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Abbreviations 
 

2D:  two-dimensional 

3D:  three-dimensional 

ADME: Absorption, distribution, metabolism, excretion 

AP:  Attachment point 

DOGS: Design of genuine structures 

EA:  Evolutionary algorithm 

ER:  Estrogen receptor 

FEP:  Free energy perturbation 

FGA:  Functional group addition 

FGI:  Functional group interconversion 

GPCR:  G-protein coupled receptor 

hH4R  Human histamine H4-receptor 

HIV-RT: Human immunodeficiency virus reverse transcriptase 

HTS:  High throughput screening 

mg:  Molecular graph 

NCE:  New/novel chemical entity 

PSO:  Particle swarm optimization 

QSAR:  Quantitative structure activity relationship 

SSSR:  Smallest set of smallest rings 

TGF:  Transforming growth factor 

rg:  Reduced graph 

VS:  Virtual screening 
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1 Introduction 
 

One of the early and pivotal steps in drug development is the identification of structurally 

novel chemical entities (NCE) exhibiting a desired effect on a biological target molecule. 

Identification of NCEs may be approached by two complementary strategies: One can either 

search for NCEs in libraries of already existing small organic molecules (high throughput 

screening, HTS) or synthesize new molecules ‘from scratch’ that are tailored for a particular 

project (de novo design). Both strategies have their advantages and caveats. While the costs 

per tested molecule are typically of magnitudes lower for HTS than for de novo designed 

compounds,1 HTS is limited to known regions of the chemical space. This can be a problem 

in case a HTS library does not contain appropriate molecules for the project at hand. In 

contrast, de novo design holds the appealing advantage to be theoretically unlimited and 

intrinsically innovative. On the other hand, custom synthesis of small organic molecules is 

comparably slow and more expensive. The two strategies can therefore be seen as 

complementary and can be employed in parallel in drug development campaigns. 

Since the 1950s computer-assisted methods have found entrance to the drug development 

process.2 For both strategies (HTS and de novo synthesis) in silico counterparts have been 

introduced to complement and support the traditional drug development methods. Like HTS, 

software for virtual screening (VS) evaluates large collections of available compounds with 

respect to their potential biological activity. A plethora of different approaches has been 

proposed for this purpose.2,3 Programs for computer-assisted de novo design suggest novel 

compounds supposed to possess desired pharmacological properties (Figure 1). 

 

 
Figure 1. Computational counterparts for conventional drug development methods have 
been introduced throughout the last decades. 
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The goal of this work is the development of a new program for computer-assisted de novo 

design of drug candidate compounds. 

 

1.1 Computer-assisted De Novo Design of Drug Candidate 
Structures 

The first programs for computer-assisted de novo design (termed ‘de novo design’ in the 

following) were published about 20 years ago in the late 1980s.4 Table 1 presents an overview 

of existing computer programs for molecular de novo design. Software tools can be 

categorized by the strategies applied to address three pivotal elements of molecule design: 

 

1. How is the quality of proposed molecules assessed (scoring strategy)? 

2. How are molecules constructed (assembly strategy)? 

3. How does the optimization progress based on the current state of knowledge (search 

strategy)? 

 

Regardless of the way different approaches try to solve these challenges, almost all of them 

follow the fundamental concept to mimic the iterative process of drug discovery research in a 

real laboratory: molecules are generated, subsequently tested, and the results form the basis of 

the next round of synthesis. Search and assembly strategies correspond to the intellectual and 

technical work of a chemist, whereas scoring complies with testing the compounds for 

activity in a biological assay. 

 
Table 1. Chronological overview of de novo design software and the applied type of scoring strategy. 
If available, a software name is given. Otherwise, the name of the first author is used (table continues 
on the next page).  

  Scoring 

Method/Name 
Year of 

publication 
Ligand-
based 

Receptor-
based 

HSITE/2D Skeletons5-7 1989  X 
3D Skeletons8 1990  X 
Builder v19 1992  X 
LUDI10-14 1992  X 
NEWLEAD15 1993  X 
SPLICE16 1993  X 
GroupBuild17 1993  X 
CONCEPTS18 1993  X 
SPROUT19-22 1993  X 
MCSS & HOOK23,24 1994  X 
GrowMol25 1994  X 
Chemical Genesis26 1995 X X 
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PRO_LIGAND27-32 1995 X X 
SMoG33-35 1996  X 
CONCERTS36 1996  X 
PRO_SELECT37,38 1997  X 
Skelgen39-44 1997 X X 
Nachbar45,46 1998 X  
Globus47 1999 X  
DycoBlock48-49 1999  X 
LEA50 2000 X  
LigBuilder51 2000  X 
TOPAS52,53 2000 X  
F-DycoBlock54 2001  X 
ADAPT55 2001  X 
Pellegrini & Field56 2003 X X 
SYNOPSIS57 2003  X 
CoG58 2004 X  
BREED59 2004 X  
Nikitin60 2005  X 
LEA3D61 2005  X 
Flux62,63 2006 X  
FlexNovo64 2006  X 
BOMB65 2006  X 
Feher66 2008 X  
GANDI67 2008 X X 
COLIBREE68 2008 X  
SQUIRRELnovo69,70 2009 X  
Hecht&Fogel71 2009 X X 
FOG72 2009 X  
MED-Hybridise73 2009  X 
MEGA74 2009 X X 
Fragment Shuffling75 2009 X X 
AutoGrow76 2009  X 
BI CLAIM77 2009 X  
NovoFLAP78 2010 X  
PhDD79 2010 X  
GARLig80 2010  X 
DOGS81 2011 X  
 

1.1.1 Scoring Strategies 

Early de novo design programs were exclusively based on receptor-based scoring schemes, 

i.e. the quality of proposed molecules is assessed by evaluating their potential to interact with 

a binding site on the receptor surface. This approach is limited to target proteins for which 

data about their three-dimensional (3D) structure is available, which is not the case for all 

targets of pharmaceutical relevance. For example, G-protein coupled receptors (GPCR) 

represent a target class of high interest for the pharmaceutical industry82 for which only little 

experimental data about 3D structures of its members could be collected so far.83 Receptor-

based tools were therefore soon augmented by the development of ligand-based scoring 

schemes to circumvent this shortcoming (Table 1). While receptor-based scoring relies on the 
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concept of complementarity to the binding pocket, ligand-based scoring schemes assess 

similarity (or distance) to known reference ligands exhibiting the desired biological activity. 

Following the ‘similarity principle’ stated by Johnson and Maggiora84 compounds designed 

under the objective to show high structural similarity to the reference should have an 

increased probability to exhibit similar pharmacological properties. 

 

Receptor-based scoring 

Receptor-based approaches are closely related to computational strategies for molecular 

docking. While docking tries to place complete ligands into a binding pocket, de novo 

strategies construct the compound directly within the cavity (in situ construction). Both 

techniques share the objective to maximize the complementarity of the ligand to the binding 

site regarding shape and properties. Common approaches to estimate the quality of binding 

during the design process are therefore the same as for molecular docking, where three main 

strategies have emerged: (i) molecular force fields, (ii) empirical scoring functions, and (iii) 

knowledge-based scoring functions.85,86  

Force fields treat molecules as ensembles of balls (atoms) connected by springs (bonds). Each 

spring has optimal values for length, torsion angles and angles to other springs. Deviation 

from these optimal values result in strain. Accordingly, low strain energies correspond to 

favorable ligand conformations. Interaction with the receptor molecule is estimated by two 

terms for non-bonded interactions (Coulomb and van-der-Waals potentials, sometimes 

augmented by an explicit term for contributions of hydrogen bonds). A generalized force field 

term for non-covalent interactions is given in equation (1). It computes their contribution E to 

the binding energy between a ligand and a receptor for a given binding mode as 

 

€ 

E =
Aij

r12
−
Bij

r6
+
qiq j

Drij

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

j=1

rec
∑

i=1

lig
∑ ,       (1) 

 

where Aij and Bij are parameters expressing repulsion and attraction of van-der-Waals 

interactions of atoms i and j at a distance rij, qi is a is the point charge of atom i and D is the 

dielectric constant of the solvent.86 For example, the docking software GOLD uses a 

molecular mechanics scoring function in its original implementation.87,88 

Empirical scoring functions are weighted sums of several separate components, where 

weights are determined by regression analysis. Weights are optimized in order to reproduce 

experimentally measured activity values of known ligand-receptor complexes. Individual 
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components represent different ligand-receptor interactions, which can be determined from a 

given binding pose. An example of a docking software implementing an empirical scoring 

function is FlexX.89 The free energy of binding is calculated as presented in equation (2) 

(generalized from an example given in reference 86). 

 

 

€ 

ΔG = ΔG0 ΔGi *counti * peni[ ]
i=1

# it
∑ ,       (2) 

 

where ΔGi represents the contribution (adjusted weight) of interaction type i, counti is the 

number of times this interaction type (it) is observed in the given receptor-ligand complex and 

peni is a penalty function accounting for deviations from the ideal interaction geometries for 

some interaction types like e.g. hydrogen bonds, salt bridges or aromatic interactions. The 

penalty must be evaluated for each observed interaction of such a type and is summarized in 

peni for all instances of an interaction type. ΔG0 is a fixed ground term that is also adjusted 

during the fitting process. 

Knowledge-based scoring functions rely on discrepancies between observable and expected 

distributions of atom pair occurrences. Based on the frequencies of atoms one can calculate a 

background probability of the chance that two atoms (one from the receptor and one from the 

ligand) are placed in a certain distance in a random ligand-receptor complex, given that they 

do not interact. This is compared to the counts of atom pairs observed in experimentally 

explored ligand-receptor complexes (training set) and finally transformed into interaction 

scores by an inverse formulation of the Boltzmann law.85 Atom pairs that occur in higher 

frequencies than expected by chance result in negative interaction energies (attraction) while 

less frequently observed pairs score positive (repulsion). Ligand affinity in a given complex 

with a receptor is estimated by summing up individual scores of observed atom pairs derived 

from the training set. DrugScore90,91 is an example for a knowledge-based scoring function 

for molecular docking. Equation (3) calculates the contribution of atom pairs between atom 

types i and j at distance r to the interaction energy of the ligand-receptor complex.86  

 

 

€ 

E(i, j) = −kBT lngij (r),        (3) 

 

where kB is the Boltzmann constant, T is the absolute temperature and function gij is a quotient 

of observed and background frequencies of atom pairs of type i and j at distance r. The total 

energy of binding is calculated as a sum of these terms for all pairs of atom types and a range 

of different distances. 
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Ligand-based scoring 

In contrast to computing the complementarity of ligands with the binding site, ligand-based 

scoring schemes compare ligand candidates to a reference compound exhibiting desired 

properties and compute a similarity index (or the distance) between them in a descriptor 

space. For this purpose, the compounds have to be encoded by a mathematical representation 

allowing for efficient comparison. The concept of similarity also forms the basis of ligand-

based virtual screening methods. As a consequence, almost every type of technique developed 

for VS also finds application in de novo design. For ligand comparison, a model representing 

the molecules and a metric measuring distances in the space of the model need to be selected. 

While receptor-based scoring inevitably requires accounting for 3D conformations of 

designed compounds, ligand-based approaches can also work on models based on topological 

2D structures (an example for a de novo design software working on 2D representations is 

TOPAS52,53). This can be of particular interest if no sound hypotheses about the binding 

modes of reference ligands exist or computational power and run time need to be saved.  

Several ligand based de novo design programs use pharmacophore models for quality 

assessment. These methods compare molecules by the topological (2D62,63) or spatial 

(3D69,70,78) arrangement of potential interaction centers. Even straighforward substructure 

fingerprints accounting for the presence and absence of certain structural motifs have found 

application in de novo scoring strategies.52,53 Some tools also employ pseudoreceptor 

techniques92 and related methods like molecular field analysis (MFA28) for scoring. These 

approaches calculate pharmacophoric and steric constraints of a hypothetical receptor pocket 

based on a 3D conformation of an active ligand and assess the score of a new compound by 

evaluating its complementarity to this cavity model, forming a bridge between receptor- and 

ligand-based methods.93 Ligand-based scoring strategies can either be based on a single 

reference or an ensemble of known ligands. For example, a consensus pharmacophore model 

can be built from a multiple alignment of reference ligands. Some scoring techniques even 

require a whole set of known actives: QSAR (quantitative structure activity relationship) 

methods correlate biological activities of training set compounds with calculated descriptors 

to yield a predictive model for activity.56 

 

1.1.2 Assembly Strategies 

Compound assembly strategies can be subdivided into atom-based and fragment-based 

approaches. Atom-based techniques build up new molecules atom by atom, whereas 
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fragment-based design relies on molecular fragments as building blocks. A fragment can be 

anything from a single atom to a polycyclic ring system. Most of the early de novo design 

tools were strictly atom-based. Modern approaches often provide a diverse selection of large 

and small virtual molecular entities for compound construction including a few single-atom 

fragments. Atom-based approaches have the advantages that fine-grained molecule sculpting 

can be performed and – though only theoretically – the complete universe of chemical 

structures can be constructed. These advantages come at a price: the huge number of potential 

solutions complicates a systematic search for actually useful, chemically stable and druglike 

compounds. The strictly atom-based approach is prone to produce a large fraction of 

chemically instable and unreasonable compounds. Fragment-based approaches offer a 

shortcut to generating new ligands in a more meaningful way and significantly reduce the size 

of the search space. If fragments commonly occurring in drugs are used for molecule 

assembly the designed compounds have a high chance of being druglike themselves.52,53 In 

addition, the fragment-based approach improves the chance to produce chemically stable and 

synthetically feasible compounds. The reason is that fragment-based construction uses larger 

building blocks, which reduces the number of connection steps needed to assemble a new 

compound. It should be pointed out that all bonds formed by the software are artificial and 

therefore the chemical stability and accessibility of the virtual product cannot be guaranteed. 

The main advantage of fragment-based assembly over atom-based approaches is that many 

bonds of the designed structures are already predefined in a meaningful way by the fragments. 

It can be argued that this might be the major reason why the last purely atom-based de novo 

design program RASSE94 was published over a decade ago. Nevertheless, using molecular 

fragments instead of atoms as building blocks alone does not guarantee to construct virtual 

compounds actually amenable to synthesis (this major objective of de novo design will be 

covered in more detail later).  

Several techniques have been developed for automated assembly of molecules. Alignment-

based methods like BREED59 and the fragment shuffling approach75 first align different 

ligands bound to the same protein (or a homologue protein with high sequence similarity) by 

a backbone overlay of 3D protein structures. Strategic bonds from different ligands brought to 

close proximity are detected, broken and the four resulting fragments are swapped to yield 

two new compounds representing hybrids of original ligands (Figure 2). 
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Figure 2. Original ligands A and B (top) are aligned in a first step 
(center). BREED59 searches for strategic bonds (highlighted in red) and 
swaps fragments (A1, A2, B1 and B2) at this position in order to get 
hybrid structures (bottom) of original ligands. 

 

 

Other approaches for structure assembly rely on molecular force fields and docking 

techniques. The basic idea is to independently place molecular fragments inside a binding 

cavity and connect them in successive steps. The software CONCERTS36 is an early example 

of using molecular dynamics simulations for fragment placing. Fragments are moved 

according to a molecular force field to obtain low-energy orientations with respect to 

interactions with the binding site but without witnessing each other. Bonds can be formed 

between fragments that are brought to close proximity, but can also be broken in later steps. 

The constant rearrangement of bonds between fragments is supposed to result in compounds 

exhibiting interaction energies that are favorable to those of the unconnected fragments. Other 

de novo design programs employ docking tools in order to initially place fragments into a 

binding site. In general, two different strategies exist for this approach: growing and linking. 

Growing approaches8,17,19-22,25,33-35,64,94 start with one fragment that already satisfies key 

interactions with the receptor and add more fragments step by step in order to improve the 

affinity of the constructed compound, guided by the scoring function of the underlying 
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docking program (Figure 3A). The linking strategy10-14,15,67,79 first places several fragments at 

distinct parts of the pocket, which are then connected by linker fragments (Figure 3B). 

 

 

 
Figure 3. The growing strategy starts with a single building block and sequentially extends 
it by adding new fragments (A). The linking approach first saturates key ‘interaction 
hotspots’ of the cavity with building blocks and subsequently links them by special linker 
fragments (B). 

 

 

Examples for assembly techniques mentioned so far incorporate knowledge about the receptor 

structure. In a recent publication Kutchukian et al. describe an algorithm for ligand design 

that is independent of receptor information.72 Their ligand-based de novo design tool uses 

connection statistics to assemble new compounds. The algorithm extracts connection 

frequencies of predefined molecular fragments from a training set of reference compounds. 

These counts are then converted to probabilities termed transition probabilities forming the 

basis of a growth strategy implemented as a Markov chain of first order. Following the idea of 

a Markov chain,95 the process of growing a molecule can be seen as a walk on a graph, where 

each fragment is represented by a node. Edges between nodes are labeled with obtained 

transition probabilities. These labels represent probabilities to pass between nodes connected 
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by the edge. To grow a molecule, the algorithm starts with a randomly selected or given 

fragment (a node) and walks across the graph according to transition probabilities. Each time 

a node is visited the according fragment is added to the molecule (Figure 4). Since each node 

represents exactly one fragment, transition probabilities only depend on the fragment to be 

extended in the next step (first order property of the Markov chain). The process stops when 

all potential growth sites are saturated, a user-defined number of fragments or a given 

molecular mass is exceeded. The Markov chain is supposed to generate molecules that 

reproduce connection statistics of the training set, therefore exhibiting increased probability to 

show desired molecular properties. 

 

 

 
Figure 4. A Markov chain model for compound assembly. A Markov chain95 represents a sequential graph 
traversal: Every time a node is visited (indicated by a dashed line) the corresponding building block is added to 
the growing molecule (bottom). Edge labels (weights) correspond to the probability to walk along an edge in 
order to get to the next node. Weights are determined by connection statistics of fragments observed in a training 
set of molecules. Please note that this graph represents a simplification. Typically, weights will not be 
symmetric. 
 

 

Retrosynthesis rules form the basis of another category of ligand assembly strategies. Such 

rules define a set of substructures, each one built around a central bond that is deemed to be 

cleavable. Collections of compounds can be disassembled at these strategic positions to yield 

a set of molecular fragments. The same rules find application during the assembly process to 

construct new molecules by recombining the fragments. The most prominent representative of 

retrosynthetic rules is the Retrosynthetic Combinatorial Analysis Procedure (RECAP)96. 

RECAP derives eleven cleavable bond types from common chemical reactions and defines 
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them by their structural environment (Figure 5). Examples of programs using the RECAP for 

mining and recombining molecular fragments to breed new druglike compounds are 

TOPAS52,53 and its direct successor FLUX62,63. Reconnection is restricted to attachment sides 

originating from the same disassembly rule in order to enhance the probability to form 

chemically meaningful and stable bonds. 

The most sophisticated assembly technique in the sense of incorporating chemical knowledge 

is the simulation of established reaction protocols for fragment connection. Reaction-based 

approaches use formalized reaction schemes to mirror the bond rearrangements of real 

synthesis steps in order to connect molecular building blocks. Established data formats for 

formalization of chemical reactions are the SMIRKS language97 and the rxn file format98. In 

case the building blocks are readily available (e.g. purchasable from a commercial vendor) 

this strategy not only enhances the chance to produce chemically reasonable compounds but 

also delivers direct blueprints for possible synthesis routes. The software SYNOPSIS57 is such 

an example. 

 

 
Figure 5. Eleven cleavable bond types defined by RECAP96. 
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because it does not account for chemical stability and druglikeness. Nevertheless, it still 

prohibits approaches that try to enumerate all possible structures. For this reason, de novo 

design programs have to truncate the number of molecules they consider during a design run. 

Most of the programs apply stochastic optimization techniques to cope with such large search 

spaces.4 In order to understand how these algorithms work it helps to imagine the chemical 

space as a wavy surface. Each point on the surface represents a molecule. Similarity (to 

whatever quality) between molecules is expressed by distance in this space, so that similar 

molecules are close to each other. The quality of a compound (score, biological activity) is 

expressed by the height of the respective search point where better quality is expressed by a 

higher level. The basic idea of stochastic search algorithms is to explore the neighborhood of 

the current search point by sampling a few surrounding search points in close proximity (also 

termed ‘local search’). Information gained by this process is used to extrapolate about the 

actual structure of this subspace and move along the most promising direction. Successful 

application of local search strategies requires a ‘smooth’ response characteristic, i.e. small 

structural changes (movement in the space) result in small changes of the score, while large 

steps cause large differences of scores.100 Although it has been shown that this is not 

generally the case in arbitrary chemical spaces and associated activity landscapes,101,102 search 

algorithms relying on local optimization have proven to deliver results of practical relevance 

and sufficient quality for many complicated optimization problems including molecular de 

novo design.103,104 However, appliance of stochastic optimization does not come without a 

drawback: Many optimization algorithms employ heuristics, i.e. they cannot guarantee to find 

the absolute optimal solution for a given problem. Their stochastic component renders it most 

likely that two runs of same algorithm applied to the same problem deliver different results. 

Typically, multiple runs of heuristic approaches have to be performed to yield statistically 

sound results of retrospective evaluations and enhance the probability to attain useful 

outcome in prospective studies. The reason for this is that even if the underlying scoring 

function responds smoothly to movements in the search space, local optima can still occur 

and trap local search strategies. A local optimum is a point in the search space that is assigned 

with a better score than all points in a certain neighborhood around it, while the search space 

still might offer better search points in regions beyond this neighborhood. The reliance on the 

local behavior around the current search point can trap a search algorithm. Although search 

techniques that support the ability to escape local optima have been developed (vide infra), 

there is still no guarantee to find the global optimum. Different results of optimization runs on 
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the same problem originate from the fact that the algorithm converges on different local 

optima due to its stochastic component.  

Markov chains (vide supra) represent an example of a stochastic search strategy.72,95 Their 

random sampling procedure is often coupled to a Metropolis criterion in order to facilitate 

escaping from local optima.18,105,106 According to the Metropolis criterion, structural changes 

improving the score of a molecule are accepted in any case, whereas steps degrading the score 

might be rejected: the more a modification degrades the score, the higher the probability to 

reject it. According to the Metropolis criterion the probability to accept search point j coming 

from i is 

 

€ 

Pi→ j =min(1,e−( f ( i)− f ( j ))/T ),        (4) 

 

where f(i) denotes the quality of search point i (better solutions receive higher values) and T is 

a constant scaling factor. 

Simulated annealing techniques pick up this idea but dynamically change the calculation of 

rejection probabilities for a degrading step.57,107 At the beginning of an optimization run, 

degrading modifications have a higher chance to be accepted in order to prevent early 

convergence on a (most likely globally unfavorable) local optimum. In later steps, when the 

search space has already been explored more intensively and found optima are more likely to 

be of practical interest, the dynamic calculation of acceptance probabilities will tune the 

algorithm to preferably stay in the current search region. This is achieved by a more rigorous 

calculation of rejection probabilities for score-degrading movements in the search space. 

Computationally, simulated annealing is realized by constantly reducing the scaling factor T 

of equation (4) during the optimization. 

Several stochastic search algorithms have been derived from optimization strategies 

observable in nature, of which evolutionary algorithms (EA) and particle swarm optimization 

(PSO) are prominent examples.108 EA is an umbrella term for several optimization techniques 

inspired by the idea of biological evolution. A population of search agents (representing 

molecules in the context of de novo design) is iteratively exposed to random variation and 

selection. Variation is introduced by genetic operators like mutation and genetic crossover. 

Selection is performed according to the score of individuals assigned by a scoring function 

(also termed fitness function in this context). Better search agents are more likely to survive 

and continue to influence the search process, while less fit individuals die out. Evolutionary 

algorithms mainly differ in the way they encode individuals and how selection and variation 
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are implemented. Examples of de novo design software applying evolutionary algorithms are 

FLUX62,63 and LigBuilder51. PSO algorithms mimic the behavior of real swarms of animals 

searching, e.g., for food resources.109 A set of virtual search agents (termed particles) moves 

in the search space. A position in the search space equals a solution to the optimization 

problem. The direction of movement is influenced by communication and information 

exchange between particles about their individual search success. Communication is 

implemented as a social memory, which is accessible by every particle. The social memory 

stores the best search point found so far by the swarm as a collective. In addition, each 

particle also stores the best search point it has explored so far in its personal memory. Search 

points stored in the social and personal memory attract the particles during their search. As 

the search proceeds, promising regions will be explored thoroughly by many particles, while 

areas found to be less attractive are widely ignored. PSO has been introduced to the field of 

de novo drug design by the program COLIBREE.68  

 

Stochastic optimization is not the only way software tools for molecular de novo design try to 

manage the large search space they are confronted with. There are examples of programs 

applying deterministic search algorithms: FlexNovo64 uses a grow strategy to connect 

molecular fragments. In a preprocessing step, each fragment is docked into the receptor 

binding site to obtain a single score which serves as a filtering criterion during the design 

process. Prior to the extension of the growing molecule by adding the next fragment, an 

estimation of the maximal score achievable by the extended molecule and a set of additional 

filters are applied to limit the number of potential fragments. Only fragments that have a good 

chance to improve the score of the molecule are considered. In addition, only the best k 

molecules emerging from an extension cycle are considered in subsequent steps. Thus, 

FlexNovo employs a ‘greedy’ strategy110 and a set of filtering criteria to reduce the search 

space to promising sub-regions. 

A further strategy to cope with large numbers of potential search points is to employ scoring 

functions designed to feature fragment additivity, i.e. the score of a complete molecule is 

computed as the sum of scores its fragments. This offers the advantage to avoid scoring every 

possible fragment combination. Instead, each entry of fragment library can be scored alone, 

and optimal combinations of fragments can be computed without the need to explicitly 

assemble them. To illustrate the advantage of additive scoring schemes let us consider two 

fragment libraries, each containing 1,000 entries. A possible product is a combination of two 

fragments, one fragment from each library. Full enumeration of all possible products would 
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result in 1,000,000 molecules (1,0002) and the same number of score calculations. An additive 

scoring function would only have to score each fragment once, which means that only 2000 

(1000 + 1000) score calculations would be required. This simple example demonstrates that 

the search space grows exponentially with the number of fragments. One can expect the 

advantage of additive scoring schemes regarding computational cost to be more serious in 

practically relevant de novo design scenarios. Two examples of software tools that make use 

of additive scoring schemes are BI CLAIM77 and a computer program proposed by Nikitin et 

al.60. However, regardless of the advantages, it must be stated that additivity of ligand scores 

is a feature that is artificially introduced as it represents a simplifying assumption of the 

scoring scheme. Binding energies of ligand–receptor interactions cannot be expected to be 

additive in general.111 

1.1.4 Multi-objective Optimization and Feasibility by Chemical Synthesis 

The primary task of de novo design is to propose novel compounds with a desired biological 

effect, i.e. affinity to a target macromolecule. Although scoring functions considerably differ 

in their approach to estimate biological activity, every de novo design algorithm takes this 

objective into account. For this reason it can be referred to as the primary constraint of de 

novo design. However, biological activity is not the only requirement for a compound to be a 

promising candidate for further investigation. Druglikeness, pharmacokinetic properties like 

absorption, distribution, metabolism and excretion (ADME), toxicity, off-target activity 

(selectivity), and accessibility by chemical synthesis are examples of secondary target 

constraints.4 Such objectives can either be directly addressed by an explicit scoring term or 

implicitly accounted for by the design strategy. For example, a fragment-based design 

approach based on fragments derived from known drugs implicitly considers druglikeness. In 

case additional scoring terms explicitly consider secondary constraints, de novo design 

becomes a multi-objective optimization task. One possibility to make multi-objective 

optimization compatible to one-dimensional optimization techniques is to calculate a 

combined score as a weighted sum of single scoring terms. This requires careful weighting of 

the different design objectives and is prone to lead to unfavorable results, especially in the 

case of conflicting design objectives.4 The reason is that in this case ‘average’ structures 

fulfilling all objectives on a comparable but overall weak level are likely to emerge. In 

contrast, Pareto optimization112 delivers a collection of results that contains solutions focusing 

on different subsets of objectives (the so-called ‘Pareto front’). The Pareto front is formed by 

non-dominated solutions: a solution is dominated if there is at least one solution in the 

population featuring a better score in every optimization objective (Figure 6). Non-dominated 
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solutions therefore represent trade-offs between competing constraints. Pareto optimization 

does not need any weighting of objectives prior to scoring. It provides the user with a list of 

candidate solutions for every objective, leaving the decision to the user which of the 

objectives should be emphasized. Pareto-optimization has been introduced to de novo drug 

design in 2004 by Brown and coworkers.113 Two years before, the program MoSELECT112 

implemented Pareto optimization for the design of combinatorial libraries. 

Secondary constraints do not necessarily have to be employed during the design process. 

Another way is to use them as filtering criteria after the actual design run to narrow down the 

number of structures of potential interest (‘post-generation’ scoring).114,115 

 

 

 
Figure 6. A set of solutions (grey circles) for a two-dimensional optimization 
problem. The figure next to each circle denotes the number of dominating 
solutions. For one solution, exemplary determination of the number of 
dominating solutions is presented (dotted lines). Three solutions are dominating, 
since they are better in all objectives. Non-dominated solutions form the Pareto 
front (dashed line; figure adapted from reference 4). 

 

 

Among the aforementioned secondary design constraints, synthetic feasibility of proposed 

structures is of crucial importance for molecular de novo design.81,114 The actual synthesis of 

designed compounds is key to both practical evaluation of the software as well as drug design 

projects. The assembly process represents the part where synthetic feasibility can be 

incorporated directly during the design. Over the years of development in the field, steadily 

increasing effort has been put on this issue: from atom-based molecule build-up to rule-based 

assembly of fragments and, finally, virtual synthesis by established reaction protocols and 

available building blocks. Among all strategies mentioned only the latter approach is able to 
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additionally propose synthesis routes for each designed compound, which can be an 

advantage of practical value. 

Instead of implicitly accounting for chemical feasibility by an advanced assembly method, 

another strategy is to use a suitable scoring function (thereby making synthesizability an 

explicit design objective). For example, the software SYLVIA116 can be used to score 

designed molecules by their chemical feasibility after they have been assembled. However, 

this approach does not suggest synthesis routes. Additional software especially designed for 

this purpose can be employed for synthesis planning. For example the computer programs 

CAESA117 or Route Designer118 can be applied to suggest synthesis plans for designed 

compounds post-hoc. 

 

1.2 Examples of De Novo Design Software Tools 

1.2.1 LUDI 

The program LUDI10-14 is an example of a software solution from the early days of computer-

assisted de novo design. Despite being a pioneer in the field, LUDI still represents a 

sophisticated approach to receptor-based design and can be deemed one of the most 

successful de novo design tools.119 The first step of a LUDI construction run comprises the 

placement of molecular fragments within the receptor binding cavity. The fragment library 

can be defined by the user. Fragments are placed so that they satisfy potential interaction 

centers within the protein pocket. The algorithm accounts for directed characteristics of 

interactions (in particular hydrogen bonds) by a vector representation of interaction centers 

and complementary interaction sites of the fragments. Fragment positions are optimized by 

minimizing deviations from optimal orientations of interaction partners. Steric clashes with 

the protein are penalized. A second, empirical scoring function is employed in a subsequent 

step in order to rank all fragment poses. The most promising fragments placed within the 

binding site are then connected using linker fragments (linking approach) to yield complete 

ligand candidate structures. For example, LUDI has been used to design inhibitors of the 

human immunodeficiency virus reverse transcriptase (HIV-RT).120 The scaffold identified by 

the software was slightly modified to simplify the synthesis. A series of structural variations 

and sidechain replacements resulted in a set of new structures inhibiting different enzymatic 

activities of HIV-RT (Scheme 1). 
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Scheme 1. LUDI10-14 has been successfully applied to design an inhibitor of the HIV-RT. Starting with the 
structure of the binding site, LUDI first placed fragments into sub-regions of the pocket and linked them by a 
phenyl moiety in a second step. The resulting structure was finally decorated with an amide sidechain by LUDI. 
Subsequent manual optimization exchanged the pyrrole ring with an imidazole to simplify the chemical 
synthesis. A series of compounds based on this scaffold has been synthesized and led to different active 
molecules for several enzymatic activities of the target (the given IC50 has been determined with respect to DNA 
polymerase activity of HIV-RT). 
 

1.2.2 Skelgen 

In the late 1990s, Todorov and Dean proposed two algorithms for computer-assisted molecule 

construction forming the backbone of the Skelgen software.39,40 Skelgen features a two-step 

process to generate new ligand candidates. The approach is similar to the idea of SPROUT19-

22, which was published five years earlier in 1993. While the first step constructs bare 

molecular skeletons, the second step implements an atom type assignment in order to turn 

skeletons into complete virtual molecules. Molecular skeletons are constructed by the 

stochastic assembly of so called template fragments. For this purpose, Skelgen has access to a 

library of special fragments manually grouped into different template sets by the user. A 

template only consists of carbon and hydrogen atoms. After an initial skeleton has been 

generated, it is optimized to sterically fit the binding cavity of the receptor. During this 

process, the skeleton can be rotated and translated as a whole, and single bonds are rotated to 

sample the conformational space of the skeleton. In addition, fragments may be added, 

removed or exchanged. In the latter case, fragments are only replaced by other fragments 

belonging to the same template set. The whole optimization procedure is implemented as a 

simulated annealing process. Scores of skeletons are assessed by a scoring function that takes 

both intermolecular and intramolecular steric interactions into account as well as torsion 

energies. After the skeleton has been sterically optimized to fit the receptor binding site, 

element types are assigned to skeleton vertices in the second step. The aim is to maximize the 

complementarity of the emerging molecule to the pocket in terms of electrostatic and 

hydrogen bonding interactions. For this purpose an empirical scoring function is used. A 

branch-and-bound algorithm in combination with a depth-first search is employed to exclude 

unfavorable element type assignments and efficiently find good solutions for this 

combinatorial problem. Although originally implemented as a receptor-based method, a later 
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version of Skelgen also features a ligand-based design mode based on three-dimensional 

steric and pharmacophoric constraints derived from a reference ligand.42 

In a large study Firth-Clark and coworkers employed Skelgen to generate new ligand 

candidates for the human estrogen receptor (ER) α.121 Skelgen generated a total of 5,492 

unique designs based on seven different crystal structures of the target protein. For each 

receptor structure the 50 top scoring molecules were selected for a subsequent clustering 

analysis. These 350 compounds could be clustered into 22 distinct sets based on common 

substructures. Out of 17 compounds picked for synthesis and testing (selection was performed 

to cover a broad range of clusters), five (30%) showed >40% inhibition at a concentration of 

10 µM. Five compounds (of which four are structurally novel) have an IC50 ≤25 µM. The 

most potent compound exhibits an IC50 of 340 nM (Scheme 2). 

 

 

 
Scheme 2. The two most potent inhibitors designed by the Skelgen software39-44 for human estrogen receptor α. 
 

1.2.3 TOPAS/FLUX 

TOPAS52,53 and its successor FLUX62,63 are examples of a purely ligand-based de novo design 

paradigm. Designed molecules are evaluated by their similarity to a reference compound. For 

this purpose, the relative topological distributions of potential pharmacophore points on the 

two-dimensional molecule structure are calculated (CATS descriptor122). Molecular fragments 

for construction are derived from the disassembly of known bioactive compounds by applying 

the RECAP96 rules retrosynthetically. The same rules also guide the forward design process: 

during construction, only fragment attachment sites derived from the same cleavage rule can 

be reconnected (i.e. a carbonyl and a nitrogen attachment site are only allowed to form an 

amide bond if both have been part of an amide bond prior to disassembly). An evolutionary 

algorithm directs the search process: a strict selection criterion allows only the fittest 

compound of a ‘population’ to survive and produce offspring by random fragment exchange 

(mutation operator). In contrast to TOPAS, FLUX also features a crossover operator 
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recombining parts of ‘parent’ structures to generate new fragment combination in the next 

generation. Starting with a randomly assembled compound, the optimization process is 

supposed to breed structures with increasing fitness over time. 

An example for successful ligand-based de novo design has been published by researchers at 

Roche in 2000.53 TOPAS suggested structures supposed to block the human K+-channel 

Kv1.5. The top-scored molecule 1 was synthesized and showed the desired effect on the target 

(Scheme 3). Minor modification led to compound 2, which is equal to the reference ligand 

with respect to potency. 

 

 
Scheme 3. Compound 1 designed by TOPAS and its close structural analog 2 were synthesized and block the 
human K+-channel Kv1.5. 
 

1.2.4 BOMB 

The software BOMB65 features free energy perturbation (FEP) as a post-run scoring scheme 

to compute relative binding energies for the most promising designs. FEP makes use of the 

thermodynamic cycle in order to estimate differences of binding energies between (preferably 

close) structural analogs (relative binding energies). For this purpose, one ligand has to be 

‘morphed’ into another by incremental small steps of structural changes. Each intermediate 

step needs to be evaluated in terms of binding energies to the receptor pocket. This time-

consuming and computationally demanding process is one of the most sophisticated methods 

available to estimate relative differences in binding energies taking solvatation effects into 

account. Since the morphing process works best on structurally similar compounds, BOMB 

generates series of ligands by decorating a fixed core fragment with various sidechains. The 

selection of the core fragment and its placement within the binding site is accordingly the first 

step of a design run. Several layers of fragments from a fixed set of building blocks that are 

clustered into multiple groups can be added to grow the seed structure to final ligand 

candidates. Each grown molecule is geometrically optimized within the pocket by a force 

field minimization and evaluated according to a QSAR-like scoring function that was trained 
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to reproduce experimentally determined activity values. Finally, FEP is employed to re-score 

and rank the most promising compounds after a design run. 

BOMB has been successfully employed in a de novo design study to identify a series of new 

inhibitors of HIV-RT.65 An example of a designed compound from this study is presented in 

Scheme 4. 

 

 

 
Scheme 4. Example of a potent inhibitor of HIV-RT designed with 
the help of BOMB65 based on a fixed core structure. 

 

 

Similar to BOMB, a few de novo design programs start off with a user-defined fragment. 

Although this breaks with the concept of ‘pure’ de novo design to invent new molecules from 

scratch, it is a worthwhile strategy to incorporate knowledge about privileged fragments into 

the design process. Depending on the focus of the software, the seed fragment can be 

anything from molecular scaffold (e.g. BOMB, COLIBREE68) to a set of sidechains (e.g. 

Recore123). 

 

1.3 Outline 

This work presents a new approach to computer-assisted de novo design of ligand candidate 

structures. Special focus was put on the practical evaluation of the software. Only a small 

number of de novo design programs have been tested for their ability to propose synthetically 

feasible compounds by practical synthesi. This represents a problem computer-aided de novo 

design suffers from since the beginnings of the research field. The main reason might be the 

extensive costs and effort associated with chemical synthesis of candidate molecules. The 

decision to synthesize a compound depends on the estimated tradeoff between the ease of 

synthesis and its presumed chance to exhibit the desired biological activity. Enhancing the 

ease of synthesis of candidate molecules therefore raises the probability that some compounds 

will actually be selected for synthesis and practical testing. For this reason, the proposed 
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software DOGS (Design of Genuine Structures) was developed to maximize the chance of 

designed structures to be synthesizable with little effort. In fact, DOGS not only suggests new 

compounds but also provides the user with at least one possible synthesis pathway for each 

compound. DOGS features an assembly process based on available molecular building blocks 

and a set of established reaction schemes, which forces the software to follow up construction 

pathways representing direct blueprints for possible synthesis routes. Only a small number 

existing software tools (e.g. SYNOPSIS57 and BI CLAIM77) provide the user with synthesis 

routes for designed compounds. 

Despite the suggestion of synthesis pathways, the reaction-driven construction of candidate 

molecules can be exploit in an additional way: Restrictions dictated by chemical reactions 

limit the number of constructible molecules in a well-motivated way. This can be exploited by 

the applied search algorithm, as the size of the search space is significantly narrowed down 

compared to an unconstraint combination of fragments. DOGS features a deterministic search 

algorithm implemented as a greedy strategy. Molecules are grown in a stepwise process, in 

which for each extension cycle not more than the best k of all generated molecules will be 

followed up in the next round.  

Quality of designed products is assessed using a ligand-based scoring scheme. Similarity to 

the reference ligand is computed by a graph kernel method especially suited for the stepwise 

growing process. Two graph representations of molecules (molecular graph and reduced 

graph) have been implemented to allow for different levels of abstraction from the two-

dimensional molecular structure. 

Theoretical evaluation of the software with respect to general properties of designed 

compounds was performed as well as analyses of generated scaffolds. Finally, DOGS was 

tested for its ability to contribute to a realistic drug design project in two practical case studies 

on ligand design for human γ-secretase and human histamine H4-receptor. 
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2 Material and Methods 
	  

2.1 Library of Chemical Reactions 

The way the DOGS algorithm builds up new candidate structures mimics a stepwise synthesis 

pathway as applied in a laboratory. This strategy is supposed to deliver a direct blueprint for 

the actual synthesis of proposed candidate structures. For this approach, established reaction 

protocols need to be formalized in order to make them processable by a computer. The 

reactions applied within DOGS were encoded using the formal language Reaction-MQL124. 

Reaction-MQL is a line notation language that can be used to describe functional 

transformations of molecules. The specification of a reaction as a Reaction-MQL expression 

consists of an educt side on the left and a product side on the right. Educts are specified only 

by substructures that are directly involved or essential for the reaction (reaction center) in 

order to make the description applicable to wide spectrum of educts with variable substituent 

groups (R-groups). The product is described as bond rearrangements caused by the reaction 

(Scheme 5). All Reaction-MQL representations used here feature educts with variable R-

groups in order to make them as generic as possible and broaden the spectrum of possible 

products. 

 

 
C-C1[!ring](=O7)-C4[!aromatic & bound(-H)]-C5[!aromatic & bound(-H)]-C2(=O6)-C ++ 
C[!bound(=O)]-N3[allHydrogens=2 & charge=0] >> Paal-Knorr pyrrole >> C1$1-N3-C2=C5-
C4$=1 
 

 
Scheme 5. Example of a Paal-Knorr pyrrole reaction encoded as Reaction-MQL expression (top). 
Educt substructure descriptions (left part) are separated by ‘++’. Educt side and product side (right 
part) are separated by ‘>> ID >>’ where ID is an arbitrary identifier for the reaction. A direct 
structural representation of the line notation description including atom identifiers is shown in the 
middle. The conventional structural representation of the reaction (bottom) denotes variable parts 
of molecules by R-groups (Rx). 
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Catalysts or invariant educts are not denominated in the reaction string. For example, the 

reaction expression presented in Scheme 6 does not explicitly list sodium azide as an educt 

because it will not introduce variable sidechains on the product side. Invariant educts are 

implicitly included on the product side by adding relevant atoms. Only educts explicitly 

mentioned in a Reaction-MQL expression are considered as reaction components in DOGS. 

This means that the reaction of Scheme 6 is referred to as a one-component reaction in this 

work, although its real-life counterpart involves more than one educt. 

 
C-C1#N2 >> Tetrazole  >> C1$1=N2-N[charge=-1]-N=N$-1 

 

 
 

Scheme 6. Reaction-MQL representations (top) only list educts 
with variable sidechains. Atoms from invariant educts are 
automatically added when processing the reaction. For this 
reason the sodium azide is not explicitly present in the reaction 
expression, although it is part of the reaction (bottom). 

 

 

A set of established reaction protocols was collected from the literature and encoded as 

Reaction-MQL expressions. Special focus was drawn on ring closure reactions forming 

substructures of pharmacological interest. Other selection criteria comprised high product 

yields, simple application, broad diversity with respect to educt R-groups and minimal 

exertion of toxic catalysts. Although preferred, a reaction did not necessarily have to fulfill all 

requirements to be considered. 

The collected set comprises 83 reactions, of which 58 are unique and 25 are charge or 

symmetry variations (a complete list can be found in section Coupling Reactions in the 

supplement). Out of the 58 unique reactions 34 describe ring formations. A reaction is 

classified as a ring closing reaction if the product contains a cyclic substructure that is not 

present in one of the educts. All reactions require one or two educts (one- and two-component 

reactions) and result in a single product (A  B or A+BC). The fact that each specification 

only describes one product guarantees a one-to-one assignment of a reaction and a product. 

While this simplifies the application of virtual reactions during the design process it raises a 

problem when a reaction involves a symmetric educt substructure and is not characterized to 

be regioselective. In this case, the reaction is described by two distinct Reaction-MQL 
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specifications, each forming one regioisomer. An example of such a reaction is presented in 

Scheme 7. 

 
C1-C2[!ring](=O10)-C3[allHydrogens=2]-C4(=O11)-C5 >> 3-nitrile pyridine (symmetry 1)  >> 
N$1=C(-O)-C(-C#N)=C2(-C1)-C3=C4$-1(-C5) 
 

 
 
 
C1-C2[!ring](=O10)-C3[allHydrogens=2]-C4(=O11)-C5 >> 3-nitrile pyridine (symmetry 2)  >> 
N$1=C(-O)-C(-C#N)=C2(-C5)-C3=C4$-1(-C1) 
 

 
 
Scheme 7. Example of a reaction forming regioisomer products due to a symmetric educt 
substructure. The reaction is split in two separate reaction expressions in DOGS. Corresponding 
Reaction-MQL expressions are presented above each reaction scheme. 

 

 

2.2 Library of Synthesis Building Blocks 

DOGS uses commercially available synthesis building blocks for the construction of new 

molecules. A subset of the Sigma-Aldrich125 catalog containing about 56,878 chemical 

building blocks was downloaded as SDF file from the ZINC database.126,127 These compounds 

served as a basis to extract the final set of building blocks available to automated design by a 

three-step preparation protocol.   

 

1) In the first step, building blocks were standardized and unsuitable entries wer filtered out. 

For this purpose, a preprocessing routine was developed and implemented in the 

programming language SVL using the software MOE128 (version 2009.10). This routine 

comprises multiple filtering criteria: 

 

• Compounds with a molecular mass of less than 30 Da or more than 300 Da were 

removed. 

• Compounds having more than 4 rings were removed. 
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• Compounds exhibiting any element type other than C, N, O, S, P, F, Cl, Br, I, B, Si 

and Se were removed. 

• Compounds containing more than three fluoride atoms were removed. 

• Compounds exhibiting atoms with incorrect valences were removed. 

• Compounds exhibiting unwanted substructures (Scheme 8) were removed. 

• Protonation states and formal charges were set according to MOE’s washing routine 

(e.g. carboxylic acids were deprotonated, most primary, secondary and tertiary amines 

were protonated). 

• Duplicate entries were removed. 

 

Definitions of unwanted substructures (Scheme 8) were compiled on the basis of rules 

published by Hann and coworkers.129 

 

 

 
Scheme 8: Unwanted substructures according to Hann et al.129 Building blocks containing one of 
these substructures are removed from the stock of building blocks for DOGS. (Ar: aromatic) 

 

 

2) In the second step, the filtered compound set was processed by a collection of 

preprocessing reactions. A set of 15 functional group addition (FGA) and functional group 

interconversion (FGI) reactions was compiled from the literature and encoded as Reaction-

MQL expressions (for a complete list of preprocessing reactions see section Preprocessing 

Reactions in the supplement). FGA/FGI reactions are supposed to introduce reactive 

functional groups to building blocks in order to make them applicable to coupling reactions in 

the design process. Every time a building block was converted by any of the 15 reactions, the 

original version was kept and the converted building block added to the library. 
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3) The final step of the preparation process comprises the annotation of reactive substructures 

present at each molecular fragment. Structural information and substructure annotations were 

then stored in a MySQL130 database. For annotation, every building block was checked for the 

presence of any reactive substructure defined in the 83 Reaction-MQL expressions of 

coupling reactions. A bit vector storing this information was built for every synthesis 

fragment. The bit vector holds a ‘1’ at a certain position if the respective substructure is 

present (i.e. the building block can serve as an educt for a certain reaction). Accordingly, the 

length of this bit vector is exactly the same as the number of reactive substructures defined by 

the coupling reactions. Storing this information together with each building block is supposed 

to speed up the selection of suitable reaction partners during the design process. In case a 

building block does not contain any of the defined reactive substructures (i.e., all bits have 

zero values) the building block is neglected and not stored in the database because it will not 

be able to act as reaction partner during molecule construction. 

Figure 7 summarizes the stepwise process of preparing the building block library. Starting 

with 56,878 synthesis fragments, the final library contains 25,144 entries. 

 

 

 
Figure 7. Preprocessing protocol setting up the DOGS building block library. Figures in parentheses give the 
number of building blocks involved at the respective stage. 
 
 

2.3 Design Algorithm 

 

DOGS generates new molecules by iterating through the design cycle. One design cycle 

comprises the modification of a current intermediate product by applying one of the chemical 

reactions from the library, i.e. the extension of the intermediate product. The product of one 

design cycle represents an intermediate product, which is modified in the subsequent 

iteration. A design cycle has two steps: 
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1. Selection of applied reaction 

An intermediate product Z will typically exhibit more than one functional group that 

can be addressed by reactions from the reaction library. Each of these groups can 

potentially serve as an attachment point (AP) to connect another building block. In 

order to identify the most promising AP of Z and the reaction to apply, DOGS 

introduces the concept of minimal dummy fragments. A minimal dummy fragment is a 

virtual molecule that exclusively features the minimal structural demands that must be 

fulfilled to participate in a certain reaction. The application of this concept is supposed 

to estimate the minimum structural changes a reaction will introduce (Figure 8). The 

definition of a reaction therefore determines corresponding minimal dummy 

fragments, as they depend on the way a reaction defines reactive substructures 

involved. A one-component reaction does not define any minimal dummy fragment. It 

can directly be applied to a molecule without the involvement of a second reactant. 

Thus, structural changes to Z do not need to be estimated but are determined by 

simply applying the reaction. In contrast, a two-component reaction defines two 

minimal dummy fragments. 

In order to extend Z, the algorithm first detects which of the implemented reactions 

can be applied to the attachment points offered by Z. Each of these reactions is applied 

to Z with a complementary minimal dummy fragment, leading to a list of dummy 

products. Here, one dummy product corresponds to exactly one reaction. By 

subsequently scoring the dummy products DOGS implicitly scores the corresponding 

reactions. The reaction breeding the top scoring dummy product is selected to be 

pursuit in the next step. In case more than one top scoring reaction is identified all of 

them are considered in step 2. 

2. Selection of synthesis building block 

In case step 1 selected a one-component reaction it is directly applied, and Z is 

modified accordingly. Otherwise (two-component reaction), the reaction is performed 

using all building blocks from the library holding the respective reactive substructure 

(Figure 8). Every generated product is scored according to the scoring function. The 

top-scored compound is selected and represents the extended intermediate product for 

the next design cycle. In case more than one intermediate product scores favorable, all 

of them are considered for the next round. In order to truncate the number of 

molecules generated during each step and to prevent combinatorial explosion, the 
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maximal number of intermediate products proceeding to the next extension round is 

limited to 10. 

 

 

 
Figure 8.	  Two-step procedure of an extension cycle. Step 1 selects the reaction by scoring generated dummy 
products. In the example, only two reactions can be applied (Suzuki coupling and amide coupling), and the 
amide dummy product scores favorable. In step 2, all educts from the building block library exhibiting a suitable 
amine are added to the growing molecule. The top-scoring product represents the extended intermediate product 
and is selected for the next design cycle. 
 

 

The building block a synthesis path starts with is selected among all entries of the library. For 

this purpose the algorithm evaluates every building block processed by the dummy reaction 

steps according to the scoring function. Each of the n top scoring building blocks are 

considered as a starting point for a distinct synthesis path. The value of n is defined by the 

user to control the number of compounds proposed during a design run. 

Once the design of a new compound based on a selected starting building block is initiated it 

will be continued until one of two stop criteria is fulfilled.  

The first stop criterion controls the molecular mass of designed compounds. The reference 

compound’s mass (100%) defines a relative lower (70%) and upper (130%) bound. A 

constructed molecule has to exhibit a molecular mass lying within these boundaries to be 

accepted as a valid final product. During the design of a new molecule the algorithm 

continuously adds building blocks until the resulting intermediate product exceeds the lower 

mass boundary. Up to this step the extension of the intermediate product is accepted even if 

the score degrades from intermediate product i to i+1. Once the molecular mass of an 

intermediate product lies within the defined range, the algorithm will only accept a 

H2N

Br
NH

O

OH

O

Suzuki 

amide 

1.) Select reaction 2.) Select reactant 

!!!"

amide 

NH2

Br
NH

O

O
HO

Br

O
HO

Br
O

NH
Br

NH2

amide amide 

B
HO

OH



	   35 

subsequent extension step if it results in an improvement of the score. In case the addition of a 

building block leads to a lower score or causes the molecular mass to exceed the upper weight 

constraint, the last reaction step is neglected and the previous intermediate product is added to 

the list of final products. 

The second stop criterion is supposed to truncate the number of synthesis steps in order to 

keep proposed synthesis pathways short. A pathway is interrupted regardless of any other 

condition when a certain number of synthesis steps (here: 4) is exceeded. In this case, the 

intermediate product formed by the last valid reaction step is added to the list of final 

products and a new synthesis pathway is launched based on another starting building block. 

Figure 9 presents the core of the design algorithm. 

 

 
 

Figure 9. A: Flowchart of the DOGS design algorithm. The stop criterion for maximum number of reaction 
steps is not included. B: Detailed description of flowchart element B (grey circle). It comprises the key steps to 
modify intermediate product Z in order to yield Ž by applying in silico reactions. 
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DOGS tries to construct at least one compound starting from each of the n building blocks 

considered as most promising starting points. It is possible that an initiated synthesis path 

does not produce a final product. This is the case if the growing intermediate product does not 

offer an attachment point to add another building block before it exceeds the minimal mass 

limit. DOGS automatically skips this particular synthesis and increments n by 1 to guarantee 

that at least n final products are generated. Typically, a run will result in more than n final 

products because synthesis pathways can split if different top scoring intermediate products 

are generated. In this case, more than one final product will be designed on the basis of a 

starting building block. All steps of the design algorithm are deterministic, i.e. two runs of 

DOGS with identical parameters will deliver identical results. 

 

2.4 Scoring Function 

2.4.1 Graph Kernel Method 

The scoring function assesses the quality of a molecule with respect to the design objective. 

Products of each stage of a virtual synthesis pathway (dummy products, intermediate 

products, final products) are evaluated by the same scoring function. DOGS uses a 2D graph 

kernel method (ISOAK131) for scoring the designed molecules. The graph kernel was 

originally developed for similarity searching in virtual screening, where it has been 

successfully applied132. ISOAK can be readily employed as a scoring function for ligand-

based de novo design, where, like in virtual screening, similarity to a given reference ligand 

forms the key objective for the design process. 

 

ISOAK computes the similarity of two molecules A and B based on their two-dimensional 

topological structure. Molecules are interpreted as graphs where atoms are represented as 

vertices and covalent bonds as edges between vertices (molecular graph). Hydrogen atoms 

and corresponding bonds are removed from the graph.  

In the first step, ISOAK computes a similarity value for each pair of vertices between A and 

B (Figure 10, step 1).  
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Figure 10. A similarity value for each pair of vertices between two labeled graphs is computed and stored in a 
matrix (step 1). An optimal assignment (step 2, dashed lines) of these vertex pairs maximizing the sum of 
similarities gives the final score. Some assignments are highlighted in black for better orientation. 
 

 

The similarity of two vertices is influenced by two terms. The first term compares the isolated 

vertices themselves based on their labels. In the context of molecular graphs, examples for 

meaningful vertex labels are atom types, element types, pharmacophoric features (discrete 

labels) or partial charges and electronegativity (continous labels). For the comparison of 

vertex labels a function fvc(vl1,vl2) is needed to compute a numerical value for a pair of labels 

expressing their similarity. For discrete labels the Dirac kernel can be used. The Dirac kernel 

is a simple function returning ‘1’ if the two labels are identical and ‘0’ otherwise. The second 

term of vertex similarity takes the local graph environment (surrounding vertices) into 

account. The basic idea behind the second term is that two vertices are similar if their 

topological neighbors are similar. This recursive measurement incorporates vertex similarities 

of neighbored vertices as well as a comparison of connecting edges. For edge comparisons, 

for example, the Dirac kernel based on bond order labels (single, double, triple) is applied. 

The recursive nature of this vertex similarity definition is expressed by an iterative 

computation, where vertex similarities of pairs of neighbored atoms used in the i-th iteration 

are taken from results of the previous iteration i-1. Similarities of iteration 0 are initiated with 

a standard value, e.g. 1. In each iteration, the final similarity of two vertices is computed as a 

weighted sum of the two components, where the influence of each component is controlled by 

a parameter α (0 < α < 1). Component 1 (direct label comparison of vertices) is weighted by 

1-α, while component 2 (recursive neighborhood comparison) is weighted by α. Higher values 

of α therefore increase the influence of the topological graph neighborhood on vertex 

comparison (Figure 11). 
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Figure 11. The assignment of the left part (grey dashed lines) 
is intuitive since the respective substructures of the two 
molecules are identical. The assignment of the oxygen atom 
of the smaller molecule (black dashes lines, left) depends on 
the ISOAK parameter α. Higher values of α emphasize on the 
local neighborhood and shift the assignment accordingly 
(right). 

 

 

As a second step (Figure 10, step 2), calculated vertex similarities are used to compute an 

optimal assignment: Each vertex of the smaller graph is assigned to exactly one vertex of the 

larger graph. The assignment is optimal in the sense that it maximizes the sum of similarities 

for the assigned vertex pairs. In other words, for each vertex of the smaller graph ISOAK 

finds exactly one corresponding vertex in the larger graph. Note that it is not possible for a 

vertex to appear in more than exactly one pair, i.e. a vertex of the smaller graph cannot be 

assigned to a vertex of the larger graph that has already been assigned to another vertex and 

vice versa. The total similarity of two graphs is finally computed as the sum of all similarities 

between the assigned vertices. 

 

2.4.2 Modification of the Graph Kernel Method 

The ISOAK kernel as published131 and described above was slightly modified to adapt it to 

the requirements of DOGS. The following changes were introduced: 

 

Edge labels: An additional label ‘aromatic bond’ has been introduced to complement the 

existing labels ‘single bond’, ‘double bond’ and ‘triple bond’. The obvious advantage is that 

now all bonds of aromatic systems are treated equally, which better reflects their actual 
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physical properties. The original implementation distinguishes between single and double 

bonds of aromatic systems, which can lead to artificial dissimilarity between identical 

substituted aromatic systems represented as different mesomeric resonance structures. The 

Dirac kernel based on these four discrete labels is applied to comparing edge labels. 

Vertex labels: Instead of labeling vertices with element types of corresponding atoms, the 

vertices are labeled with pharmacophoric features (pharmacophore typing is described in 

detail in section Pharmacophore typing below). Pharmacophore types describe atoms by their 

potential molecular interaction with a receptor molecule. Depending on their molecular 

environment, atoms of different element types can have the same pharmacophore type, which 

leads to an abstraction from the mere chemical nature of an atom, focusing on its potential to 

interact with a biological target. Since the goal of de novo design is to find novel chemical 

structures while keeping the desired biological effect of the reference ligand, a 

pharmacophore description of molecules ought to be beneficial in this context. For the 

comparison of pharmacophore vertex labels the Dirac kernel is used. 

Graph reduction: Although designed for virtual screening of molecules, ISOAK is a general 

method to compare labeled graphs of any kind. The reduced graph representation of 

molecules was implemented as an alternative to the molecular graph introduced above. A 

reduced graph represents certain substructures of a molecule comprising more than one atom 

as single nodes: circular substructures as well as neighbored atoms sharing the same type 

‘lipophilic’ or ‘no type’ are condensed to one vertex. Bit vectors are used to label vertices of 

reduced graphs (labeling and vertex comparison are described in detail in section Graph 

reduction below). A reduced graph represents a more abstract molecule description and is 

supposed to complement scoring based on the more detailed molecular graph. The user 

chooses which of the two graph representations will be applied in a design run of DOGS.  

 

2.4.3 Pharmacophore Typing 

Each vertex of a molecular graph is labeled by one of seven pharmacophoric features (A: 

hydrogen bond acceptor, D: hydrogen bond donor, E: hydrogen bond donor & acceptor, P: 

positive charge, N: negative charge, R: aromatic, 0: no other type) depending on the 

corresponding atom of the molecule. Typing is performed by applying a set of substructure 

definitions expressed as MQL133 strings (Table 2). All atoms not explicitly typed by one of 

these rules are assigned to have no type (‘0’). Table 2 presents the typing rules in the order 

they are applied to a molecule. The order is important because an atom that has already been 

typed by one rule will not be typed again. 
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Table 2. Substructure definitions and corresponding typings. 
MQL substructure definition Type Example 

O[charge=-1]-N[charge=1]=O 0;0;0 
 

*[charge>0] P 
 

*[charge<0] N  

O=C-N[allHydrogens>0] A;0;D 

 

O=C-N[allHydrogens=0] A;0;0 

 

O=C-O[allHydrogens=0] A;0;0 
 

N[allHydrogens>0 & !aromatic & !bound(-C=N) & 
!bound(-S=O)] E 

 
O-H' E  
Heavy'[!aromatic]-O-Heavy'[!aromatic] A  
N[allHydrogens=0 & !{aromatic&totalConnections=3} 
& !{bound(-C=N) & !bound(=C)} & !{bound(-C:N) & 
!bound(=C)} & !bound(-S=O)] 

A  

O=*'[C|P|S|N] A 
 

N[{allHydrogens=1 & aromatic} | {allHydrogens>0 & 
bound(-C=N)} | {allHydrogens>0 & bound(-S=O)}] D 

 

N[aromatic] R 
 

O[aromatic] R 
 

C[aromatic] R 
 

S[aromatic] R 
 

Cl L  

Br L  

I L  

C[!bound(~N)&!bound(~O)]~*'[C|F|Cl|Br|I|S] L  

S[!bound(~N)&!bound(~O)]~*'[C|H] L  
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2.4.4 Graph Reduction 

The graph reduction process is supposed to convert the molecule into an acyclic graph in 

order to represent it on a higher level of abstraction from its atomic structure. This is achieved 

by condensing certain substructures consisting of more than one atom to single graph vertices. 

The reduced graph often contains fewer vertices than the number of heavy atoms in the 

molecule (in contrast to the molecular graph, which always exhibits as many vertices as there 

are heavy atoms in the molecule). There are three cases in which atoms neighbored in a 

molecule are condensed and represented by one vertex, i.e. (i) cyclic substructures, (ii) 

clusters of atoms typed as ‘lipophilic’, and (iii) clusters of atoms typed as ‘no type’. The 

pharmacophore typing is identical to the one described in section Pharmacopohore Typing 

above. A cluster is defined as a set of atoms of the same type that form topological neighbors. 

Not all atoms of a cluster have to be directly connected via one bond but can also be linked 

via other atoms belonging to the same cluster. 

Cyclic substructures can consist of more than one ring. In the following, the term ‘ring’ will 

mean a cyclic substructure that is part of the smallest set of smallest rings (SSSR). Practically 

speaking, the SSSR is the set of all cyclic substructures with minimal numbers of atoms. All 

ring atoms must be covered by this set. A ring that only consists of ring atoms that can be 

completely covered by a combination of smaller rings will not be part of the SSSR (Scheme 

9). A more formal definition can be found in reference 134. 

 

 

 
Scheme 9. The ring on the left side is not part of the smallest set of smallest rings (SSSR) of the 
molecule in the center because the corresponding ring atoms can be covered by a combination of two 
smaller rings. The SSSR of the molecule is given on the right. 

 

 

The graph reduction algorithm represents each ring of the SSSR as one vertex. In case a ring 

system contains only atoms that do not belong to more than two rings (e.g. naphtalene) it is 

possible to represent each ring by a single vertex and connect them in such a way that their 

topological order in the molecule is preserved in the reduced graph (Figure 12A). There are, 

however, cases where this is impossible in a straightforward way. For example, it is not 
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possible to find an acyclic graph layout of all rings that are part of the SSSR for phenalene or 

adamantane which preserves their topological order in the molecule (Figure 12B). In order to 

solve this problem, the algorithm searches for atoms being part of more than two rings of the 

SSSR and combines these rings to one vertex in the reduced graph. Please note that this 

breaks the usual ‘one-ring-one-vertex’ relation between the molecule and the respective 

reduced graph. Ring systems represented by a single vertex will be termed amalgamated in 

the following. 

In order to distinguish the reduced graph representation of two adjacent rings that are 

connected by a bond and two rings that share atoms, the corresponding vertices of reduced 

graphs representing the rings are connected by an edge of order one (‘single bond’) in the 

former case and two (‘double bond’) in the latter case (Figure 12C). 

 

 

 
Figure 12. A: An example of a reduced graph representation. Dashed lines connect atoms or rings of the 
molecule (left) with their corresponding vertex of the reduced graph (right). For clarity only some lines are 
shown. B: Examples of polycyclic substructures (‘amalgamated’) represented by only one vertex in the reduced 
graph. C: Edges of order two are used to connect fused rings (bottom) in order to distinguish the shown cases of 
neighbored rings in reduced graph representation. 
 

 

Labels of reduced graph vertices keep information about the atom(s) they represent. A bit 

vector of length nine stores which of the pharmacophore types are present in the respective 

substructure. Each of the seven pharmacophore types is represented by one bit. Two 

additional bits stand for ‘cyclic substructure’ and ‘amalgamated ring system’. A bit is set to 

‘1’ if the corresponding feature is present in the substructure, ‘0’ otherwise. In addition, a 

vertex also stores the number of atoms it represents (atom count). Accordingly, a benzene 

substructure would be converted to a single vertex labeled by a bit vector with bits set for 

‘ring’ and ‘aromatic’ and an atom count of six.  
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Bit vectors (bv) and atom counts (ac) are used to compute the similarity of two vertices A and 

B of reduced graphs. The similarity is computed by multiplying two components (equation 5).  

 

€ 

fvc (acA ,acB ,bvA ,bvB ) = sdFactor(acA ,acB ) *Ti(bvA ,bvB )     (5) 

 

Term 1 (sdFactor) returns a value between 0 and 1 depending on the difference between the 

atom count values of compared vertices (Equation 6), computed as 

 

€ 

sdFactor(acA ,acB ) =

1 if acA − acB = 0

0.98 if acA − acB =1

0.9 if acA − acB = 2

0.8 if acA − acB = 3

0.5 if acA − acB = 4

0.3 if acA − acB = 5

0 if acA − acB > 5

⎧ 

⎨ 

⎪ 
⎪ 
⎪ 
⎪ 
⎪ 

⎩ 

⎪ 
⎪ 
⎪ 
⎪ 
⎪ 

.     (6) 

 

Term 2 is the Tanimoto index (Ti) for bit vector comparison (Equation 7), calculated as 

 

€ 

Ti(bvA ,bvB ) =
c

a + b − c
        (7) 

 

where c is the number of bits commonly set to 1 in both vectors, a is the number of bits set to 

1 in bvA and b is the number of bits set to 1 in bvB. Two identical bit vectors result in Ti = 1, 

while bit vectors with no set bits in common score with 0. Component sdFactor can be seen 

as a penalty function for atom count differences modulating the Tanimoto index. In case the 

atom count of compared vertices is equal (e.g. two six-membered rings are compared), fvc 

reduces to the Tanimoto index. If the difference between the atom counts exceeds five, fvc will 

return 0 regardless of the calculated Ti for the bit vectors.  

All other components of ISOAK including the edge comparison are identical to the molecular 

graph comparison. ISOAK can only processes graphs with a maximum vertex connectivity of 

six, i.e. a vertex of a graph processed by ISOAK must not have more than six directly 

connected neighbors. While this will not happen in molecular graphs (typically, no element 

that is present in druglike molecules will form more than six covalent bonds), such cases can 

occur in reduced graphs. For example, naphthalene is represented as a single vertex and offers 
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up to eight positions for substitution. Molecules containing vertices with more than six 

neighbors in their reduced graph representation are excluded from subsequent steps and will 

be discarded. 

 

2.5 Assessment of Scaffold Similarity 

In order to assess the outcome of de novo design runs in terms of scaffold diversity and the 

software’s potential to perform scaffold hops, a method to measure distances between 

scaffolds has been developed.  

As there is no general definition of the term ‘scaffold’,135 the definition of graph frameworks 

according to Bemis and Murcko136 has been selected to describe the molecular scaffold in this 

work. Following their definition, a molecule’s scaffold is extracted by keeping all cyclic 

substructures and the linker chains directly connecting them. Sidechains only connected to 

one or to no cyclic substructure are deleted. All retaining atoms are converted to carbon 

atoms, and all bonds are modified to single bonds (Scheme 10). 

 

 

 
 
Scheme 10. Example of scaffold extraction according to the definition of Bemis and 
Murcko. The scaffold (right) only consists of the ring systems and the linker chains 
connecting them. All bonds have order one, and all atoms are converted to carbon atoms. 

 

 

Scaffold similarities are computed as Euclidian distances in a descriptor space spanned by 

three descriptors (‘number of rings’, ‘Petitjean’, ‘Kier1’) from MOE128 (v2009.10). These 

descriptors show comparably low to moderate cross correlations on an external test set (Table 

3) and describe properties of the two-dimensional molecule framework. ‘Number of rings’ 

simply counts the number of all rings of the SSSR. ‘Kier1’ is the first of three kappa shape 

indices proposed by Hall and Kier.137 It calculates a ratio between the number of atoms and 

bonds of a molecule [(#atoms-1)2 / #bonds2]. A slightly more elaborate measure for the 2D 
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shape of the molecule is computed by the ‘Petitjean’ descriptor138: At first, an eccentricity 

value is determined for every atom of a molecule. It is defined as the longest of all shortest 

paths to every other atom in the molecule. The graph radius is the smallest atom eccentricity 

in the molecule and the graph diameter is the largest eccentricity value of the whole molecule. 

The descriptor is defined as (diameter-radius)/diameter. 

 
Table 3. Descriptor correlations are expressed as the Pearson correlation 
coefficient (x100). Calculations were performed on a set of scaffolds 
derived from ~11,000 bioactive molecules. 
  #Rings Petitjean Kier1 
#Rings 100 - - 
Petitjean 21 100 - 
Kier1 53 27 100 
 

The external test set comprises about ~11,000 bioactive molecules with a molecular mass of 

<1000Da.139 Scaffolds computed for this test set also served as a reference framework to 

establish a scaling procedure for descriptor values. Auto-scaling parameters (mean, standard 

deviation) extracted from test set descriptor values were applied to scale descriptor values of 

new compounds before computing Euclidian distances. This procedure adjusts the influence 

of each descriptor on the distance. The final distance between two scaffolds A and B was 

computed as given in equation (8). 

 

€ 

d(A,B) =
rings(A) − 4.30

1.12
−
rings(B) − 4.30

1.12
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+
pj(A) − 0.47

0.05
−
pj(B) − 0.47

0.05
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+
k1(A) −19.28

5.64
−
k1(B) −19.28

5.64
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2
 (8) 

 

 

2.6 Implementation 

DOGS was implemented in Java130 version 1.6 and uses the Chemistry Development Kit140,141 

(CDK, version 1.0.2). Calculations were performed on an Apple Mac Pro with eight CPU 

cores (2 x 2.26GHz Quad-Core Intel Xeon) and 16GB RAM. 
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3 Results and Discussion 
 

DOGS was evaluated theoretically with respect to general characteristics of the program like 

runtime, number of generated molecules and scaffolds. Designed scaffolds were assessed for 

their similarity to the reference scaffold in order to analyze the program’s ability to propose 

ideas for novel scaffolds. DOGS designs were also investigated for general properties of 

interest for lead candidates, in particular druglikeness, synthesizability and calculated 

logP(o/w). In order to be of practical relevance, a de novo design software tool must be able 

to come up with molecules that can be synthesized and already show druglike properties. 

Exemplary compounds generated by the software for different target molecules (trypsin, 

TGF-β1 receptor, estrogen receptor) were picked out and discussed with regard to their 

pharmacophoric features in comparison to the respective reference ligand. Here, DOGS was 

tested for its ability to generate compounds that capture the main features of the seed 

molecule while being structurally distinct. Finally, the software was analyzed in two practical 

de novo design case studies (H4 receptor and γ-secretase). In both cases, proposed molecules 

were selected, synthesized and tested for their biological activity. 

 

3.1 Influence of Parameters on General Characteristics and Scaffold 
Diversity 

A goal of de novo design is to generate ideas for new scaffolds. In order to test DOGS for its 

ability to design compounds with scaffolds different from the scaffold of the reference ligand, 

result lists of runs started with different parameters were analyzed. The scaffold definition 

used in this investigation follows the one of Bemis and Murcko136 (for details see section 

Assessment of Scaffold similarity in Materials and Methods). An inverse agonist of the human 

histamine H4-receptor served as reference ligand for all runs of this investigation (Scheme 

11).142 The number of investigated start fragments was set to 200 in each case. For both graph 

representations, parameter α was varied from 0.1 to 0.9 in increments of 0.1, producing a total 

of 18 result lists. 
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Scheme 11. An inverse agonist of the histamine receptor served as 
reference ligand.142 The extracted scaffold on the right was used to 
analyze the similarity of scaffolds designed by DOGS.  

 

 

3.1.1 General characteristics 

Quantitative characteristics of each run are summarized in Figure 13. DOGS needed between 

8 and 15 hours to finish a complete run. Runtimes have the tendency to rise with higher α 

values, which can be observed for both graph representations (Figure 13, bottom charts). The 

reason for this correlation is that higher α values increase the influence of the graph 

neighborhood on vertex comparison, which leads to more computational iterations until the 

comparison process converges. An exception to the general trend is observed for α = 0.4 in 

reduced graph design mode. This is caused by the fact that all other runs were performed in 

parallel with other jobs on the same machine, while this run was performed on an idle 

machine.  

In general, runtimes are comparable between the two molecule representations, giving rise to 

the assumption that additional computational costs caused by graph reduction are 

compensated by the faster comparison of less complex reduced graphs. Since the overall 

number of molecules designed during a run in reduced graph design mode is higher (Figure 

13, top charts), the overall time needed to score a single molecule is lower for reduced 

graphs. Hence, the faster comparison even overcompensates the costs for graph reduction. 

The reason for an overall higher number of designed molecules in reduced graph mode may 

be addressed to the fact that the higher level of abstraction from the molecule increases the 

chance for different intermediate products receive the same score during design. In case more 

than one top scoring intermediate product occurs during construction, the process is split and 

more than one final product may be generated from the same start fragment.  
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Figure 13. Influence of parameter α on different performance characteristics of DOGS for molecular graph (A) 
and reduced graph (B) representation. Lines connecting single measurements are given for better overview and 
do not represent interpolations. 
 

 

The number of duplicate molecules produced during a run is widely independent of the 

molecular representation, and varies only slightly with changes of parameter α. It is 

impossible that duplicate molecules also have identical synthesis pathways, since the list of 

synthesis building blocks does not contain duplicates. However, it can be expected that a 

large fraction of duplicates result from only slightly differing synthesis routes. For example, 

two synthesis pathways can be identical except for the initial building blocks: In case the 

starting fragments of two synthesis pathways only differ in a halogen atom (bromide 

exchanged against iodide), which is substituted by an azide in the first step in both cases, they 

do not represent alternative synthesis strategies. However, duplicates may also be produced 

by significantly differing synthesis pathways. In this case, they add valuable information to 

the result list because they point to alternative synthesis strategies. 

The number of unique scaffolds has the tendency to drop with elevating α values, although 

this is effect is observable most distinctly at different parameter ranges for the two graph 

representations (0.6-0.9 for molecular graph representation and 0.1-0.4 for reduced graph). 

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

!'$" !'%" !'&" !'(" !'#" !')" !'*" !'+" !',"

!"

%"

("

)"

+"

$!"

$%"

$("

$)"

!'$" !'%" !'&" !'(" !'#" !')" !'*" !'+" !',"

-.
/0

1
2"
34
5.

-6
7"

85
./

96
"

A"" B""

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

!'$" !'%" !'&" !'(" !'#" !')" !'*" !'+" !',"

alpha"

85
./

96
"

designed molecules 

designed molecules 

unique molecules 

unique scaffolds 

unique molecules 

unique scaffolds 

!"

%"

("

)"

+"

$!"

$%"

$("

$)"

!'$" !'%" !'&" !'(" !'#" !')" !'*" !'+" !',"

-.
/0

1
2"
34
5.

-6
7"

molecular graph"" reduced graph""

alpha"
0.1     "0.2     "0.3     "0.4     "0.5     "0.6     "0.7     "0.8     "0.9     "

alpha"
0.1     "0.2     "0.3     "0.4     "0.5     "0.6     "0.7     "0.8     "0.9     " 0.1     "0.2     "0.3     "0.4     "0.5     "0.6     "0.7     "0.8     "0.9     "

alpha"
0.1     "0.2     "0.3     "0.4     "0.5     "0.6     "0.7     "0.8     "0.9     "



	   49 

 

3.1.2 Scaffold Diversity 

In order to assess the influence of parameter α and the two different graph representations on 

the quality of outcome with respect to scaffold diversity, a numerical representation of 

scaffolds was used (for details see section Assessment of Scaffold Similarity in Materials and 

Methods). The descriptor representation allows for distance calculation between scaffolds of 

designed molecules and the reference scaffold. Figure 14 presents statistical parameters 

(median, average and standard deviation) of scaffold distance distributions as well as 

additional characteristics related with scaffold generation derived from analyzes of the 18 

DOGS runs investigated in the former section. 

 

 
Figure 14. Influence of parameter α on characteristics and distribution of distances between designed scaffolds 
and the reference scaffold (A: molecular graph representation; B: reduced graph representation). Lines 
connecting single measurements are given for better overview and do not represent interpolations. 
 

 

Median and average values of scaffold distance distributions only marginally differ between 

molecular graph and reduced graph representations at the same α level. The same holds true 
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when comparing different α levels of the same graph representation. Standard deviations 

slightly decrease with increasing α for molecular graph scoring. High α values in combination 

with the reduced graph design mode (0.7-0.9) produce scaffold distributions with increased 

standard deviations. 

The number of molecules exhibiting the same scaffold as the reference molecule can serve as 

an evidence whether parameter combinations are able to generate close analogs of the 

reference molecule. In general, this is not the intention of de novo design, as the scope is to 

come up with innovative scaffolds. On the other hand, a low number of scaffold re-designs 

can be seen as an indicator that the algorithm designs ‘around’ the seed scaffold in scaffold 

space. In the given example, re-design of the reference scaffold is enhanced at higher levels of 

α for both molecule representations (0.6-0.8), while it is not observable at α = 0.9. A possible 

explanation for this observation might be that such high levels of α influence the selection of 

initial building blocks in a way that they do not offer the potential to be transformed by 

suitable reactions to exhibit the reference scaffold. 

It is of greater interest for de novo design programs to be able to produce new scaffolds that 

feature pharmacophore and shape similarity compared to the seed. In order to test DOGS for 

the ability to propose new scaffolds similar to the reference, the number of scaffolds that 

structurally differ from the reference scaffold but exhibit minimal distance in the descriptor 

space (distance = 0) was counted in each result list (Figure 14). DOGS was able to at least 

design one new scaffold with distance 0 in every run except for one (α = 0.2, reduced graph 

mode). The molecular graph representation always produced at least as many new ‘0-

distance’ scaffolds on equal α levels as the reduced graph mode, in 66% of the cases even 

more. 

 

Summarizing, these analyses do not give clear evidence on preferable parameters for DOGS 

runs. Visual inspection of several result lists based on different reference ligands revealed that 

molecular graph representation is preferably combined with α values in the high range (0.7-

0.9). This is supported by the fact that the default setting for α is 0.875 in the original version 

of ISOAK for virtual screening.131,132 This method is almost identical to the molecular graph 

mode used here, as it also operates on topological molecule graphs. In contrast, reduced graph 

design works better on α values in the low to mid range (around 0.4). High α values tend to 

produce molecules exhibiting little similarity to the reference. This subjective finding is 

supported by the fact that exceptionally high standard deviations of scaffold distance 

distributions occur at these combinations of parameters (Figure 14B), giving evidence that 
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more scaffolds of larger distance to the reference are designed in these cases. The fact that 

result structures of the reduced graph representation were deemed to be more reasonable at 

lower α values than for the molecular graph may be addressed to the fact that ring systems 

commonly occure in druglike molecules and therefore play an important role in objective 

similarity measurements as well as in subjective human cognition. Reduced graphs represent 

rings or even ring systems by single vertices. By reducing the influence of the graph 

environment on vertex comparison via lower α values, ISOAK emphasized a direct vertex 

comparison, which means direct matching of rings in the case of reduced graphs. In contrast, 

matching of complete rings is enhanced by high α values in molecular graph design mode, 

since this forces ISOAK to put focus on the environment of compared atoms and incorporate 

connected ring atoms into vertex comparison. 

 

In general, one might expect a more abstract molecule representation (reduced graph) to lead 

to more distant and diverse scaffold designs compared to a more detailed description of a 

molecule (molecular graph). Therefore, it might seem counterintuitive that design runs based 

on reduced graph representation do not breed scaffolds with a higher average distance to the 

reference than the molecular graph (Figure 14). It should be stated that the results of this 

investigation and drawn conclusions only hold for the selected descriptor space encoding the 

scaffolds. Future work needs to address whether similar observations can be made for 

different scaffold representations. 

 

For further analysis of the influence of molecule representation on scaffold generation, 

another study of scaffold comparison based directly on the scaffold structures (instead of an 

abstraction by molecular descriptors) was performed. Four DOGS runs (reduced graph and 

molecular graph, each on α=0.875 and α=0.4) were carried out based on two different 

reference ligands: an inhibitor of the human transforming growth factor (TGF) β1 receptor143 

and the hH4R antagonist JNJ7777120144 (Scheme 12). For these eight runs, distributions of 

scaffold distances to the reference scaffolds exhibit the same behavior as described in the 

former analysis for the hH4R inverse agonist: no significant difference between distributions 

of reduced graph design and molecular graph design is observable (Figure 15). 
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Scheme 12. Reference ligands (a TGF β1 receptor inhibitor143 and a hH4-
receptor antagonist144) and extracted scaffolds. 

 

 

 

 
Figure 15. Distributions of distances between designed scaffolds and the 
respective reference scaffold for eight DOGS runs (left: TGF-β1 receptor 
inhibitor; right: JNJ 7777120; mG = molecular graph; rG = reduced graph). 
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Figure 16. Overlaps of scaffold lists from runs based on molecular graph (mG) and reduced graph (rG) scoring 
(A: TGF-β1 receptor inhibitor; B: JNJ 7777120). The total number of scaffolds found in a run is given next to 
the corresponding circle. Figures inside of circle fractions describe numbers of scaffolds. Overlaps represent 
scaffolds constructed by both design modes. Examples of scaffolds for each fraction are given below. 
 

 

Nevertheless, a comparison of the scaffold lists produced with the two different abstraction 

levels on the same α value revealed that – albeit showing comparable distance distributions 

around the scaffold – they exhibit only small to moderate overlaps (Figure 16). This finding 

suggests that while reduced graph scoring did not jump farther away in the spanned descriptor 

scaffold space, it jumped into directions in structural scaffold space that considerably differ 

from those followed by molecular graph scoring. This leads to the conclusion that results 

produced on different abstraction levels of molecule representation are complementary. It is 

therefore worthwhile to apply both design modes to yield a richer pool of ideas for new 

scaffolds. 

 

3.2 Property Analysis of Designed Compounds 

De novo design programs are supposed to suggest compounds exhibiting druglike properties. 

Although successful de novo design campaigns will likely be followed by a process of 
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structural optimization in order to improve pharmacokinetic properties of designed 

compounds, it is evident that designed compounds should already show druglike properties 

themselves.  Lipinski and coworkers have proposed four simple rules (‘rule of 5’),145 which 

have found wide acceptance as crude criteria for an estimation of oral bioavailability. These 

rules define negative guiding principles: with each additional failed criterion, the probability 

of showing poor absorption or permeation rises, which might lead to attrition in later steps of 

the drug development process. It is important to be aware of the fact that the ‘rule of 5’ 

present soft filters. Failing one of the filters does not necessarily mean that a molecule is not 

druglike and has no chance to become a drug. In fact, not all marketed drugs and drug 

candidates pass each of Lipinski’s rules.119 

In order to assess the druglikeness of DOGS designs, ‘rule of 5’ violations of 1,767 molecules 

originating from ten DOGS runs were computed using the descriptor implemented in the 

software MOE. Five trypsin inhibitors served as reference ligands for these runs (Scheme 13).  

 

 

 
Scheme 13. Five trypsin inhibitors serving as reference compounds for DOGS design runs 
(Camostat146, NAPAMP147, Efegatran148, Patamostat149,150, UK-156406151). 

 

 

For each reference, one run based on the molecular graph (α=0.875) and a second run 

applying the reduced graph representation (α=0.4) was performed. Strikingly, an analysis of 

‘rule of 5’ violations shows that most of the compounds constructed by DOGS (78.5%) 
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violate less than two rules (Figure 17). Only 52 proposed molecules (3%) show three 

violations. The distribution of designed compounds mirrors the one of the reference ligands. 

A second analysis of druglikeness of DOGS designs was carried out for the same set of 

designs using an artificial neural network.152 This classifier had been trained on a set of drugs 

and non-drugs to score molecules between 0 (low druglikeness) and 1 (high druglikeness). 

Out of the 1,767 molecules designed by DOGS 904 (51%) receive a score >0.8 (Figure 18). 

 

 

 

 
Figure 17. Distribution of ‘rule of 5’ violations of compounds designed by DOGS (left) and of respective 
reference compounds (right).  
 

 

 

 
Figure 18. Distribution of druglikeness scores of compounds designed by DOGS (left) and the reference 
compounds of respective runs (right). Scores have been computed by a trained classifier (1 = high druglikeness). 
 

 

Besides this result it is eye-catching that a considerable number of molecules (436) receive a 

poor druglikeness score below 0.1. This fact is less surprising if one considers that the set of 

reference compounds also contains a molecule deemed to be not druglike (Patamostat, score = 

0.11). Compounds designed to maximize similarity to this reference can be expected to 

receive poor druglikeness scores as well. 
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Another relevant property for drug candidate molecules is lipophilicity.153 A common 

parameter closely related to this property is the octanol-water partition coefficient 

(logP(o/w)).154 One of the Lipinski rules states that logP(o/w) values greater than 5 enhance 

the chance that a molecule will be poorly absorbed.145 The logP(o/w) was calculated for the 

five trypsin reference ligands and the molecules designed by DOGS using the ‘logP(o/w)’ 

descriptor implemented in MOE128 (Figure 19).  

 

 

 
Figure 19. Distribution of calculated logP(o/w) scores of compounds designed by DOGS (left) and the reference 
compounds of respective runs (right).  
 

 

The distribution of calculated logP(o/w) values of DOGS designs approximates a unimodal 

distribution centered around values between 2 and 3. This is in agreement with the 

distribution of values calculated for the reference ligands. DOGS was able to mimic this 

property of the references in the designed compounds, although it is not explicitly considered 

during the design. 

 

It is of critical importance that molecules designed in silico not only exhibit desired properties 

but are also amenable to chemical synthesis in order to be of practical value for drug 

discovery projects. A molecular descriptor (‘rsynth’) implemented in the software package 

MOE128 estimates synthesizability of molecules by the fraction of heavy atoms that can be 

traced back to starting material fragments resulting from retrosynthesis disconnection rules. A 

score of 1 means full coverage of atoms and expected high synthesizability. The rsynth 

descriptor was calculated for both the reference set and the set of de novo designed molecules 

(Figure 20). The majority of DOGS designs is deemed synthesizable (77% of compounds 

receive a score of >0.9). 
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Figure 20. Distribution of estimated synthesizability scores of compounds designed by DOGS (left) and the 
reference compounds of respective runs (right). A score of 1 means perfect expected synthesizability. 
 

 

Most of the remaining designs receive scores between 0.4 and 0.8. Reference compound UK-

156406 is scored comparably low (rsynth = 0.37). A total of 35.5% (141 of 397) of all DOGS 

designs scoring below 0.8 originate form this reference ligand, which exceeds an expected 

fraction of 20% assuming that low-scoring designs come from all five references in equal 

parts. That means low synthesizability scores are enriched for molecules originating from a 

reference compound that is scored unfavorable as well.  

In conclusion, this result may be considered a success of the DOGS approach to obtain 

synthesizability of de novo designed compounds. 

 

Summarizing, DOGS is able to design overall druglike and chemically plausible molecules 

with a chance of being amenable to chemical synthesis. The proposed molecules resemble the 

reference compounds in properties that are not explicitly considered by the scoring function. 

 

3.3 Exemplary DOGS Designs  

3.3.1 Trypsin 

Trypsin is a serine protease found in the digestive system of vertebrates. Its enzymatic activity 

comprises the cleavage of amide bonds in the protein backbone. Cleavage sites of trypsin are 

characterized by lying next to basic amino acids (arginine, lysine) in C-terminal direction.155 

The main reason for cleavage site specificity of trypsin is the S1 binding pocket (Figure 21), 

which is selectively filled by basic amino acid sidechains to interact with an aspartate residue 

at its bottom.155 Inhibition of trypsin itself is of little pharmaceutical interest, but can be used 

as an example for case studies on serine proteases. From a pharmacological perspective, 
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trypsin represents an off-target for drug discovery projects directed to therapeutically relevant 

serine proteases like thrombin and factor Xa.156 

 

 

 
 
Figure 21. Crystal structure of human trypsin I (pdb-
identifier 1trn; only one of the two monomers is shown). 
An aspartate residue (red surface area) is located at the 
bottom of the S1 pocket. 

 

 

Two examples of structures proposed by DOGS as potential trypsin inhibitors are given in 

Scheme 14. Structures 3 and 4 were obtained from design runs based on Efegatran and 

Camostat (200 start building blocks, α = 0.4 for reduced graph, α = 0.875 for molecular 

graph). Compound 3 originates from the reference ligand Efegatran. It exhibits a central 

sulfonamide moiety, which is not present in the reference molecule but can be found in other 

trypsin inhibitors (for example in NAPAMP and UK-156406, Scheme 13). That means 

DOGS replaced a substructure of the reference by a structurally different but presumably 

isofunctional fragment, which is present in other known actives. The guanidinium sidechain 

of Efegatran was exchanged with the close structural analog 3-methylguanidinium. 

S1 pocket 
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Scheme 14. Compounds 3 and 4 have been proposed by the software as potential trypsin inhibitors. Reference 
ligands (Efegatran148, Camostat146) and suggested synthesis pathways are presented for both candidate structures. 
 

 

The overall composition of functional groups in 3 resembles the arrangement of the reference. 

The synthesis route proposed by DOGS will probably have to be augmented by the use of 

protection groups. For example, the formation of the ester bond in the last synthesis step can 

be disturbed by the competing formation of an amide bond with the primary amine of educt 2-

aminocyclopentanol. Protection of the amine group could remedy this difficulty. Note that 

DOGS currently does not consider protection groups. Competing side reactions are only 

addressed by avoiding multiple occurrences of the same functional group in an educt. 

Compound 4 has been derived from Camostat. Compared with the former example of 

molecule 3, molecule 4 is generally more distinct from its reference compound with respect to 

the molecular structure. While the guanidinium group of the reference is preserved, it is 

connected to an alkyl chain instead of a phenyl ring. Alkyl linkers connecting the 

guanidinium group can also be found in the reference Efegatran and in the sidechain of 

arginine, a ‘natural’ ligand of the trypsin S1 pocket. An aromatic substructure in distance to 

the part addressing the S1 pocket is another feature that can be found in other trypsin ligands 

as well as in compound 4 (compare NAPAMP, Scheme 13). Albeit showing considerable 

structural difference to the reference compound it originated from, compound 4 represents a 
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promising candidate structure due to its arginine-like sidechain in combination with the 

distant aromatic system. In addition, it must be stated that the design of isofunctional but 

structurally different molecules is one of the goals of de novo design. Compound 4 is 

promising with respect to its potential to fulfill this demand. 

Bioisosteric replacement135 of functional groups is a key to successful de novo design. In 

order totest DOGS for its ability to perform bioisosteric replacement, the list of 1,767 

potential trypsin ligands designed by the software (resulting from ten runs based on five 

trypsin references) was ranked according to the scores assigned by DOGS. The top 200 

molecules were analyzed for functional groups that replace the sidechains of reference 

compounds addressing the S1 pocket (guanidinium and benzamidine, Scheme 15). 

 

 
Scheme 15. Sidechains addressing the S1 pocket found in the five reference compounds (left) and 
surrogates suggested by DOGS found in top-scored 200 designs (right). 

 

 

Starting at rank position 78 (compounds on higher ranks exhibit one of the fragments present 

in the references), DOGS suggested eleven different sidechains replacing the reference 

fragments in the top 200 designs. Most of them offer the possibility to interact with the 

negatively charged aspartate sidechain of the S1 binding pocket of trypsin by a positively 

ionizable nitrogen atom. The terminal urea group and the two aromatic fragments (pyrimidin-

2-amine and pyridin-2-amine) represent exceptions, where the nitrogen will likely not carry a 

positive charge. The formation of this salt bridge is a known key interaction inside the S1 

pocket.155 Albeit the formation of the salt bridge is unlikely for these three fragments, they are 

still able to form a hydrogen bond to the aspartate sidechain. In fact, both pyrimidin-2-amine 

and pyridin-2-amine can be found in known trypsin inhibitors as S1 adressing sidechains 

(Scheme 16).  
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Scheme 16. Known inhibitors of trypsin showing pyrimidin-2-amine157 (left) and the 
pyridin-2-amine158 (right) sidechains (grey circles). These moieties were also present in 
DOGS designs suggested as bioisosters for sidechains of the reference ligands addressing 
the S1 pocket of trypsin. 

 

 

In addition, the list of proposed sidechains contains an alkyl chain carrying a terminal 

nitrogen. This fragment resembles the sidechain of lysine – one of the ‘natural’ ligands filling 

the S1 pocket during peptide bond cleavage. 

In summary, DOGS was able to suggest some reasonable potential bioisosters for 

substructures of reference ligands addressing the S1 pocket of trypsin including 

experimentally validates examples. 

 

3.3.2 Transforming Growth Factor β1 Receptor 

The transforming growth factor (TGF) β1 receptor is a transmembrane protein involved in the 

transduction of extracellular signals into the cell.143 An intracellular kinase domain is 

activated upon extracellular binding of the cytokine TGF-β1.143 The receptor is involved in a 

number of processes like cell differentiation, growth and embryonic development. For this 

reason, it may play a role in a number of diseases including cancer and wound healing.143 

The reference ligand already introduced in Scheme 12 (top) served as a seed for two runs of 

DOGS to suggest potential ligands of the human TGF-β1 receptor kinase domain (run 1: 

reduced graph, α = 0.4; run 2: molecular graph, α = 0.875). A selection of designed molecules 

is presented in Scheme 17.  

The overall arrangement of aromatic systems of the reference is kept in the designed 

molecules, while each structure exhibits a modification compared to the reference. Except for 

one example, the central ring system is a product of the synthesis pathway. Synthesis routes 

comprise only one or two steps and can be deemed traceable. 
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Scheme 17. Molecules 5-8 were proposed by DOGS together with presented synthesis plans based on an 
inhibitor of the human TGF-β1 receptor.143 
 

 

3.3.3 Estrogen Receptor 

Raloxifene is a potent modulator of the human estrogen receptor (ER).159 It is approved as a 

drug for the treatment of osteoporosis in postmenopausal women.160 DOGS designed two lists 

of ligand candidates for the human ER based on Raloxifene as a reference (run 1: reduced 

graph, α = 0.4; run 2: molecular graph, α = 0.8). Two exemplary structures from these lists are 

shown in Scheme 18. 

As in the former example of TGF-β1 receptor ligand design, DOGS was able to suggest 

molecules exhibiting distinct similarity to the reference in the overall composition of 

structural elements. The number of rings as well as their topological arrangement in designed 

molecules is comparable to Raloxifene. This is especially the case for compound 10. 

Molecule 9 introduces a shift in the localization of an aromatic system (furan) to form a 

spacer between the benzimidazole and a phenyl ring. Altogether, 10 exhibits a higher 

structural similarity to the reference ligand than 9. The sidechain carrying a terminal 

piperidine is almost identical to the one of Raloxifene (only a carbonyl group is missing), 

while the linker is completely replaced with an alkyl chain in 9. This might cause a loss of 
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potential interactions with the receptor in case atoms of this linker form interactions. While 

the exchange of a hydroxy group against a methoxy substituent in 9 retains the property of a 

hydrogen bond acceptor, the second hydroxy group is replaced by a nitro group. Effects of 

this exchange heavily depend on the kind and energetic contribution of the interaction formed 

between the replaced hydroxy group and the receptor. Compound 10 replaces a hydroxy 

group of the reference with a fluorine atom. Fluorine has been reported to act as a hydrogen 

bond acceptor in some cases, albeit weaker than an oxygen of a hydroxy group.161 Effects of 

these modifications on the biological activity have to be elucidated by practical synthesis and 

testing. The synthesis pathway of 10 seems feasible and simple. The ring closing reaction of 

compound 9 might be difficult because of the highly substituted educts. 

 

 

 
Scheme 18. Molecules 9 and 10 were proposed by DOGS together with presented synthesis plans based on 
Raloxifene, a modulator of the human estrogen receptor.159 Where available, general names of reactions are 
given next to reaction arrows. 
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3.4 Practical Evaluation of the Software 

3.4.1 Human γ-secretase 

DOGS was employed to propose candidate structures as new modulators of the human γ-

secretase. This target is responsible for the production of potentially toxic amyloid-β (Aβ) 42 

peptides.162 Extracellular accumulation and formation of amyloid plaques is the primary 

pathological event in Alzheimer’s disease.163 Oligomerisation of Aβ42 peptides is believed to 

be a pivotal step in plaque formation.162 Modulators of the γ-secretase are supposed to shift 

the product ratio of amyloid precursor protein processing towards shorter, non-toxic Aβ 

fragments like Aβ38 or Aβ40.162 

Four different reference ligands known to modulate γ-secretase were selected. For each 

reference compound, two DOGS runs (molecular graph representation, α = 0.875; reduced 

graph representation, α = 0.4) were performed. Each of the eight resulting lists of DOGS 

designs was re-scored after the run by a CATS122 similarity analysis (Euclidian distance in the 

space spanned by the descriptor). Compounds of each list as well as the corresponding 

reference ligand were encoded by the CATS descriptor and subsequently ranked according to 

their distance to the reference in order to get an additional criterion for prioritization. Re-

ranked lists were visually inspected and two promising ligand candidates 11 and 12 were 

selected for synthesis (Scheme 19). Criteria for compound selection were (in their order of 

importance) (i) the subjective rating of the molecular structure by a medicinal chemist, (ii) 

ease and plausibility of proposed synthesis route, and (iii) CATS as well as ISOAK scores. 

 

 
Scheme 19. Candidate structures 11 and 12 proposed by DOGS as potential modulators of the human γ-
secretase. Synthesis plans were suggested by the software and successfully pursuit. Molecules 11 and 12 
originate from distinct runs based on different reference ligands.163 IC50 values are determined by two separate 
dose response experiments. Concentrations of secreted amyloid peptides are detected separately in cell 
supernatants by labeled antibodies and electrochemiluminescence. 
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Synthesis plans were readily traceable as suggested by the software. One-step reactions 

yielded the products in both cases. DOGS was able to design compounds not only deemed 

promising by medicinal chemists, but also proved to be synthesizable as suggested. 

Synthesized compounds were tested for their ability to modulate the human γ-secretase by 

measuring the concentrations of amyloid peptides Aβ38, Aβ40, and Aβ42 in cell 

supernatants. Cell lines overexpressing human γ-secretase and the amyloid precursor protein 

are treated with the compound. Labeled antibodies specific for each of the three peptides are 

used to determine their levels of concentration in the cell supernatant in a liquid phase 

electrochemiluminescence assay.164 First results report modulation of γ-secretase activity 

(Figure 22). Both compounds shift the product ratio towards higher levels of Aβ42. Although 

this is not the effect intended for a potential treatment of Alzheimer’s disease, this first 

practical evaluation of DOGS can be deemed successful. For both selected compounds the 

suggested synthesis plan was readily pursuable and a modulation of target activity could be 

observed. These ligands can serve as starting points for an optimization of the 

pharmacological profile by structural modification. 

 

 

 
Figure 22. Modulation of γ-secretase activity by designed ligands. Both 
compounds modulate the activity of γ-secretase by a shift of product ratio towards 
higher levels of Aβ42. 
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3.4.2 Human Histamine H4-Receptor 

Histamine is a biogenic amine involved in a plethora of signaling pathways as a messenger. 

Four subtypes of histamine receptors (hH1R – hH4R) are known in human. All subtypes 

belong to class A (rhodopsin-like) of the GPCR super family.142 Some antagonists of hH1R 

and hH2R are approved drugs for the treatment of allergic reactions and ulcer. Clinical trials 

of hH3R antagonists for the therapy of neuronal diseases like epilepsy, schizophrenia and 

sleep/wake disorder are currently in progress.165 Although subtypes 3 and 4 show the highest 

intra-familial similarity (37% sequence identity), selective hH4R antagonists have been 

identified. Preclinical trials reveal their potential therapeutic application in allergy, 

inflammation, autoimmune disorders and cancer.165 

DOGS was applied to give ideas for new selective antagonists or inverse agonists of hH4R. 

For this purpose, two reference ligands (an inverse agonist and an antagonist) were employed 

as seed structures (Scheme 20). For each reference, the molecular graph representation (α = 

0.875) as well as the reduced graph representation (α = 0.4) was applied, resulting in four 

runs. Visual inspection of result lists together with medicinal chemists familiar with the target 

led to a prioritization of compounds. Three examples of top rated designs are presented in 

Scheme 20.  

 

 
Scheme 20. Molecules 13 and 14 were proposed by DOGS based on an inverse agonist of hH4R142 (A). 
Compound 15 is a design originating from the antagonist JNJ 7777120 of the same target144 (B). General 
names of reactions are provided below reaction arrows if available. 

N
N

NN

N

NH2

hH4R inverse agonist 
Ki = 0.146 !M  

HN
N

O

N Cl

hH4R antagonist  
JNJ 7777120 
Ki =  4.1 nM 

DOGS 

DOGS 

N
NH

N

S
N

N
N

N

O
N

S

NH2

N
N

N
N

O NH2

O

HO

H2N N
N

O
N

N

O

+ 

+ 

O

HO

H2N

+ 

reductive 
amination  13 

+ formic acid  

14 

+ formic acid  

N

H
N

O

OH

N

H
N

O

Cl

N

H
N

O

N3

Cl

N

HN

O
N
N N

Cl

+ 

15 

N
S

NH2

O

B 

A 

Huisgen 



	   67 

N-methylpiperazine is present in both references and represents a chemical moiety that is 

often used as a basic head group in H4 receptor ligands.166 The positive charge of basic 

amines is believed to form a key interaction to a negatively charged sidechain of the 

protein.167 While in compound 13 the N-methylpiperazine moiety is preserved, it is replaced 

in 14 and 15 by isofunctional groups. Both of them represent aliphatic rings exhibiting basic 

amines, which provide the chance to undergo the charge-mediated interaction with the 

receptor. Localization of aromatic ring systems of reference compounds is also approximately 

kept within the proposed structures. Compound 15 is of special interest because it combines 

two structural elements that can be found in reported H4R ligands: an alkylic linker chain with 

an ether bridge connecting and a central triazole ring (Scheme 21). Notably, both structural 

elements are not present in the reference compound. The moderate binding energy of the 

triazole-carrying ligand 16 (Ki = 35 µM) may be caused by a missing hydrogen bond acceptor 

in the central part. This pharmacophoric feature is also believed to play a role in the 

interaction with binding pocket of H4R.167 The oxygen atom of the ether bridge present in 

designed compound 15 and H4R ligand 17 is able to act as a hydrogen bond acceptor. The 

ISOAK scoring function of DOGS assigns this oxygen to the carbonyl oxygen of the 

reference, which can act as a hydrogen bond acceptor as well. 

 

 

 
Scheme 21. Highlighted features of two hH4R ligands (compound 16142: central 
triazole ring; compound 17168: alkyl linker chain with ether bridge) are combined in 
designed compound 15. None of these features is present in the reference ligand. 

 
 
 

In order to test for the hypothesis that the combination of features found in compound 15 

might lead to affinity to hH4R, compound 15 was selected for synthesis and testing. The 

synthetic procedure was realized exactly as suggested by the software (Scheme 22). 

Analytical spectra of intermediate products 18 and 19 as well as of compound 15 can be 

found in the supplement. 
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Scheme 22. Synthesis of compound 15 as proposed by the software. 
 

 

Compound 18 (1-(2-(2-chloroethoxy)ethyl)piperazine). Educt 2-(2-(piperazin-1-

yl)ethoxy)ethanol (1 eq.) was precipitated with 5N isopropylic HCl (3 eq.). The salt was 

filtered off and dried. In order to substitute the hydroxy group with chloride, the salt (1 eq.) 

was dissolved in toluene, and thionyl chloride (3 eq.) was added slowly under cooling 

conditions (ice bath). After heating to 70°C for 10 minutes, the mixture was stirred for 3h at 

60°C under argon atmosphere. The formed precipitate was filtered off and dried in vacuo to 

yield a yellowish-white solid. MS (ESI+): m/z = 192.91 [M+H]+. 1H NMR (MeOD, 400.13 

MHz): δ 3.57 (t, 2H, J = 4.9 Hz), 3.63 (m, 8H), 3.77 (t, 2H, J = 5.6 Hz), 3.85 (t, 2H, J = 5.7 

Hz), 3.97 (t, 2H, J = 4.9 Hz). 

 

Compound 19 (1-(2-(2-azidoethoxy)ethyl)piperazine). Compound 18 (1 eq.) and sodium 

azide (2 eq.) were dissolved in DMSO. The mixture was stirred for 42h at 100°C. The 

precipitated white solid was removed by filtration. The orange filtrate was diluted with 

dichloromethane and extracted with 2N NaOH (three times). After removal of the solvent, the 

brown product (oil) was dried in vacuo. MS (ESI+): m/z = 199.93 [M + H]+. 1H NMR 

(DMSO-d6, 400.13 MHz): δ 2.34 (t, 4H, J = 3.9 Hz), 2.44 (t, 2H, J = 5.9 Hz), 2.69 (t, 4H, J = 

4.7 Hz), 3.38 (t, 2H, J = 4.9 Hz), 3.54 (t, 2H, J = 5.9 Hz), 3.58 (t, 2H, J = 4.9 Hz). 

 

Compound 15 (1-(2-(2-(4-(3-chlorophenyl)-1H-1,2,3-triazol-1-

yl)ethoxy)ethyl)piperazine). Compound 19 (1 eq.) and 1-chloro-3-ethynylbenzene (1eq.) 

were dissolved in a mixture of water and isopropyl alcohol (1:1) and placed in a 5ml 

microwave vial. Copper(I)-iodide (0.1 eq) was added and the mixture was heated in a 

microwave oven (Biotage Initiator, 100W, 125°C, 20min, absorption level: high). The 

mixture was extracted three times with dichloromethane and 2N NaOH. After removal of the 

solvent, the remaining oil was purified by flash column chromatography (Biotage Isolera 

One) to yield a light brown oil. MS (ESI+): m/z = 335.82 [M + H]+. 1H NMR (DMSO-d6, 

400.13 MHz): δ 2.25 (t, 4H, J = 3.9 Hz), 2.39 (t, 2H, J = 5.7 Hz), 2.60 (t, 4H, J = 5 Hz), 3.52 
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(t, 2H, J = 5.7 Hz), 3.84 (t, 2H, J = 5.2 Hz), 4.57 (t, 2H, J = 5.2 Hz), 7.40 (ddd, 1H, J1 = 1.1 

Hz, J2 =2.2 Hz, J3 = 8.0 Hz), 7.49 (t, 1H, J = 7.9 Hz), 7.83 (dt, 1H, J1= 1.3 Hz, J2 = 7.9 Hz), 

7.9 (t, 1H, J = 1.8 Hz), 8.65 (s, 1H). 13C NMR (DMSO-d6, 400.13 MHz): δ 48.22 (2C), 49.46 

(2C), 54.74 (1C), 64.42 (1C), 68.57 (2C), 122.72 (1C), 123.69 (1C), 124.67 (1C), 127.58 

(1C), 130.86 (1C), 132.87 (1C), 133.68 (1C), 144.93 (1C). HRMS (ESI+): m/z [M + H]+ 

calculated for C16H23ClN5O: 336.1586; found: 336.1586. HPLC-MS (MeOH/H2O): purity 

99.68%. 

 

Binding affinity of compound 15 was determined in a competitive binding assay by 

measuring displacement of radioactive labeled [3H]histamine bound to H4R.169 Membrane 

preparations of insect Sf9 cells expressing hH4R together with G-protein subunits Gαi2 and 

Gβ1γ2 were performed to yield the protein. A similar assay was used to measure the activity 

on hH3R (reference ligand: [3H]Nα -methylhistamine). 

 

Compound 15 exhibits only weak affinity to hH4R. From three measurements, a mean Ki of 

436 µM (STD: ±137 µM) was determined. Comparable results were found for the activity of 

15 on the H3 receptor (Ki = 466 µM (±209 µM), averaged over four distinct tests). 

Although the flexible alignment of compound 15 and the reference ligand does not directly 

align the central hydrogen bond acceptors, they might still be able to undergo an interaction 

with the same hydrogen bond donor of the receptor binding site according to the alignment 

(Figure 23).  

 

 
Figure 23. Flexible alignment of compound 15 (gold) and the reference JNJ 
7777120 (light blue) computed by a component of the software suite MOE. 
Low activity of compound 15 may be caused by a missing hydrogen bond 
donor in the central part, which is present in the reference ligand (arrow). 
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The alignment also suggests a possible reason for the weak activity of compound 15: JNJ 

7777120 exhibits a hydrogen bond donor (nitrogen of the indole scaffold) in the center of the 

molecule. Compound 15 does not feature an equivalent atom capable to act as a hydrogen 

bond donor. It has been suggested that this pharmacophoric feature might be important for 

high affinities to hH4R.167 Introduction of a hydrogen bond donor in the central part of 15 can 

therefore be a possible strategy for structural optimization. Another possibility to improve the 

potency of 15 by a comparably small structural modification could be to replace the 

piperazine moiety of 15 with N-methylpiperazine found in many H4 reference compounds. It 

is known that even small changes of the N-methylpiperazine group can lead to a considerable 

decrease of affinity of H4 receptor ligands.166 
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4 Conclusions and Outlook 
 

This work presents a new method for automated de novo design of ligand candidates. The 

program DOGS was evaluated in both theoretical and practical case studies. 

The main advantage of DOGS over most of the other existing software tools for de novo 

design is its ability to suggest not only new compounds but also reasonable pathways for their 

synthesis. The set of reactions as well as the library of synthesis building blocks can be 

modified by the user to provide flexibility with respect to preferred chemistry and available 

educts.  

Synthesizability of proposed compounds is pivotal for the practical evaluation of de novo 

design tools. It can be argued that lacking ease of synthesis of designed molecules is one of 

the reasons why only around a dozen of all published algorithms for molecular de novo design 

have been subjected to practical evaluation. The aim of this study was to show that an 

enhanced build-up strategy employing known chemical reactions can facilitate 

synthesizability of designed molecules, and hence practical evaluation of de novo design 

software. DOGS was evaluated practically in two realistic case studies on the design of 

potential ligands for human γ-secretase and human histamine H4 receptor. In both cases, 

compounds selected for testing were readily synthesizable. In addition, synthesis routes could 

be followed up at the bench exactly as suggested by the software. It is clear that this is to 

some extent a consequence of the selection process by human experts. One criterion for 

compound selection was a synthesis route deemed simple and pursuable. It cannot be 

expected that all synthesis pathways suggested by DOGS will directly work when pursued in 

the lab. Nevertheless, a large part of designed compounds received high synthesizability 

scores calculated by the software MOE, which likely is a consequence of the reaction-driven 

compound construction concept of DOGS. 

Synthesized candidate ligands for γ-secretase exhibit biological activity. Although target 

modulation points in the opposite direction as intended, these molecules show affinity to the 

target and provide a valuable basis for further investigation. The molecule selected and 

synthesized as a potential ligand for the H4 receptor only exhibits weak activity, probably due 

to a missing pharmacophoric feature in the center of the molecule. 

Besides these practical evaluations, theoretical investigation of DOGS results was performed 

and revealed that the software is capable of capturing a calculated biophysical property 

(logP(o/w)) of reference compounds and reflecting it in the constructed molecules. Notably, 
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this property is not explicitly accounted for in similarity assessment by the scoring function. 

A large fraction of molecules designed by DOGS are evaluated to be druglike and mostly 

violate less than two of Lipinski’s ‘rule of five’. Again, designed compounds generally reflect 

the reference compounds in these properties. Features of proposed candidate structures 

depend on characteristics provided by the references. This behavior is intended for de novo 

design, since property profiles of molecules are thought to be linked to their biological 

activities and pharmacokinetic characteristic.84 DOGS designs originating from druglike 

reference compounds have an enhanced chance to be druglike themselves. 

DOGS introduces graph kernel methods for scoring to the field of de novo design. The 

employed ISOAK method has proven to be well-suited for the DOGS approach. The reason is 

likely to be found in the concept of ISOAK to compare molecules: it assigns each atom of the 

smaller molecules to one atom of the larger compound. This renders it possible to compare 

molecules significantly differing in size, which is a requirement for the stepwise build-up 

process of the algorithm. Potentially small intermediate products are also scored against the 

complete reference ligand. In addition, the kernel is not restricted to molecular graphs. This 

allowed for the implementation of a reduced graph representation for molecules, which 

extends the pool of meaningful results produced by DOGS. As a consequence of the ligand-

based scoring approach, the software can be run with a minimum of available knowledge 

about the target molecule. A single reference compound known to be active on the target is 

sufficient to let the software create ideas for new ligands. This feature is of special merit for 

drug development campaigns for structurally unexplored targets.  

 

For future work, a reduction of the number of duplicate molecules in output lists presents a 

way to speed-up calculations and save computational power. Duplicates with nearly exact 

synthesis pathways represent redundant information and could be avoided without loss of 

important information. A possible remedy to this problem would be to store a list of all 

dummy products already selected to be pursuit in the subsequent reaction step in former 

synthesis pathways. Whenever the current virtual synthesis chooses a dummy product that has 

already been selected before, the construction process could be stopped. Because of the 

deterministic characteristic of the algorithm all subsequent steps would exactly be the same as 

already calculated. One could either delete the current synthesis and proceed with the next 

construction pathway or complement it with the remaining part of the pathway already 

calculated before and store it. The comparison of dummy fragments could be efficiently 

implemented to work on a prefix tree of canonical SMILES170 representations. 
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In order to broaden the scope of DOGS and increase flexibility with respect to implementable 

reactions, the algorithm could be extended to process reactions with more than two educts. 

However, one has to keep in mind that this will likely result in increased run times because of 

the higher number of possible educt combinations. 

Detection of isofunctional reactive groups in educts in order to avoid unwanted side reactions 

would be of great potential for improvements of the method. For example, the presence of an 

additional secondary amine in one of the reaction partners of a reductive amination between a 

carbonyl group and a primary amine is prone to lead to unwanted byproducts. Recognition of 

competing reactive substructures could be used to either flag the corresponding intermediate 

product with a warning mark and suggest protection groups or to prohibit the reaction. This 

approach depends on a careful definition of competing reactive substructures for every 

reaction. Although this step only has to be performed once per reaction during its 

implementation, it represents a significant effort and is prone to over-regimentation. A more 

elaborate way to deal with competing reactions would be to computationally estimate 

substructure reactivity. It is far too demanding to calculate reactions ab initio by quantum 

mechanical methods. However, quantum mechanical calculations could be used to prioritize 

multiple occurrences of the same reactive group with respect to their reactivity. In fact, this 

has already been introduced to de novo design in the software tool SYNOPSIS57 for a special 

type of reaction. Notably, the authors concluded that the additional computational costs are 

not justified by the improvements by this approach and excluded it from the final version of 

the software. However, it could be shown that this method works in principle. It will probably 

become of higher practical relevance with increasing computational power in the future. 

Besides the potential advantages of ligand-based de novo design it must be stated that 

available structural information about the target binding site can be of merit and should be 

incorporated in the design of potential ligands. For this reason, an extension of the DOGS 

approach towards receptor-based scoring is expected to be beneficial for targets where 

structural data exist. The success of this effort depends on finding a receptor-based scoring 

function capable of preferring small but promising intermediate products over larger ones 

having less potential to be extended to favorable final solutions. Scoring functions of docking 

tools have the tendency to favor larger ligands exhibiting more atoms to interact with the 

receptor binding site.171 Normalization of docking scores by the number of heavy atoms could 

offer a simple and self-evident solution. Another critical point of 3D scoring functions is their 

higher computational demand compared to 2D techniques. During a DOGS run a (potentially) 
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large number of scores needs to be calculated due to the enumeration of complete subspaces 

in each reaction step. A less demanding scoring function could be employed as a filter to 

narrow down the number of molecules subsequently scored by the more expensive 3D scoring 

function to those deemed favorable. 

 

Generating innovative and patentable molecules with biological activity form scratch is an 

appealing, yet demanding goal. Current software solutions to this problem are far away from 

being ‘click-and-harvest’ applications that can guarantee to produce readily exploitable 

results. De novo design is still dependent on intervention and support of human expertise. 

Nevertheless, it can be a valuable source of inspiration and new ideas for drug development 

projects. In fact, reports about successful application of respective software tools make it safe 

to say that computational de novo design works.81,104,114 Incorporating synthesis pathways – as 

presented in this work – can focus de novo design on a more practical standard and adds an 

important level of information to the output. 

The main reason why de novo design has not yet grown out of its role as a pure idea generator 

is our lack of a deeper understanding about interactions taking place between receptors and 

their ligands upon binding, which is expressed in insufficient scoring functions for molecular 

docking. Especially entropic contributions to binding energies and solvent effects are still 

widely ignored. The same holds true for our understanding about chemical similarity between 

small organic molecules. The special problem of the similarity concept in molecular design is 

that in reality similarity is ‘measured’ by a binding cavity, which is different for every target. 

Presence or absence of a structural feature in a ligand might be tolerated by one binding site, 

but leads to significant changes of binding affinity in the next case. A molecular feature that is 

important for one target may be less critical in the context of another one. Target dependency 

of the similarity concept makes it difficult to extract general rules applicable over a wide 

range of different target molecules. 

Broader application of de novo design methods has also been hampered for a long time by a 

lack of accessible and user-friendly software implementations. In most cases, published 

approaches remain in-house solutions or even never leave proof-of-concept status. The 

situation has started to change only recently, as today almost every large software suite for 

molecular modeling offers a de novo design module. This can be interpreted as a consequence 

of a growing interest in this approach. 

Regardless of these shortcomings, computer-assisted de novo drug design has become an 

established instrument in the pharmaceutical industry as well as in academia, and will 
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continue to give valuable impulses to drug design as a complementary tool to other 

computational approaches. 
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Summary 
 

A new method for computer-based de novo design of drug candidate structures is proposed. 

DOGS (Design of Genuine Structures) features a ligand-based strategy to suggest new 

molecular structures. The quality of designed compounds is assessed by a graph kernel 

method measuring the distance of designed molecules to a known reference ligand. Two 

graph representations of molecules (molecular graph and reduced graph) are implemented to 

feature different levels of abstraction from the molecular structure. A fully deterministic 

construction procedure explicitly designed to facilitate synthesizability of proposed structures 

is realized: DOGS uses readily available synthesis building blocks and established reaction 

schemes to assemble new molecules. This approach enables the software to propose not only 

the final compounds but also to give suggestions for synthesis routes to generate them at the 

bench. The set of synthesis schemes comprises about 83 chemical reactions. Special focus 

was put on ring closure reactions forming drug-like substructures. The library of building 

blocks consists of ~25,000 molecules readily available from a commercial vendor with a 

molecular mass between 30 and 300 Da. 

DOGS builds up new structures in a stepwise process. Each virtual synthesis step adds a 

fragment to the growing molecule until a stop criterion (molecular mass or number of 

synthesis steps) is fulfilled. 

 

In a theoretical evaluation, a set of ~1,800 molecules proposed by DOGS is analyzed for 

critical properties of de novo designed compounds. The software is able to suggest drug-like 

molecules (79% violate less than two of Lipinski’s ‘rule of five’). In addition, a trained 

classifier for drug-likeness assigns a score >0.8 to 51% of the designed molecules (with 1.0 

being the top score). In addition, most of the DOGS molecules are deemed to be highly 

synthesizable by a retrosynthesis descriptor (77% of molecules score in the top 10% of the 

decriptor’s value range). Calculated logP(o/w) values of constructed molecules resemble a 

unimodal distribution centered close to the mean of logP(o/w) values calculated for the 

reference compounds. 

A structural analysis of selected designs reveals that DOGS is capable of constructing 

molecules reflecting the overall topological arrangement of pharmacophoric features found in 

the reference ligands. At the same time, the DOGS designs represent innovative compounds 

being structurally distinct from the references. Synthesis routes for these examples are short 
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and seem feasible in most cases. Some reaction steps might need modification by using 

protecting groups to avoid unwanted side reactions. 

Plausible bioisosters for known privileged fragments addressing the S1 pocket of trypsin were 

proposed by DOGS in a case study. Some of them can be found in known trypsin inhibitors as 

S1-adressing side chains. 

 

The software was also tested practically in two realistic drug design scenarios. DOGS was 

applied to design ligands for human γ-secretase and human histamine receptor subtype 4 

(hH4R). Two selected designs for γ-secretase were readily synthesizable as suggested by the 

software in one-step reactions. Both compounds modulate the activity of the target molecule, 

although the effect differs from the one suggested as a potential treatment Alzheimer patients. 

These structures can serve as starting points for structural optimization. In a second case 

study, a ligand candidate selected for hH4R could again be synthesized exactly following the 

three-step synthesis plan suggested by DOGS. This compound showed only low activity on 

the target structure. Nevertheless, these examples represent promising initial results. The 

concept of DOGS could proof to deliver not only synthesizable compounds but also pursuable 

synthesis plans. Future practical applications of the software will help to gain a more 

comprehensive impression of the method´s power to contribute to the development of 

bioactive compounds. 
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Zusammenfassung 
 

Das Ziel des computergestützten de novo Designs ist der Neuentwurf biologisch aktiver 

Verbindungen, welche als Vorläufer für mögliche Wirkstoffe dienen können. Die zentrale 

Idee ist es, molekulare Fragmente neu zusammen zu setzen, um maßgeschneiderte 

Modulatoren für ein gegebenes Zielmolekül (zumeist ein Protein) zu erhalten. Der Fokus von 

de novo Design liegt dabei auf der Innovation und Neuartigkeit der entworfenen Substanzen. 

Dies unterscheidet die Methode grundsätzlich vom virtuellen Screening (VS), bei dem 

Sammlungen bereits existierender und beziehbarer Moleküle nach potentiellen 

Wirkstoffkandidaten durchsucht werden. 

Die ersten veröffentlichten de novo Design Ansätze konzentrierten sich darauf, neue 

potentielle Liganden direkt in der Bindetasche zu konstruieren. Dies geschieht unter der 

Maximierung von sterischer Paßform und unter Berücksichtigung von polaren und 

elektrostatischen Interaktionsmöglichkeiten mit der Rezeptortasche. Dieser rezeptorbasierte 

Ansatz wurden bald durch ligandenbasierte Methoden ergänzt. Hierbei zielt der Entwurf 

neuer Moleküle auf möglichst hohe Ähnlichkeit zu bereits bekannten Liganden des 

Zielmoleküls ab. Nach dem zentralen „Ähnlichkeitsprinzip“ sollen ähnliche Moleküle 

vergleichbare Eigenschaften aufweisen. Der Vorteil von ligandenbasierten Methoden im 

Vergleich zu rezeptorbasierten Ansätzen liegt darin, dass sie keine Kenntnis über die 

räumliche Struktur der Bindetasche voraussetzen, welche für eine Vielzahl pharmazeutisch 

relevanter Zielmoleküle tatsächlich nicht bekannt ist. 

Seit den Anfängen des computergestützten de novo Design kranken die Methoden daran, dass 

entworfene Moleküle zwar als potentiell interessant eingestuft werden, aber oft nur schlecht 

synthetisch zugänglich oder sogar chemisch instabil sind. Neusynthesen sind im Allgemeinen 

deutlich teuerer und aufwendiger als der Bezug fertiger Substanzen von kommerziellen 

Anbietern oder aus dem eigenen Bestand. Aus diesem Grund sind bisher nur vergleichsweise 

wenige der beschriebenen Algorithmen zum de novo Design überhaupt einer praktischen 

Evaluation unterzogen worden, in der vorgeschlagene Moleküle synthetisiert und getestet 

wurden. Trotzdem ist eine Reihe erfolgreicher Anwendungen von entsprechenden 

Programmen publiziert, und de novo Design kann als etablierte Methode angesehen werden. 

 

Ziel dieser Arbeit ist die Entwicklung einer Methode zum computergestützten de novo Design 

(DOGS, Design Of Genuine Structures). Der Fokus von DOGS liegt darauf, Moleküle zu 
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entwerfen, die eine gute Zugänglichkeit durch chemische Synthese aufweisen. Um dies zu 

erreichen, greift die Software auf kommerziell verfügbare Synthesenbausteine und etablierte 

chemische Reaktionen zum Aufbau neuer Moleküle zurück. Dies soll zum einen die 

Wahrscheinlichkeit der guten Synthetisierbarkeit der aufgebauten Moleküle erhöhen, zum 

anderen aber den Computer in die Lage versetzen, unmittelbar Vorschläge für eine 

Synthesestrategie zu generieren. Ziel ist die Erhöhnung der Akzeptanz der Ergebnisse und die 

Erleichterung der praktischen Umsetzung. 

 

Die Bibliothek der Synthesebausteine besteht aus etwa 25.000 physikalisch verfügbaren 

Moleküle mit einer molekularen Masse zwischen 30 und 300 Da. Eine Reihe von 

Filterkriterien wurde verwendet, um unerwünschter Verbindungen zu entfernen sowie 

Ladungs- und Protonierungszustände zu standardisieren. Zusätzlich wurde eine Sammlung 

von Präparations-Reaktionen angewendet, um weitere funktionelle Gruppen in die virtuellen 

Synthesebausteine einzuführen. Dies dient der Aktivierung von reaktiven Gruppen und damit 

ihrer späteren Umsetzung durch die Reaktionen zur Kopplung der Bausteine. Abschließend 

wurde jeder Baustein auf das Vorhandensein aller durch die Reaktionen festgelegten 

reaktiven Gruppen überprüft und die entsprechende Information zusammen mit dem Baustein 

in einer MySQL Datenbank gespeichert. 

Die Reaktionssammlung umfaßt 83 Reaktionen und wurde durch eine Literaturrecherche 

zusammengestellt. Insbesondere wurden solche Reaktionen gewählt, die Substrukturen 

erzeugen, welche häufig in biologisch aktiven und wirkstoffartigen Molekülen vorkommen. 

Aus diesem Grund befindet sich ein großer Anteil Ringschlußreaktionen in der 

Reaktionsbibliothek. Weitere Kriterien zur Auswahl der Reaktionen umfaßten hohe 

beschriebene Ausbeuten, Vermeidung toxischer Reagenzien und Katalysatoren sowie 

einfache praktische Durchführbarkeit. 

DOGS verwendet eine ligandenbasierte Strategie zur Bewertung der entworfenen Moleküle. 

Eine Kernfunktion vergleicht die erzeugten Moleküle mit einem Referenzliganden anhand 

ihrer Graphenrepräsentationen. Die berechnete Distanz zum Referenzliganden wird als 

Gütemaß verwendet. Im Rahmen der Arbeit kommen zwei verschiedene 

Graphenrepräsentationen zum Einsatz. Der molekulare Graph entspricht der topologischen 

Struktur einer zweidimensionalen Moleküldarstellung. Jedes Atom wird in einen Knoten und 

jede Bindung in eine Kante des Graphen übersetzt. Im Gegensatz dazu stellt der reduzierte 

Graph eine stärkere Abstraktion von der Molekülstruktur dar. Bestimmte Substrukturen 

bestehend aus mehreren Atomen (vor allem Ringsysteme, lipophile Bereiche) werden zu 
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einem einzelnen Koten zusammengefaßt. Der reduzierte Graph stellt damit nur noch die 

topologische Anordnung bestimmter Substrukturen des Moleküls dar. Der Anwender legt 

fest, welche der beiden Moleküldarstellung in einem Konstruktionslauf Verwendung findet. 

Neue Moleküle werden von DOGS schrittweise aufgebaut, wobei pro Erweiterungsschritt je 

ein weiterer Baustein an das wachsende Molekül angefügt wird. Das Startfragment einer 

virtuellen Synthese wird aus allen Fragmenten gemäß seiner Güte ausgewählt. Dazu wird die 

gesamte Fragmentbibliothek zunächst wie beschrieben mit dem Referenzliganden verglichen. 

Die Synthesebausteine mit der höchsten Güte werden als Startfragmente verwendet. Ein 

Erweiterungsschritt besteht aus zwei Unterschritten. Zunächst wird bestimmt, welche der 

anwendbaren Reaktionen das größte Potential bietet. Dazu werden alle reaktiven Gruppen des 

zu erweiternden Zwischenprodukts mit passenden Reaktionen und minimalen Dummy-

Fragmenten als Edukte abreagiert. Das Konzept der minimalen Dummy-Fragmente wird in 

DOGS eingeführt, um die mindestens zu erwartende strukturelle Veränderung abzuschätzen, 

die eine Reaktion verursacht. Die Dummy-Fragmente werden durch die Definition der 

Reaktion festgelegt und weisen ausschließlich jene strukturellen Elemente auf, die für die 

Durchführung der Reaktion unbedingt notwendig sind. Alle Dummy-Produkte, die aus diesen 

Pseudoreaktionsschritten hervorgehen, werden mittels der Gütefunktion bewertet. Die 

Reaktion, welche das beste Dummy-Produkt liefert, wird im zweiten Unterschritt verwendet. 

In diesem zweiten Schritt wird die Reaktion mit dem zu erweiternden Zwischenprodukt und 

allen Synthesefragmenten aus der Bibliothek, welche die komplementäre reaktive Substruktur 

aufweisen, durchgeführt. Aus allen entstehenden Produkten wird abschließend jenes mit der 

höchsten Güte als neues Zwischenprodukt gewählt, welches im nächsten Erweiterungsschritt 

bearbeitet wird. Dies wiederholt sich, bis das Molekül entweder eine Mindestmasse 

überschritten und ein Erweiterungsschritt mit verschlechternder Güte durchgeführt wurde 

oder das wachsende Molekül eine maximale molekulare Masse überschreitet. Anschließend 

wird ein neues Startfragment gewählt und die nächste virtuelle Synthese beginnt. Eine vom 

Benutzer bestimmbare Anzahl von Startfragmenten wird so abgearbeitet. Alle Schritte des 

Aufbauprozesses sind deterministisch. 

 

DOGS wurde zunächst in einer Reihe von theoretischen Untersuchungen evaluiert. Neben den 

Faktoren, welche zwangsläufig Einfluß auf die Laufzeit haben (Anzahl Fragmente und 

Reaktionen, gewählte Anzahl zu bearbeitender Startfragmente, Größe des Referenzmoleküls), 

ist vor allem die Parametrisierung der Gütefunktion für die Dauer eines DOGS-Laufes 

verantwortlich. In einem Testszenario erzeugte ein durchschnittlicher DOGS-Lauf mit 200 
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Startfragmenten und der Standardparametrisierung des molekularen (reduzierten) 

Molekülgraphen etwa 180 (240) unterschiedliche Molekülstrukturen in 11 (10) Stunden. 

Diese basieren in beiden Fällen auf ca. 70 unterschiedlichen molekularen Grundgerüsten 

(Scaffolds). Eine nähere Untersuchung der Ähnlichkeiten zwischen Referenz-Scaffold und 

von DOGS erzeugten Scaffolds zeigte, dass sich die beiden Graphenrepräsentationen in 

diesem Punkt für das gewählte Ähnlichkeitsmaß nur unwesentlich differieren. Die 

durchschnittliche Distanz der erzeugten Scaffolds zur Referenz im gewählten Deskriptorraum 

unterscheidet sich für beide Moleküldarstellungen kaum. Ein Vergleich auf struktureller 

Ebene zeigte jedoch, dass sich zwischen den Graphenrepräsentationen nur geringe bis mäßige 

Überschneidungen in den erzeugten Scaffolds ergeben. Die beiden Graphenrepräsentationen 

sind somit komplementär und ergeben zusammen eine reichhaltigere Sammlung an 

entworfenen Scaffolds als jede für sich. 

DOGS sollte in der Lage sein, wirkstoffartige Moleküle zu generieren, sofern das 

Referenzmolekül ebenfalls wirkstoffartig ist. Um dies zu überprüfen, wurden die erzeugten 

Moleküle aus insgesamt zehn DOGS-Läufen basierend auf fünf verschiedenen Trypsin-

Inhibitoren hinsichtlich dieser Eigenschaft untersucht. Ein Großteil (79%) der entworfenen 

Moleküle verletzt weniger als zwei von Lipinkis „Rule of 5“ Kriterien für bioverfügbare 

Moleküle. Weiterhin beurteilt ein Klassifizierer für Wirkstoffartigkeit 51% der Moleküle mit 

einem Wert >0,8, wobei 1,0 dem Höchstwert entspricht. Die übrigen 49% der Werte verteilen 

sich relativ homogen über die Bandbreite möglicher Einschätzungen, mit der Ausnahme, dass 

auch ein deutlicher Anteil als nicht wirkstoffartig eingestuft wird. Dabei ist zu 

berücksichtigen, dass auch zwei der Referenzliganden als wirkstoff-untypisch bewertet 

werden. Die entworfenen Moleküle folgen weiterhin in der Verteilung ihrer berechneten 

logP(o/w) Werte der Verteilung dieser Eigenschaft in den Referenzmolekülen. Generell zeigt 

diese Analyse, dass DOGS in der Lage ist Eigenschaften der Referenzen in die entworfenen 

Moleküle zu übertragen, die nicht explizit in die Ähnlichkeitsbewertung während der 

Konstruktion eingehen. 

Die Synthetisierbarkeit der von DOGS vorgeschlagenen Moleküle wird für einen Großteil als 

sehr gut bewertet (77% aller Moleküle liegen in den oberen 10% der Werteskala). Zur 

Bewertung dieser Eigenschaft wurde ein deskriptorbasiertes Verfahren zur retrosynthetischen 

Zerlegbarkeit von Molekülen herangezogen. Der verbleibende Anteil verteilt sich auf das 

obere Mittelfeld des möglichen Wertebereiches. Insgesamt folgt auch hier die Verteilung der 

DOGS-Moleküle der Werteverteilung der Referenzen. Die reaktionsgetriebene Verknüpfung 
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von verfügbaren Ausgangsmaterialien resultiert in einer ausgesprochen positiven Bewertung 

der Synthetisierbarkeit der so konstruierten Moleküle. 

Die visuelle Bewertung von ausgewählten DOGS Entwürfe für drei unterschiedliche 

Zielmoleküle (Trypsin, Östrogen Rezeptor, TGF-β1 Rezeptor) zeigte, dass das Programm in 

der Lage ist, die räumliche Anordnung von potentiellen Interaktionszentren der Referenzen in 

die konstruierten Moleküle zu übertragen. Dabei unterscheiden sich die vorgeschlagenen 

Moleküle in unterschiedlichem Maße strukturell von der jeweiligen Referenz. Die 

zugehörigen Reaktionswege sind kurz (ein bis zwei Syntheseschritte) und erscheinen 

plausibel. Bei einigen Schritten kann der Einsatz von Schutzgruppen zur Vermeidung 

konkurrierender Nebenreaktionen notwendig sein. Weiterhin wurden die besten 200 für 

Trypsin entworfenen DOGS-Moleküle auf vorgeschlagene Bioisostere für die S1-Tasche-

adressierenden Seitenketten der Referenzen untersucht. Unter den 11 vorgeschlagenen 

Seitenketten befindet sich unter anderem auch die Seitenkette von Lysin, welche ein 

natürlicher Ligand der S1-Tasche ist und sich von den Referenzmotiven abhebt. Zwei weitere 

vorgeschlagene Bioisostere sind in bekannten Trypsin-Inhibitoren als S1-adressierende 

Seitenkette zu finden. Die meisten der vorgeschlagenen Seitenketten sind positiv ionisierbar 

und damit in der Lage, eine für die Bindung entscheidende ionische Wechselwirkung mit dem 

Rezeptor in der S1-Tasche einzugehen. 

Schließlich wurde DOGS in zwei realistischen Szenarien zur Identifizierung neuartiger 

bioaktiver Moleküle eingesetzt und praktisch evaluiert. Für die humane γ-Sekretase wurden 

aus acht Läufen für vier verschiedene Referenz-Moleküle zwei potentielle Liganden zur 

Synthese ausgewählt. Beide Verbindungen ließen sich nach dem vom Programm 

vorgeschlagenen Syntheseweg herstellen. Weiterhin zeigen beide Liganden einen 

biologischen Effekt am Zielmolekül und modulieren die Aktivität der γ-Sekretase. Die 

Modulation entspricht dabei allerdings nicht der ursprünglich für therapeutische Zwecke 

vorgeschlagenen Art und Weise. Die Verbindungen können als Startpunkt weiterer 

struktureller Optimierungen dienen.  

In einer zweiten praktischen Studie mit dem Ziel des Ligandenentwurfs für den humanen 

Histaminrezeptor Typ 4 wurde aus der Menge der computergenerierten Vorschläge eine 

Verbindung zur Synthese und Testung ausgewählt. Die dreistufige Synthese konnte wie 

vorgeschlagen nachvollzogen werden. Der Ligand zeigt mit einem Ki von 436 µM jedoch nur 

sehr schwache Aktivität. Grund dafür könnte ein fehlender Wasserstoffbrückendonor im 

zentralen Teil des Liganden sein, der in anderen Studien als Teil des Pharmakophors 

angenommen wurde. 
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Mit DOGS wurde ein neues Werkzeug zum de novo Design wirkstoffartiger Moleküle 

vorgeschlagen. DOGS gehört zu den wenigen Programmen dieser Art, welche einer 

praktischen Evaluierung unterzogen wurden. Die Ergebnisse der retrospektiven und 

prospektiven Auswertung zeigen das Potential des Ansatzes auf, Vorschläge von praktischer 

Relevanz zu generieren. Das Konzept zum Molekülaufbau von DOGS hat gezeigt, dass es 

nicht nur synthetisierbare Strukturen hervorbringt, sondern zusätzlich auch nachvollziehbare 

praktikable Vorschläge für deren Synthese liefern kann. Dies ist ein essentieller Vorteil im 

praktischen Einsatz gegenüber vielen bisher beschriebenen Ansätzen zum de novo Design. 

Zukünftige Verbesserungen in unserem Verständnis von molekularer Ähnlichkeit und 

Liganden-Rezeptor-Wechselwirkungen können problemlos in Form neuer Gütefunktionen in 

das Konzept von DOGS eingebunden werden. 
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Supplement 
 

Each coupling and preprocessing reaction is given by the following specifications: 

• Reaction-MQL expression, 

• Schematic structural representation,  

• Minimal structure of educt(s) encoded as SMILES, also representing the dummy 

fragment used during construction.  

Please note that the schematic structural representation not necessarily corresponds 

completely to the minimal dummy structure given. Schematic representations serve for 

visualization only. 

 

Coupling Reactions 

 
1. c$1:c4[allHydrogens=1]:c(-C6[allHydrogens=2]-C7[allHydrogens=2]-N2-C3(=O5)-C):c:c:c$:1 >> 

Bischler-Napieralski >> C6-C7-N2=C3-c4  
 

 
 
c1cc(CCNC(=O)C)ccc1 
 

2. c$1:c4[allHydrogens=1]:c(-C6(-O8[allHydrogens=1])-C7[allHydrogens=2]-N2-C3(=O5)-C):c:c:c$:1 >> 
Pictet-Gams >> C6=C7-N2=C3-c4  

 

 
 

c1cc(C(O)CNC(=O)C)ccc1 
 

3. c2[allHydrogens=1]:c(-C5[sp3 & !ring]-C6[sp3 & !ring]-N7[allHydrogens=2 & charge=0]):c[!bound(-H)] 
++ C3[allHydrogens=1](=O4)-C >> Pictet-Spengler (charge 1)  >> C5-C6-N7-C3-c2  

 

 
 

c1cc(CCN)c(C)cc1    +    CC(=O) 
  

HN

R

O N

R

HN

R
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OH
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c2[allHydrogens=1]:c(-C5[sp3 & !ring]-C6[sp3 & !ring]-N7[allHydrogens=3 & charge=1]):c[!bound(-H)] 
++ C3[allHydrogens=1](=O4)-C >> Pictet-Spengler (charge 2)  >> C5-C6-N7-C3-c2 

 

 
 

c1cc(CC[NH3+])c(C)cc1    +     CC(=O) 
 
4. c$1:c:c:c(-N3[allHydrogens=2]):c2[allHydrogens=1]:c$:1 ++ c-C4(=O5)-C6-*7[Cl|Br] >> Bischler Indole 

>> N3-C4=C6-C2 
 

 
 

c1c(N)cccc1     +    c1c(C(=O)CBr)cccc1 
 
5. c$1:c[allHydrogens=1]:c(-N7[allHydrogens=2]):c(-N8[bound(-H)]):c[allHydrogens=1]:c$:1 ++ C3(=O4)(-

O5[allHydrogens=1])-C >> Benzimidazol (charge 1)  >> N7=C3-N8 

 
 

c1cccc(N)c1NC    +    CC(=O)O 
 
c$1:c[allHydrogens=1]:c(-N7[allHydrogens=2]):c(-N8[bound(-H)]):c[allHydrogens=1]:c$:1 ++ C3(=O4)(-
O5[charge=-1])-C >> Benzimidazol (charge 2)  >> N7=C3-N8 

 

 
 

c1cccc(N)c1NC    +    CC(=O)[O-] 
 

6. C-C4(-*5[Cl|Br])-C6(=O7)-C >> Aminothiazol  >> C4$8-S-C(-N)=N-C6$=8  
 

 
 

CC(=O)C(Br)C 
 
7. c$1:c[allHydrogens=1]:c(-O7[allHydrogens=1]):c(-N8[allHydrogens=2]):c[allHydrogens=1]:c$:1 ++ 

C3(=O4)(-O5[allHydrogens=1])-C >> Benzoxazol  (charge 1)   >> O7-C3=N8 
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+
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c1ccc(N)c(O)c1    +    CC(=O)O 
 
c$1:c[allHydrogens=1]:c(-O7[allHydrogens=1]):c(-N8[allHydrogens=2]):c[allHydrogens=1]:c$:1 ++ 
C3(=O4)(-O5[charge=-1])-C >> Benzoxazol (charge 2)   >> O7-C3=N8 

 

 
 

c1ccc(N)c(O)c1    +    CC(=O)[O-] 
 
8. c$1:c:c(-S7[allHydrogens=1]):c(-N8[allHydrogens=2]):c:c$:1 ++ C3[allHydrogens=1](=O4)-c >> 

Benzothiazol  >> S7-C3=N8 
 
 

 
 
c1ccc(N)c(S)c1    +    c1cc(C(=O))ccc1 

 
9. c$1:c:c(-O7[allHydrogens=1]):c(-C8[allHydrogens=1]=O9):c:c$:1 ++ *5[Cl|Br]-C3[allHydrogens=2]-

C(=O)-C >> Rap-Stoermer >> O7-C3=C8  
 

 
 

c1ccc(O)c(C(=O))c1    +    CC(=O)CCl 
 
 
10. c$1:c:c(-N1[allHydrogens=2]):c(-C2(=O)-O4[allHydrogens=1]):c:c$:1 >> Niementowski (charge 1) >> C2-

N-C=N1   
 

 
 

c1ccc(N)c(C(=O)O)c1 
 

c$1:c:c(-N1[allHydrogens=2]):c(-C2(=O)-O4[charge=-1]):c:c$:1 >> classical Niementowski (charge 2) >> 
C2-N-C=N1 

 

 
 

c1ccc(N)c(C(=O)[O-])c1 
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11. c[allHydrogens=1]$1:c[allHydrogens=1]:c(-N2[allHydrogens=2]):c(-C5(=O)-
O4[allHydrogens=1]):c[allHydrogens=1]:c[allHydrogens=1]$:1 ++ C-N3[allHydrogens=2 & charge=0] >> 
Quinazolinone (Ladung 1)  >> N2=C-N3-C5  

 

 
 

c1ccc(N)c(C(=O)O)c1    +    CN 
 

c[allHydrogens=1]$1:c[allHydrogens=1]:c(-N2[allHydrogens=2]):c(-C5(=O)-O4[charge=-
1]):c[allHydrogens=1]:c[allHydrogens=1]$:1 ++ C-N3[allHydrogens=2 & charge=0] >> Quinazolinone 
(Ladung 2)  >> N2=C-N3-C5  

 

 
 

c1ccc(N)c(C(=O)[O-])c1    +    CN 
 

c[allHydrogens=1]$1:c[allHydrogens=1]:c(-N2[allHydrogens=2]):c(-C5(=O)-
O4[allHydrogens=1]):c[allHydrogens=1]:c[allHydrogens=1]$:1 ++ C-N3[allHydrogens=3 & charge=1] >> 
Quinazolinone (Ladung 3)  >> N2=C-N3-C5 

 

 
 

c1ccc(N)c(C(=O)O)c1    +    C[NH3+] 
 

c[allHydrogens=1]$1:c[allHydrogens=1]:c(-N2[allHydrogens=2]):c(-C5(=O)-O4[charge=-
1]):c[allHydrogens=1]:c[allHydrogens=1]$:1 ++ C-N3[allHydrogens=3 & charge=1] >> Quinazolinone 
(Ladung 4)  >> N2=C-N3-C5  

 

 
 

c1ccc(N)c(C(=O)[O-])c1    +    C[NH3+] 
 
12. c$1:c:c(-N-C(=O)-C1[allHydrogens=2 & !ring]-C2[!ring](=O3)-C):c4:c:c$:1 >> Chinolin-2-one intramol.  

>> C1=C2-c4  
 

 
 

c1cc(NC(=O)CC(=O)C)ccc1 
 
13. C-C1#N2 >> Tetrazol  >> C1$1=N2-N[charge=-1]-N=N$-1  
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CC#N 
 

14. C-N1[allHydrogens=2 & charge=0] ++ C-C2[allHydrogens=1](-C3(=O4)-C)-O5[allHydrogens=1] >> 
Tetrahydro-Indole (charge 1)  >> C$1-C-C$2-N1-C3=C2-C$=2-C-C$-1 

 

 
 

CN    +    CC(=O)C(O)C 
 

C-N1[allHydrogens=3 & charge=1] ++ C-C2[allHydrogens=1](-C3(=O4)-C)-O5[allHydrogens=1] >> 
Tetrahydro-Indole (charge 2)  >> C$1-C-C$2-N1-C3=C2-C$=2-C-C$-1  

 

 
 

C[NH3+]    +    CC(=O)C(O)C 
 
15. C1-C2[!ring](=O10)-C3[allHydrogens=2]-C4(=O11)-C5 >> 3-nitrile pyridine (symmetry 1)  >> N$1=C(-

O)-C(-C#N)=C2(-C1)-C3=C4$-1(-C5) 
 

 
 

CC(=O)CC(=O)C  
 

C1-C2[!ring](=O10)-C3[allHydrogens=2]-C4(=O11)-C5 >> 3-nitrile pyridine (symmetry 2)  >> N$1=C(-
O)-C(-C#N)=C2(-C5)-C3=C4$-1(-C1) CC(=O)CC(=O)C 

 

 
 

CC(=O)CC(=O)C 
 
16. c-C1#N2[allHydrogens=0] ++ N3[allHydrogens=2]-N6[allHydrogens=1]-C4(=O5)-c >> Triazole  >> 

C1$8=N3-N6-C4=N2$-8 
 

 
 

c1ccccc1C#N    +    NNC(=O)c1ccccc1 
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17. C1[sp3]-*2[Cl|Br|I] ++ C3[allHydrogens=1]#C4-C >> Huisgen 1-3 dipolar (azid in_situ)  >> C1-N$1-N=N-
C4=C3[bound(-H)]$-1  

 

 
 

CCl    +    CC#C 
 
18. C1[!aromatic]=C2[!aromatic]-C3[!aromatic]=C4[!aromatic] ++ C5[!aromatic]=C6[!aromatic] >> Diels-

Alder (symmetry 1)  >> C1$1-C2=C3-C4-C5-C6$-1  
 

 
 

C=CC=C    +    C=C 
 

C1[!aromatic]=C2[!aromatic]-C3[!aromatic]=C4[!aromatic] ++ C5[!aromatic]=C6[!aromatic]>> Diels-
Alder (Symmetrie 2)  >> C1$1-C2=C3-C4-C6-C5$-1   

 

 
 

C=CC=C    +    C=C 
 
19. C1[!aromatic]=C2[!aromatic & !ring]-C3[!aromatic]=C4[!aromatic] ++ C5#C6 >> Diels-Alder Alkine 

(symmetry 1)  >> C1[!aromatic&!sp2]$1-C2[!aromatic]=C3[!aromatic]-C4[!aromatic&!sp2]-C5=C6$-1 
 

 
 

C=CC=C    +    C#C 
 

C1[!aromatic]=C2[!aromatic]-C3[!aromatic]=C4[!aromatic] ++ C5#C6 >> Diels-Alder Alkine (symmetry 
2)  >> C1[!aromatic&!sp2]$1-C2[!aromatic]=C3[!aromatic]-C4[!aromatic&!sp2]-C6=C5$-1   

 

 
 

C=CC=C    +    C#C 
 
20. c(-O1[allHydrogens=1]):c(-C(=O)-C2[allHydrogens=3]) ++ C[sp3]$1-C3(=O4)-C[sp3]-C[sp3]-N-C[sp3]$-

1 >> Spiro-piperidine  >> O1-C3-C2  
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c1cc(C(=O)C)c(O)cc1    +    C1C(=O)CCNC1 
 
21. C-C1[!ring](=O6)-C2-C3(=O7)-C ++ C-N4[allHydrogens=1]-N5[allHydrogens=2] >> Pyrazole (symmetry 

1)  >> C1$1-N4-N5=C3-C2$=1   
 

 
 

CC(=O)CC(=O)C    +    NNC 
C-C1[!ring](=O6)-C2-C3(=O7)-C ++ C-N4[allHydrogens=1]-N5[allHydrogens=2] >> Pyrazol (symmetry 
2)  >> C1$1-N5-N4=C3-C2$=1  

 

 
 

CC(=O)CC(=O)C    +    NNC 
 
22. C-C1(=O5)-c:c-C2(=O6)-O7[allHydrogens=1] ++ C[!bound(=O) & !bound (=S)]-N3[allHydrogens=1]-

N4[allHydrogens=2] >> Phthalazinone (charge 1)  >> C2-N3-N4=C1  
 

 
 

c1c(C(=O)O)c(C(=O)C)ccc1    +    NNC 
 
 

C-C1(=O5)-c:c-C2(=O6)-O7[charge=-1] ++ C[!bound(=O) & !bound (=S)]-N3[allHydrogens=1]-
N4[allHydrogens=2] >> Phthalazinone (charge 2) >> C2-N3-N4=C1  

 
 

c1c(C(=O)[O-])c(C(=O)C)ccc1    +    NNC 
 
23. C-C1[!ring](=O7)-C4[!aromatic & bound(-H)]-C5[!aromatic & bound(-H)]-C2(=O6)-C ++ C[!bound(=O)]-

N3[allHydrogens=2 & charge=0] >> Paal-Knorr pyrrole (charge 1)  >> C1$1-N3-C2=C5-C4$=1 
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CC(=O)CCC(=O)C    +    CN 

 
C-C1[!ring](=O7)-C4[!aromatic & bound(-H)]-C5[!aromatic & bound(-H)]-C2(=O6)-C ++ C[!bound(=O)]-
N3[charge=1 & allHydrogens=3] >> Paal-Knorr pyrrole (charge 2)  >> C1$1-N3-C2=C5-C4$=1 

 

 
 

CC(=O)CCC(=O)C    +    C[NH3+] 
 
24. c-C1(=O4)-C2(=O5)-c ++ C3[allHydrogens=1](=O6)-c$1:c:c:c:c:c$:1 >> Triaryl-imidazol (1,2 diketone) 

>> C1$1-N-C3=N-C2$=1  
 

 
 

c1ccccc1C(=O)C(=O)c1ccccc1    +    c1ccc(C(=O))cc1 
 
25. c-C1(=O4)-C2(-O5[allHydrogens=1])-c ++ C3[allHydrogens=1](=O6)-c$1:c:c:c:c:c$:1 >> Triarylimidazol 

(alpha hydroxy-ketone) >> C1$1-N-C3=N-C2$=1  
 

 
 

c1ccccc1C(O)C(=O)c1ccccc1    +    c1ccc(C(=O))cc1 
 
26. c$1:c4[allHydrogens=1]:c(-N5[allHydrogens=1]-N6[allHydrogens=2]):c:c:c$:1 ++ C-C1(=O2)-

C3[allHydrogens=2]-C >> Fischer indole >> N5-C1=C3-c4  
 

 
 

c1ccc(NN)cc1    +    CC(=O)CC 
 
27. c$1:c(-C4[allHydrogens=1](=O7)):c(-N5[allHydrogens=2]):c:c:c$:1 ++ C-C1(=O2)-C3[allHydrogens=2]-C 

>> Friedlaender chinoline >> N5=C1-C3=C4  
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c1cc(C=O)c(N)cc1    +    CC(=O)CC 

 
28. c$1:c1[allHydrogens=1]:c(-O2[allHydrogens=1]):c:c:c$:1 ++ C-C3(=O4)-C5[allHydrogens=2 & !ring]-

C6(=O)-O7-C[allHydrogens=2]-C[allHydrogens=3] >> Pechmann coumarine >> c1-C3=C5-C6-O2 
 

 
 

c1cc(O)ccc1    +    CC(=O)CC(=O)OCC 
 
29. c$1:c(-O1[allHydrogens=1]):c2(-I5):c:c:c$:1 ++ C3[allHydrogens=1]#C4-C >> Benzofuran  >> O1-

C4=C3-c2  
 

 
 

c1cc(O)c(I)cc1    +    CC#C 
 
30. C-C1(=O2)-C3[bound(-H)](-Br4) >> Imidazol-Acetamid >> C1$1=C3-N-C(-N-C(=O)-C)=N$-1 
 

 
 

CC(=O)C(Br) 
 
31. C[allHydrogens=3]-C[allHydrogens=2]-O1-C2[!ring](=O)-C[!aromatic]-C[!aromatic]-C[!aromatic]-

C3[bound(-H) & !aromatic]-C[!ring](=O)-O-C[allHydrogens=2]-C[allHydrogens=3] >> Dieckmann 5-ring 
(symmetry 1)  >> C2[ring]-C3  

 
 

 
 

CCOC(=O)CCCCC(=O)OCC 
 

C[allHydrogens=3]-C[allHydrogens=2]-O-C[!ring](=O)-C2[bound(-H) & !aromatic]-C[!aromatic]-
C[!aromatic]-C[!aromatic]-C3[!ring](=O)-O1-C[allHydrogens=2]-C[allHydrogens=3] >> Dieckmann 5-ring 
(symmetry 2)  >> C2-C3[ring]  

 

 
 

CCOC(=O)CCCCC(=O)OCC 
 

OH

R

O

OO O

R

O
+

I

OH

R

O
R+

R1 O

BrR2

NH
H2N

HN
O

N

N
H

R1

R2
NH

O

+

O
O

O
O

O

O

OR

R

O
O

O
O

O

O

OR

R



	   104 

32. C[allHydrogens=3]-C[allHydrogens=2]-O1-C2[!ring](=O)-C[!aromatic]-C[!aromatic]-C[!aromatic]-
C[!aromatic]-C3[bound(-H) & !aromatic]-C[!ring](=O)-O-C[allHydrogens=2]-C[allHydrogens=3] >> 
Dieckmann 6-Ring (symmetry 1)  >> C2-C3  

 

 
 

CCOC(=O)CCCCCC(=O)OCC 
 

C[allHydrogens=3]-C[allHydrogens=2]-O-C[!ring](=O)-C2[bound(-H) & !aromatic]-C[!aromatic]-
C[!aromatic]-C[!aromatic]-C[!aromatic]-C3[!ring](=O)-O1-C[allHydrogens=2]-C[allHydrogens=3] >> 
Dieckmann 6-Ring (symmetry 2)  >> C2-C3 

 

 
CCOC(=O)CCCCCC(=O)OCC 
 

33. c$1:c:c(-O1[allHydrogens=1]):c(-C(=O)-C2[allHydrogens=3]):c:c$:1 ++ c$1:c:c:c(-C3(=O4)-
Cl5):c[bound(-H)]:c$:1 >> Flavone >> C2=C3-O1 

 

 
 

c1cc(O)c(C(=O)C)cc1    +    c1ccc(C(=O)Cl)cc1 
 
34. c-C1#N2 ++ C3[allHydrogens=0](=O4)-O5[allHydrogens=1] >> Oxadiazole (charge 1) >> C1$1=N-O-

C3=N2$-1  
 

 
 

c1cc(C#N)ccc1    +    CC(=O)O 
 

c-C1#N2 ++ C3[allHydrogens=0](=O4)-O5[charge=-1] >> Oxadiazole (charge 2) >> C1$1=N-O-C3=N2$-
1 

 

 
 

c1cc(C#N)ccc1    +    CC(=O)[O-] 
 
35. C(=O)(-*[{O & allHydrogens=0} | C])-C1[allHydrogens=2]-C(=O)-*[{O & allHydrogens=0} | C] ++ 

C2[!aromatic]=C3[!aromatic]-C4(=O)-C >> Michael addition  >> C1-C2-C3-C4 
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CC(=O)CC(=O)C    +    C=CC(=O)C 

 
36. *[{C & !bound(-H)}|{O & !bound(-H) & charge=0}]-C1[!ring](=O)-O2-C[!ring] ++ C3[allHydrogens=2]-

C(=O)-*[{C & !bound(-H)}|{O & !bound(-H) & charge=0}] >> crossed Claissen  >> C3-C1 
 

 
 

c1ccccc1C(=O)OC    +    CCC(=O)OC 
 
37. c-O1[allHydrogens=1] ++ C2[allHydrogens=2]-*3[I|Br|Cl] >> Williamson ether  >> O1-C2 
 

 
 

c1cc(O)ccc1    +    CCBr 
 
38. C-C1(=O2)-C ++ N3[allHydrogens=2 &charge=0]-C[!bound(=O) & !bound(=N)] >> red. amination (one 

step), ketone, prim. amine (charge 1) >> C1-N3[charge=1] 
 

 
 

CC(=O)C    +    CN 
 

C-C1(=O2)-C ++ N3[allHydrogens=3 &charge=1]-C[!bound(=O) & !bound(=N)] >> red. amination  
ketone, prim. amine (charge 2) >> C1-N3[charge=1]  

 

 
 

CC(=O)C    +    C[NH3+] 
 
39. C-C1[bound(-H)](=O2) ++ N3[allHydrogens=2 &charge=0]-C[!bound(=O) & !bound(=N)] >> red. 

amination, aldehyde, prim. amine (charge 1) >> C1-N3[charge=1]  
 

 
 

CC(=O)    +    CN 
 

C-C1[bound(-H)](=O2) ++ N3[allHydrogens=3 &charge=1]-C[!bound(=O) & !bound(=N)] >> red. 
amination, aldehyde, prim. amine (charge 2)>> C1-N3[charge=1] 
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CC(=O)    +    C[NH3+] 
 
40. C-C1(=O2)-C ++ C[!bound(=O) & !bound(=N)]-N3[allHydrogens=1 & charge=0 & !aromatic]-

C[!bound(=O) & !bound(=N)] >> red. amination, ketone, sec. amine (charge 1) >> C1-N3[charge=1] 
 

 
 

CC(=O)C    +    CNC 
C-C1(=O2)-C ++ C[!bound(=O) & !bound(=N)]-N3[allHydrogens=2 & charge=1 & !aromatic]-
C[!bound(=O) & !bound(=N)] >> red. amination, ketone, sec. amine (charge 2)  >> C1-N3[charge=1] 

 

 
 

CC(=O)C    +    C[NH2+]C 
 
41. C-C1[bound(-H)](=O2) ++ C[!bound(=O) & !bound(=N)]-N3[allHydrogens=1 & charge=0 & !aromatic]-

C[!bound(=O) & !bound(=N)] >> red. amination, aldehyde, sec. amine (charge 1) >> C1-N3[charge=1] 
 

 
 

CC(=O)    +    CNC 
 

C-C1[bound(-H)](=O2) ++ C[!bound(=O) & !bound(=N)]-N3[allHydrogens=2 & charge=1 & !aromatic]-
C[!bound(=O) & !bound(=N)] >> red. amination, aldehyde, sec. amine (charge 2) >> C1-N3[charge=1]
  

 

 
 

CC(=O)    +    C[NH2+]C 
 

42. C1[sp2]-B3(-O)-O ++ C2[sp2 & !bound(=O)]-*4[Cl|Br|I]>> Suzuki >> C1-C2 
 

 
 

c1cc(B(O)(O))ccc1    +    c1cc(Cl)ccc1 
 

43. c[allHydrogens=1]$1:c:c:c[allHydrogens=1]:c$2-N[allHydrogens=1]-C=C5[allHydrogens=1]-c$:1$:2 ++ 
C[allHydrogens=2]$3-N-C[allHydrogens=2]-C[allHydrogens=2]-C4(=O7)-C6[allHydrogens=2]$-3 >> 
Piperidine+Indole  >> C4(=C6)-C5  
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c1cc2NC=Cc2cc1    +    C1C(=O)CCNC1 
 

44. C1[!bound(=O)]-*2[Br|Cl|I] ++ *5[Br|Cl]-C4[allHydrogens=2]-C[allHydrogens=2] >> Negishi >> C1-C4 
  

 
 

 
CI    +    CCBr 

 
45. C1[bound(-H) & !bound(=O)]-O2[allHydrogens=1] ++ C(=O)-N3[allHydrogens=1]-C(=O) >> Mitsunobu 

(imide) >> C1-N3 
 

 
 

CC(O)C    +    C(=O)NC(=O) 
 
46. C1[bound(-H) & !bound(=O)]-O2[allHydrogens=1] ++ C-C(=O)-O3[allHydrogens=1] >> Mitsunobu 

Carbonsäure (carbon acid, charge 1)  >> C1-O3 
 

 
 

CC(O)C    +    CC(=O)O 
 
 

C1[bound(-H) & !bound(=O)]-O2[allHydrogens=1] ++ C-C(=O)-O3[charge=-1] >> Mitsunobu (carbon 
acid, charge 2)  >> C1-O3 CC(O)C CC(=O)[O-] 

 

 
47. C1[bound(-H) & !bound(=O)]-O2[allHydrogens=1] ++ C-N3[bound(-H)]-S(=O)(=O)-C >> Mitsunobu 

Sulfonic amide >> C1-N3 
 

 
 

CC(O)C    +    CNS(=O)(=O)C 
 

48. C1[!bound(=O)]-*3[Br | I | Cl] ++ C-C2[allHydrogens=1 & !aromatic]=C[!aromatic](-C)-C >> Heck  >> 
C1-C2 
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CBr    +    CC(=CC)C 
 
49. C-C1(=O)-Cl2 ++ C[!bound(=O) & !bound(=N)]-N3[allHydrogens=2 & charge=0] >> Amide, prim. amine 

(charge 1) >> C1-N3  
 

 
 

CC(=O)Cl    +    CN 
 

C-C1(=O)-Cl2 ++ C[!bound(=O) & !bound(=N)]-N3[allHydrogens=3 & charge=1] >> Amide, prim. amine 
(charge 2) >> C1-N3 

 

 
 

CC(=O)Cl    +    C[NH3+] 
 
50. C-C1(=O)-Cl2 ++ C[!bound(=O) & !bound(=N)]-N3[allHydrogens=1 & charge=0]-C[!bound(=O) & 

!bound(=N)] >> Amide, sec. amine (charge 1) >> C1-N3  
 

 
 

CC(=O)Cl    +    CNC 
 

C-C1(=O)-Cl2 ++ C[!bound(=O) & !bound(=N)]-N3[allHydrogens=2 & charge=1]-C[!bound(=O) & 
!bound(=N)] >> Amide, sec. amine (charge 2) >> C1-N3 

 

 
 

CC(=O)Cl    +    C[NH2+]C 
 
51. C-C1(=O)-Cl2 ++ C[!bound(=O)]-O3[allHydrogens=1] >> Ester  >> C1-O3  
 

 
 

CC(=O)Cl    +    CO 
 
52. c-C1[!aromatic]=C2[!aromatic & allHydrogens=2] ++ S3[allHydrogens=1]-C >> Thioether  >> C1-C2-S3 

 

 
 

c1ccccc1C=C    +    CS 
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53. C-C1(=O)-Cl2 ++ C3-I4 >> Ketone >> C1-C3 
 

 
 

CC(=O)Cl    +    CI 
 
54. C-S1(=O)(=O)-Cl3 ++ N2[allHydrogens=2 & charge=0]-C[!bound(=O) & !bound(=N)] >> Sulfonamid 

(Ladung 1) >> S1-N2 
 

 
 

CS(=O)(=O)Cl    +    CN 
 

C-S1(=O)(=O)-Cl3 ++ N2[allHydrogens=3 & charge=1]-C[!bound(=O) & !bound(=N)] >> Sulfonamid 
(Ladung 2) >> S1-N2 

 

 
 

CS(=O)(=O)Cl    +    C[NH3+] 
 
55. c1-B2(-O[allHydrogens=1])(-O[allHydrogens=1]) ++ c$1:n3[allHydrogens=1]:n:c:c$:1 >> Ar-Pyrazole  >> 

c1-N3  
 

 
 

c1cc(B(O)(O))ccc1    +    C1=CC=NN1 
 
56. c1-B2(-O[allHydrogens=1])(-O[allHydrogens=1]) ++ c$1:n3[allHydrogens=1]:c:n:c$:1 >> Ar-Imidazole  

>> c1-N3  
 

 
 

c1cc(B(O)(O))ccc1    +    C1=CN=CN1 
 
57. C1[sp3]-*2[Cl|Br|I] ++ C3[allHydrogens=1]#C >> Alkine alkylation >> C1-C3 
 

 
 

CCl    +    C#C 
 
58. C-C2(=O)-Cl4 ++ C3[allHydrogens=1]#C >> Alkine acylation  >> C2-C3 
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Preprocessing Reactions 

 
1. C1(=O2)-O3[allHydrogens=1] >> FGI Acyl chloride (charge 1) >> C1(=O2)-Cl 
 

 
 

C1(=O2)-O3[charge=-1] >> FGI acyl Chloride (charge 2) >> C1(=O2)-Cl 
 

 
 
2. C1[aliphatic & !bound(=O) & !bound(=S)]-O2[allHydrogens=1] >> FGI bromination >> C1-Br 
 

 
 
3. C1[aliphatic & !bound(=O) & !bound(=S)]-O2[allHydrogens=1] >> FGI chlorination >> C1-Cl 
 

 
 
4. C-S1(=O)(=O)-O2[allHydrogens=1] >> FGI sulfonyl chloride (charge 1)>> S1-Cl  
 

 
 

C-S1(=O)(=O)-O2[charge=-1] >> FGI sulfonyl chloride (charge 2) >> S1-Cl  
 

 
 
5. C1[!aromatic & allHydrogens=2 & !bound(-Halogen)]-C(=O)-O[allHydrogens=1] >> FGA alpha 

bromination (charge 1) >> C1-Br 
 

 
 

C1[!aromatic & allHydrogens=2 & !bound(-Halogen)]-C(=O)-O[charge=-1] >> FGA alpha bromination 
(charge 2) >> C1-Br 

 

 
 
6. C1[!aromatic & allHydrogens=2 & !bound(-Halogen)]-C(=O)-O[allHydrogens=1] >> FGA alpha 

chlorination (Ladung 1) >> C1-Cl 
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C1[!aromatic & allHydrogens=2 & !bound(-Halogen)]-C(=O)-O[charge=-1] >> FGA alpha chlorination 
(charge 2) >> C1-Cl 

 
 
7. c1-*2[Cl|Br] >> FGI Rosenmund-von-Braun >> c1-C#N 
 

 
 
8. C-C1[allHydrogens=2]-O2[allHydrogens=1] >> FGI nitrilation prim. hydroxy  >> C1#N 
 

 
 
9. C-C1[allHydrogens=2]-N2[allHydrogens=2 & charge=0] >> FGI nitrilation prim. amine (charge 1) >> 

C1#N2 
 

 
 

C-C1[allHydrogens=2]-N2[allHydrogens=3 & charge=1] >> FGI nitrilation prim. Aminen (charge 2) >> 
C1#N2 

 

 
 
10. C-C1#C2[allHydrogens=1] >> FGI nitrilation term. alkine >> C1#N 
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Analytical Spectra 

 
 

 

 

 

 

 

 

 

 

 

 

 

Compound 18: 1H NMR spectrum Compound 18: mass spectrum 
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Compound 19: 1H NMR spectrum Compound 19: mass spectrum 
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Compound 15: 1H NMR spectrum Compound 15: mass spectrum 
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Compound 15: HPLC, UV spectrum 
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Compound 15: 13C NMR 
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Compound 15: high resolution mass spectrum 
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