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1. Introduction 
 

 

The increasing interest in cortical oscillatory synchronization in the gamma 

frequency range (~30-100 Hz) in neuroscientific research can be attributed to its 

putative relevance for a variety of cognitive processes (Engel et al. 2001; 

Herrmann et al. 2004b; Kaiser and Lutzenberger 2005b; Jensen et al. 2007) as 

well as to its potential role for brain disorders (Herrmann and Demiralp 2005; 

Uhlhaas and Singer 2006). To test the notion of gamma-band activity (GBA) as 

a correlate of object representation, the present study examined 

stimulus-specific gamma-band components rather than differences between 

experimental conditions containing numerous stimuli. We used 

magnetoencephalography (MEG) to assess the maintenance of individual 

acoustic stimuli during an auditory spatial delayed matching-to-sample task. 

 

The following chapter is subdivided into three subsections that describe the 

theoretical background to this thesis. Part one gives an overview of cortical 

oscillatory activity and its assumed relevance for higher cognitive processes. 

Subsection two includes an introduction to auditory processing and its functional 

correlates in the human cerebral cortex. The chapter is concluded by outlines of 

the technical basics of MEG. Chapter three describes the study population, 

experimental procedure, stimulus material and data analysis. In chapter four, 

the study results are described. We examined behavioral and MEG data. 

Concerning the MEG data, we analyzed cortical oscillatory activity and explored 

correlations between oscillatory activations and task performance. Chapter five 

consists of a discussion of the results. It is subdivided into three parts: part one 

on the topographical distribution of GBA in the spatial memory task, part two on 

gamma activation and task performance and part three on a brief outline of 

further research questions. 
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2. Background 
 

 

2.1 Cortical oscillatory activity 

 

Since the 1920s, electroencephalography (EEG) has been used to record 

electrical activity non-invasively from the human brain (Berger 1929). This 

activity is generated by graded postsynaptic potentials (PSPs) of vertically 

oriented pyramidal cells in the cortex (for more details, see ‘MEG’ section). 

Berger already recognized that this electrical activity contains a specific 

rhythmicity. Oscillatory activity can generally be described by two main 

parameters, frequency and amplitude. Synchronized cortical oscillations have 

been described as correlates of mental activity (Singer 1993; Klimesch 1996; 

Sauseng et al. 2008). They can be modulated by changes in psychological and 

physical conditions and depend on the brain’s degree of maturation (Uhlhaas et 

al. 2010). Cortical oscillations consist of wavelike patterns in different frequency 

ranges and are supposed to establish collective behavior of neurons (Buzsáki 

2006). Spontaneous EEG/MEG signals consist of different rhythms reflecting 

the subjects’ activation state. Five major types of continuous rhythmic brain 

activity have been described: alpha, beta, gamma, delta and theta. The 

classification is based on the typical frequency range of each frequency band, 

see table 1. Signal amplitude generally decreases with increasing frequency. 
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Type Frequency range Signal amplitude 

Delta 0–4 Hz Variable 

Theta 4–8 Hz 50–100 μV 

Alpha 8–12 Hz 10–150 μV 

Beta 12–29 Hz < 25 μV 

Gamma 30–100 Hz 1–10 μV 

 

Table 1. Classification of EEG rhythms depending on characteristic frequency ranges and 

signal amplitudes. Oscillatory activity is mainly classified by the characteristic frequency 

bands ranging from delta- to gamma-band oscillations. 

 

The following parts of this chapter give short overviews of the importance of 

well-known frequency ranges such as alpha, beta, delta and theta for particular 

mental activities. As we have investigated fast cortical oscillatory activity in the 

gamma band, a more detailed description of assumed functions of gamma 

activity follows below. Figure 1 gives an overview of typical EEG signals. 
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Figure 1. Typical EEG signals representing different brain functions and activation states. 

The beta range is shown in the first line. Beta can be typically located parietally and 

frontally. Three different states of alpha oscillations are shown in the second to forth line. 

The second line shows well accentuated alpha with strict rhythmicity. In the third line, 

intermittent occipital alpha is displayed. Line 4 shows a phenomenon known as alpha 

suppression (see text for explanations). The third frequency range displayed is theta. It is 

associated with sleep onset and can be found in children. Theta is followed by delta, 

which is associated with deep sleep and immature brain activity. See the following 

sections for more detailed information on the depicted frequency ranges. (Figure from 

http://members.arstechnica.com, modified) 

 

2.1.1 Alpha oscillations 

 

Alpha is the frequency range from 8 to 12 Hz and is characteristic for the awake 

but relaxed state. Consistent alpha rhythms are predominant in 

occipito-temporal regions and are best detected while subjects close their eyes. 

Alpha is blocked with increased concentration or attention. When the eyes are 
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opened, alpha is suppressed. Alpha oscillations are associated with several 

brain functions. Klimesch et al. (2007) have suggested a role of alpha activity 

for inhibitory control processes. 

 

Oscillatory alpha activity also plays an important role for short-term memory 

processes. Leiberg et al. (2006b) have investigated memory load-dependent 

changes in cortical oscillatory activity during a modified auditory version of the 

Sternberg paradigm. In this study, memory trials triggered an increase of alpha 

activity at the end of the delay phase compared to a non-memory control task. 

Memory-related alpha-increases have also been found in visual tasks (Klimesch 

1999; Schack and Klimesch 2002; Busch and Herrmann 2003) and in auditory 

tasks (Krause et al. 1996; Karrasch et al. 2004; Pesonen et al. 2006). Leiberg et 

al. suggested that alpha oscillations are relevant for the memorization of 

multiple stimuli (Leiberg et al. 2006b) as the amplitude of alpha activity was 

found to increase with working memory load in EEG (Jensen et al. 2002). 

Leiberg et al. interpreted their findings as a correlate of the top-down control of 

sensory processing areas. 

 

Alpha-band activity is also supposed to contribute to an active inhibition of task-

irrelevant functions. Kaiser et al. (2007c) used MEG to examine activity in the 

alpha band during an auditory spatial delayed matching-to-sample task. 

Subjects had to memorize the lateralization angle of a sample stimulus S1 and 

compare it with a test sound S2 after a delay phase of 800 ms. The authors 

found alpha synchronization at posterior parietal sensors during the delay 

phase of the memory condition, while this activity was not present in a 

non-memory control condition. They concluded that alpha activity during 

memory maintenance reflects active inhibition of interfering visual/spatial 

processes (Kaiser et al. 2007c). Haegens et al. (2010) used MEG to assess the 

temporal dynamics of areas involved in a somatosensory working memory task. 

They reported an increase of alpha activity over task-irrelevant regions during 

successful working memory performance. They assumed that alpha-band 

activity reflected the disengagement of task-irrelevant areas. This notion has 

been supported by other studies (Jensen et al. 2002; Cooper et al. 2003; 
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Klimesch et al. 2007). This assumed disengagement contributes to better 

working memory task performance: Haegens et al. (2010) reported that higher 

alpha activity correlated with better task performance. Prestimulus posterior 

alpha activity has been found to correlate positively with somatosensory 

detection performance (Linkenkaer-Hansen et al. 2004). Thus, Haegens et al. 

(2010) suggested that disengagement of task-irrelevant regions reflected by 

alpha-band activity is a necessity for optimal task performance. This notion was 

also examined by Hanslmayr et al. (2007) who used EEG to assess the 

electrophysiological correlates of perceiving shortly presented visual stimuli. 

The authors divided the subjects into two groups: ‘Perceivers’ were able to 

discriminate between the four different stimuli while ‘Non-Perceivers’ were not. 

Their results revealed significantly lower prestimulus alpha power for 

‘Perceivers’ compared to ‘Non-Perceivers’. They suggested that synchronized 

alpha activity inhibits the perception of shortly presented stimuli. 

 

Pfurtscheller et al. (1996) suggested EEG synchronization within the alpha band 

as a possible correlate of deactivated cortical areas. In this idling state, these 

areas do not process task-relevant information and thus are inhibited. This idea 

of alpha-band activity representing a resting or idling state was already 

suggested by Adrian and Matthews (1934). This notion is underlined by an 

increase of synchronized mu rhythms over the primary hand area during visual 

processing or foot movement as these tasks do not involve the primary hand 

area (Pfurtscheller et al. 1996). By analogy, occipital alpha oscillations are more 

pronounced during the state of closed eyes and decrease with opened eyes. 

 

To summarize these findings, the occipital alpha rhythm can be regarded as a 

resting or idling rhythm of visual areas (Kuhlman 1978; Pfurtscheller 1992). By 

contrast, Klimesch et al. (1999) and Jensen et al. (2002) suggested that alpha 

activity rather reflects active inhibition of areas that could disturb performance 

in, e.g., memory tasks. Niedermeyer (1990) and Tiihonen et al. (1991) 

suggested that alpha activity in auditory areas reflects an idling state. The 

common feature of all these alpha rhythms is their blocking or decrease when 
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these areas are activated regardless of the cortical area in which they are 

located (Pfurtscheller et al. 1994). 

 

2.1.2 Beta oscillations 

 

The beta band is defined as the range between 12 and 29 Hz. It occurs in 

association with active thinking and concentration. General or frontal beta 

activity can be provoked by pharmaceutics such as barbiturates. Beta 

oscillations have also been associated with motor activity. Beta activity over 

primary motor areas drops shortly before and during movements and reoccurs 

when motor actions are stopped (Neuper and Pfurtscheller 2001). Thus, it is 

linked to movement preparation processes (Zhang et al. 2008). Kaiser et al. 

(2003b) studied the time courses and topographies of sensorimotor activations 

to behaviorally relevant, lateralized sounds. They used magnetoencephalo-

graphic event-related beta desynchronization (ERD) as a correlate of movement 

preparation processes. Their results suggest an important role of beta 

oscillations for an early activation of motor networks. 

 

Furthermore, animal studies suggest an involvement of beta activity in 

attentional mechanisms (Bekisz and Wrobel 2003). Zhang et al. (2008) also 

reported an increase of beta activity during response inhibition in decision tasks 

examining macaque monkeys. These findings were supported by a recent study 

in humans examining decision making (Cohen et al. 2009). 

 

2.1.3 Theta oscillations 

 

Theta ranges from 4 Hz to 8 Hz and shows high amplitudes. It is associated 

with drowsiness and states such as trance, hypnosis, deep day dreams and 

light sleep. Theta is more pronounced in children than adults. Theta oscillations 

have been a topic of several studies in patients with schizophrenia. These 

patients showed reduced oscillatory activity in the theta range at rest and during 
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memory tasks (Doege et al. 2009; Haenschel et al. 2009). These findings 

underline possible functions of theta activity in cognitive tasks such as 

information processing. 

 

Oscillations in the theta range have also been related to control processes in 

different memory systems (Klimesch et al. 2008; Klimesch et al. 2009). Human 

theta oscillations have been investigated in many different studies over the last 

decades (Klimesch et al. 1996; Klimesch et al. 1997; Klimesch 1999; Kahana et 

al. 2001; Raghavachari et al. 2001). Theta oscillations have been suggested to 

control access to episodic memories (Klimesch et al. 2009) and to play a vital 

role for the encoding of episodic information (Weiss et al. 2000; Fell et al. 

2003b; Summerfield and Mangels 2005; Axmacher et al. 2006). Doppelmayr et 

al. (2000) have also shown a positive correlation between increased theta-band 

power and episodic memory performance in a recognition task. They suggested 

that an early time-locked theta response allows coordination of different 

encoding processes and contributes to successful performance in memory 

tasks. Sauseng et al. (2004) observed coupling between prefrontal and 

temporo-parietal brain areas within the theta band during a working memory 

task. They assumed that working memory functions depend on 

prefrontal-temporal networks and are mediated by theta frequency coupling. 

 

2.1.4 Delta oscillations 

 

Delta activity from 0 to 4 Hz occurs in deep sleep and is the predominant 

frequency in infants. During slow-wave sleep, delta oscillations are associated 

with synchronization processes facilitating neuronal interactions (Dang-Vu et al. 

2008). Delta activity in awake adult subjects can be a sign of pathological brain 

processes. Recent studies have shown an importance of delta activity in 

schizophrenia. Ince et al. (2009) used MEG to assess oscillatory brain activity 

during a working memory task to discriminate between patients with 

schizophrenia and healthy control subjects. They found distinct activation 

patterns of brain oscillations during the maintenance period of the memory task 
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in the delta, alpha and beta range. In particular, patients showed ERD in the 

delta band over dorso-frontal areas, while controls showed event-related 

synchronization (ERS). These patterns served to classify patients and healthy 

controls. 

 

Another study focused on EEG rhythms preceding spontaneous spike-wave 

discharges in epilepsy. Sitnikova and van Luijtelaar (2009) found a significant 

increase in delta and theta activity preceding spike-wave discharges in rats. 

These results implicate a correlation between delta activity and impaired brain 

activity in epilepsy. The authors suggested that spike-wave discharges in 

epilepsy might derive from a delta-theta EEG background. Mormann et al. 

(2008) observed independent delta and theta rhythms in subregions of the 

human medial temporal lobe in epilepsy patients with unilateral hippocampal 

sclerosis. They discussed a possible importance of interactions of delta and 

theta rhythms for memory processing which can be impaired in epilepsy 

patients (Fell et al. 2003b). 

 

2.1.5 Gamma oscillations 

 

Fast gamma oscillations in the range of 30–100 Hz have first been described by 

Jasper (1936), but their functional significance is not yet completely understood. 

The current understanding of fast cortical oscillations is that they reflect 

synchronous activity of large assemblies of rhythmically firing neurons which is 

associated with different cognitive processes (Engel et al. 2001; Kaiser and 

Lutzenberger 2003; Jensen et al. 2007). Buzsáki (2006) refers to 

synchronization in the gamma band to explain typical neuronal assembly 

behavior in the awake brain. As the present study focussed on this frequency 

band, research on gamma activity will be reviewed in detail in the following 

sections. 
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2.1.5.1 Perception 

 

Regarding the huge stimulus variety all individuals constantly face, it is hard to 

imagine specialized neurons for the representation of every single stimulus. It 

has been proposed that the specific combination of stimulus properties 

corresponding to one object could be encoded by different neuronal assemblies 

located in specialized brain areas. These distributed cell assemblies could 

represent objects by communicating via synchronized gamma activity (Milner 

1974; von der Malsburg and Schneider 1986; Singer and Gray 1995). In this 

context, it should be stressed that perception and object representation are 

more than just a passive reproduction of stimulus input in primary sensory areas 

but, in contrast, involve larger neuronal networks (Eckhorn et al. 2004). 

 

GBA is thought of as a carrier of cortical information, communication and 

integration (Tallon-Baudry and Bertrand 1999; Kaiser and Lutzenberger 2003; 

Herrmann et al. 2004b; Fries 2005; Jensen et al. 2007). In earlier EEG and 

MEG studies, GBA was identified as a correlate of synchronized activity of 

cortical networks representing visual objects or object features. Over the last 

decades, an astonishing number of studies have examined the human or 

animal cortex. These studies have revealed small cortical subregions 

responsible for the representation of different input information. These 

specialized areas have distinct connections to other structures of the brain and 

could be shown for the somatosensory (Doetsch 2000), the motor (Kalaska and 

Crammond 1992), the visual (Zeki et al. 1993) and the auditory cortex (Kelly et 

al. 1991). All these differently specialized cortical areas respond to a defined 

subset of stimulus features. And even though they contribute to a complex 

perceptional process, they seem to respond very selectively. This evokes two 

crucial questions regarding perceptional processes: where and how are 

different object features of perceived input represented in the brain and how do 

these specialized cortical subregions communicate with other brain structures? 
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This process is referred to as the feature binding process and is triggered by 

external input. In visual search tasks, Tallon-Baudry et al. (1997) analyzed 

neuronal correlates of internal object representation. The non-phase-locked 

gamma activity discovered in the search tasks was suggested to serve two 

roles: binding of elementary features for a meaningful object and activation of 

neuronal assemblies coding an attended object. 

 

In an early study on GBA, Gray et al. (1990) analyzed cortical activation in 

anesthetized cats that were presented with coherently moving bars. 

Synchronization in the gamma band could be shown for the coherently moving 

bars but not for independently moving patterns. These findings were supported 

by other studies investigating stimulus-dependent phase coupling in the gamma 

range in visual areas of cats (Eckhorn et al. 1988; Molotchnikoff and 

Shumikhina 2000). Later, similar findings were observed for intracranial 

recordings from awake monkeys (Eckhorn et al. 1993; Kreiter and Singer 1996) 

and in human EEG (Lutzenberger et al. 1995; Müller et al. 1997). These studies 

showed that synchronization in the gamma band was not induced by anesthesia 

but was even more pronounced in awake and attentive animals (Kreiter and 

Singer 1992, 1996; Fries et al. 1997; Friedman-Hill et al. 2000; Maldonado et al. 

2000). 

 

Singer and Gray (1995) have shown that specialized cell assemblies 

synchronize at distinct frequencies. Several authors working with unit 

recordings in animals have suggested an important role of oscillatory 

synchronization in the gamma band in neuronal assemblies representing the 

same object (Singer and Reed 1997). Tsunoda et al. (2001) studied object 

representation in macaque monkeys by visually presenting complex natural 

objects and simplified models thereof. After analyzing a combination of optical 

imaging and extracellular recordings, their results proposed a scheme in which 

an object is represented by different combinations of activated and inactive 

neuronal assemblies responsible for different object features. This activation 

could be detected in the gamma band and emerged from synchronized 

neuronal assembly firing. 
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Gamma-band oscillations do not only play an important role in object 

recognition, but are also involved in higher cognitive tasks such as auditory 

word perception. Pulvermüller et al. (1996) used MEG to assess gamma-band 

responses to the presentation of meaningful words and matched pseudowords. 

They found a depression of activity in the low gamma band at approximately 

30 Hz after the presentation of pseudowords but not after the presentation of 

words. The authors concluded that the task-dependent patterns of GBA 

reflected different cognitive processes caused by words and pseudowords. 

Palva et al. (2002) examined the differences in perception of speech compared 

to non-speech sounds. They showed that stimulus-induced GBA after speech 

sounds peaked earlier in the left than in the right hemisphere. After the 

presentation of non-speech sounds, GBA peaked earlier in the right 

hemisphere. They suggested that evoked GBA could be sensitive to high-level 

stimulus properties and might reflect the neural representation of speech 

sounds. 

 

Swettenham et al. (2009) examined the role of gamma oscillations for motion 

detection in a visual task. They used MEG to record gamma oscillations in 

human early visual cortex when subjects were presented with either stationary 

or moving stimuli. They could show motion-induced frequency increases in the 

gamma range. They concluded that early visual areas encode moving or 

stationary objects at distinct gamma frequencies. 

 

By analogy to the visual system, several studies have examined the role of 

gamma-band oscillations for auditory perception both in animals and humans. 

In several MEG studies, Kaiser et al. (2002) investigated the notion of different 

specialized brain areas for the processing of either auditory pattern or spatial 

information. They presented sounds at different lateralization angles. Enhanced 

GBA to lateralization changes was found over temporo-parietal cortex at distinct 

frequencies between 63 and 83 Hz. These findings replicated the results of a 

previous study showing the involvement of posterior temporo-parietal areas in 

auditory spatial processing (Kaiser et al. 2000b). 
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Gurtubay et al. (2006) used an auditory search task to determine whether 

oscillatory GBA modulates afferent information. Subjects had to detect a 

randomly appearing silent period in a rhythmic auditory sequence. This task 

induced non-phase-locked gamma oscillations in temporo-parietal areas. The 

authors suggested that this induced activity is a neuronal correlate of stimulus 

detection and memory processes. Their results also revealed a positive 

correlation of GBA and task performance. 

 

Several intracerebral electroencephalography (iEEG) studies in patients have 

found evidence for GBA in higher-order regions such as Broca’s area and 

auditory and prefrontal cortices (Mainy et al. 2008). Jensen et al. (2007) 

interpreted these findings as an indicator for communication between sensory 

and higher-order cortical regions. This notion is supported by further findings by 

Mainy et al. (2008) who demonstrated simultaneous gamma-band responses to 

letter presentation in Broca’s area and visual regions, respectively. 

 

2.1.5.2 Attention 

 

Brain activity in general is modulated by different states of activation and 

arousal. Performance in, e.g., memory tasks strongly depends on these 

modulations. This process of focusing is referred to as ‘attention’. Attention is 

the cognitive process of selecting one aspect of the environment while ignoring 

others (Anderson 2004). Attention can target different sensory systems: it can 

be either concentrated on visual, auditory, tactile, any other input or a 

combination thereof. Human sensory systems have limited processing 

capacities. Attention prevents our consciousness from being exposed to 

excessive amounts of information and helps to detect attended stimuli or 

stimulus features which contain important information for behavior and decision-

making. Thus, attention plays a vital role in effective cognitive processes. 
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At the physiological level, attention is thought to enhance the relative ability of 

neurons representing specific stimuli in sensory cortical areas to affect 

downstream cortical areas (Treue 2001). One possible model uses neuronal 

synchronization to explain this modulation of brain activity. Neurons receiving 

synchronized input at various synapses are more likely to fire (Salinas and 

Sejnowski 2001). Fries et al. (2001) have suggested that this synchronized 

neuronal activity is mediated by high gamma activity. As one of the neuronal 

correlates of attention is enhanced firing, different studies have examined 

neuronal activity during the unattended presentation of a specific stimulus. The 

experimental condition consisted of the presentation of the same stimulus, but 

the subjects had to focus their attention on the stimulus. Using this paradigm, 

differences in neuronal firing could be attributed to a change of mental state 

rather than to differences in the perceived information. Womelsdorf et al. (2006) 

examined receptive visual fields in rhesus macaque monkeys. They 

demonstrated that focussing voluntary perception effectively improves visual 

perceptive processes. 

 

In another study, Womelsdorf et al. (2007) have shown that attention processes 

rely on a selective synchronization of rhythmic responses of neurons specifically 

tuned to features of attended stimuli. They have also shown a positive 

correlation between the strength of neuronal synchronization in the gamma 

range, perceptual accuracy and behavioral efficiency. These results support the 

model of neuronal synchrony in the gamma range being one of the cellular 

mechanisms underlying attention processes and relevant behavioral changes. 

 

Similar conclusions were also drawn from several EEG and MEG studies in 

humans. GBA was higher for attended visual and somatosensory stimuli than 

for unattended stimuli (Howard et al. 2003; Tallon-Baudry et al. 2005; Bauer et 

al. 2006). Mainy et al. (2007) conducted an MEG study which showed increased 

GBA in cortical areas representing attended stimuli for both visual and auditory 

stimulation. An increase of gamma-band responses has also been found in 

intracranial recordings in the lateral occipital cortex and the fusiform gyrus in 
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subjects focusing their visual attention towards the position of an attended 

target (Tallon-Baudry et al. 2005). 

 

These results strongly support the notion that neuronal synchrony in the gamma 

band mediates attention mechanisms (Fell et al. 2003a). Taking into account the 

results quoted above, attention thus involves synchronized activity in the 

gamma band to tune neuronal activity to specific sensory input. This information 

can then later be used for higher cognitive functions like memory or 

decision-making. 

 

2.1.5.3 Memory 

 

In order to cope with everyday tasks, basic memory functions are required: 

information has to be perceived, then memorized and, if needed, retrieved to be 

used again. There have been various studies on visual and auditory working 

memory tasks looking for the precise topographical and temporal underpinnings 

of these functions. 

 

2.1.5.3.1 Short-term memory 

 

Decision-making in daily life often depends on the comparison and assessment 

of stored information involving different types of memory. The ability to store 

information for a few seconds so that it can be used in the service of ongoing 

cognitive tasks is referred to as working or short-term memory. It is defined as 

the capacity to maintain and manipulate information that is no longer present in 

the environment (Baddeley 1992). 

 

I have already described in the ‘Perception’ section that the representation of a 

specific stimulus is thought to rely on synchronously oscillating assemblies of 

neurons. A putative mechanism for maintenance of this stimulus information in 



2. Background  18 

short-term memory is a memory trace established by sustained oscillations 

(Tallon-Baudry et al. 1998). This explanation is in line with Hebb’s (1949) 

proposal that neuronal representations can be sustained by persistent firing of 

recurrently connected neurons. 

 

Thus, synchronized oscillatory activity in the gamma band seems to play an 

important role in working-memory tasks. This hypothesis was supported by 

findings of Tallon-Baudry et al. (1998). They used EEG to assess induced GBA 

during the delay phase of a visual short-term memory task in humans. 

Enhanced GBA could be observed at both occipito-temporal and frontal 

electrodes during the maintenance of abstract visual shapes while it was absent 

in a control task which did not require memorization (Tallon-Baudry et al. 1998). 

Tallon-Baudry et al. hypothesized that GBA seems to be a specific functional 

correlate of sustained object maintenance in short-term memory. The results are 

depicted in Figure 2. 
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Figure 2. (A, left column): time-frequency (TF) plots of the energy at electrode C3, 

averaged across single trials for all subjects for the memory condition (upper graph) and 

the control (= dimming) condition (lower graph). Time is shown on the abscissa; 

frequency is displayed on the ordinate using a logarithmic scale. Energy differences are 

shown using a color scale: yellow codes for an increase of energy while red shows a 

decrease. Enhanced high-frequency activity could be identified at three time points: (1) 

280 ms after stimulus onset (ON response), it was higher in the memory than in the 

control condition; (2) 680 ms after stimulus onset (OFF response), similar in both 

conditions; and (3) 700-1000 ms after stimulus onset during the retention phase, in the 

memory condition only. (B, right column): TF-plots of the energy of the averaged evoked 

potential at electrode C3, grand average across subjects for memory condition (upper 

line) and control (= dimming) condition (lower line). Only phase-locked activities that 

appear at a fixed latency from one trial to the next can be identified in these plots. These 

results suggest that the three areas of enhanced GBA in (A) correspond to induced 

activities. These activities appear with a latency jitter with respect to stimulus onset time 

from one trial to the next. (Figure from Tallon-Baudry et al. 1998)  
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To assess whether the memory-related GBA was temporally sustained, 

Tallon-Baudry et al. (1998) replicated their visual search task with variable delay 

durations. They found that active maintenance of abstract visual shapes in 

short-term memory was characterized by enhanced gamma-frequency power at 

occipital EEG electrode sites. The time course of this activity varied according to 

the duration of the retention interval (Tallon-Baudry et al. 1999). These results 

underlined the importance of oscillating synchronized cell assemblies for the 

formation of short-term memory. 

 

An MEG study identified sustained GBA in a spatial, delayed match-to-sample 

task (Jokisch and Jensen 2007). Subjects had to memorize the orientation of 

faces during a 3-s retention period. Jokisch and Jensen found sustained 

gamma activity during the retention period occurring over occipital areas. The 

information presented so far suggests that synchronized oscillatory activity in 

visual cortex, e. g. over occipital areas, is involved in the maintenance of visual 

information in short-term memory. However, higher-order areas are probably 

also involved in memory processes (Jokisch and Jensen 2007). 

 

While the studies quoted above have investigated the role of gamma 

oscillations during visual short-term memory, several studies have examined 

auditory short-term memory. In precursor studies to the present one, increased 

GBA was detected during auditory short-term memory tasks. MEG revealed 

oscillatory GBA over left parietal cortex during the retention period. Additionally, 

gamma-band coherence was enhanced between left parietal and right frontal 

sensors (Lutzenberger et al. 2002). These findings supported the notion of 

memory being established by synchronized oscillatory activity in a distributed 

auditory working memory system. Kaiser et al. (2003a) used MEG to examine 

GBA during an auditory pattern memory task. They found memory-related 

increases in gamma-frequency power over left inferior frontal and anterior 

temporal cortex during the retention period. 
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Two other studies showed evidence for memory-related sustained GBA outside 

early sensory cortices. Howard et al. (2003) and Mainy et al. (2007) asked 

patients to memorize visually presented letters. They both reported an increase 

of GBA with memory load in nonvisual cortical areas. Mainy et al. (2007) found 

sustained gamma oscillations in regions associated with phonological 

processing including Broca’s area and both auditory and prefrontal cortices. 

 

These findings suggest that synchronized oscillatory activity in the gamma band 

in sensory and association areas contributes to the maintenance of stimulus 

information in short-term memory. Another important finding is that the 

localization of this activity depends on the type of information that has to be 

retained. GBA during short-term memory tasks may thus reflect a higher-level 

representation of relevant information (Jensen et al. 2007). 

 

2.1.5.3.2 Long-term memory 

 

While short-term or working memory is needed to store information for short 

periods of a few seconds so that it can be used in ongoing cognitive tasks, 

long-term memory serves as a permanent storage of memories. This 

information is handled by large distributed networks of cortical areas (Martin et 

al. 1996). These networks contribute to different kinds of information 

processing, including the comparison of known objects with newly perceived 

stimulus information. 

 

There is evidence to suggest that synchronized oscillatory activity in the gamma 

band plays a role in encoding long-term memory by modifying synaptic 

connections. This was first described as a mechanism for learning and memory 

on the basis of a theoretical analysis by Hebb (1949) who proposed that if a 

neuron influences the activity of other neurons, their synaptic connection will be 

potentiated. By contrast, synaptic depression can occur if two neurons are not 

sufficiently coactive (Stent 1973; Sejnowski 1977). These two theoretically 
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proposed forms of synaptic plasticity have their experimental correlates in 

long-term potentiation (LTP) and long-term depression (LTD). In a previous 

study, it has been shown that synaptic plasticity is modulated by the timing of 

synaptic discharges with respect to the phase (e. g. peak or trough) of 

oscillatory gamma activity (Wespatat et al. 2004).  

 

Human EEG and MEG studies concerning GBA and effective formation of 

long-term memory have been performed by Gruber et al. (2004), Osipova et al. 

(2006) and Sederberg et al. (2003; 2007). They have demonstrated that the 

presence of oscillatory GBA at encoding positively correlated with successful 

retrieval from long-term memory. They hypothesized that synaptic changes in 

downstream areas could be induced by synchronized gamma activity in early 

visual areas. Similar results have been found using intracranial recordings in 

epileptic patients. Fell et al. (2001) found that successful formation of long-term 

memory corresponded with gamma-band synchronization in the hippocampus. 

The studies presented above have examined the role of oscillatory activity in 

the gamma band for the encoding into long-term memory. On the other hand, 

gamma-band oscillations have also been shown to play an important role for 

retrieval from long-term memory (Gruber et al. 2004; Osipova et al. 2006). The 

subjects were shown different stimuli they had to memorize. Correctly 

remembered stimuli caused an increase of GBA compared with unknown items. 

Hermann et al. (2004a) and Osipova et al. (2006) have suggested that gamma 

oscillations in the occipital cortex reflect visual representations of recalled 

objects. 

 

All the studies quoted above have provided evidence for the role of 

gamma-band oscillations for effective encoding into and retrieval from long-term 

memory. Oscillatory activity in the gamma band may represent a means of 

creating and accessing memory traces in the human brain. 
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2.2 Auditory processing 

 

Audition is besides vision one of our most powerful sensory systems and it 

contributes to various everyday tasks. Auditory information is not just 

supplementary to visual input - even when objects are not visible, we can most 

often distinguish their origin and properties. These two different qualities, spatial 

localization and auditory patterns, both have to be perceived and processed to 

form one coherent perception of a sound source. Exploring the auditory system 

with functional brain imaging methods as EEG, MEG or functional magnetic 

resonance imaging (fMRI) requires general knowledge about functional brain 

structure. Therefore, a short overview of the assumed localization of brain areas 

involved in auditory perception is given in this section. 

 

Auditory perception and processing begins at the outer ear where sound waves 

are reflected and attenuated by the folds of cartilage. This adds information 

about the localization of sound sources. The signal then enters the ear canal 

toward the tympanic membrane which marks the beginning of the air-filled 

middle ear. The sound waves are transmitted by three small bones – the 

malleus, incus and stapes – on another membrane called the oval window. This 

is the beginning of the inner ear containing the cochlea. The organ of Corti in 

the cochlea transforms the mechanical sound wave information into electrical 

signals. This is mediated by hair cells which are afferently connected to primary 

auditory neurons. These form the vestibulocochlear nerve. The following 

auditory pathway includes several intermediate stages where sound information 

is further processed. First, the information is processed at the level of the 

brainstem in the cochlear nucleus and in the superior olivary complex. Sound 

information travels to the inferior colliculi and is then transmitted to the medical 

geniculate nucleus which is part of the thalamic relay system. Auditory 

information is relayed to the primary auditory cortex which is located in the 

temporal lobe. The perception and processing of auditory signals takes place in 

the range of the superior temporal gyrus (STG). This region is split in primary 

(Brodmann area 41) and secondary (Brodmann area 42, 22) auditory cortex. 
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The primary cortex has a frequency-dependent (tonotopic) structure. The 

secondary auditory cortex or association area plays an important role for the 

processing of more complex acoustic signals (Hudspeth 2000; Trepel 2008). 

 

2.2.1 Animal studies 

 

The structures presented above form the auditory system responsible for 

perception and first processing steps of auditory information. By contrast, 

higher-order processing of stimulus information takes place in specialized brain 

regions that are located outside of the primary cortex. These regions process 

distinct stimulus features and interact with each other in order to form coherent 

perception. A similar specialization has been shown for the visual system. 

‘What’ and ‘where’ streams for visual perception have been first described in 

nonhuman primates. This notion was based on different behavioral effects of 

brain lesions in monkeys (Ungerleider et al. 1982). These findings have led to 

the identification of a ventrolateral object and a dorsolateral spatial processing 

stream (Ungerleider et al. 1982; Wilson et al. 1993; Webster et al. 1994). 

 

Rauschecker (1998b) proposed the presence of similar pathways for auditory 

processing in the macaque monkey. He hypothesized two separate streams for 

the processing of spatial information and patterns, respectively. Romanski et al. 

(1999) identified such pathways in macaque monkeys. They combined 

microelectrode recordings with anatomical tract tracing to assess the existence 

of two separate auditory streams. They found evidence for the presence of two 

different streams originating in separate auditory fields of the superior temporal 

region and projecting to distinct regions of the frontal lobes. The dorsal stream 

projects from the caudolateral field to caudal dorsolateral prefrontal cortex, 

while the ventral stream targets rostral and ventral prefrontal areas from the 

anterolateral field. As these target regions have been described as either spatial 

(dorsal prefrontal region) or non-spatial (ventral prefrontal region) functional 

domains (Goldman-Rakic 1987; Wilson et al. 1993; Goldman-Rakic 1996), 

Romanski et al. (1999) hypothesized that the two separate streams have 
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different functions. The dorsal stream could serve as a ‘where’ stream, while the 

frontal pathway processes ‘what’ information. A simplified model of the two 

separate auditory streams is depicted in Figure 3. 

 

 

 

Figure 3. Schematic model of ‘where’ and ‘what’ streams in the auditory cortical system 

of primates. The dorsal ‘where’ stream is illustrated by the purple arrows, the ventral 

‘what’ stream is shown in green. PP, posterior parietal cortex; CL, caudolateral area; AL, 

anterolateral area. (Figure from Rauschecker and Tian 2000, modified) 

 

These findings were also examined using single-cell recordings in monkeys. 

A study by Tian et al. (2001) investigated the existence of a specialized ‘where’ 

region in the auditory cortex by identifying regions in which neurons show 

greater specificity for auditory spatial information than others. Using response 

profiles of single neurons to differently located sound sources, they found a 

clear dissociation of auditory spatial tuning between anterior and caudal belt in 

the auditory cortex. Specificity for auditory spatial properties was found to be 

most pronounced in the caudolateral field, while it was lowest in the 

anterolateral field. This has also been shown in other studies (Rauschecker et 

al. 1997; Recanzone et al. 2000). These results have supported a functional 
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specialization within the cortex of monkeys, as the caudolateral field could be 

regarded as the source of a dorsally oriented ‘where’ stream (Tian et al. 2001). 

On the other hand, the anterolateral field seems to be part of a rostrally oriented 

pathway that is supposed to be specialized in the processing of ‘what’ 

properties of auditory information (Belin et al. 2000; Binder et al. 2000) rather 

than spatial information (Tian et al. 2001). This supports the notion of 

specialized higher-order processing streams for auditory perception in 

non-human primates (Romanski et al. 1999; Rauschecker and Tian 2000). 

These studies have supported the notion that auditory processing is functionally 

separated in the primate cortex. This separation has also been investigated in 

several studies in humans. 

 

2.2.2 Human studies 

 

By analogy to the findings in non-human primates, a model of two parallel 

auditory processing streams has been proposed in recent human brain 

research: a ventral pathway located in the temporal lobe and responsible for 

auditory pattern processing and a dorsal pathway in the parietal lobe which 

processes auditory spatial information (Rauschecker 1998b). 

 

Arnott et al. (2004) have reviewed this hypothesis in a meta-analysis of 

36 auditory studies in humans using fMRI and positron emission tomography 

(PET). The studies were divided into either spatial studies involving different 

sound locations or non-spatial studies involving different sound patterns in 

identical position. The results of this meta-analysis were consistent with the 

auditory dual-pathway model (Rauschecker and Tian 2000). The authors 

concluded that auditory spatial information is processed in the lateral inferior 

parietal lobe (IPL), superior frontal sulcus (SFS) and posterior areas of the 

temporal cortex. Even though not all of the areas mentioned above were 

activated in every spatial study, Arnott et al. (2004) suggested them to be part of 

a neuronal network processing auditory spatial information. Conversely, the 

anterior temporal lobe seemed to play an important role for non-spatial auditory 
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tasks, as this area was almost exclusively involved in non-spatial processing. 

These findings were in line with the results from previous animal studies 

(Romanski et al. 1999; Rauschecker and Tian 2000; Romanski and 

Goldman-Rakic 2002). Arnott et al. (2004) concluded that the reviewed results 

strongly support the notion of specialized spatial and non-spatial processing 

networks in the human brain. 

 

Altmann et al. (2007) tested this proposed segregation of human auditory 

processing with EEG and fMRI in the same subjects. They listened to 

sequences of repetitive spatial animal vocalizations. The stimuli consisted of 

two different animal vocalizations and were spatially localized either 90° to the 

left or to the right. Both vocalization types were presented at both lateralization 

angles, so the subjects were stimulated with four different stimuli. The authors 

used a roving-stimulus mismatch paradigm to contrast the different conditions. 

Possible changes consisted of a simple location or pattern change or a 

combined location and pattern change. FMRI revealed significantly increased 

responses in the bilateral anterior superior temporal gyrus and superior 

temporal sulcus, the planum polare, lateral Heschl's gyrus and anterior planum 

temporale for pattern changes. Changes in sound source location resulted in 

significantly increased fMRI responses in bilateral posterior superior temporal 

gyrus and planum temporale. In the EEG analysis, Altmann et al. (2007) found 

that location changes were processed faster than pattern changes (see also 

Kaiser et al. 2000a). They suggested that the human brain is segregated in 

different auditory processing streams. Apparently, anterior parts of the superior 

temporal lobe play an important role for sound pattern processing while more 

posterior parts of the superior temporal lobe are involved in spatial processing 

of auditory information. 

 

Previous MEG studies have also found reproducible evidence for this structure 

of auditory processing areas. This segregation in different processing streams 

could be shown in passive change detection tasks. Kaiser et al. (2000b) used 

an auditory oddball paradigm. They presented a monosyllabic word which was 

either right- or left-lateralized and compared it to the same word presented at 
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the midline plane. Higher amplitudes of evoked mismatch fields were found 

contralaterally to the side of the deviant stimulus. In the left supratemporal 

plane, the response was faster for contralateral than ipsilateral deviants, while 

there was no difference for the right-hemisphere response. Kaiser et al. (2000b) 

reported induced GBA over right posterior parietal and posterior temporal 

regions for both deviants. In homologous left-hemisphere regions, increased 

GBA was only shown for rightward sound-source shifts. The authors concluded 

that their findings might support the notion of posterior parietal networks playing 

an important role for the coding of auditory space. 

 

In a subsequent study, Kaiser et al. (2002) used MEG to examine gamma-band 

responses to changes in auditory patterns. They presented consonant-vowel 

syllables, animal vocalizations and artificial noise stimuli which differed in their 

spectral composition. They found increased GBA over the left anterior 

temporal/ventrolateral prefrontal cortex for all types of stimuli. The authors 

concluded that these activations supported the role of anterior 

temporal/prefrontal regions in the processing of auditory pattern changes. 

 

Auditory short-term memory tasks also supported the existence of different 

auditory processing streams. Lutzenberger et al. (2002) used pairs of filtered 

noise stimuli in a delayed matching-to-sample task. They presented two stimuli 

S1 and S2 with an interstimulus interval of 800 ms. Both stimuli had different 

possible lateralization angles. Subjects had to judge whether the lateralization 

angle of the second stimulus differed from the first one. In a control condition, 

they had to detect a possible sound volume change. The authors observed 

increased GBA in MEG sensors over the parietal cortex and enhanced 

gamma-band coherence between left parietal and right frontal sensors in the 

delay phase of the memory task. They assumed that this parietal activation 

contributes to the processing of audiospatial information in the auditory dorsal 

stream. Lutzenberger et al. suggested that the enhanced gamma-band 

coherence between parietal and frontal regions might reflect increased coupling 

between areas forming a working memory network. Furthermore, they 

concluded that GBA over inferior frontotemporal regions during the volume 
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change task might represent auditory pattern encoding in auditory ventral 

stream areas. 

 

Kaiser et al. (2003a) used an auditory pattern memory task to assess GBA with 

MEG while subjects performed a working memory task requiring same-different 

judgments about pairs of syllables. The syllables differed either in voice onset 

time or formant structure and were presented using an interstimulus interval of 

800 ms. In a control task, subjects had to detect possible spatial changes of the 

background noise. In the memory condition, Kaiser et al. (2003a) found an 

increase in GBA over left inferior frontal/anterior temporal regions during the 

delay phase and in response to the second stimulus. GBA was also enhanced 

over prefrontal cortex at the end of the delay period of the memory condition. 

The results are depicted in Figure 4. Furthermore, gamma-band coherence 

between left fronto-temporal and prefrontal sensors was enhanced during the 

delay phase. The authors concluded that oscillating networks in fronto-temporal 

cortex contribute to a putative auditory ventral pattern processing stream. 

 

 

 

Figure 4. Topography and time course of magnetoencephalographic GBA during an 

auditory pattern short-term memory task. (a) Projection of MEG sensor positions (small 

circles) onto a two-dimensional magnetic resonance image of the brain surface (seen 

from above, nose up). (b) Map with anatomical landmarks derived from the magnetic 

resonance image (ce.s, central sulcus, po.s, parieto-occipital sulcus, ca.s, calcarine 

sulcus, an.g, angular gyrus, sm.g, supramarginal gyrus). (c) The map shows the locations 
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of MEG sensors projected onto the map from part (b) of the figure to depict the 

topography of significant GBA increases. The graph below shows the time course of 

statistical differences (p-values) between experimental and control condition for each of 

the sensors (see numbers to assign p-value curves to sensor positions). Midline frontal 

GBA was increased during the auditory pattern short-term memory task (mem pattern) at 

67 ± 2.5 Hz in addition to left inferior frontal, putative ventral stream areas. (Figure from 

Kaiser and Lutzenberger 2005a, modified) 

 

Bidet-Caulet and Bertrand (2005) used EEG to examine the notion of putative 

‘what’ and ‘where’ pathways. Subjects were presented with pitch-varying 

acoustic streams alternating with spatially varying streams. In the attention task, 

subjects had to follow the sound variations and report the changes. In the 

control task, subjects had to focus on a noise-burst at the end of the streams. 

The authors reported an activation of a temporo-parieto-frontal network during 

all conditions, whereas the left superior temporal cortex was the only region 

which showed different activations for spatial versus pitch variations. They 

concluded that parietal and frontal regions were involved in attention processes 

and motor preparation. By contrast, they suggested that the differential 

processing of spatial versus non-spatial auditory features takes place at the 

level of the temporal cortex which is in accordance with the results quoted 

above. 

 

The presence of two specialized auditory processing streams could also be 

shown for auditory decision making by Kaiser et al. (2007a). They investigated 

the temporal dynamics of decision making during an auditory task with MEG. 

They presented two stimuli S1 and S2 with an interstimulus interval of 200 ms. 

The stimuli consisted of syllables which could differ either in their spatial or 

pattern characteristics. The level of difficulty was adjusted to form easy or 

difficult trials by varying the similarity of S1 and S2. The analyses showed 

enhanced GBA over posterior parietal cortex for spatial and over left inferior 

frontal cortex for pattern changes at 120 to 200 ms after S2 onset. These 

responses were more pronounced for easy compared to difficult trials. A later 

gamma-band component was found at approximately 280 to 430 ms after S2 

onset over dorsolateral prefrontal cortex, which was stronger for easy than 
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difficult trials. These results underline the notion of two specialized auditory 

processing streams and illustrate the temporal dynamics of perceptual decision 

making. 

 

Even though the studies quoted above have provided evidence for a system of 

separate auditory processing streams, it is still argued if the dorsal pathway is 

clearly specialized for the processing of spatial information. Zatorre et al. (2002) 

used PET to examine the functional characteristics of auditory cortical areas 

that are sensitive to spatial cues. Subjects were presented with differently 

lateralized environmental sounds or white noise bursts. The authors found 

activations over the posterior auditory cortex for stimuli which varied in spatial 

characteristics only if multiple complex stimuli were presented simultaneously. 

They concluded that both spatial and pattern characteristics might interact 

within in the dorsal pathway. 

 

In summary, most of the studies quoted above support the notion of two 

specialized auditory processing streams in humans. While spatial information 

seems to be mainly processed in posterior areas of the temporal cortex, anterior 

temporal regions play an important role in the processing of non-spatial auditory 

information. 
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2.3 Magnetoencephalography 

 

Human brain function can be studied non-invasively based on analysis of data 

acquired using various brain imaging techniques like EEG, MEG and fMRI. 

FMRI measures increases in hemodynamic activity using the blood oxygen 

level dependency (BOLD)-effect. FMRI signals are generated by changes of 

blood oxygenation associated with brain activity and peak in the range of 

seconds after neuronal activity. Therefore, the temporal resolution of fMRI is 

low. By contrast, its spatial resolution lies within the range of millimeters. This 

makes fMRI the appropriate technique for localizing the sources of neuronal 

activity. 

 

EEG is the most established brain imaging method which has been known for 

almost a century (Berger 1929). It records voltages from electrodes placed on 

the scalp and has a high temporal resolution in the range of approximately 

1 ms. However, the spatial resolution of high-density electrode arrays lies within 

the order of centimeters. MEG, by contrast, records magnetic fields generated 

by cortical neurons. This is performed by using superconductive quantum 

interference devices (SQUIDs) placed above the head. Its temporal resolution is 

similar to the EEG but it is more sensitive to signals with smaller amplitudes. Its 

spatial resolution is superior compared to EEG as the magnetic signals are less 

distorted by the skull and scalp (Cuffin and Cohen 1979). As both EEG and 

MEG offer the best temporal resolution in noninvasive brain imaging methods, 

they serve to examine the timing of complex cognitive processes (Gevins 2002). 

 

Both EEG and MEG reflect electric activity in cortical neurons. MEG data 

acquisition is based on measurements of magnetic fields which derive from the 

net effect of ionic currents flowing in neurons and dendrites during synchronized 

synaptic transmission (Hämäläinen and Hari 2002). These postsynaptic currents 

derive from parallelly arranged cortical pyramidal cells. A simplified illustration of 

the cortical origin of surface signals is depicted in Figure 5. 
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Figure 5. Postsynaptic potentials of aligned cortical pyramidal cells sum up and form 

synchronized potentials. These can be measured over the scalp using either EEG or 

MEG. (Figure P. Fries, FC Donders TOOLKIT Course, Nijmegen, Netherlands, 2006) 

 

According to the principles of Maxwell’s equations, electric currents induce an 

orthogonally oriented magnetic field. A current dipole model is used as an 

equivalent source for a primary electrical current causing the magnetic fields 

measured with MEG. The magnetic field generated by a current dipole is 

rotating around the axis of the electric vector component. This dipole is formed 

by aligned cortical pyramidal cell patches of at least 104 to 105 cells. Fewer 

neurons do not produce sufficiently strong currents to be seen on the surface. 

The orientation of these activated cortical cells is important because MEG is 

limited to the measurement of magnetic flux exiting and entering the skull. This 

is only caused by sources that are situated tangentially to the head; radial 

sources do not produce net magnetic fields outside the skull. Figure 6 illustrates 

a model of electric currents and the resulting magnetic field over the human 

skull. 
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Figure 6. Generation of EEG/MEG signals. Simplified model of the generation of 

magnetic fields measured by MEG. Postsynaptic potentials of aligned cortical cells sum 

up to form a current dipole. The current in the dipole generates an orthogonally oriented 

magnetic field. This field exits and enters the skull if the dipole source is located 

tangentially to the skull. (Figure from VSM MedTech Ltd., Port Coquitlam, Canada) 

 

The neuromagnetic signals generated by the brain are extremely weak 

compared to the earth’s magnetic field. They can only be recorded with SQUIDs 

which are extraordinarily sensitive magnetic field-to-voltage transducers, see 

Figure 7. They are placed in a helmet-shaped liquid helium cryogenic vessel 

(Dewar) at a temperature near 4.2 K (-268.95 °C) to obtain superconductivity. 

The magnetic fields from the brain generate minuscule currents within the flux 

transformer circuit. The low-level voltage output from the SQUIDs is later 

amplified before being processed (VSM MedTech Ltd. 2005). 
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Figure 7. Superconductive quantum interference device. The device consists of a 

superconducting ring (light grey) which is separated by two thin insulating layers (dark 

grey). These gaps are called Josephson junctions. Both parts of the superconducting ring 

are connected to a direct current. Changes of the magnetic field passing through the 

SQUID result in voltage changes. This voltage variation is detected. (Figure from 

http://hyperphysics.phy-astr.gsu.edu/Hbase/solids/squid.html, modified) 

 

The present study was conducted with a whole-head magnetoencephalography 

system (VSM MedTech Ltd., Port Coquitlam, Canada) at the Brain Imaging 

Center (BIC), Frankfurt/Main, Germany. The system is located in a magnetically 

shielded room (VAC, Hanau, Germany), see Figure 8. Neuromagnetic signals 

are typically 50-500 fT (Hämäläinen et al. 1993) while the earth’s geomagnetic 

field is about 108-109 times bigger. Therefore, magnetic shielding is necessary 

to reduce external magnetic signals emanating from moving magnetized objects 

such as, e.g., trains or other sources like radio fields. Additional noise 

cancellation is performed by the gradiometer technology and additional 

channels inside the Dewar mounted above the main sensors to deliver a 

reference signal of background noise. This signal is subtracted from the normal 

channel output to reduce external noise (Vrba and Robinson 2001). 
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Figure 8. MEG system Frankfurt/Main, Germany. The VSM whole-head 

magnetoencephalography system in the magnetically shielded room. Subjects are placed 

in a reclining chair and the chair’s position is adjusted to fit the subject’s head into the 

MEG helmet. The sensors are placed inside the Dewar filled with liquid helium. (Photo U. 

Wibral) 
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Unlike EEG, subjects are not fixed to the MEG helmet, so excessive head 

movements have to be avoided in order to guarantee correct signal-source 

assignment. Therefore, head movements are monitored. Head localization is 

performed using specially designed coils fixated at the preauricular points and 

the nasion. The coils are simultaneously energized at different frequencies 

through a head localization unit while their positions are determined by special 

tracking software before and after every measurement. 
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2.4 Aims and hypotheses 

 

The role of oscillatory activity in the gamma band has been examined for 

various higher cognitive processes. Previous studies applied different 

experimental conditions to assess possible functions of GBA. They could show 

task-specific GBA increases. However, there is little evidence in support of the 

notion that GBA reflects the representation of individual stimuli or even of 

specific task-relevant stimulus features. If GBA underlies the activation of object 

representations, it should be possible to identify stimulus-specific components 

of GBA during information maintenance in short-term memory. These 

components might be characterized by distinct spectral and topographical 

properties. 

 

In this study, I aimed at identifying gamma-band components that represent 

local synchronized networks tuned to specific auditory stimulus features. I used 

MEG to assess GBA during the maintenance of auditory stimuli in short-term 

memory. To examine stimulus-specific GBA, I focused on the spectral and 

topographical characteristics of GBA for each stimulus. The stimuli used in the 

present study differed in their perceived lateralization angles, as I aimed at the 

identification of gamma-band components reflecting neuronal networks tuned to 

auditory spatial characteristics. By analogy to previous studies quoted in the 

‘Auditory processing’ section, increased GBA was expected over areas of the 

putative dorsal auditory stream responsible for the processing of auditory spatial 

information. 

 

The second aim of the study was to identify possible correlations between the 

activation strength of the GBA and memory performance. If GBA reflected the 

perception and maintenance of task-relevant stimulus characteristics in 

short-term memory, an activation of the regions involved should contribute to 

task performance. Thus, I expected a positive correlation between the 

magnitude of oscillatory components and task performance. 
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3. Material and methods 
 

 

3.1 Subjects 

 

28 adults gave their informed and written consent to participate in the study. The 

study population consisted of 18 male (64.3 %) and 10 female (35.7 %) 

subjects. Age ranged from 21 to 30 years with an average of 25.4 years 

(SD = 2.3 years). Subjects were paid € 10 per hour for participation. The study 

was approved by the ethics committee of the University of Frankfurt Medical 

Faculty. 

 

Subjects were randomly assigned to either group R or group L. Both groups 

were equally balanced and consisted of 9 male and 5 female subjects and did 

not differ in age (R: 24.8 years [SD = 2.1 years], L: 26.0 years [SD = 2.5 years], 

t26 = 1.40). Group L received lateralized stimuli left from the midsagittal plane, 

group R right from the midsagittal plane. Lateralization angles and stimulus 

characteristics are described in more detail in the following section 

‘Experimental procedure and stimulus materials’. 

 

All 28 subjects were healthy adults. Before being included in the study 

population, subjects were interviewed about the following exclusion criteria: 

- Claustrophobia 

- Hearing deficits 

- Ferromagnetic implants 

 

Each participant was given a written and oral introduction to the experiment. For 

the consent form (12.1), the information sheet (12.2) and the written instructions 

(12.3), please refer to section 12 ‘Appendix’. 
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3.2 Experimental procedure and stimulus materials 

 

Subjects had to change into metal-free clothing and were seated upright on a 

hydraulic chair of the whole-head MEG system in the magnetically shielded 

room (VAC, Hanau, Germany). They had to place their heads in the MEG 

helmet and then were fixated with an air-filled head stabilizer in order to 

minimize head movements during the recordings. Participants were instructed 

to sit still and keep their eyes open, looking at a fixation cross in the center of 

their visual field about 2 m in front of them. The room was lit during data 

collection. Auditory stimuli were presented binaurally via air-conducting tubes 

with ear inserts (E-A-R-Tone 3 A, Aero Corporation, Indianapolis, USA). 

 

The trial structure is depicted in Figure 9. The trial onset was characterized by 

soft low-pass filtered midline noise (at 6 kHz: -24 dB/octave) presented for 

300 ms. Then the first lateralized stimulus S1 (sample stimulus) was presented 

for 200 ms. The intensity of the background sound and the sample stimuli 

measured with a Reed 120-0014 sound level meter (TechniCal Systems Inc., 

Hamilton, Canada) amounted to 85 dB(A) and 98 dB(A), respectively. The 

intensity of the sample sounds was thus in the range that has been shown to 

elicit pronounced evoked gamma responses to sinusoidal tones in EEG 

(Schadow et al. 2007). Lateralized sounds were generated by convolution with 

head-related transfer functions (HRTF) (Gardner and Martin 1995), creating the 

impression of lateralized sounds in extrapersonal space 

(http://sound.media.mit.edu/KEMAR.html). This is achieved by introducing both 

intrapersonal amplitude and time differences and by simulating the 

localization-dependent filtering properties of head and outer ears. 

 

During the following 800-ms delay phase the midline noise was presented 

again. This was followed by the second lateralized stimulus S2 (probe stimulus) 

which had to be compared to the first one regarding the lateralization angle. 

After that, subjects had to give feedback by raising both index fingers using an 

infrared light barrier. Half of the subjects within each group were instructed to 
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signalize a match when lateralization angles were identical, while the other half 

was to respond when lateralization angles differed between S1 and S2. 

Reponses could be given up to the beginning of the baseline of the subsequent 

trial. 

 

Group R received S1 from the right with a deviation of either 15° or 45° from the 

midsagittal plane. For group L, S1 was presented on the left at the same 

lateralization angles. S2 was always presented on the same side as S1. If S1 

was presented at 15°, S2 could appear at either 15° (same lateralization) or at 

0° or 60° (different lateralization). If S1 was presented at 45°, S2 appeared at 

either 45° (same lateralization) or at 5° or 90° (different lateralization). For an 

overview of these combinations of stimulus lateralization angles, see table 2. 

 

 S2 lateralization angles 

S1 lateralization 
angles 

equal different medial different lateral 

15° 15° 0° 60° 

45° 45° 5° 90° 

 

Table 2. Stimulus lateralization angles. The first stimulus S1 (first column) could either be 

presented at 15° or 45° from the midsagittal plane. The possible lateralization angles of 

the second stimulus S2 (second column) depended on S1. There were three possible 

combinations for each of the two S1 stimuli. 

 

These combinations included two possible match trials, 15°-15° and 45°-45°, 

and four possible mismatch trails. The lateralization angles of S1 were 

presented in randomized order with equal probabilities for angles of 15° or 45°. 

The lateralization angle of S2 was equal to S1 in half of the trials and different in 

the other half. The two possible deviant angles were presented with equal 

probability. The duration of the intertrial interval was randomized between 

1700 and 2700 ms to avoid adaptation effects. 
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Figure 9. Trial structure of the task. Low-pass filtered noise (pre-S1) and the 200 ms 

presentation of the sample stimulus (S1) were followed by a delay phase of 800 ms 

midline noise. Then a probe stimulus (S2) appeared for 200 ms. Subjects had to compare 

the sound lateralization angle of S1 and S2. Arrows symbolize the lateralization angles of 

S1 and S2. The light gray horizontal bar above the symbol for the delay phase shows the 

latency window for spectral analysis (600–1200 ms after trial onset). 

 

Two consecutive blocks of 120 trials were presented, i.e., there were 120 trials 

with sample sound S1 lateralized at 15° and 120 trials with S1 lateralized at 45°. 

Prior to recordings, participants performed up to 60 trials for practice reasons. In 

the first half of the practice session they received a periodic sequence of 

example trials with identical versus different S2 lateralization angles. In the 

second half of the practice phase subjects had to respond to randomly 

presented stimuli and were given feedback about their performance by the 

experimenter. 

 

The 120 trials per run resulted in a mean duration of 480 s of data collection. 

Combined with head localization time, a total of approximately 10 min per run 

was needed. Overall measurement time including preparation and test runs was 

about one hour. 
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3.3 Data recording 

 

MEG was recorded using a whole-head system (VSM MedTech, Port 

Coquitlam, Canada) comprising 275 first-order magnetic gradiometers with an 

average distance between sensors of about 2.2 cm. Signals from one defunct 

channel were discarded. 

 

The signals were recorded continuously at a sampling rate of 600 Hz with an 

anti-aliasing filter at 150 Hz. The final signal was computed using a synthetic 

third-order order gradiometer configuration to suppress environmental noise 

and downsampled at 300 Hz. 

 

The subject’s head position was determined at the beginning and the end of 

each recording to ensure that head movements did not exceed 0.5 cm. To 

reduce eye movement and blink artifacts we rejected trials containing signals 

exceeding 1.5 pT in fronto-temporal sensors. This left an average of ~95 % of 

trials for analysis. 

 

All stimuli were delivered using Presentation® 9.9 software. MEG and 

behavioral data were simultaneously recorded. Additionally, the subjects were 

observed by a camera to make sure they kept their eyes open. 

 

3.4 Data analysis 

 

The algorithms needed for data analysis were developed by Prof. W. 

Lutzenberger, Tübingen, Germany. Spectral analysis was designed to identify 

GBA components that distinguished between sample stimuli lateralized at 

15° and 45° in each of the two groups. The analyses focused on stimulus 

maintenance-related activity during the middle 600 ms of the delay phase. All 
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artifact-free trials were included in the analyses. No baseline correction was 

performed. 

 

We followed a procedure that has been applied in a series of previous studies 

on MEG oscillatory responses (Lutzenberger et al. 2002; Kaiser et al. 2003a; 

Kaiser et al. 2005a). First, spectral analysis was performed to identify the 

frequency ranges with the most robust differences between both stimuli. 

Significance of the observed spectral power values for each frequency bin and 

MEG sensor was tested with a statistical probability mapping including 

corrections for multiple comparisons. Second, topography (sensors) and time 

courses of activations were assessed after filtering in the frequency ranges with 

the most pronounced differences between conditions. 

 

Spectral analysis was conducted for frequencies between 55 and 80 Hz for the 

time window of 0.6-1.2 s after trial onset, i.e. the middle 600 ms of the delay 

phase starting 100 ms after the offset of S1 and lasting until 100 ms prior to the 

onset of S2. To reduce the frequency leakage for the different frequency bins, 

the records were multiplied by Welch windows. The nominal frequency 

resolution was 1.17 Hz; however, the true frequency resolution was somewhat 

lower because Welch windowing led to a certain smearing of frequencies across 

bins. Fast Fourier Transforms were carried out on single-trial basis and square 

roots of the power values in each frequency bin were computed to obtain more 

normally distributed spectral amplitude values. 

 

These values were averaged across trials to obtain measures of the total 

spectral activity in response to each of the two sample sounds. Spectral activity 

contrasts were evaluated with a statistical probability mapping procedure which 

has been used in numerous previous studies (e.g., Kaiser et al. 2005a). It 

included corrections both for multiple comparisons and for possible correlations 

between data either from neighboring frequency bins (for spectral analysis) or 

time points (for time course analysis). 
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Significance criteria (corrected t-values tcorr) were determined on the basis of 

permutation tests (Blair and Karniski 1993). Permutation tests allow to identify 

the probability of observing a difference of a certain size between two 

experimental conditions on the basis of the distribution obtained by randomly 

assigning the recorded data to the conditions. In general, the significance 

criteria obtained from the present procedure correspond to approximately 

p = 0.003 for two neighboring frequency bins. 

 

Starting point was the comparison of group average spectral amplitude values 

for each of the two sample stimuli at each sensor and each frequency bin. This 

yielded the observed distributions of the t-values for all frequency bins 

I × sensors j. To avoid spurious findings in individual frequency bins, we 

introduced the requirement that two neighboring frequency bins had to differ 

significantly between conditions. To ensure that tests for two consecutive 

frequency bins were significant, a new distribution of the minimal t-values tm 

was computed for all pairs of neighboring frequency bins (time points) i and 

i+1 at all sensors j: 

 

tmij = min (ti,j, ti+1,j). 

 

The next analysis step was designed to take into account possible correlations 

between neighboring frequency bins. The t-value tm and its corresponding 

p-value p0.05 were determined for which 5 % of the observed tmij were larger. In 

the case of highly correlated data, p0.05 would be close to or smaller than 0.05, 

whereas for highly independent data, p0.05 would be greater than 0.05. The next 

step was to assess the random distribution of maximal t-values in the present 

data set by exchanging the values for each trial type (or: the signs of the 

differences between the two sample stimuli) at a time for all sensors j and 

frequency bins (time points) i on a subject-by-subject basis. This was done for 

214 permutations of the 14 subjects in each group. Each of these permutations 

now yielded a new maximum t-value. The distribution of these maximal t-values 

tmax for each of the nrand = 214 permutations was computed as follows: 
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tmax = maxij (tmij) 

 

The corrected t-value tcorr was now defined as the value where p0.05 × nrand of 

the obtained tmax were greater. This corrected t-value tcorr was then applied as 

significance criterion to the observed data. 

 

To explore the time course and the topographical localization of the observed 

spectral amplitude differences between conditions, the signals across the 

recording interval were multiplied with cosine windows at their beginnings and 

ends and filtered in the frequency ranges in which the statistical probability 

mapping had yielded significant effects. Noncausal, Gaussian curve-shaped 

Gabor filters in the frequency domain (width: ± 1.5 Hz around center frequency, 

length in the time domain: 100 ms) were applied to the signals on a 

single-epoch basis for each of the two S1 stimuli. The filtered data were 

amplitude demodulated by means of a Hilbert transformation (Clochon et al. 

1996) and then averaged across epochs for each stimulus. Differences in 

amplitude between stimuli in the filtered frequency band were assessed with the 

statistical probability mapping procedure described above. 

 

To depict the topographical localization of the observed differential spectral 

amplitude enhancements, we assigned the sensor positions with significant 

spectral amplitude effects of each subject to common spatial coordinates 

(’common coil system’). Sensor positions with respect to the underlying cortical 

areas were determined using a volumetric magnetic resonance image of one 

subject. The error which is introduced by not using individual sensor locations 

was estimated in previous studies by using a single dipole for somatosensory 

evoked fields and two dipoles for the localization of the first auditory evoked 

component (N1m) (Kaiser et al. 2000b). The comparison of individual sensor 

locations and the ‘common coil system’ revealed differences ranging below the 

spatial resolution determined by the sensor spacing. 
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In addition, we calculated an index of strength of representation of the two S1 

stimuli across groups. First, for each subject the spectral amplitude differences 

in response to the 15° minus the 45° sample stimulus were calculated at the 

more medial and the more lateral parieto-occipital sensors, respectively. 

Second, the difference was computed between these amplitude difference 

values at the medial minus the lateral sensor. The resulting score thus reflected 

the degree to which oscillatory signals differentiated between the two stimuli. 

Positive values indicated a 'consistent' differentiation with larger amplitudes to 

the preferred stimulus (in the sense of the initial statistical parametric mapping), 

whereas negative values stood for an 'inconsistent' differentiation with larger 

amplitudes to the nonpreferred sound. 
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4. Results 
 

 

4.1 Behavioral data 

 

For group R (stimulus presentation in the right hemifield) 86.5 % (SD = 8.8 %) 

of trials with sample sounds at 15° lateralization were performed correctly. The 

mean reaction time for correct responses amounted to 675 ms (SD = 157 ms). 

For S1 at 45°, the correct response rate amounted to 87.6 % (SD = 8.7 %) with 

a mean reaction time of 646 ms (SD = 183 ms). 

 

Group L who had received all stimulation in the left hemifield showed a 

performance of 86.4 % (SD = 7.7 %) correct answers to sample stimuli at 15°. 

The mean reaction time in correct trials amounted to 687 ms (SD = 123 ms). S1 

stimuli lateralized at 45° gave rise to 91.1 % (SD 6.4 %) correct responses with 

a mean response time of 651 ms (SD = 143 ms). 

 

Separate ANOVAs were conducted for correct response rate and reaction time 

with group (left versus right stimulation) as between-subjects factor and stimulus 

(15° versus 45°) as within-subject factor. Both analyses yielded main effects for 

stimulus (correct response rate: F1,26 = 4.3, p = 0.048; reaction time: F1,26 = 8.3, 

p = 0.008). As there were no significant group main effects or group × stimulus 

interactions, dependent-samples t-tests were calculated for both dependent 

variables across groups (Figure 10). Correct response rates tended to be lower 

for sounds lateralized at 15° than 45° (15°: 86.4 % [SD = 8.2 %], 45°: 89.4 % 

[7.8 %], t27 = 2.05, p = 0.051) and reaction time was longer for 15° than 45° 

stimuli (15°: 680 ms [SD = 139 ms] after the onset of S2, 45°: 648 ms 

[SD = 161 ms], t27 = 2.92, p = 0.007). Across all subjects, correct response rate 

and reaction time were negatively correlated (r = -0.54, p = 0.003). 

 



4. Results  49 

 

 

Figure 10. Correct response rates and reaction times (means and standard errors) for S1 

stimuli presented at 15° and 45° deviation from the midsagittal plane calculated across 

the entire group of subjects. 

 

4.2 Oscillatory activity 

 

The results of frequency analysis for the comparison of the two S1 stimuli during 

the time window of 0.6-1.2 s after trial onset in each group are depicted in 

Figure 11. 

 

In group R, right-lateralized sample stimuli at 15° deviation from the midsagittal 

plane were associated with a relative enhancement of GBA at ~68 Hz at a left 

parieto-occipital sensor (MLP52). For right-lateralized sample sounds at 45°, 

higher spectral amplitude was observed at ~72 Hz at a slightly more lateral 
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parieto-occipital sensor (MLP53). These effects met the criterion of tcorr = 3.41 

for two consecutive frequency bins in the frequency range of 55-80 Hz. 

 

In group L, left-lateralized S1 stimuli at 15° were accompanied by a relative 

enhancement of GBA at ~59 Hz at a right parieto-occipital sensor (MRP53). 

Left-lateralized sample sounds at 45° gave rise to higher spectral amplitude at 

~62 Hz at a more lateral parieto-occipital sensor (MRO13). These effects met 

the criterion of tcorr = 3.0 for two consecutive frequency bins in the frequency 

range of 58-65 Hz. 
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Figure 11 (previous page). Comparison of oscillatory responses to S1 stimuli at 15° 

versus 45° for both groups (left column: group R with stimulus presentation in the right 

hemifield and right column: group L with stimulus presentation in the left hemifield). The 

maps depict the topography of GBA differences between both S1 stimuli in the frequency 

ranges, where the statistical probability mapping had revealed significant effects (top left: 

68 ± 1.5 Hz, bottom left: 72 ± 1.5 Hz, top right: 59 ± 1.5 Hz and bottom right: 62 ± 1.5 Hz). 

Each circle represents one of the 275 MEG sensors projected onto a 2-dimensional 

cortical surface map with some major anatomical landmarks (dorsal view, nose up). The 

size of each circle reflects the statistical strength of the GBA difference between both S1 

stimuli. Filled circles symbolize relative spectral amplitude increases in response to 

15° stimuli, whereas open circles stand for relative spectral amplitude enhancements for 

45° stimuli. The circles with the bold borders represent the sensors with the most robust 

GBA differences between stimuli, i.e. where the statistical criterion was fulfilled for two 

neighboring frequency bands. The more medially located sensors showed a preference 

for 15°, the more lateral sensors for 45° stimuli. 

The graphs at the bottom show the results (p-values) of t-tests comparing spectral 

amplitudes between both S1 stimuli at the two sensors showing the most pronounced 

effects. The solid line gives p-values for the comparison of S1 at 15° versus 45° at the 

more medial sensor (m) responding more strongly to S1 at 15°, whereas the dotted line 

represents p-values for the opposite contrast (plotted downwards) at the more lateral 

sensor (l) responding more strongly to S1 at 45°. 

 

In group R, right-lateralized sample stimuli at 15° deviation from the midsagittal 

plane gave rise to a spectral amplitude enhancement at 68 ± 1.5 Hz at a left 

parieto-occipital sensor (Figure 11, top left map) which was maximal at 0.8-1.0 s 

after trial onset. The difference amplitude for this sensor during this time window 

amounted to 0.55 fT (SD = 0.11 fT), t13 = 4.82, p < 0.001. Right-lateralized 

sample sounds at 45° were accompanied by a relative GBA enhancement at 

72 ± 1.5 Hz at a more lateral left parieto-occipital sensor (Figure 11, bottom left 

map). Here, the mean difference amplitude during the same time window of 

0.8-1.0 s after trial onset amounted to 0.51 fT (SD = 0.09 fT), t13 = 5.90, 

p < 0.001. 

 

In group L, left-lateralized sample stimuli at 15° deviation from the midsagittal 

plane were associated with a spectral amplitude enhancement at 59 ± 1.5 Hz at 

a right parieto-occipital sensor (Figure 11, top right map) which was maximal at 
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0.7-0.9 s after trial onset. The difference amplitude for this sensor during this 

time window amounted to 0.58 fT (SD = 0.12 fT), t13 = 4.99, p < 0.001. 

Left-lateralized sample sounds at 45° induced a relative GBA enhancement at 

62 ± 1.5 Hz at a slightly more lateral right parieto-occipital sensor (Figure 11, 

bottom right map). Here, the mean difference amplitude during the same time 

window of 0.7-0.9 s after trial onset amounted to 0.52 fT (SD = 0.11 fT), 

t13 = 4.85, p < 0.001. 

 

To explore the time course and topography of these spectral amplitude 

differences, the data records were Gabor filtered (filter width: ± 1.5 Hz around 

center frequency) in frequency ranges with center frequencies of 68 and 72 Hz 

for group R, and 59 and 62 Hz for group L, respectively. The time courses of the 

GBA differences between sample sounds at 15° and 45° in these frequency 

ranges are depicted as statistical time-frequency plots in Figure 12 and as 

spectral amplitude and statistical time curves for the filtered signals in 

Figure 13. 
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Figure 12. Time-frequency plots depicting the spectral values and statistical strength (top 

and bottom panels, respectively) of differences between 15° and 45° sample stimuli 

(warm colors: relative increases for S1 at 15°, cold colors: relative increases for S1 at 

45°) for both groups. Data are shown for the interval from the onset of S1 to the offset of 

S2 and for frequencies between 40 and 90 Hz. The top left graphs in each panel depict 

activity differences at the more medial posterior sensor for group R (med., symbolized by 

the largest circle in the top left map of Figure 11), the bottom left graphs show activity 

differences for the more lateral parieto-occipital sensor for group R (lat., symbolized by 

the largest circle in the bottom left map of Figure 11). The plots in the left half of the figure 

show the corresponding sensors for group L. Effects that met the statistical significance 

criteria described in the ‘Data analysis’ section, are marked with white rectangles. 
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Figure 13. Time courses between the onset of S1 and the offset of S2 of filtered signals 

for the frequency ranges with the most pronounced differences between sample stimuli at 

15° and 45° for group R and L (left and right columns, respectively). The graphs in the top 

two rows show spectral amplitude time courses, the graphs in the bottom row depict the 

time course of the statistical difference between 15° and 45° S1 stimuli. The top left graph 

depicts spectral amplitude (68 ± 1.5 Hz) time courses at the more medial posterior sensor 

(med., symbolized by the largest circle in the top left map of Figure 11) for sample sounds 

at 15° and 45° (symbolized by the solid and dotted lines, respectively). The middle left 

graph depicts spectral amplitude (72 ± 1.5 Hz) time courses at the more lateral posterior 

sensor (lat., symbolized by the largest circle in the bottom left map of Figure 11) for both 

sample sounds. The top and middle graphs on the right depict amplitude time courses at 

59 and 62 ± 1.5 Hz at the more medial and lateral sensors shown in the right maps of 

Figure 11, respectively. Time courses of p-values for the statistical difference between 15° 

and 45° stimuli at each sensor (solid lines: medial sensors, hatched lines: lateral sensors) 

are depicted in the bottom part of the figure. 
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Based on previous findings (Lutzenberger et al. 2002; Leiberg et al. 2006a; 

Kaiser et al. 2007a), the present analyses focused on activity in the higher 

gamma range. In addition, we also explored differences in oscillatory activity 

between the two sample sounds in the lower frequency ranges including theta, 

alpha, beta and the lower gamma range up to 55 Hz. Here, no significant effects 

were found. 

 

4.3 Correlations between oscillatory activity and task 
performance 

 

To explore a possible relationship between the stimulus-specific GBA 

components and task performance, we calculated an index of strength of 

representation of the two S1 stimuli across groups (for calculation details, see 

‘Data analysis’ section). 

 

This score was then correlated with correct response rate, i.e. the combined 

proportion of hits and correct rejections. As subjects had to respond to one type 

of S1-S2 comparison only (either to matches or nonmatches), a distinction 

between both types of responses was not possible. Across groups, a significant 

positive correlation of r = 0.47 (p = 0.012) was observed between correct 

response rate and the averaged differentiation score for the final 100 ms of the 

delay phase only (Figure 14), i.e. a more pronounced differentiation was 

associated with better performance. In contrast, there was no significant 

correlation between GBA amplitude and reaction time during this time window 

(r = 0.07). 
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Figure 14. Correlations between correct response rate (ordinate) and a spectral 

amplitude measure reflecting the strength of differentiation between the two sample 

stimuli (abscissa) for the entire subject sample across both groups (N = 28). The 

differentiation measure was computed as the difference between the stimulus-specific 

GBA spectral amplitude changes at the two sensors where these effects were localized 

during the final 100 ms of the delay phase. 

 

As the correlation between performance and differentiation score was observed 

for a time window when in the group average there was no differentiation 

between the two sample stimuli, for exploratory purposes we split the subject 

group into three groups of 10 good, 8 medium and 10 poor performers. The 

mean amplitudes and standard errors of the differentiation index in these three 

groups are plotted in Figure 15 for ten 100-ms time windows between 0.3 s after 

trial onset (onset of S1) and 1.2 s (end of the delay phase). Good performers 
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upheld the consistent differentiation for longer than average or poor performers 

whose differentiation score decreased or even changed its sign prior to the 

onset of S2. The figure further suggests that there were no substantial 

differences in amplitude variability between groups. 

 

 

 

Figure 15. Amplitudes and standard errors of the differentiation index for ten 100-ms time 

windows between 0.3 s and 1.2 s after trial onset for groups of 10 good, 8 medium and 

10 poor task performers. 
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5. Discussion 
 

 

The present study investigated induced GBA during the delay phase of an 

auditory spatial delayed matching-to-sample task requiring the maintenance of 

the lateralization angle of a sample noise sound in short-term memory and to 

compare it with a subsequent probe stimulus. 

 

5.1 Topographical distribution of gamma-band activity 

 

In contrast to previous work using a similar paradigm (Lutzenberger et al. 2002; 

Leiberg et al. 2006a), here we did not contrast this task with a nonmemory 

control condition, but we compared oscillatory responses between two different 

sample sounds lateralized at 15° and 45° deviation from the midsagittal plane, 

respectively. Oscillatory responses to these stimuli were investigated in two 

nonoverlapping groups of subjects who were either presented with stimuli 

lateralized in the left or right hemifield only. Statistical probability mapping 

revealed distinct GBA components for each of the sample sounds. These 

components had an intermediate amplitude during the presentation of S1 and 

showed subsequently either an amplitude increase in response to their 

'preferred' stimulus or a decrease to the 'nonpreferred' stimulus (Figure 13). The 

maximum differentiation between 'preferred' and 'nonpreferred' stimuli was 

reached during the middle of the delay phase approximately 0.2-0.5 s after the 

offset of S1. The average differentiation returned to zero immediately prior to 

the onset of S2. GBA components distinguishing between the two lateralization 

angles were observed at parieto-occipital sensors contralateral to the side of 

stimulation (Figure 11). These sensors were localized over homologous areas 

for the two groups. The present study thus demonstrates that distinct GBA 

components for each stimulus lateralization angle can be identified in MEG. 

Effects were replicated in a similar frequency range and with a highly 
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comparable topography for two independent groups, arguing for the robustness 

of the findings. 

 

Increased GBA in EEG in response to attentively perceived familiar sounds 

compared with unfamiliar acoustic stimuli has been interpreted as reflecting 

matches with representations in long-term memory (Lenz et al. 2007). In 

contrast, the present findings were obtained with meaningless noise stimuli, 

suggesting that GBA represents the activation of networks processing 

task-relevant information also for abstract stimuli that do not have a meaningful 

long-term memory representation (Basar 2005). The finding of distinct 

oscillatory components in response to each sample stimulus is in keeping with 

my hypothesis that GBA reflects the cortical representations of individual stimuli. 

These components could only be identified by directly contrasting two stimuli. 

As they showed amplitude increases for their 'preferred' stimulus but decreases 

for the 'nonpreferred' one, they would not be visible if data were averaged 

across stimuli. In earlier studies that compared oscillatory activity during a 

memory task with a control condition (Lutzenberger et al. 2002; Kaiser and 

Lutzenberger 2003; Leiberg et al. 2006a), GBA during the delay phase reflected 

memory-specific activations that were common to the different sample stimuli 

maintained during this phase. The present results show that direct contrasts 

between two stimuli reveal spectrally narrow and topographically local GBA 

components in MEG, possibly reflecting networks tuned to a task-relevant 

stimulus feature like sound lateralization angle. In both groups, the 15° sample 

stimuli elicited GBA components at lower central frequencies than the sounds 

lateralized at 45°. As lower frequencies have been related to increased cortical 

activation (Herculano-Houzel et al. 1999), this finding could be attributed 

tentatively to the fact that the 15° stimuli were more difficult to process in 

short-term memory as indicated by lower correct response rates and longer 

reaction times. 

 

The topography of stimulus-specific components seems to depend on the 

particular feature that is to be attended or maintained in short-term memory. 

During a previous sound duration matching-to-sample task, stimulus-specific 
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GBA components were found over prefrontal cortex (Kaiser et al. 2007b), 

whereas here the maintenance of spatial sounds elicited GBA over posterior 

cortical regions. The topography of the present GBA components is consistent 

with the notion of a putative auditory dorsal stream involved in the processing of 

auditory spatial information (Rauschecker 1998a). Previous studies of spatial 

sound processing have found activations in or over posterior parietal areas with 

functional magnetic resonance imaging (Alain et al. 2001; Arnott et al. 2004) 

and MEG (Kaiser et al. 2000b; Lutzenberger et al. 2002; Kaiser et al. 2005a; 

Kaiser et al. 2007a). 

 

However, the existence of an auditory dorsal spatial processing stream is 

debated (Belin and Zatorre 2000); activations in posterior parietal areas could 

also reflect supramodal spatial attention or visual imagery (Bidet-Caulet and 

Bertrand 2005). The oscillatory activations in the present study were localized in 

slightly more posterior sensors than in previous MEG studies. Their topography 

is akin to the one reported by Siegel et al. (2007) for magnetoencephalographic 

high-frequency gamma activity in relation to visual motion strength where 

sources were localized in occipito-parietal and lateral occipito-temporal regions 

attributed to human visual area MT+/V5. GBA peaks at similar sensor positions 

over motion-relevant areas possibly including the visual area V3A, the kinetic 

occipital region and the dorsal intraparietal sulcus have also been found in a 

previous unpublished visual motion processing study from our laboratory. 

Recently, it has been suggested that human area V5 may be involved in 

auditory motion processing (Poirier et al. 2005). However, it is quite likely that in 

the present study representations of the sound lateralization angles were coded 

by visual or supramodal space processing networks in posterior 

parietal/occipito-parietal areas (Macaluso and Driver 2005) and that 

visuo-spatial imagery processes might have been involved in stimulus 

maintenance during the delay phase. This interpretation is supported by a 

post-experimental interview in which 14 out of 19 available participants 

indicated having used a visual (12) or an audiovisual (2) strategy. The fact that 

the present stimulus-specific GBA components were localized in sensors 

contralateral to the side of stimulation and that stimuli lateralized at 15° were 
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consistently accompanied by more medial GBA than stimuli lateralized at 45° 

could reflect the existence of spatial maps in posterior parietal cortex (Sereno et 

al. 2001). 

 

The present study has revealed stimulus-specific gamma-band activations over 

parieto-occipital sensors during auditory spatial processing, supporting the 

notion of an auditory dorsal space processing stream. In contrast, the putative 

auditory ventral pattern processing stream was not assessed. Dorsal and 

ventral stream activations were investigated in a subsequent study using 

sample sounds with a variable interaural time delay and a variable central 

frequency. Kaiser at al. (2009a) assessed the question whether the topography 

of stimulus-specific GBA depended on task demands. Subjects were asked to 

memorize either the lateralization or the frequency of the presented stimuli in 

separate blocks. The authors used a similar statistical approach to map 

differences in oscillatory activity responses to the memorization of sample 

sounds as in the present study. They could replicate the present findings by 

showing GBA components over occipital/occipito-temporal sensors contralateral 

to the stimulation side distinguishing between medial and lateral sounds in the 

spatial memory task. The frequency task, however, resulted in frontal 

gamma-band activations. Oscillatory responses over occipital/occipito-temporal 

sensors were enhanced when subjects were instructed to memorize the 

lateralization angle while frontal GBA was increased when subjects had to 

memorize frequency patterns. The authors attributed this enhancement to the 

modulation of gamma-band components by task demands. Kaiser et al. (2009a) 

also examined the correlation of task performance and the amplitude of 

gamma-band activation. They found a negative correlation between the 

proportion of incorrect ‘non-match’ responses and delay-phase GBA to the 

task-relevant feature. Furthermore, a positive correlation was found between 

the frequency of incorrect ‘match’ responses and GBA to the irrelevant feature. 

The authors concluded that their results supported the notion of GBA reflecting 

stimulus-specific representations of task-relevant features. They suggested that 

these activations might reflect representations of stimulus features in memory 

that are used in subsequent recognition. 
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Similar to previous studies from our lab, we have chosen a conservative 

statistical procedure to identify the most robust differences between the two 

acoustic stimuli. This procedure included the determination of a statistical 

threshold on the basis of nonparametric permutation tests and required that 

t-tests comparing conditions reach a certain critical t-value in two neighboring 

frequency bins. In previous investigations where e.g. memory tasks were 

compared with control tasks (Lutzenberger et al. 2002; Kaiser et al. 2003a), this 

analysis procedure has typically yielded effects for small numbers of sensors 

only. 

 

While this approach may include a certain risk to overlook more transient 

effects, previously reported effects could usually be replicated in independent 

studies (Kaiser and Lutzenberger 2003, 2005b), arguing in favor of such a 

conservative approach. In the present study where we assessed the differential 

representation of sound lateralization angles, effects at single sensors were 

expected because it seemed plausible that such a subtle difference would be 

processed by highly local networks. 

 

In general, the topography of the current effects has to be interpreted with 

caution because the relationship between surface data and the underlying 

generators is not straight forward. The present surface GBA patterns do not 

suggest simple dipolar sources which would produce two patches with strong 

magnetic fields. In contrast, the single patches typically found both in the 

present study and in previous work from our lab could possibly be attributed to a 

more complex structure of local sources that might generate a relatively weak 

field which is maximal over the area between the dipoles (see Kaiser et al. 

2000b, for a detailed discussion of the possible source structure). According to 

this model, the cortical generators would thus have to be localized in the vicinity 

of the sensors showing the strongest activations. Moreover, differential effects 

were found in sensors separated only by short distances. This topography may 

reflect the activities of partly overlapping sources. 
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5.2 Oscillatory activity and task performance 

 

The relative strength of the present stimulus-specific GBA components 

correlated moderately with task performance. The more pronounced the relative 

GBA increase to the 'preferred' and the relative decrease to the 'nonpreferred' 

stimulus was, the higher the correct response rate (Figure 14). This supports 

the notion that the stimulus-specific oscillatory activity reflected processes 

relevant to the short-term memory maintenance of acoustic information. 

Interestingly, the correlation was only found for relative GBA differences during 

the final 100 ms of the delay phase, when the mean differentiation between the 

two sample stimuli had already returned to zero. In contrast, there was no 

correlation between the peak amplitude of S1-related gamma components and 

correct response rate or reaction time. 

 

Apparently, good performance relied more on the maintenance of the consistent 

representation at the end of the delay phase than on the strength of the 

differentiation earlier during the delay period. Good performers seemed to be 

able to maintain a representation of S1 until the end of the delay period even if it 

may have been a weak one. Their differentiation score showed a broader 

temporal distribution than in average or poor performers who both showed a 

clearer differentiation peak and a more pronounced subsequent decrease 

(Figure 15). At the end of the delay phase, poor performers even showed an 

inverse differentiation with higher spectral amplitudes to the incorrect stimuli. 

However, good and poor performers did not differ in the variability of their 

differentiation amplitudes. The larger variance between subjects during the final 

part of the delay phase may have helped to find a significant correlation. 

 

Towards the end of the delay phase the time course of the average 

stimulus-related oscillatory activity returned to the intermediate level found 

during S1 presentation (Figure 13). This is a phenomenon already observed in 

earlier studies on visual short-term memory. For example Tallon-Baudry et al. 

(1998) argued that with a fixed 800-ms delay phase (as the one used in the 
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present study) it was difficult to distinguish whether the gamma response during 

the delay was transient or sustained. They also speculated that GBA decreased 

because S2 could be anticipated and it may not have been necessary to 

maintain the full strength of this activity until the end of the delay period. In a 

subsequent study using variable delay durations, sustained posterior gamma 

components were described which, however, also showed a constant power 

decrease over time (Tallon-Baudry et al. 1999). A recent study from our 

laboratory aimed at elucidating the effects of delay duration on the temporal 

dynamics of stimulus-specific GBA components in auditory short-term memory 

tasks. Kaiser et al (2009b) used MEG to asses GBA during a similar auditory 

spatial short-term memory task as in the present study. The study design was 

kept exactly the same but two possible delay phases of 800 or 1200 ms were 

used. Kaiser et al. (2009b) applied statistical probability mapping to identify 

oscillatory activations in the gamma band differentiating between the two 

sample sounds. In both delay conditions, GBA over posterior cortex peaked 

about 400 ms prior to the onset of the test stimuli, i.e. its timing varied with the 

delay duration. In accordance to the present results, the magnitude of these 

gamma-band activations correlated with performance in the short-term memory 

task. The authors concluded that these GBA components might reflect the 

preparatory activation of memory representations. An alternative interpretation 

by Kaiser et al. (2009b) attributed the activations to the shifting of attention to 

specific expected locations of the test stimuli. 

 

It has also been hypothesized that GBA amplitude increases do not represent 

the only relevant mechanism underlying stimulus maintenance in short-term 

memory. Previous studies have suggested that cortico-cortical gamma-band 

synchronization between higher sensory areas and frontal regions may play an 

important role in short-term memory maintenance (Kaiser et al. 2005b). 

Alternatively, a temporal modulation of GBA would be in keeping with the 

proposed correlation of this activity with the cycle of power in the theta band 

(Canolty et al. 2006). 
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5.3 Outlook 

 

The results quoted above all derive from studies examining healthy subjects. 

Another interesting research field concerns neuropsychiatric disorders and the 

putative role of abnormal neuronal oscillations and their synchronization in 

patients. Abnormal neuronal oscillatory activity has been attributed to various 

neuropsychiatric disorders, such as autism, Alzheimer’s disease and epilepsy 

(Uhlhaas and Singer 2006) and may thus represent important changes in 

cognitive functions. In neuropsychiatric research, schizophrenia has been the 

subject of various studies examining the putative role of abnormal oscillatory 

activity in its pathophysiology. These studies found abnormal activity in all 

frequency bands (for review, see Uhlhaas et al. 2008). Abnormal GBA was 

found not only in patients who suffered from chronic schizophrenia but also in 

first-degree relatives (Hong et al. 2004) and first-episode patients with 

schizophrenia (Spencer et al. 2008). This suggests the possible use of 

oscillation monitoring as a biomarker for abnormal neuronal activity in 

schizophrenia. Furthermore, this could lead to the development of new 

pharmacological interventions targeting abnormal neuronal oscillations and 

synchrony in schizophrenia or other neuropsychiatric disorders (Uhlhaas et al. 

2008). 

 

In summary, spectrally and topographically distinct oscillatory components in the 

higher gamma range were associated with the maintenance of different sound 

lateralization angles during the delay phase of a short-term memory task. These 

components were localized at MEG sensors over parieto-occipital cortex 

contralateral to the side of stimulation, suggesting an involvement of this region 

in the representation of sound lateralization angles. The present findings add to 

the growing number of studies demonstrating that GBA not only plays a role in 

sensory feature binding but may reflect representations of task-relevant 

stimulus attributes that are modulated by attention or memory processes 

(Jensen et al. 2007). Moreover, GBA may index the specific contents of 

short-term memory, i.e. the stimulus representation itself. Finally, the monitoring 

of neuronal oscillatory activity might possibly be used as a biomarker for 
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neuropsychiatric diseases and could help to discover new therapeutic 

approaches. 
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6. Summary 
 

 

Recent studies have suggested an important role of cortical gamma oscillatory 

activity (30-100 Hz) as a correlate of encoding, maintaining and retrieving 

auditory, visual or tactile information in and from memory. It was shown that 

these cortical stimulus representations were modulated by attention processes. 

Gamma-band activity (GBA) occurred as an induced response peaking at 

approximately 200-300 ms after stimulus presentation. Induced cortical 

responses appear as non-phase-locked activity and are assumed to reflect 

active cortical processing rather than passive perception. 

 

Induced GBA peaking 200-300 ms after stimulus presentation has been 

assumed to reflect differences between experimental conditions containing 

various stimuli. By contrast, the relationship between specific oscillatory signals 

and the representation of individual stimuli has remained unclear. The present 

study aimed at the identification of such stimulus-specific gamma-band 

components. We used magnetoencephalography (MEG) to assess gamma 

activity during an auditory spatial delayed matching-to-sample task. 28 healthy 

adults were assigned to one of two groups R and L who were presented with 

only right- or left-lateralized sounds, respectively.  

 

Two sample stimuli S1 with lateralization angles of either 15° or 45° deviation 

from the midsagittal plane were used in each group. Participants had to 

memorize the lateralization angle of S1 and compare it to a second lateralized 

sound S2 presented after an 800-ms delay phase. S2 either had the same or a 

different lateralization angle as S1. After the presentation of S2, subjects had to 

indicate whether S1 and S2 matched or not. Statistical probability mapping was 

applied to the signals at sensor level to identify spectral amplitude differences 

between 15° and 45° stimuli. 
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We found distinct gamma-band components reflecting each sample stimulus 

with center frequencies ranging between 59 and 72 Hz in different sensors over 

parieto-occipital cortex contralateral to the side of stimulation. These oscillations 

showed maximal spectral amplitudes during the middle 200-300 ms of the delay 

phase and decreased again towards its end. 

 

Additionally, we investigated correlations between the activation strength of the 

gamma-band components and memory task performance. The magnitude of 

differentiation between oscillatory components representing 'preferred' and 

'nonpreferred' stimuli during the final 100 ms of the delay phase correlated 

positively with task performance. 

 

These findings suggest that the observed gamma-band components reflect the 

activity of neuronal networks tuned to specific auditory spatial stimulus features. 

The activation of these networks seems to contribute to the maintenance of 

task-relevant information in short-term memory. 
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7. Zusammenfassung 
 

 

Ergebnisse aus aktuellen Studien legen nahe, dass kortikale oszillatorische 

Aktivität im Gamma-Bereich (30-100 Hz) eine wichtige Rolle für verschiedene 

kognitive Prozesse spielt. Dazu zählen das Kodieren, die Aufrechterhaltung und 

der Abruf auditorischer, visueller oder taktiler Informationen in das bzw. aus 

dem Gedächtnis. Es konnte gezeigt werden, dass diese kortikale Aktivität durch 

Aufmerksamkeitsprozesse beeinflusst wird. Gamma-Aktivität trat bei 

vorangegangenen Untersuchungen als induzierte Antwort ca. 200-300 ms nach 

Stimuluspräsentation auf. Es wird angenommen, dass diese nicht 

phasengebundenen kortikalen Reizantworten aktive kortikale Verarbeitungs-

prozesse widerspiegeln. In früheren Studien wurde induzierte Gamma-Aktivität 

während der Aufrechterhaltung von Stimulusinformationen über Regionen 

gefunden, die an der Verarbeitung aufgabenrelevanter Reizmerkmale beteiligt 

sind. 

 

Diese Antworten im Gamma-Bereich spiegelten Unterschiede zwischen 

verschieden experimentellen Bedingungen wider, jedoch ist wenig über die 

Repräsentation spezifischer Stimuluseigenschaften durch Gamma-Aktivität 

bekannt. Mit der vorliegenden Studie haben wir versucht, solche 

stimulus-spezifischen Gamma-Komponenten zu untersuchen. Dafür 

verwendeten wir Magnetenzephalographie (MEG) und eine auditorische 

räumliche “delayed matching-to-sample“ Aufgabe. 28 gesunde Erwachsene 

wurden dabei zwei verschiedenen Gruppen zugeordnet. Gruppe R bekam 

rechtslateralisierte Stimuli präsentiert, während diese in Gruppe L 

linkslateralisiert waren. Dabei unterschieden sich die Reize nur in ihrer 

räumlichen Charakteristik, die Klangmuster blieben unverändert. 

 

In beiden Gruppen wurden zwei Beispielstimuli S1 mit Lateralisierungswinkeln 

von 15° bzw. 45° verwendet. Die Probanden mussten sich den 
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Lateralisierungswinkel von S1 merken und anschließend mit einem zweiten 

Stimulus S2, der nach einer Verzögerungsphase von 800 ms präsentiert wurde, 

vergleichen. S2 hatte dabei entweder den gleichen Lateralisierungswinkel wie 

S1, oder unterschied sich darin von dem ersten Stimulus. Nach der 

Präsentation von S2 mussten die Probanden signalisieren, ob die 

Lateralisierungswinkel der beiden Stimuli übereinstimmten oder nicht. Die 

Signale der einzelnen Sensoren wurden mit einem statistischen 

Wahrscheinlichkeitsmapping untersucht. Dabei wollten wir Unterschiede in der 

spektralen Amplitude für Stimuli mit 15° bzw. 45° Lateralisierungswinkel 

identifizieren. 

 

Wir konnten spezifische Gamma-Aktivität für alle Beispielstimuli nachweisen. 

Die Signale wurden im Bereich von 59-72 Hz gefunden und waren über dem 

parieto-okzipitalen Kortex jeweils kontralateral zur stimulierten Seite lokalisiert. 

Die maximalen Spektralamplituden dieser Oszillationen traten während der 

mittleren 200-300 ms der Verzögerungsphase auf und nahmen zu ihrem Ende 

hin ab. 

 

Zusätzlich haben wir Korrelationen zwischen der Aktivierungsstärke der 

Gamma-Komponenten und dem Abschneiden bei der Gedächtnisaufgabe 

untersucht. Dabei zeigte sich, dass der Unterschied der oszillatorischen 

Antworten auf bevorzugte und nicht-bevorzugte Stimuli während der letzten 

100 ms der Verzögerungsphase positiv mit der Leistung in der 

Gedächtnisaufgabe korrelierte. 

 

Diese Ergebnisse sprechen dafür, dass die beobachteten 

Gamma-Komponenten die Aktivität neuronaler Netzwerke, die auf die 

Verarbeitung räumlicher auditorischer Information spezialisiert sind, 

widerspiegeln. Die Aktivierung dieser Netzwerke scheint zur Aufrechterhaltung 

aufgabenbezogener Information im Kurzzeitgedächtnis beizutragen. 
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8. Abbreviations 
 

 

AL Anterolateral area 

AN.G Angular gyrus 

BOLD Blood oxygen level dependency 

CA.S Calcarine sulcus 

CE.S Central sulcus 

CL Caudolateral area 

EEG Electroencephalography 

ERD Event-related desynchronization 

ERS Event-related synchronization 

fMRI Functional magnetic resonance imaging 

GBA Gamma-band activity 

HRTF Head-related transfer functions 

iEEG Intracerebral electroencephalography 

IPL Inferior parietal lobe 

LTD Long-term depression 

LTP Long-term potentiation 

MEG Magnetoencephalography 

MRI Magnetic resonance imaging 

PET Positron emission tomography 

PO.S Parieto-occipital sulcus 

PP Posterior parietal cortex 

PSP Postsynaptic potential 

SFS Superior frontal sulcus 
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SM.G Supramarginal gyrus 

SQUID Super conductive interference device 

STG Superior temporal gyrus 

TF Time-frequency 
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Ich bin darüber informiert, dass meine Teilnahme an der Studie freiwillig ist. Ich 
kann jederzeit, auch ohne Angabe von Gründen, meine Teilnahme widerrufen, 
ohne dass mir hieraus Nachteile entstehen. 

 

Datenschutz: Die Untersuchungsergebnisse werden statistisch 
ausgewertet und in anonymer Form veröffentlicht. Bei allen 
Untersuchungen werden die erhobenen Daten mit einem Code, der aus 
den letzten beiden Buchstaben des Nachnamens, den letzten beiden 
Buchstaben des Vornamens und dem Geburtsdatum besteht, versehen 
und in digitaler Form auf der Festplatte eines Rechners gemäß den 
Vorschriften des Datenschutzes gespeichert. Die Schlüsselliste wird vom 
Studienleiter bei der Untersuchung angelegt und getrennt von den 
erhobenen Daten unter Verschluss aufbewahrt. Die gewonnenen Daten 
werden pseudonymisiert und zu rein wissenschaftlichen Zwecken 
verwendet. Die Daten werden strikt vertraulich behandelt, und es erfolgt 
keine Weitergabe an Dritte. Ich bin mit der Aufzeichnung der im Rahmen 
der Studie an mir erhobenen Daten und ihrer anonymisierten Verwendung, 
z.B. für Veröffentlichungen, einverstanden. 
 

Eine Kopie der Probandeninformation/Einverständniserklärung mit der 
Information zum Datenschutz habe ich erhalten. 
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12.2 Subject information 

 

INFORMATIONSBLATT 

 

Sehr geehrte Probandin, sehr geehrter Proband, 

 

Wir möchten Sie bitten, an unserer wissenschaftlichen Untersuchung 
teilzunehmen, die sich mit der Verarbeitung von Geräuschen im Gehirn 
beschäftigt. Nach einer Übungsphase werden Sie beurteilen müssen, ob zwei 
mit einem kurzen Abstand von 0.8 Sekunden aufeinander folgende Geräusche 
(Rauschen) die gleiche räumliche Position hatten. Die auditorischen Reize 
werden Ihnen über Kopfhörer mit einer Lautstärke von maximal 70 dB (A) 
dargeboten, die nicht als unangenehm empfunden wird. Von der Studie 
erwarten wir uns ein besseres Verständnis derjenigen kortikalen Mechanismen, 
die an der Gedächtnisrepräsentation von Geräuschpositionen beteiligt sind, 
sowie der zeitlichen Dynamik der auftretenden Aktivierungsmuster.  

 

Praktische Durchführung: 

 

Das Experiment wird insgesamt etwa 1,5 Stunden dauern. Zur Aufzeichnung 
der Gehirnaktivität wird ein Magnetenzephalograph (MEG) verwendet. Hierbei 
handelt es sich um ein Ganzkopfsystem, welches über 275 Messeinheiten in 
der Lage ist, die Magnetfelder des Gehirns zu registrieren. Diese entstehen 
aufgrund der elektrischen Ströme, welche bei Verarbeitungsprozessen jeglicher 
Art im Gehirn auftreten. Die Messeinheiten befinden sich in einer Haube, die bei 
der Messung den ganzen Kopf und die Ohren bedeckt. Die ideale Position wird 
über einen verstellbaren Sitz eingestellt.  

 

Da es sich bei den zu messenden Magnetfeldern um Feldstärken von nur 10-15 
bis 10-12 Tesla handelt (im Vergleich: das Magnetfeld der Erde beträgt 10-4 
Tesla), ist dieses System sehr empfindlich. Aus diesem Grund befindet sich die 
Messeinheit in einer Abschirmkammer, die während der einzelnen Messungen 
geschlossen sein muss. Zudem sollten alle Metallgegenstände am Körper 
entfernt werden (Schmuck, Schlüssel, Gürtel, Reißverschlüsse, BHs mit 
Metallverschlüssen usw.). Als Bekleidung stehen OP-Kittel und -Hosen zur 
Verfügung. Es sind keine gesundheitlichen Risiken bekannt, die aus dem 
Experiment entstehen könnten. 
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Zu Beginn der Untersuchung werden Sie auf dem Sitz in der Abschirmkammer 
Platz nehmen. Um brauchbare Daten zu gewährleisten, ist es unbedingt 
notwendig, dass Sie sich während der Messung sehr ruhig verhalten. Das 
bedeutet, dass Sie sich auf dem Sitz eine möglichst bequeme Position suchen 
sollten, in der Sie mit dem Kopf in der Messhaube hinten Kontakt haben. Vor 
der Messung werden an der Nase und an den Schläfen Messspulen befestigt, 
die Ihre Position in der Messhaube vor und nach der Messung kontrollieren. 

 

Die Teilnahme an der Untersuchung ist freiwillig. Sie können jederzeit, ohne 
Angabe von Gründen und ohne Nachteile davon zurücktreten, auch wenn Sie 
die unten stehende Einverständniserklärung schon unterschrieben haben. Der 
Sie untersuchende Studienleiter behält sich vor, Ihre Teilnahme aus bestimmten 
Gründen vorzeitig beenden zu können. 

 

Wir wollen Sie auch darüber informieren, dass die Ethikkommission diese 
wissenschaftliche Untersuchung zustimmend bewertete. Die Verantwortung für 
die Untersuchung liegt aber beim Leiter, Prof. Dr. Jochen Kaiser. 
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12.3 Subject instructions 

 

VERSUCHSANLEITUNG MATCH 

 

Sie nehmen heute an einem Versuch teil, in dem es um die Unterscheidung von 

akustischen Reizen geht. Dieser Versuch gliedert sich in zwei Teile. 

 

I. Memory-Bedingung 

 

In einem Teil sollen zwei aufeinander folgende akustische Reize danach 

beurteilt werden, ob sie aus der gleichen Richtung erklingen. Zunächst wird 

Ihnen ein Rauschen aus einer bestimmten Richtung (es gibt drei Richtungen) 

dargeboten. Merken Sie sich die Richtung. Nach einer kurzen Pause folgt ein 

zweites Rauschen. Wenn dieses Rauschen aus der gleichen Richtung 
ertönt wie das Erste, so heben Sie bitte Ihre Finger in der Lichtschranke 
an. Geben Sie das Signal bitte zügig, machen Sie aber auch so wenig Fehler 

wie möglich. Vor, zwischen und nach dem Rauschen hören Sie ein leises 

Hintergrundrauschen, welches Sie nicht zu beachten haben. 

 

 

II. Control-Bedingung 

 

Im zweiten Teil des Experiments geht es um das Wahrnehmen von 

Lautstärkeveränderungen im Hintergrundrauschen. Anfänglich hören Sie wieder 

ein Rauschen, danach das Hintergrundrauschen, welches nach einer Weile 

entweder gleich bleibt, lauter oder leiser wird. Heben Sie bitte Ihre Finger in 
der Lichtschranke an, wenn Sie keine Veränderung wahrnehmen. Geben 

Sie das Signal bitte zügig, machen Sie aber auch so wenig Fehler wie möglich. 
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Bevor die eigentliche Studie beginnt, werden Sie die Möglichkeit haben, einige 

Übungsdurchgänge zu absolvieren, um sich so an das Experiment und an die 

an Sie gestellten Anforderungen zu gewöhnen. Dazu werden Ihnen anfangs 

regelmäßige und im zweiten Teil der Übung zufällig kombinierte Sequenzen 

dargeboten. Zu diesem Teil erhalten Sie Feedback, d. h. Sie können das 

Schwierigkeitsniveau der Aufgabenstellung in etwa einschätzen. 

 

Beide Versuchsteile der eigentlichen Studie mit je 120 Einzelmessungen 

werden dann jeweils zweimal wiederholt, d. h. Sie werden an zwei 

Durchgängen der Memory- und zwei der Control-Bedingung teilnehmen. 

Zwischen den Versuchsblöcken können Sie zu Ihrer Entspannung eine Pause 

machen. 

 

Für die MEG-Messung ist es wichtig, dass Sie ruhig und entspannt sitzen und 

sich möglichst wenig bewegen. Sie sollten außerdem darauf achten, wenig zu 

blinzeln und wenig Augenbewegungen zu machen. Zu diesem Zweck befindet 

sich in Ihrem Blickfeld ein Fokussierungskreuz, bitte richten Sie Ihren Blick 

darauf. 

 

 

Vielen Dank für Ihre Mitarbeit! 
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