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Deutschsprachige Zusammenfassung

Übersicht

In der vorliegenden Arbeit wird das mikroskopische Transportmodell BAMPS (Boltzmann
Approach to Multi-Parton Scatterings) [XG05] eingesetzt um die Eigenschaften des heißen
partonischen Mediums – des sogenannten Quark-Gluon Plasmas – zu untersuchen, wie es
in hochenergetischen Schwerionenkollisionen erzeugt wird. Die Verwendung eines mikro-
skopischen Transportmodells ermöglicht dabei die detaillierte Untersuchung der zeitlichen
Entwicklung verschiedenster Observablen bei gleichzeitiger Berücksichtigung der vollen Dy-
namik des Systems. Der Schwerpunkt der in dieser Arbeit vorgestellten Studien liegt dabei
auf der gleichzeitigen Untersuchung des nuklearen Modifizierungsfaktors, RAA, und des el-
liptischen Flusses, v2, im Rahmen eines gemeinsamen und konsistenten Modells. Die in
dieser Arbeit vorgestellten Resultate beziehen sich im wesentlichen auf Au+Au-Kollisionen
bei einer Schwerpunktsenergie pro Nukleon-Nukleon-Paar von

√
s
NN

= 200GeV, wie sie am
Relativistic Heavy Ion Collider (RHIC) experimentell untersucht werden. Erste Ergebnisse
für Pb+Pb-Kollisionen bei der ungleich höheren Schwerpunktsenergie

√
s
NN

= 2,76TeV,
wie sie am kürzlich in Betrieb gegangenen Large Hadron Collider (LHC) untersucht werden,
werden ebenfalls präsentiert.

Der nukleare Modifizierungsfaktor quantifiziert den Einfluss des Mediums auf die Anzahl
der produzierten Teilchen bei gegebenen Transversalimpulsen indem mit den erwarteten
Werten aus entsprechend skalierten Proton-Proton-Kollisionen verglichen wird

RAA =
d2NAA/dy dpT

Ncoll d2Npp/dy dpT
,

wobei der Skalierungsfaktor Ncoll die Anzahl der binären Nukleon-Nukleon-Interaktionen
in der Schwerionenkollision ist. Experimentell wird bei höheren Transversalimpulsen, pT &

5GeV, eine starke Abweichung vom Referenzwert RAA = 1 festgestellt. In Au+Au-Kollisionen
am RHIC wird beispielsweise für neutrale Pionen ein Wert RAA ≈ 0.2 gemessen, annähernd
unabhängig vom Transversalimpuls pT . Diese Unterdrückung von Teilchen mit hohem pT im
Vergleich zur skalierten p+p-Referenz, das sogenannte Jet Quenching, wird üblicherweise
einem partonischen Energieverlust der Jets beim Durchqueren des Mediums, des Quark-
Gluon Plasmas, zugeschrieben. Während die Betrachtung von RAA im Rahmen dieser Arbeit
somit auf die Untersuchung der Auswirkungen des Mediums auf seltene hochenergetische
Jet-Teilchen abzielt, beschreibt der elliptische Fluss kollektive Eigenschaften dieses Medi-
ums, primär bei niedrigen und mittleren Transversalimpulsen. Quantifiziert wird der ellipti-
sche Fluss, eine Anisotropie in der Impulsverteilung der gemessenen Hadronen, mittels des
Koeffizienten v2 einer Fourier-Zerlegung der Winkelverteilung relativ zur Reaktionsebene
ΨR

E
d3N

d3p
=

1

2π

d2N

dy dpT

(
1 +

∞∑

n=1

2vn cos [n(φ−ΨR)]

)
.
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Experimentell beobachtet wird in nicht-zentralen Schwerionenkollisionen ein positiver und
deutlich von Null verschiedener Wert für v2, was eine starke Kollektivität des Mediums
und eine äußerst effektive Umsetzung der anfänglichen räumlichen Anisotropie in eine Ani-
sotropie im Impulsraum indiziert. Dies weist auf starke beziehungsweise effiziente Wech-
selwirkungen im Medium hin und in der Tat kann der beobachtete elliptische Fluss gut
durch hydrodynamische Rechnungen mit sehr kleiner oder gar verschwindender Viskosität
beschrieben werden [HKH+01, KH03, RR07].

In früheren Studien [XGS08, XG09] wurde das Transportmodell BAMPS bereits erfolg-
reich zur Beschreibung der Zentralitätsabhängigkeit des integrierten elliptischen Flusses
eingesetzt, basierend auf Simulationen eines rein gluonischen Mediums. In der vorliegenden
Arbeit soll nun untersucht werden, inwieweit das Modell auch zur gleichzeitigen Beschrei-
bung des Energieverlustes und der daraus resultierenden Unterdrückung von Teilchen mit
hohem Transversalimpuls eingesetzt werden kann.

Das Transportmodell und vorgestellte Erweiterungen

Das Transportmodell BAMPS beschreibt die Interaktionen im partonischen Medium ba-
sierend auf Matrixelementen und Wirkungsquerschnitten in erster Ordnung störungsthe-
oretischer Entwicklungen der Quantenchromodynamik (QCD). Neben binären Prozessen
deren Behandlung mittels üblicher Wirkungsquerschnitte in Kleinwinkel-Näherung umge-
setzt wird, ermöglicht das Modell eine konsistente Behandlung von Produktions- und An-
nihilationsprozessen in 2 ↔ 3 Interaktionen basierend auf dem Gunion-Bertsch Matrix-
element [GB82]. Die diesem Matrixelement zugrunde liegenden Näherungen und Annah-
men werden in der vorliegenden Arbeit eingehender untersucht und numerische Vergleiche
mit exakten Lösungen angestellt. Der Landau-Pomeranchuk-Migdal-Effekt (LPM-Effekt)
[LP53, Mig56], ein Kohärenzphänomen bei induzierter mehrfacher Gluonabstrahlung, wird
in BAMPS durch eine Restriktion des Phasenraums modelliert. Basierend auf einem Ver-
gleich der mittleren freien Weglänge des propagierenden Teilchens mit der Formierungszeit
des abgestrahlten Gluons werden alle potentiell kohärenten Beiträge verworfen. Die konsis-
tente Berücksichtigung der für diesen Vergleich relevanten Lorentz-Bezugssysteme und die
Auswirkungen auf den Phasenraum und den Energieverlust in 2 → 3 Interaktionen werden
detailliert diskutiert. Des weiteren wird die Sensitivität der Ergebnisse auf parametrische
Änderungen der Phasenraumrestriktion untersucht.

In seiner bisherigen Version war das Transportmodell BAMPS auf die Beschreibung rein
gluonischer Systeme beschränkt, die Erweiterung auf leichte, masselose, Quarks und Anti-
quarks wird in dieser Arbeit präsentiert. Die Einbindung leichter Quarks in das Modell ist
an vielen Stellen entscheidend für den quantitativen Vergleich mit experimentellen Daten,
beispielsweise für den Vergleich des differentiellen elliptischen Flusses bei mittleren Trans-
versalimpulsen mit hadronischen Daten. Im Rahmen dieser Arbeit ist aber vor allem die
Extraktion eines hadronischen Wertes für RAA bei hohen Transversalimpulsen aus den par-
tonischen Resultaten der BAMPS-Rechnungen von Interesse. Dafür werden die Partonen mit
hohem Transversalimpuls einer Fragmentation in Hadronen unterzogen. Diese Fragmentati-
on wird unabhängig von möglichen Beeinflussungen der Jets durch das Medium betrachtet,
daher im Vakuum durchgeführt. Sie basiert auf einem Satz von Fragmentationsfunktionen,
die von Albino, Kniehl und Kramer [AKK08] aus globale Fits an Daten gewonnen wur-
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den und wird im Rahmen dieser Arbeit mittels einer Faltung der partonischen Spektren mit
diesen Fragmentationsfunktionen durchgeführt.

Ergebnisse

Um eine systematische Analyse des Energieverlusts hochenergetischer Partonen in vollstän-
dig dynamischen Simulationen von Schwerionenkollisionen zu ermöglichen, wird deren Ver-
halten zunächst in einer deutlich vereinfachten Umgebung studiert. Dazu wird die Propagati-
on dieser Jet-Teilchen in einem thermischen und statischen Medium verfolgt und analysiert.
Hauptaugenmerk liegt dabei auf der Untersuchung des Energieverlusts verursacht durch die
in BAMPS implementierten Interaktionen mit den Konstituenten des Mediums. Dabei stellt
sich heraus, dass 2 → 3 Prozesse, basierend auf dem Gunion-Bertsch Matrixelement, den
Energieverlust deutlich dominieren und einen letztlich nahezu linearen Anstieg des differen-
tiellen Energieverlustes mit der Jet-Energie verursachen. Der resultierende Energieverlust ist
recht stark, so erfährt beispielsweise ein Gluon mit E = 50GeV in einem Medium der Tem-
peratur T = 0,4GeV (Nf = 3) einen Energieverlust von dE/dx ≈ 39,1GeV fm−1. Verant-
wortlich dafür ist ein komplexes Zusammenspiel des Gunion-Bertsch Matrixelements mit den
Einschränkungen des Phasenraums durch die Modellierung des LPM-Effekts. Dieses bevor-
zugt bei hohen Jet-Energien eine Emission der abgestrahlten Gluonen in Rückwärtsrichtung
(bezogen auf den Impuls des Jet-Teilchens), wobei die Energie der abgestrahlten Teilchen
im Schwerpunktsystem vergleichbar mit denen der beiden weiteren auslaufenden Teilchen
sein kann. Im Laborsystem ist diese Energie des abgestrahlten Gluons dann zwar gering, die
bevorzugte Abstrahlung in Rückwärtsrichtung ermöglicht aber Konfigurationen in denen die
beiden anderen Teilchen nach vorne emittiert werden, sich dabei die verbleibende Energie
nahezu gleichmäßig aufteilen und so einen großen Energieverlust verursachen. Des weiteren
ist der Unterschied des Energieverlustes zwischen Quarks und Gluonen recht gering, Quarks
verlieren in BAMPS lediglich circa 20% weniger Energie als Gluonen, obwohl das zugrun-
de liegende Gunion-Bertsch Matrixelement mit den üblichen Farbfaktoren skaliert ist und
somit zunächst ein Unterschied um circa einen Faktor 9/4 zu erwarten wäre. Dieser Un-
terschied wird jedoch durch die Abhängigkeit der Phasenraumrestriktion des LPM-Effekts
von der aktuellen Interaktionsrate abgeschwächt, die eine iterative Berechnung der wahren
Interaktionsraten nötig macht.

Der nukleare Modifizierungsfaktor in Simulationen von Au+Au-Kollisionen bei der RHIC-
Energie von 200AGeV zeigt eine äußerst leichte Abnahme hin zu höheren Tranversalimpul-
sen, kann im Rahmen der statistischen Fehler allerdings auch als flach, daher unabhängig
von pT , betrachtet werden. In Übereinstimmung mit experimentellen Ergebnissen ist dieses
Verhalten unabhängig von der Zentralität der betrachteten Kollisionen. Allerdings liegt der
in BAMPS berechnete Wert von RAA deutlich unter den experimentell bestimmten Werten,
um circa einen Faktor zwei bis vier. Bild 0.1b zeigt als Beispiel den Unterdrückungsfaktor für
neutrale Pionen in zentralen Au+Au-Kollisionen verglichen mit experimentellen Ergebnis-
sen. Die starke Unterdrückung von Jet-Teilchen in BAMPS-Simulationen korrespondiert mit
dem bereits in den Rechnungen für statische Medien beobachteten starken Energieverlust.
Zusätzlich spielen Konversionsprozesse von Quark- in Gluon-Jets eine entscheidende Rolle,
die letztlich dazu führen, dass leichte Quarks entgegen der Erwartungen etwas stärker als
Gluonen unterdrückt sind. Auch die Zentralitätsabhängigkeit der Unterdrückung ist nicht
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Abbildung 0.1.: BAMPS Resultate für den elliptischen Fluss v2 und den nuklearen Modifi-
zierungsfaktor RAA in Au+Au-Kollisionen bei

√
s
NN

= 200GeV.

in Übereinstimmung mit experimentellen Ergebnissen. Ein Fit des integrierten RAA mit-
tels RAA = (1 − S0N

a
part)

n−2 ergibt einen charakteristischen Exponenten a = 0,39± 0,02,
während die experimentellen Daten a = 0,57± 0,13 aufweisen.

Der differentielle elliptische Fluss v2(pT ) von Quarks und Gluonen ist in Simulationen von
Au+Au-Kollisionen bei 200AGeV nahezu identisch, lediglich bei pT . 1GeV ist eine leichte
Erhöhung des gluonischen v2 gegenüber des der Quarks feststellbar, vgl. hierzu Bild 0.1a.
Verglichen mit älteren Resultaten für rein gluonische Medien ändert sich v2(pT ) nur leicht,
eine nennenswerte Änderung des integrierten elliptischen Flusses ist daher nicht zu erwarten.
Die maximale Magnitude des elliptischen Flusses stimmt gut mit experimentellen Daten
überein, sofern eine Skalierung der hadronischen Messwerte mit der Anzahl der Valenzquarks
vorgenommen wird. Die Position des beobachteten Maximums von v2(pT ) ist in diesem
Bild der Skalierung mit der Quarkanzahl jedoch nicht mit der Position des experimentell
bestimmten Maximums in Übereinstimmung zu bringen.

Erste Ergebnisse für Pb+Pb-Kollisionen bei
√
s
NN

= 2,76TeV zeigen keinerlei Verände-
rung in der Unterdrückung hochenergetischer Teilchen verglichen mit den RHIC-Simulationen.
Auch hier ist die Unterdrückung deutlich stärker als der experimentell bestimmte Wert.
Zusätzlich zeigen die ersten Daten des ALICE-Experiments einen klaren Anstieg von RAA

für höhere Werte des Tranversalimpulses [ALICE11], der von den BAMPS-Ergebnissen nicht
reproduziert wird. Der berechnete differentielle elliptische Fluss ändert sich verglichen mit
den Resultaten für Au+Au-Kollisionen bei

√
s
NN

= 200GeV ebenfalls nur marginal. Eine

solche bemerkenswerte Ähnlichkeit des differentiellen elliptischen Flusses am LHC vergli-
chen mit den RHIC-Resultaten wird auch in den ersten Ergebnissen des ALICE-Experiments
beobachtet [ALICE10b].

Ausgehend von diesen Ergebnissen und Beobachtungen werden abschließend mögliche Er-
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weiterungen und Verbesserungen des Transportmodells BAMPS vorgeschlagen. Insbesonde-
re die Berücksichtigung der laufenden Kopplung – alle Ergebnisse in dieser Arbeit sind mit
fixem αs = 0.3 berechnet – und mögliche alternative Behandlungen des LPM-Effekts sind
viel versprechend. Mit ihnen könnten die Ergebnisse der mikroskopischen Transportrechnun-
gen in deutlich bessere quantitative Übereinstimmung mit den experimentellen Resultaten
gebracht werden. Ihre Umsetzung jedoch dürfte als mindestens mittelfristiges Projekt an-
gesehen werden.





1. Overview

1.1. Abstract

In this work the microscopic transport model BAMPS (Boltzmann Approach to Multi-Parton
Scatterings) is applied to simulate the time evolution of the hot partonic medium that is
created in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC) and in Pb+Pb
collisions at the recently started Large Hadron Collider (LHC). The study is especially
focused on the investigation of the nuclear modification factor RAA, that quantifies the
suppression of particle yields at large transverse momentum with respect to a scaled p+p
reference, and the simultaneous description of the collective properties of the medium in
terms of the elliptic flow v2 within a common framework.

BAMPS is a microscopic transport model aimed at simulating the early stage of heavy
ion collisions on the partonic level via leading order perturbative QCD interactions and con-
sistently includes parton creation and annihilation processes based on the Gunion-Bertsch
matrix element. The approximations and assumptions underlying this matrix element are
studied. The Landau-Pomeranchuk-Migdal (LPM) effect is modeled via the introduction of
a cutoff that effectively discards coherent contributions from multiple induced gluon radia-
tion. In this work the correct treatment of Lorentz frames involved in this cutoff is presented
and the consequences on the phase space in radiative 2 → 3 processes are discussed. As
the implementation of the LPM effect via a phase space cutoff is crucial to the results pre-
sented within this work, the sensitivity of these results on parametric changes of the cutoff
is studied.

The extension of the transport model BAMPS to include light quark degrees of freedom is
presented in this work. This facilitates a more detailed comparison to experimental results
and is especially crucial at large transverse momenta where the spectra at RHIC energies
become quark dominated. For high-pT observables, such as the nuclear modification factor,
in-vacuum fragmentation on the level of single parton spectra is applied to obtain hadronic
observables. The fragmentation is based on a recent set of fragmentation functions that
provides global fits to experimental data.

The evolution of high energy gluons and quarks inside a static and thermal medium is
systematically studied, with a focus on the energy loss of parton jets due to interactions with
the medium constituents. Radiative 2 → 3 processes are found to be the dominant source of
energy loss in computations within the BAMPS framework. Detailed investigations reveal
that the rather strong energy loss in 2 → 3 interactions is caused by a complex interplay of
kinematics according to the Gunion-Bertsch matrix element and restrictions on the phase
space imposed by the cutoff modeling the LPM effect.

The suppression of high-pT particles is systematically studied in simulations of Au+Au
collisions at an energy per nucleon pair of

√
s
NN

= 200GeV and compared to experimental
data from the PHENIX collaboration for different centralities. While the shape of the sup-
pression pattern is in reasonable agreement with experimental observations, the quenching

1



2 1. Overview

of high-pT hadrons extracted from simulations with BAMPS is distinctly stronger than in-
dicated by the experimental data. The centrality dependence of the integrated RAA is found
to differ from the experimental data on a quantitative level. In an extension of previous
studies that have been limited to gluonic degrees of freedom, the differential elliptic flow
of light quarks at low and intermediate transverse momenta is investigated. It is found to
scarcely differ from the elliptic flow of gluons. From a common fit to v2 in the low and
intermediate pT region and to v2 of jet particles in the high-pT region up to 25GeV, a max-
imum in v2(pT ) is found. This is in good qualitative agreement with recent high-pT flow
data from PHENIX. In the picture of quark number scaling of the observed hadronic v2, the
maximum magnitude of quark elliptic flow from BAMPS is found to be in good agreement
with experimental data. The position of the peak, however, appears to be located at slightly
higher transverse momenta, pT ≈ 3GeV than is suggested by the data.

First results on the nuclear modification factor and on the differential elliptic flow from
simulations of Pb+Pb collisions at

√
s
NN

= 2.76TeV, as probed at the LHC, are presented
and compared to recent experimental data from the ALICE collaboration. The suppression
of charged hadrons in Pb+Pb collisions at LHC is found to be identical to that computed for
Au+Au collisions at RHIC due to a strong surface bias in the BAMPS model. As for RHIC
simulations the BAMPS result overestimates the suppression of high-pT particles. While
for RHIC the shape of the suppression pattern from BAMPS is in reasonable agreement
with the experimental RAA, the high statistic data from ALICE clearly indicate a trend
towards less suppression at high transverse momenta that is not reproduced in BAMPS.
The differential elliptic flow extracted from BAMPS simulations of Pb+Pb collisions at
LHC energy is found to be also very similar to that extracted from Au+Au collisions at
RHIC energy. This observation is in qualitative agreement with experimental findings that
indicate no changes in the differential elliptic flow from when going from RHIC to LHC.

1.2. Structure of this document

Chapter 2 provides a general introduction to the field of heavy ion collisions and sets the
stage for the themes, jet quenching and elliptic flow, that are discussed in this work. The
transport model BAMPS is thoroughly introduced in chapter 3. Special emphasis is put on
extensions to the model, such as the incorporation of light quarks, the consistent treatment
of the small angle approximation in radiative processes or the treatment of Lorentz frames in
the implementation of the LPM cutoff. Also the Gunion-Bertsch matrix element, on which
the treatment of radiative processes is based, is studied in some detail and underlying
assumptions and approximations are discussed. Chapter 4 then provides the baseline for
studies of jet particles in the expanding and dynamic medium in simulations of heavy
ion collisions by investigating the propagation of high energy partons inside a static and
thermal medium. Primarily the energy loss of jet-like particles induced by interactions with
constituents of the medium is discussed. The results on jet suppression and elliptic flow
from fully dynamic simulations of heavy ion collisions at RHIC and LHC are then presented
in chapter 5, before the work is summarized in chapter 6.



2. Introduction

This chapter provides an overview of the theoretical and experimental background that is
needed to put the work presented in this thesis into context. As a matter of course, both
theoretical and experimental findings can merely be listed here. In-depth derivations or
explanations of the presented facts cannot be provided by such an introduction. For these
the reader is kindly referred to the given literature.

2.1. Quantum chromodynamics

The fundamental interaction governing nuclear physics is the strong force. It is one of
the four fundamental forces in nature, along with electromagnetism, weak interaction and
gravitation. Theoretically strong interactions are described by a non-abelian gauge theory
called quantum chromodynamics (QCD). The charge associated with this gauge theory is
referred to as color and can take three different values as the underlying symmetry group
is SU(3), a special unitary group of degree three. It is the invariance under local SU(3)
symmetry transformations in the color space whose gauging leads to QCD.

The color charge is carried by spin-1⁄2 fermions called quarks, subatomic particles that – to
the best of our current knowledge – have no substructure and are the fundamental particles
of QCD. The term quark was coined by Murray Gell-Mann and allegedly originates from a
passage of James Joyce’s “Finnegans Wake”1 [Gel95]. The strong force between the quarks
is mediated by gluons, the exchange particles of QCD. Due to the non-abelian nature of
the theory, the gluons carry color charge and are thus subject to interactions via the strong
force themselves. This is a feature quite distinct from quantum electrodynamics (QED),
where the exchange bosons—photons—do not couple to each other directly, and leads to
wide consequences. Gluons are spin-1 vector bosons and come in eight types, corresponding
to the color octet generated by SU(3). There is no gluon color singlet. In general, for a
SU(N) symmetry there are N2 − 1 force carriers.

The whole complexity of the theory can be condensed into the innocent looking La-
grangian of QCD [PDG10, PS95]

LQCD = i
∑

q

ψ̄k
q γ

µ (Dµ)kl ψ
l
q −

1

4
F a
µνF

a,µν −
∑

q

mqψ̄
k
qψq,k (2.1)

where ψk
q is the color component k (k = 1, · · · , Nc = 3) of the quark field of flavor q and

mass mq.

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gsfabcA

b
µA

c
ν (2.2)

1Three quarks for Muster Mark!
Sure he has not got much of a bark
And sure any he has it’s all beside the mark. [Joy99]

3



4 2. Introduction

is the field tensor, given by the gluon fields Aa
µ (a = 1, · · · , N2

c − 1 = 8) and the structure
constants fabc of QCD. The last term in the field tensor is due to the non-abelian nature
of QCD. It couples gluons with gluons and sets QCD apart from an abelian gauge theory
such as QED. (Dµ)kl = δkl∂µ − igs

∑
a T

a
klA

a
µ is the covariant derivative and the T a are the

eight generators of QCD.
In the following this introduction will focus on prominent features of QCD and phenomena

arising from QCD, but will not go any further into the rich theoretical details of gauge
theories or the history of experimental confirmations of QCD.

Two of the most striking features of QCD go by the names of confinement and asymptotic
freedom.

2.1.1. Confinement

Confinement reflects the experimental experience that no free bare quarks or gluons are
ever observed. They are always confined inside of hadrons2 , for example inside of protons
and neutrons, the building blocks of atomic nuclei. Hadrons are typically categorized into
baryons3 and mesons4. Baryons consist of three valence quarks and are thus fermions.
Prominent examples of baryons are protons and neutrons. Mesons on the contrary are
bosons and consist of two valence quarks. Prominent examples are pions and kaons.

Qualitatively confinement can be described by the notion of a potential between two
quarks that can be parametrized as

V (r) = −a1
r
+ br, (2.3)

with a, b ∈ R
+. This potential, sometimes called Cornell potential, consists of a Coulomb-

like proportional to 1
r part and a confining part proportional to r. The latter then leads

to a growth in potential energy as the two quarks are separated and confines them inside
a hadron. Of course this is only a very simplified and qualitative picture. But still the
potential (2.3) serves as a popular starting point for models describing quarkonium states,
systems of two heavy quarks.

Though it is evident that confinement should originate from the non-abelian structure of
QCD and the unique self-interaction of gluons, an analytic ab initio derivation of confine-
ment is still not known today. However, confinement is observed in lattice gauge calculations.
Solving QCD by discretizing the Lagrangian on the lattice is numerically challenging but
currently provides the most fundamental and quantitative approach to the non-perturbative
regime of the theory and over the past years increasingly accurate results are becoming avail-
able. See [Phi10] for an overview.

2.1.2. Asymptotic freedom

The asymptotic freedom of quantum chromodynamics is another unique feature of non-
abelian gauge theories that is thus not present in quantum electrodynamics. In 2004 Gross,
Wilczek and Politzer have been awarded the Nobel prize in physics for their 1973 “dis-
covery of asymptotic freedom in the theory of strong interaction” [Nob10].

2From the Greek word “hadrós”, meaning “stout”, “thick”.
3From the Greek “barys”, “heavy”.
4From the Greek “mesos”, “intermediate”.
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In contrast to confinement the phenomenon of asymptotic freedom can be investigated
analytically. The renormalization of quantum field theories leads to a running of the physical
coupling5 with the energy scale of the considered process. In QED the coupling becomes
strong at large momentum scales (corresponding to small distances) and is weaker at small
momentum scale (corresponding to large distances). Qualitatively this can be understood
in terms of vacuum polarization. Virtual e+e− pairs screen the charge that is to be probed
and cause an effective weakening of the charge. At high momentum transfers, corresponding
to small distances, the screening cloud is penetrated and the observed effective charge is
thus stronger.

QCD α  (Μ  ) = 0.1184 ± 0.0007s Z

0.1

0.2

0.3

0.4

0.5

αs (Q)

1 10 100
Q [GeV]
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July 2009

Figure 2.1.: Summary of measurements of the strong coupling αs(Q) at various energy
scales. Figure taken from [Bet09]. The curve represents the 2009 world av-
erage of αs at the Z0-boson pole mass, αs(MZ0) = 0.1184 ± 0.0007.

This screening effect is present for any abelian gauge theory and also in the non-abelian
case. In QCD virtual quark-antiquark pairs screen the color charge in very much the same
way virtual e+e− pairs screen the electric charge in QED. In non-abelian gauge theories
however, there is an additional antiscreening effect due to the peculiar way in which the
exchange bosons carry charge themselves (loosely speaking, they carry a combination of
charge and anticharge). The question which of the effects—screening or antiscreening—
prevails, is a quantitative one. In QCD one finds that for a sufficiently small number of
flavors, Nf , the antiscreening prevails and leads to asymptotic freedom.

5Though the term “coupling constant” is often used quite loosely, the physically relevant coupling in general
varies with the energy scale and is thus not a constant. Only the bare couplings entering the underlying
Lagrangians are constant. In QED the bare coupling is denoted by e and in QCD by g. In analogy to

the electromagnetic fine structure constant α = e2

4π
, one usually defines αs = g2

4π
for strong interactions.
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The running of the strong coupling can be expressed in leading order as

αs(Q
2) =

4π

(11− 2
3Nf ) ln(Q2/Λ2

QCD)
, (2.4)

where Q2 is the momentum transfer of the process under consideration. For the number
of active flavors Nf ≤ 16 the coupling αs decreases with increasing momentum scale Q2,
corresponding to small distances. Since in nature the number of flavors is at most six6 ,
eq. (2.4) embodies asymptotic freedom. ΛQCD is the QCD scale and in principle the only free
parameter of QCD. It needs to be fixed by experiment and has a value of ΛQCD ≈ 200MeV.
Only for Q ≫ ΛQCD the coupling is weak, αs ≪ 1, and a perturbative expansion of quantum
chromodynamics is possible.

The running of the strong coupling, together with various other aspects of QCD, has
been experimentally verified with tremendous success. See fig. 2.1 for a summary of various
measurements on αs(Q), nicely illustrating the decrease in αs(Q) for large Q. When the
results of all measurements are evolved to a certain scale, they can be conveniently combined
into a world average. Typically the pole mass of the Z0-boson is chosen and the current
(2009) world average of the strong coupling at this scale is [Bet09]

αs(MZ0) = 0.1184 ± 0.0007 . (2.5)

2.2. Exploring the phase diagram of nuclear matter

One would think that with the knowledge of QCD as the fundamental theory everything
was set and all properties of nuclear matter could simply be computed from the Lagrangian
(2.1). While this is in principle true, it is quite far from reality.

From the simple underlying Lagrangian arises a vast complexity that renders most parts
of low and high energy nuclear physics impossible to derive from first principles. The fact
that virtually any observable in nuclear physics is based on multiparticle dynamics of very
large systems and the self-interaction of the force carriers, are only two of the main reasons
for this. Also the established method of expanding the theory into a perturbation series
is not applicable for phenomena on soft7 energy scales. For example the composition of
nucleons (protons, neutrons etc.) from the fundamental particles of QCD falls into this
category. It involves the interactions of the constituent quarks and a whole sea of virtual
quarks, antiquarks and gluons down to basically arbitrary soft scales, that only together
form the nucleon and dynamically generate its mass.

But none the less, a profound knowledge of the properties of nuclear matter is crucial to
modern physics. Not only as an end in itself but also as a basis to, for example, astrophysics
and cosmology. Thus, where calculations from first principles are not possible—or are simply
not necessary—effective theories and models step in and precise experiments are needed to
extend and confirm our knowledge.

Investigating the phase diagram is a very general concept used in physics to character-
ize the global properties of matter. Water is most certainly the best known example from

6Depending on the energy scale a number between 3 and 6 flavors can be active. This is due to the fact
that charm (mc = 1.27+0.07

−0.09GeV), bottom (mb = 4.19+0.18
−0.06GeV) and top (mt = 172.0 ± 0.9 ± 1.3GeV)

quarks are heavy and require a certain threshold energy to be produced. Quark masses from [PDG10].
7Q . ΛQCD, see discussion in section 2.1.2.
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everyday life of matter that can exist in various phases. At standard atmospheric pres-
sure (101.325 kPa) water is a solid for temperatures below T = 0 °C, a liquid above and
vaporizes at T = 100 °C 8. But it is also well know that a change in pressure changes the
exact position of these transitions. For example going to higher altitudes, i.e. to regions
of lower atmospheric pressure, lowers the boiling point of water. The properties of matter
are therefore often represented by a phase diagram in a plane given by temperature T and
pressure P .

In relativistic systems the number density is in general not conserved. Therefore the state
variables of a grand canonical ensemble, T and µ, are typically used instead of T and P .
µ is the chemical potential, controlling the mean value of a conserved quantity in grand
canonical systems. For the characterization of nuclear matter usually the baryon chemical
potential µB is chosen. It ensures the conservation of baryon number B, which is defined to
be +1 for all baryons (+1/3 for quarks) and −1 for all antibaryons (−1/3 for antiquarks).
Accordingly, B can also be expressed in terms of the quark and antiquark densities

B =
1

3
(nq − nq̄) . (2.6)

A system with baryon chemical potential µB > 0 has a positive baryon number, thus an
excess of baryons over antibaryons—as is the case for normal nuclear matter. Alternative
to the baryon chemical potential, the quark chemical potential µq = 1

3µB can be used to
express the same relations. A quark chemical potential µq > 0 implies a non-vanishing net
quark density n̄q = nq − nq̄ and thus B > 0.
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Figure 2.2.: Schematic view of the phase diagram of nuclear matter in the µB-T plane.
Figure taken from [Ste06].

Figure 2.2 shows a sketch of the QCD phase diagram in the µB-T plane. The single
tiny region in this diagram about which profound knowledge exists, is located around T =

8Actually, this is not completely true. The Celsius scale used indeed to be defined by the melting (0 °C)
and boiling (100 °C) points of water at normal pressure of 101.325 kPa. But from 1954 on it has been
fixed to the Kelvin scale that is defined by the triple point of water at 273.16K (0K being absolute zero)
[dPeM06]. Adhering to this definition, the boiling point of water is actually slightly below 100 °C at
Tb = 373.124 K = 99.964 °C [Wag99].
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0MeV and µB ≃ 924MeV, the ground state of nuclear matter with a baryon density of
ρB ≃ 0.17 fm−3. The knowledge about the vast remaining area of the phase diagram is,
to say the least, incomplete and has only been the subject of theoretical and experimental
investigations for a few decades. It is one of the main objectives of modern nuclear physics
to investigate the properties of nuclear matter at very high temperatures and/or high baryon
chemical potential and thus to explore the phase diagram.

Knowledge of the properties of nuclear matter under extreme conditions is not only of
academic interest. The properties of matter at low baryon chemical potential (µB∼0MeV)
and very high temperatures are of relevance for the evolution of the early universe. Ac-
cording to standard cosmology, the temperature of the early universe exceeded 200MeV
(2.32 · 1012 K, see appendix A.1) for roughly the first couple of microseconds after the Big
Bang9. Going along the temperature axis towards high temperatures at vanishing chemical
potential is therefore, in a sense, equivalent to going backwards in the cosmic evolution.
Also the other extreme, going to high chemical potentials at zero temperature, is relevant
to astrophysics. Cold nuclear matter at extremely high baryon densities is expected to exist
in stellar remnants, most prominently in neutron stars [LP04].

When heating up matter to extreme temperatures it seems somewhat natural to assume
that its properties might change drastically, that it undergoes a transition to a different
phase. Indeed, first ideas that new states of matter might be explored by experimentally
creating volumes with high energy or nucleon densities date back to the late 1960s and early
1970s [Bay02]. But only after the advent of QCD as the theory of strong interactions and
the discovery of asymptotic freedom (see section 2.1) it was realized that such a novel state
of nuclear matter might in fact be composed of deconfined quarks and gluons [CP75, BC76,
FM77, CN77]. The now commonly used term quark-gluon plasma (QGP) was later coined
by Shuryak [Shu78b, Shu78a, Shu80]. The method of choice to experimentally create the
high densities that are needed to create the QGP, is to collide the nuclei of heavy atoms at
high energies. This will be discussed in more detail in section 2.3.

One can get a first idea of the qualitative behavior of the transition from the hadron
regime to the quark-gluon plasma from the combination of different models10.

Bag model

From the MIT bag model [CJJ+74], originally conceived to describe quarks confined inside
hadrons, the thermodynamics of the partonic phase can be estimated by computing the
properties of an asymptotically infinite bag containing a large number of quarks and gluons.
Comparing to the equation of state for the hadronic phase—in the most simplified version
an ideal gas of pions—one can construct the phase boundary and estimate the critical
temperature at µB ≈ 0. The so obtained value for Tc is dependent on the bag constant
as Tc ∝ B1/4 [Bub05] and roughly ranges from Tc ∼ 100MeV for B1/4 ∼ 150MeV to Tc ∼
160MeV for B1/4 ∼ 220MeV. These values are either distinctly (Tc ∼ 100MeV) or slightly
(Tc∼160MeV) below current and more quantitative calculations, as will be discussed below.
The phase transition within the bag model is of first order for all chemical potentials.

9See for example the extensive reviews of the Particle Data Group [PDG10] or [BdVS06] and references
therein.

10See [BMW08, Ste06] and references therein for an overview.
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NJL model

More information can be obtained from models that investigate the chiral aspects of strongly
interacting matter. In the ground state chiral symmetry11 is spontaneously broken, i.e.
the expectation value of the quark-antiquark condensate12 〈q̄q〉 is non-zero. One of the
most popular models that implement the spontaneous breaking of chiral symmetry in the
vacuum is the NJL model, originally conceived by Nambu and Jona-Lasinio in 1961
[NJL61a, NJL61b] in pre-QCD times. In its modern application the NJL model can describe
the dynamic generation of nucleon masses via constituent masses of the quarks arising from
the breaking of chiral symmetry.

The phase transition in the NJL model is investigated in terms of the quark-antiquark
condensate 〈q̄q〉 as an order parameter. Having a finite expectation value in the sponta-
neously broken ground state, it vanishes when the chiral symmetry is restored. This is
to be expected for high temperatures and/or quark (baryon) chemical potential and the
transition should roughly coincide with the confinement-deconfinement transition. Indeed,
calculations in the NJL model show that chiral symmetry gets restored at high temperatures
and at high chemical potentials. Furthermore, a quite robust result is the finding that the
phase transition at small T and large µB is of first order, i.e. that there is a discontinuity
in the order parameter [Bub05].

Lattice QCD

The most fundamental approach to the problem is provided by lattice QCD. In fact, cal-
culations on the lattice are currently the only known way of solving non-perturbative QCD
problems from first principles. Lattice gauge theory relies on solving the path integral
formalism of quantum field theory on a discretized euclidean space-time13. Though the
problem is in principle solvable, the theoretical and numerical challenges are enormous.

But still, finite temperature lattice QCD provides the best way of exploring the phase
transition at small µB in an exact an quantitative way. And over the past few years the level
of sophistication of the calculations is continuously increasing, together with the numerical
precision.

Figure 2.3 is probably one of the most famous plots from lattice QCD. It shows the
evolution of the energy density with temperature at vanishing baryon chemical potential.
Between roughly T ∼ 150MeV and T ∼ 200MeV a distinct increase in energy density is
clearly visible—this is the phase transition to the quark-gluon plasma. Though the Stefan-
Boltzmann limit of an ideal gas of free and massless quarks and gluons is not completely
reached, the energy density in the high-temperature phase is getting quite close to it. The
lattice results show that at zero chemical potential the transition to the quark-gluon plasma

11Chiral symmetry is the symmetry of a Lagrangian under chiral transformations ψ → eiαγ5

ψ with
γ5 = iγ0γ1γ2γ3 being a combination of the usual γ-matrices [PS95]. The corresponding conserved
current is the axial vector current jµ5 = ψ̄γµγ5ψ. The derivative term ψ̄γµDµψ of a Lagrangian such as
eq. (2.1) is invariant under such transformations. But the mass term mψ̄ψ mixes left- and right-handed
components and explicitly breaks chiral symmetry. Since the bare quark masses are small, chiral sym-
metry is sometimes said to be an approximate symmetry of QCD. See [Koc97] for a nice introduction to
chiral symmetry.

12Often also called chiral condensate and denoted as 〈ψ̄ψ〉.
13See [MW00] and [Phi10] for excellent reviews on the topic.
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Figure 2.3.: Energy density scaled by 1/T 4 as a function of temperature from lattice QCD
calculations for different number of flavors. Estimates of the temperatures
reached by different experiments (see section 2.3) are indicated by arrows. Fig-
ure taken from [GM05].

.

phase is rapid, but smooth. Thus it is not a first order phase transition but rather a so called
cross over, a rapid but continuous increase in energy density around a critical temperature
Tc [AEF+06].

As to the exact value of Tc there has been some disagreement between two major groups in
the field since 2006. Based on the chiral susceptibility the Bielefeld-Brookhaven-Columbia-
Riken group (in an extended version now called HotQCD collaboration) has reported a
value for the critical temperature of Tc = 192(7)(4)MeV [CCD+06], while the Wuppertal-
Budapest group gives Tc = 151(3)(3)MeV for the same observable and Tc = 175(2)(4)MeV
for the strange quark number [AFKS06]. This discrepancy has triggered great efforts in
understanding and resolving the problem and it seems that recently the lattice results on the
critical temperature at µB = 0 are converging towards a value of Tc ≈ 150MeV to 160MeV
[BP10, B+10, Kan10, Sol10].

The qualitative picture of the QCD phase diagram

Collecting all the information, a picture of the phase diagram of strongly interacting matter
emerges. At small temperatures and baryon chemical potentials the matter is in the familiar
confined, hadronic phase. At small chemical potential µB ∼ 0 there is a cross over to a
deconfined quark-gluon plasma phase at a critical temperature of Tc ≈ 150MeV to 160MeV.
At small temperatures but high chemical potentials, results from the NJL model, however,
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suggest a first order phase transition. This implies the existence of a second order critical
endpoint to the line of first order phase transitions as illustrated in fig. 2.3. The critical
point of QCD is tremendously difficult to locate and predictions from models or lattice
QCD basically vary all over the place. See [Ste06, Sch06] for reviews on methods and
results. Furthermore, some lattice results suggest that the mere existence of a critical point
is not assured for the physical quark masses [dFP07, dFP08].

Of course the qualitative picture discussed above is incomplete. Even for water a variety
of particular phases—different sorts of ice—exist at the extreme edges of the phase diagram.
For nuclear matter color superconducting and color-flavor locked phases are conjectured to
exist at small temperatures but very high baryon chemical potentials, with possibly a vast
number of distinct subregions in the phase space [SRMF09].

2.3. Little big bangs in the laboratory

As already mentioned in the previous section, colliding the nuclei of heavy elements is the
experimental way to create matter at high temperatures (T & Tc) and/or at high baryon
densities. Such experiments are commonly called heavy ion collisions. Since the total energy
that can be used to heat up or compress the system is naturally limited by the center of
momentum (c.m.) energy per colliding nucleon pair,

√
s
NN

, and thus the beam energy
needs to be very high, the prefix relativistic or even ultra-relativistic is often added. When
heavy ion collisions create such high temperatures that a deconfined phase is reached as
it is expected to have existed in the very early cosmic history (see section 2.2), they are
sometimes referred to as little Big Bangs.

Simple as this concept may sound, the challenges are tremendous and manifold. Some
of the technological challenges will be covered in this section and some of the conceptual
problems in section 2.4 and throughout this work.

The era of systematic relativistic heavy ion physics started over three decades ago with
the BEVALAC accelerator at the LBNL14. It facilitated the exploration of excited and com-
pressed hadronic matter at center of mass energies on the order of roughly 2GeV to 6GeV
per nucleon pair. It was succeeded in terms of accessible beam energy by the Alternating
Gradient Synchrotron (AGS) at the BNL15 that provided up to 11.5AGeV for heavy ions.
The Super Proton Synchrotron (SPS) at CERN16 later provided up to

√
s = 17.3AGeV.

Fixed target experiments at SPS claim to have seen the onset of deconfinement [GSS03,
NA4904]. While this is quite probably the case, the exploration of a deconfined phase of
matter gathered momentum with the commissioning of the Relativistic Heavy Ion Collider
at BNL in 2000. It has been the first heavy ion accelerator that is able to operate in collider
mode and provides energies up to

√
s = 200AGeV, mostly colliding gold nuclei (Au+Au).

RHIC originally featured four experiments, STAR, PHENIX, BRAHMS and PHOBOS, of
which only the two major ones, STAR17 and PHENIX18, are still in operation.

14LBNL = Lawrence Berkley National Laboratory
15BNL = Brookhaven National Laboratory
16The European Organization for Nuclear Research. Literally the acronym CERN stands for Conseil Eu-

ropéen pour la Recherche Nucléaire (European Council for Nuclear Research), the provisional council
that was formed in 1952 to set up the research center.

17STAR = Solenoidal Tracker at RHIC
18PHENIX = Pioneering High Energy Nuclear Interactions eXperiment
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At the very moment these pages are written, the first heavy ion run at the Large Hadron
Collider (LHC) at CERN is underway. The LHC is the largest and strongest accelerator
ever built, running at its design values it will collide protons at

√
s = 14TeV and lead

ions at
√
s
NN

= 5.5TeV. Though the energies in the first physics runs,
√
s = 7TeV for

p+p and
√
s
NN

= 2.76TeV for Au+Au, are not yet reaching these design values, they are
already now setting new world records. The ALICE19 experiment is specifically designed
for heavy ion physics but the two general purpose experiments CMS20 and ATLAS21 also
feature dedicated heavy ion programs.

While the heavy ion experiments at the LHC will probe unprecedented energy densities
and temperatures—and thus basically move along the T -axis at µB ≈ 0 in the phase diagram
as is also the case for RHIC experiments—the planned Facility for Antiproton and Ion
Research (FAIR) at GSI22 (scheduled to start operation somewhere between 2014 and 2016)
will probe the phase diagram at large net baryon densities (and large temperatures).

As the physics covered in this work is almost exclusively based on the observations made
at the large RHIC experiments, the following discussion will focus on the results obtained
at RHIC. Table 2.1 provides an overview of systems and energies probed at RHIC in various
runs over the past decade. Already the first couple of years of running provided conclusive
evidence that in collisions of gold nuclei at 200AGeV a new state of matter is indeed created.
These results have been published in a joint effort by all RHIC experiments in so called white
papers in 2005 [STAR05a, PHENIX05, BRAHMS05, PHOBOS05b].

The findings presented in these papers feature two crucial observations on the properties
of the medium created in high energy heavy ion collisions at RHIC:� The medium exhibits a strong collective flow pattern.� Particles with high transverse momentum are strongly modified by the medium.

The collective properties of the medium are commonly investigated by looking at the elliptic
flow that is quantified in terms of the second Fourier coefficient v2 of the distribution of
particles in the azimuthal angle perpendicular to the beam line. The modification of high-pT
particles, called jet quenching, is quantified in terms of the nuclear modification factor RAA,
that compares the yield at high transverse momenta in heavy ion collisions to the scaled
yield in proton-proton collisions. These two key observables will be covered in more detail
in section 5.1.

Furthermore, the fact that the observed hadrons emerging from the fireball are to a large
extend in chemical and thermal equilibrium hints to a production from a thermally equili-
brated medium. Measurements of the early temperature via direct photons [PHENIX10a]
confirm that the initial temperature of the medium is on the order of Tinit ∼ 300MeV to 600MeV
and thus distinctly above the critical temperature expected from lattice QCD or other mod-
els.

Comparison of flow data to hydrodynamical simulations has shown that the medium can
be surprisingly well described by ideal hydrodynamics [HKH+01, KH03]. This requires an
early thermalization of the medium on a time scale on the order of 1 fm c−1 and it has

19ALICE = A Large Ion Collider Experiment
20CMS = Compact Muon Solenoid
21ATLAS = A Toroidal LHC Apparatus
22GSI = Gesellschaft für Schwerionenforschung
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Year System Energy

Run 1 2000 Au+Au 130.4GeV

Run 2 2001/2002 Au+Au 200GeV
p+p 200GeV

Run 3 2002/2003 d+Au 200GeV

Run 4 2003/2004 Au+Au 62.4GeV
Au+Au 200GeV

Run 5 2004/2005 Cu+Cu 62.4GeV
Cu+Cu 200GeV
p+p 200GeV

Run 6 2006 p+p 200GeV

Run 7 2006/2007 Au+Au 200GeV

Run 8 2007/2008 d+Au 200GeV
p+p 200GeV

Run 9 2008/2009 p+p 200GeV
p+p 500GeV

Run 10 2009/2010 Au+Au 7.7GeV
Au+Au 11.5GeV
Au+Au 39.0GeV
Au+Au 64.2GeV
Au+Au 200GeV

Table 2.1.: An (incomplete) overview of the collision systems and energies probed at the
Relativistic Heavy Ion Collider over the past decade. See [Fis10] for more details.

led to the popular notion of the quark-gluon plasma being a perfect liquid [BNL05]. This
discovery has shifted the early paradigm that the QGP was a weakly interacting gas of free
quarks and gluons towards the conception that the QGP is rather a fluid of strongly coupled
quarks and gluons [GM05, Shu05, Lee05], sometimes labeled the sQGP for strongly coupled
QGP.

This has also triggered considerable efforts in describing RHIC observables in terms of
a correspondence between conformal field theory and string theory in an Anti-de-Sitter
space [Mal98, Wit98, GKP98, GKT98], the so called AdS/CFT correspondence. Instead of
expanding in a weak coupling parameter α as in perturbative QCD, this approach employs
a holographic principle and uses string theory techniques to make connections between a
(d+1)-dimensional gravitational theory and a d-dimensional field theory. The 5d Anti-de-
Sitter space is mapped to a 4-dimensional conformal field theory at large Nc and strong
coupling. Based on this mapping, observables such as the elliptic flow, the viscosity and
the energy loss of heavy quarks are investigated in the limit of strong (infinite) coupling
[NGT09].
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However, one has to keep in mind that as interesting as these holographic approaches are,
QCD is not a conformal field theory and the number of colors is not infinity. Conformal
field theories for example do not exhibit asymptotic freedom. So it will be exciting to see
how much and what can be actually learned from these correspondences regarding QCD
phenomena. And although the notion that the medium created in ultra-relativistic heavy
ion collisions can be actually described in terms of hydrodynamics is commonly accepted,
the question how strongly the quark-gluon plasma is actually coupled and what mechanisms
cause the hydrodynamic behavior is subject to many debates.

2.4. The purpose of this work

Heavy ion collisions are highly complicated. This is probably one of the few things that all
physicists in the field, experimental and theoretical, would readily agree on.

The hot and dense medium created in ultra-relativistic heavy ion collisions exists only
for a couple of fm c−1, i.e. for an unimaginably tiny instant on the order of 10−23 seconds.
Confinement prevents a direct observation of partonic degrees of freedom and only hadrons
reach the detectors, thus rendering any observation of the QGP inherently indirect. Addi-
tionally, the large abundance of produced particles, a couple of thousand per event, mostly
pions, makes the extraction of interesting signals from the vast background very challenging
in many cases. Not to mention the highly complicated detector technology, the triggers, the
calibration issues, the acceptance corrections, the elaborate data analysis etc.

Leaving the experimental issues aside, the challenges on the theoretical side are equally
numerous and severe. With the confirmation from the RHIC white papers [STAR05a,
PHENIX05, BRAHMS05, PHOBOS05b] that a new state of matter is indeed created in
ultra-relativistic Au+Au collisions, heavy ion physics has turned from the mere quest for
the quark-gluon plasma towards precision measurements of the properties of the quark-gluon
plasma. In order to deduce the properties of the QGP from the hadronic signals measured
in the detectors after the medium has long ceased to exist, one needs theories or models
that relate final state observable to the properties of the short-lived hot and dense medium
as unambiguously as possible.

Indeed, such models are needed for various stages and aspects of the evolution of a heavy
ion collision. The following list is certainly non-exhaustive but mentions the most important
aspects that need to be modeled on a quantitative level in order to gain some insight into
the properties of the QGP:� Initial state� Evolution of the medium23� High-pT phenomena� Phase transition� Hadronization

23The medium in this context is often referred to as the bulk. This term comprises all ordinary particles,
i.e. particles that do not stick out by for example having a high transverse momentum or a large mass.
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Any of these aspects alone has provided years, if not decades, of occupation to dozens of
scientists and will do so for many years to come. So it is no surprise that as of now there
is no model that can simultaneously describe all, or even most, of the aspects mentioned
above. But there are quite a number of tools and frameworks that are applied to different
aspects of heavy ion collisions, with varying accuracy and success. The following list is of
course non-exhaustive again:� Parametrizations (e.g. Bjorken model [Bjo83])� Hydrodynamics� Transport models� Lattice QCD� Perturbative QCD� AdS/CFT

Especially the description of jet quenching and elliptic flow within one common framework
is a major challenge. Most energy loss formalisms attribute the quenching of jets to medium
induced radiative processes, where gluons are emitted in bremsstrahlungs-like interactions,
and are based on perturbative QCD [Zak96, BDM+97, BDMS98, GLV01, AMY02, JM05,
SW03, WHDG07]. The bulk evolution, most prominently the elliptic flow, on the other hand
is commonly studied within hydrodynamical models that only deal with collective properties
of the medium. Recently the efforts to combine pQCD-based jet physics with hydrodynamic
modeling of the medium have been intensified, for instance results from hydrodynamical
simulations are used as an input for the medium evolution in jet quenching calculations
(see [BGM+09] for an overview) and as ingredients in Monte Carlo event generators, e.g.
[SGJ09]. However, these approaches still treat medium physics and jet physics in the QGP
on very different grounds. Moreover, so far no schemes are available that cover the full
dynamics of the interplay between jets and the medium. These issues will be discussed in
some more detail in section 5.1.

Partonic transport models might provide means to investigate bulk properties of the
QGP and high energy parton jets within a common physical framework automatically in-
cluding the full dynamics of the evolution of the system. To large extends based on the
publications [FXG09, FXG10] it is the purpose of this work to explore the prospects of
the transport model BAMPS (Boltzmann Approach to Multi-Parton Scatterings) [XG05]
in this respect. Unlike other partonic transport models that are limited to binary interac-
tions [Zha98, MG00, BMS03, LKL+05], BAMPS consistently features inelastic 2 ↔ 3 pro-
cesses based on pQCD matrix elements. This has enabled BAMPS to describe many bulk
properties—such as the strong elliptic flow, a small viscosity and an early thermalization—
with remarkable success24. In order to explore the predictive power and the limitations
of such a model, it is instructive to take it beyond the region it has originally been con-
ceived for. In the case at hand, this means taking BAMPS beyond the investigation of bulk
properties and exploring high-pT phenomena within its framework.

24See chapter 3 for more details and references.





3. The transport model BAMPS

This chapter provides information on the partonic transport model BAMPS that is used
throughout this work. It has been developed by Xu and Greiner [XG05] to investigate
the thermalization of gluonic matter created in heavy ion collisions at RHIC energies and
since then been applied to various observables.

The following sections cover the basic functionality of the model, review some previous
results and discuss extensions of the original model that have been made in the course
of this work—namely the treatment of boosted reference frames for the evaluation of the
LPM cutoff, section 3.1.4, and the inclusion of light quarks, section 3.4. Specific details
are covered where they are relevant to the simulation of high-pT phenomena or otherwise
related to the investigations presented here. For further technical details and verifications
of the model, please see [XG05].

3.1. The simulation framework

3.1.1. Basic concept

BAMPS (Boltzmann Approach to Multi-Parton Scatterings) [XG05, XG07] is a microscopic
Monte Carlo transport model aimed at simulating the early stage of heavy ion collisions on
the partonic level via perturbative QCD interactions consistently including parton creation
and annihilation processes. It operates with massless on-shell Boltzmann particles, i.e. no
Bose enhancement or Pauli blocking is taken into account.

The basic idea is to solve the relativistic Boltzmann equation [Gro80]

pµ∂µf(x, p) = C(x, p) (3.1)

via a stochastic collision algorithm. The Boltzmann equation describes the evolution of
the distribution function f(x, p) induced by the collision term C(x, p). The collisionless, free
streaming, case would be trivially given by C(x, p) = 0. In general the collision term embod-
ies the information on all possible interactions between the particles described by f(x, p).
The collision term can be expanded in contributions from different types of processes, with
BAMPS incorporating 2 → 3, 2 → 3 and 3 → 2 processes1, i.e.

CBAMPS(x, p) = C22(x, p) + C23(x, p) . (3.2)

In order to be able to include the three-body interactions that are contained in C23(x, p),
BAMPS relies on a stochastic algorithm to solve the Boltzmann equation. Space and time
are discretized into small cells with volume ∆V and time steps ∆t. Within a given ∆t
particles may only interact with particles that are located in the same spatial cell ∆V . The

1Where M → N is a shorthand for: Interaction with a M -body initial state and a N-body final state, see
appendix A.2 for notation and conventions.

17
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very core of the collision algorithm can then be summarized as sketched in algorithm 1.
Particles propagate on straight lines in between collisions. The cell size2 ∆z, with ∆V =
(∆z)3 should be chosen such that it is smaller than the mean free path λ of the particles
to avoid numerical artifacts [BMN+10]. The time steps ∆t are always chosen to be smaller
than the cell size, ∆t≪ ∆z, to avoid strong local fluctuations.

Algorithm 1: Schematic view of the stochastic collision algorithm used in BAMPS

t = 0
while t < tfinal do

foreach cell ∆V do

foreach particle pair (triplet) in the current cell do
Compute collision probability P
Generate random number x ∈ [0, 1)
if x < P then // collision takes place

Sample new momenta of outgoing particles
Assign new momenta to outgoing particles

t = t+∆t
Propagate particles to time t

The procedure relies on the Monte Carlo sampling of collision probabilities P . In contrast
to a geometrical collision algorithm that is used in many transport models, e.g. [Zha98,
LKL+05, BBB+98, BZS+99], and that relies on the geometrical interpretation of cross
sections, the stochastic algorithm allows for the incorporation of N → 2 processes with
N > 2. Thus the collision term C23 can be consistently included, respecting detailed balance
in the simulations.

The test particle method is employed to reduce statistical fluctuations and is implemented
such that the mean free path is left invariant. To accomplish this, the collision probability
needs to be scaled by the number of test particles per real particle [XG05], Ntest, according
to

P2→Y → P2→Y

Ntest
P3→Y →

P3→Y

N2
test

. (3.3)

The Boltzmann equation (3.1) is solved exactly in the limit ∆t,∆V → 0 and Ntest → ∞.
Numerically this is of course not feasible, but tuning the number of test particles such that
there are roughly 10 to 20 test particles in a given cell ∆V = (∆z)3 (with ∆z < λ) already
gives reasonably good results [XG05, BMN+10].

In its original version BAMPS operates at the number of flavors set to zero, Nf = 0,
i.e. it only considers gluonic degrees of freedom. Since the medium created in heavy ion
collisions is initially strongly gluon dominated, this simplification is justified. For precise
comparison to experimental data, especially in the high-pT sector, however, light quarks can
be important. A first attempt to include light quarks into BAMPS is presented in section 3.4.
The inclusion of heavy quarks is also underway, see [UFXG10a] and section 3.3.4.

2The generalization to irregular cell shapes, ∆V = ∆x ·∆y ·∆z, is trivial.
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3.1.2. Collision probabilities, matrix elements and cross sections

In principle the collisions probabilities discussed above can be chosen quite arbitrarily, as
long as detailed balance is observed. But usually they will be based on physical cross
sections or invariant matrix elements. And though fixed isotropic cross sections for binary
processes are used for systematic studies of the model characteristics, in the standard version
of BAMPS the collision probabilities are based on cross sections and matrix elements from
leading order perturbative QCD.

A comparison of the rate obtained from the collision term to the definition of the cross
section yields the probability for a given 2 → N process to occur within ∆t and ∆V
[XG05, Gro80]

P2N = vrelσ2N
∆t

∆V
. (3.4)

The relative velocity of the two incident particles A and B is given by

vrel = |vA − vB| =

√
(pApB)2 −m2

Am
2
B

EAEB
. (3.5)

In the case of massless particles this simplifies to

vrel =
s

2EAEB
. (3.6)

The cross section σ2N for a 2 → N process in terms of the invariant matrix element
|MAB→12···N |2 is given by

σ2N =
1

2s

1

ν

(
N∏

i=1

∫
d3pi

(2π)32Ei

)
(2π)4δ(4)(pA + pB −

N∑

i=1

pi) |MAB→12···N |2 , (3.7)

with a factor 1/ν to account for identical particles in the final state. See appendix B for
more information on the definition and computation of cross sections and invariant matrix
elements.

For 3 → 2 processes the computation of the collision probability is similar to eq. (3.4),
however the concept of a cross section does not make sense in the case of three incoming
particles, therefore the probability is given by

P32 = Ĩ32
∆t

(∆V )2
=

1

8EAEBEC
I32

∆t

(∆V )2
, (3.8)

where I32 is the phase space integral over the matrix element that corresponds to the cross
section in eq. (3.4). It is given by

I32 =
1

ν

∫∫
d3p1

8π32E1

d3p2
8π32E2

(2π)4δ(4)(pA + pB + pC − p1 − p2) |MABC→12|2 . (3.9)

The cross sections used for elastic 2 → 2 processes are computed from leading order pQCD
in small angle approximation. For a binary collision of gluons, gg → gg, the differential
cross section in the transverse momentum transfer q2

⊥ reads

dσgg→gg

dq2
⊥

= 9πα2
s

1
(
q2
⊥ +m2

D

)2 . (3.10)
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In order to avoid infrared divergences the gluon propagators of the underlying Feyn-
man diagrams are screened by the Debye mass mD. It is dynamically computed from the
distribution of gluons, fg, (and quarks, fq, if Nf > 0) according to

m2
D = dGπαs

∫
d3p

(2π)3
1

p
(Ncfg +Nffq) . (3.11)

Technically this is done by replacing the integral over the distribution function by a discrete
sum over (test) particles. In thermal equilibrium the Debye mass evaluates to

m2
D

∣∣
thermal

= (3 +Nf )
8

π
αsT

2 , (3.12)

exhibiting the well-known m2
D∼g2T 2 behavior. Please see appendix B.3 for more informa-

tion on cross sections in small angle scattering and the screening of infrared divergences.

The collision probability for the bremsstrahlung process gg → ggg processes is computed
from the matrix element derived byGunion and Bertsch [GB82] with added Debye screen-
ing [XG05]

|Mgg→ggg|2 =
(
72π2α2

s

s2

(q2
⊥ +m2

D)
2

)(
48παs

q2
⊥

k2
⊥
[
(k⊥ − q⊥)2 +m2

D

]
)

(3.13)

via eqs. (3.4) and (3.7). As before, q⊥ is the transverse component of the momentum
transfer and k⊥ denotes the transverse momentum of the radiated gluon, both given in the
center of momentum frame of the colliding particles. The corresponding matrix element
for gluon annihilation ggg → gg is obtained from eq. (3.13) via the principle of detailed
balance, yielding

|Mggg→gg|2 =
1

dg
|Mgg→ggg|2 , (3.14)

where the factor dg = 16 = 2 · 8 is just the gluon degeneracy.

When computing the total cross section for gg → ggg processes via the integration over the
final phase space (3.7), it is convenient to convert eq. (3.13) into a multivariate differential
cross section [XG05]

dσgg→ggg

dq2⊥dk
2
⊥dydφ

=
dg

256π4s

1

ν
|Mgg→ggg|2

∑(∣∣∣∣
∂F

∂y1

∣∣∣∣
F=0

)−1

, (3.15)

which is then used as a starting point. This expression is also better suited for the sampling
of final momenta, see section 3.1.5. The factor containing the sum over the roots of F
stems from the properties of the δ function in eq. (3.7). After integration over d3p2 the δ
function reads δ(F ) with F = (pA+ pB − p1− p3)2. Further integration over the rapidity y1
of particle 1 as seen from the center of momentum frame then yields the above expression.
The result can be cast into a rather lengthy expression of the variables s, q⊥, k⊥, φ and y
[XG05], where φ denotes the relative angle between q⊥ and k⊥ and y is the rapidity of the
emitted particle in the c.m. frame. ν accounts for identical particles in the final state. See
appendix B.4 for a detailed computation.
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3.1.3. Small angle approximation in the 2 → 3 cross section

In principle the requirement F = 0 from the transformed delta function in eq. (3.15) yields
two possible solutions, eqs. (B.40) and (B.41), for the longitudinal momentum component
p1,z of the outgoing particle 1 in inelastic 2 → 3 processes, as discussed in more detail in
appendix B.4. These solutions correspond to two additive contributions to the differential
(3.15) or the total (B.39) cross section since the matrix element |M2→3|2 in Gunion-Bertsch
approximation does not explicitly depend on the rapidity y1.

To illustrate this further, consider the limit where k⊥ = 0. The argument (B.32) of the
delta function in eq. (B.31) then simplifies to F = s − 2q⊥

√
s cosh y1 with the possible

roots y1 = ± cosh−1
√
s

2q⊥
. The derivative of F with respect to y1 in this limit is simply

∂F
∂y1

= 2
√
sq⊥ sinh y1. Thus the term in eq. (3.15) from the transformation of the momentum

conserving delta function becomes

∑(∣∣∣∣
∂F

∂y1

∣∣∣∣
F=0

)−1

=
∑ 1

|2√sq⊥ sinh y1| F=0

=
2

s

√
1− 4q2

⊥

s

, (3.16)

where the sum runs over all possible solutions to F = 0 and together with the absolute
value leads to the factor 2 in the nominator of the last expression. In the limit q⊥ = 0 this
would further simplify to

∑
(|∂F /∂y1|F=0)

−1 = 2/s. The contributions from the positive
and negative solutions to p1,z in this limit therefore lead to an overall factor of 2 in the
differential (3.15) and total (B.39) cross section for the 2 → 3 process. For the generic case,
with solutions eqs. (B.40) and (B.41) for p1,z, the situation is more involved and the sum in
eq. (3.16) will not lead to a simple overall factor of 2, but the general line of argument still
holds.

Solutions with p1,z < 0, however, are not within the approximations leading to the
Gunion-Bertsch matrix element that is employed in BAMPS. Similar to the small angle
approximation in binary collisions, see appendix B.3, the approximations underlying the
Gunion-Bertsch matrix element rely on soft momentum transfer, i.e. q⊥ ≪ √

s and the in-
coming momenta pA and pB do not revert their directions as would be the case for p1,z < 0.
See section 3.2 for a detailed discussion of the approximations in Gunion-Bertsch.

Therefore, in order to avoid double counting in the total cross section for 2 → 3 processes,
contributions with p1,z < 0 should be discarded. In previous versions of BAMPS this subtle
constraint had been overlooked, but the effect on the thermal mean free path is very small.
Figure 3.1a shows the mean free path of a gluon inside a thermal medium with Nf = 3 as
a function of the temperature with (new) and without (old) taking the constraint p1,z > 0
into account. The thermal mean free path only increases by about 5%, independent of the
medium temperature. For energetic particles the effect should be more pronounced since
for large

√
s and

√
s ≫ q⊥, k⊥ the limit k⊥ = q⊥ = 0 as sketched above should become

more realistic. Indeed, the increase in the mean free path for an energetic gluon traversing
a thermal medium when constraining p1,z to positive values is stronger than in the thermal
case but still rather weak, only on a level of about 15%, see fig. 3.1b. This is partially due to
the inclusion of the LPM effect for radiative processes via a momentum cutoff that depends
on the mean free path, see the discussion in section 3.1.4. This cutoff requires an iterative
procedure, eq. (3.18), for the computation of the actual mean free path of energetic particles
that effectively self-quenches changes in the cross section for 2 → 3 processes. Without this
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(a) Thermal mean free path of gluons in a Nf = 3 medium as a function
of the medium temperature T before (old) and after (new) fixing the
double counting of the longitudinal momentum components p1,z from
eqs. (B.40) and (B.41). See text for details. The inset shows the relative
difference of the two curves, (λnew − λold)/λold.
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(b) Mean free path of a high energy gluon inside a medium with T =
0.4GeV and Nf = 3 as a function of the energy E before (old) and
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Figure 3.1.: Comparison of the mean free path including all possible 2 → 2 and 2 ↔ 3
processes before and after fixing the double counting of the contributions from
the transformed delta function in eq. (3.15) as described in the text.
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iterative procedure the difference in the mean free path for a high energy parton with and
without taking the constraint p1,z > 0 into account would be on the order of 35% to 40%.

While the quantitative effect of the constraint p1,z > 0 on the mean free path—or equiv-
alently the total cross section—is rather weak, it also influences the sampling of momenta
from eq. (3.15) and therefore has some effect on the energy loss of jet partons. Furthermore
it affects the flavor conversion probability of energetic partons in 2 → 3 processes. These
effects will be discussed in chapters 4 and 5 as appropriate. However, the general finding
that the quantitative effect is rather mild holds for all observables. This is mainly due to
the Lorentz boost incorporated into the LPM cutoff that especially for large jet energies
prefers radiation into the backward direction, thus typically p3,z < 0, as discussed in sec-
tion 3.1.4. Together with eqs. (B.40), (B.41) and (B.43) this leads to solutions for p1,z that
are predominantly positive. Consequently, especially for interactions involving high energy
jets, only a comparatively small fraction of events would feature solutions with p1,z < 0 that
are removed by the newly introduced constraint. If the radiated gluon was to be emitted
equally into the forward and the backward direction—as would be the case if the boost
in the LPM effect was neglected, again cf. section 3.1.4—the small angle constraint would
however introduce a correction by a factor of 2 for interactions at very large

√
s.

3.1.4. Modeling of the LPM effect

The LPM cutoff

When considering bremsstrahlung-like processes such as gg → ggg the LPM-effect [LP53,
Mig56], a coherence effect named after Landau, Pomeranchuk and Migdal, needs to be
taken into account that leads to a suppression of the emission rate for high energy particles.

In a quantum electrodynamical treatment of medium-induced photon radiation from a
high energy electrically charged particle, Landau, Pomeranchuk and Migdal discovered
already in the 1950s that the amplitudes of subsequent scatterings with medium constituents
interfere destructively. This is due to a finite formation time of the emitted photons. In QCD
the case is even more complicated since the radiated gluons themselves can rescatter and
pick up additional transverse momentum from the medium, see fig. 3.2 for an illustration,
effectively altering their formation time.

Figure 3.2.: Illustration of multiple medium induced gluon radiation from a high energy
parton and rescatterings of the emitted gluons.

Since such an interference effect cannot be incorporated directly into a semi-classical
microscopic transport model such as BAMPS, an effective approach is chosen by introducing
a cutoff in phase space. It is represented by a step function that modifies the Gunion-Bertsch
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matrix element from eq. (3.13) as

|Mgg→ggg|2 → |Mgg→ggg|2 Θ(λ− τ) . (3.17)

The step function Θ(λ− τ) implies that the formation time τ of the emitted gluon must not
exceed the mean free path λ of the parent jet particle, ensuring that successive radiative
processes are independent of each other.

Through this cutoff the total cross section depends on the current mean free path, which
in turn depends on the total cross section. The evaluation of the total cross section including
inelastic processes based on the matrix element (3.17) thus becomes highly involved. For
processes where the mean free path is expected to be far from the thermal average, e.g.
for high energy jets, this calls for an iterative procedure. The true mean free path is then
evaluated as

λ = lim
i→∞

λi = lim
i→∞

1

R22 +R23(λi−1) +R32(λi−1)
(3.18)

where R22, R23 and R32 denote the sums of the rates for all 2 → 2, 2 → 3 and 3 → 2
processes, respectively. R23 and R32 depend on the mean free path via the LPM cutoff
(3.17), thus R23 = R23(λ) and R32 = R32(λ). The iterated value λ is then used as an input
for the computation of the actual collision probabilities. The numerical convergence of this
procedure has been investigated and confirmed in [Foc06].

When comparing the formation time to the mean free path, i.e. the time between suc-
cessive interactions of the parent jet, special attention needs to be paid to the frames of
reference. In this case three different reference frames are involved. Let Σ denote the local
frame that is co-moving with the average velocity of the medium in each computational
cell. In this frame the mean free path λ is computed from the interaction rates. Σ′ is the
center of momentum frame of the colliding particles in which the matrix element eq. (3.13)
is computed. Finally, Σ′′ denotes the reference frame in which the gluon is emitted purely
transversal with respect to the axis defined by the colliding particles in the c.m. frame and
thus τ ′′ = 1/k⊥.

In order to compare λ to τ ′′ in the step function modeling the LPM cutoff via Θ (λ− τ) =

Θ
(
λ
γ − τ ′′

)
, the overall boost

γ = γ′γ′′
(
1 + β′β′′) = cosh y√

1− β′ 2
(1 + β′ tanh y cos θ) (3.19)

from Σ to Σ′′ needs to be taken into account. γ′ and β′ denote the boost and the boost
velocity respectively from Σ to Σ′. γ′′ = cosh y and β′′ = tanh y are the boost and boost
velocity from Σ′ to Σ′′. The latter can be expressed in terms of the rapidity y of the emitted
gluon measured from the c.m. frame Σ′. θ is the angle (0 ≤ θ < π/2) between β′ and the
axis of the colliding particles in the c.m. frame as seen from Σ. See fig. 3.3 for an exemplary
illustration.

With this the Theta function entering the bremsstrahlung matrix element can be written
as

Θ (λ− τ) = Θ
(
k⊥ − γ

λ

)
= Θ

(
k⊥λ− cosh y√

1− β′ 2
(1 + β′ tanh y cos θ)

)
. (3.20)
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Figure 3.3.: Illustration of the reference frames involved when comparing the mean free path
λ measured in frame Σ to the formation time of the emitted gluon τ ′′ = 1/k⊥
measured in frame Σ′′. pi, p

′
i and p ′′

i are the momenta of the incoming particles
1 and 2 in the respective frame, the thick dashed arrow (labeled k⊥) depicts
the radiated gluon. See text for more details.
In this example |p2| = 2 |p1| and ∢ (p1,p2) = 45◦ are chosen, leading to β′ ≈
0.933 and θ ≈ 69◦. The gluon in this example is emitted with cosh y = γ′′ =

√
2.

For thermal energies the boost velocity β′ becomes small, γ ≈ cosh y, and the Θ function
effectively reduces to

Θ (k⊥λ− cosh y) (3.21)

as employed in the original version of BAMPS [XG05].

Constraints on the phase space for 2 → 3 processes

The cutoff eq. (3.20) restricts the phase space for the differential gg → ggg cross section
(3.15) in the transverse momentum of the emitted gluon, k⊥, and the rapidity of the emitted
gluon in the c.m. frame, y. The requirement is k⊥ > γ

λ with γ = cosh y√
1−β′ 2

(1+β′ tanh y cos θ)

from eq. (3.19).

Since γ ≥ 1 the restriction on the transverse momentum is simply

k⊥ ≥ 1

λ
(3.22)

as was already the case in the original version of the LPM cutoff (3.21). The restriction for
the rapidity y is either given from kinematical requirements

cosh y <

√
s

2k⊥
(3.23)

or from the LPM cutoff k⊥λ >
cosh y√
1−β′ 2

(1 + β′ tanh y cos θ). The latter condition can be

rewritten as
cosh y +A sinh y

B
< 1 (3.24)
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Figure 3.4.: Points in the y-k⊥ phase space sampled from the Gunion-Bertsch matrix ele-
ment (3.13) including the constraints from the LPM cutoff (3.20) for cases in
which the boosts β′ and β′′ are parallel. y is the rapidity of the emitted gluon
in the c.m. frame, k⊥ its transverse momentum. The limits from the kinematic
constraint (3.28) and the LPM cutoff (3.30) are shown as solid lines. See text
for more details.
The four-vectors used as initial states are pA = (E, 0, 0, E) and pB =
(3T, 0, 0,−3T ) with T = 0.4GeV and E = 20GeV, 60GeV or 100GeV.
For E = 20GeV the parameters are: s = 96GeV2, λ = 0.772 GeV−1 and
∆y = 1.407.
For E = 60GeV: s = 288GeV2, λ = 0.686GeV−1 and ∆y = 1.956.
For E = 100GeV: s = 480GeV2, λ = 0.653GeV−1 and ∆y = 2.211.

with A = β′ cos θ and B = k⊥λ
√

1− β′ 2. In general this yields limits for the rapidity at a
given transverse momentum k⊥:

ymin = max

{
ln

(
B −

√
A2 +B2 − 1

A+ 1

)
, − cosh−1

( √
s

2k⊥

)}
(3.25a)

ymax = min

{
ln

(
B +

√
A2 +B2 − 1

A+ 1

)
, cosh−1

( √
s

2k⊥

)}
. (3.25b)
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In the special case β′ = 0, i.e. A = 0 and B > 1, this reduces to

ymin = max

{
− cosh−1(k⊥λ), − cosh−1

( √
s

2k⊥

)}
(3.26a)

ymax = min

{
cosh−1(k⊥λ), cosh−1

( √
s

2k⊥

)}
, (3.26b)

reproducing the kinematic cutoffs of the original BAMPS version. For the special cases
A = 0 ∧ B < 1, B = 0 or B <

√
1 +A

√
1−A there is no solution, i.e. no available phase

space.
The available area in the y-k⊥ phase space is thus given by the area enclosed by the curves

f(y) =
cosh y +A sinh y

B̃
(3.27)

and

g(y) =

√
s

2 cosh y
(3.28)

with B̃ = λ
√

1− β′ 2 and A = β′ cos θ as above. The minimum value of f(y) is at yf,0 =
1
2 ln

1−A
1+A and f(yf,0) =

√
1−A2

B , while the constraint g(y) from the kinematics is symmetric

around zero with its maximum value at yg,0 = 0 and g(yg,0) =
√
s
2 . The intersection points3

of eqs. (3.27) and (3.28) are given by

yleft/right =
1

2
ln

(
C ∓

√
A2 + C2 − 1

A+ 1

)
(3.29)

with C =
√
sB̃ − 1 and B̃, A from above.

It is illustrative to investigate the available phase space for the special case where the
boosts β′ and β′′ are parallel, i.e. θ = 0. In this case the LPM constraint eq. (3.27) reduces
to

f(y) =
cosh(y +∆y)

λ
(3.30)

with tanh∆y = β′. This is simply a hyperbolic cosine shifted by ∆y. For ∆y = 0, as was
the case in the original BAMPS version, it is thus a hyperbolic cosine symmetric around
y = 0. Since the kinematic constraint (3.28) is symmetric around zero in any case, this
would imply an equal phase space for the emission of the radiated gluon into the forward
direction, y > 0, and into the backward direction, y < 0. For a high energy particle traveling
in positive z-direction, however, ∆y > 0, shifting the available phase space towards negative
y and preferring emission into the backward direction. Figure 3.4 illustrates this situation
for gluon jets with different energies interacting with a gluon that has thermal energy and
whose momentum is oriented opposite to that of the high energy gluon, i.e. giving θ = 0.
The increasing shift of the allowed phase space towards negative y with increasing boost

∆y = tanh β′ = tanh
(∣∣∣ pA+pB

EA+EB

∣∣∣
)
is clearly visible. In addition fig. 3.4 demonstrates that

3If the parameters A and B̃ are such that there exists an enclosed area.
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the points sampled by the Monte Carlo routines of BAMPS (see section 3.1.5) indeed fall
into the allowed region given by eqs. (3.28) and (3.30). Additionally, a closer investigation
of the distribution of the sampled points reveals that not only is the allowed region shifted
towards negative y, but also that the probability as given by eq. (3.15) is higher towards
the low-y edge of the allowed phase space.
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Figure 3.5.: Cross section σgg→ggg for gg → ggg processes (Nf = 0) as a function of jet
energy E. The original version of the LPM cutoff (w/o boost, eq. (3.21)) is
compared to the new version of the LPM cutoff (w/ boost, eq. (3.20)).

Constraints on the phase space for 3 → 2 processes

In order to ensure detailed balance, the constraints from the LPM cutoff (3.20) need to be
consistently incorporated also into the integration and sampling of the matrix element for
particle annihilation processes (3.14). The phase space integral I32 from eq. (3.9) can be
expressed as [XG05]

I32 =

∫ 1

0
dcos ϑ

∫ φ

0
dϕα3

sU
s2

(q2
⊥ +m2

D)
2

q2
⊥

k2
⊥
[
(k⊥ − q⊥)2 +m2

D

]Θ
(
k⊥ − γ

λ

)
, (3.31)

where U contains all prefactors. To evaluate this integral—or to sample from the integrand—
the integrand needs to be rewritten by introducing the angles

ϑ = ∢(p1,pA) (3.32a)

δ = ∢(p1,pC) (3.32b)

ϕ = ∢(ex,p1) (3.32c)

ζ = ∢(pA,pC) . (3.32d)
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The angle ζ between the incoming particles A and C is known, together with EA, EB , EC ,√
s and m2

D. The transverse momenta are then given by

q⊥ = EA sinϑ (3.33a)

k⊥ = EC sin δ (3.33b)

and the scalar product by

k⊥ · q⊥ = −EAEC

(
cos ζ sin2 ϑ− sin ζ sinϕ cos ϑ cosϕ

)
. (3.34)

The constraint from the LPM cutoff k⊥ > γ
λ eq. (3.20) can then be expressed in terms of

these variables by using cosh y = EC

k⊥
and tanh y = 2p1·pC√

sEC
= cos δ together with

cosΘ =
β′ · p1

β′ |p1|
=
β′1 sinϑ cosϕ+ β′2 sinϑ sinϕ+ β′3 cos ϑ

β′
. (3.35)

It gives a constraint in terms of the kinematic angles from eq. (3.32a) and the quantities
EC , β

′ and λ

k2⊥ >
EC

λ
√

1− β′ 2

(
1 + β′ cos δ cos θ

)
. (3.36)

Summary

In summary, the cross section for a gg → ggg process4 can be computed from the integral

σgg→ggg =

∫ s/4

0
dq2⊥

∫ s/4

1/λ2

dk2⊥

∫ ymax

ymin

dy

∫ π

0
dφ

dσgg→ggg

dq2⊥dk
2
⊥dydφ

, (3.37)

with ymin and ymax determined from eq. (3.25) and the differential cross section from
eq. (3.15). The boost factor (3.19) reduces the total cross section with respect to the sim-
pler expression Θ(k⊥λ− cosh y) since the phase space for the k⊥ integration gets reduced.
However, the reduction is not very drastic as can be seen in fig. 3.5. It changes the total
cross section for gg → ggg processes by roughly 20%. More essential for the kinematics
of the outgoing particles is the peculiar way in which eq. (3.20) distorts the shape of the
available phase space as discussed above.

Most notably the rapidity of the emitted gluon in the center of momentum frame with
respect to the incoming jet momentum gets strongly shifted to negative values with increas-
ing γ, see lower panel of fig. 3.6. For comparison the upper panel of fig. 3.6 shows the
rapidity ∆y = tanh−1(β′) associated with the boost from laboratory to c.m. frame. Note
that in general y and ∆y are not additive due to the angle θ in eq. (3.19). While for thermal
energies, γ ≈ cosh y, the available phase space for the rapidity y is on the average essentially
symmetric around y = 0, for larger jet energies the boost velocity β′ becomes large and the
emission in the c.m. frame is strongly shifted to the backward direction. With this, even for
small k⊥, the energy of the emitted gluon can become large in the c.m. frame but will still
be small in the laboratory frame due to the boost. The consequences of such configurations
for the energy loss of partons are investigated in more detail in chapter 4.

42 → 3 processes are much more important for the energy loss of high energy partons in BAMPS as will
be discussed in chapter 4.
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Figure 3.6.: Upper panel: Distribution of the magnitude of the boost from the laboratory
frame to the center of momentum frame (c.m.) for different jet energies E
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with respect to the incoming gluon jet momentum for different jet energies E
(laboratory system). The medium temperature is T = 0.4GeV.
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3.1.5. Evaluation of phase space integrals and sampling of momenta

Evaluation of phase space integrals for 2 ↔ 3 processes

The cross section for 2 → 3 processes is computed from the four-dimensional integral (3.37).
The integration is performed numerically via the VEGAS algorithm [Lep78, PTVF07], a
Monte Carlo integration method. After the explicit dependence on the center of mass energy
s is eliminated by rescaling the variables, the result depends on four parameters, namely
m2

D, β
′, cos θ and λ. And since the evaluation of the integral is rather time consuming, the

results are tabulated on a grid of these parameters. The value for a given parameter set is
then obtained from linear interpolation in the parameter space.

For 3 → 2 processes the situation is slightly different. The integral (3.31) is only two-
dimensional but the result depends on nine real parameters EA, EB, β

′, m2
D, s, λ and cos ζ.

Though an interpolation method from tabulated values as for the σ2→3 integral is in principle
possible, the large number of parameters renders this method numerically demanding and
no interpolation method has been found so far that would offer considerable advantage
over a direct or estimated evaluation of the two-dimensional integral. Thus, even though in
practice an estimation scheme of the integral value is often used instead of a straightforward
integration via the VEGAS algorithm, the computation of the integral I32 for any possible
particle triplet is the most time-consuming part of the BAMPS algorithm. It thus offers
probably the most room for future numerical improvements.

Sampling of momenta

When, based on the collisions probabilities, it is decided in the simulation framework5 that
a given pair or triplet of particles should collide, the momenta of the outgoing particles need
to be sampled according to the underlying cross section or matrix element. Appendix D
summarizes some numerical sampling methods that are employed in BAMPS to this end.

For binary, 2 → 2, interactions the momentum transfer q2
⊥ is simply sampled from the

small angle differential cross section, for example from eq. (3.10) for gg → gg processes or
from the other cross sections listed in appendix B.3.3. This is done via the method of inverse
transform sampling, see appendix D.1. The cumulative distribution function eq. (D.1) based
on the differential cross section is given by

F (x) =
1

σ

∫ x

0

dσ

dq2
⊥
dq2

⊥ , (3.38)

where σ is the total cross section σ =
∫ s/4
0

dσ
dq2

⊥

dq2
⊥ (see appendix B.3.3) that is inserted

for normalization. For the cross sections in small angle scattering that are employed in
BAMPS, F (x) can be inverted and thus x can be sampled by generating a random number
y from [0, 1). For example, for gg → gg processes the transverse momentum transfer q2

⊥ = x
can be sampled as

x =
yσm4

D

9πα2
s − yσm2

D

. (3.39)

For particle production or annihilation processes based on the Gunion-Bertsch matrix
element (3.13) the sampling of the outgoing momenta is considerably more complex since

5See algorithm 1.
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one deals with multivariate distributions for which the method of inverse transform sampling
is not applicable.

For 2 → 3 processes the momenta are sampled from the differential cross section (3.15)
via the rejection method, see appendix D.2. q2

⊥, k
2
⊥, y and φ are sampled uniformly within

the limits given in eq. (3.37). Since the limits (ymin, ymax) are dependent on the previously
sampled value of k⊥ the sampling function is multiplied by (ymax − ymin). For the envelope
function

g(q2
⊥,k

2
⊥, y) = D

yright − yleft

k2
⊥(q

2
⊥ +m2

D)
(3.40)

is chosen, with yleft and yright from eq. (3.29). The factorD estimates the factor
∑(∣∣∣∣

∂F
∂y

′

1

∣∣∣∣
F=0

)−1

stemming from the delta function. Its value needs to be obtained empirically and is usually
fixed at D = 1 · 103.

Though the sampling for 3 → 2 processes is only two-dimensional in the variables cosϑ
and ϕ, see eq. (3.31), a reasonable envelope function for usage in the rejection method is
considerably difficult to find. Due to this the Metropolis algorithm—see appendix D.3—is
used for the sampling of the momenta in 3 → 2 processes.

3.2. The Gunion-Bertsch matrix element

The matrix element eq. (3.13) that is employed in BAMPS to describe inelastic 2 ↔ 3
processes is an approximation to the full QCD matrix element and has been derived by
Gunion and Bertsch in 1981 [GB82]. Their original work aimed at describing particle
production in the central rapidity region of (soft) hadronic collisions by bremsstrahlung of
gluons. To this end they considered the lowest order perturbative gluon production diagrams
in quark-quark scattering as illustrated in fig. 3.7.

This section sketches the derivation of the Gunion-Bertsch matrix element with a special
focus on the kinematics and the approximations that lead to their result6. Subsequently,
in section 3.2.3, the Gunion-Bertsch approximation is compared numerically to the exact
result obtained by Berends et al. [BKDC+81] for some typical choices of the momenta.

3.2.1. Kinematics and approximations

Following the notation of the original publication by Gunion and Bertsch the four-vectors
in this section are given in light-cone notation, i.e. p = (p+, p−,p⊥) with p+ = p0 + p3

and p− = p0 − p3. The inverse transformation from light-cone to standard Minkowski
representation is then obviously given by p0 = (p+ + p−)/2 and p3 = (p+ − p−)/2. An
energetic particle with large p+ but small p− is traveling along the forward (light-cone)
direction, while it is traveling into the backward direction for small p+ but large p−. The
product of four-vectors in light-cone notation is given by p · q = (p+q− + p−q+)/2 − p⊥q⊥
and accordingly p2 = p+p− − p2

⊥.
All momenta in the following computations are given in the center of momentum frame.

The external momenta of the particles involved in the bremsstrahlung process are fixed

6The discussion is based on notes kindly provided by Mauricio Martinez Guerrero from a collaborative
effort to investigate the regions of validity for the Gunion-Bertsch matrix element.
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Figure 3.7.: Lowest order Feynman diagrams for gluon radiation in quark-quark scattering
as considered by Gunion and Bertsch in [GB82].

as follows: pA and pB are the incoming momenta of the upper and lower quark lines re-
spectively, while p1 and p2 are the outgoing momenta of the upper and lower quark lines.
The momentum of the radiated gluon is denoted by k and the four-momentum of the soft
exchanged gluon is given by q. All external particles are considered to be massless and
on-shell, i.e. p2A = p2B = p21 = p22 = k2 = 0. The incoming quark momentum pA is chosen to
be along the positive z-axis and thus pB along the negative z-axis accordingly. The radiated
gluon carries away a fraction x of the positive light-cone momentum7 of particle A. The
kinematics are then given by

pA = (
√
s, 0, 0, 0) (3.41)

pB = (0,
√
s, 0, 0) (3.42)

k = (x
√
s,

k2⊥
x
√
s
,k⊥) (3.43)

q = (q+, q−,q⊥) , (3.44)

where a specific direction for the transverse momentum of the emitted gluon is arbitrarily
chosen, and momentum conservation gives

p1 = pA + q − k (3.45)

p2 = pB − q . (3.46)

7Note that this fraction is a Lorentz-invariant quantity.
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Together with the on-shell conditions this yields

q+ = − q2⊥√
s

(3.47)

q− =
k2⊥/x+ q2⊥ − 2q⊥k⊥

(1− x)
√
s

(3.48)

where the expression for q− is obtained under the assumption that the exchanged momentum
is almost on the light-cone, i.e. q+q− ≈ 0.

For the radiated gluon field Aµ ∼ ∑i ǫ
(i)
µ eik·x the light-cone gauge is chosen A+ = 0, or

equivalently ǫ+ = 0. In this gauge the gluon radiation from the lower quark line, i.e. from
the quark with small + light-cone momentum, is either exactly zero (radiation from the
initial lower quark line, pB) or negligible (radiation from the final lower quark line, p2) in
the case q⊥ ≪ √

s. Therefore the diagrams from the second line of fig. 3.3 need not be
considered in the computation of the total matrix element. Note that the choice A− = 0
would select radiation from the lower quark lines accordingly. A possible choice for the
polarization vectors is

ǫ(i) = (0,
2k⊥ǫ

(i)
⊥

x
√
s
, ǫ

(i)
⊥ ) (3.49)

with ǫ
(1)
⊥ = (1, 0) and ǫ

(2)
⊥ = (0, 1), thus fulfilling ǫ(1) · ǫ(2) = 0.

The rapidity of the emitted gluon can be expressed in terms of the above defined quantities
as

y =
1

2
ln
k+

k−
= ln

x
√
s

k⊥
(3.50)

and thus the central rapidity region that Gunion and Bertsch were interested in is given
by x ∼ k⊥/

√
s. The matrix element is derived in the limit of soft momentum transfers, i.e.

small q⊥, and soft radiation, i.e. small k⊥ and x. More explicitly the approximations read

q⊥ ≪
√
s (3.51)

k⊥ ≪
√
s (3.52)

and

xq⊥ ≪ k⊥ . (3.53)

The latter conditions specifies the above mentioned requirement that x be small. Even
though the light-cone momentum fraction of the radiated gluon is small, x≪ 1, it must not
be taken entirely into the limit x → 0 in order to still include the central rapidity region
x ∼ k⊥/

√
s.

3.2.2. Computation of the bremsstrahlung Feynman diagrams

Analyzing the result, for example by comparing to the simpler case of gluon radiation in
e+e− → qq̄ processes, one finds that the spin structure of the external fermions is irrelevant
for the problem at hand. Therefore one can use scalar QCD where the Feynman rule for
the quark-gluon vertex gets replaced by the vertex of a scalar field coupling to the gluon:



3.2. The Gunion-Bertsch matrix element 35

pA

pB

i

j

a

≡
pA

pB

i

j

a

ig γµ T a
ij ig (pA + pB)

µ T a
ij

This trick simplifies the computation of the diagrams and is used in the following together
with the kinematic approximations, eqs. (3.51) to (3.53), that allow for the negligence of
subleading terms in

√
s.

Diagram 1

p1

p2

pA

pB

k

q

i j l

m n

ab

c

Figure 3.8.: Matrix element M1 contributing to the gluon radiation in quark-quark scatter-
ing.

The matrix element corresponding to gluon radiation from the initial quark leg—see
fig. 3.8 for the Feynman diagram and the definition of color indices, momenta etc.—is given
by

iM1 = (−igs)3T a
jlT

b
ijT

c
mnδac

(2pA − 2k + q)µ(2pB − q)µ
(pA − k)2q2

(2pA − k)λ ǫ
(i) ∗
λ , (3.54)

where the T a are the generators of color SU(3), see section 2.1, and gs denotes the bare
strong coupling.

Employing the kinematic approximations eqs. (3.51) and (3.52), i.e. neglecting terms pro-
portional to k⊥/

√
s or q⊥/

√
s, together with the definitions of the momenta, the individual

terms can be simplified:

(2pA − k)λ ǫ
(i) ∗
λ ≈ 2k⊥ǫ

(i)
⊥

x
(3.55)

(2pA − 2k + q)µ (2pB − q)µ ≈ 2s(1− x) (3.56)

(pA − k)2 = −k
2
⊥
x

(3.57)

q2 ≈ q2⊥ (3.58)
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Putting everything together, the matrix element for the diagram in fig. 3.8 reads

iM1 ≈ (−igs)3 T a
jl T

b
ij T

c
mn δac (1− x)

2s

q2⊥

2k⊥ǫ
(i)
⊥

k2⊥
. (3.59)

Diagram 2

p1

p2

pA

pB

k

q

i j l

m n

a

b

c

Figure 3.9.: Matrix element M2 contributing to the gluon radiation in quark-quark scatter-
ing.

The computation of the amplitude M2 for gluon radiation from the final quark leg—see
fig. 3.9—is very similar to the computation of M1. In its generic form the matrix element
reads

iM2 = (−igs)3T a
ijT

b
jlT

c
mnδac

(2pA + q)µ(2pB − q)µ
(pA + q)2q2

(2pA + 2q − k)λ ǫ
(i) ∗
λ . (3.60)

As before the individual terms can be approximated and rewritten

(2pA + q)µ (2pB − q)µ ≈ 2s (3.61)

(2pA + 2q − k)λ ǫ
(i) ∗
λ ≈ 2

x
(k⊥ − xq⊥) ǫ

(i)
⊥ (3.62)

(pA + q)2 =
(k⊥ − xq⊥)

2

x(1− x)
(3.63)

q2 ≈ q2⊥ , (3.64)

yielding the final result

iM2 ≈ (igs)
3 T a

ij T
b
jl T

c
mn δac (1− x)

2s

q2⊥

2 (k⊥ − xq⊥) ǫ
(i)
⊥

(k⊥ − xq⊥)
2 . (3.65)

Diagram 3

The final diagram embodies the unique QCD-contribution to the total bremsstrahlung am-
plitude, in which the bremsstrahlung gluon is emitted from the exchanged soft gluon, see
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p1

p2

pA

pB

k

q

i l

m n

a

b

c

Figure 3.10.: Matrix element M3 contributing to the gluon radiation in quark-quark scat-
tering.

fig. 3.10. It thus involves a three-gluon vertex, rendering the evaluation of M3 somewhat
more tedious. The amplitude in scalar QCD reads

iM3 = (−igs)2gs fabc T a
il T

c
mn

{
gαβ(k − 2q)γ + gβγ(q − 2k)α + gγα(k + q)β

}

× (2pA + q − k)β

q2
(2pB − q)α

(q − k)2
ǫ(i) ∗γ

(3.66)

= (−igs)2gs fabc T a
il T

c
mn

1

q2
1

(q − k)2

×
{[

(2pA + q − k) · (2pB − q)
][
(2q − k) · ǫ(i) ∗

]

+
[
(q − 2k) · (2pB − q)

][
(2pA + q − k) · ǫ(i) ∗

]

+
[
(k + q) · (2pA + q − k)

][
(2pB − q) · ǫ(i) ∗

]}
.

(3.67)

Again various simplifications can be made by exploiting the approximations eqs. (3.51)
and (3.52) together with the definitions of the external momenta from eqs. (3.41) to (3.46).
The results are

[
(2pA + q − k) · (2pB − q)

][
(2q − k) · ǫ(i) ∗

]
≈
[
2p+Ap

−
B

][
−2q · ǫ(i) ∗

]

= 4sq⊥ǫ
(i)
⊥

(3.68)

[
(q − 2k) · (2pB − q)

][
(2pA + q − k) · ǫ(i) ∗

]
≈
[
−2xs

] [2
x
k⊥ǫ

(i)
⊥
]

= −4sk⊥ǫ
(i)
⊥

(3.69)

[
(k + q) · (2pA + q − k)

][
(2pB − q) · ǫ(i) ∗

]
≈
[2k2⊥
x

] [
q⊥ǫ

(i)
⊥
]

=
2k2⊥
x

q⊥ǫ
(i)
⊥

(3.70)

(q − k)2 = −(q⊥ − k⊥)2

1− x
. (3.71)

After the smoke clears the result for the amplitude M3 turns out to be rather simple,

iM3 ≈ −ig3s T a
il T

c
mn if

abc (1 − x)
2s

q2⊥

2 (q⊥ − k⊥) ǫ
(i)
⊥

(q⊥ − k⊥)
2 . (3.72)
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Collisional matrix element

For further comparison it is interesting to note that the amplitude for the elastic quark-quark
scattering in the same approximations is just given by

iMcoll ≈ −ig2s T a
il T

c
mnδac

2s

q2⊥
. (3.73)

It is already obvious that the amplitudes for the radiative diagrams, eqs. (3.59), (3.65)
and (3.72), factorize into a 2s/q2⊥ term from the collisional amplitude times a term related
to the emission of a gluon. This factorization will be explored in more detail below.

Combining the results

In order to get the total amplitude, the matrix elements eqs. (3.59), (3.65) and (3.72)
computed above need to be summed and squared

|MGB|2 =
∣∣∣∣∣
∑

i

(M1 +M2 +M3)

∣∣∣∣∣

2

=
∑

i

|M1 +M2 +M3|2 , (3.74)

where the sum runs over the two possible polarizations ǫ(i) of the emitted gluon, eq. (3.49).

To begin with, the sum of the first two diagrams, M1+M2, is computed. Employing the
commutation relation for the generators of SU(3),

[
T a, T b

]
= ifabcT c and the approximation

(3.53), this gives

iM1 + iM2 ≈ g3s f
abc T a

mn T
c
il (1− x)

2s

q2⊥

2k⊥ǫ
(i)
⊥

k2⊥
. (3.75)

Now, adding the final contribution, M3, is straightforward and yields

iMGB = iM1 + iM2 + iM3

= g3s f
abc T a

mn T
c
il (1− x)

2s

q2⊥
2

[
k⊥ǫ

(i)
⊥

k2⊥
+

(q⊥ − k⊥) ǫ
(i)
⊥

(q⊥ − k⊥)
2

]
.

(3.76)

Finally the squared scattering amplitude for the qq → qqg process can be computed from
eq. (3.76), reproducing the result from Gunion and Bertsch

|MGB|2 = g6s C
4s2

q4⊥

4 q2⊥
k2⊥ (q⊥ − k⊥)2

, (3.77)

that has been used in [Won96, XG05] to obtain the matrix element from eq. (3.13) for
gg → ggg processes. In the above expression, C = 1

9

∑
fabcfa

′bc′ tr(T aT a′) tr(T cT c′) = 2
3 is

the overall color factor stemming from the average over initial colors and the sum over final
colors.

As was already to be expected from the comparison of the separate amplitudes M1, M2

and M3 for the radiative process to the amplitude of the purely collisional process Mcoll,
the squared Gunion-Bertsch matrix element eq. (3.77) factorizes into a contribution from
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the elastic scattering proportional to 4s
q4
⊥

and a contribution proportional to
4 q2

⊥

k2
⊥
(q⊥−k⊥)2

that

can be interpreted as the probability to radiate a gluon. The squared matrix element for a
bremsstrahlung process can then generically be written as

|MGB|2 = |Mcoll|2 P g , (3.78)

where P g encodes the probability to radiate a gluon. The consequences of this factorization
on the treatment of scattering processes with different particle species will be discussed in
more detail in section 3.4.

3.2.3. Comparison of Gunion-Bertsch to the exact result

As detailed in the previous section, the Gunion-Bertsch matrix element, eq. (3.77) or
eq. (3.13), is an approximation to the true matrix element, valid in the limit of small x, k⊥
and q⊥. It is of course possible to evaluate the full matrix element from the diagrams shown
in fig. 3.7 and this has been done for example by Berends et al. [BKDC+81] or by Ellis

and Sexton [ES86] in the generalized case for an arbitrary number of dimensions. The
result from [BKDC+81] for the process g(p1)+ g(p2) → g(p3)+ g(p4)+ g(p5) is considerably
more complex than eq. (3.13) and reads

|Mfull|2 =
g6

2

[
N3/(N2 − 1)

]
[(12345) + (12354) + (12435) + (12453) + (12534)

+ (12543) + (13245) + (13254) + (13425) + (13524) + (14235) + (14325)]

×
[
(p1p2)

4 + (p1p3)
4 + (p1p4)

4 + (p1p5)
4 + (p2p3)

4
]

(p1p2)(p1p3)(p1p4)(p1p5)(p2p3)(p2p4)(p2p5)(p3p4)(p3p5)(p4p5)

+

[
(p2p4)

4 + (p2p5)
4 + (p3p4)

4 + (p3p5)
4 + (p4p5)

4
]

(p1p2)(p1p3)(p1p4)(p1p5)(p2p3)(p2p4)(p2p5)(p3p4)(p3p5)(p4p5)
(3.79)

using the notation (ijklm) = (pipj)(pjpk)(pkpl)(plpm)(pmpi).

In order to numerically quantify the quality of the Gunion-Bertsch approximation (3.77),
or rather eq. (3.13), to the exact result (3.79), the bare matrix elements are compared for
various kinematic scattering parameters in figs. 3.11 and 3.12. With bare meaning that
no modifications due to the transformation properties of the momentum conserving delta
function, see eq. (3.15) and appendix B.4, or due to the LPM cutoff (3.17) are taken into
account.

Fixing the transverse momentum transfers to the thermal (Nf = 0) Debye mass from
eq. (3.12), q⊥ = k⊥ = mD, fig. 3.11a shows the ratio of the square of the approximated to
the square of the exact matrix element, |MGB |2 / |Mfull|2, as a function of the rapidity of
the radiated gluon y, where the range of y is limited by the kinematic constraint (3.23).
The incoming momentum pA = (E, 0, 0, E) describes a jet-like gluon with energy E =
40GeV that interacts with a thermal gluon that has momentum pB . For the purpose of this
analysis, pB is either fixed to pB = (3T, 0, 0,−3T ) or sampled from a thermal Boltzmann
distribution. The outgoing momenta for use in eq. (3.79) are computed according to the
procedure described in appendix B.4 with p1,z taken to be eq. (B.40). The angle φ between
q⊥ and k⊥ is either fixed at certain values or uniformly sampled from the interval (0, π).
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2 for fixed pA = (E, 0, 0, E) with E = 40GeV as a

function of the rapidity y of the emitted gluon. Transverse momenta
fixed at q⊥ = k⊥ = mD and q

⊥
k⊥ = q⊥k⊥ cosφ. The angle φ ∈

(0, π) is fixed for the dashed lines and averaged over for the solid lines.
pB = (3T, 0, 0,−3T ) with T = 0.4GeV is fixed for all lines but the one
labeled thermal average, where pB is generated and averaged over from a
thermal distribution with T = 0.4GeV.
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fixed as in fig. 3.11a, the angle φ is averaged over. pB is is generated
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Figure 3.11.: Numerical comparison of the Gunion-Bertsch matrix element (3.13) to the
exact result (3.79) for gg → ggg processes. The ratio |MGB |2 / |Mfull|2 is
shown for different parameters. See captions of subfigures, fig. 3.12 and text
for more details.
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Figure 3.12.: Numerical comparison of the Gunion-Bertsch matrix element (3.13) to the
exact result (3.79) for gg → ggg processes. The ratio |MGB |2 / |Mfull|2 is
shown for different parameters. See captions of subfigures, fig. 3.11 and text
for more details.
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Figure 3.11a illustrates that the approximated result from Gunion and Bertsch over-
estimates the exact result for radiative processes involving a highly energetic gluon. The
approximation works best at radiation into the central rapidity region and into the extremely
forward or backward directions. Averaging over all possible angles φ between q⊥ and k⊥
and thermally distributed momenta pB of the collision partner, the exact result is overesti-
mated by at most a factor of two. Note that the slight asymmetry in forward and backward
rapidity in figs. 3.11a, 3.11b, 3.12a and 3.12b is due to the choice (B.40) for p1,z. Selecting
(B.41) instead would revert the asymmetry. Figure 3.11b confirms that the Gunion-Bertsch
approximation improves with increasing available energy

√
s, in this case with increasing

jet energy E. As was to expected from the discussion in sections 3.2.1 and 3.2.2, fig. 3.12a
shows that the approximation is best for small values of k⊥. The dependence on the value
of the exchanged transverse momentum q⊥ is much weaker. For thermal particles the shape
of the ratio |MGB |2 / |Mfull|2 is slightly different, the approximation is worst for radiation
into the central rapidity region and improves towards larger rapidities, see fig. 3.12b.

Combining the information from figs. 3.11a, 3.11b, 3.12a and 3.12b it is safe to conclude
that the Gunion-Bertsch approximation to the lowest order gluon radiation diagrams—
which is used in the Monte Carlo algorithms of the transport model BAMPS due to its
comparatively simpler structure—overestimates the exact result obtained by Berends et
al. by a factor of roughly 1.2 to 2. Though the compensation of this deviation by a phe-
nomenological scaling factor might be conceivable, this approach is not pursued in this work,
amongst other reasons due to the non-trivial dependence of the deviations on the kinematic
regions.

3.3. Selected results from BAMPS

The transport framework BAMPS has already been applied in various studies. For the sake
of completeness this section lists some important findings that may help to put the model
and its results into context.

3.3.1. Early thermalization

Early studies employing BAMPS established that the consistent inclusion of inelastic par-
ticle production and annihilation processes leads to a rapid thermalization of the gluonic
medium created in central heavy ion collisions at RHIC energies [XG05]. The time evolution
of the pT -spectra (see fig. 3.13a) and of the momentum anisotropy show that the medium
in the central region reaches kinetic equilibration at a timescale on the order of 1 fm c−1.
Including only binary interactions a thermalization on such short time scales cannot be
achieved, unless unphysically high cross sections are used instead of the pQCD based cross
sections that are employed in BAMPS.

While the thermalization of the medium is not necessary for BAMPS to operate—on the
contrary, it is one of the main features and advantages of transport models that they can be
used to describe the dynamics of out-of-equilibrium systems—comparison of hydrodynamic
calculations to experimental data, especially to elliptic flow data, strongly suggests that the
medium indeed rapidly thermalizes within roughly 1 fm c−1 [HKH+01, KH03].
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(a) Time evolution of the pT -spectrum in the
innermost region (|η| ≤ 0.5, xT < 1.5 fm)
of a central (b = 0) Au+Au collision at
200AGeV. The initial (uppermost) spectrum
is the distribution given from mini-jet initial
conditions with p0 = 1.4GeV. Figure from
[Foc06].
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(b) Time evolution of the ratio of the shear vis-
cosity to the entropy density, η/s, extracted
from the central region of simulations of
Au+Au collisions with different impact pa-
rameters. The upper band shows the results
with αs = 0.3 and the lower band the results
with αs = 0.6. Figure from [XGS08].

Figure 3.13.: Time evolution of the pT -spectrum and of η/s from previous studies.

3.3.2. Small viscosity

Comparison of elliptic flow data from RHIC to ideal [HKH+01, KH03] and to viscous [RR07]
hydrodynamical calculations suggests that the ratio of the shear viscosity to entropy density,
η/s, of the medium created in heavy ion collisions is rather small, possibly close to the
conjectured lower bound η

s = 1
4π from a correspondence between conformal field theory and

string theory in an Anti-de-Sitter space [KSS05]. An investigation of the transport rates for
the gluon matter in simulations of Au+Au collisions at RHIC within BAMPS shows that
the inclusion of gg ↔ ggg processes via (3.13) yields a ratio η/s that is compatible with
the hydrodynamical findings [XG08, XGS08, XG09]. The ratio of shear viscosity to entropy
density is roughly constant over the evolution of the simulated fireball at η/s ≈ 0.08 for
αs = 0.6 or η/s ≈ 0.15 for αs = 0.3, see fig. 3.13b for the time evolution of η/s in the
simulated gluon medium of Au+Au collisions at RHIC from [XGS08].

3.3.3. Hydrodynamic behavior and shock phenomena

The framework provided by BAMPS is extensively used to study collective shock phenomena
in partonic matter, aiming at eventually investigating the possible existence of jet-induced
Mach cone structures in heavy ion collisions.

To begin with, the evolution of hydrodynamic shocks from an initial pressure discon-
tinuity, the so-called Riemann problem, has been successfully studied in a much simpler
one-dimensional setup for various values of η/s in [BMN+09, BMN+10], see fig. 3.14a. The
results from the transport calculations in fact serve as a reference for hydrodynamic imple-
mentations of the viscous Israel-Stewards formalism [Mol09]. In a next step the evolution of
jet-induced shock waves is studied inside static media for various medium parameters and
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(b) Energy density and velocity profile of a
hydrodynamic shock initiated by a gluon
jet that traverses a gluonic medium with
η/s = 0.15 and T = 0.4GeV. gg → gg and
gg ↔ ggg processes are taken into account,
the initial jet energy is E = 20GeV and
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Figure 3.14.: Hydrodynamic shock phenomena studied within the BAMPS framework in
[BMN+09, BMN+10, BEF+10].

energy deposition scenarios. The emergence of shock fronts is clearly visible, see fig. 3.14b,
however the ideal Mach cone like shape is distorted by finite viscosity and dependent on the
energy deposition mechanism [BEF+10] and thus likely to not be realized in full simulations
of heavy ion collisions. Investigating the emergence of shock phenomena in fully dynamic
simulations of heavy ion collisions within BAMPS is numerically extremely challenging, but
will be addressed in the near future.

3.3.4. Heavy quarks

The transport model BAMPS has recently also been applied to study the production and
space-time evolution of heavy quarks in central and non-central heavy ion collisions at RHIC
and LHC energies for various initial conditions [UFXG10a, UFXG10b]. The in-medium
production of charm quarks from gg → QQ̄ processes is found to be negligible for RHIC
collisions, while it contributes significantly to the total charm yield at LHC energies, see
fig. 3.15a. A scaling factor of K = 4 for the elastic gQ → gQ cross section is needed
to reproduce the experimentally observed elliptic flow and nuclear modification factor of
electrons from open heavy flavor decays, see fig. 3.15b. The extension of the transport
model to include inelastic processes for heavy quarks, such as gQ → gQg, based on the
Gunion-Bertsch matrix element is currently underway and will allow for the investigation
of radiative contributions to the energy loss and collective behavior of charm and bottom
quarks.
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Figure 3.15.: Heavy quark flow at RHIC and charm production at LHC as studied within
the BAMPS framework in [UFXG10a] and [UFXG10b].

3.4. The inclusion of light quarks

In its original version8 the transport model BAMPS has been limited to gluonic degrees of
freedom, i.e. the number of flavors has been set to zero, Nf = 0. While this simplification
is a rather good approximation for the investigation of bulk properties since the initially
created medium in heavy ion collisions is strongly gluon dominated, a precise quantitative
comparison to various experimental observables eventually requires the inclusion of light
quarks into the transport model. Especially for the investigation of jet observables this
extension is crucial as studies of parton distribution functions and initial jet production
show that quarks dominate the hard particle production at high transverse momenta. For
the mini-jet model based on GRV parton distribution functions this is the case from roughly
pT = 20GeV on as has been studied in [Foc06].

This section describes an extension of the BAMPS framework to consistently incorporate
light quark degrees of freedom, including elastic and inelastic processes as for the gluons in
the original BAMPS version. For the purpose of this extension, the quark flavors up, down,
strange and their antiparticles are considered to be light and their mass is set to zero. In
setups containing light quarks, the number of flavors is thus set to Nf = 3.

3.4.1. 2 → 2 processes containing light quarks

The extension of the BAMPS framework for binary particle interactions to include light
quarks is rather straightforward. Leading order pQCD cross sections in small angle approx-
imation are employed analogously to the pure gluon processes described in section 3.1.2 to

8See section 3.3 for some examples of results obtained within this version.
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include all possible binary processes involving light quarks and gluons:

g g → g g

g g → q q̄

q q̄ → g g and q q̄ → q′ q̄′

q g → q g and q̄ g → q̄ g

q q̄ → q q̄

q q → q q and q̄ q̄ → q̄ q̄

q q′ → q q′ and q q̄′ → q q̄′ ,

(3.80)

where q denotes a light quark of arbitrary flavor up (u), down (d) or strange (s) and q̄
the corresponding antiquark. q′ denotes a quark with flavor different from the quark q, i.e.
ud→ ud would be a qq′ → qq′ process, while uu→ uu would be a qq → qq process.

The matrix elements and cross sections for these processes can be found in appendix B.3.3.

3.4.2. 2 ↔ 3 processes containing light quarks

In order to incorporate particle multiplication and annihilation processes containing quarks,
the matrix element |M2→3|2 for these processes needs to be known. In order to be consistent
with the gg ↔ ggg processes from the original version of BAMPS, the matrix elements
for the newly implemented processes should also be considered within the Gunion-Bertsch
approximations as discussed in section 3.2.

In the derivation of the Gunion-Bertsch result it was found that the approximated and
squared radiative matrix element factorizes into a contribution from the elastic scattering
and a contribution representing the radiation probability, eq. (3.78),

|MGB|2 = |Mcoll|2 P g . (3.81)

From the derivation of the Gunion-Bertsch matrix element it could already be expected that
this factorization is a general feature. And indeed, detailed computations of the radiation
amplitudes of gluons, light quarks and heavy quarks by Guiho in [Gui06] explicitly show
that the factorization (3.78) holds regardless of the specific process. Furthermore, the
radiation probability P g is the same for the scattering of gluons and light quarks

P g ∼ q2⊥
k2⊥ (q⊥ − k⊥)2

(3.82)

with all differences in the prefactors contained in the collisional component |Mcoll|2. Note
that due to the mass the expression P g is different for the radiation off heavy quarks though.

Taking advantage of this factorization the already implemented matrix element for gg ↔
ggg processes, |Mgg→ggg|2, can be reused for arbitrary X → X + g processes9 by rescaling
as

|MX→X+g|2 =
|MX→X |2

|Mgg→gg|2
|Mgg→ggg|2 . (3.83)

9Where X is an arbitrary two-body state of gluons and light quarks.
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Going into the small angle approximation that is used for 2 → 2 processes in BAMPS
and that is in accordance with the approximations underlying the Gunion-Bertsch matrix
element as discussed in section 3.2, the scaling can be done in terms of small angle differential
cross sections

|MX→X+g|2 = QX |Mgg→ggg|2 =
dσX→X

dq⊥

dσgg→gg

dq⊥

|Mgg→ggg|2 . (3.84)

With this simplification the scaling factor QX purely depends on the ratio of the color
factors for the 2 → 2 processes as given in appendix B.3.3 and listed in table 3.1.

Using this technique to compute the matrix elements, the following 2 ↔ 3 processes are
included

g g ↔ g g g

q g ↔ q g g and q̄ g ↔ q̄ g g

q q̄ ↔ q q̄ g

q q ↔ q q g and q̄ q̄ ↔ q̄ q̄ g

q q′ ↔ q q′ g and q q̄′ ↔ q q̄′ g .

(3.85)

Processes where the 2 → 2 contribution would be purely in the s-channel, such as gg → qq̄g
or qq̄ → ggg, are omitted since these processes are different from the diagrams considered in
the Gunion-Bertsch matrix element. As these processes are suppressed by 1/s the thereby
introduced error should be modest.

Scaling factor Symmetry factor

X ↔ Xg QX ν̃X

g g ↔ g g g 1 1

q g ↔ q g g 4

9
2

q̄ g ↔ q̄ g g

q q̄ ↔ q q̄ g
16

81
2

q q ↔ q q g 32

81
1

q̄ q̄ ↔ q̄ q̄g

q q′ ↔ q q′ g 16

81
2

q q̄′ ↔ q q̄′g

Table 3.1.: Scaling factor QX , eq. (3.84), and combinatorial scaling factor ν̃X in the limit
Ng ≫ 1, eq. (3.86), relative to gg ↔ ggg for all 2 ↔ 3 processes incorporated
into BAMPS. See text for details.

In addition to the scaling by |MX→X |2 / |Mgg→gg|2, attention needs to be paid to possible
symmetry factors. It is simplest to compute these starting from the 3 → 2 process. In the
computation of the phase space integral I32, eq. (3.8), a factor 1/ν enters that accounts for
identical particles in the final state. It is 1/ν = 1/2! for a ggg → gg process. Thus, to
compute for example a qgg → qg process the phase space integral needs to be scaled by an
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additional factor ν̃qg = 2, Iqgg = ν̃qgQqg Iggg = 2Qqg Iggg, or generally written

IXg = ν̃X QX Iggg . (3.86)

For the incorporated 2 ↔ 3 processes (3.85) the symmetry factor for the reverse reaction
is identical in the limit Ng ≫ 1, see appendix C.2 for a more detailed discussion. Only for
processes such as gg → qq̄g the scaling of symmetry factors would differ for the 2 → 3 and
the 3 → 2 direction, but as mentioned previously these processes are s-channel processes
and currently not included.

3.4.3. Numerical test of detailed balance in a static medium

As a basic test of the extended BAMPS setup, detailed balance is investigated for a static
medium of quarks and gluons that is enclosed inside a simulated box with reflecting walls.
The medium is initialized in thermal and chemical equilibrium with Nf = 3 and T =

0.4GeV, with a gluon density ng = 16T 3

π2 ≈ 13.5 fm−3 and quark (antiquark) density nq =

nq̄ = 6Nf
T 3

π2 ≈ 15.2 fm−3.
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Figure 3.16.: Numerical tests of detailed balance in a static thermal medium with T =
0.4GeV, Nf = 3, V = 0.125 fm3 and Ntest = 500 including all processes as
listed in eqs. (3.80) and (3.85). Shown are the rates R22, R23 and R32 for
gluons (solid lines) and quarks (dashed lines). Results averaged from 300
runs.

Figure 3.16 shows the rates per gluon (quark) for 2 → 2 processes, Rg
22 (Rq

22), 2 → 3
processes, Rg

23 (Rq
23), and 3 → 2 processes, Rg

32 (Rq
32), as a function of time. The rates for

antiquarks are identical to the rates for quarks and the rates shown are the sum over all
possible processes from (3.80) and (3.85), e.g. Rg

22 =
∑

iR
g
22,i. The rates for all particle

species and process types are flat as a function of time, demonstrating that the incorporation
of light quarks according to the procedures described in sections 3.4.1 and 3.4.2 successfully
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passes the basic test for detailed balance. The rather strong fluctuations in the rates for
2 ↔ 3 processes are due to oscillations introduced by the LPM cutoff, cf. section 3.1.4, since
for this calculation the mean free path entering the cutoff has been dynamically computed
from the rates of the previous time step and the system size is comparatively small.





4. High energy partons in a static medium

In order to obtain an adequate understanding of the mechanisms underlying the jet quench-
ing in simulations of heavy ion collisions within BAMPS, it is important to study the evo-
lution of jets in a simplified setup. For this the evolution of high energy partons is tracked
as they propagate through a static and thermally equilibrated medium. Such a scenario is
sometimes referred to as a brick setup1.

The straightforward way to implement such a setup within a microscopic transport model
such as BAMPS would be to populate a static system of fixed size with partons according to
a thermal distribution at a given temperature T , then to inject a high energy particle with
initial energy E and to track its propagation through the dynamically evolving medium, i.e.
to study its energy loss, cross sections, radiation spectra, etc. To cut down on computation
time, however, a more direct, Monte Carlo-type approach is chosen for all observables
presented in this chapter. For a jet particle with given energy E a certain number of collision
partners is generated from a thermal distribution with temperature T without actually
simulating any medium constituents. This method therefore neglects possible effects of
the propagating jet on the medium, i.e. the medium response such as the generation of
hydrodynamic shocks, cf. section 3.3.3 and [BMN+09, BMN+10, BEF+10], is not taken into
account. To ensure consistency, this approach has been successfully tested—with respect to
the jet observables—against full calculations of static systems within BAMPS, where the
dynamics of all particles are explicitly simulated.

4.1. Interaction rates and mean free paths

As discussed in section 3.1.4, the mean free path of energetic partons needs to be computed
through an iterative procedure due to the LPM cutoff that dynamically depends on the
current mean free path, cf. eq. (3.18),

λ = lim
i→∞

λi = lim
i→∞

1

R22 +R23(λi−1) +R32(λi−1)
. (4.1)

The number of iterations used in the computations of the results presented in this section
is 4 ≤ Nit ≤ 30 and the iterative procedure is aborted at step i ≥ 4 when

|λi−j − 〈λ〉i| /〈λ〉i < ǫ ∀ j ∈ {0, 1, 2, 3}

with 〈λ〉i =
∑3

j=0 λi−j/4 and ǫ = 0.01. The mean free path λi at each iteration step
is computed from thermally averaged rates, using λi−1 as input for the LPM cutoff with
λ0 = λtherm. As detailed in appendix C.1, the rate for a given 2 → N process is computed
from 〈vrelσX(2)

〉, see eq. (C.2), and for a given 3 → 2 process from 〈ĨX(3)→Y 〉, see eq. (C.4),

1Such brick setups are proposed by the TECHQM collaboration, https://wiki.bnl.gov/TECHQM, as means
of comparing results from different parton cascade models and (Monte Carlo) energy loss calculations.
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where ĨX(3)→Y comprises the phase space integral over the matrix element for the 3 → 2
process, eqs. (3.8) and (3.9). The averages are simply computed by generating a certain
numberNsample of colliding particle pairs and triplets from a thermal Boltzmann distribution
using inverse transform sampling (see appendix D.1) and evaluating vrelσX(2)

and ĨX(3)→Y

for each pair or triplet respectively, giving 〈vrelσX(2)
〉 =

∑Nsample

k=1 v
(k)
rel σ

(k)
X(2)

/Nsample and

〈ĨX(3)→Y 〉 =
∑Nsample

k=1 Ĩ
(k)
X(3)→Y /Nsample. When computing the mean free path for jet particles

as a function of jet energy, the projectile is held fixed at p = (E, 0, 0, E) and only its
collision partners are sampled from a thermal distribution. Nsample = 200 000 is chosen for
the computations presented in this section. The rates for all possible processes are then
computed according to eqs. (C.5) and (C.6).
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Figure 4.1.: Thermal mean free path of gluons and quarks (Nf = 3) as a function of the
medium temperature T . The inset shows the ratio of the gluon mean free path
to the quark mean free path, λgtherm/λ

q
therm.

The thermal mean free path of gluons shown in fig. 4.1 roughly varies from λgtherm ≈
0.35 fm to 0.7 fm in the temperature range T ≈ 0.4GeV to 0.2GeV relevant for Au+Au
collisions at RHIC energies. The thermal mean free path of quarks is distinctly larger,
ranging from λqtherm ≈ 0.56 fm to 1.14 fm. However, the ratio of gluon to quark mean free
path is not λgtherm/λ

q
therm ≈ 4/9 ≈ 0.44 as would be expected from the color factors of

the dominating gq → X processes, compare table 3.1, but rather λgtherm/λ
q
therm ≈ 0.6 as

illustrated by the inset of fig. 4.1. This is due to the self-quenching effect of the LPM cutoff
on the rates for 2 ↔ 3 processes and will be discussed below.

As shown in fig. 4.2a, the mean free path of jet partons is distinctly smaller than the
thermal mean free path and levels off at roughly λg ≈ 0.16 fm for high energy gluons and at
λq ≈ 0.21 fm for high energy quarks. The mean free path of the considered particle species
at the given jet energy E is used as input for the next iteration step in these calculations
with λg0 = λgtherm or λq0 = λqtherm respectively. The generic dependence of the mean free path
for high energy particles on the medium temperature, as depicted in fig. 4.2b, is similar to
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that of the thermal mean free path, fig. 4.1.

The contribution of particle annihilation processes to the total interaction rate of high
energy partons is negligible, 2 → 2 and 2 → 3 processes strongly dominate as can be seen
in fig. 4.3a. The rates in these plots are sums over all possible processes from eqs. (3.80)
and (3.85) that contribute to the considered rate. Thus a statement in terms of cross
sections is difficult, however, defining an effective cross section2 from the total rate R and
the particle density n as σeff = R/n, the cross section for 2 → 3 inside a medium with
T = 0.4GeV would be roughly 1mb for a gluon jet and σq2→3,eff ≈ 0.9mb for a quark jet at
E = 400GeV in each case. For binary collisions the effective cross sections at E = 400GeV
would be σg2→2,eff ≈ 0.2mb and σq2→2,eff ≈ 0.4mb. The cross sections for single processes—
where the concept of a cross section is actually meaningful—differ but are on the same order
of magnitude, see for example fig. 3.5 for σgg→ggg.

As for the thermal case the difference in the mean free path (or equivalently the total
interaction rate) of gluon and quark jets is significantly smaller than the generically expected
factor 9/4. The average distance between interactions for a quark jet is only about 35%
larger than for a gluon jet. Figure 4.3b shows the ratio Rg/Rq for the different types of
processes. The ratio Rg

22/R
q
22 is almost exactly 9/4 as given by the color factors of the

differential cross sections, while it is the 2 ↔ 3 processes that deviate from this factor
despite the fact that the same color factors are used to scale the matrix elements. This is
due to a self-quenching effect introduced by the LPM cutoff discussed in section 3.1.4. The
larger λ that is used as input in eq. (3.17), the larger the interaction probability and vice
versa. Thus the LPM cutoff together with the iterative procedure for the computation of
interaction rates, eq. (3.18), effectively attenuates changes to the bare matrix element, such
as changes introduced by scaling factors relative to |Mgg→ggg|2 that are used to compute
quark processes as discussed in section 3.4.2. When omitting the iteration procedure, i.e.
when using λi=1 as the final result, the weakening is less pronounced as indicated by the
gray dashed lines in fig. 4.3b. Especially when the same initial value λ0 = λgtherm is used
for the computation of both the gluon and the quark jet mean free path, the ratio of the
non-iterated rates for 2 → 3 processes Rg

23,i=1/R
q
23,i=1 almost recovers the ratio of the color

factors.

4.2. Energy loss in a static medium

Since the quenching of jets that is observed in heavy ion collisions is commonly attributed
to energy loss on the partonic level, the detailed and systematic investigation of the energy
loss mechanism within the given framework is essential when studying the modification of
high-pT particles in simulations of heavy ion collisions with BAMPS. To this end the energy
loss of jet partons that traverse a static and equilibrated medium is studied in this section.

As for the computation of the interaction rates and mean free paths in section 4.1, the
energy loss is computed neglecting the medium response, i.e. without actually simulating
the dynamics of the medium. The mean energy loss per unit path length, dE/dx, is then

2More precisely 〈vrelσeff〉 = R/n.
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computed as follows (c = 1)

dE(j)

dx
=
dE(j)

d(ct)
=
∑

i

〈∆E(j)
i 〉R(j)

i , (4.2)

where j denotes the type of the jet particle, i.e. gluon or light quark, and i is the interaction

type (e.g. gq → gq, gg → ggg, qq → qqg, etc.). R
(j)
i denotes the interaction rate for process

i per particle of type j as computed in section 4.1. 〈∆E(j)
i 〉 is the mean energy loss of a jet

particle of type j in a single collision of type i computed as the weighted sum

〈∆E(j)
i 〉 =

∑Nsample

k=1

(
∆E

(j)
i P̃i

)
k∑Nsample

k=1 (P̃i)k
. (4.3)

The individual weighting factor (P̃i)k is proportional to the probability of the given interac-
tion process k. For 2 → 2 and 2 → 3 processes it is (P̃i)k = (σivrel)k, for particle annihilation

processes it is (P̃i)k =
(

I32,i
E1E2E3

)
k
with σi, vrel and I32,i as given in section 3.1.2.

Unless explicitly noted otherwise, the jet particle in all computations is tagged by the
energy, i.e. the particle emerging from the interaction process with the highest energy is
taken to be the outgoing jet. Thus the energy loss per collision is given by

∆E = Ein −max(Eout
1 , Eout

2 , Eout
3 ) (4.4)

for 2 → 3 processes and
∆E = Ein −max(Eout

1 , Eout
2 ) (4.5)

for 2 → 2 and 3 → 2 processes.

4.2.1. Energy loss from 2 → 2 interactions

In order to provide a baseline for further investigations, the energy loss is first studied in the
simplest case of pure 2 → 2 interactions. Figure 4.4a shows the mean differential energy loss
dE/dx|22 of a gluon jet that traverses a purely gluonic medium caused by binary gg → gg
interactions as a function of the jet energy E and for different medium temperatures. The
energy loss is computed as described above and the medium is represented by a thermal
ensemble of gluons.

The differential energy loss exhibits the expected (see [WHDG07] for a concise overview)
logarithmic dependence on the jet energy E and the dominant quadratic dependence on the
medium temperature T

dE

dx

∣∣∣∣
2→2

∝ CRπα
2
sT

2 ln

(
4ET

m2
D

)
, (4.6)

where CR is the quadratic Casimir of the propagating jet, CR = CA = Nc for gluons. For
T = 0.4GeV, Nf = 0 and a jet energy of E = 50GeV the elastic energy loss for a gluon jet
is dEg

dx

∣∣
2→2

≈ 1.2GeV fm−1 and increases to dEg

dx

∣∣
2→2

≈ 2GeV fm−1 at E = 400GeV.
Due to the increased number of scattering centers and possible interaction processes the

differential energy loss per unit path length is of course larger in an equilibrated medium
that additionally contains light quarks. As can be seen in fig. 4.4b, the differential energy
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(a) Differential energy loss of a gluon jet in a static and thermal gluonic
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into account.
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(b) Comparison of the differential energy loss from 2 → 2 processes for a
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Figure 4.4.: Differential energy loss of gluon and quark jets in a static equilibrated medium
from 2 → 2 processes.
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loss of a gluon jet at E = 400GeV inside a medium with T = 0.4GeV increases from
dEg

dx

∣∣
2→2

≈ 2GeV fm−1 for Nf = 0 to dEg

dx

∣∣
2→2

≈ 3.5GeV fm−1 for Nf = 3. The energy loss
of a quark jet from 2 → 2 interactions is distinctly weaker, with a ratio that is entirely given
by the ratio of the rates Rg

22/R
q
22, see fig. 4.3b and the inset of fig. 4.4b. The differential

energy loss of a quark from 2 → 2 processes alone is thus smaller than that of a gluon
jet in the same medium by a factor of roughly 9/4, giving dEq

dx

∣∣
2→2

≈ 1.5GeV fm−1 at
E = 400GeV in the example discussed above.
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Figure 4.5.: Time evolution of the energy distribution of a gluon jet that interacts only via
gg → gg processes with a static and thermal medium of gluons (Nf = 0) at T =
0.4GeV (left panel) and T = 0.6GeV (right panel). The initial (t = 0 fm c−1)
energy of the gluon jet is E0 = 50GeV.

Though the mean energy loss of a jet parton is an important quantity to classify the effects
of the medium on the jet, it may in fact hide more differentiated and potentially interesting
features of the jet evolution. More sophisticated information than in the mean energy loss
per unit path length is thus contained in the time evolution of the energy distribution of
the jet particle propagating through the medium. As for the computation of the differential
energy loss a Monte Carlo approach is chosen, where the collision partners are sampled from
a thermal distribution. Given discretized and fixed time steps ∆t, the medium density n
and a fixed number of collision partners Ñ , the implemented interactions at each time t are
sampled according to their probabilities

P22(t) = vrelσ22(t)
n∆t

Ñ
P23(t) = vrelσ23(t)

n∆t

Ñ
P32(t) = Ĩ32(t)

n2∆t

Ñ2
. (4.7)

The time dependence is introduced by the dependence of the cross sections on the current
jet energy E(t) that is then updated to E(t + ∆t) according to the sampled interactions.
Starting at t = 0 fm/c with an initial parton energy E0, this approach yields the evolution of
the jet energy as a function of time, E(t). Repeating this procedure many times, p(E, t) dE
is computed, the probability that a parton that started with E(t = 0 fm/c) = E0 has an
energy E ≤ E(t) < E + dE at a given time t.

Figure 4.5 shows the time evolution of the probability distribution for the energy of a
gluonic jet particle injected with an initial energy of E0 = 50GeV into a thermal medium
of gluons (Nf = 0) with T = 0.4GeV and T = 0.6GeV respectively. In both cases the
distribution of the jet energy induced by binary collisions with the constituents of the
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medium becomes rather broad. A distinct peak at lower energies only re-emerges at very
late times, roughly after 50 fm c−1 for T = 0.4GeV and 30 fm c−1 for T = 0.6GeV. The
mean energy loss as depicted in fig. 4.4 is therefore a valuable observable but contains only
limited information. It is noteworthy that there exists a finite probability for the jet to
gain energy by collisions with the constituents of the thermal medium. This effect is more
pronounced for higher medium temperatures. As already found in [SGJ09], the shapes of the
distributions induced by collisional energy loss significantly differ from models that employ
a mean energy loss accompanied by momentum diffusion such as [WHDG07, QRG+08].
According to the results presented in fig. 4.4b, the evolution of the energy spectrum is
swifter inside a medium that additionally contains light quarks and it is also faster for a
gluon jet than for quark jet. Qualitatively however, there is no difference to the case of a
gluon jet inside a purely gluonic medium.

4.2.2. Energy loss including 2 ↔ 3 interactions

After having established the behavior of high energy partons induced by 2 → 2 interactions
in the previous section, the evolution of jets in a static medium is now investigated includ-
ing particle multiplication and annihilation processes based on the Gunion-Bertsch matrix
element as discussed in chapter 3.

Figure 4.6a shows the mean differential energy loss dE/dx of a gluon jet as a function
of jet energy E in a static thermal medium with T = 0.4GeV and Nf = 3 caused by all
possible binary 2 → 2 and inelastic 2 ↔ 3 interactions that are included in the BAMPS
framework according to eqs. (3.80) and (3.85). The contributions from the different pro-
cesses to the total energy loss are displayed separately. From this compilation it is obvious
that bremsstrahlung processes 2 → 3 are by far the most dominant contribution to the
partonic energy loss within the BAMPS framework, whereas particle annihilation processes
are negligible and binary interactions, cf. section 4.2.1, contribute only on a small level.
Though not explicitly depicted in fig. 4.6a, this also holds for quark jets. The resulting
differential energy loss is almost linearly rising with the energy, for example resulting in a
total dE/dx ≈ 39.1GeV fm−1 for a gluon jet at E = 50GeV.

At large jet energies the temperature dependence of the resulting total differential energy
loss appears to be roughly linear as can be seen from fig. 4.6b, where dE/dx is compared
for medium temperatures T = 0.3GeV, T = 0.4GeV and T = 0.5GeV. This behavior stems
from the dominant 2 → 3 processes and is in contrast to the elastic energy loss, eq. (4.6),
that exhibits a dominant quadratic dependence on the temperature. Possible logarithmic
contributions to the temperature dependence cannot be resolved numerically within these
calculations.

While the energy loss of gluons and quarks induced by binary 2 → 2 interactions does
indeed differ by the color factor, roughly 9/4, as discussed in section 4.2.1, the total energy
loss of quarks is only about 20% weaker than that of gluons. This holds almost indepen-
dent of medium temperature and jet energy as can be seen in fig. 4.6b. This rather weak
dependence on the particle type is mainly caused by the radiative processes that dominate
the total energy loss and for which the difference in the interaction rates is quenched by the
effective implementation of the LPM effect as discussed in section 4.1.

As already discussed in section 4.2.1 for jets interacting only via 2 → 2 processes, valuable
information beyond the mean energy loss is contained in the evolution of the energy distribu-
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(a) Differential energy loss of a gluon jet in a static and thermal medium
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Figure 4.6.: Differential energy loss of gluon and quark jets in a static equilibrated medium
(Nf = 3) including 2 → 3 processes.
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tion p(E, t) dE of the jet particle. Starting out with p(E, t = 0 fm c−1) = δ (E − E0), fig. 4.5
has shown that elastic collisions cause a broadening of the distribution with a distinct peak
at low energies only re-emerging at very large times. Because of the much stronger mean
energy loss caused by radiative 2 → 3 processes, a more rapid evolution is to be expected
when all interactions included in BAMPS are taken into account. Indeed, fig. 4.7 shows
that the energy distribution of a gluon jet with E0 = 50GeV traversing a gluonic (Nf = 0)
medium with T = 0.4GeV is spread over almost the entire range after roughly 1 fm c−1.
A distinct peak at E ≈ 8T emerges at about 3.5 fm c−1 for T = 0.4GeV and 2 fm c−1 for
T = 0.6GeV. Note that the results in fig. 4.7 have been obtained prior to implementing
the constraint from the small angle approximation for 2 → 3 processes as outlined in sec-
tion 3.1.3. However, the discussion in section 3.1.3 also shows that the effect on the energy
loss would be rather mild, on the order of 15% to 20%, mostly stemming from the change
in the mean free path and giving no qualitative deviation.

4.3. Detailed investigation of energy loss in 2 → 3 processes

Given the findings presented in section 4.2.2, it is necessary to discuss the origin of the
strong energy loss from radiative processes within BAMPS. First of all, despite the large
differential energy loss for gluonic jets, the individual cross sections increase only slowly,
apparently logarithmically, with the jet energy as already seen in fig. 3.5 and also from the
rates in fig. 4.3. For instance the average total cross sections for a gluon jet with E = 50GeV
in a purely gluonic medium (Nf = 0) with a temperature T = 0.4GeV are 〈σgg→gg〉 ≈ 1.3mb
and 〈σgg→ggg〉 ≈ 3.5mb. This emphasizes that BAMPS does indeed operate with reasonable
partonic cross sections based on pQCD matrix elements.

The evolution of the mean cross sections for thermal gg → gg and gg → ggg processes
in simulations of Au+Au collisions has been studied in [XGS08]. Apart from the αs de-
pendence, 〈σ〉 basically scales as ∼ 1/T 2, leading to an increase in the cross sections as the
systems cools. For the relevant time scales the cross sections do not exceed a few millibarn,
〈σgg→gg〉 . 4mb and 〈σgg→ggg〉 . 2mb. Comparing the collisional width determined by
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the interaction rates, Γ = (Rgg→gg + Rgg→ggg + Rggg→gg), to the mean energy provides an
indication on the validity of semi-classical on-shell transport that holds for Γ/〈E〉 ≪ 1. In
[XG08] it is found that for thermal gluons the ratio is Γ/〈E〉 ≈ 0.5 (αs = 0.3), being close to
the edge of validity but still within a reasonable regime. For high energy gluons Γ/〈E〉 ≪ 1
holds since the cross sections increase only by a factor of about 2 towards very large E, cf.
fig. 3.5. Going from a purely gluonic medium to a medium that also includes light quarks,
the aforementioned numbers will of course change, however the qualitative statements hold.
As can be seen from the interaction rates in fig. 4.3, compare also the discussion in sec-
tion 4.1, the cross sections for all processes are comparable and the resulting effective cross
section is on the order of a few millibarn. Furthermore the bulk medium created in the
early stage of heavy ion collisions is strongly gluon dominated, cf. chapter 5, so the findings
from [XG08] are not expected to change significantly when going from Nf = 0 to Nf = 3.

4.3.1. Radiation spectra from the Gunion-Bertsch matrix element

Since the cross sections for all 2 → 3 processes yield moderate mean free paths for jet-like
particles—as discussed above and as illustrated in fig. 4.3—the cause for the large differential
energy loss needs to be a large mean energy loss per single collision, 〈∆E〉, more specifically
a large mean energy loss per radiative interaction, 〈∆E23〉. The energy carried away by
the radiated gluons, however, is in itself not sufficient to explain such large mean ∆E23.
From the radiation spectrum of a gluon jet with E = 50GeV, shown in fig. 4.8a for different
medium temperatures, a mean energy of the radiated gluon can be read off that is distinctly
below the 〈∆E23〉 that would be needed to fully explain the observed magnitude of dE/dx.
This finding will be confirmed explicitly later. The spectrum is displayed for a gluon jet
with fixed E = 50GeV inside a purely gluonic medium as the number of radiated gluons per
energy interval dω and per distance dx scaled by the total number of emitted gluons and
weighted with the gluon energy. Herein ω is the laboratory frame energy of the gluon that
in the center of momentum frame is emitted with transverse momentum k⊥ according to
the Gunion-Bertsch matrix element (3.13). The spectra are clearly peaked at energies that
are small compared to the energy of the parent jet, with a tail reaching out to high energies.
With increasing temperature the peak of the spectrum shifts towards higher energies in an
apparently linear way, favoring the emission of gluons with higher energies in a natural way.

For completeness fig. 4.8b shows the angular distribution of gluons radiated off a E =
50GeV gluon jet in a T = 0.4GeV medium for different ranges of the energy of the radiated
gluon ω. The angle ζ is taken in the laboratory frame with respect to the initial direction of
the parent jet. With increasing energy ω the radiated gluons are emitted more preferably
at small angles, only for soft gluons there is a sizable probability to be emitted transversely
or in the backward direction. However, as is clearly visible in fig. 4.8b, due to the cutoff
in transverse momentum k⊥ that is introduced by the implementation of the LPM effect
eq. (3.20), the gluons cannot be emitted at very forward angles, an effect that is more
pronounced for low ω.

As was to be expected from the functional form of the Gunion-Bertsch matrix element
(3.13), the distributions in fig. 4.9a show that the transverse momentum transfer q⊥ and
the transverse momentum of the emitted gluon are of comparable size and on the order
of the Debye mass mD. This demonstrates once more that the kinematics as sampled
within the numerical routines of the transport model BAMPS are in good accordance with
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the assumptions underlying the Gunion-Bertsch matrix element as discussed in section 3.2,
both q⊥ and k⊥ are typically small compared to the available energy

√
s. Furthermore, the

lower bound on the transverse momentum of the emitted gluon that is introduced by the
LPM cutoff, eqs. (3.17), (3.20) and (3.22), is clearly visible. With increasing jet energy the
lower bound on k⊥ is slightly shifted towards larger values. While the mean energy loss per
radiative interaction, ∆E23, is largest for large values of q⊥ and k⊥, the folded distribution
in fig. 4.9b clearly shows that the main contribution to the energy loss in 2 → 3 processes
stems from interactions where both q⊥ and k⊥ are of moderate size.

4.3.2. Energy loss per 2 → 3 process versus radiated energy

Now coming back to the issue of mean energy loss per radiative interaction, ∆E23, versus
the mean energy carried away by the radiated gluon, ω, fig. 4.10a explicitly shows that the
two values are indeed not the same. The strong and almost linear rise in the energy loss due
to 2 → 3 processes is only present when identifying the outgoing particle with the highest
energy as the outgoing jet, thus using the definition of ∆E from eq. (4.4),

∆E = E −max(Eout
1 , Eout

2 , Eout
3 ) . (4.8)

This choice corresponds to the set of dashed lines in fig. 4.10a that for example indicate a
mean energy loss per radiative interaction of roughly ∆E23 ≈ 11GeV at E = 50GeV and
∆E23 ≈ 44GeV at E = 400GeV, comparatively independent on the temperature of the
medium and on the type of the jet particle. The average energy ω of the radiated gluon,
however, is rising much slower with the jet energy, being only ω ≈ 6GeV at E = 50GeV
and ω ≈ 11GeV at E = 400GeV as illustrated by the set of solid lines in fig. 4.10a.

This discrepancy is due to the fact that—obeying exact energy and momentum conservation—
the available energy in a 2 → 3 process is distributed among three outgoing particles, the
gluon emitted with energy ω being only one of them. In fact, assuming ω < Ein/3 in
agreement with the results presented in fig. 4.10a,

∆Emin = ω (4.9)

is only the smallest possible energy loss, while the largest energy loss allowed by energy and
momentum conservation is

∆Emax = E −
(
E − ω

2

)
=
E + ω

2
. (4.10)

The maximum energy loss (4.10) corresponds to a configuration in which the remaining
available energy after radiation of a gluon with energy ω is equally split among the two
other particles in the final state. The upper bound on the energy loss per 2 → 3 interaction
is given by ∆E ≤ 2E/3.

Thus, when treating radiative processes as full 2 → 3 interactions, the generic argumen-
tation above illustrates that the energy carried away by the radiated gluon is in fact only a
lower limit on the energy loss and that eikonal approximations in which no momentum is
transfered to the propagating jet might underestimate the energy loss.

Furthermore, the energy loss per 2 → 3 process as depicted in fig. 4.10a is just a mean
value, averaged over many interactions of a jet parton of given energy E with constituents
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of the thermal medium. The underlying distribution is given in fig. 4.10b for different values
of the jet energy. It is immediately obvious that the mean value 〈∆E23〉 does not correspond
to a distinct peak in the distribution. On the contrary, the distributions are non-gaussian
and peak at very small energy losses for large jet energies, for example at ∆E23/E ≈ 0.006
for E = 400GeV and at ∆E23/E ≈ 0.04 for E = 50GeV (T = 0.4GeV, Nf = 3). For the jet
with E = 10GeV, whose energy is on the same order of magnitude as the typical energies
of the radiated gluons, the distribution is very broad and exhibits no distinct typical energy
loss.

4.3.3. Typical phase space configurations in 2 → 3 processes

While the peak at small ∆E23 in the energy loss distribution for asymptotically high jet
energies, cf. fig. 4.10b, can be attributed to energy being carried away by the radiated gluon,
it is in fact the heavy tail of the distribution that makes the averaged 〈∆E23〉 distinctly larger
than ω, as already demonstrated in fig. 4.10a. This heavy tail in the ∆E23 distribution is
eventually caused by a highly complicated variety of configurations for the outgoing particles
that are allowed by the underlying matrix element (3.13) and cannot be attributed to one
specific configuration. In the following some typical examples in the parameter space of
2 → 3 processes are explored in order to illustrate the interplay of momentum conservation
and phase space available due to the Gunion-Bertsch matrix element and the LPM cutoff
that eventually leads to the a large mean energy loss.

The most specific feature of the phase space sampled in 2 → 3 processes is that the
radiated gluon is predominantly emitted into the backward hemisphere in the center of
momentum frame, compare the discussion in section 3.1.4 and especially fig. 3.6. Due to
the strong bias towards negative rapidities3 that is present for large boosts (3.19), the energy
of the radiated gluons in the c.m. frame is in many cases comparable to the energies of the
two other outgoing particles even for small transverse momenta k⊥ and q⊥.

Figure 4.11.: Probability distribution of the outgoing energies E1 and E3 in the center of
momentum frame for gg → ggg processes given a certain cut in the momentum
transfer q⊥, where E3 is the energy of the emitted gluon. Jet energy E =
400GeV, medium temperature T = 0.4GeV, Nf = 0.
Left panel: 0GeV ≤ q⊥ ≤ 3GeV. Right panel: 8GeV ≤ q⊥ ≤ 12GeV.

3With respect to the direction of the jet momentum.
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Characteristic correlations of outgoing momenta

In order to quantify the characteristics of the kinematics in 2 → 3 processes dictated by
the Gunion-Bertsch matrix element (3.13) in combination with the LPM cutoff (3.17), the
kinematics of the three outgoing particles can be described by 6 independent parameters.
One such possible choice would be the set (E1, E3, cos(θ1), cos(θ3), φ1, φ3), where E1, E3

are the energies, θ1 and θ3 are the angles with respect to the incoming momentum pjet and
φ1 and φ3 are the azimuthal angles of the outgoing particles 1 and 3 (the emitted gluon),
with all values being taken in the center of momentum frame. The corresponding values for
the outgoing particle 2 can then be inferred from momentum conservation. Another choice
would be to replace cos(θ1) and cos(θ3) by the momentum transfers q⊥ and k⊥ as directly
given in eq. (3.13). Note however, that this choice hides the information whether cos(θ1)
and cos(θ3) are larger or smaller than zero, i.e. whether particles 1 and 3 are emitted in
the forward or in the backward direction. Finally, also replacing E3 by y, the rapidity of
the emitted gluon, would yield a set of parameters that is closest to the notation of the
Gunion-Bertsch matrix element.

For the purpose of this discussion the set (E1, E3, q⊥, k⊥, φ1, φ3) is used together with
additional information from the signs of cos(θ1) and cos(θ3) as needed. Any dependence
on the azimuthal angles φ1, φ3 is neglected. As discussed in section 4.3.1, for a fixed value
of the transverse momentum transfer q⊥, the transverse momentum of the emitted gluon,
k⊥, is typically on the same order as q⊥, cf. fig. 4.9a. Thus 2 → 3 events are selected and
classified according to E1, E3 and q⊥.

0 ≤ q⊥ ≤ 3

0 ≤ E1 ≤ 5 12 ≤ E3 ≤ 20 21.3% 〈∆E〉 ≈ 24.3GeV

12 ≤ E1 ≤ 20 12 ≤ E3 ≤ 20 9.9% 〈∆E〉 ≈ 31.1GeV

8 ≤ q⊥ ≤ 12

8 ≤ E1 ≤ 15 8 ≤ E3 ≤ 15 1.1% 〈∆E〉 ≈ 116.1GeV

Table 4.1.: Mean energy loss for given cuts in q⊥, E1 and E3, cf. fig. 4.11. The percentage
given in column 3 corresponds to the fraction of all events within these cuts rela-
tive to the total number of events. For reasons of readability the unit statement
GeV is omitted for q⊥, E1 and E3.

Considering an E = 400GeV jet-like gluon inside a thermal gluonic (Nf = 0) medium
with T = 0.4GeV, 2 → 3 interactions having a low transverse momentum transfer, 0GeV ≤
q⊥ ≤ 3GeV, and interactions having a rather high transverse momentum transfer, 8GeV ≤
q⊥ ≤ 12GeV are selected. Comparing with fig. 4.9a, the cut 0GeV ≤ q⊥ ≤ 3GeV roughly
selects the peak region of the q⊥ distribution, while the cut 8GeV ≤ q⊥ ≤ 12GeV selects
interactions from the tail of the distribution. Figure 4.11 then shows the color coded corre-
lations between E1 and E3 for interactions whose transverse momentum transfer lies within
these cuts.

For small values of the transverse momentum transfer that belong to the peak of the
q⊥ distribution and are thus most probable, 0GeV ≤ q⊥ ≤ 3GeV, two distinct regions in
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the E1-E3 plane are visible. The energy of the emitted gluon is quite high in all cases due
to the strong preference of events with y < 0 caused by the LPM cutoff as discussed in
section 3.1.4. One region features small energies E1, comparable to the value of q⊥, while
the other region is less pronounced and features large E1 ≈ E3. For large values of the
transverse momentum transfer, 8GeV ≤ q⊥ ≤ 12GeV only one distinct region emerges with
both E1 ≈ E3 being large. Table 4.1 lists the mean energy loss for events within these
kinematical regions. and additionally gives the abundance of events within these regions
relative to all events.

These investigations show that configurations where q⊥ and E1 are small but E3, i.e. the
energy of the radiated gluon in the c.m. frame, is large, yield an energy loss significantly
above its most probable value. Thus these configurations contribute to the heavy tail
observed in the distribution of the energy loss from 2 → 3 interactions, fig. 4.10. Since the
radiated gluon is predominantly emitted into the backward hemisphere, cf. the discussion in
section 3.1.4, there is a sizable share of configurations where due to momentum conservation
the outgoing momenta of particles 1 and 2 both point into the forward hemisphere. Boosted
back into the laboratory frame the available energy is thus mainly split between the particles
1 and 2 yielding a large energy loss. The same line of reasoning holds for cases where E1 is
on the order of E3, see the example in fig. 4.12g.

This illustrates that the tail in the ∆E23 distribution is mainly caused by configurations
where in the center of momentum frame the radiated gluon is emitted with a large energy
into the backward hemisphere and the remaining energy is split among the two other par-
ticles going into the forward hemisphere. Events with large q⊥ and k⊥ also yield a large
energy loss but are significantly less probable due to the steeply falling 1/q4⊥ contribution
in the matrix element (3.13).

Illustration of randomly selected 2 → 3 events

In order to further visualize the possible configurations of outgoing momenta in 2 → 3
interactions, figs. 4.12 and 4.12 illustrate some examples of gg → ggg events that have been
randomly chosen according to the Gunion-Bertsch matrix element (3.13) including the LPM
cutoff (3.17). These examples feature an incoming E = 400GeV gluon jet that interacts
with constituents from a thermal medium, T = 0.4GeV and Nf = 0. All of these events
are rotated such that the incoming jet momentum in the center of momentum frame points
along the positive x direction and that the outgoing momentum p1 is in the x-y plane.

4.4. Conversion of jet partons

When adding light quark degrees of freedom to the model, the possibility of particle type
conversions of jets needs to be taken into account in addition to the energy loss. When a
high energy parton propagates through the medium it loses energy as detailed in sections 4.2
and 4.3 but the interactions with the medium might also change the type of the jet particle.
Specifically, a quark jet might be converted into a gluon jet and vice versa. As in the previous
sections no distinction is made between different quark flavors and their antiquarks for the
purpose of this discussion since the possible interactions as given in section 3.4 are the same
for all light quark flavors. As in section 4.2 jet particles are tagged according to their energy,
cf. eqs. (4.4) and (4.5).
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(a) ∆E = 175.94GeV,
cos(Θ1) = 0.979, p1 = (10.4, 10.2, 2.1,−0.0)
cos(Θ2) = 0.997, p2 = (8.1, 8.0,−0.6, 0.2)
cos(Θ3) = −0.997, p3 = (18.2,−18.2,−1.5,−0.2)
(Elab

1 , Elab
2 , Elab

3 ) = (224.1, 175.4, 1.4)GeV
q⊥ = 2.12GeV, k⊥ = 1.50GeV
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(b) ∆E = 20.30GeV,
cos(Θ1) = 0.253, p1 = (1.9, 0.5, 1.8,−0.0)
cos(Θ2) = 0.996, p2 = (22.9, 22.8, 0.2, 1.9)
cos(Θ3) = −0.993, p3 = (23.5,−23.3,−2.0,−1.9)
(Elab

1 , Elab
2 , Elab

3 ) = (19.3, 379.7, 2.9) GeV
q⊥ = 1.84GeV, k⊥ = 2.79GeV
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(c) ∆E = 2.63GeV,
cos(Θ1) = 0.995, p1 = (20.9, 20.8, 2.1, 0.0)
cos(Θ2) = −0.975, p2 = (6.0,−5.8,−0.4, 1.3)
cos(Θ3) = −0.990, p3 = (15.1,−14.9,−1.7,−1.3)
(Elab

1 , Elab
2 , Elab

3 ) = (397.4, 1.2, 2.8) GeV
q⊥ = 2.09GeV, k⊥ = 2.14GeV
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(d) ∆E = 8.16GeV,
cos(Θ1) = 0.994, p1 = (21.7, 21.5, 2.5, 0.0)
cos(Θ2) = −0.976, p2 = (8.9,−8.6, 1.9, 0.1)
cos(Θ3) = −0.946, p3 = (13.6,−12.9,−4.4,−0.1)
(Elab

1 , Elab
2 , Elab

3 ) = (391.8, 2.8, 6.7)GeV
q⊥ = 2.46GeV, k⊥ = 4.39GeV

Figure 4.12.: Randomly selected gg → ggg events involving a gluon jet with E = 400GeV
(laboratory system) displayed in the c.m. frame (T = 0.4GeV, Nf = 0). All events
are rotated such that the incoming jet momentum (c.m.) points along the positive
x-direction and that the outgoing momentum p1 is in the x-y plane. All kinematical
values are given in the c.m. frame, except for the energies of the outgoing particles in
the laboratory frame, Elab

1 , Elab
2 , Elab

3 = ω. Part 1: Events 1 to 4 out of 8. Dark red:
p1, orange: p2, blue: p3 (radiated), gray: pjet (incoming).
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(e) ∆E = 132.30GeV,
cos(Θ1) = 0.875, p1 = (9.9, 8.7, 4.8, 0.0)
cos(Θ2) = 0.999, p2 = (19.3, 19.3, 0.3, 0.5)
cos(Θ3) = −0.983, p3 = (28.5,−28.0,−5.1,−0.5)
(Elab

1 , Elab
2 , Elab

3 ) = (130.8, 267.7, 3.8)GeV
q⊥ = 4.80GeV, k⊥ = 5.17GeV
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(f) ∆E = 6.90GeV,
cos(Θ1) = 0.990, p1 = (19.7, 19.6, 2.8, 0.0)
cos(Θ2) = −0.581, p2 = (1.5,−0.9,−1.2, 0.1)
cos(Θ3) = −0.997, p3 = (18.8,−18.7,−1.6,−0.1)
(Elab

1 , Elab
2 , Elab

3 ) = (393.1, 6.2, 1.7)GeV
q⊥ = 2.75GeV, k⊥ = 1.56GeV
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(g) ∆E = 12.06GeV,
cos(Θ1) = 0.998, p1 = (24.0, 24.0, 1.6,−0.0)
cos(Θ2) = 0.628, p2 = (0.8, 0.5, 0.6, 0.1)
cos(Θ3) = −0.996, p3 = (24.5,−24.5,−2.2,−0.1)
(Elab

1 , Elab
2 , Elab

3 ) = (387.9, 9.7, 5.1) GeV
q⊥ = 1.59GeV, k⊥ = 2.18GeV
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(h) ∆E = 16.26GeV,
cos(Θ1) = 0.311, p1 = (1.5, 0.5, 1.4,−0.0)
cos(Θ2) = 0.987, p2 = (21.8, 21.5,−2.2, 2.7)
cos(Θ3) = −0.992, p3 = (22.2,−22.0, 0.8,−2.7)
(Elab

1 , Elab
2 , Elab

3 ) = (16.1, 383.7, 2.1) GeV
q⊥ = 1.40GeV, k⊥ = 2.85GeV

Figure 4.12.: Randomly selected gg → ggg events involving a gluon jet with E = 400GeV
(laboratory system) displayed in the c.m. frame (T = 0.4GeV, Nf = 0). All events
are rotated such that the incoming jet momentum (c.m.) points along the positive
x-direction and that the outgoing momentum p1 is in the x-y plane. All kinematical
values are given in the c.m. frame, except for the energies of the outgoing particles in
the laboratory frame, Elab

1 , Elab
2 , Elab

3 = ω. Part 2: Events 5 to 8 out of 8. Dark red:
p1, orange: p2, blue: p3 (radiated), gray: pjet (incoming).
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The conversion of the type of a jet particle might in principle be caused by 2 → 2
interactions, for example the process gg → qq̄ could turn a gluon jet into a quark jet. It
turns out however, that the contribution of 2 → 2 processes to the conversion rates of
high energy particles is negligible. This is due to the fact that s-channel processes such as
gg → qq̄ are suppressed by 1/s and in all other 2 → 2 processes the particle types associated
with the incoming momenta pA and pB cannot reverse roles due to the underlying t-channel
processes that favor small angle scatterings.

It is thus 2 → 3 interactions that are mainly responsible for conversions of high energy
partons within BAMPS. There are basically two mechanisms that can cause such conversions
in 2 → 3 processes.

1. When due to momentum conservation the outgoing momenta p1 and p2 both point into
the forward hemisphere with respect to the original jet direction, it is not a priori clear
which of the two emerges with the highest energy in the laboratory frame and is thus
considered the new jet particle according to eq. (4.4). See the discussion in section 4.3.
In a gq → gqg process for example, the momentum pA might be associated with an
incoming gluon jet, while after the interaction particle 2 emerges with the highest
energy, which then is a quark.

2. Though for high jet energies the radiated gluon is predominantly emitted into the
backward direction as discussed in sections 3.1.4 and 4.3, there is a finite probability
that the gluon is emitted into the forward direction and actually acquires the highest
energy of the outgoing particles in the laboratory frame, Emax = ω. This would
convert a quark jet into a gluon jet.

For asymptotically high jet energies the second mechanism is very unlikely, but for smaller
jet energies the fraction of 2 → 3 interactions in which the radiated gluon acquires the
highest outgoing energy in the laboratory frame is sizable as illustrated in fig. 4.13a. For
E = 50GeV it is roughly 4%, while for a jet energy of E = 15GeV the fraction is already
roughly 15%. As was to be expected this effect does not depend on the type of the incoming
jet particle. The energy loss associated with such configurations is also distinctly above
the mean energy loss, for E = 50GeV the mean energy loss per interaction is roughly
〈∆E23〉 ≈ 11GeV, while it is 〈∆E23〉conversion ≈ 22GeV for configurations in which the
radiated gluon is the outgoing jet particle. The medium parameters for the numbers given
above are T = 0.4GeV and Nf = 3.

While for conversions according to the first mechanism the ratio of jet conversions g → q
to q → g does only depend on the ratio of the gluon and quark densities and is 1 for a medium
with ng = nq + nq̄, the second mechanism only converts quarks into gluon jets and thus
introduces an asymmetry in favor of q → g conversions. This is clearly visible in fig. 4.13b,
which shows the probability that a gluon (quark) jet with initially E0 = 40GeV has not
converted4 after propagating for ∆t = 1 fm c−1 through a static medium at T = 0.4GeV.
The gluon fugacity is held at ng/n

eq
g = 1, while the quark and antiquark fugacity is varied.

The conversion probability q → g is larger than the conversion probability for g → q for
the entire region nq/n

eq
q = nq̄/n

eq
q̄ < 1 that is relevant for the medium created in heavy

ion collisions. As was to be expected, the discrepancy is strongest for a medium in which

4Or has converted back.
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nq = nq̄ = 0, but even for a system in full thermal and chemical equilibrium the conversion
of a quark jet into a gluon jet is more likely than the conversion of a gluon jet into a quark
jet due to the second mechanism described above.

4.5. Momentum broadening of jet partons

A quantity that is often used to characterize the effect of the medium on a jet-like particle
is q̂. It is defined as the sum of the transverse momentum transfers squared divided by the
path length L the particle has traveled

q̂ (L) =
1

L

∑

i

(
∆p2⊥

)
i
, (4.11)

where i runs over all collisions the particle has undergone within the path length L. Since
the partons considered here are taken to be massless, the problem can be simplified by using
the time t instead of L from now on. Alternatively, if one knows the average momentum
transfer squared per mean free path as a function of the jet energy one can compute the
mean value of q̂ as

〈q̂〉 (t) = 1

t

∫ t

0

〈∆p2⊥〉
λ

∣∣∣∣
E(t̃)

dt̃ . (4.12)

Typically q̂ is used to quantify the transverse momentum picked up from elastic collisions
that eventually induce the radiation of bremsstrahlung gluons. In the commonly used
eikonal approximation the jet particle acquires no additional transverse momentum from
the radiation of gluons. In the approach presented here, however, radiative and elastic
interactions are treated on equal grounds and jets can also pick up transverse momentum
in inelastic 2 → 3 processes. In the following, the definition of q̂ as given above is therefore
naturally extended to also describe the evolution of transverse momentum due to inelastic
processes within BAMPS.

As a cross-check the result from both approaches, eqs. (4.11) and (4.12), have been
compared using independent calculations and perfect agreement was found. Figure 4.14a
shows the average momentum transfer squared per mean free path 〈∆p2⊥〉/λ as a func-
tion of the jet energy in a gluonic medium (Nf = 0) with T = 0.4GeV. A logarithmic
behavior at large energies can be seen for 〈∆p2⊥〉/λ from binary gg → gg interactions,
with 〈∆p2⊥〉/λ ≈ 2.3GeV2 fm−1 at E = 50GeV rising to 〈∆p2⊥〉/λ ≈ 3.7GeV2 fm−1 at
E = 400GeV. As reflected in the differential energy loss, the average transverse momentum
transfer squared per mean free path for inelastic gg → ggg interactions is much higher,
〈∆p2⊥〉/λ ≈ 22.8GeV2 fm−1 at E = 50GeV and 〈∆p2⊥〉/λ ≈ 64.2GeV2 fm−1 at E = 400GeV,
while the gluon annihilation processes ggg → gg virtually do not contribute at all. Note that
these results have been obtained prior to implementing the constraint from the small angle
approximation for 2 → 3 processes as discussed in section 3.1.3. However, the discussion in
section 3.1.3 also shows that the effect on q̂ and 〈∆p2⊥〉/λ would be rather mild, on the order
of 15%, mostly stemming from the change in the mean free path and giving no qualitative
deviation.

Figure 4.14b shows 〈q̂〉 as defined in equations eqs. (4.11) and (4.12) as a function of
the path length L = t for a gluon jet with initial energy E0 = 50GeV. As before, the
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Figure 4.13.: Particle type conversions of jet partons traversing a static medium.
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Figure 4.14.: Transverse momentum broadening of high energy gluons in a static medium
with T = 0.4GeV and Nf = 0.
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medium is characterized by T = 0.4GeV and Nf = 0. Over the range up to t = 3.5 fm c−1

shown in fig. 4.14b, the contribution from elastic interactions is almost constant at 〈q̂〉22 ≈
2.3GeV2 fm−1. For jets that interact only via binary gg → gg processes one finds that 〈q̂〉22 is
actually slowly and linearly falling to 〈q̂〉22 ≈ 1.9GeV2 fm−1 at t = 50 fm c−1. The combined
〈q̂〉 is dominated by the radiative gg → ggg contribution and starts at 〈q̂〉 ≈ 23GeV2 fm−1,
falling to 〈q̂〉 ≈ 12.5GeV2 fm−1 at t = 3.5 fm c−1. This indicates that the negligence of
transverse momentum pick-up in radiative processes might indeed be an oversimplification.

The numbers for q̂ found in this work are well within the range of values found by
other theoretical energy loss schemes, though the comparison is difficult since q̂ in these
calculations often is a free parameter or related to free parameters. Fitting to experi-
mental data the authors of [BGM+09] have found q̂0 for the central region of Au+Au at
τ0 = 0.6 fm c−1, where conditions should be roughly comparable to the setup used in this sec-
tion, to be ranging from 2.3GeV2 fm−1 based on the Higher Twist approach [MNB07], over
4.1GeV2 fm−1 based on the approach by Arnold, Moore and Yaffe (AMY) [QRT+07],
up to 18.5GeV2 fm−1 based on the approach by Armesto, Salgado and Wiedemann

(ASW) [RRNB07]. In [CGW+10] the application of the Higher Twist approach to jet
quenching data yields q̂0 ≈ 3.2GeV2 fm−1 for a medium evolution based on BAMPS (em-
ploying τ0 = 0.3 fm c−1), while a hydro based medium evolution yields q̂0 ≈ 0.9GeV2 fm−1

(τ0 = 0.6 fm c−1).



5. Simulations of heavy ion collisions

In this chapter results for the quenching of high-pT particles and for the elliptic flow obtained
from fully dynamic simulations of heavy ion collisions within the partonic transport model
BAMPS including gluon and light quark degrees of freedom are presented and compared to
experimental data in sections 5.4 and 5.5. These calculations focus on Au+Au collisions
at 200AGeV as predominantly studied at RHIC. In section 5.7 first results for Pb+Pb
collisions at 2.76ATeV, the energy of the first LHC heavy ion run, are presented. The
partonic results in the high-pT regime from calculations within the BAMPS framework are
converted into hadronic observables using fragmentation functions as detailed in section 5.3.
Additionally, section 5.6 explores the sensitivity of the results on the implementation of
the LPM effect. To begin with, however, section 5.1 offers a short introduction to the
phenomenology of jet quenching and elliptic flow as observed at the Relativistic Heavy Ion
Collider and to its theoretical assessment.

5.1. High-pT physics and elliptic flow in ultra-relativistic heavy

ion collisions

5.1.1. Jet quenching

As already briefly discussed in the introduction, elliptic flow and jet quenching are two key
observables of the quark-gluon plasma that have been, and still are, extensively studied at
RHIC and are of course equally crucial to the recently started heavy ion program at the
LHC. This section briefly summarizes the experimental status and important theoretical
frameworks. See for example [MN06, AAB+10] for in-depth reviews of the experimental
findings and their theoretical assessment.

It has been established early by the experiments at the Relativistic Heavy Ion Collider
that particles with high transverse momenta are suppressed in heavy ion collisions with
respect to a scaled p+p reference [STAR02, PHENIX02]. This phenomenon is called jet
quenching [GW94] and commonly quantified in terms of the nuclear modification factor

RAA =
d2NAA/dy dpT

TAA d2σNN/dy dpT
, (5.1)

where TAA is the nuclear overlap function, commonly determined from Glauber calculations,
and σNN is the nucleon-nucleon cross section that is commonly taken as σNN = 42mb for
RHIC energies [STAR03] and as σNN = 64mb for LHC collisions at 2.76AGeV [ALICE11].
Since the number of binary collisions is given by Ncoll = TAA σNN the nuclear modification
factor compares the yields from heavy ion collisions to an appropriately scaled p+p refer-
ence and any deviation of the nuclear modification factor from RAA = 1 indicates initial
or final state nuclear effects. At large transverse momentum the modification of particle

77
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Figure 5.1.: Compilation of the nuclear modification factor RAA for various identified
hadrons and for direct photons from Au+Au at 200AGeV as measured by
PHENIX. Figure from [PHENIX08b].

yields is expected to be caused by the hot and dense medium created in the violent heavy
ion collions, the quark-gluon plasma. Experiments observe a strong suppression of various
types of hadrons, with RAA ≈ 0.2 for pions and charged hadrons in central Au+Au colli-
sions at 200AGeV. See fig. 5.1 for a compilation of various measurements of the nuclear
modification factor for central Au+Au collisions. Measurements of d+Au confirm that this
quenching of high-pT particles is indeed caused by medium effects [STAR05a, PHENIX05].
Additionally, the nuclear modification factor of direct photons is compatible with RAA = 1,
see fig. 5.1, which would serve as a further reference since photons do not couple strongly to
a partonic (or hadronic) medium1. The above mentioned findings also hold in measurements
at distinctly larger collision energies at the LHC, see section 5.7 for more details.

The observed quenching of high-pT particles is commonly attributed to an energy loss
on the partonic level as the parton jets produced in initial hard interactions traverse the
hot medium, the quark-gluon plasma, that is created in the early stages of such extremely
violent heavy ion collisions. Due to the large momentum scales the energy loss of partonic
jets can be treated on grounds of perturbative QCD with the main contribution to the energy
loss of light partons being commonly attributed to radiative processes. The computation of
partonic energy loss by medium induced gluon radiation is addressed by several theoretical
formalisms. The four most important frameworks, upon which many more approaches are
based, go by the names of BDMPS 2, GLV 3, Higher-twist and AMY 4.

BDMPS [Zak96, BDM+97, BDMS98] and GLV [GLV00b, GLV01, GLV00a, WHDG07]

1However, the measurement of direct photons is extremely challenging and so far no final data on photonic
RAA is available.

2After the names of the original authors: Baier, Dokshitzer, Mueller, Peigne and Schiff.
3After the names of the original authors: Gyulassy, Levai and Vitev.
4After the names of the original authors: Arnold, Moore and Yaffe.
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are both based on expansions in opacity, or the number of collisions, n = L/λ, where L is the
medium length and λ the partonic mean free path. BDMPS has been the first framework to
describe gluon radiation induced by multiple scatterings in hot QCD matter. It is derived
in the limit of large opacity, n ≫ 1, basically assuming an infinite medium length L.
The typical momentum transferred from the (static) scattering centers that represent the
medium is given by the Debye mass. The medium in this approach is naturally characterized
in terms of the transport coefficient q̂ = mD/λ. GLV originally worked in the limit of one
hard scattering [GLV00b], i.e. the small opacity limit, n = 1, but the approach has later
been extended to give the radiated gluon spectrum at any opacity [GLV01, GLV00a]. In the
GLV formalism the medium is naturally characterized in terms of the density of scattering
centers, determined by the initial gluon density dNg/dy. Both formalism have later been
used to compute so called quenching weights, basically energy loss probability distributions,
that are well suited for numerical evaluation of energy loss [SW03, ASW04, EHSW05].

The higher-twist formalism [WG01, MWW07] has first been developed in the context of
deep inelastic scattering and later been applied to hot QCD matter created in heavy ion
collisions. It is based on an expansion in powers of 1/Q2, where Q determines the virtuality
of the emitted gluons. The approach is valid for E ≫ Q ≫ mD, where E is the energy of
the jet parton. The AMY formalism [AMY01b, AMY01a] is based on a description of finite
temperature QCD matter within thermal field theory aimed at computing thermal photon
production. It has later been extended to describe gluon radiation from hard particles, that
have energies on the order of T as opposed to medium that is described by modes with
gT . The approach is thus valid for large temperatures where hard and soft scales are well
separated, T ≫ gT ≫ g2T . The extended version of the AMY formalism then allows for
the computation of the energy loss of leading partons [JM05].

All these approaches can be tuned to fit the observed level of jet quenching, for example by
tuning the transport coefficient q̂ in the case of the BDMPS-based computations or the gluon
density dNg/dy in the case of GLV-based computations. All approaches coincide in that the
experimentally observed quenching of jets requires a dense medium and/or large transport
coefficients. The quantitative comparison of the formalisms however is difficult, although
more and more efforts are being made to compare different models based on a common
implementation of the medium evolution. See for example [BGM+09, QRT+07, BGM+08].
Based on such comparisons the value of the transport coefficient extracted from different
formalisms varies widely and roughly ranges from q̂ = 2GeV2 fm−1 to q̂ = 20GeV2 fm−1.
Compare the discussion in section 4.5 for more details.

Measurements of electrons from semi-leptonic decays of D- and B-mesons indicate that
the quenching of heavy quarks is comparable to that of light partons [PHENIX06, STAR07a,
PHENIX07a]. This has come as a surprise since within the radiative frameworks mentioned
above, mesons from heavy quarks are expected to lose less energy than hadrons from light
quarks and gluons due to the so-called dead cone effect [DK01] and due to the absent
contribution from gluon jets that are supposed to be more strongly suppressed. The observed
suppression of heavy quarks has thus revived the interest in alternative energy loss scenarios
and most importantly in collisional contributions to the energy loss [Mus05, WHDG07,
Djo06].
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5.1.2. Elliptic flow

In non-central heavy ion collisions the initial spatial asymmetry, often referred to as almond
shape, causes pressure gradients that translate the spatial asymmetry into an anisotropy in
the momentum distribution. The strength of this translation depends on the characteris-
tics of the medium and can be used to deduce collective properties of the medium. The
momentum anisotropy is commonly quantified in terms of a Fourier decomposition of the
azimuthal dependence of the particle yield

E
d3N

d3p
=

1

2π

d2N

dy dpT

(
1 +

∞∑

n=1

2vn cos [n(φ−ΨR)]

)
, (5.2)

where ΨR is the angle of the reaction plane. The Fourier coefficient v2, the elliptic flow,
is then used to quantify the collectivity of the medium as a response to the initial spatial
anisotropy and the resulting pressure gradients.
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Figure 5.2.: Elliptic flow of identified hadrons measured at RHIC.

Experiments at RHIC have established that the collective flow of matter created in high
energy heavy ion collisions is indeed rather strong [STAR05a, PHENIX05, PHOBOS05b].
The elliptic flow coefficient v2 of identified hadrons reaches values of v2 ≈ 0.15 to 0.25,
cf. fig. 5.2a. As already discussed in section 2.3 these values are in good agreement with
calculations employing ideal hydrodynamics [HKH+01, KH03] or hydrodynamics with a
small shear viscosity [RR07], indicating strong interactions among the medium constituents.
The observed v2 scales with the number of valence quarks as illustrated by fig. 5.2b. This
strongly indicates that the elliptic flow, or at least the main part of the elliptic flow, is
indeed built up during the partonic phase of the medium evolution.

Recent measurements at RHIC have extended the range of differential v2(pT ) of neutral
pions up to pT ≈ 10GeV [PHENIX09a]. The elliptic flow exhibits a maximum at pT ≈ 3GeV
and a subsequent slow decrease towards larger momenta. The data indicates that within
the observed pT -range v2 does not yet fully saturate as would be the case for an elliptic flow
that is purely given by an azimuthally dependent jet suppression.
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First results on the collective flow of charged hadrons from Pb+Pb collisions at the
LHC at 2.76AGeV have very recently become available [ALICE10b]. Within experimental
uncertainties no significant change in the differential v2(pT ) with respect to the RHIC results
is observed up to pT ≈ 5GeV. The integrated v2 increases by about 30% with respect to
the RHIC results due to the increased mean value of pT . The similarity of elliptic flow
at RHIC and LHC is consistent with predictions from ideal [NER09, KH09] and also from
viscous [SJG11a] hydrodynamics, however the detailed microscopic reasons for the similarity
between RHIC and LHC, both in models and experiment, still needs to be systematically
investigated.

5.2. Setup for simulations of heavy ion collisions with BAMPS

5.2.1. Initial parton distribution and technical setup

Initial parton distributions from the mini-jet model and from Pythia

The choice of the initial parton distribution for simulations of heavy ion collisions within the
BAMPS framework is in principle detached from the subsequent evolution of the medium.
Thus, different models for the initial parton distribution can be combined with BAMPS. In
this work, the mini-jet model [KLL87, EKL89] is used for simulations of heavy ion collisions
at RHIC energies, presented in sections 5.4 and 5.5, while initial conditions based on the
event generator Pythia [SMS06] are used for simulations at LHC energies, presented in
section 5.7.

In the mini-jet model the initial distribution is generated by hard scatterings of partons
from the incoming nucleons according to [WG91]

dσjet
dp2Tdy1dy2

= K
∑

a,b

x1fa(x1, p
2
T )x2fb(x2, p

2
T )
dσab
dt

, (5.3)

where x1 and x2 are the fractions of the light-cone momentum carried by the initial partons,
y1 and y2 are the rapidities of the scattered partons and fa and fb are the parton distribution
functions (PDF) of the incoming nucleons. In this work a parametrization of the PDFs by
Glück, Reya and Vogt (GRV) [GRV95] is employed. Leading order pQCD is used for
the differential parton-parton cross section dσab/dt and a phenomenological scaling factor
K = 2 is included to effectively account for higher-order corrections to the cross sections.
Produced partons are assigned a formation time ∆tf = cosh y/pT during which they are
considered to be off-shell and do thus not interact within the BAMPS framework. A lower
momentum cutoff p0 = 1.4GeV on the initial mini-jet spectrum is introduced such that the
final transverse energy density dET /dy is in accordance with experimental results [XG09].
The number of initial mini-jets from eq. (5.3) is scaled by the number of binary collisions
Ncoll = TAA σNN , cf. section 5.1.1. See [XG05, XG09, Foc06, FXG10] for more details on
this choice of the initial conditions and its implementation within the BAMPS framework.

The Pythia initial parton distributions used for simulations of Pb+Pb collisions at
2.76AGeV have been kindly provided by Jan Uphoff, details on the implementation can
be found in [UFXG10a]. Pythia generates particles from hard and from soft events whose
scaling behavior is different when going from p+p to a heavy ion collision. The yield from
hard processes scales with Ncoll as in the mini-jet model, while the scaling of the yield from
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soft processes is determined from energy conservation, giving a scaling factor that is on the
order of the number of participants Npart. Note that in contrast to the scaling employed for
the initial conditions from the mini-jet model, the number of binary collisions is effectively
reduced in this approach to account for shadowing effects [UFXG10a]. Nonpartonic particles
from the generation via Pythia, mostly diquarks, excited nucleons or beam remnants, are
discarded prior to the medium evolution within BAMPS.

In both approaches the geometry, i.e. the spatial sampling of production points for the
partons from the initial distributions, is given by the Glauber model [MRSS07] from the
overlap of Woods-Saxon distributions of the colliding nuclei

nA(r) =
n0

1 + e(r−RA)/d
, (5.4)

with n0 = 0.17 fm−3, d = 0.54 fm and RA = 6.37 fm for Au nuclei and RA = 6.62 fm for Pb
nuclei.

Cell structure and number of test particles

The number of test particles is chosen for every impact parameter such that the total number
of initial particles in the system is roughly always the same, on the order of 250 000. For
simulations of Au+Au collisions at 200AGeV with three flavors of light quarks, Nf = 3,
the number of test particles thus ranges from Ntest = 70 for b = 0 fm to Ntest = 464 for
b = 9.6 fm. Ntest = 20 is used for Pb+Pb collisions at 2.76ATeV and b = 0 fm, while for
the sake of computing time the total number of initial particles in simulations of Pb+Pb
at b = 8.2 fm is only on the order of 140 000, requiring Ntest = 45.

In the transverse plane the cells that are used for the stochastic algorithm as described
in section 3.1 have a fixed size ∆x = ∆y = 0.2 fm for simulations of Au+Au collisions
at 200AGeV and ∆x = ∆y = 0.3 fm for simulations of Pb+Pb at 2.76ATeV. In the
longitudinal direction the cell size is dynamically adjusted in space-time rapidity η such
that the number of particles in each cell is roughly the same, with a target particle number
of 10 test particles per cell. This procedure leads to approximately equally sized bins in the
longitudinal direction, indicating an almost Bjorken-type expansion [XG09]. For the setup
used in this work, the size of the cells in the longitudinal direction ranges from ∆η ≈ 0.4
for b = 0 fm to ∆η ≈ 0.05 for b = 9.6 fm for Au+Au collisions at 200AGeV and is roughly
∆η = 0.3 to 0.4 for the simulations of Pb+Pb at 2.76ATeV.

Hadronization and freezeout criterion

Since only the partonic stage of the evolution of the medium can be simulated within
BAMPS, a criterion for the termination of this partonic stage needs to be defined. This
is done by choosing a critical local energy density εc. Partonic interactions are stopped
in regions where the local energy density drops below εc. As currently no general-purpose
hadronization scheme and no treatment of the hadronic stage is implemented within the
BAMPS framework—cf. section 5.3 for hadronization of high-pT partons via fragmentation
though—εc determines the freezeout condition. Unless otherwise noted, the critical energy
density is set to εc = 0.6GeV fm−3 throughout this work. Future versions of BAMPS
might feature a hadronization scheme via the Cooper-Frye prescription [PSB+08] and a
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subsequent evolution of the hadronic medium with a hadronic transport approach, such as
UrQMD [BBB+98, BZS+99], in order to model possible effects of the hadronic stage and
the kinetic and chemical freezeout in more detail.

5.2.2. Simulation strategy for high-pT observables

Due to the steeply falling parton spectra, cf. section 5.3, the production of particles at
large transverse momenta is extremely rare. For example, using the mini-jet model for the
initial parton distribution as described in section 5.2.1 together with the parameters from
section 5.3 and appendix E, the fraction of initial produced gluons with pT > 10GeV in a
Au+Au collision with b = 3.4 fm (0%–10% central) is only P (pT > 10GeV) ≈ 2.7 · 10−6.
Gluons above 20GeV are even rarer by two orders of magnitude, P (pT > 20GeV) ≈
2.9 · 10−8. This presents a considerable challenge to the investigation of high-pT observ-
ables within a transport model. In principle the following strategies to study observables at
large pT are conceivable:

Strategy 1

Compute a large number of events without any bias to obtain sufficient statistics for
high-pT observables. This is what is naturally done in experiment. For comparison, in
the 2007 RHIC run the PHENIX experiment has recorded almost 5.5 · 109 minimum
bias events [PHENIX09b, Fis10].

Strategy 2

Compute only a limited number of events that are known to contain high-pT particles
and have been selected according to a given criterion. The results need then to be
recombined using appropriate weighting factors. In mathematical terms, this strategy
is a type of importance sampling.

Strategy 3

Separate the simulation of high-pT particles from the computation of the evolution
of the medium. In this strategy an artificially large number of high-pT particles is
superimposed on the evolution of the bulk medium. The latter can be obtained from
recorded results of few, in the most extreme case: one, randomly chosen simulated
event(s).

With simulation times for a single event that—depending on the cell size, the number
of test particles, etc.—range from several hours to a couple of days, strategy 1 is clearly
infeasible. Importance sampling, strategy 2, is described in more detail in [Foc06] and has
been used for the computation of the results presented in [FXG09, FXG10]. However, even
within this strategy on the order of 1000 events need to be simulated for a given impact
parameter in order to obtain sufficient statistics up to pT ≈ 30GeV. Therefore the results
presented in this work are based on strategy 3.

Technically this strategy is implemented as follows: in order to compute high-pT observ-
ables at a given impact parameter, at first a couple of randomly selected events need to
be fully simulated to obtain information on the bulk evolution. The full history of particle
collisions, cell configurations, etc. is recorded for later use. Subsequently a number Njet of
high-pT particles, for the purpose of this discussion called jet particles, is generated from
the mini-jet model with a lower cutoff pmin

T, jet. These particles are then superimposed on the
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previously recorded evolution of the medium. The jet particles interact with the medium
particles as in the regular version of BAMPS, with the only difference that the medium
particles are taken from the recorded history of the underlying event and are not affected
by the interactions with the jet particles. Jet particles among themselves do not interact
and jet particles whose momentum falls below a threshold pthreshT are discarded. Particles
created in 2 → 3 interactions of jet particles with medium particles are added to the list of
jet particles if their momentum is above the threshold pthreshT . Similarly to the treatment of
high energy particles in a static medium in chapter 4, this approach thus neglects possible
responses of the medium to the propagating jets, such as the possible creation of shock
waves, cf. section 3.3.3. It is conceptually similar to approaches that use hydrodynamic
models of the medium as a basis for Monte Carlo evaluation of jet quenching formalisms
(section 5.1.1), see for example [Ren08, ACS09, SGJ09].

To generate sufficient statistics up to the desired value of pT ≈ 30GeV, two sets of runs
are used, one with pmin

T, jet = 10GeV and one with pmin
T, jet = 18GeV. The results from these

two sets are then combined by individually fitting the initial spectra of gluonic jet particles
with power laws, eq. (5.8), from which a scaling factor is derived that is then used to
appropriately scale the set with pmin

T, jet = 18GeV. In order to obtain particle spectra as
shown and discussed in section 5.3.2, the same procedure is repeated, this time matching
the spectra of the jet particles to the spectra of the medium particles. The threshold for the
treatment as jet particles is set to pthreshT = 4GeV. Results presented in section 5.5 are based
upon 3 to 10 independent realizations of the bulk evolution and averaged over 80 to 200 sets
of runs with roughly 1000 to 4000 initially added jet particles per run. As this procedure
yields a comparatively large number of high-pT particles per run and the computation time
for each of these runs is cut down to a couple of hours, roughly 3 h to 30 h depending on
various system parameters, it allows for the simulation of high-pT observables with adequate
statistics within reasonable computation time. Nevertheless, simulations within the BAMPS
framework remain resource and time consuming.

5.2.3. Impact parameters and centrality classes

Experimentally the impact parameter of a given event cannot be determined directly and
thus also the selection of events with a fixed impact parameter is of course not possible.
Rather events are classified according to their centrality as given by the measured distribu-
tion of an observable that is assumed to be monotonically related to the impact parameter.
The centrality is then given in terms of fractions of the total integral of this distribution,
usually stating the centrality as a percentage range, e.g. “0%-10%” labels the 10% most
central events. Common means of centrality determination involve some sort of multiplicity
distribution or the distribution of the hadronic cross section given by detector counts, see
[MRSS07] for an excellent review.

In order to obtain information, for example, on the mean impact parameter 〈b〉 or the
mean number of participants 〈Npart〉 that correspond to the experimental centrality classes,
Monte-Carlo calculations of the Glauber model including simulated detector responses are
used to fit the distributions that underlie the centrality class determination. From these
fits information on the impact parameter, the number of participants, etc. can then be
extracted.

Based on a simple Glauber calculation, as detailed in [XG05], table 5.1 lists the number of
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b [fm] 0.0 2.0 2.8 3.4 4.0 4.5
Npart 378.3 364.7 336.6 320.7 294.9 273.2

b [fm] 5.0 5.6 6.3 7.0 8.6 9.6
Npart 248.3 224.5 195.2 170.5 112.3 78.22

Table 5.1.: Npart corresponding to impact parameters used for BAMPS simulations of
Au+Au at 200AGeV from Glauber calculation with σNN = 42mb and param-
eters for the Woods-Saxon density distribution (5.4) as given in section 5.2.1.

Centrality 0%–10% 10%–20% 20%–30% 30%–40% 40%–50%
〈Npart〉 PHENIX 325 235 167 114 74.4

b [fm] BAMPS 3.4 5.6 7.0 8.6 9.6
Npart BAMPS 321 224 171 112 78.2

Table 5.2.: Centrality classes and associated mean number of participants for Au+Au col-
lisions at 200AGeV from PHENIX [PHENIX08a] and corresponding impact pa-
rameters as used in this work to represent these centrality classes.

participants Npart corresponding to the values of the impact parameter b that are used for the
simulations in this work. Now, in order to accurately compare results for a given observable
from BAMPS to experimental results in a certain centrality class, the observable would need
to be evaluated within BAMPS at a sufficiently large number of impact parameters such that
reliable interpolation is possible. Then the observable would need to be averaged over the
impact parameter interval that, according to Glauber Monte-Carlo modeling, corresponds to
the centrality class in question. Unfortunately, due to the computation time—the simulation
of a single heavy ion collisions within BAMPS with parameters as described above is very
time consuming and can take up to several days—the simulation of events with sufficient
statistics at an adequately large number of impact parameters is not feasible. Thus, only a
limited set of impact parameters is selected for simulation, whose values are chosen as given
in table 5.1 for reasons of comparability with previous BAMPS studies [XGS08, XG09].
An association with experimental centrality classes is then made in terms of the number of
participants from Glauber calculations, representing each centrality class by a fixed impact
parameter that roughly matches the expected number of participants, see table 5.2. While
this method is certainly crude and introduces additional uncertainties into the comparison
with experimental results, it should—especially in the high-pT sector—be sufficient to allow
for a critical assessment of BAMPS results on the basis of experimental data.

5.3. Spectra and fragmentation of high-pT partons

5.3.1. Hadronization via fragmentation functions

As BAMPS is a partonic transport model the direct comparison of results to experimen-
tal observables is difficult or at least requires careful and individual consideration. So far
the concept of parton-hadron duality has been employed in the interpretation of results on
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bulk observables from BAMPS as detailed especially in [XG09]. Assuming that a system
of thermalized partonic bulk matter retains its distribution according to thermal statis-
tics across the phase transition and furthermore that the change in temperature during
hadronization is comparatively small, observables such as the elliptic flow at low momenta,
the integrated elliptic flow or the shape of transverse momentum spectra are expected to
remain rather unaffected. Therefore experimentally measured pions—that dominate the
hadronic bulk—can be compared to gluons—that dominate the partonic medium—from
BAMPS calculations with respect to such observables. But already in the intermediate pT
range of about 1GeV to 3GeV this duality becomes questionable and recombination or co-
alescence of partons is believed to play a crucial role in the hadronization process [GKL03].
This has for example consequences on the comparison of the elliptic flow from BAMPS to
experimental results in the relevant momentum range [XG09], as also briefly discussed in
section 5.4. An incorporation of recombination processes into BAMPS will be the topic of
upcoming studies and is not pursued further in the present work.

The probably most straightforward model of hadronization exists for high-pT particles
and goes by the descriptive name of fragmentation. The conceptual idea is very simple:
a high energy parton fragments into hadrons that each carry a certain fraction z of the
original parton momentum. This process is described in terms of so-called fragmentation
functions (FF)

Dh
i (z,Q

2) . (5.5)

Dh
i (z,Q

2) encodes the probability that a parton of type i (gluon, quark or antiquark of a
certain flavor) fragments into a hadron of type h that carries a given fraction z of the parton
momentum. Q2 gives the momentum scale at which the fragmentation process occurs.

Fragmentation functions are an important ingredient of the factorization theorem and
can be determined from theoretical considerations or from analysis of experimental data on
jet observables in fundamental reactions such as e+e−. The most powerful approach is the
combination of theoretical models with global fits to experimental data. The most recent
and most elaborate set of thus obtained fragmentation functions comes from global fits to
various experimental data by Albino, Kniehl and Kramer (AKK) [AKK08]. This set of
fragmentation functions is used for the analysis in this work.

In principle the probabilities given by the fragmentation functions could be used to im-
plement a Monte Carlo scheme for the fragmentation of partons from BAMPS on a single
particle basis. However, certain subtleties would need to be addressed in doing so, for
example the distribution of transverse momentum with respect to the jet axis. But since
the fragmentation on a single particle basis is not compulsory for the investigation of the
observables discussed in the present work, the implementation of a Monte Carlo based frag-
mentation scheme is left to a separate study. Instead an even simpler approach is chosen
in which the hadronic observables are computed from folding the partonic observables with
the fragmentation functions.

The yield of hadrons of type h at a given momentum ph⊥ can then be calculated from the
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partonic yields as
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(5.6)

where phT is the momentum of the hadron h transverse to the beam axis, piT is the transverse
momentum of a parton of type i and the momentum fraction is given by z = phT/p

i
T . The

minimum momentum fraction zmin would in principle be zero, corresponding to piT = ∞, but
the AKK fragmentation functions start at zmin = 0.05. Due to the steeply falling momentum
spectra of particles produced in hard QCD scatterings however, very small values of z do
not contribute significantly to the hadron yield at given finite momentum. The choice of
the scale Q of the fragmentation process is somewhat arbitrary and conventionally taken to
be on the order of the hadron momentum phT , with Q = phT /2 being used for the calculations
presented in this work. The sum in eq. (5.6) runs over all relevant parton types. For
simulations with three light (massless) quark flavors, i.e. Nf = 3, this comprises gluons,
up, down and strange quarks as well as the corresponding antiquarks. In a similar way the
elliptic flow of hadrons at high transverse momentum could be computed from the high-pT
elliptic flow of partons
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where the yields are integrated over the rapidity range corresponding to the rapidity range
at which v2 is to be considered. While eq. (5.7) is theoretically correct, it is of limited
benefit since in practice the most interesting pT regions in terms of the elliptic flow are
not accessible by means of fragmentation—at least not on a theoretically firm ground—and
thus this approach is not pursued further in the present work. See also the discussion in
section 5.4.

The above presented approach implicitly assumes that the fragmentation of high energy
partons takes place in vacuum, only after possible modifications of the high energy partons
by the medium. Under this assumption the use of fragmentation functions from fits to
experimental results from elementary interactions, such as the AKK set of fragmentation
functions, is justified. This approach is in conceptual contrast to approaches in which
the fragmentation functions themselves are modified to incorporate medium effects, see for
example [ACSX08, DW10].

5.3.2. Fits to parton spectra from BAMPS

The observables extracted from BAMPS simulations are necessarily binned and thus discrete
variables rather than continuous functions. This also applies to particle spectra d2N

dy dpT
extracted from BAMPS which are binned according to the transverse momentum pT . The
partonic spectra presented in the following are all taken at midrapidity, more specifically in
a window y ∈ [−0.5, 0.5], the bin size is ∆pT = 1GeV and the BAMPS data reaches roughly
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(b) Initial parton spectra for b = 9.6 fm.
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(c) Initial and final spectra of gluons for
b = 3.4 fm. The shaded area indicates the
standard error arising from the determina-
tion of the fit parameters.
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(d) Initial and final spectra of gluons for
b = 9.6 fm. The shaded area indicates the
standard error arising from the determina-
tion of the fit parameters.

Figure 5.3.: Parton spectra from simulations of Au+Au at 200AGeV for b = 3.4 fm and
b = 9.6 fm within the BAMPS framework. Symbols represent the spectra as
directly extracted from BAMPS, while lines represent the fits to the spectra
according to eq. (5.8).
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up to pT ≈ 30GeV. While eq. (5.6) can be readily transformed into a discrete sum, it is
the limited range in pT that causes problems. The yield of hadrons at 15GeV or 20GeV
already receives sizable contributions from partonic transverse momenta beyond the reach
of the BAMPS data as illustrated in fig. 5.4 and discussed in more detail in section 5.3.3.

In order to allow for the computation of hadron yields at large transverse momenta,
pT & 15GeV, the spectra obtained from BAMPS are fitted with a power law

f(pT ) = a p−b
T (5.8)

for each parton species individually. The thus determined fits to the parton spectra are then
used in eq. (5.6) to compute hadronic yields via fragmentation. This procedure introduces
an additional uncertainty from the errors in the determination of the fit parameters that
arises from fluctuations of the BAMPS data, but the advantages clearly prevail. The fit
parameters for all centralities and parton species, together with the corresponding standard
errors, are listed in appendix E.

5.3.3. Fragmented hadron spectra from BAMPS

The ratios with which different parton species from different momenta contribute to a hadron
at given momentum not only depends on the fragmentation functions but rather, according
to eq. (5.6), on the combination of fragmentation functions and parton spectra. The proba-
bility that a hadron of type h at momentum phT stems from a specific parton of type i with
momentum piT = phT/z is given by

P i→h(z, phT ) =
1

∑
i

∫ 1
zmin

dz dNi

dpT
(
ph
T

z )Dh
i (z,Q

2)

dNi

dpT
(
phT
z
)Dh

i (z,Q
2) (5.9)

where the dependence of the spectra on the rapidity y is omitted. All results given in the
following are from a window y ∈ [−0.5, 0.5] around midrapidity. The probability that a
hadron of type h with momentum phT stems from the fragmentation of a parton i with any
momentum is then simply given by the integral over the momentum fraction z

P i→h(phT ) =

∫ 1

zmin

dz P i→h(z, phT ) (5.10)

with zmin as discussed in section 5.3.1.
Figure 5.4a shows P i→h(z, phT ) for the fragmentation of gluons, up and down quarks

into neutral pions h = π0 at phT = 10GeV and phT = 20GeV. The parton spectra are
from fits to BAMPS simulations of central, b = 0 fm, Au+Au collisions at 200AGeV, as
discussed in section 5.3.2. The contributions from gluons, up and down quarks are chosen
for illustration since these parton species dominate the spectra as seen in figs. 5.3a and 5.3b.
The contribution from quarks is largest at comparatively large z, z roughly 0.7 to 0.8, thus
the momenta of quarks fragmenting into a neutral pion are mostly rather low and close to the
final hadron momentum. The contribution from the fragmentation of gluons predominantly
stems from smaller values of z, with a maximum roughly at 0.5 to 0.6. This confirms the
point made in section 5.3.2 that hadrons already at phT = 10GeV or phT = 20GeV receive
sizable contributions from partons, gluons in this case, beyond the reach pT ≈ 30GeV of
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the current BAMPS calculations, necessitating the use of fit functions. The contribution of
fragmentation from quarks increases with increasing hadron momentum, while the peak of
the P i→h(z, phT ) shifts only slightly. Figure 5.4b confirms that the same qualitative features
also hold for the fragmentation into charged hadrons and protons.

gluons quarks antiquarks

π0 (pT = 10GeV) 37.71% 52.12% 10.17%

π0 (pT = 20GeV) 15.72% 78.30% 5.98%

h+ + h− (pT = 10GeV) 45.50% 44.85% 9.65%

p (pT = 10GeV) 62.27% 31.61% 6.12%

Table 5.3.: Contribution of gluons, quarks and antiquarks to selected examples of hadrons
at given momentum (neutral pions at 10GeV and 20GeV, charged hadrons and
protons at 10GeV) corresponding to fig. 5.4. The given percentage is the inte-
grated probability P i→h(phT ) from eq. (5.10), with P q(q̄)→h = P u(ū)→h+P d(d̄)→h+
P s(s̄)→h.

Table 5.3 lists some values of the integrated probability P i→h(phT ) from eq. (5.10), i.e.
the probability that a given hadron stems from the fragmentation of gluons, quarks or
antiquarks, for the examples given in fig. 5.4. In order to complement this information,
fig. 5.5 shows the contribution of fragmentation from gluons, quarks and antiquarks into
neutral pions or charged hadrons as a function of hadron momentum for the initial parton
spectra of Au+Au at 200AGeV and b = 0 fm as simulated in BAMPS. This confirms that
the contribution from quarks increases with increasing hadron momentum and is indeed
the dominating contribution from roughly phT ≈ 10GeV on, whereas hadrons with lower
momentum are predominantly stemming from the fragmentation of gluons. As was to be
expected from the comparison of quark to antiquark spectra in figs. 5.3a and 5.3b, the
contribution of antiquarks is small, on the order of 5% to 10%.

Finally, fig. 5.6 shows hadronic spectra of neutral pions and charged hadrons obtained via
fragmentation of initial and final parton spectra obtained from simulations of Au+Au at
200AGeV with impact parameters b = 3.4 fm, corresponding to a centrality of 0% to 10%,
and b = 9.6 fm, corresponding to 40% to 50% central collisions. Note that while for reasons
of clarity the quark yields given in fig. 5.6 are the sums over all quark and antiquark flavors,
the fragmentation procedure is of course done on the level of single quark flavors as indicated
by the sum in eq. (5.6). At roughly 15GeV to 20GeV the hadron spectra obtained directly
from the discrete BAMPS data points by evaluating the integral in eq. (5.6) as a sum start
to deviate from the hadron spectra obtained from the power law fits to the parton spectra
because of the limited BAMPS data. This explicitly confirms the argumentation from
section 5.3.2. For checking purposes the fragmentation procedure has also been performed
based on the fitted parton spectra but using an upper integration limit piT,max = 29GeV,
thus mimicking the limited range of the BAMPS data. The results perfectly agree with the
approach based on the discrete BAMPS data points.

Already from the spectra in fig. 5.6 a suppression of the yields in the final state com-
pared to the initial spectra is visible. This is the so called nuclear modification due to the
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z = phT/p

i
T for different parton species i, hadron types h and hadron momenta

phT . Parton spectra from initial state of BAMPS simulations of Au+Au at
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Figure 5.5.: Contribution of fragmenting gluons, quarks and antiquarks to neutral pions
and charged hadrons as a function of hadron momentum phT . The contribution
is given in terms of the integrated probability P i→h(phT ) from eq. (5.10), with

P q(q̄)→h = P u(ū)→h + P d(d̄)→h + P s(s̄)→h. Parton spectra from initial Au+Au
at b = 0 fm are used as in fig. 5.4.

quenching of high-pT particles in the partonic medium and will be discussed in section 5.5
in more detail. Interestingly enough, the deviation of hadron spectra computed via the
direct fragmentation of discrete BAMPS data points from hadron spectra computed via the
fragmentation of fitted parton spectra is very similar for initial and final spectra. The error
can thus be expected to cancel to a large extend when taking the ratio of the spectra, i.e.
computing the nuclear modification factor RAA, as will be detailed in section 5.5.

5.4. Elliptic flow and thermalization at RHIC from simulations

with BAMPS

5.4.1. Elliptic flow in a purely gluonic medium

The elliptic flow from BAMPS simulations of Au+Au collisions at 200AGeV has already
been extensively studied for the case of a purely gluonic medium (Nf = 0) by Xu and
Greiner in [XGS08, XG09]. In [FXG10] these investigations have been extended to the
region of high transverse momenta, roughly up to pT = 8GeV.

The elliptic flow within BAMPS is simply calculated from the anisotropy in the transverse
momentum distribution

v2 =

〈
p2x − p2y
p2T

〉
(5.11)

as the orientation of the reaction plane in the simulations is known and always fixed to the
x-z plane. Assuming parton-hadron duality it has been demonstrated in [XGS08, XG09]
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(a) Initial spectra for b = 3.4 fm.
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(b) Final spectra for b = 3.4 fm.
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(c) Initial spectra for b = 9.6 fm.

dN
 / 

(2
π 

p T
 d

p T
 d

y)
 [G

eV
-1

]

pT [GeV]

gluons
quarks

h++h-

π0 (x 0.1)
10-20

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

 5  10  15  20  25  30

(d) Final spectra for b = 9.6 fm.

Figure 5.6.: Spectra of neutral pions (scaled by a factor of 0.1) and charged hadrons from
fragmentation of partonic spectra from BAMPS simulations of Au+Au at
200AGeV with impact parameters b = 3.4 fm (upper panels) and b = 9.6 fm
(lower panels). Initial spectra in the left panels are compared with final spectra
in the right panels. All spectra taken at midrapidity, y ∈ [−0.5, 0.5].
Gluon and quark spectra from BAMPS (symbols) are shown together with
power law fits to the spectra (solid lines). The given quark yield is the sum over
all quark and antiquark flavors. Solid lines for the hadrons represent the frag-
mented spectra based on the power law fits to the parton spectra, symbols repre-
sent the fragmented spectra directly based on the parton spectra by evaluating
eq. (5.6) as a discrete sum and dashed lines represent fragmented spectra based
on the power law fits but limiting the integration range by piT,max = 29GeV
in eq. (5.6). Shaded areas indicate the standard error from the uncertainty in
the fit parameters. For the final hadron spectra at b = 3.4 fm the shaded area
would touch the lower bounds of the plot and is not shown.
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that matter as simulated within BAMPS exhibits a considerable collectivity and that the
integrated v2 is in very good agreement with experimental data for almost all centralities as
illustrated in fig. 5.7a. Different combinations for the values of αs and εc have been explored
in these studies, giving best results for either αs = 0.6 and εc = 1.0GeV fm−3 or for αs = 0.3
and εc = 0.6GeV fm−3, with the latter set of values being the parameters used in this work.
Although the integrated v2 agrees very well with experimental data, the differential v2(pT ),
i.e. the elliptic flow as a function of transverse momentum, shows significant deviations from
the experimental results. Especially at intermediate momenta, 1.5GeV . pT . 4.0GeV the
BAMPS results underestimate the data by roughly 20% to 50%. See fig. 5.7b for examples.

As discussed in great detail in [XG09], the complex—and still not thoroughly understood—
process of hadronization is crucial to the interpretation of elliptic flow observables at low
and intermediate transverse momenta. Based on the picture of parton-hadron duality, the
comparison of particle yields, transverse energy and mean transverse momentum suggests
that at low transverse momenta, pT . 1GeV, a gluon on the average hadronizes into
1.5 to 2 pions [XG09]. In the intermediate pT range however, quark recombination is ex-
pected to play a substantial role in the hadronization process. In a simple estimate, the
elliptic flow of a pion would be roughly twice as large as that of the recombining quarks
vπ2 (pT ) ≈ 2vq2(pT /2) ≈ 2vg2(pT ). In this picture gluons are converted into quark-antiquark
pairs first.

The issues of hadronization at low and intermediate pT and the incorporation of possible
hadronization models into the BAMPS framework will not be resolved in this work. Rather
the question how the inclusion of light quarks affects the elliptic flow on the partonic level
will be addressed in the following. The full centrality scan from fig. 5.7a is not repeated for
Nf = 3 however, the comparison is limited to a fixed impact parameter, b = 7.0 fm, roughly
corresponding to 20%–30% centrality.

5.4.2. Thermalization of the medium including light quarks

The early thermalization of the gluonic medium created in heavy ion collisions at RHIC
energies in simulations including pQCD based 2 ↔ 3 interactions has been one of the
major results obtained within the BAMPS framework, cf. section 3.3.1 and [XG05]. To
demonstrate that the early thermalization of the medium still holds when including light
quark degrees of freedom, fig. 5.9a shows the time evolution of gluon and quark spectra in the
central, |η| < 0.5 and xT < 1.5 fm, region of a Au+Au collisions with an impact parameter
b = 7.0 fm. As was to be expected, the time scale for the kinetic equilibration does not
change when including light quarks into the simulation. Furthermore the slopes of gluon
and quark spectra are equal already after 1 fm c−1 and evolve identically, indicating that
quarks and gluons reach a common kinetic equilibrium. Compared with the purely gluonic
case of previous versions of BAMPS, indicated by the gray dot-dashed line in fig. 5.9a, the
slope of the spectra in simulations with Nf = 3 is slightly steeper, yielding a temperature
that is reduced by about 10%.

Already from the spectra however, it is clearly visible that the total number of quarks5,
Nq +Nq̄, stays below the number of gluons throughout the whole evolution of the medium.
As quarks are produced by gg → qq̄ processes during the evolution, the difference in the

5Unless otherwise noted, quarks signifies a sum or an average over all quark and antiquark flavors.
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(a) Integrated v2 as a function of Npart for Au+Au collisions at
200AGeV. Lines represent results from BAMPS for different combina-
tions of the parameters αs and εc obtained for |η| < 1.0. Experimental
data points for charged hadrons from STAR [STAR05b] and PHOBOS
[PHOBOS05a]. Figure from [XG09].

(b) Differential v2(pT ) for 10%–20% and 30%–40% central Au+Au collisions at
200AGeV. Lines represent results from BAMPS for different combinations of
the parameters αs and εc obtained for |η| < 0.5. Experimental data points from
PHENIX [PHENIX03, PHENIX07b] and STAR [STAR05b]. Figure from [XG09].

Figure 5.7.: Results for the elliptic flow from previous studies with BAMPS for a purely
gluonic medium (Nf = 0) compared to experimental data.
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(a) Differential v2 of gluons and quarks from simulations (Nf = 3) of
Au+Au at 200AGeV and b = 7.0 fm extracted at |η| < 0.5. Simu-
lation parameters: αs = 0.3 and εc = 0.6GeV/fm3. For comparison
the solid line shows the gluon v2(pT ) from simulations with Nf = 0
[FXG10]. Experimental data from PHENIX is shown for π+ + K+

from 20%–40% central [PHENIX03] and for π0 from 20%–30% cen-
tral [PHENIX09a] Au+Au at 200AGeV. Experimental data is scaled
by the number of constituent quarks, nq = 2 for pions and kaons, as
v2(pT /nq)/nq .
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(b) Differential v2 of gluons from simulations (Nf = 3) of Au+Au at
200AGeV and b = 7.0 fm extracted at |η| < 0.5. Open symbols
from simulation of the bulk evolution, filled symbols from super-
imposed high-pT particles. Simulation parameters: αs = 0.3 and
εc = 0.6GeV/fm3. The solid line represents a fit to the data according
to eq. (5.12), the shaded area indicates the single prediction band for
the fit. See text for details.

Figure 5.8.: Elliptic flow for Au+Au at b = 7.0 fm from BAMPS studies including light
quarks.
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(b) Build-up of elliptic flow v2(pT ) of gluons.
v2(pT ) extracted at |η| < 0.5.

Figure 5.9.: Time evolution of the elliptic flow and of parton spectra in simulations of
Au+Au at b = 7.0 fm including light quarks (Nf = 3). Simulation param-
eters: αs = 0.3 and εc = 0.6GeV/fm3.

yields decreases but is still sizable towards the freezeout of the partonic medium as given by
the critical energy density εc. Of all particles with pT < 5.0GeV that are initially created
at midrapidity, |η| < 0.5, for Au+Au at b = 7.0 fm from the mini-jet model using GRV
parton distribution functions and a lower cutoff in transverse momentum p0 = 1.4GeV, cf.
section 5.2.1, only 9.6% are quarks or antiquarks. During the evolution of the medium this
ratio increases to roughly 14.1%. In the most central region, xT < 1.5 fm, for which the
spectra in fig. 5.9a are shown and that clearly reaches kinetic equilibrium, the ratio of quarks
increases to 21.1%. In full equilibrium however, Boltzmann statistics of massless partons
gives a ratio of quarks to gluons of 9/4 and the fraction of quarks in the system should hence
be roughly 69.2%. It is thus clear that although the system reaches kinetic equilibrium it
remains far from chemical equilibrium and quarks are strongly undersaturated throughout
the entire evolution of the partonic medium.

5.4.3. Elliptic flow including light quarks

Elliptic flow at low and intermediate transverse momenta

Figure 5.8a shows the differential v2(pT ) of gluons and quarks as extracted from simulations
of Au+Au at 200AGeV and a fixed impact parameter of b = 7.0 fm including light quarks,
Nf = 3. For comparison the gluon v2(pT ) from a previous study that was limited to Nf = 0
[FXG10] is also included. Compare fig. 5.9b for the time evolution of the elliptic flow of
gluons. While the build-up of the v2 of quarks is not explicitly shown in fig. 5.9b, it does
not significantly differ from the build-up of gluon v2.

The most notable feature of the results is the great similarity of v2(pT ) of gluons and
quarks. v2 as a function of transverse momentum steeply rises from 0GeV to 1GeV up to
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v2 ≈ 0.09, then the increase slows down but v2 keeps gradually rising up to pT ≈ 4GeV. As
was to be expected from the similarity of the cross sections of 2 ↔ 3 processes for gluons
and quarks, cf. section 4.1, that are crucial to the strong build-up of elliptic flow in BAMPS
[XGS08, XG09], the elliptic flow of gluons and quarks does not differ much. Only at low
transverse momenta, pT < 1GeV, an excess of gluon v2 over quark v2 is visible that might
be the result of the larger interaction rates of gluons. However, statistics in the BAMPS
data are limited and the slight difference might not be significant.

Compared with the elliptic flow of gluons from calculations using Nf = 0 the changes
from the inclusion of light quarks are small. v2 is slightly enhanced at low transverse mo-
menta, pT . 1.5GeV, and slightly decreased at intermediate transverse momenta, 1.5GeV .

pT . 4GeV. But magnitude and general behavior of the differential elliptic flow remain the
same. The elliptic flow from BAMPS is also compared to experimental data from PHENIX
in fig. 5.8a, specifically to v2 of positively charged pions and kaons from 20%–40% central
Au+Au collisions at 200AGeV [PHENIX03] and to v2 of neutral pions from 20%–30%
central Au+Au collisions at 200AGeV [PHENIX09a]. The experimental v2(pT ) is scaled
by the number of constituent quarks as v2(pT /nq)/nq, with nq = 2 in the case of pions and
kaons, in order to compare to the quark elliptic flow. While the consistency of the com-
parison of BAMPS data at fixed b = 7.0 fm to experimental data at different centralities,
20%–30% or 20%–40%, might be improved by scaling the results with the initial eccen-
tricity of the system, the comparison of the “raw” data is sufficient for the purpose of this
work.

The magnitude to which the elliptic flow rises in the BAMPS results for quarks and gluons
agrees rather well with the maximum value of v2 ≈ 0.1 in the experimental data, the latter
scaled by the number of constituent quarks. This nicely confirms that the difference in the
bare v2 at intermediate transverse momenta can indeed be reconciled by virtue of a quark
recombination picture for the hadronization as discussed briefly in section 5.4.1 and in more
detail in [XG09]. However, recent experimental data consistently indicates that v2(pT ) of
mesons reaches a maximum in the range 2GeV < pT < 3GeV [PHENIX09a, STAR08].
The position of the peak appears to be rather insensitive to the centrality selection and the
particle species. Translated into quark transverse momentum by means of the recombination
picture, the peak is located at pT ≈ 1.0GeV to 1.5GeV as is clearly visible in fig. 5.8a. The
BAMPS data however continues to rise beyond this value of pT , or at least does not start to
decrease. Indeed, from a fit to the gluon v2 including high-pT results, see fig. 5.8b and the
discussion below, partonic v2 from BAMPS is found to peak at pT ≈ 3GeV to 4GeV. Thus,
while the magnitude of elliptic flow is in good agreement, the position of the peak in v2(pT )
found in BAMPS cannot be reconciled with the position of the peak found in experimental
data within a simple quark recombination picture.

Elliptic flow at high transverse momenta

In [FXG10] the range of differential elliptic flow v2(pT ) for simulations of a purely gluonic
medium created in Au+Au at 200AGeV and a fixed impact parameter of b = 7.0 fm has
already been extended up to pT ≈ 8GeV. As shown in fig. 5.8b, the present study further
extends the range in transverse momentum, up to 25GeV. Due to the simulation strategy for
high-pT observables, as described in section 5.2.2, results for the elliptic flow of bulk particles,
pT . 5GeV, and results for the elliptic flow of high-pT particles, pT > 10GeV, are obtained
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using different simulation techniques. While the elliptic flow of the bulk particles is obtained
from conventional BAMPS simulations, the elliptic flow at high transverse momenta is
computed from superimposed high-pT particles as detailed in section 5.2.2. The different
treatments cause a gap in the accessible pT range from 5GeV to 10GeV.

In spite of these technical difficulties and poor statistics in the v2 signal at large pT , a
clear picture emerges. As discussed above and already in [FXG10], the differential v2(pT )
rises up to pT ≈ 3GeV to 4GeV with a peak value of v2 ≈ 0.1 and from pT ≈ 5GeV on
v2(pT ) starts to decrease again. The high-pT data in fig. 5.8b clearly confirm the decrease
in v2 towards large transverse momenta. And though statistics in this region is limited,
the elliptic flow of gluons in the BAMPS simulation of Au+Au at b = 7.0 fm is clearly
non-zero up to partonic momenta of 20GeV to 25GeV. The results are nicely described by
a phenomenological fit function devised in [PHENIX09a]

v2(pT ) =

(
a+

1

pnT

)
(pT /λ)

m

1 + (pT /λ)m
. (5.12)

In this fit function the second term describes a rapidly rising and saturating elliptic flow at
low and intermediate momenta, while the first term accounts for the transition from bulk
to high-pT physics. In the latter the elliptic flow is ultimately determined by the angular
dependence of the jet suppression, cf. section 5.5. The constant a in the first term thus
models the asymptotic value of v2 that would appear if the elliptic flow was purely due to
jet quenching and the nuclear modification factor was constant in pT as the experimental
data suggest, cf. section 5.1.1. The fit parameters as used in fig. 5.8b are λ = 4.33 ± 7.4,
m = 1.639 ± 0.21, n = 1.149 ± 0.18 and a = 0.0168 ± 0.0171, with pT in eq. (5.12) being
taken as a dimensionless quantity, pT /GeV.

The BAMPS results of gluonic v2(pT ) at b = 7.0 fm are thus in good qualitative agreement
with recent high-pT data from PHENIX for neutral pions in 20%–30% central Au+Au
collisions at 200AGeV presented in [PHENIX09a] that can also be fitted by the generic
form from eq. (5.12): a steep rise in v2(pT ) that peaks at intermediate transverse momenta
followed by a slow decrease in v2(pT ) that over the observed pT range does not fully saturate.
On the quantitative level however, differences are visible, most notably in the position of
the maximum value of v2(pT ) as already discussed above.

5.5. Jet quenching at RHIC from simulations with BAMPS

5.5.1. Nuclear modification factor of high-pT particles

The nuclear modification factor RAA from eq. (5.1) is evaluated in simulations within the
BAMPS framework by simply taking the ratio of final to initial spectra. This is possible since
by construction the initial parton distribution in BAMPS is a superposition of independent
p+p collision according to a Glauber model, compare section 5.2.1. In this approach
possible cold nuclear matter effects—such as shadowing, anti-shadowing, Cronin effect and
EMC effect, see [AAB+04, AAB+10] for reviews—are currently neglected in simulations of
Au+Au. But in the high-pT region that is of interest here, such effects are not expected
to play an important role and any deviations from RAA = 1 should be related to the
modification of high-pT particles by the hot medium. Another virtue of the observable RAA

is the circumstance that deviations present in both the initial and the final spectra should



100 5. Simulations of heavy ion collisions

cancel and thus RAA can be expected to be only mildly sensitive on subtleties of the initial
distribution, for example the underlying parton distribution functions.

All results in this section are computed for Au+Au collisions at 200AGeV and extracted
at midrapidity, |y| < 0.5. A fixed αs = 0.3 is used in the BAMPS simulations together with
a freezeout energy density εc = 0.6GeV fm−3. The nuclear modification factor of hadrons
is calculated by separately fragmenting the initial and the final parton spectra using AKK
fragmentation functions as described in section 5.3 and subsequently taking the ratio of final
to initial hadron spectra. The fragmentation is done according to eq. (5.6) on the level of
individual quark and antiquark flavors, while the RAA of quarks that is shown for comparison
in some plots of this section represents a combined value of all quark flavors. In all plots
of the nuclear modification factor shown in this section, lines represent values of RAA that
are obtained based on fits of the initial and final parton spectra as detailed in section 5.3.2,
while symbols represent RAA computed directly from the binned values of the parton yields
as extracted from BAMPS. As already discussed in section 5.3.3, the deviations of the two
methods, that are caused by a limited range of the parton spectra as directly extracted from
BAMPS, to a large extent cancel in the observable RAA. PHENIX results on the suppression
of neutral pions [PHENIX08a] are chosen as the experimental reference since these datasets
cover a large range in transverse momentum and are readily available at different centralities.
Since STAR and PHENIX perfectly agree on the suppression of high-pT particles [STAR05a,
PHENIX05, STAR02, PHENIX02, STAR03, PHENIX08a], since the measured suppression
of for example charged hadrons does not differ from the suppression of neutral pions and
since charged hadrons and neutral pions from the fragmentation of BAMPS results are also
equally quenched, compare fig. 5.6, this specific choice of experimental reference does not
affect the interpretation of the results.

Figure 5.10 shows an overview of the nuclear modification factor of neutral pions from
BAMPS simulations at different impact parameters. A clear ordering of RAA with the
impact parameter b is observed, with high-pT particles from peripheral collisions (large b)
being less suppressed than high-pT particles from central collisions (small b). The values
for the suppression of π0 roughly range from RAA ≈ 0.05 for most central, b = 0 fm, to
RAA ≈ 0.25 for peripheral collisions at b = 9.6 fm. The behavior of RAA as a function
of transverse momentum is similar for all impact parameters, slight deviations from the
common behavior are most likely to be attributed to statistical fluctuations. If a trend was
to be extracted from the results, the data from BAMPS seems to indicate a slight decrease
of RAA towards higher transverse momenta. However, the trend is rather weak and within
the statistical errors, that are not explicitly shown here, the results could also be consistent
with a constant value of RAA. Also note that the values of RAA for pT < 10GeV are
based on extrapolations of fits to the underlying parton spectra, cf.section 5.3. A conclusive
statement on the behavior of RAA extracted from simulations of Au+Au collisions with
BAMPS as a function of transverse momentum is thus difficult to make, but the results
suggest a slight decrease towards large pT .

Figure 5.11 then compares the results on the nuclear modification factor of neutral pions to
experimental data from PHENIX for different centrality classes. The fixed impact parameter
from BAMPS is mapped to experimental centrality classes according to table 5.2 based on a
comparison of Npart from Glauber calculations, see the discussion in section 5.2.3 for details.
For comparison RAA as extracted from BAMPS is also shown for gluons and quarks, where
the quark RAA is an inclusive value based on spectra that combine all quark and antiquark
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Figure 5.10.: Nuclear modification factor RAA for neutral pions from BAMPS simulations of
Au+Au at 200AGeV for different impact parameters as a function of trans-
verse momentum. Lines indicate RAA computed from π0 spectra obtained via
fragmentation of fits to the parton spectra from BAMPS, while symbols indi-
cate RAA computed from π0 spectra directly obtained from fragmentation of
the parton spectra, cf. section 5.3.

flavors as already discussed above.

The shape of the suppression pattern does not significantly differ from gluons to quarks,
but strikingly quarks are slightly more suppressed than gluons, i.e. their RAA is closer
to zero. At first glance this is surprising since the energy loss of quarks is weaker than
that of gluons, even though due to the LPM cutoff the difference is distinctly smaller
than given by the color factors, see section 4.2 for details. As discussed in section 4.4
however, the conversion of quark jets into gluon jets is a crucial issue in a medium in which
quarks are strongly undersaturated. In the medium simulated within BAMPS quarks are
distinctly undersaturated throughout the entire evolution of the fireball, cf. the discussion in
section 5.4.2, thus high energy quarks will convert into gluons which results in an increased
suppression of quarks, i.e. a decreased quark RAA. Indeed, at b = 3.4 fm for example,
roughly 33% of all (no cut in rapidity) quarks produced with pT > 10GeV are converted
to gluons as they propagate through the medium, while only about 2.5% of all gluons with
initial pT > 10GeV are converted to quarks6. Of all gluons that leave the medium with
pT > 10GeV, 12% have been converted from initial high-pT quarks while only about 2%
of the quarks that emerge with pT > 10GeV originate from initial high-pT gluons. These
conversions finally cause the suppression of high-pT quarks to be even stronger than the
suppression of gluons.

In [FXG09] and [FXG10]—prior to the inclusion of light quarks into the model—it had

6For the computation of these numbers the final particle type is evaluated either after the transverse
momentum has dropped below 10GeV or after the particle has left the medium.
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(a) Nuclear modification factor from BAMPS at b = 3.4 fm compared to
0%–10% central π0 data from PHENIX.
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(b) Nuclear modification factor from BAMPS at b = 5.6 fm compared to
10%–20% central π0 data from PHENIX.

Figure 5.11.: Nuclear modification factor RAA for neutral pions from BAMPS simulations of
Au+Au at 200AGeV compared to PHENIX results [PHENIX08a] at different
centralities. RAA of gluons and quarks is shown for comparison. Lines indicate
RAA computed from fits to the parton spectra, while symbols indicate RAA

computed directly from the parton spectra as obtained from BAMPS.
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(c) Nuclear modification factor from BAMPS at b = 7.0 fm compared to
20%–30% central π0 data from PHENIX.
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(d) Nuclear modification factor from BAMPS at b = 8.6 fm compared to
30%–40% central π0 data from PHENIX.

Figure 5.11.: Nuclear modification factor RAA for neutral pions from BAMPS simulations of
Au+Au at 200AGeV compared to PHENIX results [PHENIX08a] at different
centralities. RAA of gluons and quarks is shown for comparison. Lines indicate
RAA computed from fits to the parton spectra, while symbols indicate RAA

computed directly from the parton spectra as obtained from BAMPS.
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(e) Nuclear modification factor from BAMPS at b = 9.6 fm compared to
40%–50% central π0 data from PHENIX.

Figure 5.11.: Nuclear modification factor RAA for neutral pions from BAMPS simulations of
Au+Au at 200AGeV compared to PHENIX results [PHENIX08a] at different
centralities. RAA of gluons and quarks is shown for comparison. Lines indicate
RAA computed from fits to the parton spectra, while symbols indicate RAA

computed directly from the parton spectra as obtained from BAMPS.

been argued that the level of jet quenching is in reasonable agreement with experimental
data since the gluon RAA from BAMPS agrees with analytic results on the suppression
of gluons by Wicks et al. [WHDG07], that in their GLV-based approach together with
the quark contribution reproduces the experimental data of central Au+Au collisions at
RHIC. For gluons they obtain a value of Rg

AA ≈ 0.07 to 0.09, while the suppression of
gluons from simulations with BAMPS at b = 0 fm has been determined to be Rg

AA ≈ 0.053
for a medium with Nf = 0 [FXG09]. This agreement still holds, in fact it has improved
since for b = 3.4 fm—which is a more reasonable representation of central Au+Au collisions
than b = 0 fm, cf. section 5.2.3—and including light quarks the value of gluon suppression
obtained from BAMPS is Rg

AA ≈ 0.08 assuming a flat suppression pattern in the range
pT = 10GeV to 20GeV. However, in the approach by Wicks et al. the experimental level
of jet quenching is only reproduced because light quarks7 are distinctly less suppressed.
They find the nuclear modification factor of light quarks to be roughly 2 to 3 times larger
than the nuclear modification factor of gluons, corresponding to the usual color factor 9/4.
This is clearly not the case for the suppression on the partonic level as extracted from
BAMPS simulations, where quarks are suppressed even stronger than gluons. The inclusive
suppression of quarks at b = 3.4 fm for example is RAA ≈ 0.05, again assuming a flat
suppression pattern in the range pT = 10GeV to 20GeV. The conversion of quark and gluon
jets is not included in the formalism underlying the results of Wicks et al. [WHDG07],

7Actually they consider only up and down quarks as light quarks. This would correspond to Nf = 2 in the
approach presented in this work. However, as strange quarks are very rare, this makes no difference.
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neither for elastic nor for inelastic processes. But note that also without the conversion of
high-pT quarks into gluons, the quark suppression in BAMPS would be distinctly stronger
than the suppression found in [WHDG07] as due to the LPM cutoff in 2 → 3 processes that
dominate the energy loss of high energy partons, the difference in the energy loss of quarks
and gluons is not given by a color factor 9/4 but rather only on the level of 20%, see the
discussion in section 4.2 for details.

Correspondingly, the suppression of neutral pions as obtained from the fragmentation of
parton spectra in BAMPS is distinctly stronger than in the experimental data. The RAA

from BAMPS is below the experimental reference for all centralities, see fig. 5.11, by roughly
a factor of 2 to 4. The same is true when considering for example the suppression of charged
hadrons instead of neutral pions.

Centrality dependence of the suppression of high-pT particles

The above discussed results clearly show that the suppression of high-pT particles as ob-
tained from simulations with BAMPS is stronger than measured in experiment. Figure 5.12a
illustrates that the BAMPS results not only differ from the experimental data by a constant
factor. Comparing the integrated RAA for pT > 10GeV, the ratio of the experimental nu-
clear modification factor to the nuclear modification factor as extracted from BAMPS varies
from RPHENIX

AA /RBAMPS
AA ≈ 2 for peripheral to RPHENIX

AA /RBAMPS
AA ≈ 4 for central collisions.

Both in the experimental data and in the BAMPS results, the magnitude of jet quenching
as quantified by RAA changes with centrality while the shape of the suppression pattern
remains rather unaffected. This suggests that RAA mainly depends on Npart as a measure
of centrality rather than on the specific geometry of the collision region. Figure 5.12b
thus shows the integrated RAA of π0 for pT > 10GeV as a function of Npart both for
experimental data from PHENIX [PHENIX08a] and for results obtained from simulations
with BAMPS. As already suggested by fig. 5.12a, the centrality dependence of RAA differs
from the measured data.

In order to quantify this difference the data is matched to a simple picture in which the
suppression of high-pT particles is expressed in terms of a horizontal shift of the power law
pT -spectrum [PHENIX07c] rather than a vertical reduction of the yields. This model is
valid if RAA is flat as a function of pT , i.e. if both the particle spectrum from the heavy
ion collision and the scaled p+p reference can be described by a power law spectrum
dN/(pT dpT ) ∝ p−n

T with the same exponent n. In the experimental data this assumption
is fulfilled rather nicely with n = 8.10 ± 0.05 for π0 spectra from p+p [PHENIX07c] and
n = 8.00± 0.12 for π0 spectra from most central Au+Au at 200AGeV. The slope of the
π0 spectrum obtained in BAMPS by fragmentation of the initial parton spectra generated
by the mini-jet model is in very good agreement with these measurements, for b = 3.4 fm
a value of n = 8.023 ± 0.015 is obtained. Reflecting the slight decrease of RAA with pT
that is observed in the BAMPS results when computing RAA from the fragmentation of
fitted parton spectra, the final π0 spectra as extracted from BAMPS are slightly steeper,
for example n = 8.436 ± 0.016 at b = 3.4GeV. For the following analysis however, the
quantitative impact of these differences in the exponents is rather weak and for simplicity
a value of n = 8.1 is used.

The shift in the spectra is expressed in terms of S(pT ), in the sense that a final particle
with transverse momentum pT has initially been produced with transverse momentum p′T =
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pT + S(pT ). As discussed above, the assumption of a constant shift is well justified and
thus8 S(pT )/pT = S̃0. As p′T = (1 + S̃0)pT this implies a fractional energy loss Sloss =
(p′T − pT )/p

′
T = 1− 1/(1 + S̃0). Expressing the final spectrum in terms of this shift, taking

the Jacobian into account and assuming a centrality dependence as Sloss = S0 N
a
part finally

leads to [PHENIX07c]

RAA = (1− S0N
a
part)

n−2 . (5.13)

Using (5.13) as a fit function, the centrality dependence of the integrated RAA from
BAMPS and from PHENIX can be nicely described for Npart > 20 as illustrated in fig. 5.12b.
The fit to the experimental data yields a = 0.57± 0.13 and S0 = (9.0 ± 6.1) · 10−3 [PHENIX08a],
while the fit to the BAMPS data gives9 a = 0.39 ± 0.02 and S0 = (4.23 ± 0.38) · 10−2. The
centrality dependence of the suppression of high-pT particles, given by the parameter a, is
thus distinctly and significantly stronger in BAMPS than in the experimental data. The cen-
trality dependence of the experimental data is in agreement [PHENIX07c] with results from
the GLV formalism [GLV00a] and the Parton Quenching Model [Loi07] that give a ≈ 2/3.

Explicitly evaluating the fractional energy loss Sloss—which, due to a bias introduced by
the steeply falling spectra, is smaller than the average energy loss at a given transverse
momentum [PHENIX07c]—yields Sloss ≈ 0.4 for the most central collisions within BAMPS,
while experimental data gives Sloss ≈ 0.2 [PHENIX07c].

5.5.2. Origin and interaction history of high-pT particles

In any energy loss scenario particles that emerge from the medium with large pT are nat-
urally expected to have a certain surface bias, i.e. they are more likely to originate from
regions close to the surface of the medium than from the inner region of the medium.
The strong level of jet quenching and the flat quenching pattern, similar at all centrali-
ties, suggest that the surface bias is rather pronounced for the medium created in Au+Au
collisions at RHIC. Indeed, basically all energy loss formalisms predict a shift of the pro-
duction points of surviving high energy particles towards the surface of the medium, see
[WHDG07, Loi07, ZOWW07] and [BGM+09] for a direct comparison. Figure 5.13 nicely
illustrates that also in BAMPS the production points of high-pT particles that survive the
propagation through the evolving medium are clearly biased towards the surface of the
overlap region.

In order to quantify this finding, fig. 5.14 shows the distribution of the path length L of
partons that escape the simulated medium with pT > 10GeV. In this analysis, L measures
the distance in the transverse plane from the production point of a parton to the surface of
the initial overlap region given by the Woods-Saxon parameter RA = 6.37 fm in the direction
of the initial transverse momentum. Thus defined, it does not take the expansion of the
medium into account and is therefore different from the effective path length that is used
in some jet quenching formalisms to model the geometry and evolution of the system, for
example in [WHDG07, EHSW05]. Nevertheless it provides a good measure of the distance
that a parton propagates through the medium and is applicable to collisions with b 6= 0 fm.
For comparison the gray dashed line in fig. 5.14 shows the distribution of L for all particles

8As the shift is in dN/dpT rather than in dN/(pT dpT ) an additional factor pT enters
9The quoted errors for the fit to the BAMPS data solely comprise the standard error of the fit parameters.
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(a) Ratio of the integrated RAA from BAMPS to PHENIX for π0 as a
function of impact parameter b. Association of impact parameter and
experimental centrality classes as in table 5.2 and fig. 5.11.
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according to eq. (5.13).

Figure 5.12.: Comparison of the integrated RAA of neutral pions from simulations of
Au+Au at 200AGeV with BAMPS to experimental data from PHENIX
[PHENIX08a]. Integrated RAA obtained from 10GeV < pT < 20GeV for
the BAMPS results and from pT > 10GeV for PHENIX data.
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Figure 5.13.: Illustration of the geometric origin of particles (gluons and quarks) that leave
the the medium (Au+Au at 200AGeV) with pT > 10GeV for different impact
parameters. The probability that an emerging particle with pT > 10GeV
originates from a certain region in the transverse plane is color coded.

produced with pT > 10GeV, regardless of their fate during the further evolution of the
medium.

A strong shift towards the surface of the overlap region is observed for particles that
survive the evolution of the medium and escape with pT > 10GeV. For most central colli-
sions, b = 0 fm, the survival probability reaches a maximum in the range L = 1 fm to 2 fm,
corresponding to the ring that is visible in fig. 5.13. Caused by the conversion of quarks
into gluons, the distribution of production points of surviving quarks is shifted even more
towards the surface than that of gluons. Note that there is a sizable probability that surviv-
ing partons have been produced outside the region that is given by the parameter RA of the
Woods-Saxon distributions, i.e. in the “corona”, and have not traveled through the dense
regions of the medium at all. Qualitatively, the same holds for the most peripheral collisions
explored within this work, at b = 9.6 fm. Due to the geometry however, no distinct peak is
visible any more, rather the distribution of L continuously increases towards the surface and
emission from the corona in fact accounts for roughly 50% of all surviving particles. The
difference between quark and gluon jets is slightly visible at intermediate L, but distinctly
less pronounced than for central collisions.

As was to be expected from the strong differential energy loss that parton jets suffer within
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the BAMPS framework, the surface bias is rather strong. Of course this is not a black and
white picture. Despite the strong shift of production points of surviving high-pT particles
there is still a sizable fraction that stems from more central regions of the medium. For b =
0 fm roughly 36% of the surviving high-pT gluons and 23% of the surviving high-pT quarks
have been produced at a distance L > 2 fm from the surface of the initial overlap region. For
b = 9.6 fm these values drop to 20% for gluons and 13% for quarks. The average production
distance10 of particles emerging with pT > 10GeV is 〈Lg〉 = 2.1 fm for gluons and 〈Lq〉 =
1.7 fm for quarks in collisions with b = 0 fm. For b = 9.6 fm the mean production distances
are 〈Lg〉 = 0.9 fm and 〈Lq〉 = 0.8 fm. Compared with results from other jet quenching
formalisms the surface bias is more pronounced [BGM+09, WHDG07, ZOWW07, Loi07],
i.e. surviving jets in BAMPS tend to originate from production points that are closer to the
surface compared with the cited jet quenching formalisms.

Correspondingly, the number of interactions that surviving high-pT particles have under-
gone, is rather small. In the most central collisions with b = 0 fm partons that leave the
medium with pT > 10GeV have undergone on the average 〈N22〉 = 1.85 binary interactions,
〈N23〉 = 0.74 radiative interactions and 〈N32〉 = 0.13 particle annihilation processes. For
b = 9.6 fm the average collision numbers of surviving jets are 〈N22〉 = 2.11, 〈N23〉 = 0.50
and 〈N32〉 = 0.04. No discrimination between quarks and gluons is made in this analysis.
The underlying distribution of the collision numbers for surviving jet partons is depicted in
fig. 5.15. The most remarkable feature is certainly the fact that in most cases a single 2 → 3
interaction is sufficient to “kill” the jet particle, the fraction of surviving high-pT partons
that have undergone at least one 2 → 3 interaction is on the order of 35% to 40%, the
fraction of surviving high-pT partons that have undergone at least two 2 → 3 interactions
is on the order of 10% to 15%. There is virtually no change in the distribution of collision
numbers going from central to peripheral collisions, again confirming a rather strong surface
bias.

5.6. Sensitivity of the results on the LPM cutoff

5.6.1. Scaling the LPM cutoff

Every effective model comes with a set of free parameters whose choice can be motivated
by physical arguments or by fits to experimental data. The most notable free parameter
in the transport model BAMPS is the coupling strength αs that has been fixed to the
canonical value of αs = 0.3 throughout this work. The consequences of different choices
of αs, especially on elliptic flow observables, have been studied in previous works [XGS08,
XG09]. See also the discussion in section 6.2.1 for possible consequences of a modified or
running coupling on energy loss and jet quenching. In simulations of heavy ion collisions
the freeze out energy density εc, cf. section 5.2, is also a parameter that can be adjusted
within certain limits.

When investigating radiative 2 ↔ 3 processes within BAMPS there basically enters an-
other parameter due to the effective modeling of the LPM effect via a cutoff. In BAMPS the
LPM cutoff is incorporated into the Gunion-Bertsch matrix element via a Theta function
eq. (3.17) that essentially compares the formation time τ of the radiated gluon to the mean

10Surviving jets that do not traverse the inner region are counted as L = 0 fm.
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Figure 5.14.: Distribution of the path length L from the production point of particles (gluons
and quarks) leaving the medium with pT > 10GeV to the surface of the initial
interaction region given by the parameter RA = 6.37 fm in the Woods-Saxon
distribution (5.4). Open symbols at L = 0 fm indicate the fraction of emerging
high-pT particles that were produced outside the interaction region as given by
RA. For comparison the gray dashed line and the gray open symbol indicate
the corresponding path length for all particles produced with pT > 10GeV.
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Figure 5.15.: Distribution of the number of 2 → 2, 2 → 3 and 3 → 2 interactions that
a particle (gluon or quark) emerging with pT > 10GeV has undergone in
simulations of Au+Au at 200AGeV within BAMPS.
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free path of the the parent particle λ as discussed in section 3.1.4 in full detail. However,
the argument underlying the distinction between coherent and incoherent processes via a
threshold τ = λ is of course a qualitative one. When effectively modeling the LPM effect
via a cutoff the Theta function (3.20) could therefore be replaced by a more general form

Θ
(
k⊥ − γ

λ

)
→ Θ

(
k⊥ −X

γ

λ

)
, (5.14)

where X is a real number not too far from 1.

In this section the consequences of modifying the LPM cutoff by a factor X, as given in
eq. (5.14), are discussed. Specifically X = 0.5, X = 1 (the usual choice) and X = 2 are
chosen. This should provide a grasp on how sensitive the results for partonic energy loss
and collective flow within BAMPS simulations are on the specific prescription for including
the LPM effect.

The computation of the total cross section for radiative 2 → 3 processes involves an
integral of the matrix element, eqs. (3.13) and (3.17), over the transverse momentum k⊥,
cf. eq. (3.37). It is therefore straightforward to conclude that a larger X in the cutoff (5.14)
corresponds to a smaller total cross section. Though the actual dependence is not linear
and indeed non–trivial, fig. 5.16a confirms this simple qualitative consideration. It shows
the total cross section for gg → ggg processes in a gluonic medium with T = 0.4GeV for
different choices of X. The change in the cross section naturally corresponds to a change in
the rate for this process via R23 = 〈nσ23〉 and thus in the mean free path between radiative
processes, λ23 = 1/R23.

Correspondingly the differential energy loss dE/dx is affected by a change in the param-
eter X as illustrated in fig. 5.16b. Larger X leads to a larger mean free path and thus a
smaller energy loss per path length. The change in dE/dx is mainly due to the change in
the total cross section, while the effect of changes in X on the energy lost per single 2 → 3
interaction, ∆E23, is rather small. A plot of ∆E23 and ω for different values of X is not
explicitly given here but can be found in [FXG10].

Due to limited computing resources the investigation of the effect of a modified LPM cutoff
(5.14) on observables in full simulations of heavy ion collisions is restricted to a comparison
of the cases X = 1 and X = 2. As was to be expected from the change in the energy loss in
a static medium, the level of jet quenching is considerably reduced when going from X = 1
to X = 2, as shown in fig. 5.16c. The nuclear modification factor of gluon jets is reduced
by a factor of roughly 2 to 3 and the shape appears to be slightly more tilted, though the
statistics of the data for this specific investigation hardly allow for a conclusive statement
on the slope. The elliptic flow as depicted in fig. 5.16d is reduced by roughly 30% to 35%
when going from X = 1 to X = 2, but the qualitative features as a function of pT remain
unaffected.

Note that the calculations underlying figs. 5.16c and 5.16d have been performed for a
purely gluonic medium, Nf = 0. Also the slight violation of the small angle approximation
for 2 → 3 processes, as discussed in section 3.1.3, had not yet been corrected for these calcu-
lations. However, the results in section 3.1.3 also showed that the quantitative consequences
are small and thus the findings from figs. 5.16c and 5.16d hold: A parametric change in the
LPM cutoff may strongly affect the level of jet quenching, while the effect on the magnitude
of the elliptic flow is distinctly less pronounced.
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Figure 5.16.: Comparison of crucial results for different schemes of the effective inclusion of
the LPM effect.
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5.6.2. LPM effect via a radiation formation factor

Modeling the LPM effect by a cutoff as detailed in section 3.1.4 is certainly a severe sim-
plification of a rather complex and intrinsically quantum mechanical phenomenon. This
procedure also introduces some freedom in the numerical implementation as illustrated in
the previous section by means of a scaling factor X in the cutoff (5.14). Future studies
should investigate the feasibility of a more fundamental incorporation of the LPM effect
into a full scale transport model such as BAMPS. An interesting approach is provided by
Zapp et al. [ZSW09], who present a Monte Carlo model for in medium jet evolution that
reproduces analytic results from the Bethe-Heitler to the deep incoherent regime. Whether
this promising approach would be applicable to a full transport prescription that takes the
dynamics of all particles into account as opposed to the usage of Monte Carlo generated
scattering centers, needs careful consideration and is beyond the scope of this work. See
also the discussion in section 6.2.2.

A more readily testable approach is provided by an early work of Wang, Gyulassy and
Plümmer [WGP95]. They formulate the suppression of induced radiation from multiple
scatterings in terms of a radiation formation factor that interpolates between the fully
coherent factorization limit and the incoherent Bethe-Heitler limit. They find the spectrum
of radiation associated with m scatterings to be proportional to the spectrum associated
with a single scattering

dn(m)

dyd2k⊥
= Cm(k)

dn(1)

dyd2k⊥
. (5.15)

The radiation formation factor Cm(k) is given as a coherent sum over all phase factors
associated with the multiple scatterings and in the eikonal approximation for soft radiation
with k⊥ ≪ q⊥ ∼ mD simplifies to

Cm(k) ≈ m
χ2

1 + χ2

1− (1− 2r2)χ
2

r2(1 + χ2)2
, (5.16)

where r2 = CA/(2C2) is a simple color factor, r2 = 1/2 for gluons and r2 = 8/9 for quarks,
and

χ(k) = λ/τ (5.17)

is the ratio of the mean free path to the formation time of the emitted gluon. The parameter
χ is readily identified with the argument of the Theta function in the cutoff (3.17). For
large m the first term in eq. (5.16) dominates and the radiation from multiple scattering
can therefore be regarded as being additive in the number of scatterings with each radiation
suppressed by

C̃(k) =
χ2

1 + χ2
. (5.18)

The formation factor C̃(k) interpolates between the Bethe-Heitler (τ ≪ λ, C̃(k) ≈ 1) and
the factorization regime (τ ≫ λ, C̃(k) ≈ 0 and C̃m ≈ 1/r2).

Note that the work of Wang et al. does not take the rescattering of the radiated gluons
into account in the derivation of the abovementioned results, an effect that plays a crucial
role in the QCD case. Also the number of scatterings mmight actually not be large in setups
simulated within BAMPS, cf. fig. 5.15. Nevertheless, this discussion serves as a motivation
to explore the consequences of substituting the strict cutoff (3.17) by a smooth interpolation
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given by eq. (5.18). The gray dashed lines in figs. 5.16a and 5.16b illustrate the results of
this study in terms of the cross section σ23 and the differential energy loss dE/dx for a
purely gluonic setup, Nf = 0. To make the k⊥ integration in eq. (3.37) infrared safe in the
absence of the cutoff function, the Debye mass is introduced as a lower bound for k⊥ for
these calculations. The results in figs. 5.16a and 5.16b from using a smooth interpolation
show no drastic deviation from the standard BAMPS cutoff (3.17) that is employed for the
rest of the calculations presented in this work.

5.7. Jet quenching and elliptic flow at LHC from simulations with

BAMPS

Very recently first results on Pb+Pb collisions at 2.76ATeV have been published by
the LHC experiments, most notably by the ALICE experiment [ALICE11, ALICE10b,
ALICE10a] that is dedicated to heavy ion physics, but also by ATLAS [ATLAS10] and
CMS [CMS11]. In this section a first attempt to explore the nuclear modification factor and
the elliptic flow of Pb+Pb at 2.76ATeV within the BAMPS framework is presented. A sys-
tematic study of simulations at various impact parameters is not repeated, rather exemplary
calculations for b = 0 fm and for b = 8.2 fm are investigated. The choice of these impact
parameters is determined by the reutilization of initial parton distributions computed via
PYTHIA from [UFXG10a] as discussed in section 5.2.1.

5.7.1. Thermalization of the medium in Pb+Pb at 2.76ATeV

Figure 5.17a shows the evolution of gluon spectra in the most central region, |η| < 0.5
and xT < 1.5 fm, of Pb+Pb collisions simulated within the BAMPS framework with an
impact parameter of b = 0 fm. The initial parton distribution is based on the Pythia event
generator as detailed in section 5.2.1. The spectra show a thermalization of the medium
at a time scale that is comparable to the thermalization in simulations of Au+Au at
200AGeV, cf. section 5.4.2. The slope of quark spectra, not explicitly shown in fig. 5.17a, is
identical to that of the gluon spectra after roughly 1 fm c−1 to 2 fm c−1. While in the initial
parton distribution from Pythia the ratio of gluons to quarks is strongly dependent on the
transverse momentum, varying from about 40 at pT = 0.5GeV to about 5 at pT = 5.0GeV,
it becomes constant over the considered momentum range after t = 1.5 fm c−1. As for
Au+Au at RHIC energies, cf. section 5.4.2, the quark yield however remains below the
gluon yield throughout the whole evolution of the medium. At t = 8 fm c−1, roughly the
time scale at which the central region reaches the critical energy density and freezes out,
the yield of gluons at a given pT < 3GeV is roughly twice that of quarks at the same pT .

5.7.2. Particle spectra and nuclear modification factor

While the initial parton distribution of the bulk for simulations at 2.76AGeV is based on
the Pythia event generator, the method of superimposed high-pT particles based on GRV
parton distribution functions is again employed for the investigation of jet suppression. As
the GRV set of parton distribution functions is somewhat outdated, this might not be the
most accurate choice for simulations at LHC energies. However it allows for direct compar-
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ison to the results on the suppression of high-pT particles from simulations of Au+Au at
200AGeV and for a general assessment of the generic behavior of the suppression pattern.

Figure 5.17b shows the initial distribution of high-pT partons for Pb+Pb at b = 0 fm that
are thus obtained. The ratio of gluons to quarks is distinctly larger than in the initial parton
distributions at 200AGeV and gluons dominate over the entire transverse momentum range
(pT < 35GeV) shown in fig. 5.17b. The spectra obtained from the mini-jet model using
GRV parton distribution functions are harder than the experimentally measured spectra at
2.76ATeV. The initial power law spectrum d2N/(pT dpT dy) ∝ p−n

T of charged hadrons
obtained from the initial mini-jet distribution via fitting and fragmentation, as described
in section 5.3, has a power law exponent of n ≈ 6.3, while the scaled p+p reference at
2.76ATeV, interpolated from measurements at

√
sNN = 0.9TeV and

√
sNN = 7.0TeV,

on the other hand has n ≈ 7.4 [ALICE11]. This confirms that the GRV set of parton
distribution functions is not well suited to describe particle production at LHC energies.
However, the results and discussions in section 5.5 showed that the nuclear modification
factor is not very sensitive on the slope of the spectra and thus the approach should provide
a solid first impression on how the suppression of high-pT particles evolves when going from√
sNN = 200GeV to

√
sNN = 2.76TeV.

In fig. 5.18a the nuclear modification factor for charged hadrons in Pb+Pb at 2.76ATeV
obtained from simulations with BAMPS at b = 0 fm is shown. As in section 5.5 the RAA of
gluons and quarks is also shown for comparison and lines represent values of RAA obtained
from fits to the parton spectra, while symbols represent RAA computed directly from the
binned values of the parton yields. Furthermore, the nuclear modification factor of charged
hadrons from simulations of Au+Au at 200AGeV and b = 0 fm is included for comparison
as a red dashed line. Finally RAA of charged hadrons as recently published by the ALICE
experiment [ALICE11] for 0%–5% central Pb+Pb collisions at 2.76ATeV is also included.

Within the statistic fluctuations there is no significant difference in the suppression of
charged hadrons simulated with BAMPS between Pb+Pb collisions at 2.76ATeV and
Au+Au collisions at 200AGeV. As already for Au+Au the level of suppression computed
from BAMPS is much stronger than the experimentally observed suppression. Furthermore,
RAA of charged hadrons as measured by ALICE exhibits a significant rise towards large pT ,
a feature that is not reproduced by the results from BAMPS.

Within the transport model approach the insensitivity to the changes in the medium
properties can be interpreted in terms of the strong surface bias that has been discussed
in section 5.5. This interpretation however cannot account for the rather pronounced rise
in RAA, given that the energy loss within the BAMPS framework indeed strongly increases
with the jet energy. Keeping possible caveats from the initial parton distribution and the
crude comparison of b = 0 fm to 0%–5% centrality in mind, the simulated suppression of
high-pT charged hadrons in Pb+Pb is not only stronger than experimentally measured but
also does not reproduce the behavior of RAA as a function of pT .

5.7.3. Elliptic flow

The elliptic flow in simulations of Pb+Pb collisions at the LHC energy of 2.76ATeV is
studied at the fixed impact parameter b = 8.2 fm using Pythia initial parton distributions.
As discussed above, the choice b = 8.2 fm is motivated by the reutilization of initial parton
distributions computed via PYTHIA from [UFXG10a]. A Glauber calculation using σNN =
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Figure 5.17.: Parton spectra for simulations of Pb+Pb at 2.76ATeV from simulations
within the BAMPS framework.
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(b) Differential v2(pT ) of gluons and quarks from simulations of Pb+Pb
at b = 8.2 fm extracted at |η| < 0.75. Simulation parameters: αs = 0.3
and εc = 0.6GeV/fm3. For comparison the solid line shows the gluon
v2 from simulations of Au+Au at 200AGeV and b = 7.0 fm. The
Pb+Pb data from BAMPS is rescaled with eccentricity, cf. eq. (5.20).
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scaled by nq = 2 as v2(pT /nq)/nq .

Figure 5.18.: Nuclear modification factor RAA and differential elliptic flow v2(pT ) from sim-
ulations of Pb+Pb collisions at the LHC energy of 2.76ATeV.
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64mb [ALICE10a] and based on a Woods-Saxon distribution with radius RA = 6.62 fm and
skin depth d = 0.546 fm yields Npart ≈ 232 for Pb+Pb at b = 8.2 fm. The centrality
class 10%–20% as measured by the ALICE experiment corresponds to a mean number of
participants of 〈Npart〉 = 260.5 ± 4.4, while 20%–30% corresponds to 〈Npart〉 = 186.4 ± 3.9
[ALICE10a]. The fixed impact parameter b = 8.2 fm thus corresponds to a number of
participants that is somewhere in between the centrality classes 10%–20% and 20%–30%.
Future studies will require a more careful matching of experimental centrality classes. For
the first assessment of LHC simulations within BAMPS that is presented in this work,
however, the usage of b = 8.2 fm results that are rescaled by the initial eccentricity to
roughly match the experimental centrality class 20%–30% is reasonably justified.

Figure 5.18b shows the differential elliptic flow v2(pT ) of gluons and quarks extracted
from simulations of Pb+Pb at 2.76ATeV and fixed impact parameter b = 8.2 fm within
the BAMPS framework. For comparison the elliptic flow of gluons from simulations of
Au+Au at 200AGeV is shown by the thin lines for the impact parameter b = 7.0 fm,
Npart = 171 corresponding to 20%–30% central Au+Au, cf. section 5.2.3. In order to
accurately compare v2(pT ) from Pb+Pb at b = 8.2 fm to v2(pT ) from Au+Au at b = 7.0 fm
and to the experimental data from ALICE at 20%–30% centrality [ALICE10b], the elliptic
flow from Pb+Pb is rescaled by the initial eccentricity

ε =
〈y2 − x2〉
〈y2 + x2〉 (5.19)

obtained from the Woods-Saxon distributions. The rescaling of the elliptic flow from
Pb+Pb is done as

v∗2(pT ) = vPbPb2 (pT , b = 8.2 fm)
εAuAu(b = 7.0 fm)

εPbPb(b = 8.2 fm)
, (5.20)

with εAuAu(b = 7.0 fm) = 0.323 and εPbPb(b = 8.2 fm) = 0.377. The experimental data for
v2(pT ) of charged hadrons is scaled with the number of constituent quarks as v2(pT /nq)/nq
in order to compare to the partonic v2 in a picture inspired by quark recombination models,
cf. section 5.4.3. nq = 2 is chosen for the rescaling of the data even though the measurement
of charged hadrons also comprises charged baryons. Since the yields can be expected to be
clearly dominated by pions however, the scaling with nq = 2 should be sufficient for a first
comparison.

The qualitative and most quantitative features of the differential elliptic flow from sim-
ulations of Pb+Pb at 2.76ATeV are very similar to those from simulations of Au+Au
at 200AGeV. This similarity is in good agreement with the experimental finding that the
differential v2(pT ) does not change when when going from RHIC energies to LHC energies
[ALICE10b]. Only the integrated v2 is increased by roughly 30% due to an increased mean
pT . However, taking a closer look at the results from BAMPS simulations, some differences
are in fact visible. The slight excess of gluon v2 over quark v2 at pT < 1GeV that has
been seen in simulations of Au+Au seems not to be present in Pb+Pb at 2.76. Whereas
around pT ≈ 1.5GeV the elliptic flow of gluons is larger than that of quarks and also larger
than found in Au+Au. The decrease towards large pT appears to set in slightly earlier
than observed in the Au+Au results. However, caution should be exercised in the quanti-
tative assessment and comparison of the results from BAMPS, as statistics—especially for
quarks—is still severely limited.
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This should also be kept in mind when comparing to the experimental data points. As
is the case in the Au+Au results, the experimental v2(pT ) scaled with the number of
constituent quarks is in rather good agreement with the quark v2 from BAMPS at pT .

2GeV. The gluon v2 overshoots the rescaled v2 of experimentally measured charged hadrons
in the region 1GeV to 2GeV. But then—as already discussed in section 5.4—the details
of hadronization in the low and intermediate pT region are far from clear. The drop of v2
towards larger pT seems to set in slightly earlier in the Pb+Pb results than in the Au+Au
results, but the last two data points vaguely suggest that the peak might still be away from
the experimental data.

Which part of these features and quantitative deviations is in fact due to systematic
differences in the description of the medium between simulations of Au+Au at RHIC
energies and Pb+Pb energies and which part is still due to statistical fluctuations or the
choice of the initial parton distributions—Au+Au at RHIC energy has been simulated
using mini-jet distributions, while Pythia is used for Pb+Pb at LHC energy—cannot be
answered decisively here and needs to be settled in future studies.





6. Summary and conclusions

In this chapter the main findings that have been presented in this work are summarized and
discussed. Based on these results possible future studies and extensions of the transport
model BAMPS are proposed.

6.1. Summary of the findings presented in this work

In this work the microscopic transport model BAMPS has been applied to describe the
time evolution of the hot partonic medium that is created in heavy ion collisions at high
energies, the quark-gluon plasma. More specifically, the ability of the BAMPS framework
to simultaneously describe the suppression of high-pT particles, quantified in terms of the
nuclear modification factor RAA, and the collective behavior of the medium, quantified in
terms of the elliptic flow v2, has been studied. To this end the nuclear modification factor
in simulations of Au+Au collisions at an energy per nucleon pair of

√
s
NN

= 200GeV, as
measured at the experiments at the Relativistic Heavy Ion Collider, has been systematically
studied at different impact parameters. The investigation of v2 is based on previous works
by Xu and Greiner and has been extended to large transverse momenta.

The transport model BAMPS has been extended to include light quark degrees of freedom,
i.e. to operate with a number of flavors Nf = 3, as compared to previous versions that had
been limited to the description of a purely gluonic medium, Nf = 0. While many features
of the medium created in heavy ion collisions can be investigated by studying a purely
gluonic scenario, the incorporation of light quarks is crucial to facilitate a more detailed
comparison to experimental results. In the context of the present work this is especially
true for the comparison of the elliptic flow at intermediate transverse momenta, where a
scaling with the number of valence quarks is experimentally observed. But primarily for
high-pT observables, such as the nuclear modification factor, it is essential to include light
quarks as they dominate the initially produced parton spectra from pT ≈ 20GeV on.

In the region of high transverse momenta in-vacuum fragmentation has been applied to
the partonic spectra obtained from simulations within the BAMPS framework in order to
compute hadronic spectra and the hadronic nuclear modification factor, cf. section 5.3.
This had not been possible prior to the incorporation of light quarks into the model. The
fragmentation of high energy partons is based on the recent AKK set of fragmentation
functions that is obtained from global fits to experimental data.

The transport model BAMPS is based on leading order pQCD matrix elements and in
addition to binary 2 ↔ 2 processes consistently features particle multiplication and annihi-
lation processes, 2 ↔ 3. The strong coupling has been fixed to αs = 0.3 throughout this
work. The radiative 2 → 3 processes are based on the Gunion-Bertsch matrix element,
eq. (3.13), that has been studied together with its underlying approximations and assump-
tions in some detail within this work. The Landau-Pomeranchuk-Migdal effect is modeled in
BAMPS via the introduction of a cutoff that effectively discards the coherent contribution
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from multiple induced gluon radiation. This is done by comparing the mean free path of
the radiating particle to the formation time of the emitted gluon. In order to consistently
describe this comparison within the BAMPS framework, the correct treatment of Lorentz
frames involved in this comparison has been presented in section 3.1.4. The incorporation
of the Lorentz boost between different reference frames in the LPM cutoff has consequences
on the shape of the phase space in 2 ↔ 3 processes, especially for the interaction of a high
energy particle with thermal constituents where due to the large boost an emission of the
radiated gluon into the backward hemisphere is preferred.

6.1.1. High energy particles in a static medium

In order to systematically assess the quenching of high-pT particles in simulations of heavy
ion collisions, the evolution of high energy partons has first been studied within a simplified
setup in chapter 4, namely for a scenario in which high energy partons traverse a thermal
and static medium of light quarks and gluons. Both the collisional energy loss and the
contribution of radiative processes implemented in BAMPS via the Gunion-Bertsch matrix
element have been discussed in great detail. Inelastic 2 → 3 processes have been found to
be the dominant source of energy loss for high energy partons in computations within the
BAMPS framework, resulting in a strong differential energy loss that rises almost linearly
with the jet energy. A gluon with E = 50GeV traversing a medium with T = 0.4GeV
and Nf = 3 for example exhibits a total differential energy loss of dE/dx ≈ 39.1GeV fm−1.
While for the collisional energy loss the difference between gluon and quark jets is essentially
determined by the relative color factor 9/4, i.e. the collisional energy loss of gluon jets is
roughly twice as strong as that of quark jets, the difference for radiative processes is much
weaker within BAMPS. The resulting total energy loss of gluon jets is only roughly 20%
larger than that of quark jets. This is due to the LPM cutoff for 2 → 3 processes, eq. (3.20),
that depends on the current mean free path of the jet particle and thus in an iterative
computation of the true mean free path effectively attenuates changes to the bare Gunion-
Bertsch matrix element.

The strong mean energy loss in radiative processes is caused by a complex interplay of
phase space configurations of outgoing particles in 2 → 3 interactions as dictated by the
Gunion-Bertsch matrix element in combination with the effective LPM cutoff. This prefers
the emission of radiated gluons into the backward hemisphere with energies that in the
center of momentum frame are comparable to that of the remaining outgoing particles,
while they are small in the laboratory frame. The jet energy in these cases can be almost
evenly distributed among the two remaining particles, yielding a large energy loss. At high
jet energies this causes a heavy tail in the ∆E distribution, shifting the mean energy loss
per collision away from the most probable energy loss per collision.

There is a small but finite probability that the radiated gluon in 2 → 3 processes acquires
the highest energy of all emerging particles and is thus regarded as the new jet particle.
This probability decreases with increasing jet energy. Additionally, configurations in which
the radiated gluon is emitted into the backward direction and the two remaining particles,
due to momentum conservation, into the forward direction can cause conversions of the
jet particle type in qg → qgg (q̄g → q̄gg) processes. In environments in which quarks are
undersaturated, as is the case for the medium created in heavy ion collisions, this effect
strongly decreases the survival probability of quarks jets as they are converted into gluon
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jets, cf. section 4.4.

For a purely gluonic medium with T = 0.4GeV the transport parameter q̂ as defined in
eqs. (4.11) and (4.12) stemming from binary gg → gg interactions has been found to be
roughly constant at q̂ = 2.3GeV2 fm−1. When including inelastic gg ↔ ggg processes, q̂ as
a measure of the accumulated transverse momentum exhibits a stronger dependence on the
path length and is much larger than for elastic interactions, q̂ = 12GeV2 fm−1 to 23GeV2 fm−1.

6.1.2. Simulations of heavy ion collisions

The simulations of the evolution of the partonic medium created in heavy ion collisions have
been based on initial parton distributions from the mini-jet model for Au+Au collisions at
the RHIC energy of 200AGeV and on initial distributions obtained from the event generator
Pythia for Pb+Pb collisions at the LHC energy of 2.76ATeV. The interactions of medium
constituents are stopped when the local energy density drops below εc = 0.6GeV fm−3. This
marks the freezeout criterion of the partonic matter within the BAMPS framework. The
computation of observables at high transverse momenta, pT > 10GeV, has been performed
by superimposing particles generated from mini-jet spectra, both for RHIC and LHC, on a
previously recorded medium evolution as described in section 5.2.1.

At low and intermediate transverse momenta the medium is dominated by gluons through-
out the entire evolution of the fireball both in simulations of Au+Au at RHIC and in sim-
ulations of Pb+Pb at LHC. While the medium thus never reaches chemical equilibrium,
the central region of the medium kinetically equilibrates on time scales on the order of
1 fm c−1 to 2 fm c−1 for both RHIC and LHC simulations. This is in perfect agreement with
previous studies on thermalization for RHIC setups with a purely gluonic medium, cf. sec-
tion 3.3.1. The temperature as obtained from the slope of the exponential particle spectra
is identical for gluons and quarks after kinetic equilibration. Compared to calculations with
Nf = 0, the temperature at a given time step is about 15% smaller in simulations includ-
ing light quarks. This is due to the production of light quarks that are initially strongly
undersaturated.

In the following the main findings are listed that have been obtained in this work from
the simulations of heavy ion collisions within the BAMPS framework. The compilation
focuses on the observables RAA and v2 and their comparison to experimental results. The
discussion of v2(pT ) results for RHIC is based on a comparison at fixed impact parameter
b = 7.0 fm, roughly corresponding to 20%–30% central Au+Au collisions.

Au+Au at RHIC energy

Suppression of high-pT particles� The suppression of neutral pions and charged hadrons in BAMPS is distinctly
stronger than experimentally measured by the PHENIX and STAR experiments.� The nuclear modification factor RAA(pT ) extracted from BAMPS is slightly de-
creasing towards large transverse momenta but could within the statistic uncer-
tainties also be compatible with a flat suppression pattern, which is within the
experimental errors in agreement with data. The shape of the nuclear modifica-
tion factor is similar at all simulated centralities.



124 6. Summary and conclusions� The nuclear modification factor of light quarks is smaller than that of gluons due
to the strong conversion of quark jets into gluon jets.� The surviving jets within the BAMPS framework exhibit a strong bias towards
emission from regions close to the surface of the overlap region.� The difference between the integrated RAA from BAMPS and the integrated RAA

measured by the PHENIX experiment at RHIC depends on centrality. It varies
fromRPHENIX

AA /RBAMPS
AA ≈ 2 for 40%–50% central Au+Au toRPHENIX

AA /RBAMPS
AA ≈

4 for 0%–10% Au+Au.� Fitting the centrality dependence of RAA by means of a fractional energy loss,
RAA = (1 − S0N

a
part)

n−2, yields a characteristic exponent a = 0.39 ± 0.02, while
fits to the experimental data give a = 0.57 ± 0.13. The fractional energy loss
Sloss = S0 N

a
part in this picture is Sloss ≈ 0.4 for BAMPS simulations of 0%–10%

central Au+Au, experimental data gives Sloss ≈ 0.2.

Elliptic flow� The differential v2 of gluons and quarks is identical within the statistical uncer-
tainties at low and intermediate transverse momenta. Only at pT . 1GeV a
slight excess of gluon v2 over quark v2 is visible.� The magnitude of elliptic flow has not changed much compared to calculations
with Nf = 0. It is slightly enhanced at low transverse momenta, pT . 1.5GeV,
and slightly decreased at intermediate transverse momenta, 1.5GeV . pT .

4GeV.� The partonic v2(pT ) from BAMPS simulations peaks at pT ≈ 3GeV with v2(pT =
3GeV) ≈ 0.1. Towards larger transverse momenta the elliptic flow slowly de-
creases which is in qualitative agreement with results from PHENIX.� Scaling the measured v2(pT ) of neutral pions from PHENIX with the number
of constituent quarks as v∗2(pT ) = v2(pT /nq)/nq, the maximum magnitude of
elliptic flow from BAMPS is in good agreement with the data. The peak in
v∗2(pT ) within this picture of quark number scaling, however, is located at pT ≈
1.0GeV to 1.5GeV and thus not in agreement with the results from BAMPS.

Pb+Pb at LHC energy� The nuclear modification factor in simulations of central Pb+Pb at 2.76ATeV is
identical in shape and magnitude to the nuclear modification factor in simulations of
central Au+Au at 200AGeV.� The value of RAA in central Pb+Pb collisions computed with BAMPS is distinctly
below the experimental value of RAA measured by ALICE. Furthermore, the result
from BAMPS does not reproduce the increase of RAA towards large pT that is observed
at the LHC.� The differential elliptic flow in simulations of Pb+Pb at 2.76AGeV is very similar
to that extracted from simulations of Au+Au at 200AGeV. The peak of v2(pT )
appears to have shifted and is roughly located in the range pT ≈ 1.5GeV to 2.5GeV.
The maximum value is slightly increased.� The magnitude of the quark v2 is in good agreement with experimental v2 of charged
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hadrons that is scaled with nq = 2 as v∗2(pT ) = v2(pT /nq)/nq for pT . 1.75GeV. The
elliptic flow of gluons is slightly above the experimental data for pT & 1GeV.

Conclusions

While simulations of heavy ion collisions within the transport model BAMPS can reproduce
many qualitative and some quantitative features of the experimentally observed RAA and
v2, the above summarized results of the present work lead to the conclusion that, in its
current version using a fixed αs, BAMPS cannot simultaneously describe the elliptic flow of
the partonic bulk matter and the suppression of high-pT particles on a quantitative level.

The collective flow of the partonic medium in the transport simulations is largely com-
patible with experimental results, especially in terms of the centrality dependence of the
integrated v2, but the suppression of high-pT particles is systematically stronger than indi-
cated by the experimentally measured RAA. Also, and maybe more severely, the centrality
dependence of RAA in BAMPS systematically differs from the experimental observations.
The observed increase of RAA towards large pT in first measurements of RAA at LHC is
clearly not reproduced within the current setup of the BAMPS framework. On closer ex-
amination also the interpretation of the differential elliptic flow results at intermediate pT is
rather involved. While an interpretation in terms of a quark recombination picture is needed
to successfully explain the magnitude of v2 at intermediate pT , the very same picture shifts
the position of the maximum in the differential elliptic flow in a way that cannot be readily
reconciled with experimental data.

The strong quenching of high-pT particles within the BAMPS framework is due to radia-
tive interactions based on the Gunion-Bertsch matrix element in a complex interplay with
the effective implementation of the LPM effect via a cutoff that depends on the formation
time τ of the radiated gluon and the current mean free path λ. This has three major
consequences that together cause the strong suppression of high-pT particles:

1. The large mean energy loss per radiative interaction

The large mean energy loss per radiative interaction, 〈∆E23〉, is caused by the preferred
emission of the radiated gluon into the backward direction due to the distortion of
the phase space by the Lorentz boost that is involved in the comparison of τ and λ.
This in turn leads to configurations in which the two remaining outgoing particles
are emitted into the forward direction and might roughly split the available energy in
equal shares, yielding a large energy loss ∆E23.

2. The strong conversion of high energy quarks into gluons

This is also caused by the preferred emission of the radiated gluon into the backward
direction. As there exist configurations in which the two remaining particles are both
emitted into the forward direction, in qg → qgg processes the second gluon instead
of the quark might obtain the largest outgoing energy. Additionally, at moderate jet
energies there is a small but finite probability that the radiated gluon acquires the
largest outgoing energy in the laboratory frame, further enhancing the conversion of
quarks jets into gluons.

3. The small difference in the energy loss of quarks and gluons

The differential energy loss of quark jets is only about 20% smaller than that of
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gluons even though the underlying Gunion-Bertsch matrix element is scaled by the
conventional color factors that would roughly give a factor of 2 difference. This is
caused by the dependence of the LPM cutoff on the current mean free path that
requires an iterative computation of the interaction rates and effectively weakens the
change introduced by the color factors.

While the results presented in this work thus demonstrate that the simultaneous descrip-
tion of RAA and v2 within the standard setup of BAMPS fails on the quantitative level, the
discussion in section 5.6 has already illustrated that there are of course parameters to the
model. The tuning of these parameters—within reasonable limits—might bring the results
in better agreement with experimental data and should be explored in future studies. The
two most crucial parameters in BAMPS enter when fixing the strong coupling and the LPM
cutoff. Possible consequences of employing a dynamically determined coupling—a running
coupling—instead of the canonically fixed value of αs = 0.3 are discussed below, in sec-
tion 6.2.1. The discussion in section 5.6 has shown that parametric changes to the LPM
cutoff, Θ

(
k⊥ − γ

λ

)
→ Θ

(
k⊥ −X γ

λ

)
, might considerably reduce the suppression of high-pT

particles, while the changes to the differential elliptic flow would be rather modest. An
appropriate tuning of the scaling factor X—to roughly X = 1.5 or X = 2, judging from
the results in fig. 5.16—in combination with a running coupling scheme might thus provide
phenomenological leverage to bring the BAMPS results in quantitative agreement with ex-
perimental data. See also section 6.2.2 for a discussion of a more fundamental treatment of
the LPM effect that would dispense with the modeling via a kinematical cutoff altogether.

6.2. Future projects and possible extensions of the model

Based on the results and observations presented in this work, some possible extensions
and enhancements of the transport model BAMPS are proposed in this section that might
provide means of addressing the above discussed issues in future projects. Additionally,
systematic studies are proposed that might help to assess the sensitivity of different observ-
ables on details of the modeling and to further improve the comparison to experimental
data.

6.2.1. Implementation of running coupling

Throughout this work the strong coupling has been fixed to αs = 0.3. While this is a rather
canonical—and certainly the most simple—approach, it is of course not entirely accurate.
As already discussed in the introduction, the strong coupling depends on the momentum
scale of the considered process, αs(Q

2), cf. eq. (2.4), and decreases with increasing Q2. An
incorporation of running coupling into the BAMPS framework might therefore lead to less
energy loss and thus less suppression at high-pT , while the coupling of bulk particles at low
and intermediate pT might be even enhanced. The dependence of αs on the momentum
scale might also help to bring the nuclear modification factor from BAMPS into accordance
with the increase of RAA towards large pT that is observed at LHC. Even if that was the
case, however, a qualitatively different behavior of RAA as a function of pT at RHIC and
LHC would be difficult to describe. But, within the experimental errors, the measurement
of RAA at large transverse momenta at RHIC can currently not discriminate between a flat
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suppression pattern and a moderate increase towards large pT . Some data points suggest
[PHENIX08a] that RAA is actually also increasing with pT at RHIC, in agreement with the
qualitative behavior observed at LHC. This issue still needs to be settled experimentally.

λ t
he

rm
 [f

m
]

αs

gluon
quark

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.1  0.2  0.3  0.4  0.5  0.6

dE
/d

x 
[G

eV
]

αs

gluon
quark

 0

 5

 10

 15

 20

 25

 30

 35

 0  0.1  0.2  0.3  0.4  0.5  0.6

Figure 6.1.: Thermal mean free path λtherm (left panel) and differential energy loss dE/dx
(right panel) of gluons and quarks as a function of αs. The given values are
obtained from calculations of a static medium at T = 0.4GeV as detailed in
sections 4.1 and 4.2. The energy of the jet particle for which dE/dx is given in
the right panel is E = 20GeV.

Figure 6.1 illustrates the dependence of the thermal mean free path and of the differential
energy loss on αs. While the change in the thermal mean free path is rather moderate
when going from the current choice of αs = 0.3 to larger values of αs, the differential
energy loss depends rather strongly on αs. This reinforces the qualitative arguments made
above. Note however, that the results in fig. 6.1 have been obtained within the current
framework, i.e. by using fixed values of αs. In a correct treatment of the running coupling,
αs(Q

2) needs to be explicitly included on the level of the matrix elements, with αs being
evaluated at the virtuality of the respective channel. The momentum dependent coupling
would thus be included in the integration of the matrix elements yielding the total cross
sections as well as in the sampling of phase space configurations according to the matrix
elements. This approach is already pursued in studies of collisional energy loss and elliptic
flow of heavy quarks within BAMPS [UFXG10b, UFXG11]. The numerical evaluation is
thus considerably more involved than what can be concluded from the simple qualitative
arguments given above.

The approach is indeed promising, but a conclusive assessment of its impact on elliptic
flow and jet quenching results from BAMPS and their comparison with experimental results
requires a careful and quantitative investigation.

6.2.2. Reassessment of Gunion-Bertsch and the modeling of the LPM effect

As pointed out in the summary of the results that have been presented in this work, it
is the peculiar and complex features of radiative processes based on the Gunion-Bertsch
matrix element in cooperation with the effective treatment of the Landau-Pomeranchuk-
Migdal effect via a mean free path dependent cutoff that ultimately lead to the strong
suppression of high-pT particles within the BAMPS framework. An independent validation



128 6. Summary and conclusions

of this approach would therefore be extremely beneficial.

As discussed in great detail in section 3.2, the Gunion-Bertsch matrix element is based on
various assumptions. The implementation of a more general treatment of 2 → 3 processes
would therefore be desirable. However, the numerical and conceptual challenges would
be very high, as can be readily guessed from the exact matrix element (3.79). Moreover,
a comparison of the Gunion-Bertsch matrix element to the exact solution that has been
presented in section 3.2.3, shows only rather moderate deviations. Although the magnitude
of the deviations also depends on the specific configuration, which might affect the available
phase space for 2 → 3 interactions.

More crucial would be an independent reassessment of the modeling of the LPM effect.
A fundamental and exact incorporation of this inherently quantum mechanical effect into
a microscopic transport model that operates with semi-classical Boltzmann particles is cer-
tainly not possible. However, Zapp et al. have presented a promising approach in their
Monte Carlo model for in medium jet evolution that reproduces analytic results from the
Bethe-Heitler to the deep incoherent regime [ZSW09]. It is based on the idea of dynami-
cally changing the formation time of the radiated gluon by subsequent momentum transfers
from elastic scatterings. Whether this approach could be applicable to a full scale transport
model calls for a thorough investigation. An implementation, if conceptually possible, would
require changes to the very core of the BAMPS algorithms. At the very least, particles in-
volved in radiative processes would need to “remember” their association with each other,
such that the current formation time of the previously radiated gluon can be evaluated
when deciding whether a new radiative process could occur and whether the radiated gluon
is formed and thus allowed to scatter itself.

Judging from the experience gained in the course of the studies presented in this work,
the implementation of this procedure should in principle be possible. See also [CSBS11] for
a first attempt to incorporate this approach into a partonic transport model. In case of
excessive numerical expense, the limitation to high-pT processes might be conceivable. The
comparison to the current approach would be very exciting and although this is clearly not
a short-term project, it should thus be pursued.

6.2.3. Investigation of possible hadronization scenarios

As already extensively discussed, the hadronization of the partonic degrees of freedom
present in BAMPS is crucial to the comparison of the results to experimental data. Impor-
tant examples are the differential elliptic flow at low and intermediate pT , cf. section 5.4,
and the different contributions of high-pT quarks and gluons to the suppression of hadrons
at large transverse momenta, cf. sections 5.3 and 5.5.

The application of fragmentation functions to the partonic spectra for large transverse
momenta has been presented in this work in section 5.3. However, the direct implementa-
tion of a Monte Carlo fragmentation scheme on a single particle level within the BAMPS
framework—as already discussed in section 5.3.1—would certainly be desirable and would
allow for the analysis of more differential observables on a single hadron level and also for
the analysis of jet reconstruction schemes via cone [SS07] or k⊥ [DLMW97] and anti-k⊥
algorithms [CSS08]. The latter would for example facilitate the investigation of dijet asym-
metry as measured at the LHC by ATLAS [ATLAS10] and CMS [CMS11], while the former
would include the study of azimuthal single hadron correlations.



6.2. Future projects and possible extensions of the model 129

For the hadronization of the bulk particles different schemes are conceivable. Inspired
by hydrodynamic models, the hadronization could be done by a Cooper-Frye freezeout
prescription [CF74]. In an approach very similar to the combination of hydrodynamics
with the UrQMD model by Petersen et al. [PSB+08], the partonic stage might then be
followed by a hadronic transport model. The clear disadvantage of this hadronization scheme
is that all microscopic information is lost within the freezeout procedure. More microscopic
approaches might be provided by quark recombination models [FMNB03, MV03, GKL03]
or by the dynamic generation of hadrons via an effective approach that is based on gluons
scattering into pions.

The investigation of these possibilities is underway but also not a short-term project.
In any case the question how the hadronization of high-pT particles via fragmentation can
be consistently matched to the hadronization of bulk particles will need to be carefully
investigated.

6.2.4. Systematic studies of the sensitivity on initial conditions and fluctuations

Independent of the above discussed extensions of the model, systematic studies of different
initial parton distributions and the sensitivity of the result on fluctuations of these initial
distributions might be useful to further evaluate the robustness and predictive power of
results extracted from simulations within the BAMPS framework.

The GRV parton distribution functions used in the mini-jet model, cf. section 5.2.1, are
clearly outdated and should be superseded by more recent parametrizations of the parton
distribution functions provided by the Les Houches Accord PDF Interface [WBG05]. The
results based on these initial distributions should be systematically compared to initial
distributions from other approaches such as the Monte Carlo event generator Pythia, cf.
section 5.2.1, or parametrizations of the color glass condensate [MV94, DM02]. Also the
consequences of cold nuclear matter effects, see the discussion in section 5.5.1, could be
included in such systematic studies.

Additionally, the investigation of event-by-event fluctuations within the BAMPS frame-
work might be worthwhile, especially with respect to flow observables. As the use of test
particles intrinsically washes out initial fluctuations, an approach similar to hydrodynamic
studies of fluctuating initial distributions would have to be pursued. The initial distribution
of real particles from nucleon-nucleon collisions according to the Glauber model would have
to be translated to a continuous distribution that reflects the fluctuations of these initial
production points, for example by representing each real particle by a Gaussian and subse-
quently adding these to obtain a global distribution. The sampling of test particles would
then be done according to the so generated distribution instead of the smooth Woods-Saxon
distribution. See for example [SJG11b, PSB+08]. To facilitate a more realistic comparison
of flow observables from such studies to experimental data, it might be advisable to adopt
and explore different experimental schemes for determining flow observables, such as the
cumulant method. See [VPS08] for an extensive review.

The main obstacle for such studies, however, is the very severe requirement of computing
resources for simulations of heavy ion collisions within the BAMPS framework. With the
computation time for a single event ranging from a couple of hours to a couple of days,
a systematic comparison of different initial distributions becomes very difficult. Unless
substantial improvements to the performance of the underlying algorithms are made, the
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assessment of the sensitivity of the results on, for example, various initial conditions will
therefore be limited to isolated studies.
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A. Notation and conventions

A.1. Units

As in most publications on particle or high-energy nuclear physics, natural units [HM84]
are used throughout this document. In these units the speed of light, the Planck constant
and the Boltzmann constant are set to unity, i.e.

c = ~ = kB := 1 . (A.1)

This implies that momenta, masses, temperatures and energies can all be expressed in units
of energy. Conventionally the electron-volt

1 eV = 1.602 176 487(40) · 10−19 J (A.2)

is chosen with appropriate SI-prefixes. Energies and temperatures in the physical set-
tings covered in this work are usually in the megaelectronvolt (MeV) or gigaelectron-
volt (GeV) range. Since the charge radius of a proton is on the order of a femtometer
(1 fm = 1 · 10−15 m), lengths and times are usually expressed in multiples of a femtometer.
Note that, though the choice c = 1 is made and thus length and time have the same unit,
it is nevertheless often useful to explicitly denote times in units of fm c−1.

Due to the choice (A.1) the units GeV and fm are linked via

0.1972 GeV fm := 1 . (A.3)

Thus length can be expressed in units of inverse energy and vice versa, with the conversions

1GeV =
1

0.1972
fm−1 (A.4)

1 fm =
1

0.1972
GeV−1 . (A.5)

For illustrative purposes, in the following some conversions from natural to SI-units
(rounded to three significant digits) are listed:

Energy 1GeV = 1.60 · 10−10 J

Momentum 1GeV = 5.34 · 10−19 kgm s−1

Mass 1GeV = 1.78 · 10−27 kg

Temperature 1GeV = 1.16 · 1013 K
Length 1GeV−1 = 1.97 · 10−16 m

Time 1 fm c−1 = 3.34 · 10−24 s

Cross section 1GeV−2 = 0.389mb .
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When quoting the center of mass energy
√
s of a heavy ion collision, usually the number

is given per nucleon-nucleon pair, since this is the relevant quantity when comparing to
proton-proton collisions. For this, two notations are commonly used

√
s
NN

= 200GeV

or, for symmetric collisions with identical nuclei,

√
s = 200AGeV .

A is the mass number, i.e. the number of protons plus number of neutrons, A = Z +N , of
the colliding nuclei. The total energy of the collision is then A times the given number. In
this work mostly the notation of the center of mass energy in units of AGeV is used.

A.2. Notation

Vectors

p three-vector

p, pµ four-vector

Rates and probabilities

Rg
X→Y Contribution to the rate per single gluon from the process X → Y .

Rq
X→Y and Rq̄

X→Y accordingly.

Rg
i Contribution to the rate per single gluon from the process of type i

(index for summation etc.). Rq
i and Rq̄

i accordingly.

R
(j)
i Contribution to the rate per particle of type j from the process i.

Rg
22 Rate per single gluon from all 2 → 2 processes. Rq

22, R
g
23 etc. accord-

ingly.

R22 Generic notation for the rate from all 2 → 2 processes when the type of
the considered particle is not relevant or clear from the context.

Rg Total rate per single gluon, Rg =
∑

iR
g
i . R

q and Rq̄ accordingly.

PX→Y Probability for the process X → Y to occur within a spatial volume ∆V
and a time interval ∆t.



A.3. On the term “jet” 135

Particle numbers and densities

Ng Number of gluons in a given volume.

N (f)
q Number of quarks of flavor f (up, down, strange) in a given volume.

N
(f)
q̄ Number of antiquarks of flavor f (anti-up, anti-down, anti-strange) in a

given volume.

Nq Number of quarks in a given volume. Nq =
∑

f N
(f)
q .

Nq̄ Number of antiquarks in a given volume. Nq̄ =
∑

f N
(f)
q̄ .

N Total number of particles in a given volume. N = Ng +Nq +Nq̄.

ng Density of gluons.

n(f)q Density of quarks of flavor f (up, down, strange).

n
(f)
q̄ Density of antiquarks of flavor f (anti-up, anti-down, anti-strange).

nq Density of quarks. nq =
∑

f n
(f)
q .

nq̄ Density of antiquarks. nq̄ =
∑

f n
(f)
q̄ .

n Total density of particles. n = ng + nq + nq̄.

Miscellaneous

Nc Number of colors. Nc = 3.

Nf Number of flavors.
In this work only the cases Nf = 0 (only gluons) and Nf = 3 (gluons
plus three flavors of light quarks with mass m = 0GeV) are considered.

Ntest Number of test particles per real particle.

NX→Y Number of X → Y processes in a given cell ∆V and time step ∆t.

2 → 2 Symbolic shorthand for: Interaction with two-particle initial state and
two-particle final state, e.g. gq → gq.

2 → 3 Symbolic shorthand for: Interaction with two-particle initial state and
three-particle final state, e.g. gg → ggg.

3 → 2 Symbolic shorthand for: Interaction with three-particle initial state and
two-particle final state, e.g. ggg → gg.

A.3. On the term “jet”

When physicists from different areas of heavy ion physics are brought into a room to discuss
jet physics, there is likely to be some dissent on what the term “jet” actually refers to.
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On the partonic level immediately after the initial hard collision the situation is prob-
ably the clearest. The emerging parton with high transverse momentum is a jet. Subse-
quently this parton evolves in virtuality by radiating off (soft) gluons—either in vacuum or
in medium. Now the jet can either be the leading parton or the leading parton plus the
associated shower of gluons.

These partons are of course not accessible experimentally due to confinement—what is
measured are the emerging hadrons that for high energy partons are produced in fragmen-
tation processes. In experimental discussions the term “jet” can therefore either be used for
a single measured hadron with high transverse momentum or for the collection of hadrons
emerging from the parton shower related to the initially produced hard parton. In the
latter case the hadrons belonging to the shower need to be carefully identified by special
algorithms in order to recover energy and momentum of the initial hard parton as accurately
as possible. So called cone [SS07], kT [DLMW97] and anti-kT [CSS08] algorithms are the
most widely used types of algorithms to perform this clustering. With the recent progress
in this sort of analysis at RHIC [STAR09, PHENIX09c] and the jet reconstruction analysis
of the first LHC data [ATLAS10, CMS11], this notion of the term “jet” is more and more
becoming the new paradigm.

In this work however, the term “jet” refers to a single hard parton traversing a partonic
medium. Since BAMPS is an on shell transport model (i.e. there is no gluon radiation due
to an evolution in virtuality) that exclusively deals with partonic degrees of freedom, this
notation is the most obvious choice.



B. Matrix elements and cross sections

The purpose of this appendix is to provide an overview of the fundamental terms and
the basic definitions and relations for the reader. It does not comprehend mathematically
rigorous or self-contained derivations of the presented quantities. Detailed discussions can
be found in various textbooks on the subject, such as [PS95, HM84, Gro80], and in the
reviews of the Particle Data Group [PDG10].

B.1. The invariant matrix element

To establish a basis, the definition of the invariant matrix element is briefly reviewed1.
The transition probability between two initial wavepacket states |φAφB〉in and several final
wavepacket states |φ1φ2 · · · 〉out in an interacting field theory is given by the overlap of the
two states

P = |out 〈φ1φ2 · · · |φAφB〉in|
2 . (B.1)

Using this notation, the ingoing wavepackets are prepared at the infinite past, while the
outgoing wavepackets are taken at a time infinitely in the future. Expanding the wavepack-

ets as superpositions of definite momentum states 〈φ| =
∫ d3p

(2π)3
φ(p)√
2E

〈p| and leaving the

integrations in phase space for later, the transition probability is governed by the overlap
of the momentum states

out 〈p1p2 · · · |pApB〉in . (B.2)

In order to compute this overlap, the states need to be taken at a common time. The
necessary time evolution is mediated by an operator S, the S-matrix

out 〈p1p2 · · · |pApB〉in = 〈p1p2 · · · | S |pApB 〉 . (B.3)

All information on the interacting features of the field theory are contained in the S-matrix.
Since there is in general a finite probability of no interaction at all, the non-interacting part
is split off and the S-matrix can be written as

S = 1+ iT (B.4)

where T now solely contains the information on the interaction between the incoming states
(particles). To ensure four-momentum conservation, T always contains δ(4)(pA + pB −∑

i pi). Extracting this factor finally yields the invariant matrix element M, defined via

〈p1p2 · · · | iT |pApB 〉 = (2π)4 δ(4)(pA + pB −
∑

i

pi) · iM . (B.5)

The merit of this notation is that the invariant matrix element M can be computed from a
perturbative expansion of the field theory using the technique of Feynman diagrams.

1The rough outline presented here follows the argumentation of Peskin and Schroeder [PS95], see their
book for a more detailed and rigorous derivation.

137



138 B. Matrix elements and cross sections

B.2. The definition of the cross section

The question is how the invariant matrix element M, computed from Feynman diagrams,
can be connected with a measurable quantity. For this, typically the cross section, σ, is
chosen to characterize a specific interaction. It has units of area (usually given in barn,
1 b = 10 · 10−24 cm2) and represents a hypothetical area around the target particle. It can
be interpreted analogously to the geometrical cross section of a particle, i.e. an interaction
takes place when a beam particle hits the target particle within this area. The cross section
can be related to a measurable quantity in a scattering experiment in various ways. For
example the counting rate of a given type of interactions for a beam with flux Fb = nbvb,
where nb is the particle density of the beam and vb its velocity, hitting NT target particles
at rest is given by

R = FbNTσ . (B.6)

The definition of the cross section itself contains a flux factor 1/F , where F = 2EA2EB |vA − vB |
in the laboratory frame for particle A hitting particle B with the relative velocity |vA − vB |.
In the center of momentum frame this can be rewritten as F = 4 |pA|

√
s, which in the case

of massless particles further simplifies to

F = 2s . (B.7)

Combining the flux factor with the definition of the matrix element (B.5) and recollecting
all the phase space integration omitted previously, the total cross section for a given process
AB → 12 · · · f (with massless particles) finally reads

σ =
1

2s

1

ν

(
f∏

i=1

∫
d3pi

(2π)32Ei

)
(2π)4δ(4)(pA + pB −

f∑

i=1

pi) |MAB→12···f |2 , (B.8)

where
(∏f

i=1

∫ d3pi
(2π)32Ei

)
symbolically represents the f -dimensional phase space integral with

the integration applying to the terms outside the parentheses as well. The factor 1/ν is
inserted to account for identical particles in the final state.

In addition to the total cross section one is often interested in differential cross sections
that characterize the scattering into a specific part of phase space. The differential cross
section can be obtained by omitting the integration over the phase space variable in question
in eq. (B.8), possibly after an adequate transformation of variables. Formally, the differential
cross section dσ/dx with x = x(p1,p2, · · · ,pf ) ≡ x(p) can be represented as

dσ

dx
=

1

2s

1

ν

(
f∏

i=1

∫
d3pi

(2π)32Ei

)
(2π)4δ(4)(pA+pB −

f∑

i=1

pi)δ(x−x(p)) |MAB→12···f |2 . (B.9)

Popular examples of differential cross sections are dσ/dt, the differential cross section for
a given Mandelstam t, and dσ/dq2⊥, the differential cross section for a given transverse
momentum transfer q2⊥. They can be related to dσ/dΩ, the differential cross section for a
scattering into a given solid angle dΩ = sin θdθdφ.
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B.3. Parton-parton cross sections in small angle approximation

B.3.1. Kinematics

Let us first consider some basic kinematics of a binary scattering of massless partons. In
the center of momentum frame the two incoming particles have momenta kA = (E, kez)
and kB = (E,−kez). The outgoing particles have momenta p1 = (E,p) and p2 = (E,−p).
The scattering angle is θ with cos θ = p·ez

|p| , see fig. B.1.

p1

p2

kA

kB

θ

Figure B.1.: Illustration of the kinematics for a binary collision in the center of momentum
frame.

The Mandelstam variables for this process are

s = (kA + kB)
2 = (p1 + p2)

2 (B.10a)

t = (p1 − kA)
2 = (p2 − kB)

2 (B.10b)

u = (p1 − kB)
2 = (p2 − kA)

2 . (B.10c)

The three-momentum transfer is given by

q2 = (p1 − kA)
2 =

s

2
(1− cos θ) (B.11)

since k = |p| = E =
√
s/2. Furthermore, from the definitions of the Mandelstam variables

one obtains

t = −s
2
(1− cos θ) = −q2 (B.12a)

and

u = −s
2
(1 + cos θ) . (B.12b)

The latter could also be derived from s + t + u = 0 (in general s + t + u =
∑

im
2
i ).

Projecting onto the direction of kA = kez the momentum transfer can be decomposed into
q2 = q2

‖ + q2
⊥, with

q2
‖ =

s

4
(1− cos θ)2 (B.13a)

q2
⊥ =

s

4
sin2 θ . (B.13b)
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Expanding the parallel component, q2
‖, and the transversal component, q2

⊥, to the mo-

mentum transfer in Taylor series around θ = 0 one obtains q2
‖ = s

16θ
4 + O(θ6) and

q2
⊥ = s

4θ
2 + O(θ4). For θ → 0 thus q2

⊥ dominates the total momentum transfer and
for small angle scattering

t ≈
θ→0

−q2
⊥ . (B.14)

For angles larger than π/2 the Mandelstam variables t and u basically switch roles, as

u t

Π

2
Π
Θ

-s

Figure B.2.: Mandelstam t and u as a function of the scattering angle θ.

illustrated in fig. B.2. For θ → π one therefore obtains u ≈ −q2
⊥.

B.3.2. The small angle approximation

Computing differential cross sections from Feynman diagrams, the results are often in terms
of Mandelstam variables, most prominently dσ/dt. For the numerical sampling of the out-
going momenta a representation in terms of the momentum transfer q is more convenient.
The connection can be made via eq. (B.12a) and σ =

∫ 0
−s

dσ
dt dt =

∫ s
0

dσ
dq2 dq

2, so one obtains

the differential cross section in q simply via2

dσ

dq2
=
dσ

dt

∣∣∣∣
t=−q2

. (B.15)

Even more convenient in terms of numerical sampling is the small angle approximation
eq. (B.14), t ≈ −q2

⊥. The differential cross section then reads dσ
dq2

⊥

≈ dσ
dt

∣∣
t=−q2

⊥

. Since the

cross sections we will discuss below are dominated by small angle scatterings, the approxi-
mation is not so bad and it is used for all binary cross sections in this work.

For identical particles in the final state the Mandelstam variables t and u are interchange-
able. In this case the small angle limit of a differential cross section can be computed by
taking the limit t → 0 and multiplying the result by 2 instead of taking the limits t → 0
(θ → 0) and u→ 0 (θ → π) separately. In the limit of small t, the variable u = −s− t can
be approximated as u ≈ −s. Likewise u→ 0 leads to t ≈ −s.

While the timelike propagators ∼ 1/s of s-channel diagrams are infrared-safe due to
phase space constraints, the spacelike propagators of t- and u-channel are infrared divergent

2The sign is fixed such that σ =
∫ 0

−s

dσ
dt
dt =

∫ s

0
dσ

dq2 dq
2 holds.
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as ∼ 1/t and ∼ 1/u respectively. Inspired from hard thermal loop (HTL) calculations
where infrared divergences are screened by a thermally generated self energy Π ∼ g2sT

2

the propagators are screened by introducing a thermal mass (Debye mass) µ2 ∼ g2sT
2. As

detailed in chapter 3 the Debye mass for Boltzmann particles reads, i.e.

µ2 = m2
D = dGπαs

∫
d3p

(2π)3
1

p
(Ncfg +Nffq) (B.16)

for gluon propagators and

µ2 = m2
q = 4παs

N2
c − 1

2Nc

∫
d3p

(2π)3
1

p
(fg + fq) (B.17)

for quark propagators.
Summing up, the following recipe describes how to obtain dσ

dq2
⊥

in small angle approx-

imation from dσ
dt expressed in terms of Mandelstam variables. Only the case where the

expression is symmetric in t and u is explicitly discussed.

1. Take the limit t→ 0 and replace u with u ≈ −s.

2. Multiply by 2 to account for u→ 0.

3. Screen propagator terms ∼ 1/t with the appropriate screening mass

1

t
→ 1

t− µ2
.

The minus sign is chosen since t, u < 0.

4. Replace t = −q2
⊥

B.3.3. Binary parton-parton cross sections

In this appendix we summarize the cross sections for all possible types of binary partonic
processes for gluons and light quarks (Nf = 3, all masses taken to be zero) from leading order
perturbative QCD. The differential cross section in t, dσ/dt, is taken from [PS95]. The small
angle differential cross section dσ/dq2

⊥ is computed according to the procedure described
above. Additionally the total (integrated) cross section in small angle approximation is
shown, computed from

σ =

∫ s/4

0

dσ

dq2
⊥
dq2

⊥ . (B.18)

gg → gg

Differential cross section
dσgg→gg

dt
=

9πα2
s

2s2

[
3− tu

s2
− su

t2
− st

u2

]
(B.19a)

Small angle approximation
dσgg→gg

dq2
⊥

= 9πα2
s

1
(
q2
⊥ +m2

D

)2 (B.19b)

Total cross section σgg→gg = 9πα2
s

s

m2
D(4m

2
D + s)

(B.19c)
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qq̄ → gg

Differential cross section
dσqq̄→gg

dt
=

32πα2
s

27s2

[
u

t
− t

u
− 9

4

(
t2 + u2

s2

)]
(B.20a)

Small angle approximation
dσqq̄→gg

dq2
⊥

=
64πα2

s

27s

1

q2
⊥ +m2

q

(B.20b)

Total cross section σqq̄→gg =
64πα2

s

27s
ln

(
1 +

s

4m2
q

)
(B.20c)

qg → qg and q̄g → q̄g

(a) (b) (c)

Figure B.3.: Feynman diagrams for a qg → qg process.

Differential cross section
dσqg→qg

dt
=

4πα2
s

9s2

[
−u
s
− s

u
− 9

4

(
s2 + u2

t2

)]
(B.21a)

Small angle approximation
dσqg→qg

dq2
⊥

= 2πα2
s

1
(
q2
⊥ +m2

D

)2 (B.21b)

Total cross section σqg→qg = 2πα2
s

s

m2
D(4m

2
D + s)

(B.21c)

The screening of the propagators in qg → qg or q̄g → q̄g needs some consideration. As can
be seen from fig. B.3 there are two quark propagators and one gluon propagator involved.
The s-channel diagram (fig. B.3a) clearly needs to be screened by mq. The question which
of the other channels gets mD and which mq can be answered by recalling the crossing
symmetries of Feynman diagrams. The process qg → qg can be obtained from qq̄ → gg by
crossing. For this specific crossing the roles of s and t switch, therefore it is the t-channel
that needs to be screened by mD in qg → qg processes.
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gg → qq̄

Differential cross section
dσgg→qq̄

dt
=
πα2

s

6s2

[
u

t
− t

u
− 9

4

(
t2 + u2

s2

)]
(B.22a)

Small angle approximation
dσgg→qq̄

dq2
⊥

=
πα2

s

3s

1

q2
⊥ +m2

q

(B.22b)

Total cross section σgg→qq̄ =
πα2

s

3s
ln

(
1 +

s

4m2
q

)
(B.22c)

qq → qq and q̄q̄ → q̄q̄

Differential cross section
dσqq→qq

dt
=

4πα2
s

9s2

[
u2 + s2

t2
− t2 + s2

u2
− 2

3

s2

ut

]
(B.23a)

Small angle approximation
dσqq→qq

dq2
⊥

=
16πα2

s

9

1
(
q2
⊥ +m2

D

)2 (B.23b)

Total cross section σqq→qq =
16πα2

s

9

s

m2
D(4m

2
D + s)

(B.23c)

qq̄ → qq̄

Differential cross section
dσqq̄→qq̄

dt
=

4πα2
s

9s2

[
u2 + s2

t2
+
t2 + u2

s2
− 2

3

u2

st

]
(B.24a)

Small angle approximation
dσqq̄→qq̄

dq2
⊥

=
8πα2

s

9

1
(
q2
⊥ +m2

D

)2 (B.24b)

Total cross section σqq̄→qq̄ =
8πα2

s

9

s

m2
D(4m

2
D + s)

(B.24c)

qq′ → qq′

Differential cross section
dσqq′→qq′

dt
=

4πα2
s

9s2

[
u2 + s2

t2

]
(B.25a)

Small angle approximation
dσqq′→qq′

dq2
⊥

=
8πα2

s

9

1
(
q2
⊥ +m2

D

)2 (B.25b)

Total cross section σqq′→qq′ =
8πα2

s

9

s

m2
D(4m

2
D + s)

(B.25c)

qq̄′ → qq̄′

Differential cross section
dσqq̄′→qq̄′

dt
=

4πα2
s

9s2

[
t2 + u2

s2

]
(B.26a)

Total cross section σqq̄′→qq̄′ =

∫ 0

−s

dσqq̄′→qq̄′

dt
dt =

8πα2
s

27s
(B.26b)



144 B. Matrix elements and cross sections

For qq̄′ → qq̄′ processes the cross section is not divergent in t or u, thus no screening mass
needs to be introduced. Furthermore the small angle approximation is not applicable in
this case for which reason the full cross section (B.26a) is used in BAMPS.

B.4. Computation of the differential 2 → 3 cross section

This appendix details the computation of the differential cross section for a radiative 2 → 3
process, eq. (3.15),

dσ2→3

dq2⊥dk
2
⊥dydφ

=
dg

256π4s

1

ν
|M2→3|2

∑(∣∣∣∣
∂F

∂y1

∣∣∣∣
F=0

)−1

, (B.27)

from the Gunion-Bertsch matrix element (3.13)3.
According to eq. (3.7) the total cross section is given by

σ23 =
dg
2s

1

ν

∫∫∫
d3p1

(2π)32E1

d3p2
(2π)32E2

d3p3
(2π)32E3

× (2π)4δ(4)(pA + pB − (p1 + p2 + p3)) |M2→3|2 , (B.28)

where ν accounts for identical particles in the final state and dg is the degeneracy factor
dg = 16 for gluons. Employing the transformation properties of the delta function

δ
(
f(x)

)
=
∑

i

1

|f ′

(xi)|
δ(x − xi) (B.29)

where f(xi) = 0, the integration variables in eq. (B.28) can be rewritten as

∫
d3p

2E
≡
∫
d4pδ(p2 −m2)Θ(p0) . (B.30)

The constraint Θ(p0) ensures that only the positive solution of p2 −m2 = 0 for E is taken
into account. Integrating eq. (B.28) over d3p2 then yields

σ23 =
dg

256π5
1

ν

1

s

∫∫
d3p1
E1

d3p3
E3

δ
(
(pA + pB − p1 − p3)

2
)
|M2→3|2 . (B.31)

Let

F = (pA + pB − p1 − p3)
2

= s− 2
√
sq⊥ cosh y1 − 2

√
sk⊥ cosh y + 2q⊥k⊥

+ 2q⊥k⊥ cosh y1 cosh y − 2q⊥k⊥ sinh y1 sinh y

(B.32)

be the argument of the delta function in eq. (B.31), where y is the rapidity of the emitted
gluon (p3) and y1 denotes the rapidity of the outgoing particle 1. The connection between
rapidity and energy is given by

E3 = k⊥ cosh y (B.33)

E1 = q⊥ cosh y1 . (B.34)

3See section 3.4 for the generalization to processes involving light quarks.
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Using y = 1
2 ln

E+pz
E−pz

= ln E+pz
p⊥

and thus dy
dpz

= 1
E , the remaining integration variables can

be further transformed

d3p1
E1

≡ d2q⊥ dy1 (B.35)

d3p3
E3

≡ d2k⊥ dy . (B.36)

Finally, noting that
∫
d2q⊥ ≡

∫
dq2⊥

∫ π
0 dφ, the total cross section is given by

σ23 =
dg

256π5
1

ν

1

s
π

∫
dq2⊥ dy1 dk

2
⊥ dy

∫ π

0
dφ δ(F ) |M2→3|2 , (B.37)

where one angular integration has already been performed and the remaining angle φ is
taken to be between q⊥ and k⊥. In order to further evaluate this expression by integrating
over y1, the derivative of F with respect to y1 is needed

∂F

∂y1
= −2

√
s p1,z + 2E3 p1,z − 2E1 p3,z . (B.38)

The strategy is then to solve F = 0 for p1,z, plug this into eq. (B.38) together with eqs. (B.33)
and (B.34) and to evaluate the remaining integral

σ23 =
dg

256π4
1

ν

1

s

∫ s/4

0
dq2⊥

∫ s/4

1/λ2

dk2⊥

∫ ymax

ymin

dy

∫ π

0
dφ |M2→3|2

∑(
∂F

∂y1

∣∣∣∣
F=0

)−1

, (B.39)

where the limits on the k⊥ and y integration are given from a combination of the LPM cutoff
and kinematic constraints, see section 3.1.4. After some algebra the solutions to F = 0 are
given by

p
(1)
1,z =

−B +
√
B2 − 4AC

2A
(B.40)

p
(2)
1,z =

−B −
√
B2 − 4AC

2A
, (B.41)

with

A = (
√
s− E3)

2 − p23,z (B.42)

B = p3,z (s − 2
√
sE3 + 2q⊥k⊥ cosφ) (B.43)

C = (
√
s− E3)

2q2⊥ − 1

4
(s− 2

√
sE3 + 2q⊥k⊥ cosφ)2 . (B.44)

However, eqs. (B.40) and (B.41) are only valid solutions for p1,z if the constraint

s− 2
√
sE3 + 2

√
sE3 + 2q⊥k⊥ cosφ ≥ 2p1,zp3,z (B.45)

is fulfilled. See also the discussion in section 3.1.3 on further constraints on the solutions
(B.40) and (B.41) from the small angle approximation.





C. Interaction rates and probabilities

C.1. Computation of thermal rates

The interaction rates for given particle types and processes are for example needed for
computing the differential energy loss or the mean free path of partons, see section 4.1. In
a thermal and equilibrated system the rates can be computed from simple averages of the
cross sections—without the need to actually simulate the full scattering processes or the
dynamics of the medium and thus greatly reducing the computational expenses.

When computing the rate per particle for given processes1 from averages of the cross
sections, some attention needs to be paid to the prefactors. This section lists the rates for
all processes implemented in BAMPS.

Let Ng, Nq and Nq̄ be the number of gluons, quarks and antiquarks respectively, in
a given volume ∆V and ng = Ng/∆V , nq = Nq/∆V , nq̄ = Nq̄/∆V the corresponding

particle densities. Furthermore N
(f)
q denotes the number of quarks of a given flavor f with

Nq =
∑

f N
(f)
q and Nq = 3N

(1)
q = 3N

(up)
q in thermal equilibrium. n

(f)
q is the corresponding

density of quarks with flavor f .
The interaction probability for an arbitrary 2 → Y process X(2) → Y within ∆V and a

time interval ∆t is given by

PX(2)→Y = vrelσX(2)→Y
∆t

∆V
. (C.1)

Let mi
X(2)

denote the number of particles of type i involved in the initial state of the

X(2) → Y process, and MX(2)
the number of all possible particle pairs in the volume ∆V

that contribute to the initial state X(2). Then the contribution to the rate per particle of
type i from the process X(2) → Y is given by

Ri
X(2)→Y =

mi
X(2)

Ni
MX(2)

〈
PX(2)→Y

〉 1

∆t

=
mi

X(2)

Ni
MX(2)

〈
vrelσX(2)→Y

〉 1

∆V
.

(C.2)

The formula for 3 → 2 processes is very similar. X(3) then denotes a three-particle initial
state and MX(3)

the number of all contributing particle triplets. The probability PX(3)→Y

can be expressed as

PX(3)→Y = ĨX(3)→Y
∆t

(∆V )2
, (C.3)

where ĨX(3)→Y comprises the phase space integral over the matrix element for the process
X(3) → Y and some prefactors, cf. eqs. (3.8) and (3.9). Then the rate per particle of type i

1See appendix A.2 for the conventions used in the notation.

147



148 C. Interaction rates and probabilities

from the process X(3) → Y is computed, analogous to eq. (C.2), from

Ri
X(3)→Y =

mi
X(3)

Ni
MX(3)

〈
PX(3)→Y

〉 1

∆t

=
mi

X(3)

Ni
MX(3)

〈
ĨX(3)→Y

〉 1

(∆V )2
.

(C.4)

Thermal gluon rates

Rg
gg→Y =

2

Ng

(
Ng

2

)
〈Pgg→Y 〉

1

∆t
= 〈vrel σgg→Y 〉ng (C.5a)

Rg
gq→Y =

1

Ng
NgNq〈Pgq→Y 〉

1

∆t
= 〈vrel σgq→Y 〉nq (C.5b)

Rg
gq̄→Y = Rg

gq→Y = 〈vrel σgq→Y 〉nq (C.5c)

Rg
ggg→Y =

3

Ng

(
Ng

3

)
〈Pggg→Y 〉

1

∆t
=
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Thermal quark rates
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C.2. Scaling factors for 2 ↔ 3 processes including light quarks

As discussed in section 3.4.2 the incorporation of 2 ↔ 3 processes for light quarks is based
on scaling the gg → ggg matrix element in the Gunion-Bertsch approximation by QX =
dσX→X

dq⊥

/
dσgg→gg

dq⊥

. Additionally the the difference in the symmetry factors for the final states
of X ↔ Xg compared to gg ↔ ggg needs to be accounted for. This is done by a further
scaling factor ν̃X as in eq. (3.86), whose value is given in table 3.1 in the limit Ng ≫ 1. In
this appendix the derivation of the scaling for combinatorical symmetry factors is discussed
in some more detail. For simplicity only one quark flavor is explicitly considered (except
for the discussion of qq′ ↔ qq′g processes), the generalization to Nf = 3 is trivial.

gg ↔ ggg

The purely gluonic processes gg ↔ ggg as implemented in the original version of BAMPS
serve as a reference for the purpose of this discussion. The number of collisions in a given
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volume per time step are given by

Ngg→ggg =

(
Ng

2

)
Pgg→ggg Nggg→gg=

(
Ng

3

)
6Iggg→gg (C.7)

where Pgg→ggg is the probability for the radiative process as defined in eq. (3.4) and Iggg→gg

represents the phase space integral (3.9) that corresponds to the cross section of 2 → N
processes. The difference between the actual probability Pggg→gg and Iggg→gg, see eq. (3.8),
can be ignored for the sake of simplicity here since it is not relevant for the arguments
to come. The factor 6 in the above expression for Nggg→gg stems from a technical detail
in the implementation of BAMPS. The contributions of all possible combinations—gluon
1 absorbed by gluon 2, gluon 1 absorbed by gluon 3, etc.—are computed separately and
summed to give the total collision integral Itotalggg→gg =

∑
Iiggg→gg giving Itotalggg→gg = 6Iggg→gg

in the thermal average.

Now detailed balance in thermal and chemical equilibrium requires that the number of
particle production and annihilation processes is equal, i.e. Ngg→ggg/Nggg→gg = 1, giving

Pgg→ggg

Iggg→gg
= 2(Ng − 2) . (C.8)

qg ↔ qgg

The number of production processes is

Nqg→qgg = NgNq Pqg→qgg = NgNq ν̃qg→qggQqg Pgg→ggg , (C.9)

while the number of annihilation processes is given by

Nqgg→qgg =

(
Ng

2

)
Nq 4 Iqgg→qg =

(
Ng

2

)
Nq 4 ν̃qgg→qg Qqg Iggg→gg . (C.10)

Requesting thermal and chemical equilibrium, i.e. Nqg→qgg = Nqgg→qgg, and using eq. (C.8)
yields a relation between the combinatorical scaling factors

ν̃qgg→qg = ν̃qg→qgg
Ng − 2

Ng − 1
. (C.11)

From the number of identical particles in the final state of qgg → qg compared to ggg → gg
it is known that ν̃qgg→qg = 2 for large Ng and thus

ν̃qg ≡ ν̃qgg→qg ≈ ν̃qg→qgg ≈ 2 (C.12)

for Ng ≫ 1.

qq̄ ↔ qq̄g

The number of production processes is

Nqq̄→qq̄g = NqNq̄ Pqq̄→qq̄g = NqNq̄ ν̃qq̄→qq̄gQqq̄ Pgg→ggg , (C.13)
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while the number of annihilation processes is given by

Nqq̄g→qq̄g = NgNqNq̄ 2 Iqq̄g→qq̄ = NgNqNq̄ 2 ν̃qq̄g→qq̄Qqq̄ Iggg→gg . (C.14)

Arguing as above this gives

ν̃qq̄g→qq̄ = ν̃qq̄→qq̄g
Ng − 2

Ng
(C.15)

and in the limit Ng ≫ 1
ν̃qq̄ ≡ ν̃qq̄g→qq̄ ≈ ν̃qq̄→qq̄g ≈ 2 . (C.16)

qq ↔ qqg

For the process qq ↔ qqg one obtains

Nqq→qqg =

(
Nq

2

)
Pqq→qqg =

(
Nq

2

)
ν̃qq→qqgQqq Pgg→ggg (C.17)

and

Nqqg→qqg = Ng

(
Nq

2

)
2 Iqqg→qq = Ng

(
Nq

2

)
2 ν̃qqg→qqQqq Iggg→gg . (C.18)

Leading to

ν̃qqg→qq = ν̃qq→qqg
Ng − 2

Ng
. (C.19)

and in the limit Ng ≫ 1
ν̃qq ≡ ν̃qqg→qq ≈ ν̃qq→qqg ≈ 1 . (C.20)

qq′ ↔ qq′g

From a combinatorical point of view this process is similar to qq̄ ↔ qq̄g and thus

ν̃qq′g→qq′ = ν̃qq′→qq′g
Ng − 2

Ng
, (C.21)

in the limit Ng ≫ 1 giving

ν̃qq′ ≡ ν̃qq′g→qq′ ≈ ν̃qq′→qq′g ≈ 2 . (C.22)





D. Numerical sampling methods

In Monte Carlo or transport calculations it is generally necessary to sample values from
given, possibly multivariate1, distributions. This appendix briefly sketches three different
methods that are being used in transport simulations with BAMPS—deliberately without
mathematical rigorousness and proofs, see [PTVF07, NB99, RC04, Kle09] or other textbooks
on the subject for more details and in-depth discussions.

All sampling methods in principal rely upon the generation of uniformly distributed ran-
dom numbers in a given interval. For convenience the interval [0, 1) is chosen. The random
number generator2 used in this work is based on the Mersenne Twister algorithm [MN98]
as implemented in the Boost library3.

D.1. Inverse transform sampling

Let f(u) be a continuous univariate probability density such that P [a ≤ X ≤ b] =
∫ b
a f(u)du

gives the probability of the random variable X to fall into the interval [a, b]. f(u) shall be
normalized such that

∫∞
−∞ f(u)du = 1. Then the cumulative distribution function4

F (x) =

∫ x

−∞
f(u)du (D.1)

gives the probability for X being smaller than x, i.e. P [X ≤ x], or intuitively speaking the
area under the density function up to x.

The goal is now to randomly pick values x that are distributed according to the density
f or equivalently the distribution F . This is easily achieved by generating a uniformly
distributed random number y from the interval [0, 1) (with a random number generator as
discussed above) and computing

x = F−1(y) (D.2)

from the inverse of the cumulative distribution function.

This is the most direct and easiest approach. But it fails if the inverse F−1 is not known
or if multiple random variables need to be sampled according to a multivariate distribution.

1A multivariate distribution is a distribution of more than one random number, whereas a univariate

distribution is a distribution of one random number.
2In fact it is of course a pseudo random number generator.
3http://www.boost.org. The mt19937 variant of the Mersenne Twister algorithm provided by the Boost
libraries is used in this work.

4Or just distribution function. The notation varies widely. Sometimes also the probability density is called
distribution function.
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D.2. Rejection sampling

Rejection sampling can be used when the inverse of the cumulative distribution is not known
or too complicated and is even applicable for multivariate distributions. The univariate case
will be discussed first and then generalized to multivariate distributions.

As above, f(u) is a continuous univariate probability density with cumulative distribution
F (x) =

∫ x
−∞ f(u)du. For the rejection method one needs to find an Lebesgue integrable

envelope function g(u) such that f(u) ≤ g(u)∀u. This envelope function g(u) needs to be
sufficiently simple such that one can sample according to g(u), for example by means of the
inverse transform method as described above.

The rejection method can then be summarized as follows:

1. Sample x according to g (for example using the inverse transform method).

2. Sample y uniformly from [0, 1).

3. Accept x if y < f(x)
g(x) otherwise reject x and start again.

Put in words, this procedure samples points (x, v = yg(x)) uniformly distributed under the
curve of g. For each of these points a decision has to be made whether v = yg(x) is below
f(x) or not. If yg(x) < f(x) the value x is accepted, otherwise it is rejected. By doing so
the area under f(x) is sampled uniformly and thus x is sampled according to f .

This procedure can also be used for distributions of multiple random variables. But due
to the fact that the inverse transform method is only applicable to univariate distributions,
the envelope function g needs to be very simple. Choosing g(x1, · · · , xn) = A = const. with
A ≤ sup{f(x) : x ∈ R}5, step No. 1 of the algorithm above becomes trivial since all points
(x1, · · · , xn) are equally probable.

The advantages of the rejection method are clearly the flexibility and the possibility to
sample multivariate distributions. The disadvantage is the dependence on a good choice of
the envelope function g. If g is “too far away” from f then the rejection probability in step
No. 3 becomes very high and the procedure has to be repeated many times until a value is
accepted, thus severely increasing the computational expenses. This is especially a problem
for multivariate distributions when the probability density f exhibits some sharp peaks.

D.3. Metropolis sampling

The Metropolis algorithm [MRR+53, HAS70], sometimes also called Metropolis-Hastings
algorithm, is based on the rejection method and is a widely used Monte Carlo technique. It is
a Markov chain process that basically employs a random walk in probability space combined
with an acceptance-rejection criterion to obtain samples from a probability distribution.
The Metropolis algorithm offers some considerable advantages over the methods presented
above. It works for multivariate distributions, no envelope function needs to be known and
even the normalization factor of the probability density is not necessary6.

5As a probability density f(x) is bounded and positive.
6Especially for multidimensional distributions when only the raw dependence on the random variables is
known, the normalization might be very hard (numerically expensive) to compute.
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In order to generate random values x = (x1, · · · , xf ) from a f -dimensional density
f(x) = f(x1, · · · , xf ) a proposal density Q(x, x′) needs to be chosen. Q(x, x′) encodes the
probability to go from x to x′. After randomly choosing an initial value x0, the algorithm
then reads as follows:

1. Being at position xi, propose a new value xi+1 according to Q(xi, xi+1).

2. Compute

α = min

{
f(xi+1)Q(xi, xi+1)

f(xi)Q(xi+1, xi)
, 1

}
.

3. Accept xi+1 if a random number u ∈ [0, 1) is smaller than α, otherwise reject it and
go back to step No. 1.

The so obtained sequence xi represents a sample of the distribution given by f(x). But in
order to eliminate any dependence on the randomly chosen initial value x0, the first couple
of steps need to be discarded. This is sometimes called burn-in. If the proposal function is
symmetric, i.e. Q(x, x′) = Q(x′, x) then the acceptance probability α only depends on the
ratio of f at xi+1 and xi. A common choice for Q is a multivariate Gaussian distribution but
the proposal function and the length of the burn-in phase need to be tuned to the specific
problem at hand.

Within the algorithms employed in this work only one randomly generated value x is
needed at a time since the parameters of the density f can change. For example the matrix
element governing the sampling of momenta for 3 → 2 processes depends on parameters
unique to each processes, such as the Mandelstam s. Therefore a slightly modified strategy
is adopted in this work: a fixed number N of the values xi is computed according to the
algorithm described above. N needs to be chosen sufficiently larger than the burn-in phase
such that xN is not influenced by the random initial value x0 any more. Then xN is the
value that is taken to be a sample of the density f . For simplicity, a uniform distribution
over the whole range [xi,min, xi,max]∀i is mostly employed for the proposal function Q.

In case the rejection method is not applicable because no envelope function is known or
the normalization is difficult to compute, one can thus resort to the Metropolis algorithm.
But even if the rejection method is in principle applicable, the Metropolis algorithm might
be faster because in the above described version it always needs a fixed number of N
steps to generate a random value x. If 1/N is larger than the average acceptance rate
of the rejection method, the Metropolis algorithm is faster. This is clearly the case when
the envelope function for the rejection method only poorly approximates the probability
distribution that needs to be sampled and thus the rejection probability is very high.





E. Power law fits to parton spectra

This appendix lists values of the fit parameters and the corresponding standard errors from
fits of a power law f(pT ) = a p−b

T to initial and final parton spectra d2N
dy dpT

at midrapidity
from BAMPS simulations of heavy ion collisions.

a b σa σa

b = 0.0 fm initial g 4.87 · 107 7.482 1.43 · 107 0.099
u 2.13 · 105 6.009 4.57 · 104 0.072
d 3.68 · 105 6.117 1.08 · 105 0.099
s 1.67 · 105 6.754 1.51 · 105 0.306
ū 8.10 · 106 8.031 5.80 · 106 0.243
d̄ 1.01 · 106 7.081 4.41 · 105 0.148
s̄ 1.46 · 106 7.595 1.14 · 106 0.267

final g 9.46 · 106 7.907 6.59 · 106 0.237
u 2.28 · 104 6.335 1.38 · 104 0.206
d 8.79 · 104 6.810 1.23 · 105 0.475
s 2.42 · 102 5.485 3.87 · 102 0.552
ū 2.11 · 105 7.824 3.10 · 105 0.515
d̄ 3.97 · 105 7.032 7.46 · 104 0.658
s̄ 2.27 · 104 7.095 5.82 · 104 0.876

b = 2.0 fm initial g 9.65 · 107 7.741 3.59 · 107 0.126
u 4.44 · 105 6.273 1.28 · 105 0.097
d 3.15 · 105 6.065 1.01 · 105 0.109
s 1.05 · 106 7.469 8.73 · 105 0.283
ū 8.30 · 105 7.149 6.97 · 105 0.288
d̄ 4.06 · 105 6.729 1.80 · 105 0.151
s̄ 1.78 · 108 9.487 2.19 · 108 0.418

final g 1.45 · 107 8.051 1.11 · 107 0.260
u 5.07 · 104 6.613 5.46 · 104 0.365
d 6.43 · 103 5.817 4.64 · 103 0.245
s 7.03 · 103 6.804 1.50 · 104 0.775
ū 2.79 · 103 6.117 4.45 · 103 0.556
d̄ 4.98 · 103 6.232 3.77 · 103 0.266
s̄ 2.66 · 105 8.164 7.70 · 105 1.03

Table E.1.: Fit parameters for parton spectra from BAMPS simulations of Au+Au at
200AGeV using f(pT ) = a p−b

T .
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a b σa σa

b = 2.8 fm initial g 2.66 · 107 7.238 7.59 · 106 0.097
u 2.10 · 105 5.998 5.74 · 104 0.093
d 2.22 · 105 5.939 6.57 · 104 0.101
s 2.34 · 105 6.877 1.49 · 104 0.218
ū 9.66 · 105 7.170 6.85 · 105 0.241
d̄ 7.00 · 105 6.908 4.82 · 105 0.234
s̄ 1.63 · 105 6.742 7.91 · 105 0.165

final g 2.53 · 106 7.358 9.56 · 105 0.128
u 1.28 · 104 6.087 1.03 · 104 0.275
d 6.71 · 103 5.806 4.46 · 103 0.226
s 3.58 · 103 5.457 9.84 · 103 0.980
ū 2.23 · 104 6.890 3.91 · 104 0.632
d̄ 3.30 · 103 6.069 3.63 · 103 0.376
s̄ 5.57 · 101 4.903 1.09 · 102 0.702

b = 3.4 fm initial g 5.50 · 107 7.531 1.80 · 107 0.111
u 1.79 · 105 5.935 3.50 · 104 0.066
d 2.96 · 105 6.043 7.90 · 104 0.090
s 3.74 · 105 7.064 2.48 · 105 0.225
ū 1.65 · 108 9.196 2.09 · 108 0.435
d̄ 7.08 · 105 6.928 4.83 · 105 0.232
s̄ 3.49 · 104 6.183 3.34 · 104 0.324

final g 1.20 · 107 7.919 8.90 · 106 0.252
u 3.92 · 104 6.487 3.46 · 104 0.300
d 4.15 · 104 6.435 3.47 · 104 0.284
s 1.31 · 103 5.961 2.21 · 103 0.593
ū 1.03 · 106 8.478 1.47 · 106 0.513
d̄ 7.93 · 103 6.288 5.86 · 103 0.256
s̄ 3.54 · 101 4.580 5.45 · 101 0.542

b = 4.0 fm initial g 5.89 · 107 7.554 1.98 · 107 0.114
u 3.01 · 105 6.123 8.80 · 104 0.099
d 3.06 · 105 6.061 8.91 · 104 0.098
s 3.46 · 105 7.064 3.01 · 105 0.297
ū 1.53 · 107 8.211 1.64 · 107 0.363
d̄ 3.20 · 106 7.539 1.26 · 106 0.134
s̄ 4.43 · 105 7.112 4.71 · 105 0.364

final g 1.20 · 107 7.898 6.83 · 106 0.193
u 2.75 · 104 6.295 1.90 · 104 0.238
d 1.12 · 104 5.887 7.10 · 103 0.217
s 1.98 · 103 6.136 2.75 · 103 0.487
ū 2.86 · 103 6.107 3.70 · 103 0.449
d̄ 1.93 · 104 6.759 2.46 · 104 0.440
s̄ 2.14 · 103 6.125 2.28 · 103 0.374

Table E.2.: Fit parameters for parton spectra from BAMPS simulations of Au+Au at
200AGeV using f(pT ) = a p−b

T .
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a b σa σa

b = 4.5 fm initial g 4.85 · 107 7.481 1.38 · 107 0.096
u 3.32 · 105 6.169 9.62 · 104 0.098
d 2.17 · 105 5.924 6.08 · 104 0.095
s 1.74 · 105 6.836 1.18 · 105 0.231
ū 2.23 · 107 8.393 2.11 · 107 0.321
d̄ 2.38 · 106 7.396 1.28 · 106 0.183
s̄ 9.84 · 105 7.454 9.98 · 105 0.345

final g 5.70 · 106 7.609 3.43 · 106 0.205
u 4.30 · 104 6.488 4.43 · 104 0.350
d 1.26 · 104 5.931 6.48 · 103 0.175
s 3.79 · 102 5.680 8.24 · 102 0.760
ū 3.71 · 104 7.000 6.92 · 104 0.652
d̄ 1.32 · 105 7.317 2.10 · 105 0.555
s̄ 6.63 · 103 6.588 1.24 · 104 0.655

b = 5.0 fm initial g 5.34 · 107 7.516 1.62 · 107 0.103
u 5.00 · 105 6.325 1.33 · 105 0.090
d 3.38 · 105 6.094 9.84 · 104 0.098
s 1.71 · 105 6.778 1.28 · 105 0.255
ū 1.30 · 106 7.328 7.65 · 105 0.201
d̄ 6.31 · 105 6.878 4.24 · 105 0.228
s̄ 2.45 · 105 6.955 2.73 · 105 0.379

final g 1.09 · 107 7.814 4.65 · 106 0.145
u 1.80 · 104 6.158 1.43 · 104 0.271
d 3.20 · 104 6.183 2.15 · 104 0.228
s 1.40 · 104 6.812 3.13 · 104 0.802
ū 3.40 · 104 6.948 3.94 · 104 0.412
d̄ 5.80 · 104 6.955 5.53 · 104 0.335
s̄ 2.17 · 103 6.052 3.11 · 103 0.502

b = 5.6 fm initial g 2.90 · 107 7.277 7.37 · 106 0.086
u 2.34 · 105 6.029 7.17 · 104 0.104
d 1.67 · 105 5.835 3.48 · 104 0.070
s 4.02 · 105 7.120 3.01 · 105 0.254
ū 1.36 · 107 8.239 6.31 · 106 0.157
d̄ 1.79 · 106 7.315 7.36 · 105 0.140
s̄ 2.45 · 105 6.889 2.70 · 105 0.374

final g 5.96 · 106 7.537 2.39 · 106 0.136
u 2.75 · 104 6.220 2.09 · 104 0.258
d 1.50 · 104 5.915 7.94 · 103 0.179
s 1.12 · 103 5.907 1.53 · 103 0.481
ū 8.32 · 104 7.304 5.99 · 104 0.248
d̄ 2.57 · 105 7.579 2.52 · 104 0.337
s̄ 1.28 · 103 5.910 1.17 · 103 0.316

Table E.3.: Fit parameters for parton spectra from BAMPS simulations of Au+Au at
200AGeV using f(pT ) = a p−b

T .
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a b σa σa

b = 6.3 fm initial g 4.66 · 107 7.457 1.44 · 107 0.105
u 2.30 · 105 6.013 6.07 · 104 0.089
d 4.08 · 105 6.173 1.13 · 105 0.093
s 1.18 · 106 7.538 7.66 · 105 0.221
ū 4.07 · 106 7.722 2.51 · 106 0.209
d̄ 4.55 · 106 7.636 2.89 · 106 0.216
s̄ 2.73 · 105 6.979 1.44 · 105 0.180

final g 8.71 · 106 7.626 3.83 · 106 0.149
u 1.64 · 104 6.003 9.66 · 103 0.200
d 2.46 · 104 6.071 1.04 · 104 0.144
s 1.26 · 104 6.804 9.96 · 103 0.275
ū 6.78 · 104 7.130 6.03 · 104 0.307
d̄ 5.07 · 105 7.772 6.51 · 105 0.444
s̄ 4.63 · 103 6.293 4.79 · 103 0.360

b = 7.0 fm initial g 4.84 · 107 7.477 1.50 · 107 0.105
u 2.78 · 105 6.107 4.88 · 104 0.059
d 2.70 · 105 6.016 6.74 · 104 0.084
s 6.99 · 105 7.327 4.53 · 105 0.220
ū 7.05 · 106 7.953 3.97 · 106 0.191
d̄ 1.46 · 106 7.198 5.49 · 105 0.128
s̄ 1.40 · 106 7.588 7.38 · 105 0.179

final g 1.19 · 107 7.700 4.69 · 106 0.134
u 4.59 · 104 6.323 2.66 · 104 0.197
d 6.64 · 104 6.358 3.66 · 104 0.187
s 3.82 · 103 6.332 5.59 · 103 0.501
ū 1.96 · 106 8.368 1.90 · 106 0.332
d̄ 1.06 · 105 7.123 1.00 · 105 0.321
s̄ 1.86 · 105 7.673 1.97 · 105 0.365

b = 8.6 fm initial g 5.42 · 107 7.519 1.76 · 107 0.110
u 4.36 · 105 6.265 1.19 · 105 0.092
d 3.23 · 105 6.081 7.88 · 104 0.082
s 5.97 · 105 7.258 2.21 · 105 0.126
ū 2.37 · 106 7.539 7.79 · 105 0.112
d̄ 2.43 · 106 7.388 1.04 · 106 0.146
s̄ 6.48 · 105 7.312 3.29 · 105 0.173

final g 1.68 · 107 7.672 6.85 · 106 0.139
u 7.13 · 104 6.304 2.68 · 104 0.128
d 6.92 · 104 6.203 2.35 · 104 0.116
s 7.21 · 104 7.195 6.69 · 104 0.315
ū 5.15 · 105 7.690 4.30 · 105 0.284
d̄ 1.10 · 106 7.801 1.28 · 106 0.396
s̄ 4.31 · 105 7.837 3.71 · 105 0.293

Table E.4.: Fit parameters for parton spectra from BAMPS simulations of Au+Au at
200AGeV using f(pT ) = a p−b

T .
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a b σa σa

b = 9.6 fm initial g 3.89 · 107 7.398 9.79 · 106 0.085
u 2.11 · 105 5.988 4.28 · 104 0.069
d 3.21 · 105 6.085 7.45 · 104 0.078
s 7.88 · 105 7.359 4.89 · 105 0.211
ū 5.74 · 106 7.879 3.67 · 106 0.217
d̄ 2.21 · 106 7.380 1.05 · 106 0.161
s̄ 6.87 · 105 7.300 4.54 · 105 0.225

final g 1.63 · 107 7.554 5.16 · 106 0.108
u 8.71 · 104 6.227 4.10 · 104 0.160
d 7.48 · 104 6.106 2.74 · 104 0.125
s 2.90 · 105 7.604 2.36 · 105 0.279
ū 8.20 · 105 7.727 8.14 · 105 0.343
d̄ 1.21 · 106 7.738 1.02 · 106 0.290
s̄ 8.57 · 104 7.093 8.87 · 104 0.354

Table E.5.: Fit parameters for parton spectra from BAMPS simulations of Au+Au at
200AGeV using f(pT ) = a p−b

T .

a b σa σa

b = 0.0 fm initial g 2.01 · 105 4.845 1.91 · 104 0.033
u 3.02 · 103 4.567 8.66 · 102 0.102
d 2.68 · 103 4.522 1.02 · 103 0.135
s 1.99 · 103 4.627 1.41 · 103 0.251
ū 1.51 · 103 4.394 6.31 · 102 0.149
d̄ 4.51 · 103 4.799 1.38 · 103 0.109
s̄ 7.49 · 102 4.227 3.55 · 102 0.168

final g 1.40 · 104 4.949 5.28 · 103 0.134
u 1.21 · 103 5.421 1.30 · 103 0.380
d 2.79 · 102 4.946 5.82 · 102 0.749
s 4.46 · 101 4.477 7.45 · 101 0.642
ū 1.48 · 103 5.531 3.89 · 103 0.934
d̄ 8.72 · 102 5.369 2.00 · 103 0.813
s̄ 5.27 · 101 4.308 8.95 · 101 0.608

Table E.6.: Fit parameters for parton spectra from BAMPS simulations of Pb+Pb at
2.76ATeV using f(pT ) = a p−b

T .
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terstützung während des Studiums geboten und so letztlich die Erstellung dieser Arbeit
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