent in the last encounter, remember cooperation, or
having no memory of a previous event, as it is the case for the first time the opponent
is encountered. In each of these three states, the player can choose from two different
actions {C, D} = S PD, resulting in 23 = 8 behavioral patterns. Consequently the
behavior of a player is completely described by a triple (s0, sC, sD) ∈ S PD

3 =: S IPD,
the set of these triples is the set S IPD of strategies of the iterated prisoner’s dilemma.
The first element of the triple s0 defines the PD strategy chosen when there is no
memory of a previous encounter, i.e. in the first PD game of a round of games, the
so called opening move. The other two elements sC and sD respectively specify which
strategy to choose when the opponent has been cooperating or defecting during
the last encounter. The 8 triples that define the possible strategies of the IPD are
listed in Table 4.1, along with names given to the strategies and, for convenience,
an enumeration 1, . . . , 8, that will be used from now on to specify IPD-strategies.

Consider for example player A choosing the generous tit-for-tat strategy (sA = 7),
defined by the triple (sA0 = C, sAC = C, sAD = D), and its opponent B playing the always

1It should be noted, that to a large extent this chapter’s contents culminated in a publication in the
New Journal of Physics [Scholz and Greiner, 2007].
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Table 4.1.: Each of the eight strategies of the IPD game comes with an opening move
s0 as well as the responses sC and sD to a previous C and D move of the
opponent.

S (s0, sC, sD) name
1 (D,D,D) always defect
2 (D,D,C) suspicious anti tit-for-tat
3 (D,C,D) suspicious tit-for-tat
4 (D,C,C) suspicious cooperate
5 (C,D,D) generous defect
6 (C,D,C) generous anti tit-for-tat
7 (C,C,D) generous tit-for-tat
8 (C,C,C) always cooperate

defect strategy (sB = 1), defined by (sB0 = D, sBC = D, sBD = D). Consequently, in the
opening move strategy sA0 = C meets sB0 = D, resulting in a payoff P PD(C, D) = S
for player A. In the second move, the player A remembers a defecting opponent
and therefore chooses sAD = D, whereas player B chooses sBC = D. The payoff of A
in the second and all subsequent moves is P PD(D, D) = P. The payoff collected
by player A during a total number of n PD interactions with B is the sum of these
payoffs P IPD(7, 1) = S + (n− 1)P. For simplicity we are interested in the IPD with
an infinite number of moves, i.e. n → ∞, where P IPD(sA, sB) obviously diverges,
therefore we define P ∞(sA, sB) := limn→∞ P IPD(sA,sB)/n, which for the example above
is P ∞(7, 1) = P.

Generally, the IPD’s payoff matrix P IPD is calculated from the PD’s payoff matrix
P PD in a recursive manner:

P IPD(sA, sB) = P PD
(
sA0, sB0

)
+ P PD

(
sAsB0 , sBsA0

)
+ P PD

(
sAsBsA0

, sBsAsB0

)
+ · · · (4.1)

= P PD
(
sA(1), sB(1)

)
+

n

∑
t=2

P PD
(
sA(t), sB(t)

)
, (4.2)

with recursively defined strategy choices of player A and B sA(t) = sAsB(t−1) and
sB(t) = sBsA(t−1), anchored at t = 1 through the opening moves sA(1) = sA0 and
sB(1) = sB0, respectively. For an infinite number of interactions, the average payoff
per interaction is

P ∞(sA, sB) := lim
n→∞

P IPD(sA, sB)
n

. (4.3)

For times t ≥ 2 the players have the knowledge of the opponent’s previous strategy,
because of this, from time t = 2 on, the two players are in one of the four states of
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the 2× 2 state space S PD × S PD. The deterministic behavior of the players assures,
that once a state is reached that has been reached before, the sequence of chosen PD
strategies will be in a limit cycle. It follows from the finite size of the state space,
that it can take at most 4 PD moves to re-reach a previously visited state, so the
system is guaranteed to be in the limit cycle at time t = 2 + 4. As length of this
limit cycle is obviously bounded by the number of states in the state space, the
terms in the sum of Equation (4.2) have to repeat with a period length of 4 or less
time steps from t = 6 or earlier, which comes handy when determining the payoffs
analogously to the case of strategy 7 encountering strategy 1 described above.

Collecting the payoff values for the 64 combinations of strategies, we arrive at
the full 8×8 average payoff matrix of the iterated prisoner’s dilemma:

P ∞ =



P T P T P T P T
S P+R

2
P+S+R+T

4 T S T T+P+S+R
4 T

P P+T+R+S
4 P R P T+R+S+P

4
T+S

2 R
S S R R S S R R
P T P T P T P T
S S S+R+T+P

4 T S R+P
2

R+T+P+S
4 T

P S+P+T+R
4

S+T
2 R P R+S+P+T

4 R R
S S R R S S R R


. (4.4)

In the larger payoff matrix of the IPD it’s not as obvious as in the PD which strategies
are the cooperating, and which are the defecting ones. To identify strategies that
deserve to be called cooperative or defective, we determine which strategy of
the PD is played more often, once two players with the same IPD strategy have
reached the limit cycle. Following this definition, a cooperative strategy sC yields
payoff P ∞(sC, sC) = R and a defective strategy sD yields P ∞(sD, sD) = P. From
Equation (4.4), we find strategies {4, 7, 8} to be cooperative and {1, 3, 5} to be
defective. For strategies 2 and 6 it’s undecided, and these strategies indeed result in
alternating C and D moves during the recursion.

The iterated prisoner’s dilemma with an infinite number of steps, as charac-
terized by it’s payoff matrix P ∞, has several combinations of strategies that are
Nash equilibria: (1, 1), (5, 5) and (1, 5) consisting of defective, and (7, 7) consisting
of cooperative strategies. The derivation of the Nash equilibria is postponed to
Section 4.3, where they are found as a byproduct while looking for network Nash
equilibria.

Putting the IPD on a network, we proceed in the same way as with the PD in
Section 3.2. Players pi ∈ P are identified with vertices vi ∈ V of a graph G(V , E).
The players connected by the edges E encounter each other, playing the game
a := a(S IPD, P ∞) and the payoff of player i is the sum of payoffs pi := p∗i resulting
from interactions with the neighbors as defined in Equation (3.5). When players
update their strategy, we let them choose the best response strategy, given in
Equation (3.8).
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4.2. Neighborhood Exploration Schemes

Apart from the concrete game that is played on the network, the next crucial
constituent of a network game is the way in which the players are allowed to
modify the network structure. In principle players may be able to change large
portions of the network structure at any time, however, as our main motivation
is to find rules that are to a high degree locally confined, we restrict the changes
that a player can initiate to changes of his immediate surrounding. The precise rule
that players have to adhere is what we will call the neighborhood exploration scheme.
As we have already seen in Section 3.4, details of these rules can have significant
impacts on the properties of the emerging networks. To increase the covered search
space, we use four conceptually similar schemes, sharing the common feature of
conserving the updating player’s degree.

The first aspect that distinguishes the schemes from each other, is the concrete
specification of the connectivity update, where we consider two variants. Both
variants have the conservation of the total number of edges in the network in
common and achieve this by locally conserving the updated vertex’s degree. After a
player p has added ∆k edges, and thereby increased his degree from k to k′ = k+∆k,
the player has to remove the same number ∆k of edges from his neighborhood. To
achieve an optimal outcome for the player, the edges to be removed are selected
among the adjacent edges in increasing order of the payoff contributed to p’s payoff,
i.e. the edge ep,i with i = argminj∈N (p) P (sp, s j) is removed first. There is an
exception to this rule if the edge to be removed were the last remaining edge
of p, then a random edge e ∈ E is removed instead. The connectivity update
variants’ differences lie in the way of choosing the vertices to connect to. Here we
distinguish new vertex exploration (NVE) and new edge exploration (NEE). In new
vertex exploration, the updating player p chooses, among all players it is not yet
connected to, one player i = argmaxj∈V\N (p) P (sp, s j), that yields the maximal
payoff for p. The new edge exploration scheme (NEE) does not consider which
vertex may be the best to connect to, but which pair of connected vertices maximizes
the players payoff if new edges are created from p to the two vertices connected by
an edge e = argmaxei,j∈E (P (sp, s i) + P (sp, s j)).

The second aspect of an update scheme determines how updates of the strat-
egy and updates of the neighborhood are interwoven. Again we distinguish two
variants, which we denote by respectively prefixing OR or XOR to the scheme’s
name. The prefixes stem from the analogy to the logic operations OR (inclusive
disjunction) and XOR (exclusive disjunction, exclusive or). In the XOR-variants, the
strategy and topology updates take place separated from each other: The player
first updates his strategy while keeping the connectivity fixed and subsequently
the player may, keeping his strategy fixed, try to maximize his payoff by modifying
his connectivity. Once the connectivity is updated, the player may again update his
strategy. The OR-variants of the update schemes maximize the payoff by adapting
strategy and connectivity simultaneously. Note that for the PD on networks, as
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described in Section 3.3, distinguishing between OR and XOR updating does not
make a difference, as, because of the unique Nash equilibrium, the best response
strategy does not depend on the neighborhood of the player.

Combining the variants of interweaving of strategy and topology updates (OR
and XOR) and the variants of connectivity updates (NVE and NEE), we end up
with four schemes, XOR-NVE, OR-NVE, XOR-NEE, and OR-NEE, which we will
investigate in the following sections.

4.3. Existence of NNEs

Given a game, a strategy update rule, and a neighborhood exploration scheme, the
existence of Network-Nash equilibria (NNEs), as defined by Ebel and Bornholdt
[2002b] and described in Section 3.3, is not clear a priori. In this section we show the
existence of NNEs for the IPD under the best response strategy update defined by
Equation (3.8) and the neighborhood exploration schemes introduced in Section 4.2.

To show that a certain subset S NNE ⊆ Sa of all strategies that are possible in a
game a is a network Nash equilibrium, we first check whether S NNE qualifies as a
Nash equilibrium. If this is the case, we can proceed to check if it is a network Nash
equilibrium under the given neighborhood exploration scheme.

A set of strategies comprises a Nash equilibrium, if no single player can increase
his payoff by an unilateral change of his strategy A ∈ S NNE to any other available
strategy A′ ∈ Sa. This will generally depend on the number of neighbors and their
choice of strategies, and on the numerical values of the PD payoffs, as an increase of
payoff in one interaction may be compensated by a decrease in another. A situation,
where the strategies that are allowed in a Nash equilibrium depend on the topology
is shown in Figure 4.1.

To show the existence of Nash equilibria, we consider the sufficient, although not
necessary,2 case, where none of the payoffs gained from the interaction with any
neighbor, with any strategy B ∈ S NNE increases. S NNE is a Nash equilibrium, if

P (A, B) ≥ P (A′, B) ∀ A, B ∈ S NNE, A′ ∈ Sa. (4.5)

2Since the notation of sufficient and necessary conditions is crucial for the present arguments, recall:
Let the statement S be true, if the conditions A and B are fulfilled A∧ B→ S, then for S to be true,
both A and B are necessary conditions. However, if only one (say A) is fulfilled, S is not true, as A
is not a sufficient condition. Let, as another example, the statement S be true, if at least one of the
conditions A or B are fulfilled A ∨ B→ S, then either condition is sufficient for S to be fulfilled.
But neither A nor B are necessary for S, as if for example A is true, then for S to be true it is not
necessary that B is true. To sum up, a condition can be necessary but not sufficient for a statement,
and a condition can be sufficient for a statement even if it is not necessary. If a condition is both
necessary and sufficient for a statement, the statement is true, if and only if (often abbreviated as iff )
the condition is true. In that case condition and statement are said to be logically equivalent.
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s

8

7

7

7

7
7

k− 1

Figure 4.1.: A topology dependent Nash equilibrium of the IPD. Depending on
its degree k, the choice of strategy s = 7 for the highlighted player,
given k− 1 neighbors with strategy 7 and one with 8, may or may not
be a Nash equilibrium. The highlighted player’s payoff is p∗(s) =
(k− 1)P ∞(s , 7) + P ∞(s , 8). This player will switch his strategy s from
7 to 5, if p∗(7) < p∗(5), in which case s = 7 is not a Nash equilibrium.
Substituting the payoffs in the inequation we get k(R− P) < T − P.
For k = 1, according to Inequation (3.2), this is always fulfilled, i.e. the
strategy s = 7 is not a Nash equilibrium. For degrees larger than 1, the
switch to 5 depends on the values of P, R, and T from the PD’s payoff
matrix P PD.
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4. Iterated prisoners dilemma network game

Restricting the investigation to the subset of inequations with A = B ∈ S NNE leads
to

P (B, B) ≥ P (A′, B) ∀ B ∈ S NNE, A′ ∈ Sa, (4.6)

which is a necessary condition to fulfill Inequation (4.5). Although (4.6) is obviously
not a sufficient condition for (4.5), as the inequations for A 6= B are necessary to
be fulfilled as well, it provides a convenient way of ruling out strategies: For a
strategy to comprise a topology independent Nash equilibrium in the sense of
Inequation (4.5) its entry on the diagonal of the payoff matrix has to be greater than
or equal to all payoffs in its column.

Considering the IPD, with its set of strategies Sa = S IPD = {1, . . . , 8} as listed
in Table 4.1, and its payoff matrix (4.4), it turns out that strategies 3, 4 and 8 fail to
satisfy (4.6) because of the constraints given by Inequation (3.2). Strategies 2 and 6

fail because P+R
2 < R and R < T. The only strategies that satisfy (4.6) are 1, 5 and

7, which is obvious for strategies 1 and 5, as P > S. For strategy 7 Inequation (3.3)
assures R ≥ T+S

2 and term wise comparison of

T + S
4

+
R + P

4
<

2R
4

+
R + R

4
= R

shows that R is indeed the largest value in the 7th column. For a strategy set with
one member |S NNE| = 1, A and B of Equation (4.5) are equal by definition, making
Equations (4.5) and (4.6) equivalent for those cases. Therefore the strategy sets {1},
{5}, and {7} comprise Nash equilibria. On top of that, the set {1, 5} obeys (4.5),
while {1, 7} or {5, 7} don’t, as for example

P (5, 7)︸ ︷︷ ︸
=P

� P (4, 7)︸ ︷︷ ︸
=R

,

i.e. a player with strategy 5 encountering 7 will switch to strategy 4 (or 7, or 8, as
they all result in a payoff of R) to maximize its payoff.

To assure that S NNE is a network Nash equilibrium with respect to the XOR-
NVE scheme, it has to be shown that, apart from Inequation (4.5), a change in
neighborhood does not increase the payoff. Regarding the change in payoffs, the
neighborhood exploration is equivalent to a change of the opponent’s strategy
B ∈ S NNE to another strategy B′ ∈ S NNE to be found in the network. Formally,
S NNE is a XOR-NVE NNE, if Inequation (4.5) holds and

P (A, B) ≥ P (A, B′) ∀ A, B, B′ ∈ S NNE,

which is, due to the symmetry in the arguments, equivalent to the equality

P (A, B) = P (A, B′) ∀ A, B, B′ ∈ S NNE. (4.7)

The Equality (4.7) is trivially fulfilled by single element strategy sets |S NNE| = 1,
and, consulting (4.4), by the combination of strategies S NNE = {1, 5} as well.
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4.3. Existence of NNEs

Within the OR-NVE scheme, agents explore strategy and neighborhood changes
at the same time, to maximize their payoff. Again the increase of payoff in one
interaction may generally be compensated by a decrease in other interactions. To
proof the mere existence of NNEs it is sufficient to demand that not a single payoff
of a player’s interactions gets decreased during the exploration. Merging these
requirements for strategy and neighborhood we get the sufficient but not necessary
conditions for the existence of NNEs in the OR-NVE exploration scheme

P (A, B) ≥ P (A′, B′) ∀ A, B, B′ ∈ S NNE, A′ ∈ Sa. (4.8)

The set of strategies explored by the active node A′ can be split in A′ ∈ S NNE and
A′ ∈ Sa \ S NNE, leading to two expressions

P (A, B) = P (A′, B′) ∀ A, A′, B, B′ ∈ S NNE, (4.8a)

P (A, B) ≥ P (A′, B′) ∀ A, B, B′ ∈ S NNE, A′ ∈ Sa \ S NNE. (4.8b)

The corresponding conditions for NNEs with respect to the XOR-NVE scheme
(4.5) and (4.7) are subsets of (4.8) for B = B′ and of (4.8a) for A = A′, respectively.
Thereby these conditions are necessary prerequisites to fulfill (4.8), starting from
the few strategy sets that guarantee XOR-NVE NNEs it is easily seen, that the
strategy sets that fulfill the conditions for NNEs for the XOR-NVE scheme, fulfill
the conditions for OR-NVE NNEs as well. Analogue argumentation shows, that for
both NEE schemes these strategy sets guarantee network Nash equilibria.

The previous paragraphs proof, that indeed network Nash equilibria exist with
respect to the investigated strategy updates and neighborhood exploration schemes.
However, it is not guaranteed, that, starting from an arbitrary initial network and
strategy configuration, the NNEs are indeed reached through repeated application
of the update rules, as the system might get stuck in a periodic limit cycle. Extensive
numerical, agent based simulations of the update processes show, that the NNEs
are in fact reached. For the simulations, we fix

S = 0 , P = 1 , R = 3 , (4.9)

to commonly used values [e.g. Axelrod and Hamilton, 1981, Ebel and Bornholdt,
2002a] and keep T as a free parameter that we will vary within the bounds 3 < T < 6
given by Inequation (3.2).

For demonstration, the variant with the XOR-new-vertex-exploration scheme is
applied to an initial BA-scale-free network [Albert and Barabási, 2002], where each
vertex has been randomly assigned one out of the eight possible IPD strategies. For
the payoff parameter T = 4 Figure 4.2a illustrates the degree distribution obtained
from the first NNE. It differs significantly from the initial scale-free distribution. A
similar finding holds for the strategy distribution. As can be seen in Figure 4.2b
it is no longer homogeneous. By far the most frequent strategy is 7, generous
tit-for-tat. Two other cooperative strategies occur with small frequency although
they are not present in the SNNE strategy set determined during the proof of the
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(a) Degree distributions of the initial (solid red
line), 50th (red M) and stationary (blue ◦)
NNE. For reference the initial scale-free
distribution and a Poissonian distribution
with the same average degree are shown.
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(b) Strategy distributions of the initial (red), 1st

(green), 50th (blue) and stationary (purple)
network Nash equilibrium.

Figure 4.2.: Vertex degree and strategy distributions obtained from the IPD network
creation game with the XOR-NVE scheme. The figures show averages of
an ensemble of 200 realizations of scale-free graphs of size N = 100 with
an average degree 〈k〉 = 8, constructed through preferential attachment,
as proposed by Barabási and Albert [1999]. Here the payoff parameters
are S = 0, P = 1, R = 3, and T = 4.

existence of NNEs. This emphasizes the effects of the networks topology on the
abundance of strategies, as has been argued in Figure 4.1. Defective strategies are
highly suppressed through the generous tit-for-tat strategy’s ability to fight back
against the defective strategies and cooperate with the cooperative strategies.

4.4. Perturbation dynamics of NNEs

As shown in Figure 4.2a, applying the update schemes to a graph of connected
IPD players, results in a massive reconfiguration of the network structure until
a network Nash equilibrium is reached. Once an NNE is reached, the system is
by definition in a stable state. Analogous to Section 3.3 let’s now investigate the
reactions of the system to perturbations in the form of forcing a player to use a
suboptimal strategy.

Following a perturbation, the dynamics of the strategy and topology updates
sets in again until eventually the next NNE is reached. We repeat the procedure of
perturbation and subsequent stabilization into a NNE convergence over and over
and refer to the NNE following the tth perturbation step as the tth NNE, the NNE
reached after starting from the initial network structure and strategy distribution is
consequently called the 0th, or initial NNE. Apart from the initial NNE, Figure 4.2a
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Figure 4.3.: Kullback-Leibler entropy (4.10) of the NNE degree distributions with re-
spect to the stationary NNE degree distribution as a function of the NNE
number. As initial distributions a BA scale-free distribution (blue •)
and a Poissonian (red ◦) have been chosen.

also shows subsequent NNE. With increasing NNE number t the distributions pk(t)
converge to an asymptotic form pk(∞). To quantify the convergence towards the
final degree distribution Figure 4.3 shows the difference of the degree distribution
pk(t) at time t to the stationary degree distribution denoted as pk(∞). The difference
is calculated using the Kullback-Leibler entropy

SKL(pk(t), pk(∞)) = ∑
k

pk(t) ln
(

pk(t)
pk(∞)

)
, (4.10)

which is a measure of difference between two probability distributions. The two
curves represent different initial network structures, namely a BA scale-free network
and a random Poisson network with the same average degree 〈k〉. Independent of
the initial network structure, the asymptotic form pk(∞) is reached at approximately
t ≈ 500. We refer to NNEs in this asymptotic regime as the stationary NNEs.

It is interesting to study the dynamics from one stationary NNE to the next one
in more detail. We define a strategy-based average Hamming distance

Hstrategy =

〈
N

∑
i=1

(1− δ(si(t + 1), si(t)))

〉
t

(4.11)

between two subsequent NNEs. Hstrategy counts the average number of players,
whose strategy in the newly reached NNE differs from the one used before the
perturbation. It does not consider the number of strategy switches during the
avalanche of updates.

As shown in Figure 4.4a the strategy-based Hamming distance Hstrategy appears
to be surprisingly small. Despite a weak dependence on the payoff parameter T its
values lie around Hstrategy ≈ 2. The reason for this small value becomes clear by
looking again at Figure 4.2b. For the stationary NNEs the strategy distribution is
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4. Iterated prisoners dilemma network game

almost entirely peaked in the generous tit-for-tat strategy. Consequently, for most
subsequent NNEs, almost all vertices use strategy 7 before the perturbation and do
so again afterward.

Similar to Equation (4.11) we also define an edge-based Hamming distance

Hstructure =

〈
N

∑
i=1

N

∑
j=i+1

(
1− δ(aij(t + 1), aij(t))

)〉
t

(4.12)

between two subsequent NNEs. It counts the number of edges, that have been
removed from or added to the network by the topology updates, by counting the
altered entries in the network’s adjacency matrix aij. Note that moving an edge,
i.e. deleting an edge between and adding one in a different location, contributes
to the edge-based Hamming distance with magnitude 2. Figure 4.4b reveals that
the edge-based Hamming distance is significantly larger than its strategy-based
counterpart and shows a strong increase with the payoff parameter T.

The two Hamming distances Hstrategy and Hstructure ignore events that take place
during the sequence of strategy and topology changes. To investigate the relation
of the number of changes during an avalanche, we define the avalanche size as
the number of vertices, that either evoke a change of strategy or neighborhood
between two consecutive NNEs. Figure 4.4c shows the average avalanche size in
dependence of payoff parameter T. The distribution of avalanche sizes shown in
Figure 4.5 shows non Gaussian distributions, as have already been observed for
strategy avalanches on fixed networks by Ebel and Bornholdt [2002a].
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Figure 4.4.: (a) Strategy-based Hamming distance (4.11), (b) edge-based Hamming
distance (4.12) and (c) average avalanche size between two consecutive
stationary NNEs obtained from the IPD network creation game with the
XOR-NVE scheme. Each curve has been sampled over 20 independent
realizations. The size of the network has been fixed to N = 100 vertices
and an average degree of 〈k〉 = 8.
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Figure 4.5.: Avalanche size distributions between two consecutive stationary NNEs
obtained from the IPD network creation game with the XOR-NVE
scheme and T = 3 (red �), T = 4 (blue ◦), T = 5 (purple M), T = 6
(light blue O). Each curve has been sampled over 20 independent re-
alizations. The size of the network has been fixed to N = 100 vertices
and an average degree of 〈k〉 = 8.
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4.5. Properties of stationary NNEs

Qualitatively, the results of Section 4.4 also carry over to other payoff parameter
values and to the other neighbourhood exploration schemes. We will now examine
the quantitative differences of the respective stationary NNEs.

Figure 4.6 depicts the degree distributions. For all neighbourhood exploration
schemes they show a dependence on the chosen value for the payoff parameter
T. For the XOR-new-vertex-exploration scheme the degree distribution is close
to a Poissonian for T = 3, becomes broader for larger T and evolves into a two-
hump structure for T = 6. For the OR-new-vertex-exploration scheme the trend
is opposite. For T = 3 the distribution is broadest and evolves in direction of a
Poissonian for larger T.

The Poissonian has to be viewed as a reference distribution, as it is the stationary
result of a local random edge exchange, where a randomly picked vertex builds up
an edge to a randomly picked non-neighbour and removes an edge to a randomly
picked neighbor [Scholz et al., 2005]. In this respect, the results of Figure 4.6a
and b clearly show, that the game component of the IPD network creation game
introduces a new quality, which goes beyond restructuring of the network using
only a topology update rule without a game.

The degree distributions resulting from the two new-edge-exploration schemes
are illustrated in Figure 4.6c and d. The XOR variant produces little variation for
most T values. Only close to T = 6 a noticeable variation occurs. All distributions
come with a pronounced tail towards large degrees, but are not scale-free. A refer-
ence distribution is also shown, which results from a pure new-edge randomization,
where a randomly picked vertex builds up new edges to the two vertices of a ran-
domly picked edge and removes the same amount of edges to randomly picked
old neighbors. Although some small differences are noticeable, this distribution
remains close to the XOR distribution in the regime 3 ≤ T ≤ 5. In this regime the
game component of the IPD network creation game has only a small influence.

The degree distributions resulting from the OR-new-edge-exploration scheme
show more variation with T. For values between T = 3 and 4 the respective
distributions pk ∼ k−γ appear to be scale-free with a finite-size cutoff towards very
large degrees. The scale-free exponent is approximately γ ≈ 1.1. For larger T values
the degree distribution develops half-way in direction of a Poissonian, only to be
left in a two-hump structure at T = 5.

Another structural property of the stationary NNEs to look at is the average
degree-dependent cluster coefficient 〈CC|k〉, defined in Equation (2.20). The re-
sults for the four different neighborhood exploration schemes of the IPD network
creation game are shown in Figure 4.7. For the variant with the OR-new-vertex
exploration the cluster coefficient does not show a k dependence. However, we
notice a dependence on the payoff parameter. The cluster coefficient is a decreasing
function with T and for T ≈ 5 approaches the value 〈CC〉 ≈ 〈k〉/N of the reference
Poissonian network obtained from a local random edge exchange. This trend is in
accordance with the trend observed in the respective degree distribution, which
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Figure 4.6.: Degree distributions for stationary NNEs obtained from the IPD net-
work creation game with the (a) XOR-NVE, (b) OR-NVE, (c) XOR-NEE
and (d) OR-NEE scheme. The T-dependence is shown as T = 3 (red
—), T = 4 (blue - -), T = 5 (purple · · · ), and (for XOR variants) T=6
(light blue −·−). Each curve has been sampled over 400 independent
realizations. For reference a Poissonian (dotted black) is shown in (a),
(b) and the distribution (dotted black) resulting from a new-edge ran-
domization is shown in (c), (d). The size of the network has been fixed
to N = 100 vertices and an average degree of 〈k〉 = 8.

48



4.5. Properties of stationary NNEs

 0.1

 1

 1  10  100

<
C

|k
>

k

(a) XOR-NVE

 0.1

 1

 1  10  100
<

C
|k

>
k

(b) OR-NVE

 0.1

 1

 1  10  100

<
C

|k
>

k

(c) XOR-NEE

 0.1

 1

 1  10  100

<
C

|k
>

k

(d) OR-NEE

Figure 4.7.: Degree-dependent cluster coefficient 〈CC|k〉 obtained from the IPD net-
work creation game with the (a) XOR-NVE, (b) OR-NVE, (c) XOR-NEE
and (d) OR-NEE scheme. The T-dependence is shown as T = 3 (red
—), T = 4 (blue - -), T = 5 (purple · · · ), and (for the XOR variants) T=6
(light blue −·−). Each curve has been sampled over 400 independent
realizations. In (a), (b) a reference 〈CC|k〉 is shown in black resulting
from a random edge exchange; in (c), (d) the reference in black is the
outcome of a new-edge randomization. The size of the network has
been fixed to N = 100 vertices and an average degree of 〈k〉 = 8.
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has been exemplified in Figure 4.6b.
Except for T = 3, an analogous picture arises for the variant with the XOR-new-

vertex exploration. The cluster coefficient shows almost no dependence on the
vertex degree. It is an increasing function with T. For T & 3 slightly larger than 3
the cluster coefficient is close to the value 〈CC〉 ≈ 〈k〉/N of the reference Poissonian
network. Again, this trend is consistent with the trend observed in the respective
degree distribution of Figure 4.6a. However, the payoff value T = 3 appears to
be singular. The cluster coefficient reveals a power-law dependence 〈CC|k〉 ∼ k−δ

with exponent δ ≈ 0.66. We have carefully checked by extensive simulations that
this power-law is immediately lost once the payoff parameter T & 3 is chosen just
slightly larger than three. We can not offer an explanation for this singular finding.

The cluster coefficients obtained from the new-edge exploration schemes turn out
to be much larger than for the new-vertex exploration schemes. This is explained by
the fact, that acceptance of a newly explored edge always introduces a new triangle.
For all payoff parameters T, although with differing quality, the cluster coefficient
turns out to be a power-law function of the vertex degree. The exponent δ ≈ 0.4 as
well as the order of magnitude of the cluster coefficient is the same as for the pure
new-edge randomization, where a randomly picked vertex builds up a pair of new
edges to the endvertices of a randomly picked edge and removes the same amount
of edges to randomly picked old neighbors. Note however, that for both new-edge
exploration schemes the absolute value of the cluster coefficient reveals a noticeable
dependence on the payoff parameter T.

As announced in Chapter 3, let’s take a brief glance on the use of the IPD network
updates as a tool of distributed network optimization. The variant of closeness
proposed by Holme and Ghoshal [2006]

si :=
ci

ki
= ∑

j∈V(G)
(d(i, j)ki)

−1, (4.13)

which has already been given in Equation (2.12), combines two properties that
might be desirable for nodes of social or technological networks. First, to be central
in the network in a the sense, that other nodes can be reached via short paths as
quantified by the closeness ci. Second, to have low costs or efforts, quantified by the
degree ki. The combination of these properties, assigns a large value to nodes that
are central and have a low degree at the same time. Figure 4.8 shows the dependence
of the average value 〈s〉 on the parameter T of the payoff matrix. Compared to
reference topologies of Poissonean and BA graphs 〈s〉 increases significantly for
values of T between 3 and 4. Perhaps more important than the mere increase of
〈s〉 is the pronounced dependency of 〈s〉 on T. It is this property, that turns the
present chapter into a proof of principle for the ability of local topology updates,
coupled to game-like rules, to shape a network in a way that (positively) influences
non-local properties of its graph structure. Moreover, through the dependency on
the parameters of the game, in the present case T, the emerging topology can be
specialized to tasks and functions imposed upon the network.
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Figure 4.8.: Influence of the OR-NEE dynamic on the network performance mea-
sured by 〈s〉. The scale 〈s〉 is normalized to value for Poissonean graphs
〈s〉0. From top to bottom the horizontal lines show 〈s〉 for the outcome of
new-edge randomization (blue), i.e. just NEE-exploration without eval-
uation of payoffs, BA-graphs (purple), and Poissonean graphs (black).
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5. Incentives for cooperation

The previous chapter showed, that by giving players a short-term memory and
letting them play a game repeatedly, cooperation, manifested in the Tit-for-Tat
strategy of the IPD, can be brought to the Prisoner’s Dilemma on networks. An
alternative approach that renders prevailing cooperation possible, pursued among
others by Nowak and May [1992] and Ohtsuki et al. [2006], is changing the way
players update their strategies from choosing the best response, see Equation (3.8),
to imitation of the most successful neighbor, Equation (3.7). This effectively corre-
sponds to less sophisticated players, as a best response player has to be aware of all
possible strategies, whereas an imitator has to merely adopt an opponents strategy.
While for technical applications the assumption of complete knowledge of strategies
may be reasonable, regarding biological or social networks, this information may
not be available to the players. In such situations, imitation of the most successful
neighbor’s strategy might be the best a player can do. An implication of this rule
is that strategies may die out. Once the last player employing a certain strategy
decides to switch to another strategy, his previous strategy will be gone from the
system forever. For the imitating game dynamic, as proposed by Ohtsuki et al.
[2006], the present chapter addresses the question whether it is possible to enhance
the cooperativeness of the players by giving incentives and, if so, how to distribute
the incentives effectively.

5.1. Underlying interaction model

The payoff matrix of the Prisoner’s dilemma can be formulated in a way that
emphasizes the role of cost c and benefit b for the players [e.g. Ohtsuki et al., 2006].
In this parametrization

P PD =

(
b− c −c

b 0

)
(5.1)

of the PD payoff matrix, which has been introduced briefly as Equation (3.4), the
benefit is the amount a player gets, when encountering a cooperator, in contrast to
zero payoff when encountering a defector. On the other hand, the cost corresponds
to the invest a cooperator spends when entering the game, while a defector does
not invest anything. To fix the absolute magnitude of the payoff we normalize the
average payoff

(P (C, C) + P (C, D) + P (D, C) + P (D, D))/4 = 1, (5.2)
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yielding b = 2 + c as relation between cost and benefit.
The game is played on a network of N players P = {p1, . . . , pN}. Interactions

take place between players that are neighbors in the network. The total payoff of a
player pi ∈ P is the sum of payoffs

p(pi) := p∗(pi) = ∑
j∈N (pi)

P (s i, s j) (5.3)

from interactions with the set of neighbors N (pi), where the strategy of player pi is
given by s i ∈ S PD = {C, D}.

Subject to an asynchronous update, the strategies of the players may change
according to a death-birth process [Ohtsuki et al., 2006]. In each update step a random
player pi dies, leaving a vacant site i in the network. Now the neighbors N (pi)
compete to take over the empty site and to propagate their strategy to a new born
player who will then inhabit site i. This competition for the site i is modeled by
a stochastic selection with a probability proportional to the fitness F(px) of the
neighbors. The probability for a player px ∈ N (pi) to win this competition is

prob(px) =
F(px)

∑pj∈N (pi)
F(pj)

. (5.4)

Once the winner of this competition px is determined, the strategy of the winner is
copied to the new born player s x → s i.

The fitness of a player px consists of a constant term, the baseline fitness, and the
game’s payoff:

F(px) = 1− w + wp(px) = 1 + w(p(px)− 1). (5.5)

The weighting factor w decides for strong (w ≈ 1) or weak (0 < w� 1) selection.
Weak selection accounts for the fact, that many factors contribute to the overall
fitness of an individual, and that the game is only one of those factors.

To measure the cooperativeness of the PD with stochastic imitation strategy
updates, the fixation probability ρ is used, see e.g. Wild and Taylor [2004]. Starting
with a network full of defectors, with just one cooperator at a random position, ρ
is defined as the probability, that this one cooperator turns all other players into
cooperators through successive stochastic strategy updates. A fixation probability
of ρ = 1

N is said to be neutral. If ρ > 1
N , then the system favors cooperation. For the

case of regular graphs and weak selection Ohtsuki et al. [2006] calculate the critical
ratio

b
c
= 〈k〉 (5.6)

in a mean field approximation and conclude, that for ratios b
c > 〈k〉 the fixation prob-

ability ρ > 1
N , i.e. cooperation is favored. To ensure comparability we implement

weak selection as well and fix w = 0.01 for the numerical simulations.
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5.2. Incentive model and distribution strategies

From the critical ratio of benefit and cost in Equation (5.6) we see, that lowering the
cost increases the fixation probability ρ, i.e. the system gets more cooperative the
lower the cost of cooperation is. Here we investigate, whether lowering the cost on
an individual basis can be more effective than lowering the cost globally.

To model individual modifications of the cost, we introduce φi, the incentive
given to player pi. Through this incentive, the cost of the player is reduced from c
to ci = c− φi and we now get an individual payoff matrix for player pi:

P i :=
(

b− ci −ci
b 0

)
. (5.7)

As the players encounter costs for each interaction with their neighbors, the total
amount of incentives Φ is given by the weighted sum of incentives:

Φ = ∑
pi∈P

φiki. (5.8)

Putting the sum of incentives in relation to the total sum of costs, we define the
fraction f of incentives φi to costs c:

f :=
∑pi∈P φiki

∑pi∈P cki
=

Φ
c〈k〉N . (5.9)

To investigate the effect of the distribution of incentives among the players, we
propose the following incentive distribution strategies that may be employed to
assign the individual incentives φi to the players:

• Uniform distribution: φi =
Φ

∑j∈P kj
= Φ

N〈k〉 for all players.

• Distribution proportional to a centrality measure C(i), see Section 2.1, result-
ing in incentives φi =

Φ
∑j∈P C(j)kj

C(i).

• Selection of a percentage x (1%) of players Ptop ⊂ P that rank highest with
respect to a centrality and distribute the incentives φi =

Φ
∑j∈Ptop kj

uniformly

among those n = |Ptop| players and φi = 0 for those that are not in the top-x
percent.

Centralities we investigate are the degree centrality (Cd(i) = ki) as defined in Equa-
tion (2.2), where players are more central the more neighbors they have, and the
betweenness centrality (Cb(i) = b(i)), see Equation (2.13).
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5.3. Comparison of incentive distribution strategies

To compare the efficacy of the various incentive distribution strategies, we deter-
mine ρ( f ), the fixation probability’s dependence on the factor f defined in Equa-
tion (5.9), numerically for square grids and BA scale-free networks. Square grids
approximate regular graphs, except for the players located at the borders, very well
and should therefore reproduce the fixation probability expected from the mean
field calculations [Ohtsuki et al., 2006]. BA-networks on the other hand are a much
better approximation to real social networks as they emerge from a growth process
and exhibit a scale-free degree distribution, see Section 2.2.2. We fix the global
parameters b and c according to the critical ratio b

c = 〈k〉 and the normalization
of Equation (5.2). This assures, that in the mean field approximation for regular
graphs the fixation probability is ρ = 1

N , i.e. the system is neutral, it favors neither
cooperation, nor defection.

The numerical determination of the fixation probability is done by injecting a
cooperator at a random position in a network full of defectors and applying the
stochastic update rule until all agents either cooperate or defect. This is done 103

times for each realization and repeated for 100 realizations, the fixation ρ is then
determined by averaging over the ensemble. The used networks consist of N = 484
players for the square grid and N = 500 for BA-networks, both with an average
degree 〈k〉 ≈ 4.

Figure 5.1 shows the numerically determined fixation probability ρ as a function
of f , the ratio of the total incentives Φ to the total costs, as defined in Equation (5.9).
It compares the effectiveness of the different incentive distribution strategies, by
showing the different increases in ρ they result in. On the square grid the mean field
fixation probability ρ = 1

N is reproduced very well by the numerical calculations,
as can be seen in the low incentives f � 1 part of Figure 5.1a. With increasing
incentives the fixation probability is increasing, first sublinearly, and from f ' 0.1
linearly. On the grid networks neither the choice of policy nor centrality has a big
influence on the cooperation in the network. For this very homogeneous kind of
networks what matters is the sum that invested, not how it is distributed.

With social networks in mind, scale-free BA networks, although still idealized,
are much more interesting than the highly regular grids. Figure 5.1b shows the
influence of incentive distribution strategies and the used centralities on the fixation
probability ρ on BA networks. Here the fixation probability for very small incentives
is well below the mean field estimation, as already observed by Ohtsuki et al. [2006].
Similar to the grid graphs, for increasing incentives a transition from sublinear
increase to linear increase of ρ is observed. However, unlike for grid graphs, in
the case of BA-networks, the choice of the incentive distribution strategy does
make a difference: The top-1% policies, both for degree centrality and betweenness
centrality, and the distribution proportional to the betweenness centrality result in a
linear increase of ρ that is approximately a factor of 5 steeper, i.e. the same increase
of cooperativeness can be achieved with a fifth of the investment. Distributing
the incentives proportional to the degree is also a lot more effective than uniform
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(a) 22× 22 chess board like grids with N = 484
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(b) Scale-free BA-networks with N = 500

Figure 5.1.: Fixation probability ρ as function of the factor f of incentive sum to total
costs, see Equation (5.9). The fixation probability is shown for regular
grids with N = 484 vertices and scale-free BA-networks with N = 500,
both with an average degree 〈k〉 = 4. The dotted horizontal line marks
the mean field fixation probability ρ = 1

N for regular graphs. As a
reference, the dash-dotted line shows a linear proportionality p ∼ f .
Note, that the maximal possible value of f for a policy is determined by
the constraint ci = c− φi > 0 for the personalized costs.
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distribution, but falls slightly behind the other policies.
As demonstrated by Ohtsuki et al. [2006], prevailing cooperation is possible in

the prisoner’s dilemma on graphs with imitation of the best scoring neighbor as
update rule, and that the cooperativeness can be enhanced by lowering the costs.
Their results, however, hold only for the case of identical payoff matrices for all
players. We show, by introducing incentives given to the players, which results in
individualized payoff matrices, that on scale-free graphs the cooperation can be
enhanced in a much more effective way, using the proposed incentive distribution
strategies.
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6. Communication throughput of
networks

The transport process considered in the following chapters models the flow of data
packets in communication networks. Communication networks are set apart from
other transport processes on networks, for example electrons in electric resistor
networks that follow Kirchhoff’s law [Kirchhoff, 1847] and traded commodities,
which are traditionally a subject of various maximal flow algorithms [Hu, 1969],
by the fact, that the transported quantities are distinguishable. Every data packet
has definite origin and target. A data packet that does not arrive at its target is
of little use. To study the spacio-temporal dynamics of communication networks
cellular automata like models of communication networks are used [e.g. Fukś
and Lawniczak, 1999, Lawniczak et al., 2004]. In these and similar models, phase
transitions from a free flowing phase to a jammed or congested phase are found for
example by Solé and Valverde [2001] and Guimera et al. [2002]. Tadić et al. [2007]
study the underlying graph topology’s influence on the dynamic of the cellular
automata’s dynamic.

After the introduction of the used traffic model and the derivation of an analytic
expression of the transport capacity of this model of communication networks, with
Section 6.3 the present chapter highlights the influence of the clustering coefficient
on the transport capacity.

As already apparent from this sections title and the previous paragraphs, in the
context of communication networks it is common practice to talk of networks instead
of graphs, nodes instead of vertices, and links instead of edges. For the purpose of
the present work these can be considered synonyms and the following chapters
generally try to adopt the network/node/link terminology.

6.1. Data Traffic Model and Load

To investigate the performance of a communication network with a topology given
by a connected graph G(V , E), consider a traffic model of data packets that can
be moved along the links E of the network. To map the transport process on a
mathematical and numerical treatable description, we consider a model working
in discrete time steps. In each time step, at nodes s ∈ V packages with destination
t ∈ V are created with rates determined by the traffic matrix µst. The node s at
which a packet is created is its source, the destination t is the target. At every time
step the data packets can be transported from nodes to their neighbors, given the
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6. Communication throughput of networks

bandwidth of the corresponding link is not yet exceeded. The bandwidth Ξij of a
link eij ∈ E determines the amount of traffic, approximated by the number of data
packets, that the link eij can carry from i to j and, assuming symmetric links, from j
to i in a single time step.1 In the standard notation of queuing models, suggested by
Kendall [1953], this queuing model is denoted as the M/M/k model.

To reach their destination the packets are routed along shortest paths, as defined
in Equation (2.8). Multiple shortest paths |spaths(s, t)| > 1 may exist from the
source s of a packet to its target t. In this case, a path P ∈ spaths(s, t) out of the set
of shortest paths is selected randomly when the packet is created.

The amount of traffic a link e ∈ E has to carry is called its load Le. The load on the
link e resulting from packets with source i and target j is

Lij
e =
|{P ∈ spaths(i, j) : e ∈ E(P)}|

|spaths(i, j)| µij. (6.1)

The total load of e is the sum over all vertex pairs

Le = ∑
i,j∈V

|{P ∈ spaths(i, j) : e ∈ E(P)}|
|spaths(i, j)| µij (6.2)

To further calculate the load, specification of the packet generation rates by means
of the traffic matrix µij is necessary. Unfortunately, for this observable no reliable
data of a representative portion of the Internet is available and probably won’t be
available in the near future, because, as Krioukov et al. [2007] put it, measuring
these quantities is “notoriously difficult”. To get qualitative results, for the time
being we assume uniform packet generation rates ∀i, j ∈ V : µij = µ

N−1 , with
µii = 0, such that the rate of packet creation at a node vi is µi = ∑j∈V µij = µ and
the total packet generation rate of the whole network is Nµ. With the assumption
of uniform µij, i.e. on average every node sends the same number of packets to
every other node, Equation (6.2) factorizes to

Le =
µ

N − 1 ∑
i,j∈V

|{P ∈ spaths(i, j) : e ∈ E(P)}|
|spaths(i, j)| . (6.3)

The terms in the sum correspond to the probability, for a packet with source i
and destination j, to be routed over e. We identify the sum with the betweenness
centrality be of the edge, introduced by Freeman [1977] and given in Equation (2.14),
and abbreviate

Le =
µ

N − 1
be. (6.4)

1In principle a bandwidth should be assigned to the nodes as well, accounting for example for lim-
ited computing power. However, today’s network technology generally operates in full-duplex
mode, i.e. data may be transmitted and received on all links simultaneously, which renders the
links the limiting elements. Especially as the upgrade of a node with insufficient computing
power is much less costly than installing additional network connections, this idealization of
unlimited node bandwidth is plausible.
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6.2. Derivation of Throughput Capacity Te2e

The networks end-to-end throughput performance Te2e is defined as the maximal
number of packets that can be created across the whole network within a single
time step without overloading any link. To calculate Te2e, consider the links’ loads
Le in relation to their bandwidths Ξe. As mentioned before, the bandwidth Ξe of a
link e ∈ E determines the maximal number of packets it is able to carry per time
step. The link’s load Le, on the other hand, specifies the number of packets that
have to be carried by the link. In this model, as long as for all edges e ∈ E the load
is less than the bandwidth

Le =
µ

N − 1
be ≤ Ξe (6.5)

the network is in the free flow regime. For a sufficiently small packet generation rate
µ this is clearly the case, however with increasing µ, for µ = µcrit, there exists at
least one edge eBN, the bottleneck, for which

µcrit

N − 1
beBN = ΞeBN . (6.6)

At the critical value of µ > µcrit traffic congestion will occur.

µcrit = (N − 1)
ΞeBN

beBN

. (6.7)

The bottleneck link eBN is given by

eBN = argmin
e∈E

Ξe

be
(6.8)

and the value of µcrit is accordingly

µcrit = (N − 1)min
e∈E

Ξe

be
= (N − 1)

ΞeBN

beBN

. (6.9)

Similar to the traffic matrix, measured data of the link bandwidths Ξe is not
available, which makes us resort to assuming uniform bandwidths ∀e ∈ E : Ξe = Ξ.
Without further loss of generality, let Ξ = 1. With this approximation

µcrit = (N − 1)
Ξ

maxe∈E be
= (N − 1)

ΞeBN

beBN

(6.10)

=
N − 1

maxe∈E be
=

N − 1
beBN

(6.11)
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As µcrit is the maximal packet creation rate that can be handled by the network
without overloading the bottleneck, the throughput capacity Te2e is defined as

Te2e = Nµcrit =
N(N − 1)
maxe∈E be

, (6.12)

which is the maximal number of packages that may be created per time step without
traffic congestion, see Scholz et al. [2008].

For the dual case of limited node bandwidths and unlimited link bandwidths,
the M/M/1 model in Kendall’s notation, the corresponding throughput capacity has
been derived and numerically verified by Guimerà et al. [2002] and Krause et al.
[2004].

Compared to determining the transport capacity via an agent based simulation on
a packet-by-packet basis, the pure graph theoretic expression for Te2e is inevitable
for a numerically feasible determination of a network structure’s performance.
Without such an approximation, further explorations of the influence of topology
changes or link weights (see Chapter 7) wouldn’t be possible within reasonable
computational expenses.

6.3. Influence of network structure on data
throughput

As an example of the dependence of Te2e on the network structure, consider three
simple networks, with betweenness centralities that are easy to calculate: A com-
plete network, a star, and a double star. In a complete network, every node is
connected directly to every other node, ∀i, j ∈ V(G), i 6= j : ∃eij ∈ E(G). The short-
est path between two nodes i and j in such a network is trivial, spaths(i, j) = eij,
and contains just the edge that directly connects source and target. Accordingly
the number of shortest paths that contain an edge e is 1, the betweenness cen-
trality is be = 1, resulting in a throughput capacity Te2e = N(N − 1) ≈ N2, for
large N. A star network, with one central node c and N − 1 nodes connected to it,
E(G) = {eci : i ∈ V(G) \ c}, has a betweenness centrality of be = N− 1 for all edges.
The throughput capacity of a star is therefore given by Te2e = N. For a double star
network, constructed by adding an edge ec between the central nodes of two stars
with the same number of vertices N

2 , the betweenness centrality is slightly harder to
calculate. Here from every node in the first star, N

2 shortest path to the nodes in the
other star cross ec. This results in bec = (N

2 )
2 and Te2e = 4(N − 1) 1

N ≈ 4 for large N.
Note the different scaling behaviors Te2e ∼ Nγ of the three exemplified networks
with scaling exponents γ = 2, 1, and 0, respectively.

The computational complexity of naively determining the betweenness central-
ities (Equations (2.13) and (2.14)) is on the order of O

(
N3). With the algorithm

proposed by Brandes [2001], the complexity is lowered to O (NM), which makes
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the computation of the betweenness centrality, and hence the computation of Te2e,
for arbitrary network structures with N ' 10000 numerically feasible.

Figure 2.4 illustrates, that one of the most basic observables, the average 〈CC〉 of
the clustering coefficient, as defined by Equation (2.10), sets AS Internet scans apart
from the idealized models, represented by the BA-model and the configuration
model. Using the geometric-p model, proposed in Section 2.3, that allows for tuning
of 〈CC〉, the present section investigates the influence of the network structure on
the throughput capacity Te2e, putting an emphasis on clustering.

As exemplified above for the three archetypal topologies (complete graph, star,
and double star) the scaling behavior of Te2e with respect to the number of nodes
N, depends strongly on the network structure. Figure 6.1 shows the dependency of
Te2e on the number of vertices N in the geometric-p network. Independent of the
parameter p, the throughput capacity Te2e scales with N as a power law Te2e(N) ∼
Nβ with β ≈ 0.5. For BA networks Scholz et al. [2008] find the corresponding
exponent β ≈ 0.3, compare Figure 7.5b. With respect to this finding, the geometric-
p model with a scale-free degree distribution characterized by γ = 2.3 and the BA
model get located between the double star (β = 0) and the single star (β = 1).

Apart from the scaling of Te2e with the system size, a clear dependence of Te2e on
the parameter p of the geometric-p model is visible in Figure 6.1. With increasing
values of p, the throughput capacity Te2e is decreasing. Recalling the relation of CC
and p shown in Figure 2.6, we find that for the given scale-free degree distribution,
networks generated by the geometric-p model have an increasing Te2e for decreasing
〈CC〉. The throughput capacity is reduced roughly by a factor of 3 due to the
transition from p = 0 to p = 1, which corresponds to a change of 〈CC〉 ≈ 0.05 to
〈CC〉 ≈ 0.6. This behavior can be explained by the fact, that in the geometric-p
model the total number of links is implicitly given by the degree distribution, and is
therefore independent of p. In the parameter regime of high clustering, nodes form
small, densely interconnected local groups with a high redundancy of connections.
Due to the fixed total number of edges in the network, the number of edges that
connect geometrically separated regions is comparatively small, resulting in a high
burden of load to be handled by these few edges.
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Figure 6.1.: Transport capacity Te2e as a function of the number of vertices N for
scale-free geometric-p networks with γ = 2.3 and varying values of
p. The averages are each obtained from an ensemble of ten network
realizations, the error bars show the standard deviation of the mean.
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Today’s society relies heavily on communication networks, with their most promi-
nent example being the Internet. Because of the ubiquitous permeation of everyday
life in our modern world optimization of the traffic flow, resulting in more efficient
and reliable utilization of communication networks in general and the Internet
in particular, is of obvious interest. As demonstrated in the previous chapter, the
underlying graph structure of a communication network has tremendous influence
on its performance, measured by the throughput capacity. Attempts to optimize
the throughput capacity Te2e by changing the network structure include Ferrer and
Solé [2003] and Krause, Scholz, and Greiner [2006].

There is, however, another approach to optimization of traffic throughput: Em-
ploying a routing metric and determination of the shortest paths with respect to the
metric, with the intention of relieving the high loaded links of some of their load.
Current Internet routing protocols [Doyle, 1998] can use various different metrics
based on hop-count, bandwidth, actual load and round-trip time, reliability as well
as cost. The drawback of current routing protocols like RIP (Routing Information
Protocol), EIGRP (Enhanced Interior Gateway Routing Protocol), and OSPF (Open
Shortest Path First), see Malkin [1998], Cisco Systems, Inc. [2005], and Fortz and
Thorup [2000] respectively, is that these protocols are confined to the intra-AS level.
The routing protocol used to select routes for traffic from one AS to the other is the
Border Gateway Protocol (BGP) [Rekhter and Li, 1995]. The BGP allows to assign
weights to routes, however this requires manual configuration, detailed knowledge
of the network structure, and is implementation dependent. For a carefully con-
figured router, selecting the shortest possible path is among the most important
criteria for route selection, for routers in the default configuration it is even more so.
For details of the implementation of the perhaps most prominent manufacturer of
Internet routers, see Cisco Systems, Inc. [2006].

It is the goal of the present chapter to determine the potential of using appropriate
metrics on the AS-level, as well as proposing candidates for such a metric.

We want to discuss various link-based weight assignments and find out which
of them are most efficient with respect to the transport capacity of Internet-related
networks. In Section 7.2 we list several routing weight assignments for links,
which are straightforward generalizations of their node-based precursors [Yan et al.,
2006, Krause et al., 2006, Schäfer et al., 2006, Danila et al., 2006b]. Section 7.3
focuses on synthetic scale-free networks and discusses first consequences like load
distributions and decorrelation effects between loads and degrees. Based on an
analytic expression for the transport capacity of the network, the different routing
weight assignments are rated according to their efficiency. Section 7.5 sends a clear
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warning when trying to carry over the previously obtained results to synthetic
Internet topologies at the AS level, and forces us to improve on the routing weight
assignments. Real AS-level Internet topologies are discussed in Section 7.5 and it
is shown that compared to BGP-like shortest-hop routing the most efficient new
routing weight assignments are able to improve the overall transport capacity by a
factor of about five.

7.1. Weights and metrics

As can be seen from the definition of Te2e in Equation (6.12), the performance of a
network is determined by the one link with the highest load, the so called bottleneck
link. The aim of routing weights is to change the paths that are used to route a
packet from its source to its destination in such a way, that bottlenecks are avoided.
This can be achieved, by assigning weights to nodes and/or links and defining a
weighted length of a path which is then used to determine the shortest paths.

The most general form of weights is a combination of node weights ωi > 0,
i ∈ V(G) and link weights we > 0, e ∈ E(G). Equations (2.7) to (2.9) define path
length, shortest paths, and distance for the unweighted case. With respect to node
and link weights, the length of a path is

length(P ; ω, w) := ∑
v∈V(P)

ωv + ∑
e∈E(P)

we. (7.1)

The corresponding set of shortest paths is denoted as

spaths(s, t; ω, w) := argmin
P∈paths(s,t)

(length(P ; ω, w)). (7.2)

The distance of two nodes is not simply the length of the shortest path connecting
the nodes, but instead

d(s, t; ω, w) := min
P∈spaths(s,t;ω,w)

|E(P)|, (7.3)

the number of edges in the shortest path. Which amounts to the number of hops
it takes to get from s to t when the shortest path is determined with respect to the
weights ω and w. Note, that every combination of node and link weights ω and w
can be replaced by link weights W, constructed according to

Weij =
ωi

2
+

ωj

2
+ weij , (7.4)
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and node weights set to 0, without any effect on the shortest paths:

spaths(s, t; ω, w) = argmin
P∈paths(s,t)

(length(P ; ω, w)) (7.5)

= argmin
P∈paths(s,t)

(length(P ; 0, W) +
ωs

2
+

ωt

2
), (7.6)

= argmin
P∈paths(s,t)

(length(P ; 0, W)). (7.7)

The equality of (7.6) and (7.7) holds, because the terms ωs
2 and ωt

2 are identical for
all paths P ∈ paths(s, t) and therefore have no influence on the minimization. Ergo

spaths(s, t; ω, w) = spaths(s, t; 0, W). (7.8)

This asserts, that any configuration of node weights can be replaced by link weights
constructed according to Equation (7.4), for the opposite direction this is not the
case, as can be shown by a simple counterexample: Consider the graph G(V , E) con-
sisting of a single triangle, with vertices V = {a, b, c} and edges E = {eab, ebc, eca}.
Let the edges be weighted such, that wab + wbc < wca. The shortest path from a to
c will then be the 2-hop path going over b. The length of the direct connection is
lac = ωa + ωc and the length of the connection including b is labc = ωa + ωb + ωc.
For any choice ω of positive node weights, labc > lac the direct connection will be the
shorter, i.e. to get the considered path containing b as a shortest path between a and
c is not possible using node weights. From this and Equation (7.8) we conclude, that
the shortest paths accessible via node weights are a strict subset of those accessible
with edge weights. For this reason, the remainder of this work will only consider
the more general edge weights and we define:

length(P ; w) := length(P ; 0, w), (7.9)
spaths(s, t; w) := spaths(s, t; 0, w), (7.10)

d(s, t; w) := d(s, t; 0, w). (7.11)

For positive weights wi > 0, the distance d(s, t; w) satisfies the characteristic condi-
tions of a metric.1 Although in the rigorous mathematical sense the weight vector
w is not a metric, it is common to use the terms metric and weight synonymously, as
the weights, through the definition of shortest paths define the distance and hence
the metric.

Other graph theoretical observables like closeness, betweenness centrality, and
throughput capacity are generally straight forward to convert to the case of shortest
paths that are influenced by weights. In the possibility of ambiguity of weighted
and unweighted quantities, the weighted ones will be labeled with the weight’s
identifier, as for example in Te2e

w. However, if it is clear from the context, these
labels will be omitted.

1A metric has to satisfy the following conditions for all i, j, x ∈ V : non-negativity: d(i, j; w) ≥ 0, zero
distance only for identical vertices: d(i, j; w) = 0 ⇐⇒ i = j, symmetry: d(i, j; w) = d(j, i; w),
and the triangle inequality: d(i, j; w) ≥ d(i, x; w) + d(x, j; w).
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7.2. Routing weight assignments

Recently the idea of using weights to influence the paths used in networks has
been put to a test by several studies, e.g. Yan et al. [2006], Krause, Scholz, and
Greiner [2006], Schäfer, Scholz, and Greiner [2006] and Danila et al. [2006b]. These
studies, however, confined themselves to the realm of node weights and did not
take into consideration to associate weights with the links. As shown by the proof
of Equation (7.8), the metrics that are accessible by using node weights are a subset
of the metrics accessible by putting weights on edges. After briefly reviewing
previously presented routing metrics and reformulating them to use the more
appropriate link weights, the present section sheds some light on how these metrics
influence shortest paths and the transport capacity Te2e.

Hop metric The simplest of all metrics is the hop metric. It assigns the same value
to all edge weights, without loss of generality this value is set to 1 and the hop
metric is defined by

∀e ∈ E : whop
e = 1. (7.12)

Using this metric, packets will be routed along those paths that result in the
least number of node-to-node hops. Compare the definitions for unweighted and
weighted path lengths (Equations (2.7) and (7.1)) to find, that Chapter 6, dealing
with unweighted networks, implicitly makes use of the hop metric.

Degree metric As reported by Goh et al. [2001], Barthélemy [2003, 2004], the
betweenness centrality of nodes in scale-free networks is positively correlated with
their degree. Because of this connection of betweenness centrality and throughput
capacity Yan et al. [2006] propose to use node weights proportional to the node
degrees k:

∀v ∈ V : ω
deg
v = kv. (7.13)

Using Equation (7.4) we get the corresponding edge weights

∀eij ∈ E : wdeg
eij =

ki

2
+

ki

2
. (7.14)

Extremal metric Danila et al. [2006b] have proposed an extremal-optimization al-
gorithm which explicitly strives for minimization of the maximal node betweenness.
It does so, by iteratively adding weight to the node with the maximal betweenness
centrality. The adaptation of this scheme to link weights leads to the link weights
wextr

e , which we refer to as the extremal metric. The iteration scheme is laid out in
Algorithm 1.

A tremendous drawback of the extremal metric is its computational complexity,
which is “extremal” as well. Calculating the betweenness centrality with weights
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Algorithm 1 Extremal Link Load Metric
Initialize the link weights using the hop metric.

we ← whop
e

for t = 1 to Textr do
Calculate all links’ traffic load with respect to the weights, given by the be-
tweenness centrality bw

e .
Le = bw

e

Determine the highest loaded link emax = argmaxe∈E Le and increase its weight
by one unit.

wemax ← wemax + 1

end for
The weights we after Textr iterations are the weights of the extremal metric.

wextr
e ← we

using the optimized algorithm proposed by [Brandes, 2001] requires a computation
effort that scales roughly like O

(
N2 log N

)
for a fixed average degree 〈k〉 = 2M

N .
Applying the algorithm Textr = M = |E | times as suggested by Danila et al. [2006b]
therefore yields a complexity O(N3 log N). This numerical complexity renders the
extremal metric practically unusable for networks beyond N > 3000.

Smoothing metric Schäfer, Scholz, and Greiner [2006] propose to use the node
betweenness centrality itself as node weights and use this weight assignment in
the context of cascading failures in networks [Motter and Lai, 2002]. Like the
extremal metric, this requires an iterative approach because the weights determine,
by means of the shortest paths, the betweenness and the betweenness in turn
determines the weights. Schäfer et al. [2006] observe a homogenization of the
node betweenness, i.e. paths tend to get shifted from high betweenness nodes
to low betweenness nodes. From this observation, the use as a routing metric
in communication networks suggests itself. Carrying the scheme over into link
betweenness and link weights, we arrive at the iteration described in Algorithm 2.
Note, that weights from previous iteration steps are taken into account by the weight
updating step to guarantee convergence of the weights, which will be discussed in
detail in Section 7.4. The direct assignment w(l; t + 1) = L(l; t) would lead to route
flapping and no convergence. Schäfer et al. [2006] observe no major changes of the
weights after the 10th iteration step, and consequently set Tsmoothing = 10.
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Algorithm 2 Smoothing Link Load Metric
Initialize the link weights with the value of the average betweenness centrality
〈b〉 = 1

M ∑e∈E be.
we ← 〈b〉

for t = 0 to Tsmoothing do
Calculate all links’ traffic load, given by the betweenness centrality bw

e .

Le(t) = bw
e

Update all link weights according to

we(t + 1) =
Le(t) + twe(t)

t + 1

end for
Use the weights of the last iteration we(Tsmoothing) as weights of the smoothing
metric.

wsmoothing
e ← we(Tsmoothing)
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The small and constant number of iteration steps Tsmoothing of the smoothing
metric results in a significant reduction of its numerical complexity compared with
the extremal metric. The smoothing metrics complexity is given by the complexity
of calculating the betweenness centralityO

(
N2 log N

)
. As a consequence, applying

the smoothing metric to networks with N & 10000, e.g. graphs of the Internet on
AS-level, is possible with reasonable computational resources.

7.3. Effects of metrics on distances and loads

To discuss some general consequences of the various routing weight assignments,
we focus on scale-free networks of the BA-type [Barabási and Albert, 1999]. The
average node degree is set to 〈k〉 = 6, which roughly corresponds to the value
observed in the AS-level Internet.

By definition, the minimal distance d(i, j; w) between a pair of nodes i, j ∈ V , see
Equation (7.11), is the distance when shortest paths are determined with respect
to the hop metric whop. For any other weight assignment w 6= whop the distance
is at least as long d(i, j; whop) ≤ d(i, j; w). The amount of increase, however, and
the probability distribution of distances depends on the weight assignments, as
shown in Figure 7.1a. In case of the degree metric wdegree the increase of distances
compared with the hop metric is very pronounced. Respective routes avoid the
high-degree nodes and detour into the periphery of the network. Comparatively
small effects are observed for the extremal and smoothing metric.

The link load distributions are illustrated in Figure 7.1b. The hop metric leads
to a fat-tailed distribution, a well-known result for scale-free networks [Goh et al.,
2001, Barthélemy, 2003, 2004]. The load distribution resulting from the degree
metric results in a pronounced increase for small link loads. Large link loads are
overrepresented, compared to the hop metric, although the maximal load value
is slightly smaller than the maximal value for the hop metric. As intended, the
extremal metric removes load from the high loaded links and redistributes it to
the other links. This leads to a distinct narrowing of the distribution towards the
medium load regime. A similar result is found for the smoothing metric, justifying
its name that stems from its ability of smoothing the loads across the network. The
respective distribution is even slightly narrower, but the maximal load value is a
little larger than for the extremal metric, however, it is still much smaller than for
the hop and degree metrics. The attention paid to the maximal load value stems
from its importance for the throughput capacity of networks, which is discussed
thoroughly in Section 7.5.

The results on the route lengths and load distributions are closely related to
correlation effects between loading on the network and structure of the network. A
measure for the correlation between load L(n) and degree kn of a node n ∈ V is the
conditional moment

L(k) := 〈Ln|kn = k〉 ∼ kβ. (7.15)
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(b) Probability distribution of link loads p(L), with L(l) = bw
l and l ∈ E .

Figure 7.1.: Probability distribution of hop distances (a) and link loads (b) for the
metrics whop (hop), wdegree (degree), wextremal (extremal), wsmoothing

(smoothing). An ensemble of 20 BA scale-free network realizations
with N = 1000 nodes and an average degree 〈k〉 = 6 has been used.
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For a link the respective moment is conditioned on the product κ = kn1kn2 of degrees
of adjacent nodes n1, n2 ∈ V

L(κ) := 〈Ln1n2 |kn1kn2 = κ〉 ∼ (kn1kn2)
Θ, (7.16)

where kn1 and kkn2
are the degrees of the two nodes connected by the link en1n2 ∈

E . Figure 7.2 illustrates the two conditional moments resulting from the four
link weight assignments whop, wdegree, wextremal, and wsmoothing. Except for L(k)
and the degree metric, both moments show the power-law scaling indicated in
Equations (7.15) and (7.16). The fitted exponents β and Θ are listed in Table 7.1.

To better understand the power-law scaling in Figure 7.2b, assume Lij to be
uncorrelated to ki (and for symmetry not to kj as well), then the conditioned average
L(κ) is independent of κ, hence Θ = 0 for the uncorrelated case.

To understand the power-law scaling in Figure 7.2a, we need the approximate
sum rule

Li ≈
1
2 ∑

j∈N (i)
Lij, (7.17)

that relates the node load to the edge load. The rule holds, because any path that
contains a node i ∈ V will contain two of the links adjacent to i, except for those
paths that start or end at i and therefore contain only one of the links. Assume again,
the link load to be uncorrelated to the node degrees, then the sum rule is reduced
to Li ≈ 1

2 ki〈Lij〉 and Equation (7.15) is approximated by

L(k) ≈ 〈1
2

ki〈Lij〉|ki = k〉 ∼ kβ, (7.18)

with β = 1. Deviations from β = 1, Θ = 0 indicate the existence of correlations
between the load and the local network structure, as represented by the node
degrees. For the hop weights these correlations are positive, expressing the fact that
high-degree nodes and links have to carry exceptionally large loads when compared
to low-degree nodes and links. For the degree weights these correlations turn out
to be mostly negative. From low-degree to high-degree nodes there is a transition
from positive to negative correlation. For links the correlations are continuously
negative.

link weight β Θ
hop 1.59 0.50
degree — −1.62
extremal 1.03 −0.04
smoothing 1.16 0.06

Table 7.1.: Scaling exponents β and Θ of Eqs. (7.15) and (7.16) as fitted to the simu-
lation data shown in Fig. 7.2.
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(a) Conditional moment L(k), defined in Equation (7.15)
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Figure 7.2.: Conditional moments L(k), part (a), and L(kn1kn2), part (b), for the
metrics whop (hop), wdegree (degree), wextremal (extremal), and wsmoothing

(smoothing). An ensemble of 20 BA scale-free network realizations with
N = 1000 nodes and an average degree of 〈k〉 = 6 has been used. The
straight lines are fits with scaling exponents listed in Table 7.1.
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The two iterative weight assignments, the extremal and the smoothing metric,
do not exaggerate like the degree weight assignment, but result in loads, that are
to a large extent decorrelated from the node degrees, as reflected by the exponents
β ≈ 1 and Θ ≈ 0. All nodes and links are then about equally loaded, consult again
Figure 7.1b. This leaves us with a speculation: those routing weight assignments
which are able to decorrelate the network loading from the network structure will
increase the transport capacity of the network the most. Sections 7.4 and 7.5 support
this speculation.

7.4. Hybrid metric

The present section proposes a further metric, that we construct by a combination
of the smoothing metric, originating in Schäfer, Scholz, and Greiner [2006], and the
extremal metric proposed by Danila et al. [2006b], both in the variants adapted to
link weights as described in Algorithms 1 and 2 of Section 7.2. This combination
is motivated by Figure 7.3a, which shows the strengths of the two metrics and
antedates the successful combination of the two to form, what we denote as the
hybrid metric, see Scholz et al. [2008].

Figure 7.3a shows the dependency of the throughput capacity Te2e, as introduced
by Equation (6.12), during the iteration steps of Algorithms 1 and 2. The first thing
to notice in the figure, is the leap of Te2e during the first few iteration steps of the
smoothing metric. This steep increase is followed by a saturation and indeed, like
observed by Schäfer et al. [2006], approximately from the 10th iteration step on,
no big changes occur anymore. On the other hand, the extremal metric shows a
slow, but steady increase of Te2e until around iteration t = 1000 the throughput
performance of the smoothing metric is reached and Te2e further improved upon. As
the computational complexity for a single iteration step of smoothing and extremal
metric is practically identical, the figure reveals, that the extremal metric requires
about a hundred times more computational resources to achieve the throughput
performance of the smoothing metric. To create an iteration scheme, that combines
the fast computability of the smoothing metric and the superior Te2e result of the
extremal metric, the first guess would be, to initialize the weights according to the
smoothing metric before starting the iterations of the extremal metric. However,
this combination, which we may call the additive hybrid metric, is not successful.

A combination, that turns out to be very successful and results in a metric that is
computationally feasible for networks with 10000 and more nodes, is very similar to
the additive hybrid metric. The weights are initialized according to the smoothing
metric at its 10th iteration step, followed by an iteration identical to the extremal
metric, except that the weight of the highest loaded link emax = argmaxe∈E Le is not
increased by adding a constant value, but instead it is increased multiplicatively
according to wemax ← 1.1 · wemax . The iteration scheme of this metric, the hybrid
metric, is detailed in Algorithm 3.

To further characterize what happens in the course of the three presented iterative
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Algorithm 3 Hybrid Metric
Assign link weights according to the smoothing metric (see Algorithm 2).

we ← wsmoothing
e

for t = Tsmoothing + 1 to Thybrid do
Calculate all links’ traffic load with respect to the weights, given by the be-
tweenness centrality bw

e .
Le = bw

e

Determine the highest loaded link emax = argmaxe∈E Le and increase its weight
by 10%.

wemax ← 1.1 · wemax

end for
The weights we after Thybrid iterations are the weights of the hybrid metric.

whybrid
e ← we
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metrics, we investigate the changes occurring to the routing matrix during the
iterations. The routing matrix R determines, for every node a ∈ V , which of its
neighbors v ∈ N (a) is suitable as the next step for a packet with destination b. The
elements Rab of the routing matrix are sets of nodes

Rw
ab := {v1(P) : P ∈ spaths(a, b; w)}, (7.19)

where v1(P) is the node of a path P which is adjacent to its initial vertex. To
quantify the changes of the routing matrix caused by the change in weights from
the previous iteration time step t− 1 to the current t, we count the changes of entries
in the routing table according to:

f (t) = ∑
a,b∈V

(∣∣∣Rw(t−1)
ab ∪ Rw(t)

ab

∣∣∣− ∣∣∣Rw(t−1)
ab ∩ Rw(t)

ab

∣∣∣) . (7.20)

Figure 7.3b illustrates the number of changes in the routing matrix during the
iterations of the metrics on an ensemble of 20 BA networks with N = 1000 nodes.
For the extremal metric the fraction of changed entries decreases slowly with the
number of iteration steps. Even at the chosen iteration cutoff Textr = 2M it has not
reached convergence. The transport capacity (6.12), which is shown in Fig. 7.3a,
reveals a similar non-convergence behaviour with the number of iteration steps.
For the smoothing metric a saturation of both Te2e and the number of routing matrix
changes is apparent from t ≈ 10 iteration steps. Compared to the fraction of
changed entries in the routing tables, the transport capacity converges even faster.
Although from iteration time t = 10 on, the hybrid metric results by far in the
fewest changes to the routing matrix, it steadily improves the throughput supplied
by the smoothing metric, and at t ≈ 100 it achieves a throughput as high as the
extremal metric’s throughput at t = Textr. Thorough testing with various network
sizes have shown, that Thybrid = 500 is a good compromise of computational effort
and achieved Te2e.

As the number of necessary iterations Thybrid of the hybrid metric appears to be
independent of the number of nodes, its computational complexity O

(
N2 log N

)
scales in the same way as the smoothing metric’s. This allows to determine efficient
weight assignments for networks of a size comparable with Internet AS-scans within
reasonable amounts of time using current PC hardware.

Figure 7.4 once more compares the development of Te2e during the metrics’
iterations, this time for one instance of a PFP network, see Section 2.2.2. In addition
to the smoothing and hybrid metric, also the additive hybrid metric is shown here,
to demonstrate that it is not able to raise the throughput capacity as fast as the
(multiplicative) hybrid metric. Drawing the attention to the smoothing and hybrid
metric, we observe much stronger fluctuations of Te2e during the iterations, than
for the BA networks shown in Figure 7.3b. This is not only due to the averaging
over 20 realizations in Figure 7.3b, but also to the less idealized network model.
Especially the hybrid metric shows collapses during the iteration, although most of
the time it recovers quickly onto a relatively smooth envelope. For this reason, we

77



7. Advanced routing

 100

 1000

 1  10  100  1000

T
e2

e

t

extremal
smoothing

hybrid

(a) Transport capacity Te2e
w as function of metric iteration steps t.
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(b) Changes of shortest paths as function of metric iteration steps t.

Figure 7.3.: Dependence of (a) the transport capacity and (b) the fraction of changed
entries in the routing tables (7.20) on the number of iteration steps
of the metrics wextremal (extremal), wsmoothing (smoothing), and whybrid

(hybrid). Note the discontinuities in the plots of the hybrid metric at
t = 10, where the switch from the smoothing metric’s update to the
multiplicative extremal update occurs. An ensemble of 20 BA scale-
free network realizations with N = 1000 nodes and an average degree
〈k〉 = 6 has been used.
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extend the definition of the hybrid metric to adopt, at the end of the iterations, the
weight assignment

wmax = argmax
w=whybrid(t):1<t<Thybrid

Te2e
w (7.21)

that resulted in the highest value of Te2e during the iteration. The value of the
envelope is depicted as the purple line in Figure 7.4.

7.5. Comparing Te2e-scaling of the metrics

After introduction and adaptation to the case of link weights of the previously
proposed hop metric [Yan et al., 2006], smoothing metric [Schäfer, Scholz, and
Greiner, 2006], and extremal metric [Danila et al., 2006b] in Section 7.2, followed by
proposing our own iterative metric, the hybrid metric in Section 7.4, see also Scholz
et al. [2008], the present section puts all these metrics to the test and thoroughly
investigates the achieved throughput capacities. Following the example of Figure 6.1
in Section 6.3, we present the dependence of the throughput capacity Te2e

w, as
defined in Equation (6.12), on the number of nodes N, for the presented metrics
and various network structures.

Poissonean graphs Figure 7.5a illustrates the throughput capacity for Poissonean
graphs with an average degree 〈k〉 = 6. For all metrics a power law scaling of the
form Te2e

w(N) ∼ Nβ, with β ≈ 0.8. Only a minor dependency on the chosen metric
is observed. The reason for this is that Poissonean graphs are very tree like, i.e. they
contain few circles. This is also expressed by the vanishing clustering coefficient
limN→∞〈CC〉 = 0 of Poissonean graphs, see Equation (2.24). In a tree T however,
for every pair of nodes a, b ∈ V(T ) there is only a single path connecting the two,
|paths(a, b)| = 1, hence the routing cannot be influenced by a metric.

BA networks In Figure 7.5b the transport capacity of BA networks is shown as a
function of the size of these scale-free networks. As expected from the probability
distribution of loads shown in Figure 7.1b, the maximal betweenness centrality
is reduced significantly for the extremal and the smoothing metric, resulting in
enhanced throughput capacities. The hybrid metric performs even slightly better
than the extremal metric. The last data point calculated for the extremal metric is
at N = 1500 because of the increasing computational effort for large N. Notably,
the degree metric performs worse than the hop metric for networks smaller than
N ≈ 300, and better for larger networks. Except for the hop metric a power law
scaling of the form Te2e

w(N) ∼ Nβ, with β ≈ 0.8 to β ≈ 0.9 is observed. Although
the degree metric’s scaling with the system size is similar to the scaling of the
extremal, smoothing, and hybrid metric, its absolute Te2e-values are smaller by a
factor of ≈ 3.
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Figure 7.5.: Transport capacity Te2e
w(Nn) as a function of the number of vertices

Nn for the metrics whop (hop), wdegree (degree), wextremal (extremal),
wsmoothing (smoothing), and whybrid (hybrid). For each data point an
ensemble of (a) 20 random (but connected) Poisson network realizations
and (b) 20 BA scale-free network realizations with average degree 〈k〉 =
6 has been used.
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PFP model of AS-level Internet topologies The PFP model proposed by Zhou
and Mondragon [2004] allows to produce an ensemble of network topologies, that
reproduce many statistical properties of AS-level Internet topologies. Having an
ensemble of topologies allows to investigate for example mean values, which may
help to uncover systematic trends, that might be hidden in noise when only single
topologies are investigated. Using the PFP model we are able to create ensembles of
Internet-like networks of varying size N. Although the model is based on a growth
process, the growth process is not designed to model the growth of the Internet,
but merely to grow in a way that reproduces statistical properties of an AS-level
snapshot of the Internet with N ≈ 11000. With these words of caution in mind,
Figure 7.6 shows the dependence of the transport capacity on the network size for
the different routing weight assignments discussed above. For smaller networks
(Nn . 2000) the results are almost as expected from the previous results on BA-
networks. The extremal and smoothing metric perform best, for networks smaller
than N ≈ 2000. For larger networks, the smoothing metric experiences a saturation
of Te2e, even followed by a descent. This is not an issue of an insufficient number of
iterations as one might guess. Increasing the iteration cutoff time Tsmooting has been
tested and did not show a change of this behavior. The extremal metric appears to
continue to be the best metric available with respect to Te2e, however for N > 3000
it is computationally infeasible. The hybrid metric performs very well, and for
N = 10000 it outperforms the degree metric by a factor of≈ 7 and the hop metric by
a factor of ≈ 20. Apart from the hop metric and the smoothing metric for N & 2000,
the throughput capacity once more follows a power-law scaling Te2e

w(N) ∼ Nβ

with β ≈ 0.9. The respective scaling exponents corresponding to Figures 7.5 and 7.6
are summarized in Table 7.2.

link weight Poisson BA PFP
hop 0.78 0.30 —
degree 0.85 0.78 0.58
extremal 0.85 0.90 0.91
smoothing 0.88 0.87 0.85
hybrid 0.81 0.91 0.92

Table 7.2.: Scaling exponent β of the transport capacity Te2e
w(N) ∼ Nβ as fitted

to the simulation data shown in Figures 7.5a, b, and 7.6. For the PFP
networks the scaling exponents for the smoothing link weight assignment
has been extracted from N ≤ 2000 only.

To sum up, the results of Fig. 7.5 demonstrate that in comparison to shortest-hop
routing the three iterative routing weight assignments are all able to increase the
transport capacity by an impressive factor. This holds for heterogeneous networks
like scale-free networks. On the contrary, for homogeneous networks like ran-
dom Poisson networks the different routing weight assignments do lead to almost
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identical results. For PFP networks, which are a much better approximation of
the real Internet structure on the AS-level than either Poissonean or BA networks,
the conveyed picture is rather different. As shown in Figure 7.6, in the regime of
networks with 10000 or more nodes, which corresponds to the size of the current
Internet topology on the AS-level, only the hybrid metric, is available to increase
the throughput capacity significantly. The extremal metric is ruled out because of
its enormous computational demands, and the smoothing metric fails to increase
the throughput performance relative to the degree metric.
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Figure 7.6.: Transport capacity Te2e
w(Nn) as a function of the PFP network size

Nn for the metrics whop (hop), wdegree (degree), wextremal (extremal),
wsmoothing (smoothing), and whybrid (hybrid). An ensemble of 20 PFP
network realizations has been used to determine the average values.

Empirical AS-level Internet topologies The main application for the discussed
routing weight assignments are large scale communication networks. The ultimate
test for the weight assignments are Internet topologies on the AS-level. We use the
adjacency information of the Internet on the AS-level provided by several Internet
mapping projects, as described in Section 2.2. For our analysis we use the giant
component of the network, apply the previously discussed metrics, and determine
the corresponding throughput capacities.

Figure 7.7 illustrates the transport capacity Te2e
w of the selected Internet scans for

the hop, degree, smoothing, and hybrid metric. For all scans, the hop, degree and
smoothing metric result in throughput capacities of roughly the same magnitude.
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Unlike for the model networks we investigated before, among these three metrics
there is no clear winner. The hybrid metric, however, is confirmed to be the best
choice among the presented metrics. We denote the factor of throughput increase,
given by the ratio of

g =
Te2e

whybrid

Te2e
whop , (7.22)

as the gain ratio. The numerical values of properties of the empirical network
structures, like size of the giant component, average degree, the resulting Te2e-
values, and the gain factor are available in Table A.1 of the Appendix. For the
investigated network structures provided by ROUTEVIEWS and NETDIMES, the
average gain ratio is 〈g〉 ≈ 4, for the data provided by CAIDA it is 〈g〉 ≈ 7. For
standard deviation, minimal, and maximal value of the gain factor, see Table A.1.

Geometric p-network and Te2e
w(CC) As noted in Section 2.2.2, one of the most

basic properties that distinguishes the Internet scans from the idealized network
models, represented by the configuration model and the BA model, is the pro-
nounced clustering of the empirical data. Following the spirit of Section 6.3, here
the influence of the clustering on the efficacy of routing metrics is investigated. For
this purpose, the geometric-p model, proposed in Section 2.3, is utilized once more.
Most of the AS-level Internet scans of the CAIDA project [CAIDA Macroscopic
Topology Project Team, 2000–2006] are of size N = 8000± 500, with a clustering
coefficient C ≈ 0.45; consult again Figure 2.4. Consequently we fix N = 8000
for the geometric-p networks, and note, that the average cluster coefficient of the
CAIDA data is reproduced by the geometric-p model with p ≈ 0.8, see Figure 2.6.
Nevertheless, we keep 0 ≤ p ≤ 1 as free parameter to tune the clustering coefficient.

Figure 7.8 compares the transport capacity Te2e
w(〈CC〉, N) obtained from the three

routing metrics sketched in the last two paragraphs with Te2e obtained from the hop
metric. The parameter p of the scale-free geometric-p networks has been converted
into the clustering coefficient according to Figure 2.6. For all routing metrics a strong
decrease of transport capacity with increasing clustering coefficient is revealed. The
trend of decreasing Te2e for increasing clustering 〈CC〉, as already observed for the
hop metric whop in Section 6.3, can not be compensated by the advanced metrics
introduced in the earlier sections of the present chapter.

The performance of the degree metric wdegree is of roughly the same order as for
the hop metric, with a minor performance increase for low-clustered networks. For
the networks with 〈CC〉 > 0.4, which includes the clustering of the empirical data,
the degree metric performs worse than the hop metric.

Compared to the hop and degree metric, the two metrics wsmoothing and whybrid

do much better. Note however, that the gain ratio reduces from about 6 for small
clustering coefficients to about 3 for large clustering coefficients.

Figure 7.9 compares the transport capacity Te2e of the Internet scans provided
by CAIDA with the scale-free geometric p networks with p = 0, 0.8 and 1. From
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Figure 7.7.: Transport capacities of Internet scans from (a) ROUTEVIEWS [Univer-
sity of Oregon, 2001], (b) NETDIMES [Shavitt and Shir, 2005], and (c)
CAIDA [CAIDA Macroscopic Topology Project Team, 2000–2006] for
the metrics whop (hop), wdegree (degree), wsmoothing (smoothing), and
whybrid (hybrid).
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for scale-free geometric-p networks with γ = 2.3 and N = 8000. The
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error cross is obtained from ten equivalent network realizations. They
correspond to p = 0.0, 0.2, 0.5, 0.7, 0.8, 0.9, 1.0 (from left to right) for
each metric.
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all data sets, only those with 7500 ≤ N ≤ 8500 have been used here to enhance
comparability with the geometric-p networks of size N = 8000.

For the hop, degree, and smoothing link load metrics the transport capacity of the
Internet scans fall between the p = 0.8 and p = 1 values. For the hybrid link load
metric it falls between the p = 0 and p = 0.8 values. This demonstrates that the
scale-free geometric p networks with p ≈ 0.8 catch the transport-capacity features
of the Internet scans and may well serve as simple topology generators. Compared
with the PFP model, the deviations from the throughput capacity of the Internet
scans are on the same order of magnitude. This clearly point’s out that neither
model is accurately reproducing the Internets topology, but that both have to be
considered as idealized models.

Figure 7.9 also points out the sensitivity of the smoothing and hybrid metric to
the clustering. This can be considered as a downside of these metrics in the context
of changing network topologies, caused for example by topology updates similar to
the ones discussed in Chapters 3 and 4. In case a network, that employs the hybrid
metric changes towards a more clustered topology, the performance will be reduced
significantly.
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Figure 7.9.: Transport capacity Te2e for scale-free geometric p networks (p = 0,
0.8, 1; γ = 2.3, N = 8000), PFP networks (N = 8000), and N =
8000 ± 500 Internet scans from CAIDA. The routing metrics whop,
wdegree, wsmoothing, and whybrid are shown.
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7. Advanced routing

7.6. Self-organizing (SO) metric

Previous work [Yan et al., 2006, Krause et al., 2006, Schäfer et al., 2006, Danila et al.,
2006b, Scholz et al., 2008] has found smart metrics that are able to increase the
transport capacity Te2e, depending on the underlying network structure by a factor
of 5–10. However, these metrics are rather hard to obtain, requiring numerical cal-
culations that scale with the number of vertices N approximately like O

(
N2 log N

)
[Scholz et al., 2008] or worse O

(
N3 log N

)
[Danila et al., 2006b]. In an attempt to

find numerically less expensive metrics with similar performance increases, we
investigate local, self organizing weight assignments and find a stunningly simple
and effective weight assignment.

The gist of the most successful previously proposed metrics, the extremal metric
by Danila et al. [2006b], and the hybrid metric, proposed in Chapter 7.4 and Scholz
et al. [2008], is to find the highest loaded link of the network, the bottleneck eBN,
defined in Equation (6.8), and to increase its weight, weBN , either additively or
multiplicatively. As the optimization applies only to the maximally loaded link, it is
a form of extremal optimization [Danila et al., 2006a]. Because the weight influences
the shortest paths, which in turn determine the bottleneck, the procedure has to
be iterated. As successful as the application of extremal optimization is, it is also a
weak point of the metrics. In every iteration step, only a single weight is adjusted,
which necessitates a relatively large number of steps, compared for example with
the smoothing metric, which updates all link weights in every iteration.

Looking for a way to reduce the number of needed iterations, we introduce a rule,
that every node can apply by itself, in concert with its neighbors, using information
as local as possible, e.g. it must not be necessary to determine a global maximum of
the load. Additionally, we demand that the weights are conserved by the local rule.
Weights shall not be created or destroyed, but only moved from one link to another.
The rule for a stepwise update of the link weights w we propose and which we call
the self organizing (SO) metric, is the following:

wi(t + 1) =
1
2 ∑

j∈L(i)

(
wi

`i
+

wj

`j

)
+

ε

2 ∑
j∈L(i)

(
wi

`i
+

wj

`j

)
sign(Li − Lj), (7.23)

whereL(i) is the edge neighborhood of an edge i and `i is its edge degree, as defined
in Equations (2.3) and (2.4), and sign(x) is the signum function.2 For brevity, the
indication of the iteration time t as an argument to w and L is not written out. The
intention of the first sum in Equation (7.23) is to average the weights in the (edge)
neighborhood, while the second sum results in weights that are shifted from edges
with a relatively low load to neighbors that are relatively high loaded. The influence
of the second sum in relation to the first is controlled by parameter ε, which may
take values 0 ≤ ε < 1. As a change of the edge weights results in different packet
routing, the edge loads Le have to be recalculated after the weight update.

2The signum function is defined as sign(x) = −1 for x < 0, sign(x) = 0 for x = 0, and sign(x) = 1
for x > 0.
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7.6. Self-organizing (SO) metric

The demand of weight conservation is fulfilled by the SO metric, as can easily
be verified by calculating ∑i∈E wi(t + 1). The contributions of the first sum in
Equation (7.23) sums up to ∑i wi, and the second sum vanishes, as for every instance
of the signum function, another one with the negative argument exists. From this
∑i∈E wi(t + 1) = ∑i∈E wi(t) follows.

For the case of ε = 0 we can determine the resulting edge weights in the limit
t→ ∞ by interpreting Equation (7.23) as a difference equation, and introducing ∆t,
which had been implicitly set to 1 before, we get

wi(t + 1)− wi(t)
∆t

= −1
2

wi +
1
2 ∑

j∈L(i)

wj

`j
. (7.24)

Using matrix notation and going to infinitesimal time steps, this can be written as

∂w(t)
∂t

= −1
2

(
I − AD−1

)
w(t), (7.25)

where I is the identity matrix, A is the adjacency matrix of the line graph Ĝ(G) of G,
and D is the diagonal matrix of the edge degrees `. Abbreviating 1

2

(
I − AD−1) = Λ̃

the differential equation is solved by

w(t) = exp(−Λ̃t)w0. (7.26)

As, through the similarity transform D
1
2 , the linear operator Λ̃ is similar to the

normalized graph Laplacian

Λ = I − D−
1
2 AD−

1
2 (7.27)

as defined by Chung [1997], we know that for connected graphs the eigenvalues λi
of Λ̃ are all positive, except λ0 = 0. For t→ ∞ all eigenvectors will be damped out,
except ṽ0 corresponding to λ0. With the help of the similarity transform D

1
2 , we get

ṽ0 in terms of the v0, the zeroth eigenvector of the normalized Laplacian

ṽ0 = D
1
2 v0. (7.28)

The normalized Laplacian’s eigenvector v0 is given by v0 = D
1
2 1, [Chung, 1997],

therefore, for ε = 0

lim
t→∞

wSO
i = `i (7.29)

Starting from initial weights set to 1 for every edge, Figure 7.10 shows the devel-
opment of the end to end throughput Te2e of an AS-level Internet snapshot [CAIDA
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Figure 7.10.: Evolution of the Te2e performance during iteration of the SO metric
with ε = 0 and ε = 0.35. The dotted horizontal lines indicate the
performance in the steady state of the iteration, determined by aver-
aging the values from step 80 to 100. Dashed horizontal lines show
the performance achieved by the hop, degree, and log(kik j) metric.
The network topology used here is an AS-scan [CAIDA Macroscopic
Topology Project Team, 2000–2006] from June 2006, with 8111 nodes
and 22370 edges.

Macroscopic Topology Project Team, 2000–2006], during the iteration of the up-
date rules. After a sufficient number of iteration steps, the networks performance
gets stationary around a mean value. For ε = 0 the weight wi = `i is reached,
as predicted by Equation (7.29). The throughput performance in this stationary
state depends on the parameter ε, we numerically determine that the best Te2e
performance in this stationary state is achieved by ε ≈ 0.35. Unfortunately, in the
case of the depicted AS-scan, the Te2e performance of the SO-metric is worse than
the one of the hop metric. However, for small ε, especially for the depicted ε = 0
the Te2e performance exhibits a surprisingly high peak around the 2nd to 3rd step.

To further investigate the peculiar performance peak of the SO metric for ε = 0,
Figure 7.11 compares the distribution of weights at the peak with the distribution
in the steady state for ε = 0.35. While in the weight distribution of the steady
state in Figure 7.11b no particularly clean structure is visible, Figure 7.11a shows
a pronounced relation of the product of node degrees to the weights assigned at
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Figure 7.11.: Density of link weights produced by the SO metric for ε = 0 (a) at the
greatest performance reached during iteration, and in the steady state
for ε = 0.35 (b). The topology is the same as in Figure 7.10.

the performance peak of the SO metric. Here a rough functional dependence of the
weight on the node-degrees is found:

wij ∼ log(kik j). (7.30)

7.7. The log(kik j)-metric

The impressively clean relation between the weight of a link eij ∈ E to the log-
arithm of the product kikj of its adjacent vertices degrees’, which occurs at the
peak of tete performance reached during the iteration of the SO-metric, inspires
another, amazingly simple weight assignment. We acknowledge the observation of
Equation (7.30) and in a straightforward fashion turn it into a metric, by letting

∀eij ∈ E : wlogkikj
ij := log(kikj) (7.31)

be the weight assignment of the metric we name log kik j metric. Figure 7.12 shows
the Te2e performance of this metric compared to the hop metric, the smoothing
metric, and most notably the hybrid metric, as proposed in Section 7.4. The hybrid
metric continues to be the best of the tested metrics, but the performance of the
log(kik j) metric is in the same order of magnitude. Relative to the hop metric
it results in a gain ratio (see Equation (7.22) g ≈ 5 which compares very well
with g ≈ 7 for the hybrid metric. This huge increase of performance is especially
impressive, if we compare the computational complexity of the two metrics. As

91



7. Advanced routing

2000 2001 2002 2003 2004 2005 2006 2007
date

0

500

1000

1500

2000

2500

3000

3500

T
e2
e

hybrid
logkikj
smoothing
hop

Figure 7.12.: Comparison of the throughput capacity Te2e achieved by the log(kik j)
metric and other metrics on monthly Internet snapshots by the
CAIDA project. The log(kik j)-metric is compared with the whop (hop),
wsmoothing (smoothing), and whybrid (hybrid) metric. The degree metric
and the link degree metric (steady state of the SO-metric, see Equa-
tion (7.29)), generally perform similar to the hop metric or worse, but
are left out, to avoid cluttering the figure.

given in Section 7.4, the computational complexity of iterating the hybrid metric is
O
(

N2 log N
)
. The log(kik j) metric however does not need to be iterated, it merely

determines the degrees of vertices and calculates the logarithm for every node,
hence the complexity is O (N). Assuming the calculation is done by every node
itself, it is trivial to parallelize, in which case the complexity reduces to O (1).

The increase of throughput capacity by the log(kik j) metric is shown by Fig-
ure 7.12 to be robust in the sense, that the increase is comparable with the increase
of the hybrid metric for all tested CAIDA Internet scans. However, the applicability
of this metric has to be taken with a grain of salt, as the present work assumes
networks with a homogeneous traffic matrix and a uniform bandwidth, as stated in
Sections 6.1 and 6.2. Should data on the traffic matrix and bandwidths, or plausible
models of this data, get available, a metric like the hybrid metric, which is explic-
itly based on the traffic load in the network, is straightforward to adapt with the
definitions of Le in Equation (6.2) and eBN in Equation (6.8), which already include
the full traffic matrix and link bandwidths. With these modifications, which are
beyond the scope of the present work, the extremal optimization is expected to
work in a similar satisfying manner, and will probably result in optimization of
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the throughput capacity. For a metric like the log(kik j) metric, an immediately
generalization is not apparent, as it relies completely on information, like the node
degree, that is unrelated to the actual traffic flow.
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8. Conclusion

The present work demonstrates mechanisms that are able to shape the structure of
networked systems and influence the dynamics of processes taking place on the
network.

The common ground of the proposed approaches is not only the desire to under-
stand the emergence of macroscopic structural and dynamical pattern, the innate
desire of statistical physics, but also the attempt to point out and explicitly investi-
gate the applicability of the proposed approaches. The motivation for application
of the presented methods is the possible optimization of real world systems with
respect to graph theoretical observables, which are closely coupled to performance
measures of real instances of complex systems. The endeavor is divided in three
pieces, joined by the common ground of employing the formalism of graph theory
as a tool to handle the generalized discrete topologies of the discussed complex
systems. Moreover, the first two pieces are joined by the use of game theory, the
paradigm of locally optimizing, selfish agents, to describe the microscopic scale and
its influences on emergent macroscopic behavior. To prepare the ground for the
forthcoming chapters, introductory reviews of graph theory and game theory are
given in Chapters 2 and 3.

The first approach to investigate and optimize global properties of a network
arising from interactions on the node scale is presented in Chapter 4. It employs
a game, the iterated prisoners’ dilemma (IPD), to let nodes of the network decide
microscopically which of their neighbors to keep, which to decouple from, and
which other nodes are good candidates to have as new neighbors. The dynamics
arising from the rules, specified as a game, and the complex networked structures,
that emerge from the rules, are characterized with respect to graph theoretical
observables. A local rule is found, which, depending on a parameter, allows for the
optimization of the emergent structure in a way, that results in networks, where
each node is able to reach other nodes by short paths. This demonstrates a self
organized optimization of the network structure.

The second approach, pursued in Chapter 5, puts the focus on fixed network
structures, and elaborates on the emergence of cooperation among intrinsically
selfish agents, the behavior of which is again modeled by game theory. The aspect
of optimization is resumed by exploring strategies of distributing a given amount
of incentives to increase the chance of emergence of cooperation. Compared to the
naive strategy of uniform distribution, the cooperativeness of the system can be
increased by a factor of 5 by using one of the proposed strategies.

The third approach is covered in Chapters 6 and 7 and investigates how the
maximal throughput of a communication network is influenced by the structure of
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the network and by weights that are applied to the network’s links. To illuminate
the effects of network structure, a geometrical generalization of the classical con-
figuration model of graphs is proposed. This model is used for the investigation
how clustering in the underlying topology influences the transport process on the
network. The in-depth examination of the effects of metrics, defined by link weights,
on the transport capacity, culminates in the proposal of two metrics that are able to
radically increase the performance of the network. The first proposed metric results
in an increase of a factor 7 with respect to unweighted networks, but demands
considerable computational effort to be calculated. The second proposed metric,
found as a spin-off of the investigation of self organizing metrics, achieves a less
pronounced increase of a factor of 5, but results in a practically vanishing numerical
effort.

The three approaches to characterization and optimization of networked systems
consider highly idealized versions of systems found in nature. However, this does
not result in a loss of generality. Instead, the abstraction eases the transfer of the
found insights to other applications.

Take the game theoretic parts. Already the language of game theory, which
identifies nodes of a network with players, suggests the association with social
networks. Although social networks indeed gave the inspiration for the present
studies, many other systems can benefit from the suggested mechanisms. Consider
metabolic or gene expression networks inside of living cells, where the vertices
are proteins that interact according to the rules of biochemistry. If these rules are
changed in a systematic way, for example by unspecific drugs, similar to the tuning
of a parameter in Chapter 4, or by targeted drugs, comparable to the incentive
distribution strategies presented in Chapter 5, the emergent behavior of the system
will change. To determine which proteins should be targeted by drugs, approaches
like the ones described here may well be suitable after adaptation of the very
abstract model to the given real network.

Similar arguments hold for the generality of the part that considers optimizing
metrics. Although the numerical studies conducted in this work used the trans-
portation of data packets on a network, with the Internet as an example, this does
not confine the insights to the transport of data packets alone. In principle the
considerations are valid for all kinds of transportation processes of distinguishable
quantities that have to be transported from specific origins to specific destinations,
and may be applied to logistic problems in general. An example is highway traffic,
where weights may be realized through traffic lights, speed limits, or software of
navigation systems.

That said, the investigation of more detailed and realistic models are nevertheless
of great interest, as the quality of the optimizations will certainly differ with respect
to implementation details. However the formalism and mechanisms developed in
the present work will provide a convenient framework for those tasks.

Many interesting continuations and extensions of the work presented in this
thesis can be thought of. To name but a few, consider a concrete implementation of
the game theoretic parts to use games that are less abstract and describe real systems
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more closely. An example may be economical systems, where the payoffs of the
game directly represents financial gains or losses, and the played game would be a
game of imperfect information. Another interesting aspect to pursue is the effect of
weights and metrics on properties besides the throughput capacity. As the metrics
work by distributing the load on the network evenly, the approach qualifies to
enhance the robustness of networks, for example with respect to cascading failures,
while enhancing the transport capacity at the same time. An exceptionally well
suited candidate for such approaches is the log(kik j) metric, as it can be calculated
very fast and therefore almost instant reactions to failure of network components.
A further extension may be the generalization to transport processes of indistin-
guishable entities, occurring for example in electrical networks, where the load of
links given by Kirchhoffs laws instead of the betweenness centrality.
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A. AS-level data table

Table A.1.: Properties of the three families of Internet scans ROUTEVIEWS [Univer-
sity of Oregon, 2001], NETDIMES [Shavitt and Shir, 2005], and CAIDA
[CAIDA Macroscopic Topology Project Team, 2000–2006]. Listed are the
number of vertices N and the average degree 〈k〉 of the giant compo-
nent, and the transport capacities Te2e

w defined by Equation (6.12) for
the hop, degree, smoothing, and hybrid metric. The last column shows
the hybrid-to-hop gain ratio defined as g = Te2e(hybrid)/Te2e(hop).
The average of g (〈g〉), its standart deviation (σg), minimum (gmin), and
maximum (gmax) are given for each group of Internet scans separately.

id N 〈k〉 Te2e(hop) Te2e(degree) Te2e(smoothing) Te2e(hybrid) gain ratio
ROUTEVIEWS weekly snapshots, Mar–May 2001

PO_010331 10900 5.72 134.2 99.6 117.9 481.7 3.59
PO_010407 10981 5.62 140.7 106.3 75.6 477.0 3.39
PO_010414 11019 5.76 130.9 90.1 93.7 586.6 4.48
PO_010421 11080 5.69 130.5 78.4 60.6 402.4 3.08
PO_010428 11113 5.66 130.7 108.2 71.8 406.2 3.11
PO_010505 11157 5.55 127.6 90.2 106.7 307.1 2.41
PO_010512 11260 5.56 126.1 78.2 134.3 597.2 4.74
PO_010519 11375 5.68 124.6 79.5 166.2 501.1 4.02
PO_010526 11461 5.71 120.1 80.3 96.2 660.9 5.50

〈g〉 = 3.81 σg = 0.91 gmin = 2.41 gmax = 5.50

NETDIMES monthly snapshots, Oct 2004–Dec 2005
ASE_10/2004 13374 3.69 200.4 110.8 144.2 812.9 4.06
ASE_11/2004 13547 4.10 225.0 63.7 109.0 846.0 3.76
ASE_12/2004 13649 4.12 210.7 53.9 97.1 922.2 4.38
ASE_1/2005 13844 4.33 215.4 82.2 137.9 1144.7 5.31
ASE_2/2005 13683 4.41 231.5 72.8 139.9 1040.8 4.50
ASE_3/2005 13646 4.68 247.0 99.1 93.5 650.8 2.63
ASE_4/2005 13696 4.69 250.3 71.8 143.8 898.3 3.59
ASE_5/2005 14048 4.66 207.4 112.6 102.9 611.7 2.95
ASE_6/2005 12017 4.64 211.4 91.6 200.5 780.3 3.69
ASE_8/2005 14116 5.22 244.2 102.5 87.0 743.6 3.05
ASE_9/2005 14147 5.57 183.8 107.5 321.7 1531.0 8.33
ASE_10/2005 17704 5.37 210.4 140.4 179.4 1615.8 7.68
ASE_11/2005 16695 4.89 307.7 83.2 100.8 1450.4 4.71
ASE_12/2005 14197 4.75 298.3 136.3 267.2 1026.0 3.44

〈g〉 = 4.43 σg = 1.62 gmin = 2.63 gmax = 8.33

CAIDA monthly snapshots, 2000–2006
sk_200001 3247 5.89 191.8 159.8 288.4 1083.0 5.65
sk_200002 3282 6.08 203.9 147.0 495.1 1094.7 5.37
sk_200003 3305 5.78 222.8 152.6 386.6 1102.3 4.95
sk_200004 4041 5.15 176.9 116.6 307.9 809.0 4.57
sk_200005 4131 5.34 148.5 121.3 457.6 1529.9 10.30

continued on next page
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A. AS-level data table

Table A.1, continued from previous page
id N 〈k〉 Te2e(hop) Te2e(degree) Te2e(smoothing) Te2e(hybrid) gain ratio
sk_200006 4216 5.63 196.2 145.5 467.7 1735.4 8.84
sk_200007 5278 5.69 217.3 223.3 460.3 880.5 4.05
sk_200008 5408 6.17 221.6 202.5 380.5 2208.2 9.96
sk_200009 5921 6.30 210.5 210.9 250.1 1185.0 5.63
sk_200010 6041 6.25 137.2 112.5 260.3 406.8 2.97
sk_200011 6063 7.85 151.4 208.1 275.7 1213.4 8.01
sk_200012 5567 4.16 147.1 151.5 149.0 777.1 5.28
sk_200101 5392 5.40 196.9 188.6 160.9 1348.8 6.85
sk_200102 6126 5.88 147.4 193.9 168.9 1226.0 8.32
sk_200103 6010 5.48 235.6 188.3 376.7 1503.2 6.38
sk_200104 5875 4.84 154.1 142.6 206.8 980.0 6.36
sk_200105 7254 6.39 168.7 253.9 152.9 1814.2 10.76
sk_200106 7407 6.62 154.3 126.5 216.2 2114.2 13.70
sk_200107 7299 6.75 222.5 200.1 178.1 701.0 3.15
sk_200108 7333 6.84 182.0 142.6 186.5 1511.3 8.30
sk_200109 7277 6.43 138.0 173.2 192.7 1327.8 9.62
sk_200110 7313 6.42 139.8 166.3 247.7 2297.6 16.43
sk_200111 7200 6.69 147.6 153.2 185.9 2126.7 14.41
sk_200112 7138 6.59 154.2 189.8 232.6 1821.1 11.81
sk_200201 7167 6.49 153.8 216.7 243.9 1103.8 7.18
sk_200202 8079 6.22 199.7 234.6 245.4 317.4 1.59
sk_200203 8366 6.52 140.8 178.6 282.1 2622.3 18.62
sk_200204 8117 6.57 209.4 123.1 260.0 1547.1 7.39
sk_200205 7918 6.25 297.5 129.3 402.3 979.5 3.29
sk_200206 8063 6.53 197.1 168.7 233.8 1140.3 5.78
sk_200207 7999 6.19 241.5 169.1 211.8 412.9 1.71
sk_200208 8161 6.36 257.2 176.6 350.0 2776.1 10.79
sk_200209 7821 5.85 239.6 157.7 416.1 1743.5 7.28
sk_200210 7871 6.31 244.2 177.2 475.9 2624.3 10.74
sk_200211 7857 6.25 268.6 191.0 229.2 2167.7 8.07
sk_200212 8477 5.95 251.6 122.4 258.2 1724.9 6.86
sk_200301 9100 6.02 235.1 168.3 175.3 1630.9 6.94
sk_200302 9062 5.95 248.7 181.7 313.6 1430.9 5.75
sk_200303 8624 5.96 255.8 147.6 484.0 1232.9 4.82
sk_200304 8638 5.85 239.3 99.0 214.5 2123.8 8.87
sk_200305 8566 5.83 240.6 121.3 343.5 2497.6 10.38
sk_200306 8662 6.24 208.9 141.6 477.3 1943.7 9.31
sk_200307 8696 6.40 235.8 146.3 537.0 1432.7 6.08
sk_200308 8529 5.87 259.1 109.7 432.3 2133.0 8.23
sk_200309 8215 5.77 272.0 90.0 274.2 1174.4 4.32
sk_200310 8159 6.47 366.6 129.3 340.7 462.3 1.26
sk_200311 7971 5.82 303.6 93.6 415.6 1329.3 4.38
sk_200312 7883 5.74 322.2 114.2 376.3 793.6 2.46
sk_200401 9234 5.52 280.4 132.3 315.8 1847.6 6.59
sk_200402 9106 5.66 291.3 106.4 243.3 1822.0 6.26
sk_200403 9200 6.29 232.3 132.2 539.9 1840.8 7.92
sk_200404 9143 6.41 127.3 124.8 349.7 3193.2 25.08
sk_200405 9064 6.53 131.3 101.9 283.2 1946.4 14.83
sk_200406 9047 6.17 219.9 106.4 360.0 1458.1 6.63
sk_200407 8741 6.29 223.3 113.3 356.8 2186.0 9.79
sk_200408 8714 6.36 241.6 92.0 282.2 1371.9 5.68
sk_200409 8700 6.05 225.7 119.9 293.3 1740.8 7.71
sk_200410 8552 5.64 215.6 81.6 160.9 2113.8 9.81
sk_200411 8480 5.86 228.5 79.5 309.1 1837.5 8.04
sk_200412 8442 5.64 214.9 85.8 472.2 2111.2 9.82
sk_200501 8509 6.21 280.3 127.0 252.3 1482.7 5.29
sk_200502 8468 5.99 260.1 103.4 178.6 2075.3 7.98
sk_200503 8498 5.97 240.5 92.0 227.9 1764.8 7.34

continued on next page
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Table A.1, continued from previous page
id N 〈k〉 Te2e(hop) Te2e(degree) Te2e(smoothing) Te2e(hybrid) gain ratio
sk_200504 8467 6.00 251.0 98.4 409.3 1694.2 6.75
sk_200505 8351 5.69 345.5 75.8 183.3 464.9 1.35
sk_200506 8278 5.49 327.7 114.5 307.9 1380.5 4.21
sk_200507 8257 5.49 324.9 79.2 451.7 1652.2 5.09
sk_200508 8262 5.66 269.5 112.0 207.3 1653.2 6.14
sk_200509 8231 5.66 301.8 102.0 386.1 490.7 1.63
sk_200510 8246 5.66 353.3 128.6 396.0 1159.7 3.28
sk_200511 8260 5.60 314.7 80.1 355.9 918.7 2.92
sk_200512 8304 5.86 389.7 82.8 305.9 1384.8 3.55
sk_200601 8259 5.76 292.0 62.6 220.7 751.7 2.57
sk_200602 8180 5.43 346.1 56.3 393.7 1364.2 3.94
sk_200603 8220 5.58 373.8 67.6 263.7 1389.3 3.72
sk_200604 8159 5.63 317.2 66.6 338.5 1389.0 4.38
sk_200605 8124 5.63 327.9 91.2 286.3 2031.8 6.20
sk_200606 8111 5.52 296.3 54.7 333.6 1656.8 5.59
sk_200607 8082 5.38 279.2 79.5 337.1 2008.6 7.20
sk_200608 8080 5.54 311.8 73.5 412.5 2020.8 6.48
sk_200609 8049 5.32 322.0 74.1 318.2 1610.6 5.00
sk_200610 8041 5.40 343.5 79.5 232.5 2011.0 5.85
sk_200611 8062 5.46 346.4 65.5 348.2 2016.2 5.82
sk_200612 7707 4.61 249.6 49.6 188.4 1101.9 4.41

〈g〉 = 7.01 σg = 3.86 gmin = 1.26 gmax = 25.08
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A proactive measure to increase the robustness of heterogeneously loaded networks against cascades of
overload failures is proposed. It is based on load-dependent weights. Compared to simple hop weights,
respective shortest flow paths turn a previously heterogeneous load distribution into a more homogeneous
one for the nodes and links of the network. The use of these flow paths increases the networks robustness
and at the same time reduces the investment costs into the networks capacity layout. These findings are of
relevance for critical infrastructures like communication and transportation networks.
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Modern human societies very much depend on the
functioning of critical-infrastructure networks like power
grids, telecommunication, and transportation. Such net-
works work reliably in everyday life. However, as some
rare occurrences in the past have shown, they are still
vulnerable to major outages. In order to avoid or at least
reduce such failures, new robustness- and security-design
concepts are needed.

The statistical mechanics of complex networks [1–3]
has already started to address this issue. The structural
analysis of error and attack tolerance focuses on the frag-
mentation of synthetic as well as real-world networks upon
random and intentional removal of nodes and links [4–11].
In general, a large fraction of randomly broken compo-
nents is required to lead to network disintegration. How-
ever, in case of an intentional attack the removal of only a
few, most-important nodes or links are needed. Besides
these static failures, also dynamical failures have been
discussed [12–17]. The flow of, for example, electrical
power or communication packets are characteristic for
critical-infrastructure networks. The failure of components
leads to a redistribution of flow. After redistribution, some
of the remaining nodes and links are loaded with a larger
flow than before. If this new load exceeds their capacity,
the respective components will also fail, giving rise to
more flow redistribution and possibly more failure. For
heterogeneous networks, like scale-free networks, such
overload avalanches might already be triggered by the
failure of only one of the most-loaded nodes or links [12].

In order to avoid such network-wide avalanche outages,
a simple reactive defense control has been proposed [13]:
after occurrence of a single component failure, the inten-
tional further shutdown of selected lowly (highly) loaded
nodes (links) severely limits the spreading of the overload
avalanche. However, the time scale needed to react may be
relatively short and may not be operationally feasible for
some specific situations.

In this Letter we propose a proactive measure to signifi-
cantly reduce the chance of an overload avalanche and to
limit its size in case of occurrence. The key to this control
are load weights, a concept which is already implemented
in current congestion-aware Internet routing protocols
[18]. It determines the load-based lengths of the flow paths.
Upon picking only those flow paths with the smallest load-
based lengths, a previously heterogeneous load distribution
turns into a more homogeneous one for the nodes and links
of the network. This proactive control does not only in-
crease the robustness of the network, but also lowers the in-
vestment costs into the networks capacity layout. Further-
more, this reduces the need of shutting off nodes and links
to stop an avalanche.

We adopt the model presented in Refs. [12,13].
Although it applies only to communication and transpor-
tation networks, but not to power grids, it well serves the
purpose to demonstrate the new proactive control. Within
this model, every node provides (receives) flow to (from)
every other node of the network with an equal share. After
generation at node i, the flow to destination node f is
transmitted along the shortest-hop path �i! f�hop. Out of
all N�N � 1� paths �i! f�hop [19], the betweenness cen-
trality

Ln �
1

N�N � 1�

XN

i�f�1

path��i! f�hop; n� (1)

counts all shortest-hop paths which go over the picked
node n and defines its load during normal network opera-
tion. The index function path��i! f�hop; n� is equal to one
if n =2 fi; fg belongs to the shortest-hop path �i! f�hop,
and is zero else [20].

The sum of all loads

invest 0 �
1

N

XN

n�1

Ln (2)
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represents a measure for the minimum investment costs
into the network. The lowest curve of Fig. 1 shows only
little variation for several independent realizations of ran-
dom scale-free networks. This curve serves as reference for
other curves to come. Because of the heterogeneous net-
work structure, a very heterogeneous load distribution
emerges [21]; see also Fig. 2. A few nodes have to carry
an exceptionally large load. If some of them fail, or have
been the target of an attack, it comes to a network-wide
load redistribution. The shortest flow paths, which were
going via the failed nodes, are readjusting and are using
then other nodes. As a consequence of this readjustment,
some nodes have to carry a larger load than before. If this
new load exceeds its capacity, then the respective node will
also fail, triggering a new load redistribution with possible,
subsequent overload failures of other nodes.

In order to reduce the possible occurrence of such a
cascading failure, a contingency (N � 1) analysis is
evoked. One of the N nodes, say m, is virtually removed
from the network. The shortest-hop flow paths of the
reduced (N � 1) network are recalculated, which then
according to (1) determine the readjusted loads Ln�m� of
the remaining N � 1 nodes. This procedure is repeated for
every possible single-node removal 1 � m � N. The mini-
mum capacity of node n is then defined as

Cn � max
0�m�N

Ln�m�; (3)

where Ln�0� represents the load resulting from the full

network with all N nodes. This assignment guarantees
that the network remains robust against a one-node failure,
i.e., no overload failures of other nodes and no network-
wide cascading failure. A consequence of this gain in
network robustness is the increase of investment costs.
The uppermost curve of Fig. 1 represents the sum

invest 1 �
1

N

XN

n�1

Cn: (4)

For the example shown, the investment costs have in-
creased from about 0.007 to about 0.012 units.

So far the flow paths have been based on the hop count.
Now we introduce load-dependent weights. The basic idea
is the following: a load-based path length is introduced as

di!f �
XN

n�1

path�i! f; n�Ln: (5)

Its minimum defines the load-based shortest path �i!
f�load between nodes i and f. Such paths have the tendency
to avoid the most-loaded nodes and links, and help to relax
the load of the latter.

For the proper determination of the load-based flow
paths the minimization of (5) is not yet complete. The
paths �i! f�load are not only determined by the loads Ln
of the nodes, the former themselves also determine the
latter via

Ln �
XN

i�f�1

path��i! f�load; n�: (6)

In order to find a consistent solution of (5) and (6), these
equations have to be treated iteratively.

The beginning (t � 1) of the iteration is provided by the
shortest-hop paths �i! f�hop and the respective node-
based loads Ln�t � 1� of (1). This defines also the auxil-
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FIG. 1. Various investment costs for 50 independent random
scale-free network realizations: invest0 of Eq. (2) resulting from
the hop weights (dashed curve with open triangles) and from the
load-dependent weights (solid curve with open squares), and
invest1 of Eq. (4) resulting from the hop weights (dashed curve
with full triangles) and from the load-dependent weights (solid
curve with full squares). The parameters of the employed ran-
dom scale-free network are the scale-free exponent � � 3, the
minimum node degree k � 2, and the number N � 1000 of
nodes. This fixes the average node degree to hki � 2:61	 0:06
and the network diameter to hdi � 7:98. It also guarantees net-
work connectivity almost surely.
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FIG. 2. Distributions of load and (inset) centrality distance
following from the hop weights (crosses) and the load-dependent
weights (rotated crosses). Parameters for the sample of 50
independent random scale-free networks are as quoted in Fig. 1.
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iary, initial node-based weight Wn�t � 1� � invest0. An
iteration step t! t
 1 then begins with the updates

Wn�t
 1� �
1

t
 1
Ln�t� 


t
t
 1

Wn�t� (7)

of the weights for all nodes 1 � n � N. This update con-
sists of two contributions, i.e., the load and the weight from
the previous iteration round. Of course, also other combi-
nations are possible. However, the first-guess update
Wn�t
 1� � Ln�t� leads to oscillations and no conver-
gence. Another update variant is Wn�t
 1� � �Ln�t� 

�1� ��Wn�t�, but as our simulations reveal is not able to
improve on the choice (7). The weight update (7) also
explains the introduction of the auxiliary, initial weight
Wn�t � 1�, which is of the same order of magnitude as the
initial loads Ln�t � 1�. The iteration step t! t
 1 is
continued with the insertion of the updated weights (7)
into (5), where of course Ln is replaced by Wn�t
 1�. A
subsequent minimization of di!f leads to the updated
shortest load-flow paths �i! f�t
1 for all combinations
1 � i � f � N. At last, the updated flow paths determine
the updated node-based loads Ln�t
 1� through Eq. (6).
This completes the iteration step t! t
 1.

Figure 3 shows the total network load (2) as a function of
the iteration round t. Already after five steps, this sum has
practically converged to a constant value of about
0.0084 units. This value is larger than the respective invest-
ment cost (2) based on shortest-hop paths. See also the
second-lowest curve of Fig. 1, where invest0 based on load-
flow paths obtained with the load-dependent weights at t �
10 is shown for various independent random scale-free
network realizations. For the remainder, we will adopt
the value t � 10 for all results based on the load-dependent
weights.

Because of the sum rule

XN

n�1

Ln �
XN

i;f�1

di!f; (8)

the relative increase of the investment cost (2) also implies
an increase of the average path length (in hop units) by the
same amount. This relative increase is also directly ob-
served in the two respective distributions of the centrality
distance di �

PN
f�1 di!f=�N � 1�, which appear to map

onto each other by a mere shift; consult inset of Fig. 2.
Since the shift remains rather small, the length (in hop
units) of each single flow path does not increase much.
Note, that if the weights had not been chosen according to
the load, but randomly, the length of the respective shortest
flow paths might increase more dramatically [22].

A first benefit of the load-dependent weights becomes
visible in Fig. 2. Those nodes which had a high hop-based
load experience a significant load decrease upon applica-
tion of the load-dependent weights. Other nodes which had
a small load before acquire a little larger load. As expected,
the load-dependent weights turn a heterogeneous load
distribution into a more homogeneous one.

Networks with flow paths based on the load-dependent
weights are less expensive to establish robustness against
one-node-induced cascading failure. An (N � 1) analysis
analogous to (3) and (4) leads to the curve with filled
squares of Fig. 1. For all network realizations it is below
the investment costs of its hop-counterpart with the filled
triangles.

Even more benefit shows up with the two-nodes-removal
analysis. The (N � 1) analysis does not guarantee network
robustness against a failure of two or more nodes. A further
increase of capacity beyond (3) is needed:

Cn��� � �1
 ��Cn: (9)

The tolerance parameter � is assumed to be the same for
every node. The larger �, the larger network robustness
will be against a two-node-induced failure, but also the
larger the further investment costs invest2 � �1

��invest1 will be.

Only a fraction of the nodes is still functioning after such
a cascading failure; i.e., their loads are still smaller than
their capacities (9). This fraction does not necessarily form
a connected network. Usually these nodes cluster into
nonconnected subnetworks. The largest of these subnet-
works, i.e., the one containing the largest number Ngc of
nodes, is called the giant component. Figure 4 shows the
relative size Ngc=N of the giant component belonging to
the surviving random scale-free network, obtained after
removal of the two most-loaded nodes. As expected, it is
almost close to zero for very small additional investment
costs. For larger investment costs the size of the giant
component very much depends on the chosen weights. At
invest2 � 0:018 the relative size is only about 0.75 for the
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FIG. 3. Total network load
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n�1 Ln�t�=N as a function of the

iteration round t. The load has been averaged over 50 indepen-
dent realizations of random scale-free networks with parameters
as quoted in Fig. 1.
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hop weights. For the load-dependent weights the same
relative size is already obtained at invest2 � 0:013, and
at invest2 � 0:018 it is above 0.99. Compared to the re-
spective hop-weight result, this outcome represents an
impressive improvement. Qualitatively similar results have
been obtained for other coordinated two-node removals.
Consequently, the investment costs to establish network
robustness beyond one-node failure are also smaller upon
application of the load-dependent weights than for the hop
count.

All results presented so far are not restricted to scale-
free networks. Other types of networks, like those with a
Poisson or exponential degree distribution, have also been
studied. Together with a further investigation of a model
extension to include link removals and link capacities, this
has confirmed our main conclusions from before: the in-
troduction of load-dependent weights increases the robust-
ness of networks against cascades of overload failures and
also proactively reduces respective investment costs. These
are important findings for critical-infrastructure networks.

More findings are to be expected from several follow-up
extensions of this work. So far the load-dependent weights
have been assigned proactively to gain robustness against
one- and two-node failure. In case of a failure of several
nodes and links, a reactive reassignment of these weights
could reroute the network flow in such a way that the
subsequent overload cascade is avoided. Other topics of
interest include, for example, discussions on other forms of

network flows and other-than-load-based weight
assignments.
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Abstract

Inspired by the Statistical Physics of complex networks, wireless multihop ad hoc

communication networks are considered in abstracted form. Since such engineered networks

are able to modify their structure via topology control, we search for optimized network

structures, which maximize the end-to-end throughput performance. A modified version of

betweenness centrality is introduced and shown to be very relevant for the respective modeling.

The calculated optimized network structures lead to a significant increase of the end-to-end

throughput. The discussion of the resulting structural properties reveals that it will be almost

impossible to construct these optimized topologies in a technologically efficient distributive

manner. However, the modified betweenness centrality also allows to propose a new routing

metric for the end-to-end communication traffic. This approach leads to an even larger increase

of throughput capacity and is easily implementable in a technologically relevant manner.

r 2005 Elsevier B.V. All rights reserved.

Keywords: Structure of and dynamics on complex networks; Information and communication networks;

Wireless multihop ad hoc communication; Packet traffic

ARTICLE IN PRESS

www.elsevier.com/locate/physa

0378-4371/$ - see front matter r 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.physa.2005.06.085

�Corresponding author. Frankfurt Institute for Advanced Studies and Frankfurt International

Graduate School for Science, Johann Wolfgang Goethe Universität, Postfach 11 19 32, D-60054

Frankfurt am Main, Germany.

E-mail addresses: krause@th.physik.uni-frankfurt.de (W. Krause),

Jan.C.Scholz@physik.uni-giessen.de (J. Scholz), martin.greiner@siemens.com (M. Greiner).

109



1. Introduction

Nowadays, the complexity of many engineered networks has increased to such a
high level that conceptually new approaches for their operational control have to be
looked for. Key aspects like self-organization and artificial intelligence become
increasingly important. It is here where engineering and computer science is
beginning to exchange ideas and concepts with the natural sciences like physics and
biology. In particular, the new cross-disciplinary branch known as the Statistical
Physics of complex networks [1–3] appears to catalyze such efforts.

We pick up on this latest momentum to continue the discussion of a challenging
complex communication network in abstracted form [4–6]. In wireless multihop ad
hoc networks [7–9] nodes are connected by wireless links. A central control
infrastructure is missing. Each node does not only act as a communication source
and sink, but also forwards communication for others. All of this requires a lot of
self-organized and decentralized coordination amongst the nodes. The outstanding
complexity of this communication network is revealed by mentioning the key
mechanisms and the associated problems in some more detail.

With regulation of its transmission power, each node is able to modify its
transmission range and its neighborhood, to which it builds up wireless
communication links. Here the node faces frustration for the first time. On the
one hand it wants to save energy and keep its transmission power as low as possible,
but on the other it might have to choose a larger neighborhood in order to help the
network to gain strong connectivity, so that each node will be able to communicate
to any other via multihop routes. This brings us to another protocol layer, from link
control to routing control. End-to-end routes have to be explored and maintained.
During their execution the communication hops from one node to the next. This is
where yet another protocol layer, called medium access control, sets in. It blocks all
neighbors attached to an ongoing one-hop transmission in order to avoid
interference within the same communication channel. This is the origin of another
frustration, now across layers. Whereas routing efficiency prefers short end-to-end
routes with the consequence of large one-hop neighborhoods, medium access control
prefers to block small neighborhoods with the consequence of long end-to-end
routes. A delicate balance between these two layers is necessary for the overall
network to gain a large end-to-end throughput capacity, which measures the amount
of communication traffic the network is able to handle without overloading.

In a previous paper [4] we have already addressed the connectivity issue, with
special emphasis on the development of a simple self-organizing topology control.
More self-organization has been proposed in Ref. [6], where a reactive routing and
congestion control has been discussed, which adapts to the current congestion state
of the wireless multihop ad hoc network. Another investigation [5] has demonstrated
that the end-to-end throughput capacity does sensitively depend on the underlying
network structure. It is exactly here where we continue and begin to ask for
throughput optimization: What is the optimized network structure? What are its
properties? Is it possible to construct the optimized network structure with a self-
organizing topology control? Are there also other means to enhance the end-to-end
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throughput and how do these compare to the approach with optimized network
structures?

These are a lot of questions. We group them into the following organizational
form of the paper. Section 2 addresses the network structure optimization of wireless
multihop ad hoc communication networks. It explains the level of abstraction
needed to construct an objective function for the global maximization of end-to-end
throughput. A modified version of betweenness centrality is introduced, the
cumulative betweenness centrality, which suites well the particular throughput
needs of wireless multihop communication. The optimality of the resulting networks
is checked with generic packet traffic simulations. Scaling laws for the end-to-end
throughput with respect to network size are given. The structure of the globally
optimized networks is analyzed and found to be difficult to construct with a
decentralized, self-organizing topology control. As a consequence, a new approach is
advocated in Section 3 to increase the end-to-end throughput. It uses the cumulative
betweenness centrality as key input into a routing metric. This allows to determine
throughput-optimizing end-to-end routes iteratively in a self-organizing manner. The
increase in throughput turns out to become even slightly larger than for the
optimized network structure of the previous section. Conclusion and outlook are
given in Section 4.

2. Optimization of network structure

2.1. Abstraction: geometric minimum-node-degree networks

Some level of abstraction is required to make wireless multihop ad hoc
communication amenable to the Statistical Physics of complex networks. The first
simplification is to neglect mobility and to distribute N nodes onto a unit square in a
random homogeneous way. The transmission power Pi then decides which other
nodes j are able to be reached by node i via directed links i! j. These are the nodes
which, according to a simple propagation–receiver model, fulfill the inequality
Pi=Ra

ijXsnr. Rij denotes the relative Euclidean distance. The path-loss exponent a is
assumed to be constant and snr represents the signal-to-noise ratio. With these
simplifications, wireless mulithop ad hoc communication networks can be modeled
as geometric graphs. The N nodes are networked together via the set fi! jg of all
directed links.

Not all of the directed links will be used for wireless multihop ad hoc
communication. Since operation requires instant one-hop feedback, only bidirected
links i2j qualify for the routing of communication traffic. It is the bidirected links
attached to node i which define its communication neighborhood Ni and its node
degree ki.

One further step is needed to fully specify wireless multihop ad hoc network
graphs: assignment of the transmission power Pi for all nodes. The simplest
procedure is to assign the same value P to all nodes [10–13]. We prefer to employ a
different procedure [4], which contrary to the first one is distributive, self-organizing
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and adaptive. In a nutshell, each node i forces its kmin closest nodes j to adjust their
transmission powers to at least Pj ¼ Ra

ij , while adopting the value Pi ¼ supj Pj for
itself. Its own value can be increased further whenever another, still close-by node,
which seeks for its minimum communication neighborhood, forces i in return to
have an even larger transmission power. In this respect each node has at least kmin

bidirected neighbors. As a consequence transmission power values differ from node
to node. This heterogeneity leads to the occasional emergence of directed links.

We will call wireless multihop ad hoc network graphs generated with this
heterogeneous power assignment as geometric minimum-node-degree networks.
Already the choice kmin ¼ 8 is sufficient to guarantee strong network connectivity
almost surely for network sizes up to several thousand nodes [4]. A realization
of a minimum-node-degree network with kmin ¼ 8 is shown in the upper left
part of Fig. 3.

2.2. Objective function for end-to-end throughput

Maybe the most important performance measure of wireless multihop ad hoc
networks is given by the end-to-end throughput capacity Te2e. It represents the
amount of end-to-end communication traffic the network is able to handle without
overloading. Ref. [5] has shown that Te2e does depend on the underlying network
structure. We are now interested to find network structures with increased
throughput capacity.

Based on a simple random traffic model, a suitable objective function for the end-
to-end throughput has been proposed in analytical form [5]:

Te2e ¼ min
i

NðN � 1Þ

Bcum
i

� �
. (1)

It introduces the cumulative betweenness centrality

Bcum
i ¼ Bi þ

X
j2Nin

i

Bj (2)

as the sum of the betweenness centralities of the picked node i and its ingoing
neighbors j 2Nin

i . Out of all NðN � 1Þ end-to-end combinations the betweenness
centrality

Bi ¼
XN

man¼1
ðnaiÞ

bmnðiÞ

bmn

(3)

counts the number of end-to-end routes, for which i has to forward a packet. bmn

represents the number of used routes from m to n, of which bmnðiÞ pass through i.
Throughout this section we will base the betweenness centrality on shortest multihop
routes.

The expression (1) is consistent with Te2e ¼ 1 for fully connected networks, where
each node comes with the maximum degree ki ¼ N � 1, as well as Bi ¼ N � 1 and
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Bcum
i ¼ NðN � 1Þ. Initial sender and final recipient of each end-to-end communica-

tion are only one hop away from each other. Then, due to medium access
control, each single one-hop end-to-end communication blocks the overall network,
leading to a maximum throughput of one completed end-to-end communication
per time step.

Moreover, expression (1) also agrees with the end-to-end throughput of a central-
hub network. All end-to-end communications first go from the initial sender to the
central hub, and from there to the final recipient. In each of the two involved one-
hop transmissions the overall network is blocked by medium access control. First the
receiving central hub blocks all its neighbors, and then all its neighbors are again
blocked during the subsequent forwarding to the final recipient. This limits the
maximum throughput to Te2e ¼ 0:5, i.e., one completed end-to-end communication
per two time steps. In the central-hub network, it is the central hub which yields the
largest Bcum

i . Its betweenness centrality amounts to Bc:h: ¼ NðN � 1Þ. Each of its N

neighbors counts Bngbðc:h:Þ ¼ N � 1. All this totals to Bcum
c:h: ¼ Bc:h: þNBngbðc:h:Þ ¼

2NðN � 1Þ, so that Eq. (1) produces Te2e ¼ 0:5.
Beyond these two limiting network examples, the quality of (1) is decided with the

minimum-node-degree network structures. Generic packet traffic simulations with
shortest-path routing, as described in Ref. [5], have been used to determine their end-
to-end throughput. The same network realizations, as used for the simulations, have
then been taken to determine (1). The betweenness centrality based on shortest
multihop paths has been calculated with an algorithm similar to that described in
Ref. [14]. The overall agreement between the estimate (1) and the throughput curves
obtained from the generic packet traffic simulations turns out to be remarkable for
various kmin values; see Fig. 2 for kmin ¼ 8, Table 1 and Ref. [5]. This proves the high
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Table 1

Scaling exponent g and parameter N0 of the end-to-end throughput Te2e�ðN �N0Þ
g

Te2e�ðN �N0Þ
g Estimate (1) Simulation

N0 g N0 g

kmin ¼ 8 24 0.23 65 0.22

kmin ¼ 12 69 0.25 127 0.22

kmin ¼ 20 179 0.24 219 0.24

kmin ¼ 40 (400) (0.22) (389) (0.29)

optðkmin ¼ 8Þ 36 0.41 37 0.43

optðkmin ¼ 12Þ 84 0.40 (52) (0.49)

optðkmin ¼ 20Þ (94) (0.47) (65) (0.54)

kmin ¼ 8, Bcum
i -metric 0 0.42 23 0.41

kmin ¼ 12, Bcum
i -metric 22 0.43 63 0.41

kmin ¼ 20, Bcum
i -metric 93 0.40 127 0.41

Rows 1–4 are for minimum-node-degree networks and rows 5–7 are for the respective structure-optimized

networks, all with shortest-multihop-path routing. Rows 8–10 are again for minimum-node-degree

networks, but now with use of the Bcum
i -routing metric. Column blocks 2 and 3 represent the estimate (1)

and the generic packet traffic simulations, respectively. In some cases, extracted parameters depend to

some extend on the interval size used for the fit; brackets indicate these less reliable values.
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quality of expression (1), which will now serve as objective function for the network-
structure optimization of the end-to-end throughput.

Note, that for large network sizes the results for the end-to-end throughput
suggest a scaling law of the form Te2e�ðN �N0Þ

g. Fitted values for N0 and g are
given in Table 1. Except for kmin420, the scaling exponent g ¼ gðkminÞ is found to
depend only weakly on the minimum-node degree. For all cases it falls well inside the
range 0ogo0:5. The upper estimate go0:5 has been first given by Ref. [11]. Despite
a homogeneous end-to-end traffic pattern this overestimation neglects the
heterogeneities in the one-hop traffic as a consequence of the spatial network
geometry. In general, nodes in the spatial center of the network have to carry a
higher load than nodes in the periphery. Taken alone, g40 proves that for
sufficiently large enough network sizes multihop networks produce a larger
throughput than central-hub networks. However, this statement is much too
modest, since for all curves of Fig. 2 and for all network sizes, the absolute value of
the end-to-end throughput is always larger than Te2e ¼ 0:5.

2.3. Algorithmic details of the optimization process

Based on (1), the search for optimized network structures is challenging. First of
all, the expression for the end-to-end throughput depends on the network structure
in a non-linear and non-local manner. Local addition or removal of links might
change the end-to-end routes and thus the traffic distribution on a global scale.
Moreover, the search space of all testable network configurations is very large. It is
of the order ðN � 1ÞN . Each of the N nodes has its own transmission power ladder
with N � 1 rungs. Being on rung k means that the picked node is able to reach its k

closest neighbors. Of course not all of these configurations are meaningful for
wireless multihop ad hoc communication. Hence, it is important on the one hand to
confine the search operations only to the meaningful ones and on the other hand to
start with good initial network configurations.

As initial configurations the geometric minimum-node-degree networks are
chosen. For the moment we stick to kmin ¼ 8. This sets a minimum node degree
kmin

i Xkmin for each node i. During subsequent optimization operations, the
respective transmission power values of all nodes are not decreased below their
initial value, thus ensuring strong connectivity for all times [4]. Search operations are
performed in rounds. Per round, each node is randomly picked once. A picked node
explores in two directions. In the first move it increases its transmission power by one
rung and, if the newly reached node does not already have a large enough
transmission power, forces the latter to climb up its ladder until its rung suffices to
successfully build a new mutual bidirectional communication link. In the other move
the picked node steps down its transmission power ladder by one rung, implying that
the lost neighbor might also move down its ladder until it reaches the rung just
before another communication link is broken. Both moves modify the local network
structure, require a global update of the shortest end-to-end routes and the
betweenness centralities for all nodes, and lead to two modified estimates of the end-
to-end throughput (1), which are then compared to the old estimate before the two
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explorative moves. The network structure yielding the largest estimate is accepted.
This gradient update procedure guarantees meaningful wireless multihop ad hoc
network structures and keeps the occurrence of interfering one-directed links to a
minimum.

A local maximum of (1) is reached, if during a complete search round no
improvement of the throughput estimate is found. Fig. 1 shows a typical evolution of
the end-to-end throughput in dependence of the number of search rounds until the
first local maximum is reached. It only takes a modest number of rounds. The
increase of the throughput performance is remarkable. Once a local maximum is
reached, the respective network realization is perturbed by forcing a small, randomly
chosen fraction of the nodes to step up or down by one rung on their transmission
power ladder, including respective new or lost neighbor operations as explained
before. We denote the period until the next local maximum is found as meta-round.
Fig. 1 also illustrates the evolution of the end-to-end throughput in terms of
meta-rounds. The striking feature is that if more than one node is perturbed out
of its local-maximum state, the throughput performance decreases with the number
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local-maximum network configuration. Within the first meta round, the evolution in terms of optimization

rounds is shown until the first local maximum of expression (1) is reached. A minimum-node degree

network based on kmin ¼ 8 and N ¼ 300 has been chosen as initial network realization. The upper family

of curves (with filled symbols) is for (1), whereas the lower family of curves (with open symbols) represents

its counterpart from packet traffic simulations.
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of meta-rounds. If only one node is perturbed, the throughput performance
remains more or less the same as found for the first local-maximum network
realization.

If we use other minimum-node-degree networks as initial network configurations
instead of kmin ¼ 8, like kmin ¼ 12 and 20, we arrive at the same qualitative findings.
Independent of the network size, the first local throughput maximum is reached after
only a few update rounds. Subsequent meta rounds do not lead to a significant
performance increase; on the contrary, those initiated by larger perturbations again
result in a decrease of end-to-end throughput.

It is important to check all of these results with packet traffic simulations. As also
demonstrated in Fig. 1, a strong correlation between the simulation results and the
throughput estimate (1) is found. This is a non-trivial and important statement. It
has been clear from the beginning that the empirical expression (1) is not fully exact.
A small discrepancy to the unknown true expression remains. A subsequent
optimization with respect to (1) further broadens the gap. The important statement is
that the end-to-end throughput of the packet traffic simulation also increases
significantly and in correlation to (1).

Taken together, the results obtained from (1) and from packet traffic simulations
show that the first found local maximum yields the largest throughput. All further
maxima show a lower performance. This allows to terminate the optimization after
the first meta-round. We are well aware that such an early termination most likely
will not provide the global maximum, maybe even not a close-by network
realization. However, in view of an engineer’s pragmatism, our maximization policy
produces a well defined and fast search into a strong local maximum for this hard
and very costly optimization problem.

2.4. Scalability of optimized end-to-end throughput

For various network sizes ranging from N ¼ 100 to 2000 and in dependence of the
initial minimum-node degree kmin, ensembles consisting of 5 to 25 throughput-
optimized network realizations have been generated. Besides the optimized estimate
(1) the end-to-end throughput has also been calculated from packet traffic
simulations. It is the numerical cost of the network structure optimization, which
forbids larger ensemble sizes. Results are shown in Fig. 2.

The optimized network topologies have an end-to-end throughput signifi-
cantly larger than their initial counterparts. The end-to-end throughput of the
optimized topologies again reveals the scaling behavior Te2e�ðN �N0Þ

g in the
limit of large network sizes. Fitted parameter values N0, g are given in Table 1.
The values found for the scaling exponent are very close to the upper bound g ¼ 0:5
given in Ref. [11]. The increase of g to almost 0:5 demonstrates that within the
optimized network topologies the heterogeneities of the one-hop traffic have
been considerably reduced. With other words, the network structure has been
modified in such a way that the new shortest-path end-to-end routes distribute
the overall network traffic more evenly and reduce the peak traffic loads of the
bottleneck nodes.
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2.5. Structural properties of optimized networks

The optimized network structures resulting from the initial kmin ¼ 8 minimum-
node-degree networks produce the largest end-to-end throughput; consult again Fig.
2. Optimized counterparts resulting from initial kmin ¼ 12 have almost the same end-
to-end throughput. However, for the larger initial kmin ¼ 20 the respective optimized
networks already come with a noticeably smaller end-to-end throughput. These
findings are in accordance with the intuitive philosophy expressed in Ref. [11]: the
largest throughput is obtained once the network is just barely strongly connected and
blockings due to medium access control are smallest. The minimum-node degree
kmin ¼ 8 just barely guarantees strong network connectivity and due to the small
neighborhoods the blockings from medium access control are also small.

Fig. 3 (top right) shows a typical realization of an optimized network. It still looks
similar to the initial kmin ¼ 8 network, which is illustrated in Fig. 3 (top left). For this
example, only 391 new communication links have been added within the N ¼ 300
nodes during the optimization procedure. Fig. 3 (bottom right) shows the bidirected

ARTICLE IN PRESS

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

T
e2

e

N

opt., estimate (1), kmin=  8
opt., simulation, kmin=  8

opt., estimate (1), kmin=12
opt., simulation, kmin=12

opt., estimate (1), kmin=20
opt., simulation, kmin=20

estimate (1), kmin=  8
simulation, kmin=  8

Fig. 2. End-to-end throughput of optimized networks as a function of network size, obtained from the

objective function (1) (full symbols) and from generic packet traffic simulations (open symbols). Initial

minimum-node-degree networks have been chosen with kmin ¼ 8 (squares), 12 (circles), 20 (triangles). An

average over 25 (squares, Np1000), 9 (squares, N41000), 5 (circles, triangles) independent network

realizations has been performed for each symboled N. For comparison the results obtained with the initial

kmin ¼ 8 minimum-node-degree networks are also shown (crosses).

W. Krause et al. / Physica A 361 (2006) 707–723 715

117



links added during the optimization. Almost none of them attaches to the spatially
centered nodes, which are the bottleneck nodes with the largest overall cumulative
betweenness centralities. Instead, nearly all of the new links are located in the greater
surrounding of the most loaded nodes, including the outer parts of the network. The
introduction of these new communication links modifies the shortest-path end-to-
end routes in such a careful way that on the one hand the largest Bcum

i values of the
most-loaded nodes are decreased and on the other the end-to-end throughput
performance is increased significantly.

Not all of the 391 new links are important. A ranking of the new links reveals that
the five most important new links are in charge of already 49% of the throughput
increase, found with the generic packet traffic simulations. The ranking has been
performed in the following way: at first, each of the 391 new links has been added
singly to the minimum-node-degree network and the respective throughput (1) has
been determined. The single link addition which yields the largest throughput defines
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Fig. 3. Analysis of network structure optimization: (upper left) typical initial kmin ¼ 8 network

configuration and (upper right) respective optimized network configuration. Only bidirectional

communication links are shown; for reasons of readability, one-directed links have been suppressed.

The gray scale of the nodes encodes Bcum
i , with zero (white) to maximum (black). From left to right, the

subfigures in the lower row illustrate the most important 5, 15, 50 and 391 (all) new links. Here, light

colored nodes come with strongly reduced Bcum
i values, whereas dark nodes have experienced a strong

increase.
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the most important link. This link is then included into the network. Next, this
procedure is repeated for the remaining 390 new links, leading to the second most
important new link, and so on. For the 15 and 50 most important links 73% and
104% of the final throughput increase are reached, respectively. For the remaining
341 new links the throughput increase fluctuates closely around 100%. This
demonstrates that a fraction of only about 50 out of the 391 new links is necessary to
reach the optimal performance.

From left to right, the lower row of Fig. 3 shows the 5, 15, 50 and 391 most
important out of the 391 new links for this typical optimized network structure. The
change of the nodes’ Bcum

i values is shown with a gray scale, where black/light
gray means increase/decrease. A close investigation of the five most important
links reveals that two of them are formed between one- and two-hop neighbors
of the bottleneck nodes. The other three are further away. All five form shortcuts
in the periphery of the network. By reducing the hop distance between certain
nodes they create new shortest path routes. This leads to a redistribution of traffic
away from the highly loaded core of the network to the low-loaded periphery.
For the 15, respectively, 50 most important links this behavior even becomes
more visible. All of them are also only added in the periphery and not in the center of
the network.

Similar findings hold for all other examined network realizations and for all
network sizes. From initial kmin ¼ 8 minimum-node-degree network to optimized
network the average node degree has increased from more-or-less N-independent
hki ¼ 9:9 to 12.8 for N ¼ 100 nodes and 13.8 for N ¼ 2000.

So far, the throughput optimization of network structure has been from a global
perspective. To become technologically more relevant, a distributive optimization
analog has to be found. This is a highly non-trivial and tough problem. The
additional, throughput-enhancing new links are not directly attached to the most-
loaded nodes, but further away within the periphery of the network. Due to this
strong non-local dependence between network structure and end-to-end throughput
several simple-minded greedy attempts based on cumulative betweenness centrality
have not resulted in a significant increase in throughput performance. This is the
time to think about conceptually other ways!

3. Performance increase with a routing metric based on cumulative betweenness

centrality

A different approach will now be taken to increase the end-to-end throughput. In
the previous section, the optimized modification of network structure has been
relying on a simple, fixed routing policy. The end-to-end communications have
always been routed along the shortest multihop paths. What about the other way
around? Keeping the network structure fixed and modifying the end-to-end routes in
such a way that the most-loaded nodes get a substantial relief, thus increasing end-
to-end throughput. For this endeavor we will introduce a new routing metric. Given
the experience of the last section, the latter will be based on cumulative betweenness
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centrality. This alternative approach will also allow for a distributed implementation
with only moderate costs for coordination overhead and computation.

3.1. Routing metric based on cumulative betweenness centrality

In general, a routing metric is needed to determine the length of an end-to-end
route. The simplest example is the hop-count metric. In this case the length of an
end-to-end route is equal to the number of hops or links traversed along this route.
For any pair of initial sender and final recipient, shortest-path routing only picks
those routes which have the smallest multihop length. This has the disadvantage that
a small number of nodes, especially those in the spatial center of the network, have to
carry a large fraction of the overall network traffic, thus reducing the overall end-to-
end throughput performance.

The cumulative betweenness centrality represents a measure of a node’s load. We
will now employ it as routing metric. The length of an end-to-end route between end-
points i, f then becomes

di!f ¼
X
kaf

si!f ðkÞB
cum
k . (4)

All nodes k belonging to the end-to-end route have si!f ðkÞ ¼ 1, otherwise
si!f ðkÞ ¼ 0. The distance (4) sums up the cumulative betweenness centralities of
all one-hop transmitting nodes along the end-to-end route, including the initial
sender i, but excluding the final recipient f. The shortest end-to-end route between i

and f is the one with minimum di!f .
Note, that the shortest end-to-end routes are based on the actual routing metric,

which itself is determined by the end-to-end routes; consult again Eqs. (3) and (2).
Consequently, shortest end-to-end routes and routing metric have to be calculated in
alternating order, until some form of convergence is reached.

The self-consistent, iterative determination of all end-to-end routes subject to the
Bcum

k metric consists of two parts: initialization and iteration. Initially, we set Bcum
k ¼

1 for all nodes. In one round of iterations, all nodes are picked one after the other. A
picked node, say i, explores and updates all shortest end-to-end routes originating
from itself. In doing so, it uses a Dijkstra-like procedure [15] with the presently
assigned routing metric. Directly after i’s end-to-end routing updates, the routing
metric is also updated. All nodes in the network determine their new cumulative
betweenness centrality. Formally, due to the decomposition Bk ¼

P
i;f Bi!f ðkÞ of the

betweenness centrality, only the contribution Bi!f ðkÞ resulting from all routes with
initial sender i needs to be updated. Then the next node in this round is picked. It
already uses the freshly updated Bcum

k values to proceed further. This procedure can
also be performed in a distributive manner. Only information about the link state of
all nodes has to be exchanged between the nodes.

In order to fix the number of iteration rounds, generic packet traffic simulations
have been performed, as described in Ref. [5]. Minimum-node-degree networks with
kmin ¼ 8 and N ¼ 30–300 have been chosen to investigate the influence of the
number of iteration rounds. The simulation results reveal that already two iteration
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rounds are sufficient. Beyond two rounds the end-to-end throughput does not
increase further, although end-to-end routes are still subject to modifications. This
defines a weak convergence. It is contrary to strong convergence, for which also the
end-to-end routes would become stable. For the following we will only concentrate
on the algorithm using two iteration rounds.

3.2. Results on end-to-end throughput

For various minimum-node-degree networks with sizes up to N ¼ 2000 we have
calculated the end-to-end throughput from a generic packet traffic simulation, which
uses the end-to-end routes obtained from the routing metric based on cumulative
betweenness centrality. Averages over 100 independent network realizations
have been taken for kmin ¼ 8; for kmin ¼ 12, 20 it have only been 20. Fig. 4 (top)
illustrates Te2e as a function of N. Again the scaling expression Te2e�ðN �N0Þ

g

produces a good description for N4200. The resulting parameter values are
listed in Table 1. The scaling exponent g ¼ 0:41 is found to be independent of kmin.
It is much larger than the respective g ¼ 0:22–0.24 resulting from the hop-count
metric. Moreover, this scaling exponent is of the same order as those obtained
from the optimized network structures based on shortest-multihop-path routing.
In fact, on absolute scales the end-to-end throughput has become even slightly
larger.

In principle, the expression (1) is not restricted to shortest-multihop-path routing.
So far, in Section 2 it has only been tested for this case and found to produce a good
estimate for the end-to-end throughput. A similar quality statement can now also be
given for the routing based on the metric with the cumulative betweenness centrality.
Fig. 4 (bottom) and the bottom of Table 1 compare the respective end-to-end
throughput obtained from (1) with its counterpart obtained from packet traffic
simulations. For the various minimum-node-degree networks with kmin ¼ 8, 12, 20
the agreement is remarkable, although not perfect, and of the same order as in the
previous discussions illustrated in Fig. 2. This proves again the high relevance of the
cumulative betweenness centrality for the generic modeling of the end-to-end
communication traffic in wireless multihop ad hoc networks.

A consequence of the large end-to-end throughputs obtained with the routing
metric based on cumulative betweenness centrality must be that the end-to-end
communication traffic is then more evenly distributed over the network. Fig. 5
illustrates the point. It shows the routes of three selected end-to-end communication
partners. In case of the hop-count metric, two of the routes are very similar. They
have the same initial node and neighboring final nodes. Both routes have a long
common part, using the same highly congested nodes in the spatial center of the
network. In case of the Bcum

k metric, these two routes are pushed apart. In this way
they decrease the load of the highly congested centered nodes. Another property of
the new routing metric is illustrated with the third end-to-end route. Whereas the
hop-count metric chooses a geometrically rather direct path, the metric based on
cumulative betweenness centrality pushes the same end-to-end communication to the
periphery of the network. This increases the load of those nodes situated at the
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periphery to some extend. However, such nodes are not critical to the network, and
in return, the other close-by nodes experience a certain amount of traffic relief.

We recapitulate: cumulative betweenness centrality describes well the average
traffic load of nodes networked together via wireless multihop ad hoc communica-
tion. A routing metric based on this quantity has the strong tendency to distribute
the end-to-end communication traffic evenly over the network. It pushes end-to-end
routes towards the periphery. This is achieved without any geographical information
and suffices to increase the end-to-end throughput to realms, which even slightly
exceed those obtained with the optimization of network structure based on the hop
count metric.

4. Conclusion and outlook

We have discussed wireless multihop ad hoc communication networks from the
perspective of the Statistical Physics of complex networks. A modification of
betweenness centrality, which we have denoted as cumulative betweenness centrality,
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Fig. 4. (Top) N-dependent end-to-end throughput obtained with the routing metric based on cumulative

betweenness centrality for kmin ¼ 8 (open squares), 12 (open circles), 20 (open triangles) minimum-node-

degree networks. All curves have been determined from a generic packet traffic simulation. An average

over 100 (for kmin ¼ 8) and 10 (for kmin ¼ 12, 20) independent network realizations has been performed

for each symboled N. For comparison, respective curves (crosses, rotated crosses, stars) based on the hop-

count routing metric are also shown, as well as the analog (open diamonds; see also Fig. 2) resulting from

the kmin ¼ 8 network structure optimization. (Bottom) Comparison of the first three curves (open

symbols) from (top) with their counterparts (closed symbols) determined from Eq. (1).

Fig. 5. Selected end-to-end routes based on the hop-count metric (left) and on the metric with cumulative

betweenness centrality (right). The underlying network is of minimum-node-degree type with kmin ¼ 8 and

N ¼ 300.
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has been shown to be very relevant for the intricate modeling of the end-to-end
throughput performance. The maximization of a respective objective function has
led to optimized geometric network structures. Roughly, those are such that the
networks are just barely strongly connected and that the size of the blockings
resulting from the nodes’ competition to gain wireless medium access are kept to a
minimum. However, the significant increase in end-to-end throughput depends on
only a few important links. These are not attached to the highly loaded nodes in the
spatial center of the geometric network, but are found in the network’s periphery.
This pronounced non-local relationship makes it almost impossible to construct the
optimized network structures in a technologically relevant distributive manner.

A second approach has been presented to increase the end-to-end throughput. It
also relies on the cumulative betweenness centrality. The latter is used as routing
metric and leads to an iterative determination of end-to-end routes, which decrease
the traffic load of the most utilized nodes. With this routing metric the end-to-end
throughput performance of non-optimized network structures becomes even larger
than for the structure-optimized networks with the hop-count routing metric.

This alternative approach with the new routing metric also allows for a
technologically relevant distributed implementation. Only moderate costs for link-
state coordination overhead between the nodes and subsequent computation within
the nodes are needed. More details will be given in Ref. [16]. A performance
comparison with other distributive implementations for routing and congestion
control, like the promising ant algorithms [17], still needs to be done.

Potential further applications of the routing metric based on cumulative
betweenness centrality are not restricted to static multihop ad hoc and sensor
networks. There is spinoff potential for more cyber physics related to the Internet,
Ethernet and computer traffic engineering.

The last remark is again on network structure optimization. A very intriguing
distributive approach could be network game theory. In Ref. [18] a coupling of
playing games with neighboring nodes and network structure evolution has been
introduced. Consequently, the optimization strategy would be: give a game to the
nodes, let them play, and by doing so they will automatically end up in a game-
dependent network structure, serving the optimization objective. Of course, for the
moment this is only an idea and a lot of tough conceptual work is still necessary to
prove it right or wrong.
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