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Abstract

Data exchange deals with translating data structured in some format into data
structured in some other format, according to a specification of the relationship
between the source data and the target data. Such data translation tasks are
very common in practice. They arise as one of the many tasks in data inte-
gration, for example, in data restructuring, in ETL (Extract-Transform-Load)
processes used for updating data warehouses, or in data exchange between dif-
ferent, possibly independently created, applications. While systems for data
exchange have been implemented over the past decades, research on the theo-
retical foundations of data exchange started only recently with the influential
article by Fagin, Kolaitis, Miller and Popa. This thesis deals with relational
data exchange, where the source data and the target data are relational.

The basic setting in relational data exchange is the following. We are given
a schema mapping M that consists of a source schema (the format of the source
data) and a target schema (the format of the target data), and is defined by
a finite set X of logical formulas which describes the relationship between the
source data and the target data. For a source database S, the task is then to
find a solution for S under M, that is, a target database so that all formulas
in X are satisfied. Such a solution should reflect S as accurately as possible.
Usually, X is a set of tuple generating dependencies (tgds) and equality generating
dependencies (egds). Here, tgds are first-order formulas of the form

Vv (p(Z,5) — 329(T, 2)),

where ¢ and v are conjunctions of relational atomic formulas R(u), and z,y
and 7, z are tuples of variables that contain precisely all variables in ¢ and 1,
respectively. One distinguishes between source-to-target tgds (st-tgds), where
“speaks” about the source schema and v speaks about the target schema, and
target tgds (t-tgds), where both ¢ and 1) speak about the target schema. An
egd is a first-order formula of the form

Vi(p(z) = i = x;),

where ¢ is a conjunction of relational atomic formulas that speak about the
target schema only, Z is a tuple of variables that contains precisely all variables
in ¢, and x;, z; occur in .

One of the major issues in relational data exchange is how to answer queries
that are posed against the target schema (i.e., queries that are posed against
the result of a data translation). The problem is that schema mappings are
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in general underspecified. In particular, there is often more than one possible
solution for a given source database, so that it is not a priori clear what the
answer to a query should be. A popular approach is to return the certain
answers to a query. That is, the set of answers to a query ¢ on a schema
mapping M and a source database S consists of all tuples ¢ such that for all
solutions T' for S under M we have: t belongs to the set of answers to ¢ on T
(written ¢t € ¢(T')). For a large class of queries, including unions of conjunctive
queries which are fundamental in database theory, the issue of how to compute
the certain answers to such queries has been investigated quite well. Here,
an indispensable tool are the universal solutions, introduced by Fagin, Kolaitis,
Miller and Popa. Informally, universal solutions are “most general” solutions. In
particular, it was shown that for many queries ¢, including unions of conjunctive
queries, computing the certain answers to ¢ on M and S eventually boils down
to evaluating ¢ on an arbitrary universal solution for S under M.

For monotonic queries (queries, for which the set of answers does not de-
crease when adding tuples to the database), which also comprise the above-
mentioned unions of conjunctive queries, the certain answers intuitively corre-
spond to the set of answers a user would expect. However, it has been observed
that for some non-monotonic queries, the certain answers lead to answers that
intuitively do not seem to be accurate. The reason is that schema mappings
are often interpreted with additional implicit information — information that
is not mentioned explicitly by the schema mapping, but, due to the point of
view on the schema mapping, are nevertheless assumed to be implicitly repre-
sented in the schema mapping. Since there are many possible ways of formally
capturing the intuitive notion of “implicit information”, several semantics for
query answering taking into account implicit information have been proposed.
Those semantics are based on the closed world assumption (CWA), and their
definition is based on the following idea. Given a schema mapping M and a
source database S for M,

1. identify a subset S of all solutions for S under M that is intended to be
the set of all possible outcomes of translating S to the target if implicit
information—in the formalized sense—is taken into account, and

2. answer queries ¢ on M and S using the set S, typically by taking the
certain answers to ¢ on S (i.e., the set of all tuples ¢ such that ¢ € ¢(T)
forall T € S).

Depending on the particular application and one’s point of view, one or the
other of these semantics may be useful.

The contributions of this thesis can be subdivided into three parts: 1. unde-
cidability results concerning computation of universal solutions and the so-called
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chase procedure, 2. query answering semantics that take into account implicit
information, and 3. the complexity of evaluating queries with respect to the
semantics considered in 2. In the following, these parts are described in more
detail.

1. Undecidability results concerning computation of universal solutions and the
so-called chase procedure.

A schema mapping M defined by tgds only is constructed such that the follow-
ing problem is undecidable: given a source database S for M, does S have a
universal solution under M? This in particular strengthens a result of Deutsch,
Nash, and Remmel (2008).

Furthermore, the proof of this result has several consequences concerning
termination of the chase procedure, which is essential in database theory and
is employed for computing universal solutions. More precisely, the chase is a
procedure that takes a database I and a set X of tgds and egds as input, and
iteratively tries to modify I so that the resulting database satisfies all tgds and
egds in . Unfortunately, the chase does not always terminate. To this end,
various conditions on X that ensure chase termination have been proposed in
the literature. All of these conditions are sufficient, but not necessary for chase
termination. In fact, it follows from the proof of the above-mentioned result
that there is no decidable condition on ¥ that is both sufficient and necessary
for chase termination: chase termination is undecidable, even with respect to
some fixed set 3 of tgds. This also strengthens a result of Deutsch, Nash, and
Remmel (2008).

2. Query answering semantics that take into account implicit information.

This thesis gives an overview of query answering semantics in relational data
exchange that take into account implicit information. In the following, a more
detailed description of the semantics contributed by this thesis is given.

The first query answering semantics that take into account implicit informa-
tion were introduced by Libkin. These semantics are based on CWA-solutions,
which were tailored by Libkin to schema mappings defined by st-tgds. CWA-
solutions are based on the CWA in the following sense:

1. Every tuple must be justified in some sense by the schema mapping and
the source database.

2. Each justification is used at most once.

3. A CWA-solution contains only “facts” that follow from the schema map-
ping and the source database.
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This thesis extends the definition of CWA-solutions to the more general case of
schema mappings defined by tgds and egds. The main difficulty is to formalize
the first two requirements. We do this in two ways: First, we use a derivation-
based approach using a suitably controlled version of the chase. Second, we
obtain an equivalent definition in terms of a game. We then show the following:

¢ CWA-solutions are universal solutions that can be derived as mentioned
above.

o A source database has a CWA-solution if and only if it has a universal
solution.

e The core of the universal solutions introduced by Fagin, Kolaitis and Popa
(the “smallest” universal solution) is the “smallest” CWA-solution.

Furthermore, the structure of the set of all CWA-solutions and the complexity
of computing CWA-solutions is explored. Finally, this thesis addresses the
complexity of the query evaluation problem with respect to the CWA-solution-
based semantics. Details to the latter topic are given in 3. below.

The CWA-solution-based semantics reflect an operational point of view on
tgds and egds. That is, tgds are considered as rules for deriving tuples, and egds
are considered as rules for identifying values. One of the consequences is that
these semantics do not take into account logical equivalence of schema mappings
(i.e., answers to queries may differ on schema mappings defined by logically
equivalent sets of formulas), and query answers do not necessarily reflect the
standard semantics of first-order quantifiers (e.g., existential quantifiers express
that there are one, two, three or more elements that satisfy the given property,
but this is not necessarily reflected by query answers).

For this reason, a second semantics, the GCWA"-semantics, is developed
that takes implicit information into account and additionally respects logical
equivalence of schema mappings and reflects the standard semantics of first-
order quantifiers. First, translations of query answering semantics from the area
of deductive databases are studied in the context of relational data exchange.
Inspired by these semantics, the GCWA*-semantics is developed. Under the
GCWA*-semantics, queries are answered by the certain answers on GCWA"-
solutions. In contrast to the preceding semantics and solution concepts, the
GCWA*-semantics and GCWA*-solutions are defined for all schema mappings
(rather than for schema mappings defined by tgds and egds). For schema map-
pings defined by st-tgds and egds, GCWA*-solutions are simply solutions with-
out null values that are unions of inclusion-minimal solutions.

3. The complexity of evaluating queries with respect to the semantics in 2.

This thesis first addresses the complexity of evaluating queries with respect to
the CWA-solution-based query answering semantics. More precisely, the data
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complexity is considered, that is, the complexity with respect to fized schema
mappings and fized queries. It turns out that for a large number of monotonic
queries, including unions of conjunctive queries, two of the CWA-solution-based
semantics yield precisely the above-mentioned certain answers, so that all results
on computing the certain answers to such queries carry over to these semantics.
For properly restricted schema mappings, the query evaluation problem for first-
order queries with respect to the CWA-solution-based semantics is in co-NP
or NP, depending on the semantics. Furthermore, there are simple schema
mappings and conjunctive queries with just one additional inequality (#) such
that this problem is complete for the corresponding class. In contrast, it is
known that the certain answers to such queries can be computed efficiently
with respect to a large number of schema mappings.

A larger part of this thesis deals with the complexity of evaluating queries
with respect to the GCWA*-semantics. As above, the data complexity is con-
sidered. It is shown that on monotonic queries, the GCWA*-semantics yields
precisely the above-mentioned certain answers, so that all results obtained for
computing certain answers on monotonic queries directly apply to the GCWA*-
semantics. However, there are simple schema mappings M defined by st-tgds
and simple existential queries q (queries of the form 3% ¢, where ¢ is quantifier-
free) such that the query evaluation problem

EvAL(M, q)
Input: a source database S for M and a tuple t

Question: Is t an answer to ¢ with respect to the GCWA*-semantics?

is colNP-hard. Permitting only one additional universal quantifier can make this
problem undecidable. It seems then surprising that EVAL(M,q) is in PTIME
for universal queries q (queries of the form Vz ¢, where ¢ is quantifier-free) and
suitable restrictions on M.

This result is explained in more detail below. Precisely it states that for
every schema mapping M defined by certain st-tgds, called packed st-tgds, and
each universal query ¢, there is a polynomial time algorithm that takes the core
of the universal solutions for some source database S as input and computes
the set of all answers to ¢ on M and S with respect to the GCWA*-semantics.
Standard results on computing the core of the universal solutions (e.g., by Fagin,
Kolaitis and Popa) in particular imply that EVAL(M, ¢) belongs to PTIME.

For proving the main result, it suffices to develop a polynomial time algo-
rithm for the following problem: given the core of the universal solutions for
some source database S and a tuple £, does t belong to the set of answers to g
on M and S with respect to the GCWA*-semantics? To this end, the problem



is reduced to the problem of checking whether there is a union of one or more
inclusion-minimal databases in poss(Tp) that satisfies —q(t). Here, poss(Tp) is
the set of all databases obtained from the core T of the universal solutions for
S by replacing null values with constants. By transforming —¢q into a kind of
disjunctive normal form, one can then focus, without loss of generality, on the
case that —q is logically equivalent to a formula ¢ = 37 ¢, where ¢ is a conjunc-
tion of atomic formulas and negations of atomic formulas. If ¢ consists of one
atomic formula and z is the empty tuple, the problem can be solved as follows.
First, the infinite set of all inclusion-minimal databases in poss(Tp) is reduced
to a set S of possibly exponential size. The technically difficult part is then to
identify a particular subset of S of polynomial size from which all tuples that
occur in inclusion-minimal databases of poss(Ty) can be reconstructed. Finally,
for solving the general problem, partial solutions are combined in a suitable way
to solutions to the whole problem, where the results proved for the case of one
atomic formula help to prove correctness of this construction.

Keywords: data exchange, certain answers, closed world assumption (CWA),
deductive database



Zusammenfassung

Beim Datenaustausch geht es darum, Daten von einem Format in ein ande-
res Format geméfl einer vorgegebenen Spezifikation zu transformieren. Solche
Datentransformationen finden sich in vielen Anwendungsbereichen wieder. Sie
kommen als eine der vielen Aufgaben in der Datenintegration vor, zum Beispiel
bei der Datenrestrukturierung, bei der Aktualisierung von Datenwarenhausern
oder beim Datenaustausch zwischen verschiedenen, moglicherweise unabhéangig
voneinander erstellten Anwendungen. Obwohl Systeme fiir den Datenaustausch
bereits seit einiger Zeit implementiert werden, wurde erst mit der einflussrei-
chen Arbeit von Fagin, Kolaitis, Miller und Popa (2005) damit begonnen, die
theoretischen Grundlagen des Datenaustauschs zu erforschen. Diese Dissertati-
on beschaftigt sich mit relationalem Datenaustausch, bei dem die Quell- und
die Zieldaten relational sind.

Die grundsatzliche Problemstellung im relationalen Datenaustausch ist die
Folgende: Gegeben ist ein so genanntes Schema-Mapping M, das aus einem
Quellschema (dem Format der Quelldatenbank) und einem Zielschema (dem
Format der Zieldatenbank) besteht und durch eine endliche Menge 3 von logi-
schen Formeln definiert wird, die die Beziehung zwischen Quell- und Zieldaten
beschreiben. Fiir eine Quelldatenbank S soll dann eine Losung fiir S unter M
gefunden werden, d.h. eine Zieldatenbank, so dass alle Formeln aus ¥ erfllt
sind. Diese Losung sollte S so genau wie moglich wiederspiegeln. Gewdhnlich
ist 3 dabei eine Menge von so genannten tgds (,,tuple generating dependencies®)
und egds (,equality generating dependencies). Hierbei sind tgds Formeln der
Logik erster Stufe der Form

VIV (o(E,5) — Iz 0(T, 2)),

wobei ¢ und ¢ Konjunktionen von Relationsatomen R(u) und z,y bzw. z,Z
Variablentupel sind, die genau die in ¢ bzw. 9 frei vorkommenden Variablen
enthalten. Man unterscheidet zwischen st-tgds (,,source-to-target tgds®, bei de-
nen ¢ nur iber das Quellschema und % nur iber das Zielschema ,spricht®)
und t-tgds (,target tgds“, bei denen ¢ und v beide nur tiber das Zielschema
sprechen). Ein egd ist eine Formel der Form

Vi(p(z) = i = x;),

wobei ¢ eine Konjunktion von Relationsatomen ist, die nur iiber das Zielschema
sprechen, = ein Variablentupel mit genau den in ¢ frei vorkommenden Variablen
ist und z;, x; Variablen aus z sind.
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Eine wichtige Frage im relationalen Datenaustausch ist, wie Anfragen iiber
dem Zielschema (d.h. Anfragen an das Resultat des Datenaustauschs) beant-
wortet werden sollen. Das Problem ist, dass Schema-Mappings im Allgemeinen
unterspezifiziert sind. Insbesondere gibt es oft mehrere mogliche Losungen zu
einer Quelldatenbank, so dass nicht a priori klar ist, was die Antwort zu einer
Anfrage sein soll. Ein Ansatz ist, nur die sicheren Antworten zu einer Anfrage
zurtickzuliefern. D.h. die Antwortmenge zu einer Anfrage ¢ bzgl. eines Schema-
Mappings M und einer Quelldatenbank S besteht aus allen Tupeln ¢, so dass
fir jede Losung T fir S unter M gilt: ¢ liegt in der Antwortmenge zu ¢ auf
T (kurz: t € ¢(T)). Fiir eine grofe Klasse von Anfragen, die insbesondere die
in der Datenbanktheorie wichtige Klasse der konjunktiven Anfragen enthélt,
wurde bereits gut erforscht, wie die sicheren Antworten fiir solche Anfragen
berechnet werden kénnen. Ein wichtiges Hilfmittel dabei sind die von Fagin,
Kolaitis, Miller und Popa eingefiihrten universellen Lésungen, die intuitiv “all-
gemeinste Losungen” sind. Insbesondere wurde gezeigt, dass fiir viele Anfragen
q, darunter auch konjunktive Anfragen, die Berechnung der sicheren Antworten
zu ¢ bzgl. M und S im Prinzip nichts Anderes ist, als die Auswertung von ¢ auf
einer beliebigen universellen Losung fiir S unter M.

Fiir so genannte monotone Anfragen (Anfragen, fiir die die Antwortmenge
nicht kleiner wird, wenn Tupel zur Datenbank hinzugefiigt werden), zu denen
auch die oben erwahnten konjunktiven Anfragen gehoren, sind die sicheren Ant-
worten intuitiv genau die Antworten, die man als Benutzer erwarten wiirde.
Es wurde aber beobachtet, dass fiir einige nicht-monotone Anfragen die siche-
ren Antworten nicht dem entsprechen, was man intuitiv erwarten wiirde. Der
Grund dafiir ist, dass Schema-Mappings oft mit zusitzlichen impliziten Infor-
mationen interpretiert werden — Informationen, die im Schema-Mapping nicht
explizit erwihnt, jedoch durch die Sichtweise auf das Schema-Mapping oft als
implizit gegeben angesehen werden. Da es viele Moglichkeiten gibt, den hochgra-
dig intuitiven Begriff ,,implizite Informationen“ formal einzufangen, existieren
verschiedene Anfragesemantiken, mit denen Anfragen unter Beriicksichtigung
solcher impliziten Informationen beantwortet werden koénnen. Diese Semanti-
ken basieren auf Varianten der Closed World Assumption (CWA) und werden
basierend auf der folgenden Idee definiert. Fiir ein gegebenes Schema-Mapping
M und eine Quelldatenbank S

1. identifiziert man die Menge & aller Losungen fiir S unter M, die mogliche
Resultate der Transformation von S darstellen, wenn implizite Informati-
onen — im jeweils formalisierten Sinn — beriicksichtigt werden, und

2. beantwortet Anfragen ¢ mit Hilfe der Menge S, typischerweise durch die
sicheren Antworten zu ¢ bzgl. S (d.h. die Menge der Tupel ¢, so dass
teq(T) firalle T € S).
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Abhéangig von der konkreten Anwendung und der eigenen Sichtweise kann die
eine oder die andere Semantik sinnvoll sein.

Die Beitrage dieser Dissertation kénnen grob in drei Gruppen eingeteilt wer-
den: 1. Unentscheidbarkeitsresultate hinsichtlich der Berechnung universeller
Losungen und der so genannten Chase-Prozedur, 2. Anfragesemantiken zur Be-
antwortung von Anfragen unter Berticksichtigung impliziter Informationen und
3. Bestimmung der Komplexitit der Anfrageverarbeitung beziiglich der in 2. be-
trachteten Anfragesemantiken. Im Folgenden werden diese drei Gruppen etwas
naher beschrieben.

1. Unentscheidbarkeitsresultate hinsichtlich der Berechnung universeller Losun-
gen und der so genannten Chase-Prozedur.

Es wird ein nur durch tgds definiertes Schema-Mapping M konstruiert, so dass
folgendes Problem unentscheidbar ist: Gegeben eine Quelldatenbank S fir M,
besitzt S eine universelle Losung unter M7 Dieses Resultat verstarkt insbeson-
dere ein Ergebnis von Deutsch, Nash und Remmel (2008).

Weiterhin hat der Beweis dieses Resultats einige Konsequenzen in Bezug auf
das Problem, ob die in der Datenbanktheorie essentielle und zur Berechnung
von universellen Losungen eingesetzte Chase-Prozedur terminiert. Die Chase-
Prozedur bekommt als Eingabe eine Datenbank I und eine Menge X von tgds
und egds. Sie versucht dann, [ iterativ mittels der tgds und egds in X so zu
modifizieren, dass die resultierende Datenbank die tgds und egds in X erfiillt.
Ungliicklicherweise terminiert die Chase-Prozedur nicht immer. Jedoch wurde
eine Reihe von Kriterien an Y vorgeschlagen, die sicherstellen, dass die Chase-
Prozedur terminiert. All diese Kriterien sind hinreichend, aber nicht notwendig
fir die Terminierung der Chase-Prozedur. Tatséchlich folgt aus dem Beweis
des oben genannten Resultats, dass es kein entscheidbares hinreichendes und
notwendiges Kriterium an ¥ gibt, das die Terminierung der Chase-Prozedur
sicherstellt. Es gibt ndmlich eine Menge 3, die nur tgds enthélt, so dass das
folgende Problem unentscheidbar ist: Gegeben eine Datenbank I, terminiert die
Chase-Prozedur fiir I und 7 Dies verstarkt ebenfalls ein Ergebnis von Deutsch,
Nash und Remmel (2008).

2. Anfragesemantiken zur Beantwortung von Anfragen unter Beriicksichtigung
impliziter Informationen.

Die Dissertation gibt einen Uberblick iiber Anfragesemantiken, die implizite In-
formationen beriicksichtigen, und steuert selbst entsprechende Semantiken bei.
Im Folgenden werden die Hauptbeitrage dieser Dissertation zu diesem Thema
zusammengefasst.

Die ersten Anfragesemantiken, die implizite Informationen beriicksichtigen,
wurden von Libkin eingefiihrt. Diese Semantiken basieren auf CWA-Ldsungen,
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die von Libkin speziell auf durch st-tgds definierte Schema-Mappings zuge-
schnitten wurden. CWA-Losungen basieren im folgenden Sinn auf der CWA:

1. Alle Tupel miissen auf eine bestimmte Art durch das Schema-Mapping
und die Quelldatenbank gerechtfertigt sein.

2. Jede mogliche Rechtfertigung wird nur einmal eingesetzt.

3. Die CWA-Losung enthélt nur ,Fakten“, die aus dem Schema-Mapping
und der Quelldatenbank folgen.

In dieser Dissertation wird die Definition von CWA-Losungen auf durch tgds
und egds definierte Schema-Mappings erweitert. Die Hauptschwierigkeit besteht
in der Formalisierung der Anforderungen 1 und 2, die hier zum Einen durch
einen ableitungsbasierten Ansatz mittels einer passend kontrollierten Variante
der Chase-Prozedur und zum Anderen spielbasiert charakterisiert werden. Es
wird dann folgendes gezeigt:

o CWA-Losungen sind universelle Losungen, die in dem oben genannten
Sinn ableitbar sind.

o FEine Quelldatenbank besitzt genau dann eine CWA-Losung, wenn sie eine
universelle Losung besitzt.

e Der von Fagin, Kolaitis und Popa eingefithrte Kern der universellen Lo6-
sungen (die ,kleinste“ universelle Losung) ist die , kleinste* CWA-Losung.

Weiterhin wird die Struktur der Menge der CWA-Losungen und die Komplexi-
tat der Berechnung von CWA-L6sungen untersucht. SchlieSlich wendet sich die
Dissertation der Komplexitdt des Auswertungsproblems fiir die CWA-Losungs-
basierten Anfragesemantiken zu. Dies wird unter 3. néher beschrieben.

Die den CWA-Losungs-basierten Semantiken zugrunde liegenden Annah-
men spiegeln die operationale Sichtweise auf tgds und egds wieder. Infolgedes-
sen beriicksichtigen diese Semantiken jedoch nicht logische Aquivalenz zwischen
Schema-Mappings (d.h. auf Schema-Mappings, die durch logisch dquivalente
Mengen von Formeln definiert sind, kénnen Anfragen verschieden beantwor-
tet werden), und auch die Standard-Semantik von Quantoren der Logik erster
Stufe (z.B. Existenzquantoren sagen aus, dass ein oder zwei oder drei usw. Ele-
mente mit der entsprechenden Eigenschaft existieren) wird nicht immer in den
Anfrageergebnissen wiedergespiegelt.

Aus diesem Grund wird eine zweite Semantik entwickelt, die GCWA"-Se-
mantik, die implizite Informationen und zudem auch logische Aquivalenz von
Schema-Mappings und die Standard-Semantik von Quantoren der Logik erster
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Stufe berticksichtigt. Zunachst werden Anfragesemantiken aus dem Bereich der
deduktiven Datenbanken in den Kontext relationalen Datenaustauschs iibertra-
gen und in diesem Kontext untersucht. Inspiriert von diesen Semantiken wird
dann die GCWA*-Semantik entwickelt. Unter der GCWA*-Semantik werden An-
fragen durch die sicheren Antworten auf GCWA"-Lésungen beantwortet. Im Un-
terschied zu den vorhergehenden Semantiken und Loésungskonzepten sind die
GCWA*-Semantik und GCWA*-Losungen fiir alle Schema-Mappings definiert
(nicht nur fir solche, die durch tgds und egds spezifiziert werden). Fir durch
st-tgds und egds definierte Schema-Mappings sind GCWA*-Losungen einfach
Losungen ohne Null-Werte, die Vereinigungen von inklusionsminimalen Losun-
gen sind.

3. Bestimmung der Komplezitit der Anfrageverarbeitung beziiglich der in 2. be-
trachteten Anfragesemantiken.

Die Dissertation wendet sich in diesem Teil zuerst der Komplexitit des Auswer-
tungsproblems fiir die CWA-Losungs-basierten Anfragesemantiken zu. Genauer
wird die Datenkomplexitit betrachtet, d.h. die Komplexitiat bzgl. eines festen
Schema-Mappings und einer festen Anfrage. Es stellt sich heraus, dass zwei die-
ser Semantiken fiir konjunktive Anfragen und einige Erweiterungen davon genau
die anfangs erwahnten sicheren Antworten liefern, so dass sich alle fiir die siche-
ren Antworten erhaltenen Resultate auf diese Semantiken iibertragen. Bei aus-
reichender Einschrdnkung von Schema-Mappings liegt das Auswertungsproblem
fiir Anfragen in der Logik erster Stufe — abhéngig von der jeweiligen Semantik
— in coNP bzw. in NP. Auflerdem existieren einfache Schema-Mappings und
konjunktive Anfragen mit nur einer Ungleichung (#), bei denen dieses Problem
vollstandig fir die jeweilige Klasse ist. Im Gegensatz dazu ist bekannt, dass
die sicheren Antworten fir solche Anfragen bzgl. einer Vielzahl von Schema-
Mappings effizient berechnet werden kénnen.

Ein groflerer Teil der Dissertation beschéftigt sich mit der Komplexitit des
Auswertungsproblems beztiglich der GCWA*-Semantik. Wie oben wird auch hier
die Datenkomplexitit betrachtet. Es wird gezeigt, dass die GCWA*-Semantik
auf monotonen Anfragen genau die anfangs erwiahnten sicheren Antworten lie-
fert, so dass sich alle fiir die sicheren Antworten erhaltenen Resultate fiir mo-
notone Anfragen auf diese Semantiken iibertragen. Allerdings gibt es einfache,
durch st-tgds definierte Schema-Mappings M und einfache existentielle Anfra-
gen ¢ (Anfragen der Form 37 ¢, wobei ¢ quantorenfrei ist), so dass das Aus-
wertungsproblem

EvAL(M, q)
Eingabe: eine Quelldatenbank S fiir M und ein Tupel ¢
Frage:  Ist t eine Antwort zu ¢ bzgl. der GCWA*-Semantik?
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co-NP-hart ist. Lasst man neben Existenzquantoren auch Allquantoren zu, so
kann dieses Problem unentscheidbar werden. Umso iiberraschender scheint es,
dass EVAL(M, q) fir universelle Anfragen ¢ (Anfragen der Form Vz ¢, wobei ¢
quantorenfrei ist) bei passender Einschrankung von M in PTIME liegt.

Dieses Resultat soll zum Abschluss dieser Zusammenfassung noch etwas ge-
nauer beschrieben werden. Préaziser besagt es, dass fiir jedes Schema-Mapping
M, das durch spezielle st-tgds, so genannte gepackte st-tgds, beschrieben wird,
und fiir jede universelle Anfrage ¢ ein Polynomialzeitalgorithmus existiert, der
bei Eingabe des Kerns der universellen Losungen einer Quelldatenbank S die
Antwortmenge zu q bzgl. M und S unter der GCWA*-Semantik ausgibt. Aus Re-
sultaten zur Berechnung des Kerns der universellen Losungen (z.B. von Fagin,
Kolaitis und Popa) folgt insbesondere, dass EVAL(M, q) in PTIME liegt.

Um das Hauptresultat zu beweisen, reicht es aus, einen Polynomialzeital-
gorithmus fiir das folgende Problem anzugeben: Gegeben der Kern der uni-
versellen Losungen einer Quelldatenbank S und ein Tupel ¢, liegt ¢ in der
Antwortmenge zu ¢ bzgl. M und S unter der GCWA*-Semantik? Dazu wird
das Problem zuerst auf den Test reduziert, ob eine Vereinigung von ein oder
mehr inklusions-minimalen Datenbanken aus poss(K) existiert, die —q(t) erfiillt.
Hierbei ist poss(K) die Menge der Datenbanken, die sich aus dem Kern K der
universellen Losungen fiir S durch Ersetzen von Null-Werten durch Konstanten
ergeben. Durch Transformation von —¢q in eine Art disjunktive Normalform kann
man sich dann 0.B.d.A. auf den Fall beschranken, dass —¢ dquivalent zu einer
Formel ¢ = dx ¢ ist, wobei ¢ eine Konjunktion von atomaren und negierten
atomaren Formeln ist. Besteht ¢ aus einer atomaren Formel und ist z das leere
Tupel, so lésst sich das Problem wie folgt 16sen. Zuerst wird die unendliche Men-
ge der inklusions-minimalen Datenbanken in poss(K’) auf eine endliche Menge
S moglicherweise exponentieller Grofle reduziert. Der technisch aufwandigste
Teil besteht dann darin, eine Teilmenge von S polynomieller Gréfle ausfindig
zu machen, aus denen alle in inklusions-minimalen Losungen vorkommenden
Tupel rekonstruiert werden kénnen. Um schliefSlich das allgemeine Problem zu
l6sen, setzt man dann Teillosungen in geeigneter Weise zu einer Gesamtlosung
zusammen, wobei die fiir den einfachen Fall bewiesenen Resultate helfen, die
Korrektheit dieser Konstruktion nachzuweisen.

Schlagwérter: Data Exchange, Sichere Antworten, Closed World Assumpti-
on (CWA), Deduktive Datenbank
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Introduction

Data exchange deals with translating data structured in some format into data
structured in some other format, according to a specification of the relation-
ship between the source data and the target data. Such data translation tasks
are very common in practice. They arise, for example, in data restructuring,
in ETL (Extract-Transform-Load) processes which are used for updating data
warehouses, or in data exchange between different, possibly independently cre-
ated, applications (see, e.g., Haas et al. [2005], Fagin et al. [2005a]). Over the
past decades, various systems that support data exchange have been imple-
mented [Shu et al., 1977, Haas et al., 2005].

Research on the theoretical foundations of data exchange started only re-
cently with the seminal articles of Fagin et al. [2005a,b]. These articles focused
on relational data exchange, that is, data exchange for the case that the source
data and the target data are relational (i.e., stored in relational databases).
A large body of work in the data exchange literature is devoted to relational
data exchange. However, data exchange based on other data models has been
considered, too. The case of XML data, for example, has been studied by Are-
nas and Libkin [2008] and Amano et al. [2009]. Also, extensions of the basic
setting of relational data exchange, where data is exchanged between multiple
“parties”, have been considered [Fuxman et al., 2006, De Giacomo et al., 2007].
Nevertheless, an important reason for studying relational data exchange is the
fact that some of the interesting fundamental issues of data exchange—like is-
sues related to query answering—arise already in the context of relational data
exchange. To understand these issues, it seems to be a good idea to first study
them in the basic setting of relational data exchange. For more background on
data exchange, I refer the interested reader to Fagin et al. [2005a], Haas et al.
[2005], or to the survey articles by Kolaitis [2005] and Barcelé [2009].

One of the major issues in data exchange is query answering, which refers
to the problem of answering queries that are posed against target data (see,
e.g., Fagin et al. [2005a], Kolaitis [2005], Barcel6 [2009]). The main difficulty is
that data translations are usually underspecified. In particular, there is usually
more than one possibility to translate source data to the target, so that it is not
a priori clear what the answer to a query should be. One of the fundamental
goals in data exchange is to find appropriate semantics for query answering.
This is one of the goals pursued in this thesis.

The remaining part of this introductory chapter is organized as follows. In
Section 1.1, we review the central concepts of relational data exchange: schema
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mappings and solutions. The presentation of these concepts is inspired by Sec-
tion 2 in Hernich and Schweikardt [2010]. A survey of research topics in re-
lational data exchange is given in Section 1.2. Section 1.3 explains the basics
of query answering in relational data exchange. First, it motivates and defines
the certain answers semantics, which seems to be the right semantics to answer
a large number of queries that are frequently encountered in practice. Second,
it explains why the certain answers semantics does not seem to be sufficient to
answer more general queries. Section 1.4 summarizes the main contributions of
this thesis, and Section 1.5 describes the structure of this thesis.

The Central Concepts of Relational Data Exchange

We begin by recalling some standard notions from database theory. A com-
prehensive introduction to database theory is the textbook by Abiteboul et al.
[1995]. Our notation slightly deviates from the notation used in that book.

A schema is a finite set of relation symbols. Each relation symbol R has an
associated positive integer ar(R), called its arity. Given a schema o, an instance
I over o assigns to each relation symbol R € o a finite ar(R)-ary relation R’
The active domain of I, denoted by dom([), is the set of all elements that
occur in the tuples of the relations of I, that is, dom(/) consists of all elements
u for which there is a relation symbol R € o and a tuple (t1,...,ta(r) € R!
with w € {t1,...,tarr)}. We assume a fixed infinite set Dom, whose elements
are called values, such that dom(/) C Dom for all instances I. The set of all
instances over ¢ is denoted by inst(o).

Let us also fix the following notations that are used over and over again
throughout this thesis. Let f: X — Y be a mapping, where X and Y are
arbitrary sets. Given a tuple t = (t1,...,t,) € X" we extend f to ¢ by
applying f pointwise to ¢, that is, f(t) := (f(¢t1),..., f(t,)). Given a relation
R C X" we extend f to R by f(R) := {f(t) |t € R}. In particular, f(X) is
the range of f (we often consider sets as unary relations). Finally, if I is an
instance over a schema ¢ with dom(/) C X, and if Y C Dom, we let f(I) be
the instance with R/ := f(R") for each R € 0.

Given two schemas oy and o, a specification of the relationship between
instances over o, and instances over o, and an instance S over oy, the goal in
relational data exchange is to translate S (the source instance) into an instance
T over oy, (a target instance) that satisfies the given specification [Fagin et al.,
2005a]. The following example describes one specific setting, and is used as a
running example throughout the remainder of this section.

EXAMPLE (RESTRUCTURING A LIBRARY DATABASE)
Consider the scenario of restructuring a library database. Let us assume that
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S is a source instance over the schema oy = {Books, Authors}, where Books®
stores the books contained in the library as tuples of the form (isbn, title), and
Authors® stores the relation between books and authors as tuples of the form
(isbn, author_name). The goal is to restructure S into a target instance 1" over
the schema oy = {BookInfo, AuthorList, WrittenBy}, where BookInfo' stores
the books in the library as tuples of the form (isbn, title, genre), AuthorList"
stores information on the authors as tuples of the form (author _id, name), and
WrittenBy" stores the relation between books and authors as tuples of the form
(isbn, author _id).

An additional requirement is that the attribute author id of AuthorList is
a key (i.e., each value for author_id implies a unique value for the attribute
name), and that for every tuple (isbn, author id) in WrittenBy", the relations
BookInfo" and AuthorList’ contain entries for the book with ISBN number
isbn, and the author with author ID author id, respectively. O

A formal framework for specifying requirements such as those described in
Example 1.1 has been developed by Fagin et al. [2005a]. The central concepts
of this framework are schema mappings and solutions.

Schema Mappings and Solutions

This section reviews the central concepts for specifying requirements such as
those described in Example 1.1: schema mappings and solutions. These con-
cepts were developed by Fagin et al. [2005a].

A schema mapping is a binary relation between instances over a source
schema and instances over a target schema:

DEFINITION (SCHEMA MAPPING)

A schema mapping M is a subset of inst(og) X inst(oy), where o4 and oy are
schemas. We refer to og as the source schema of M, and call an instance over
os a source instance for M. Analogously, we refer to oy as the target schema of
M, and call an instance over oy a target instance for M.

This definition is essentially the definition of schema mappings used by Are-
nas et al. [2009b]. Schema mappings as defined by Fagin et al. [2005a] corre-
spond to logically defined schema mappings, which are the topic of Section 1.1.2.

The target instances to which a source instance S' is associated by a schema
mapping M are called solutions (for S under M), and—recalling the goal stated
at the beginning of this section—solutions correspond to the target instances
to which S can be translated, given M:

DEFINITION (SOLUTION)
Let M be a schema mapping, and let S be a source instance for M. A solution
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for S under M is a target instance T for M with (S,T) € M. The set of all
solutions for S under M is denoted by sol(M,S).

Note that, despite of their name, schema mappings are not mappings in the
mathematical sense. That is, given a schema mapping M, it is in general not
the case that for every source instance S for M there is precisely one solution
for S under M.

1.4 EXAMPLE (LIBRARY DATABASE RESTRUCTURING, CONTINUED)
The requirements from Example 1.1 can be represented by a schema mapping
M that consists of all pairs (5,T") € inst(os) x inst(oy), where o5 and o are the
schemas from Example 1.1, and:

1.

For every tuple (isbn, title) € Books®, there is some value genre such that
(isbn, title, genre) € BookInfo® .

For every tuple (isbn, name) € Authors®, there is some value author id
such that (author_id, name) belongs to AuthorList" and (isbn, author id)
belongs to WrittenBy" .

. For every (author_id, name) € AuthorList' and every (isbn, author id) €

WrittenBy" |, we have (isbn, name) € Authors®.

. If (author_id, name) and (author_id, name) belong to AuthorList’, then

name = name .

. For every (isbn, author_id) € WrittenBy® , there are values title, genre and

name such that (isbn, title, genre) € BookInfo' and (author _id, name) €
AuthorList" .

For example, let S* be the source instance with

Books®” = {(“0-201-53771-0”, “Foundations of Databases”)},
Authors® = {(“0-201-53771-0", “Serge Abiteboul”),
(“0-201-53771-0", “Richard Hull”),
(“0-201-53771-0", “Victor Vianu”),
(“0-201-53082-1", “Christos H. Papadimitriou”)}.

Then the target instance T' for M with

BookInfo' = {(*0-201-53771-0”, “Foundations of Databases”, “DB”),

(“0-201-53082-1", “Computational Complexity”, “CC”)},
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AuthorList” = {(1, “Serge Abiteboul”), (2, “Richard Hull”),

(

(3, “Victor Vianu”), (4, “Christos H. Papadimitriou”)},
WrittenByT = {(“0-201-53771-0”, 1), (“0-201-53771-0", 2),

(“0-201-53771-0”, 3), (“0-201-53082-1", 4)}

is a solution for S* under M. Furthermore, every target instance 7’ that is
obtained from T by replacing the values “Computational Complexity”, “DB”,
“CC7, 1, 2, 3 and 4 by other values leads to a solution for S* under M, provided
the replacements for 1, 2, 3 and 4 are pairwise distinct. On the other hand,
the target instance that is obtained from 7" by removing, say, the first tuple in
BookInfo™ is no solution for S* under M. n

This is a natural point to introduce the concept of labeled null values. In
relational data exchange, labeled null values (nulls, for short) are used as place-
holders for unknown values in target instances (i.e., values for which the schema
mapping just tells us that there is a value, but does not tell which particular
one).

EXAMPLE (LIBRARY DATABASE RESTRUCTURING, CONTINUED)
In Example 1.4, one could as well use nulls L1, 15 etc. to represent the unknown
book titles, book genres, and author IDs in a solution 7% for S* under M:

BookInfo™" = {(“0-201-53771-0", “Foundations of Databases”, 1),
(“0-201-53082-17, Ly, Ly)},
AuthorList’” = {(L4, “Serge Abiteboul”), (Ls, “Richard Hull”),
(Lg, “Victor Vianu”), (L7, “Christos H. Papadimitriou”)},
WrittenBy" = {(“0-201-53771-0", L), (“0-201-53771-0”, L;),
(40-201-53771-07, L), (“0-201-53082-17, L)}, O

Formally, we assume that the set Dom is the union of two disjoint infinite
sets, Const and Null. The values in Const are called constants and correspond
to the usual database values. The values in Nullare the nulls. We use the letters
a,b,c (possibly with subscripts and/or superscripts) to denote constants, and
the symbol L (possibly with subscripts and /or superscripts) to denote nulls. For
an instance I, let const(/) := dom(I) N Const and nulls(/) := dom(I) N Null.

REMARK (INSTANCES WITHOUT NULLS VS. INSTANCES WITH NULLS)

From a conceptual point of view, the fact that instances may contain nulls
seems to be unsatisfying. After all, there is a huge difference between instances
without nulls (which correspond to instances as usually encountered in the
database literature) and instances with nulls. While an instance I without
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nulls is viewed as a collection of the relations that constitute I, an instance
with nulls should be viewed as a representation of a set of instances without
nulls [Abiteboul et al., 1995]. Treating instances with nulls in the same way as
instances without nulls can lead to counter-intuitive results in query answering.
We will come back to this issue in Section 1.3.

Nevertheless, to be consistent with the data exchange literature, we allow
nulls to occur in instances. We should, however, bear in mind the difference
between instances without nulls and instances with nulls. O]

An instance without nulls is called ground instance. In the database liter-
ature, an instance that may contain nulls is also called naive table (see, e.g.,
Abiteboul et al. [1995]). In this thesis, we call an instance I naive table if we
want to emphasize that I may contain nulls.

Throughout this thesis, we make the following assumptions which are com-
mon in relational data exchange (cf., e.g., Fagin et al. [2005a,b], Kolaitis [2005],
Barcel6 [2009]):

PROVISO (SOURCE INSTANCES AND TARGET INSTANCES)
Source instances for schema mappings are ground instances unless stated oth-
erwise. Target instances for schema mappings are naive tables.

Before we deal with the question of how schema mappings can be speci-
fied, let us introduce a technical, but natural, restriction on schema mappings.
Intuitively, we would like schema mappings to depend on a finite number of
constants only. In other words, it should be possible to associate each schema
mapping M with a finite set C' of constants, so that M is invariant under re-
namings of values in Dom \ C. Formally, this is captured by the notion of a
generic schema mapping. A schema mapping M with source schema oy and
target schema oy is called C-generic for a set C' C Const if and only if for all
(S, T) € M, and for all bijective mappings m: Dom — Dom, where 7(c) = ¢ for
all c € C, we have (7(5),n(T)) € M:

We call M generic if and only if there is a finite set C' C Const such that M is
C-generic

PROVISO (SCHEMA MAPPINGS)
We consider generic schema mappings, unless stated otherwise.
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Note that genericity implies that the precise choice of nulls in solutions
does not matter. Intuitively, this is a desired property: For example, if we
rename each null L; in the instance 7% from Example 1.5 to a null L} (so that
for distinct 4,5 € {1,...,7} we have L] # 1%), then the resulting instance
should be a solution for S$* under M, too, since nulls are just placeholders for
constants. The property that two instances are the same up to renaming of
nulls is formalized by isomorphisms:

DEFINITION (ISOMORPHISM, ISOMORPHIC)
Let I and J be instances over a schema o.

o An isomorphism from I to J is a bijective mapping f: dom(l) — dom(.J)
such that f(I) = J, f(c) = ¢ for each constant ¢ € const(/), and f(L) is
a null for each null L € nulls(7).

o We say that I and J are isomorphic, and we write I = J, if and only if
there is an isomorphism from I to J.

In the following, we often do not distinguish between isomorphic instances.
That is, given isomorphic instances I and J, we often view I and J as one and
the same instance.

Logically Defined Schema Mappings

In relational data exchange, one typically considers sets of formulas of a certain
logic for specifying schema mappings in a high-level declarative way. The sets of
formulas considered in the data exchange literature for schema mapping speci-
fication consist of sentences of some small fragment of first-order logic (FO), or
an extension thereof.

A FO formula over a schema o is a FO formula that can refer to the relation
symbols in o and the constants in Const. More precisely, a FO formula over o
is built from atomic formulas of the form

e R(t), where R € o, and ¢ is an ar(R)-tuple over VarU Const (where Var
is some fixed infinite set of variables disjoint to Dom), and

e t1 = ty, where t; and t5 are elements of VarU Const,

using negation (—), disjunction (V), conjunction (A), existential quantification
(3), and universal quantification (V). We omit parentheses whenever this does
not introduce any ambiguities, and use ¢ — ¢ and 1 <> o as abbreviations
for =1 V 9, and (1 A p2) V (m¢1 A —s), tespectively. The set of the free
variables of a FO formula ¢, denoted by free(y), is defined as usual. The
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notation ¢(xy, ..., ;) indicates that ¢ is a formula with free(p) = {z1, ...,z },
where z1, ..., x; are pairwise distinct variables. A sentence is a formula without
free variables.

For evaluating FO formulas in an instance I, the natural semantics is used,
that is, quantified variables range over Dom, and each constant in Const is
interpreted by itself. More precisely, let an assignment for a set X C Var be a
mapping «: X' — Dom, where X’ C Var and X C X’'. An assignment for a
FO formula ¢ is an assignment for free(y). For every instance I over a schema
o, every FO formula ¢ over o, and every assignment « for ¢, we define the
satisfaction relation I = ¢(a) (in words: “I satisfies ¢ under «”) in the usual
way. In particular:

o If ¢ has the form R(t1, ..., ta(r)), where R € o and (t1,. .., ta(n) is a tu-
ple over VarU Const, then I = ¢(«) if and only if (a*(t1), ..., o (taxr))) €
R™, where for each i € {1,...,ar(R)}, we have o*(t;) := a(t;) if t; € Var,
and a*(t;) := t; otherwise.

o If ¢ has the form t; = t5, where t; and ty are elements of VarU Const,
then I = ¢(«) if and only if o*(t;) = a*(t2), where a* is defined in an
analogous way as above.

o If ¢ has the form dz ¢, where x € Var and ¢ is a FO formula over o,
then I |= (a) if and only if there is some u € Dom such that I |= ¢ (a¥),
where o is the assignment for ¢ such that for all 2’ € X U {z}, where X
is the set of variables in a’s domain:

o —
at(a)) = {u, ifr =uw,

a(z’), otherwise.

o If ¢ has the form Vz ¢, where x € Varand ¢ is a FO formula over o, then
I = p(a) if and only if for all u € Dom we have I |= ¢(a%), where o is
defined as above.

An assignment « for a formula ¢(zq,...,x) is often referred to by the tu-
ple (a(xy),...,a(x)). So, for a FO formula ¢(xq,...,z;) and a tuple u =
(uy,...,ux) € Dom®, I |= (i) is an abbreviation for I = ¢(a), where o maps
each x; to u;. If  is a sentence, we omit the assignment. That is, we just write
I = ¢ instead of I = ¢(e), where ¢ is the empty tuple. For a set @ of FO
sentences over o, we write I = @ if and only if for all ¢ € ® we have I |= ¢.

REMARK (WHY NULLS ARE PROHIBITED IN FORMULAS)
Although both, constants and nulls, may occur in instances, formulas can refer
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only to constants. The reason is the intended semantics of nulls. Recall that
a null serves as a placeholder for an (unknown) constant. In particular, a null
has no definite value. O]

In later chapters, we also deal with the logic L., which is the extension
of FO logic, where disjunctions and conjunctions may range over an infinite
number of formulas, instead of just two formulas. The semantics of such infinite
disjunctions and conjunctions is a straightforward extension of the semantics
of their binary counterparts. A precise definition of L., formulas and their
semantics is given directly preceding their first use. For the moment, the above
informal description should suffice.

Note that the number of assignments satisfying a given formula can be
infinite, and variables can be assigned to arbitrary elements of Dom. In the
following, we restrict attention to formulas ¢ such that satisfaction of ¢ in
an instance I depends only on dom(/) and dom(y), where dom(y) is the set
of all constants that occur in ¢. More precisely, we consider formulas that
are domain independent in the following sense. Given an instance I, a set
D C Dom, a formula ¢, and an assignment « for ¢, we define I |=p ¢(a) in
the same way as I = ¢(«a) above, except that the quantifiers in ¢ range over
dom(]) U dom(y) U D instead of Dom. A formula ¢ is domain independent if
and only if for all instances I, all sets D C Dom, and all assignments « for o,

I'l= (o) <= I Ep p(a), and
a(x) € dom(I) Udom(p) U D for all z € free(yp).

In particular, it suffices to consider only assignments with range in dom(/) U
dom(yp). For syntactic restrictions of formulas that ensure domain indepen-
dence, we refer the interested reader to Abiteboul et al. [1995].

Proviso (FORMULAS)
We consider domain independent formulas, unless stated otherwise.

Sets of FO sentences or L., sentences specify schema mappings as follows:

DEFINITION (LOGICALLY DEFINED SCHEMA MAPPING)
Given disjoint' schemas o, and o, and a finite set 3 of FO sentences (resp.,
Lo, sentences) over oz U oy, we let (o, 0y, ) be the schema mapping

{(S,T) € inst(os) x inst(oy) | SUT = X},

Here, S U T denotes the instance over o, U oy such that for all R € o4 we have
RSYT = RY and for all R € o, we have R°YT = RT.

IThe restriction to disjoint source schemas and target schemas is necessary in order to
distinguish between source and target in FO sentences, or L., sentences, respectively.
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Note that all schema mappings defined by sets of FO sentences are generic.
Moreover, all schema mappings defined by sets of L., sentences containing a
finite number of constants are generic.

EXAMPLE (LIBRARY DATABASE RESTRUCTURING, CONTINUED)
For the schema mapping M from Example 1.4, we have M = (o, 0y, %), where
> contains the following FO sentences over o4 U oy:

X1 = Vo Vi, (Books(ml,xg) — EIzBook[nfo(xl,xg,z)),
X2 = V|V (Authors(ml,xg) < Jz(AuthorList(z, xs) N WrittenBy(xl,z))),
X3 = Vi VaoVas (AuthorLz’st(a:l, x9) A AuthorList(xy, x3) — 1o = a:g,),
X4 = V:L’NQ:Q(Wrz'ttenBy(:cl,xQ) —

Jz1329323(BookInfo(xy, z1, z9) A AuthorList(xs, 23)))
Note that x; expresses condition 1 in Example 1.4, y, expresses conditions 2

and 3 in Example 1.4, y3 expresses condition 4 in Example 1.4, and y4 expresses
condition 5 in Example 1.4. O

In practice, one has to be careful in the choice of the sentences used for
specifying schema mappings. The following example exhibits a schema mapping
M defined by a single FO sentence such that the problem

EXISTENCE-OF-SOLUTIONS(M)
Input: a source instance S for M

Question: Is there a solution for S under M?

is undecidable. This example is based on [Kolaitis et al., 2006, Theorem 3.6]. A
different example based on the halting problem for Turing machines is sketched
in Kolaitis [2005], and an example based on Post’s correspondence problem is
sketched in Hernich and Schweikardt [2010]. Note that the difficulty in proving
the undecidability of EXISTENCE-OF-SOLUTIONS(M) is that M is fixed. If M
would be part of the input, undecidability would easily follow from Trakhten-
brot’s Theorem (see, e.g., Ebbinghaus and Flum [1999], Libkin [2004]).

EXAMPLE (EMBEDDING PROBLEM FOR FINITE SEMIGROUPS)
Consider the embedding problem for finite semigroups, which is defined as fol-
lows:
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EMBEDDING PROBLEM FOR FINITE SEMIGROUPS
Input: a partial function p: X? — X, where X is a finite set

Question: Is there a finite set Y O X and a total function f: Y? — Y
such that f is associative, and f extends p (i.e., if p(z,y) is
defined, then f(z,y) = p(z,y))?

This problem was shown to be undecidable in Kolaitis et al. [2006].

An input p: X? — X to this problem can be represented by an instance
S, over the schema oy := {R}, where R% = {(z,y,2) € X3 | p(z,y) = z}. A
solution f: Y? — Y can be represented by an instance T} over the schema
oy = {R}, where RTf = {(x,y,2) € Y? | f(z,y) = 2}.

It is now easy to construct a FO sentence ¢ over o3 U oy such that for a
given partial function p: X? — X, there is a solution for S, under the schema
mapping M = ({R}, {R}, {¢}) if and only if there is a finite set ¥ O X and
a total function f: Y? — Y that is associative and extends p. Indeed, we can
choose

Q = VxVsz(R(x,y, z) — Ii’(:c,y,z))

“R g Rw

A VaVyVav2' (R(z, y,2) ANR(x,y,2) = 2 = z’)

“R is the graph of a function f”
N Y2y (Yp(x) Adgly) — F2R(x,y,2))
“f is a total function”
A VaVy¥2Yuvovw(R(z, y, u) A R(u, z,v) A R(y, z,w) = R(z,w,v)),

“f is associative”

where
3
VYp(z) == FrTwyTas (R(xl,xz, z3) A\ © = xz)
i=1
defines the set of values contained in R. O]

One therefore considers less powerful, but still sufficiently expressive, frag-
ments of FO logic to define schema mappings, such as the following types of
FO sentences:

o Source-to-target tuple-generating dependencies (st-tgds). These are FO
sentences of the form

Vv (p(Z,9) — 329(z, 7)),
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where @ is a conjunction of relational atomic FO formulas (i.e., conjunc-
tions of atomic FO formulas of the form R(f)) over the source schema,
and 1 is a conjunction of relational atomic FO formulas over the target

schema.

o Target tuple-generating dependencies (t-tgds). These are FO sentences of
the form

Vv (p(z, ) — 329(z, 7)),

where ¢ and v are conjunctions of relational atomic FO formulas over the
target schema.

o Equality-generating dependencies (egds). These are FO sentences of the
form

VI(p(T) = @i = 1),

where ¢ is a conjunction of relational atomic FO formulas over the target
schema, T = (x1,...,z) for some integer k > 2, and 7,5 € {1,...,k}.

By a tgd we mean a st-tgd or a t-tgd. A full tgd is a tgd without existentially
quantified variables Z.

For algorithmic results, we restrict our attention to schema mappings de-
fined by tgds and egds. On the other hand, for non-algorithmic results like
query answering semantics, we consider schema mappings that are as general
as possible.

In Example 1.13, x; is a st-tgd, x3 is an egd, y4 is a t-tgd. However, x»
is neither a tgd nor an egd. A reformulation of the schema mapping from
Example 1.13 using tgds and egds is given in the following example:

EXAMPLE (LIBRARY DATABASE RESTRUCTURING, CONTINUED)
The schema mapping from Example 1.13 (more precisely, an approximation to
that schema mapping) can be specified as M = (o5, 0y, X2), where ¥ consists of:

X1 = ‘v’xl‘v’xQ(Books(xl,xg) — EIZBook]nfo(ml,xg,z)),
Xy = Va Vg (Authors(xl,xg) — Jz(AuthorList(z,x2) N WrittenBy(x, z))),
X3 = Vi VagVas (AuthorList(xl, x9) A AuthorList(xy, x3) — 19 = 3:3),
X4 = ‘v’xl‘v’xg(WrittenBy(xl,xg) —
dz1329323( BookInfo(xy, 21, z9) N AuthorList(x, Zg))) O
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Note that, given a source instance S for the schema mapping M from Ex-
ample 1.15, every solution for S under M is a solution for S under the schema
mapping from Example 1.13, but not vice versa. Usually, one does not intend
to fully specify a schema mapping, as in Example 1.13. One rather specifies
only certain properties of solutions, as in Example 1.15, and tries to compute a
“good” solution that reflects the source instance as accurately as possible.

The question of which solutions are “good” solutions is of fundamental inter-
est in relational data exchange. A desirable property of such “good” solutions
is that they can be computed efficiently on important classes of schema map-
pings. This means that for fired schema mappings M from such a class, there
is a polynomial time algorithm that takes a source instance for M as input,
and outputs a “good” solution if it exists. The assumption that the schema
mapping is fixed is typical in data exchange (see, e.g., Fagin et al. [2005a,b],
Kolaitis [2005], Barcelé [2009], Hernich and Schweikardt [2010]), though there
are exceptions such as, for example, Kolaitis et al. [2006]. In this thesis, we
also make this assumption. Another desirable property of “good” solutions is
that the result of a query against the target can be computed from the solution,
without referring to the schema mapping or the source instance. This property
is motivated by the basic assumption underlying (relational) data exchange that
the schema mapping and the source data may not be available once the data
translation has been performed (see, e.g., Fagin et al. [2005a]). Furthermore,
the result of a query should intuitively not depend on a particular materialized
solution. The importance of this property becomes clearer when we deal with
the issue of how to answer queries in Section 1.3.

One particular kind of “good” solutions are the universal solutions intro-
duced by Fagin et al. [2005a], which, intuitively, are “most general” solutions,
and are studied in depth in Chapter 2 (strictly speaking, universal solutions
are “good” with respect to properly restricted schema mappings specified by
tgds and egds, and with respect to a large class of queries including unions of
conjunctive queries). The solution T* from Example 1.5 is a universal solution
for the source instance S* under the schema mapping M from Example 1.15.

Research Topics in Relational Data Exchange

Identifying classes of solutions that are “good” in the sense described at the
end of Section 1.1 is certainly a fundamental research topic in relational data
exchange. Several notions of potential “good” solutions have been proposed in
the literature [Fagin et al., 2005a, Libkin, 2006, Hernich and Schweikardt, 2007,
Libkin and Sirangelo, 2008, Afrati and Kolaitis, 2008]. We already mentioned
the universal solutions from Fagin et al. [2005a], and we will present the other
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solution concepts throughout this thesis, however, with a different focus. Her-
nich and Schweikardt [2010] surveys results on the question of which solutions
are “good” solutions.

Results concerning the complexity of computing various kinds of solutions
have been obtained in the literature [Kolaitis et al., 2006, Fagin et al., 2005a,b,
Hernich and Schweikardt, 2007, Gottlob and Nash, 2008]. Some of these results
will be mentioned in Chapter 2.

One topic that has gained a lot of attention in the past few years is the
semantics of operators for manipulating schema mappings. In particular, com-
position [Fagin et al., 2005¢, Libkin and Sirangelo, 2008] and inversion [Fagin,
2007, Fagin et al., 2008b, Arenas et al., 2009b, Fagin et al., 2009] of schema
mappings have been considered. These operators are important in relational
data exchange for composing specifications of schema mappings, or undoing
the effect of data exchange. Moreover, they are basic components of the model
management framework introduced by Bernstein [2003] to deal with meta-data
problems. Besides the semantics of schema mapping composition and inversion,
the following questions have been addressed by the articles cited above:

o Which logical languages are needed to define the composition or the in-
verse of schema mappings as a new schema mapping?

o What is the complexity of computing the composition or the inverse of
schema mappings?

First steps towards a theory of schema mapping optimization (e.g., minimi-
zation)—a topic that is closely related to schema mapping composition and
inversion—were made by Fagin et al. [2008a]. In particular, the authors studied
various notions of equivalences between schema mappings.

Structural properties of schema mappings are the focus of Arenas et al. [2004]
and ten Cate and Kolaitis [2009]. In Arenas et al. [2004], structural properties
are used to show that certain queries cannot be answered over some “nice”
universal solution (using the certain answers semantics of Fagin et al. [2005a],
to be introduced in the next section). In ten Cate and Kolaitis [2009], languages
for specifying schema mappings (such as the set of all st-tgds) are characterized
in terms of structural properties of schema mappings.

A large part of the literature on relational data exchange deals with query
answering. Some of these articles [Fagin et al., 2005a, Madry, 2005, Arenas
et al., 2004, 2009a] focus on the basic certain answers semantics by Fagin et al.
[2005a], while others [Fagin et al., 2005b, Libkin, 2006, Hernich and Schweikardt,
2007, Libkin and Sirangelo, 2008, Afrati and Kolaitis, 2008, Hernich, 2010] focus
on alternative query answering semantics. Let us now turn to the question of
how to answer queries in relational data exchange.
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How to Answer Queries in Relational Data Exchange?

One of the major issues in data exchange is query answering, which refers to
the problem of answering queries that are posed against target data (see Fagin
et al. [2005a]). Before going into the details of query answering in the context of
relational data exchange, let us review some basic definitions regarding queries.
A comprehensive treatment of queries can be found in Abiteboul et al. [1995].

A query over a schema o is a mapping ¢: inst(c) — Dom”, where k is a
nonnegative integer, and ¢(I) is finite for every instance I over 0. We also say
that q is a k-ary query over o, and call ar(q) := k the arity of q. The set q(I)
is called the result of ¢ on I. Answering (or evaluating) ¢ on an instance I over
o means to compute g(1).

In a similar way as for schema mappings, we restrict attention to generic
queries. A query q over a schema o is called C-generic for some set C' C Const
if and only if for all instances I over o, and for all bijective mappings 7: Dom —
Dom, where 7(c) = ¢ for all ¢ € C, we have q(n(I)) = w(q(1)):

A query g over a schema o is called generic if there is a finite set C' C Const
such that ¢ is C-generic.

PROVISO (QUERIES)
We consider generic queries, unless stated otherwise.

We will almost always deal with queries defined by logical formulas. Given a
formula ¢ (e.g., a FO formula, or a L, formula) over a schema o, and a tuple
T = (x1,...,x5) of pairwise distinct variables with free(y) = {x1,...,zx}, let
qp,z be the k-ary query over o with

4oz(I) == {(a(z1),...,a(xy)) | @ is an assignment for ¢ with I = p(a)}

for every instance I over o. Since we consider only domain-independent formulas
©, we have

9oi(I) = {(a(z1),...,(xy)) | a: free(p) — dom(/) Udom(y), I = p(a)}.

We often identify ¢,z with the formula ¢, assuming that the ordering of the
free variables z1,...,x is clear from the context or does not matter. In this
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case, we also write (/) instead of g, z(/). We write ¢(x1,...,z;) to make the
ordering 1, ..., x; explicit. For example,
o(x1,29) == EIz(E(xl,z) /\E(z,a:g)) (1.1)

denotes the query ¢y, (.2, such that for every instance I over {£},

©(I) = o (e1.20)(I) = {(v1,v2) € dom(I)? | there is some w € dom(I) with
(v1,w) € BE' and (w,vs) € E'}.

A FO query is a query g, z, where p(z) is a FO formula. For example, the
query (1.1) is a FO query. It can be shown that all FO queries are generic.
Moreover, all queries defined by L., formulas containing a finite number of
constants are generic.

REMARK (QUERY LANGUAGES)

A number of query languages of different expressive power have been considered
in the database literature (see, e.g., Abiteboul et al. [1995]). I assume that the
reader is familiar with the most basic query languages (such as (unions of)
conjunctive queries and Datalog queries) and the complexity of evaluating such
queries on an instance. If we give a definition of a certain type of query, we will
do this just to fix a common notation. We will often tacitly use the fact that
the data complexity of FO queries (in particular, unions of conjunctive queries)
and of Datalog queries is in PTIME. That is, given a query ¢ that is a FO
query or a Datalog query, there is a polynomial time algorithm that takes an
instance I as input and outputs ¢(1). O]

In the context of relational data exchange, query answering refers to the
following problem: we are given a schema mapping M, a source instance S for
M, and a query q over M’s target schema, and the task is to answer ¢ with
respect to M and S. The key issues are:

1. Typically, there is more than one solution for S under M, so that it is not
a priori clear what the answer to ¢ with respect to M and S should be.
This is illustrated by Example 1.18 below.

2. We cannot assume that M and S are available after the data exchange
has been performed. Therefore, we have to identify a notion of “good”
solutions that can be computed in order to obtain the answers to queries
directly from that solution.

The following example illustrates the first issue.
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EXAMPLE (LIBRARY DATABASE RESTRUCTURING, CONTINUED)
Recall the schema mapping M from Example 1.15 and the source instance S*
from Example 1.4. A natural FO query over M’s target schema is

@ (x) = Fy3IzTu (Book[nfo(y, “Foundations of Databases”, z) A
WrittenBy(y, u) A AuthorList(u, J:)) :

which asks for the names of all authors of the book “Foundations of Databases”.
It is easy to see that for every solution T" for S* under M, we have

{“Serge Abiteboul”, “Richard Hull”, “Victor Vianu”} C ¢(7). (1.2)

For the solution T* from Example 1.5, ¢;(7™) contains precisely the three names
“Serge Abiteboul”, “Richard Hull” and “Victor Vianu”. On the other hand,
there are solutions 7" for S* under M, where the inclusion (1.2) is strict. For
example, for the solution 7" for S* under M with

BookInfo' = {(*0-201-53771-0”, “Foundations of Databases”, L;),
(“0-201-53082-1", Ly, Ly)},

AuthorList” = {(Ly, “Serge Abiteboul”), (Ls, “Richard Hull”),

(Lg, “Victor Vianu”), (L7, “Christos H. Papadimitriou”),
(Lg, “Jeffrey D. Ullman”)},

WrittenBy" = {(0-201-53771-0”, L), (“0-201-53771-07, L3),
(“0-201-53771-0", Lg), (“0-201-53082-1", L),
(“0-201-53771-0", Lg)},

¢1(T") consists of the names “Serge Abiteboul”, “Richard Hull”, “Victor Vianu”
and “Jeffrey D. Ullman”. So what should be the answer to ¢; with respect to
M and S? O

One way to deal with the first issue is to separate the data translation task
from query answering: If we are given a query ¢ over M’s target schema, we
imagine that a solution 7" for S under M has already been produced, and just
evaluate ¢ on T'. That is, we do not care about the fact that T is the result
of translating S according to M—we just view T" as an ordinary instance, and
evaluate ¢ on T' as we usually do on such an instance. However, as demonstrated
in Example 1.18, the result of the query then depends on the particular solution.
Even more, Example 1.18 shows that for some solutions 7', the result of ¢; on
T contains information that is neither present in the schema mapping nor in
the source instance. For example, the result of ¢; on 7" tells us that “Jeffrey
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D. Ullman” is one of the authors of the book “Foundations of Databases”, but
this information is neither contained in M nor in S*.

As a work-around, we could compute (in some deterministic way) an “appro-
priate” solution (i.e., every source instance S is assigned to precisely one such
“appropriate” solution T that is computed whenever S needs to be translated
to the target schema), and declare the result of a query to be the result of the
query on that solution. However, to answer the question of what an “appropri-
ate” solution is, it seems to be indispensable to first identify an “appropriate”
way of answering queries.

In Fagin et al. [2005a], an approach based on the notion of the certain
answers has been proposed to answer queries in relational data exchange. This
approach is described next.

The Certain Answers Semantics

The certain answers semantics has been introduced by Fagin et al. [2005a] to
answer queries in relational data exchange. As the name suggests, it is based
on the notion of the certain answers, which is commonly used for answering
queries on incomplete instances.

An incomplete instance I over a schema o is a set of ground instances over
o (see, e.g., Abiteboul et al. [1995]). Such an instance models an instance with
incomplete information: just think of Z as representing an unknown instance
I, where I can turn out to be any of the instances in Z. The instances in Z
are called the possible worlds of Z. Given a query q over o, several ways of
evaluating ¢ on Z have been proposed in the literature (cf., van der Meyden
[1998]). A common way is to take the certain answers to q¢ on Z:

DEFINITION (THE CERTAIN ANSWERS FOR INCOMPLETE INSTANCES)
Let Z be an incomplete instance over a schema o, and let ¢ be a query over o.
The certain answers to ¢ on I are defined as

cert(q, L) = ﬂ{q([) | I €T},

Here, for a set X, (N X denotes the intersection of all sets in X. Thus, cert(q,Z)
consists of all tuples that occur in ¢(I) for all possible worlds I of Z.

Let M be a schema mapping, and let .S be a source instance for M. Basically,
the set sol(M,S) can be regarded as an incomplete instance over M’s target
schema. Indeed, this makes perfect sense: think of the result of the translation
of S according to M as an unknown solution for S under M; the unknown
solution could turn out to be any of the solutions in sol(M,S). Fagin et al.
[2005a] therefore proposed to answer a query ¢ with respect to M and S by
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the certain answers to q on M and S, defined as the set of all tuples that are
contained in ¢(7') for all solutions 7" for S under M.

However, depending on the particular query, evaluating the query this way
may lead to counter-intuitive answers. The reason is that sol(M,S) may con-
tain instances with nulls (i.e., naive tables), which, as already indicated in
Section 1.1.1, serve as representations for incomplete instances. Indeed, recall
that nulls are placeholders for unknown constant values. Thus, each instantia-
tion of the nulls in a naive table T by constants gives rise to a possible world
of T. Formally, let a valuation of T' be a mapping f: dom(7) — Const such
that for all ¢ € const(T") we have f(c) = c¢. Then, the set of all possible worlds
of (the incomplete instance represented by) 7' is

poss(T) = {f(T) | f is a valuation of T'}.

If query answering on a naive table is not done with care, counter-intuitive
results may arise (see, e.g., Abiteboul et al. [1995], Imielinski and Lipski, Jr.
[1984]). Therefore, it is desirable to define query answering semantics based on
ground solutions only. Actually, in my opinion, naive tables should not be taken
into account for defining the semantics of query answering, since naive tables
just serve as representations for incomplete instances.

In the case of the certain answers semantics of Fagin et al. [2005a], the
certain answers can in fact be defined without referring to solutions with nulls
(cf., Proposition 1.21). Therefore, we define:

DEFINITION (THE CERTAIN ANSWERS FOR SCHEMA MAPPINGS)
Let M be a schema mapping, let S be a source instance for M, and let ¢ be
a query over M’s target schema. The certain answers to ¢ on M and S are
defined as

cert(q, M, S) = cert(q, soly:(M, S)),

where soly, (M, S) is the set of all ground solutions for S under M.

PROPOSITION.
Let M be a schema mapping, let S be a source instance for M, and let q be a
query over M’s target schema. Then,

cert(q, M,S) = ({a(T) | T € sol(M,S)}.

Proof. The inclusion from right to left is clear. To prove the inclusion from left
to right, assume that ¢ € cert(q, M, S). We must show that ¢ € ¢(T') for every
solution 7' for S under M.

Let T be a solution for S under M. Since ¢ is generic, there is a finite set
C' C Const such that ¢ is C-generic. Let X := const(7) U C, and let Y be the
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set of all values u € Dom for which there is a tuple (uy,...,ux) € ¢(T) with u €
{uq,...,ux}. Pick bijective mappings f1: Dom — Dom and fo: Dom — Dom
such that

o fi(c) = fa(c) = c for each constant ¢ € X,
o f1 and fy map each null in T to a constant, and
« L) N fa(Y) € X

Such mappings exist: First pick an arbitrary bijective mapping f;: Dom — Dom
such that fi(c) = ¢ for each ¢ € X, and f;(L) € Const for each L € nulls(7).
Then pick a bijective mapping fo: Dom — Dom such that fs(c) = ¢ for each
c € X, fo(u) € Const\ fi(Y) for each u € Y \ X, and fo(L) € Const for
each L € nulls(7T") \ Y. This is possible, since ¢(7T') is finite by definition, and
therefore, Y and f;(Y’) are finite.

Let ¢ € {1,2}. Since M is generic, f;(T) is a ground solution for S under
M. Together with ¢ € cert(q, M, S), we have t € q(f;(T)), and C-genericity of
q implies t € fi(q(T)). We now have t € f1(q(T)) N f2(q(T)), which, together
with f1(Y) N f2(Y) C X, implies that all values that occur in ¢ belong to X.

Consequently, t = f'(¢) € fi ' (f1(a(T))) = a(T). 0

EXAMPLE (THE CERTAIN ANSWERS TO ¢; FROM EXAMPLE 1.18)
Recall the schema mapping M from Example 1.15, the source instance S* from
Example 1.4, and the FO query ¢; from Example 1.18. Eq. (1.2) implies

{“Serge Abiteboul”, “Richard Hull”, “Victor Vianu”} C cert(q, M, S™).

On the other hand, if 7™ is the solution for S* under M from Example 1.5, then
¢1(T*) contains precisely the three names “Serge Abiteboul”, “Richard Hull”
and “Victor Vianu”. Thus,

cert(qi, M, S*) = {“Serge Abiteboul”, “Richard Hull”, “Victor Vianu”},

which is certainly the result that one intuitively expects. O

EXAMPLE (THE CERTAIN ANSWERS TO ANOTHER SIMPLE QUERY)
Consider the schema mapping M and the source instance S* for M from Ex-
ample 1.15 and Example 1.4, respectively. For the query

q2(x) = Fy BookInfo(y,x, “DB”),

which asks for the titles of all books with genre “DB”, we have cert(qe, M, S*) =
(). Intuitively, this is the only reasonable result, since neither M nor S* provides
any information about book genres, except that each book has a genre. O]
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The certain answers semantics has been widely adopted as the right seman-
tics for answering monotonic queries. Given instances I and J over a schema
o, we call I a subinstance of J, and we write I C J, if and only if for all R € o
we have R’ C R’. Then, a query ¢ over a schema ¢ is called monotonic if and
only if for all instances  and J over o with I C J, we have ¢(I) C ¢(.J). Mono-
tonic queries form a fundamental class of queries that contains, for example, all
conjunctive queries and all unions of conjunctive queries.

DEFINITION (CONJUNCTIVE QUERY, UNION OF CONJUNCTIVE QUERIES)
A wunion of conjunctive queries over a schema o is a FO query over o of the
form

@(i‘> = Elgl wl(j'agl) VoV Elgm ¢m(£agm)a (13)
where for all i € {1,...,m}, ¢; is a FO formula of the form Ry (u1)A-- AR, (uy)
(withn > 1 and Ry,..., R, € 0), and each variable z in Z is a free variable in

;. A conjunctive query is a query of the form (1.3), where m = 1.

Surprisingly, although the definition of the certain answers involves an in-
tersection over an infinite set, it has been shown in Fagin et al. [2005a] that the
certain answers to unions of conjunctive queries can be computed from an arbi-
trary universal solution by first evaluating the query on the universal solution,
and then removing all tuples with nulls from the result. Details on this are given
in Chapter 2. In order to be able to answer unions of conjunctive queries on the
target, it therefore suffices to translate source instances to universal solutions.
A similar result holds for monotonic queries and an appropriate extension of
the notion of universal solutions [Deutsch et al., 2008]. Details on this are given
in Chapter 2 as well.

Coping With Implicit Information

It has been observed by several authors (e.g., Fagin et al. [2005a], Arenas et al.
[2004], and Libkin [2006]) that, for some non-monotonic queries, the certain
answers semantics leads to answers that intuitively do not seem to be accurate.
Let us give a concrete example to illustrate this issue.

EXAMPLE (COPYING SCHEMA MAPPINGS)
Consider the schema mapping M = ({R},{R'},¥), where R and R’ are binary
relation symbols, and ¥ consists of the st-tgd

Vwﬁ’xg (R(C(]l, IL‘Q) — R/(ZL‘l, ZEQ))

Taking into account that M specifies a translation from source to target, a
natural interpretation of M is “copy the relation R into the relation R’”. This
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is the reason why schema mappings like M are often called copying schema
mappings (see, e.g., Arenas et al. [2004], Libkin [2006]). Given a source instance
S for M, it therefore seems natural to assume that the only possible result of
translating S to the target is the target instance T for M with (R)?s = R®
(the result of copying R to R'). This corresponds to the closed world assumption
(CWA) (see, e.g., Reiter [1978], Libkin [2006]).2

Admittedly, the CWA-based interpretation is a matter of opinion. In some
situations, it may be more natural to assume nothing about tuples ¢ € Dom?
that do not occur in R®. That is, it may be more natural to leave open the
possibility whether such a tuple ¢ belongs to R’ or not, and consider every
solution for S under M as a possible result of translating S to the target.
This corresponds to the open world assumption (OWA) (see also Reiter [1978],
Libkin [2006]). Note that under the OWA-based interpretation, the certain
answers semantics leads to the expected query results. Nevertheless, in many
situations, the CWA-based interpretation seems to be more natural.

If we adopt the CWA-based interpretation, then the certain answers seman-
tics may lead to answers that intuitively do not seem to be accurate. Specifically,
consider the query

q(z) = Jy(R'(w,y) AR (y,))

over M’s target schema. Since for a given source instance S for M, we assume
that T is the only possible outcome of translating S to the target, it seems to
be reasonable to expect that the answer to ¢ on M and S is the answer to ¢
on Ts. In particular, given the source instance S for M with R® = {(a,b)},
we would expect the answer to be ¢(Ts) = {a}. However, contrary to this
expectation, we have cert(q, M, S) = (), since the target instance T for M with
(R ={(a,b), (b,a)} is a ground solution for S under M. O

Furthermore, the following example shows that the certain answers seman-
tics behaves in a rather unexpected way on Boolean queries. Recall that a
Boolean query is a query of arity 0. Thus, the result of a Boolean query is
either the empty set (which is interpreted as no) or the set that contains the
empty tuple (which is interpreted as yes).

EXAMPLE (ARENAS ET AL. [2004])

This example is an adaptation of Proposition 5.4 of Arenas et al. [2004] to the
copying schema mapping M = ({R},{R'},¥) from Example 1.25. Let ¢ be
a non-trivial Boolean query over {R'} (i.e., ¢ is not always true, and ¢ is not

2For the moment, we do not need the general definition of the CWA. We use CWA just to
refer to the assumption that the only possible result of translating S to the target is Ts. A
precise definition of the CWA and variants thereof will be given in Chapters 3, 4 and 5.
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always false). It seems to be natural to expect that there is a source instance
S; for M such that the answer to g on M and S is true, and a source instance
Sy for M such that the answer to ¢ on M and S5 is false. However, contrary to
this expectation, we have

o cert(q, M, S) = () for all source instances S for M, or
o cert(—gq, M, S) = () for all source instances S for M.

That is, g or =g has a trivial result that does not depend on the source instance.

Indeed, suppose that cert(q, M, S) # () for some source instance S for M.
Then for every ground solution 7' for S under M, we have ¢(T) # (). We use
this to show that for all source instances S’ for M we have cert(—q, M, S") = ().
Let S’ be a source instance for M. Pick a ground solution 77 for S under M,
and a ground solution 75 for S" under M. Then the target instance T for M
with (R)T = (R)™ U (R")"2 is both a ground solution for S under M, and a
ground solution for S’ under M. Since T is a ground solution for S under M,
we have ¢(T) # (), and in particular, =¢(T) = ). Since T is a ground solution
for S under M, this implies cert(—q, M, S’) = 0. O

Taking into account the definition of logically defined schema mappings, it
is no surprise that the certain answers semantics behaves this way. In fact,
these effects are just consequences of underspecifying schema mappings. For
example, to obtain the CWA-based interpretation of the schema mapping M in
Example 1.25, one could add the FO sentence

‘v’xng (ﬁR(l‘l, ZL’Q) — ﬁR/({L‘l, 2?2))

to M. Then Ts would be the only solution for a source instance S under M, and
the certain answers semantics intuitively yields the expected results. Note also
that for the modified schema mapping, the certain answers semantics does not
exhibit the “strange” behavior demonstrated in Example 1.26. However, while
this approach is feasible for simple schema mappings such as those in Exam-
ple 1.25, it seems to be infeasible or at least tedious for more complex schema
mappings. Furthermore, one would have to fully specify schema mappings,
which is not what one usually wants to do in practice.

Nevertheless, the above examples show that it is often natural to interpret
schema mappings M and source instances S for M with respect to certain
additional information on the target, which can be imagined to be implicit in
M and S. Namely, when adopting the CWA, since M and S specify a translation
of S from the source schema to the target schema, it is natural to interpret M
and S as if all data, for which M and S do not explicitly mention the possibility
of occurring in the target, do mot occur in the target. In Example 1.25, we
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implicitly assumed that none of the tuples in Dom?* \ R®—of which M and S
do not explicitly mention that they are contained in R'—belongs to R'. If, in
Example 1.25, we would answer ¢ on M and S by the certain answers to ¢
on {Ts} (the set of all possible outcomes of translating S to the target with
respect to the information that none of the tuples in Dom? \ R? belongs to R'),
we would obtain the expected query result {a}. Furthermore, answering queries
on M and S by the certain answers on {Ts} does not exhibit the behavior of
the certain answers semantics described in Example 1.26. A further example is:

EXAMPLE (LIBRARY DATABASE RESTRUCTURING, CONTINUED)
Consider the schema mapping M and the source instance S* for M from Ex-
ample 1.15 and Example 1.4, respectively. Consider also the FO query

q3(z) = Fy3z BookInfo(x,y,z) A
ﬁEIy( WrittenBy(z,y) A AuthorList(y, “Serge Abiteboul”)),

which asks for all ISBN numbers of books where “Serge Abiteboul” is not an
author. Since “0-201-53082-1” is the only ISBN number in S* that is not as-
sociated with “Serge Abiteboul”, and M and S* intuitively do not explicitly
mention the possibility of an association of “0-201-53082-1" and “Serge Abite-
boul” in the target, it seems to be natural to assume the answer to g3 on M
and S* to be {0-201-53082-1}. Here, we implicitly assume that there are no
tuples in AuthorList and WrittenBy that associate “Serge Abiteboul” with the
ISBN number “0-201-53082-1”. We do this, since, intuitively, M and S* do not
explicitly mention the possibility of such an association. O]

Of course, as argued in Example 1.25, it may make perfect sense to assume no
additional information on the target, in which case the certain answers semantics
leads to the desired results. However, in the remainder of this thesis, we consider
the case that schema mappings and source instances are interpreted with respect
to certain ¢mplicit information as described above.

Note that, being an intuitive notion, there are several ways of capturing
implicit information in schema mappings and source instances. In fact, several
semantics for query answering using implicit information have been proposed
in the literature [Libkin, 2006, Hernich and Schweikardt, 2007, Libkin and Sir-
angelo, 2008, Afrati and Kolaitis, 2008, Hernich, 2010]. Depending on the par-
ticular application and one’s point of view, one or the other of these semantics
may be useful. In this thesis, I will describe these semantics in more detail. All
of these semantics are based on the following ideas. Given a schema mapping
M and a source instance S for M:

1. We identify a subset S of all solutions for S under M that is intended to
be the set of all possible outcomes of translating S to the target if implicit
information—in the formalized sense—is taken into account.
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2. Given a query q over M’s target schema, we answer ¢ on M and S using
the set S, typically by taking the certain answers to ¢ on S.

For example, given the copying schema mapping M from Example 1.25 and a
source instance S for M, we would like to have S = {Ts}. Then, the certain
answers to ¢ on S yield the expected result ¢(Ts).

It should be mentioned here that Fagin et al. [2005b] also proposed a seman-
tics for overcoming the counter-intuitive behavior of the certain answers seman-
tics on non-monotonic queries. Their semantics is based on universal solutions.
More precisely, queries are answered by the certain answers over universal so-
lutions. This semantics has very nice properties. For example, the answers to
an existential query can be computed by first evaluating the query on the core
of the universal solutions, and then removing from the set of answers all tuples
containing a null. However, as observed by Arenas et al. [2004] (see the full ver-
sion) and mentioned by Libkin [2006], that semantics exhibits counter-intuitive
behavior, too. To learn more about the universal solution-based semantics, the
interested reader is referred to Fagin et al. [2005b].

Contributions of this Thesis

The contributions of this thesis can be subdivided into three parts: the com-
plexity of computing universal solutions, semantics for query answering using
implicit information, and the complexity of evaluating queries using implicit
information. In the following, these three parts are described in more detail.

The Complexity of Computing Universal Solutions

Universal solutions, which are studied in depth in Chapter 2, are “good” solu-
tions in the sense that they are “most general”, and that the certain answers
to a large number of queries, including unions of conjunctive queries, can be
computed directly from a universal solution [Fagin et al., 2005a,b, Arenas et al.,
2009a]. This thesis’ main contribution concerning the complexity of computing
universal solutions is that there is a fized schema mapping M defined by tgds
only such that it is undecidable whether a given source instance for M has a
universal solution under M (Theorem 2.33). This result appeared in Hernich
and Schweikardt [2007], and strengthens a result of Deutsch et al. [2008].

The proof of this theorem has several consequences concerning chase termi-
nation. The chase—a standard tool in database theory—is a procedure that
takes an instance I and a set X of tgds and egds, and iteratively tries to modify
I so that the resulting instance satisfies >. Since it was shown in Fagin et al.
[2005a] that the chase can be used to compute universal solutions for schema
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mappings defined by tgds and egds, the chase has proved to be an indispens-
able tool in relational data exchange. Unfortunately, the chase does not always
terminate. To this end, various conditions for chase termination have been pro-
posed in the literature. All of these conditions are sufficient, but not necessary
for chase termination. In fact, the proof of Theorem 2.33 implies that there is
no decidable condition that is both sufficient and necessary for chase termina-
tion: chase termination is undecidable, even with respect to some fixed set of
tgds (Corollary 2.34). This also strengthens a result of Deutsch et al. [2008].

Semantics for Query Answering Using Implicit Information

This thesis introduces and studies a number of query answering semantics that
take into account implicit information in schema mappings and source instances.
In the following, semantics contributed by this thesis are listed. These semantics
can be divided into two groups.

The first group consists of semantics based on C'WA-solutions. CWA-solu-
tions are particular solutions that have been proposed by Libkin [2006] (together
with corresponding query answering semantics) to answer queries in relational
data exchange. Libkin designed CWA-solutions for the case of schema mappings
defined by st-tgds. CWA-solutions are based on the CWA in the following sense:

1. Every tuple must be justified in some sense by the schema mapping and
the source instance.

2. Each justification is used at most once.

3. A CWA-solution contains only “facts” that follow from the schema map-
ping and the source instance.

This thesis extends the definition of CWA-solutions to the more general case
of schema mappings defined by tgds and egds (see Chapter 3). The main dif-
ficulty is to formalize the first two requirements. These are characterized by a
derivation-based approach based on a suitably controlled version of the chase,
and by a game-based approach. Moreover, the structure of the set of all CWA-
solutions for given source instances and schema mappings, and the complexity
of computing CWA-solutions is analyzed. In particular, it is shown that

¢ CWA-solutions are universal solutions that are derivable in some sense
from the source instance using the tgds and egds,

o CWA-solutions exist if and only if universal solutions exist, and

o the core of the universal solutions (the “smallest” universal solution in
the case of schema mappings defined by tgds and egds; cf., Fagin et al.
[2005b], or Chapter 2) is the “smallest” CWA-solution.
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Finally, results on the complexity of evaluating queries under the CWA-solution-
based semantics are obtained. Details on this are given below. All of the above-
mentioned results were published in Hernich and Schweikardt [2007].

The assumptions underlying the CWA-solution-based semantics reflect the
operational point of view on tgds and egds. That is, tgds are considered as rules
for deriving tuples, and egds are considered as rules for identifying values. Con-
sequently, these semantics do not take into account logical equivalence of schema
mappings. This means that there are schema mappings M; = (o, 0y, 21) and
Ms = (0g,04, %), where ¥; and Y, are logically equivalent sets of tgds and
egds, an instance S over oy, and a query ¢ over o such that the answer to ¢
on M; and S differs from the answer to ¢ on M, and S. Furthermore, query
answers with respect to the CWA-solution-based semantics do not necessarily
reflect the standard semantics of first-order quantifiers (e.g., existential quan-
tifiers express that there are one, two, three or more elements that satisfy the
given property, but this is not necessarily reflected by the CWA-solution-based
semantics). Examples are given in Section 3.6.

The second group of semantics contributed by this thesis have been consid-
ered with the goal of finding semantics that

1. take into account implicit information in schema mappings and source
instances,

2. respect logical equivalence of schema mappings, and
3. reflect the standard semantics of FO quantifiers.

First, semantics for query answering on deductive databases are studied in the
framework of relational data exchange (see Chapter 4). In particular, semantics
based on Reiter’s CWA [Reiter, 1978], the generalized CWA (GCWA, for short)
[Minker, 1982], the extended GCWA (EGCWA, for short) [Yahya and Henschen,
1985], and the possible worlds semantics (PWS, for short) [Chan, 1993| are
studied. It turns out that in the context of relational data exchange, these
semantics seem to be either too weak (GCWA) or too strong (CWA, EGCWA),
and in one case (PWS), logical equivalence of schema mappings is not respected.

Inspired by the GCWA-semantics and the EGCWA-semantics, the GCWA"-
answers semantics is developed in Chapter 5. Under the GCWA*-answers se-
mantics, queries are answered by the certain answers on GCWA"-solutions. In
contrast to the above-mentioned semantics and solution concepts, the GCWA*-
answers semantics and GCWA*-solutions are defined for all schema mappings
(rather than for schema mappings defined by tgds and egds). For schema map-
pings defined by st-tgds and egds, GCWA*-solutions are just ground solutions
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that are unions of C-minimal solutions (solutions for which no proper subin-
stance is a solution). Finally, the GCWA*-answers semantics is designed in such
a way that, intuitively, it meets the three goals 1-3 mentioned above.

The results concerning the second group of semantics were published in
Hernich [2010].

The Complexity of Evaluating Queries Using Implicit Information

This thesis also investigates the complexity of evaluating queries under query
answering semantics that take into account implicit information in schema map-
pings and source instances. We concentrate on the data complexity, that is, the
complexity with respect to fized schema mappings and fized queries (schema
mappings and queries do not belong to the input).

Concerning the CWA-solution-based query answering semantics, we show
the following. First, it turns out that two of the CWA-solution-based seman-
tics coincide with the certain answers semantics on a large class of monotonic
queries, including unions of conjunctive queries, and source instances that have
a CWA-solution (see Section 3.4.1). Hence, results on evaluating the certain
answers to such queries obtained in the literature carry over to those seman-
tics. For each of the CWA-solution-based semantics, it is then shown that for
properly restricted schema mappings M, and FO queries ¢, the complexity of
the following problem is in colNP or NP, depending on the particular semantics:
given a source instance S for M and a tuple t € Dom™ @, does { belong to the set
of answers to g on M and S under the corresponding semantics (Theorem 3.44)7
Furthermore, there is a simple schema mapping M, and a conjunctive query q
with one additional inequality such that this problem may be complete for the
corresponding complexity class (Theorem 3.45).

A larger part of this thesis deals with the complexity of evaluating queries
with respect to the GCWA*-answers semantics. It is shown that the GCWA*-
answers semantics and the certain answers semantics coincide on monotonic
queries (Proposition 5.10), so that all results on computing the certain answers
to such queries obtained in the literature directly apply to the GCWA*-answers
semantics. However, there are simple schema mappings M defined by st-tgds
and simple existential queries q of the form dx ¢, where ¢ is a conjunction of
three relational atomic formulas and just one negated relational atomic formula,
such that the problem

EvAL(M, q)
Input: a source instance S for M, and a tuple ¢ € Dom™@

Question: Is t an answer to ¢ with respect to the GCWA*-answers se-
mantics?
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is coNP-hard (Proposition 5.11). Permitting only one additional universal
quantifier can make this problem undecidable (Proposition 5.12), which is even
true for schema mappings defined by st-tgds. It seems then surprising that
EVAL(M, q) is in PTIME for universal queries q (queries of the form Vz ¢,
where ¢ is quantifier-free) and suitable restrictions on M. This follows from
the following result.

This thesis’ main contribution concerning the complexity of evaluating que-
ries using implicit information is Theorem 5.15:

For every schema mapping M defined by certain st-tgds (called
packed st-tgds), and for each universal query ¢ over M’s target
schema, there is a polynomial time algorithm that takes the core
of the universal solutions for some source instance S under M as
input and computes the GCWA*-answers to ¢ on M and S.

In my opinion, this is also the technically most challenging contribution of this
thesis. By standard results on computing the core of the universal solutions
(see, e.g., Fagin et al. [2005b] or Chapter 2), it implies that EVAL(M, q) is in
PTIME if M is defined by packed st-tgds and ¢ is a universal query over M’s
target schema.

In the following, we give some details on how Theorem 5.15 is proved. We
first observe that it suffices to develop a polynomial time algorithm for the
following problem: given the core of the universal solutions for some source
instance S for M, and a tuple ¢ € Const™?, decide whether ¢ belongs to the
GCWA*-answers to ¢ on M and S. We then reduce this problem to the problem
of checking whether there is a union 7" of one or more C-minimal instances
in poss(Tp) (see Section 1.3.1 for the definition), where 7} is the core of the
universal solutions for S under M, such that T = —q(t). The key step to this
result is a characterization of ground C-minimal solutions for S under M as
C-minimal instances in poss(Ty). By transforming —¢ into a kind of disjunctive
normal form, we can then focus without loss of generality on the case that —q is
logically equivalent to a formula ¢ = 3% ¢, where ¢ is a conjunction of atomic
formulas and negations of atomic formulas. If ¢ consists of one atomic formula
and z is the empty tuple, then the problem can be solved as follows. First,
we reduce the infinite set of all C-minimal instances in poss(Tp) to a set S of
possibly exponential size. The technically difficult part is then to identify a
particular subset &’ of S of polynomial size with the “right” properties so that
all tuples that occur in C-minimal instances of poss(Ty) can be reconstructed
from the instances in §’. Finally, for solving the general problem, we combine
partial solutions to a solution to the whole problem, where the results proved for
the case of one atomic formula help us to prove correctness of this construction.
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Structure of this Thesis

This thesis consists of four main chapters, plus the introduction and the con-
clusion.

Chapter 2 deals with computing the certain answers to monotonic queries.
Most of this chapter is devoted to the special case of computing the certain
answers to queries that are preserved under homomorphisms—a fundamental
class of queries that contains, for example, all unions of conjunctive queries. In
particular, we review universal solutions and the core of the universal solutions,
which are the basic tools for computing the certain answers to such queries, and
are also used in other chapters of this thesis. Furthermore, we review techniques
and results on computing universal solutions. This chapter also presents one of
the main results of this thesis: that there is a schema mapping M defined by
tgds for which it is undecidable whether a given source instance for M has a
universal solution under M.

Chapter 3 introduces and studies CWA-solutions and the corresponding
query answering semantics. It also discusses generalizations as well as spe-
cializations of CWA-solutions that appeared in the literature. The final section
discusses some limitations of the CWA-solution-based semantics.

Chapter 4 studies several semantics for query answering on deductive data-
bases in the context of relational data exchange.

In Chapter 5, we finally introduce and study the GCWA*-answers semantics.
This chapter comprises the technically most challenging result of this thesis,
namely that for each schema mapping M defined by packed st-tgds and for
each universal query ¢, there is a polynomial time algorithm that takes the core
of the universal solutions for S under M as input, and computes the GCWA*-
answers to ¢ on M and S.



2 Computing the Certain Answers
to Monotonic Queries

This chapter deals with computing the certain answers to monotonic queries.
Recall from Section 1.3.1 that a query q over a schema ¢ is monotonic if and only
if for all instances I and J over o with I C J, we have ¢(I) C ¢(J). Monotonic
queries form a fundamental class of queries that contains, for example, all unions
of conjunctive queries and all Datalog queries. As mentioned in Section 1.3.1,
the certain answers semantics has been widely adopted as the right semantics
for answering monotonic queries.

Up to date, the special case of computing the certain answers to queries that
are preserved under homomorphisms is best understood. Most of this chapter
(Section 2.1 to Section 2.3) is devoted to this problem. We will define in Sec-
tion 2.1 what it means for a query to be preserved under homomorphisms.
Examples of queries preserved under homomorphisms are unions of conjunctive
queries, and, more generally, Datalog queries. From Rossman [2008] and At-
serias et al. [2006] it even follows that every FO query that is preserved under
homomorphisms is logically equivalent to a union of conjunctive queries!

The central tool for computing the certain answers to queries preserved
under homomorphisms are universal solutions. Universal solutions were intro-
duced by Fagin et al. [2005a] as a formalization of the intuitive notion of “most
general solutions”, and they showed that the problem of computing the certain
answers to a number of queries preserved under homomorphisms (like unions of
conjunctive queries, and Datalog queries) essentially reduces to the problem of
query answering on universal solutions. In fact, the certain answers to queries
preserved under homomorphisms can be obtained by evaluating the query on a
universal solution, and removing all tuples from the result that contain a null.
A particularly important role plays the core of the universal solutions, intro-
duced in Fagin et al. [2005b], which, for schema mappings defined by tgds and
egds, is the “unique smallest” universal solution (up to isomorphism). A formal
definition of universal solutions and their core, and a more detailed explanation
of how universal solutions can be used to compute the certain answers to queries
preserved under homomorphisms are given in Section 2.1.

As already mentioned in Section 1.1.2, for algorithmic results, we restrict at-
tention to schema mappings defined by tgds and egds. For computing universal
solutions under such schema mappings, the chase—a standard tool in database
theory and proposed for computing universal solutions in Fagin et al. [2005a]—
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is essential. The chase is a procedure that takes an instance I and a finite set X
of tgds and egds as input, and iteratively tries to modify I so that the resulting
instance satisfies 3. Unfortunately, the chase does not always terminate. To
this end, various sufficient conditions have been proposed in the literature that,
imposed on a set ¥ of tgds and egds, ensure chase termination for every given
instance I. All these conditions are sufficient, but not necessary for chase ter-
mination. On the positive side, given a fixed schema mapping M = (o, 0y, 2),
where X satisfies one of these chase termination conditions, there is a polynomial
time algorithm that takes a source instance S for M as input, and either outputs
a universal solution for S under M if a solution for .S under M exists, or outputs
that there is no solution for S under M. A corresponding result concerning the
core of the universal solutions (and one particular of these chase termination
conditions) has been proved by Gottlob and Nash [2008]. Section 2.2 formally
defines the chase, and explains its application to computing universal solutions
in more detail. It also presents some of the conditions for chase termination,
and surveys state-of-the-art algorithms for computing the core of the universal
solutions.

Section 2.3 then presents one of the main results of this thesis. Namely, we
show that chase termination is undecidable, even with respect to some fixed
schema mapping defined by tgds. Even more, we show that there is a fized
schema mapping M defined by tgds only such that the following problem is
undecidable: given a source instance S for M, is there a universal solution for
S under M? Parts of the results of Section 2.3 were published in Hernich and
Schweikardt [2007].

Finally, Section 2.4 reviews standard techniques and results on evaluating
queries that are not preserved under homomorphisms.

Review of Universal Solutions and Their Core
Universal solutions were introduced by Fagin et al. [2005a] as a formalization
of the intuitive notion of “most general solutions”. The formal definition of
universal solutions is based on homomorphisms:
DEFINITION (HOMOMORPHISM)
Let I and J be instances over a schema o. A homomorphism from I to J is a
mapping h: dom(/) — dom(J) such that

o forall R € o andall t € R, we have h(t) € R’, and

o for all ¢ € const(I), we have h(c) = c.
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DEFINITION (UNIVERSAL SOLUTION)

Let M be a schema mapping, and let S be a source instance for M. A universal
solution for S under M is a solution 1" for S under M such that for all solutions
T’ for S under M there is a homomorphism from 7" to T".

EXAMPLE (LIBRARY DATABASE RESTRUCTURING, CONTINUED)

Let M be the schema mapping from Example 1.15, and let S* be the source
instance for M from Example 1.4. Then it is not hard to see that the target
instance 7™ from Example 1.5, with

BookInfo!" = {(“0-201-53771-0", “Foundations of Databases”, L),
(“0-201-53082-1", 1o, 13)},
Authors” = {(Ly4, “Serge Abiteboul”), (Ls, “Richard Hull”),
(Lg, “Victor Vianu”), (L, “Christos H. Papadimitriou”)},
WrittenBy" = {(“0-201-53771-0”, L), (“0-201-53771-0”, L;),
(“0-201-53771-0", Lg), (“0-201-53082-17, L)},

is a universal solution for S* under M.

Indeed, let T" be an arbitrary solution for S* under M. Since S*UT satisfies

the tgd x] (see Example 1.15 for the definition of y}), there must be some value
uy such that BookInfo' contains the tuple

(“0-201-53771-0", “Foundations of Databases”, u1).

Furthermore, since S* U T satisfies the tgd x5, there must be values uy, us, ug
and u; such that Authors’ contains the tuples

(uyg, “Serge Abiteboul”), (us, “Richard Hull”), (ug, “Victor Vianu”),
(u7, “Christos H. Papadimitriou”),

and WrittenBy' contains the tuples
(“0-201-53771-0", wuy), (“0-201-53771-07, us), (“0-201-53771-0", wug),
(“0-201-53082-1", ws).

Finally, since S* U T satisfies x3 and x4, there must be values us and ug such
that BookInfo' contains the tuple

(“0-201-53082-17, s, us).

Thus, the mapping h: dom(7T*) — dom(T") which satisfies h(L;) = wu; for each
i€ {l,...,7}, and h(c) = c for each constant ¢ € const(7™), is a homomorphism
from T™ to T.
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Note that T™ is not the only universal solution for S* under M. For example,
if 1,1’ 1" are distinct nulls that do not occur in 7%, the instance obtained from
T* by adding the tuple (L, L', 1”) to BookInfo’ is a universal solution for S*
under M, since a homomorphism can map the tuple (L, 1’ 1”) to the tuple
(“0-201-53771-0”, “Foundations of Databases”, L) in BookInfo® . ]

Given a schema mapping M and a source instance S for M, there may be
many different universal solutions for S under M, or none (cf., Example 2.12);
furthermore, there may be universal solutions of different sizes (cf., Exam-
ple 2.3). On the other hand, Definition 2.2 immediately implies that any two
universal solutions for S under M are homomorphically equivalent:

DEFINITION (HOMOMORPHICALLY EQUIVALENT)
We call instances I and J homomorphically equivalent if and only if there is a
homomorphism from [ to J, and a homomorphism from J to I.

In some cases, however, homomorphic equivalence is not enough: one would
rather like to compute a “unique smallest” universal solution. To this end, Fagin
et al. [2005b] proposed to consider the core of the universal solutions, which, for
schema mappings defined by tgds and egds, is the “unique smallest” universal
solution (up to isomorphism). For example, the instance 7" in Example 2.3 is
the core of the universal solutions for S* under M. The formal definition is
based on the notion of cores:

DEFINITION (CORE, CORE OF AN INSTANCE)

Let I be an instance. We say that [ is a core if and only if there is no homo-
morphism from [ to an instance J C [ with J # I. A core of I is an instance
J C I such that J is a core, and there is a homomorphism from [ to J.

The following basic properties of cores have been obtained by Hell and
Nesettil [1992] in the context of graphs (i.e., for instances over {E}, where
E is binary), and easily carry over to arbitrary instances.

THEOREM (HELL AND NESETRIL [1992]).
1. Ewvery instance has a core.

2. Let Iy and Iy be homomorphically equivalent instances, let J, be a core
of Iy, and let Jy be a core of Is. Then Jy and Jy are isomorphic. In
particular, any two cores of an instance are isomorphic.

3. If J is a core of an instance I, then there is a homomorphism h from I
to J that is the identity on dom(J). In particular, h(I) = J.
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We can now give the definition of the core of the universal solutions. Let M
be a schema mapping, and let S be a source instance for M. Suppose that there
is a universal solution for S under M. Since any two universal solutions for S
under M are homomorphically equivalent, Theorem 2.6(2) implies that there is
an instance T for M such that for every universal solution 7" for S under M
and each core T} of 7", we have T = T]. Since Tj is unique up to isomorphism,
we call Ty the core of the universal solutions for S under M. In Example 2.3,
T™ is the core of the universal solutions for S* under M. If there is no universal
solution for S under M, then the core of the universal solutions is undefined.

DEFINITION (CORE OF THE UNIVERSAL SOLUTIONS)

For every schema mapping M, and for every source instance S for M, let
Core(M, S) be a target instance for M that is isomorphic to the core of the
universal solutions for S under M if there is at least one universal solution for

S under M. Otherwise, let Core(M, S) be undefined.

As mentioned above, Core(M, S) is a universal solution for S under M if M
is defined by tgds and egds, but it may fail to be a solution otherwise:

PROPOSITION (FAGIN ET AL. [2005B]).

1. If M = (04,04, %) is a schema mapping, where ¥ consists of tgds and egds,
and if S is a source instance for M for which Core(M, S) is defined, then
Core(M, S) is a universal solution for S under M.

2. There is a schema mapping M and a source instance S for M such that
Core(M, S) is defined, and Core(M,S) is no solution for S under M.

Universal solutions are interesting for relational data exchange not only be-
cause they are “most general” solutions, but because they can be used to com-
pute the certain answers to queries that are preserved under homomorphisms,
as shown by Theorem 2.10 below.

DEFINITION (HOMOMORPHISM-PRESERVED QUERY)
We say that a query ¢ over a schema o is preserved under homomorphisms if

and only if for all instances I and J over o, and every homomorphism A from
I to J, the following is true: if ¢ € ¢(I), then h(t) € q(J).

Note that all homomorphism-preserved queries are monotonic, and that the
class of all queries that are preserved under homomorphisms contains all unions
of conjunctive queries, and, more generally, all Datalog queries. From Rossman
[2008] and Atserias et al. [2006], it even follows that every FO query that is
preserved under homomorphisms is logically equivalent to a union of conjunctive
queries!
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THEOREM (ESSENTIALLY IN FAGIN ET AL. [20054]).

Let M be a schema mapping, let S be a source instance for M, and let T be
a universal solution for S under M. Then for each homomorphism-preserved
query q over M’s target schema, we have

cert(q, M,S) = {t € q(T) | t contains only constants}.

Proof. The proof is a straightforward generalization of the analogous result
for unions of conjunctive queries obtained by Fagin et al. [2005a], taking into
account genericity of M and gq.

Let us first prove the inclusion from right to left. Assume that ¢ € ¢(T), and
that ¢ contains only constants. Let 7" be a solution for S under M, and let h be
a homomorphism from 7" to T”. Since ¢ is preserved under homomorphisms, we
have h(t) € g(T"). Thus, since t contains only constants, and homomorphisms
are the identity on constants, we have t € q(T").

Let us now prove the inclusion from left to right. To this end, assume that
t € cert(q, M, S). By Proposition 1.21, we have t € ¢(T). It remains to prove
that ¢ contains only constants.

This follows immediately from the genericity of M and ¢: Let C' C Const
be such that ¢ is C-generic, let X := const(7T) U C, and let Y be the set of
values (i.e., constants and nulls) that occur in ¢(7"). Pick a bijective mapping
f: Dom — Dom such that

o f(c) =cfor each c € X, and
« fY)NY CX.

Since M is generic, f(T') is a solution for S under M, so by Proposition 1.21 and
t € cert(q, M, S), we have t € q(f(T)). Since ¢ is C-generic, this leads to t €
f(q(T)). Consequently, t € q(T) N f(g(T)), which, together with f(Y)NY C X
implies that all values that occur in ¢ belong to the set X of constants. O]

We thus have:

COROLLARY.

Let M be a schema mapping, and let ¢ be a union of conjunctive queries over
M’s target schema. Then there is a polynomial time algorithm that, given a uni-
versal solution for some source instance S for M as input, outputs cert(q, M, S).

Proof. Let T be a universal solution for some source instance S for M. Given
T, the algorithm computes X := ¢(7T'), which is possible in time polynomial in
the size of T since ¢ is fixed, and outputs all tuples ¢ € X that contain only
constants. By Theorem 2.10, the set of all these tuples is cert(q, M, S). ]
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The corollary holds, more generally, for all queries ¢ that are preserved under
homomorphisms, and which have polynomial time data complexity (e.g., unions
of conjunctive queries, or Datalog queries). Thus, the crucial step in computing
the certain answers to such queries is to compute a universal solution.

How to Compute Universal Solutions?

In this section, we deal with the problem of computing universal solutions.
First observe that, even if a source instance S has a solution under a schema
mapping M, it may have no universal solution under M:

EXAMPLE (UNIVERSAL SOLUTIONS MAY NOT EXIST)
Consider the schema mapping M = ({P},{E},Y), where X consists of the tgds

x1 = Va(P(z) = 3y E(z,y)),
and

X2 = VaVy(E(x,y) — 3z E(y, 2)).

Let S be the source instance for M with P = {a}. We claim that there is no
universal solution for S under M.

Suppose, to the contrary, that there is a universal solution T for S under
M. Let n be the largest integer for which there are pairwise distinct values
Ug, Uy, - - - , Uy Such that ug = a, and (u;, u 1) € ET foralli € {0,1,...,n — 1}.
Such an n exists, because T is finite. Since T satisfies ¥, we must have (u,, u;) €
ET for some i € {0,1,...,n}.

Now let 7" be the solution for S under M, where ET" consists of an (n + 2)-
cycle. That is, there are pairwise distinct values ug,u}, ..., u;, ., such that
uy = a, (u},ul,;) € ET for each i € {0,1,...,n}, and (v, 4, u}) € ET'. Then
there is no homomorphism from 7" to 7”. In particular, T"is no universal solution
for S under M. O

However, in many cases, universal solutions can be obtained using the chase.
In the following, we consider only schema mappings defined by tgds and egds.

Review of the Chase

The chase is the central tool for computing universal solutions for schema map-
pings defined by tgds and egds (see Fagin et al. [2005a]; for other applications
of the chase, see, e.g., Abiteboul et al. [1995]). The chase is a procedure that
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takes an instance I and a finite set ¥ of tgds and egds as input, and iteratively
tries to modify I so that the resulting instance satisfies X.

For presenting the chase, it is convenient to view an instance as a set of
atoms. An atom is an expression R(u), where R is a relation symbol, and
u € Dom™ ™. An atom of an instance I over a schema o is an atom R(a) with
R c o and u € R!. The set of all atoms of I is denoted by

atoms(I) = {R(u) | R(u) is an atom of I}.

We will often identify an instance I with the set atoms(/). That is, we view [
and atoms(/) as one and the same object. In particular, we can write R(u) € I
instead of u € R!, and R(u) ¢ I instead of u ¢ R!. Furthermore, operations and
relations defined on sets carry over to instances. For example, given instances [
and J, we write I U.J for the instance K with atoms(K') = atoms(/)Uatoms(.J),
and I\ J for the instance K with atoms(K') = atoms(/) \ atoms(J).

Given an instance I over a schema o, and a finite set X of tgds and egds over
o, the chase starts with I := I, and proceeds in steps s = 1,2,3, ... as follows.
In step s > 1, an instance [,_; has already been computed. If Iy ; = X, then
the chase stops and outputs I,_;. We say that I,_; is the result of the chase on
I and 3. If I, 1 £ X, there must be some tgd or egd x € ¥ with I,_; £ x.
The chase selects one such y, and modifies I,_; as follows.

Suppose that x is a tgd of the form VzVy(p(z,y) — Jz¢(z,2)). Since
Iy J~ x, there are tuples u, v such that I;_; = ¢(u,v), and there is no tuple
w with Iy_; | ¢ (u,w). We say that x applies to I,y with u,v. The chase now
picks an arbitrary tuple w of pairwise distinct nulls that do not occur in I, 1,
and adds just those atoms to I,_; so that the resulting instance I, satisfies 1)
under u,w. Formally, Iy = I,y Uv[u, w|, where ¢|-] is defined as follows:

NOTATION (p[a], p[u])
Let ¢(z1,...,2x) be a FO formula of the form Ry(u;) A--- A R, (u,), and let «
be an assignment for {xy,...,x;}. Then,

plo) = {Ri(a*(®@))| 1 <i<n).

(Recall that a* is the extension of « to the identity on the constants that occur
in ¢.) For a tuple 4 = (uy,...,u;) € Dom”, we use p[u] as an abbreviation for
¢|a], where a maps each x; to ;.

Formally, such a chase step is captured by a tgd chase step:

DEFINITION (TGD CHASE STEP)
Let I be an instance, let x be a tgd of the form VaVy(e(z,y) — 3Fz29¢(z, 2)),
and let a be an assignment for the variables in x and .
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« We say that x applies to I with o if and only if I = p(a), and there is no
tuple @w € Dom!* such that I = 1 (a(Z), ).

« Given an instance J, we write I I-, , J if and only if x applies to I with
a, and J = I U¢[a(Z),w]|, where w is a tuple of pairwise distinct nulls
from Null\ dom([).

Suppose now that y is an egd of the form Vz(p(z) — x; = x;), where
T = (z1,...,21). Since I,_ = x, there is a tuple @ = (uy, ..., u;) € Dom" such
that I,_1 = ¢(u) and w; # u;. If u; and u; are constants, then the chase fails.
Otherwise, the chase identifies the two values u; and u;. Such a chase step is
formally captured by an egd chase step:

DEFINITION (EGD CHASE STEP)
Let I be an instance, let x be an egd of the form Vz(p(z) — x; = z;), let a be
an assignment for the variables in z, let u; := a(x;), and let u; := a(zx;).

o We say that x applies to I with « if and only if I = p(«) and u; # u,.
If x applies to I with a, and both u; and u; are constants, we say that x
fails on I with a.

« Given an instance J, we write I = , J if and only if x applies to I with
a, x does not fail on I with a, and J = f(I), where f: dom(I) — dom(/)
is such that

— f(u) = f(v) = v, where u is one of the nulls in {u;,u;}, and v is the
other value in {u;,u;}, and

— f(u) = u for all u € dom() \ {u;, u}.

In general, we denote a chase step from an instance I to an instance J using
a tgd or an egd in X by I -y, J. That is, we write I -y, J if and only if there is
some x € . and an appropriate assignment « such that I = J.

The possible “runs” of the chase are formally described by chase sequences:

DEFINITION (CHASE SEQUENCE)
Let I be an instance over a schema o, and let 3 be a finite set of tgds and egds
over o.

o A chase sequence on I and ¥ is a (finite or infinite) sequence C' = Iy, I, . ..
of instances over o such that Iy = I, and for every instance I, in C' with
s > 1 we have Iy Fy L.

o Let C' = (Iy, I1,...,1;) be a finite chase sequence on I and ¥. We call [,
the result of C', and [ the length of C.
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e A complete chase sequence on I and X is a finite chase sequence C' =
(Ip, I1,...,I;) on I and 3 such that there is no instance J with I, -, J.

o A successful chase sequence on I and Y is a complete chase sequence C'
on I and ¥ such that the result of C' satisfies X.

o A failing chase sequence on I and ¥ is a complete chase sequence C' on [
and X such that the result of C' does not satisfy X.

2.17 EXAMPLE (LIBRARY DATABASE RESTRUCTURING, CONTINUED)
Let M = (og,0¢, %) be the schema mapping from Example 1.15, and let S*
be the source instance for M from Example 1.4. Consider the sequence C' =
(lo, 11, ..., I7) with

(] IOZS*7

Iy = Iy U {BookInfo(“0-201-53771-0", “Found. of Databases”, 1;)},

I, = I, U {Authors(Ly, “Serge Abiteboul”),
WrittenBy(“0-201-53771-07, L4)},

I3 = I, U {Authors(Ls, “Richard Hull”),
WrittenBy(“0-201-53771-07, Ls)},

Iy = I3 U {Authors(Lg, “Victor Vianu”),
WrittenBy(“0-201-53771-07, L)},

I5 = I, U {Authors(L;, “Christos H. Papadimitriou”),
WrittenBy(“0-201-53082-17, L;)},

Is = I5 U { BookInfo(“0-201-53082-1", 15, L3),
Authors(L7, 1g)},

I7 = ]6 \ {Authors(J_7, Ls)}

It is easy to see that C' is a chase sequence on S* and ¥. For example, we have
Iy b\ o I1, where a(xy) = “0-201-53771-0” and a(z3) = “Found. of Databases”.
The instances Iy to Is can be obtained similarly using x4 (for I5 to I5) and x4
(for Is). Finally, we have Ig |-,/ I7, where o/(z1) = L7, /(x2) = “Christos H.
Papadimitriou” and o/(z3) = Ls.

Note that I; = S* U T*, where T* is the universal solution for S* under M
from Example 1.5. It follows that C' is successful. O]

We can now state the crucial properties of the chase that connect the chase
with the problem of computing universal solutions:
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THEOREM (FAGIN ET AL. [2005A]).
Let M = (04,04, %) be a schema mapping, where ¥ is a set of tgds and egds,
and let S be a source instance for M. Then we have:

1. Let I be the result of a successful chase sequence on S and ¥. Then I\ S
is a universal solution for S under M.

2. If there is a failing chase sequence on S and X, then there is no solution

for S under M.

EXAMPLE (LIBRARY DATABASE RESTRUCTURING, CONTINUED)

Recall the setting from Example 2.17. We have shown that I; = S*UT™ is the
result of a successful chase sequence on S* and ¥, and indeed, I7; \ S* = T™ is
a universal solution for S* under M. ]

Sometimes, we also need to refer to the following lemma, which is the key
lemma for the proof of Theorem 2.18 in Fagin et al. [2005a]:

LEMMA (FAGIN ET AL. [2005A]).

Suppose that I+, , J, where x is a tgd or an egd, and « is an appropriate as-
signment. Let K be an instance such that K |= x, and there is a homomorphism
from I to K. Then there is a homomorphism from J to K.

Lemma 2.20, in particular, implies:

COROLLARY.

If C' is an arbitrary chase sequence on an instance I and a finite set X of tgds
and egds, K is an instance with K =X, and there is a homomorphism from I
to K, then there is a homomorphism from the result of C' to K.

From Theorem 2.18 we know that universal solutions can be computed using
the chase. Unfortunately, the chase does not always terminate:

EXAMPLE (THE CHASE MAY NOT TERMINATE)

Consider the schema mapping M = (oy, 0y, ) and the source instance S for M
from Example 2.12. Then there is no complete chase sequence C' on S and . If
there was such a sequence C', then C' would be successful, since ¥ contains only
tgds, and by Theorem 2.18, the result of C' would lead to a universal solution
for S under M. However, in Example 2.12, we have shown that such a universal
solution does not exist.

Let us now add the t-tgd

X3 = Vi VaoVas(E(xy, x2) A E(xa, x3) — E(x1,21))
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to M. That is, let M' = (05,01, 2 U {x3}). Then S has a universal solution
under M’, namely the target instance T for M’ with ET = {(a,a)}. However,
it is not hard to verify that there is no successful chase sequence on S and

S U{xs}- o

Even worse, we show in Section 2.3 that chase termination is undecidable,
even with respect to some fized finite set > of tgds only !

Sufficient Conditions for Chase Termination

A number of sufficient conditions for chase termination have been exposed in
the literature. The first such condition was weak acyclicity:

DEFINITION (WEAK ACYCLICITY)
Let X be a finite set of tgds over a schema o.

o A position over o is a pair (R, p) such that R € o and p € {1,...,ar(R)}.

o Let ¢ be a FO formula over o of the form Ry(u;) A -+ A Ry(ug), and
let x be a variable. We say that x appears at position (R,p) in ¢ if and
only if there is some ¢ € {1,...,k} such that R; = R, u; has the form
(Wi1s - Uiar(r)), and u;, = .

e The dependency graph of 3 is a directed graph, where the vertices are the
positions over o, and for each tgd VaVy(¢(z,y) — Iz ¢(x,2)) in X, each
variable z in Z, and each position (R, p) at which = appears in ¢, there is

— a copying edge from (R,p) to every position at which x appears in
1, and

— an existential edge from (R, p) to every position at which some vari-
able from z appears in 1.

o Y is called weakly acyclic if the dependency graph of ¥ contains no cycle
with an existential edge.

Intuitively, weak acyclicity prevents the chase from cascading the creation
of nulls, that is, that a null is created at some position based on a null at the
same position.

EXAMPLE
Consider the schema mapping M = ({P},{F},X) from Example 2.12. The
dependency graph of ¥ is shown below:
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(P, 1) »(E,1) < (E,2) D
~

Here, solid edges represent existential edges, while dotted edges represent copy-
ing edges. The loop at (F,2) is a cycle through the existential edge. Thus, ¥
is not weakly acyclic. O

We call a schema mapping M = (o, 0y, &) weakly acyclic if and only if ¥ is
the union of a weakly acyclic set of tgds, and a set of egds.

EXAMPLE (LIBRARY DATABASE RESTRUCTURING, CONTINUED)

Recall the schema mapping M = (05,04, %) from Example 1.15. The depen-
dency graph of the set ¥’ of all tgds in ¥ (i.e., ¥ = {x}, x4, xa}) is shown
below:

(AuthorList, 1)

A

4 (BookInfo,1)

(Authors, 1) 4 (AuthorList,2) | - (Books, 1)
1 \" _~ (BookInfo,2) |

(WrittenBy, 1) K

(Authors, 2) A (Books, 2)

(BooklInfo, 3)

( WrittenBy, 2)

As above, solid edges represent existential edges, while dotted edges represent
copying edges. Since the dependency graph of ¥’ contains no cycle through an
existential edge, Y is weakly acyclic. Consequently, M is weakly acyclic. O

For weakly acyclic schema mappings, it is known that the chase terminates
within a number of steps that is polynomial in the size ||T|| of T, where the size
of an instance I over a schema o is defined as

Il = >_|R'|-ar(R).

Reo

Furthermore, with respect to weakly acyclic schema mappings, universal solu-
tions exist if and only if solutions exist:

THEOREM (FAGIN ET AL. [2005A]).
Let M = (04,04, %) be a weakly acyclic schema mapping.

1. There is a polynomial py; such that, given a source instance S for M,
each chase sequence of S with ¥ has length at most par(]|S]|)-
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2. Let S be a source instance for M. Then there is a universal solution for
S under M if and only if there is a solution for S under M.

A matching lower bound follows from Theorem 2.26(2) and:

THEOREM (KOLAITIS ET AL. [2006]).

There is a weakly acyclic schema mapping M = (0, 04, %), where 3 consists of
full tgds and a single egd, such that EXISTENCE-OF-SOLUTIONS(M ) is PTIME-
complete.

Weak acyclicity has been generalized in a number of ways. A first such gen-
eralization, called stratification, was identified by Deutsch et al. [2008]. Strati-
fication was further generalized by Lausen et al. [2009]. In fact, Lausen et al.
[2009] identified an infinite hierarchy of generalizations of weak acyclicity. The-
orem 2.26 holds as well for schema mappings satisfying one of these conditions.
Finally, Marnette [2009] identified a class of schema mappings that strictly gen-
eralizes the class of all weakly acyclic schema mappings, and for which the
oblivious chase, a generalization of the chase, is guaranteed to terminate within
a polynomial number of steps on every given source instance.

How to Compute the Core of the Universal Solutions?

Let us now turn to the problem of computing the core of the universal solutions.
In general, computing a core of a given instance is a hard problem. Using a
simple reduction from the 3-colorability problem (see, e.g., Garey and Johnson
[1979]), one can show that the corresponding decision problem (given instances
I'and J, is I a core of J) is NP-hard [Fagin et al., 2005b]. It was established by
Fagin et al. [2005b] that this decision problem is actually DP-complete, where
DP is the class of all problems that can be written as the intersection of a
problem in NP and a problem in coNP. For more background on the class DP,
see Fagin et al. [2005b] or Papadimitriou [1994].

Surprisingly, in a number of cases it is nevertheless possible to compute the
core of the universal solutions. A first such result was:

THEOREM (FAGIN ET AL. [2005B]).

Let M = (04,04 %) be a schema mapping, where ¥ consists of st-tgds. Then
there is a polynomial time algorithm that takes a source instance S for M as
input and outputs Core(M,S5).

Let M = (05,01, %) be a schema mapping, where ¥ consists of st-tgds, and
let S be a source instance for M. The algorithm guaranteed by Theorem 2.28
exploits that universal solutions obtained from a successful chase sequence on
S and Y have a very nice structure that can be described in terms of blocks:
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2.29 DEFINITION (BLOCK)
Let I be an instance.

e The Gaifman graph of the nulls of I is the undirected graph whose vertices

are the nulls of I, and which has an edge between two nulls L, 1" € nulls(/)
if and only if L # 1’, and there is an atom R(u) of I such that both L
and 1’ occur in «.

A block of I is the set of nulls in a connected component of the Gaifman
graph of the nulls of I.

2.30 LEMMA (IMPLICIT IN FAGIN ET AL. [2005B]).
For every schema mapping M = (o, 04, 3), where ¥ consists of st-tgds, there is
a positive integer b with the following property: If S is a source instance for M,
and T is a solution for S under M such that S UT is the result of a successful
chase sequence on S and %, then each block of T' contains at most b nulls.

As a first step, the algorithm from Theorem 2.28 computes the result I of a
successful chase sequence on S and Y. Note that X is a fixed set of st-tgds, and
therefore, every chase sequence on S and ¥ has length polynomial in the size of
S, and every complete chase sequence on S and ¥ is successful. The instance
T := I\ S is then a universal solution for S under M, and by Lemma 2.30, each
block of T" contains at most b nulls for some positive integer b that depends only
on M. Subsequently, the algorithm computes a core of T using the algorithm
guaranteed by:

2.31 LEMMA (IMPLICIT IN FAGIN ET AL. [2005B]).
There is an algorithm that takes an instance I as input, and outputs a core

J C I of I in time O(||I]|**3), where b is the mazimum number of nulls in a
block of 1.

Proof. The following algorithm A is a modification of the blocks algorithm from
Fagin et al. [2005b]. To obtain the blocks algorithm from A, one first computes
T using a successful chase sequence on S and ¥ as described above, and replaces
the instance I in step 1 of A with 7.

On input I, A proceeds as follows:

1.

2.

Compute a list By, ..., B,, of all blocks of I, and initialize J to be I.

Check whether there is a homomorphism A from J to J such that A is not
injective, and there is some i € {1,...,m} such that h(u) = u for each

u € dom(J) \ B;.

. If such a h exists, then update J to be h(J), and go to step 2.
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4. Output J.

In Fagin et al. [2005b], it was shown that this algorithm correctly computes a
core of I, and that steps 2 to 4 can be accomplished in time O(||7||**3). In
particular, this dominates the time needed to accomplish step 1. O

Using more sophisticated techniques, Theorem 2.28 can be extended to
schema mappings defined by st-tgds and egds (see Fagin et al. [2005b]), and
even to weakly acyclic schema mappings:

THEOREM (GOTTLOB AND NASH [2008]).

Let M be a weakly acyclic schema mapping. Then there is a polynomial time
algorithm that takes a source instance S for M as input, and either outputs
Core(M, S) if it exists, or tells us that Core(M, S) does not exist.

Theorem 2.32 was further generalized by Marnette [2009].

Undecidability of the Existence of Universal Solutions

In Section 2.2, we reviewed results from [Fagin et al., 2005a, Deutsch et al.,
2008, Lausen et al., 2009, Marnette, 2009] showing that for every fixed schema
mapping M that is defined by tgds and egds, and that satisfies certain chase
termination conditions (e.g., weak acyclicity, stratification, or safe restriction),
there is an algorithm that takes a source instance S for M as input and either
computes some universal solution for S under M if there is any, or outputs that
there is no such universal solution. In this section, we show that for general
schema mappings, even for schema mappings defined by tgds only, such an
algorithm may not exist.
For a schema mapping M, consider the decision problem

EXISTENCE-OF-UNIVERSAL-SOLUTIONS(M )
Input: a source instance S for M

Question: Is there a universal solution for S under M?

The following theorem was published in Hernich and Schweikardt [2007]:

THEOREM.
There is a schema mapping Myur = (05,04, %), where 3 is a set of tgds, such
that EXISTENCE-OF-UNIVERSAL-SOLUTIONS(Mya.r) is undecidable.
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Proof. We will construct My, in such a way that Turing machines can be
encoded as source instances for My, r, and universal solutions correspond to
halting computations of Turing machines on the empty input.

In the following, we consider deterministic Turing machines with a single
tape that is infinite only to the right. Such Turing machines will be formally
represented by tuples (Q, A, d, qo, Qr), where @ is the set of states, A is the tape
alphabet, 0: (Q \ Qr) x A — @Q x A x {L,R} is the total transition function,
qo € @ is the start state, and Qp C @ is the set of final states. Clearly, the
following problem is undecidable (see, e.g., Papadimitriou [1994]):

HaLT

Input: a deterministic Turing machine M with a single tape that is
infinite only to the right

Question: Does M halt on the empty input?

Let M = (Q, A, 6, gy, Qr) be a deterministic Turing machine with a single
tape that is infinite only to the right. We can encode M by an instance Sy over
the schema o3 = {A, Q,}, where

o A ={(q,a,¢,d',d)|q€Q,ac A (¢,d,d) =d(qga)} is the graph of
the transition function J,' and

gM = {qo} contains the start state go.

We choose o as the source schema of M.

Our next goal is to construct the target schema o, of Mya.r, so that finite
computations of M can be encoded as instances over oy.

Let us first fix some basic notation concerning Turing machine computa-
tions. Recall that a computation v of M on the empty input is a sequence
v = (0,71, --,7Vn) of configurations of M, where ~q is the start configuration
of M on the empty input, and for each s € {0,1,...,n — 1}, 75,1 is the successor
configuration of vs. We represent each configuration 74 by a triple (gs, ps, as),
where

e ¢s € () is the state in step s of 7,

o ps is the head position in step s of v (w.l.0.g. a nonnegative integer, since
M’s tape is infinite only to the right), and

'We assume, without loss of generality, that QU AU {L, R} C Const, and that the sets @,
A and {L,R} are pairwise disjoint.
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* Qg = Q50051 " As 511 € A**2 is the inscription of the tape at positions 0
to s + 1 in step s of v (we only list the inscriptions of the first s + 2 tape
cells, since M can visit at most s tape cells in s steps, so that all other
tape cells contain blanks; we add 2 to simplify the presentation).

Note that vo = (o, 0, J0), where O denotes the blank symbol, which is assumed
to be in A. A configuration (¢, p, a) is called final if and only if ¢ € Qr. Note
that a final configuration has no successor configuration.

Now let v = (70,71, --,7) be a computation of M on the empty input,
where 75 = (¢s, Ps, @s0 - - - as541) for each s € {0,1,...,n}. To represent v as
an instance—and also for the whole remaining part of this proof—it may be
helpful to view v as a matrix as in Figure 2.1. The sth row of this matrix is

tape positions

0 1 <o n+1
00O do, Po
1|a10(@1,1| O qd1,DP1
steps
N |n,0|0n,1|0n,2|0n,3 Ann| O | 9nsPn

Figure 2.1: Representation of the computation v in matrix form

labeled with the state g, and the head position p, in configuration ~,, and the
(highlighted) first s 4+ 2 entries of row s correspond to the inscriptions of the
first s + 2 tape cells in configuration ~;.

Let us pick pairwise distinct values ug, 41, ..., Un, Vo, . .., Ups1 € Dom, where
Ug, U1, - - . , Uy Will be used to encode the steps 0,1, ..., n, and vy, vy, ..., V,y1 Will
be used to encode the tape positions 0,1,...,n + 1. Then we can represent ~

by an instance 77, over the schema of = {Succey, Suce,, State, Ins}, where:

! : :
o Suce,” = {(us,usy1) | 0 < s < n— 1} is the successor relation on the
“steps” ug, U, ..., Up.
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! .
o Sucey” = {(us,vp,p11) | 0 < s < n, 0 < p < s} contains the successor
relations on the “tape positions” vy, v1, ..., vs11 in each configuration ~,.

o State™ = {(us, ¢s,v,.) | 0 < s < n} contains information about the state
gs and the “head position” v, in each configuration 5. Note that the
unique tuple of the form (us,-,-) in State™ corresponds to the label of
row s in Figure 2.1.

o Ins™ = {(us,vp,a5,) | 0 < s <n 0<p<s+ 1} contains information
about the inscriptions as, at each “position” v, in each configuration ;.
Note that the tuples (us, -,-) in Ins™ correspond to the first s + 2 entries
in row s in Figure 2.1.

Later, it will be important that ug, vg, v; are constants, and the remaining values
ULy« vy Up, V2« .., Upyp are nulls. Therefore, we fix uy := 0 (for step 0), vg := 0
(for tape position 0), v; := 1 (for tape position 1), and we let all other values
ULy -y Uy, Vo, . o, Upy1 be nulls.

To support tgds in verifying that the relations Succ,T,’”,, Succ,?, State’ and
Ins™ indeed encode a computation, we need to extend T’ by some auxiliary
relations. As the target schema oy of Myar, we therefore choose the schema
o U {A, Copyy, Copyg, End}. Then, v can be represented by an instance 77, over
o, where T, coincides with 77 on all relation symbols in of, and:

o AT = A% ig the graph of the transition function 4,

. C’opyiLF7 = {(us, us—1,7p) | 1 < s <n, 0<p < ps} will be used to verify
that configurations v, and ~,_1 coincide on all “positions” to the left of
“position” v, (excluding position v, ),

. C’opy? = {(us, us—1,7p) | 1 < s < n, ps < p < s} will be used to verify
that configurations v, and v,_1 coincide on all “positions” to the right of
“position” v, (excluding position v,, ), and

o End” = {(us,vs41) | 0 < s < n} marks “tape position” wv,y; in each
configuration ~s.

It remains to construct a finite set ¥ of tgds such that universal solutions
for Sy under My, represent halting computations of Ml on the empty input.
To simplify notation, we omit the universal quantifiers in front of tgds.

We start with an empty set > and add tgds to 3 as follows. To “copy” A
to A, and to “produce” a representation of the start configuration of M on the
empty input, we add the st-tgds

A(g,a, ¢ d',d) — A(g,a,q¢,d,d) (2.1)
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and

Qo(q) — State(0,q,0) A Ins(0,0,00) A Ins(0,1,0)

A Succ,y(0,0,1) A End(0,1)  (2.2)
to 3. Note that tgd (2.2) enforces that a solution for Sy under My, contains
the atoms State(0, go,0), Ins(0,0,0), Ins(0,1,0), Succ,(0,0,1) and End(0,1),
which correspond to the start configuration (qo, 0, JO) of M on the empty input.

To simulate a transition (where the head moves to the left, or where the
head moves to the right), we add the t-tgds

eu(t,q, ¢\ p, 0 a,a") = I P(t,t, ¢, p,pa,d),
SOR(L q, q/7p7pl7 a, a/) — Eltl ’l/}(tv t/7 qlvpapla a, CL/)

to X, where

) State(t,q,p) A Ins(t, p,a) A Succy(t, p', p) A A(g,a,q,d, d), ifd=L
vl State(t,q,p) N\ Ins(t,p,a) A\ Succ,(t,p,p’) A A(g,a,¢,d',d), ifd=R

states that a transition from the current configuration ~, in step ¢ to its successor
configuration =y, in step t’ is possible, where the head moves to the left if d = L,
or to the right if d = R; and where

Y = Suce(t, ') A State(t', ¢, p') A Ins(t',p,a") A Copy, (', t,p) A Copyg(t',t,p)

“creates” an initial part of the configuration v, and links v, to .

To enforce that the tape inscriptions in a configuration and its successor
configurations coincide on all unmodified tape cells, and to ensure that all tape
positions from step ¢ occur in step t’ in the same order, we add the t-tgds

Copy,(t',t,p) A Succy(t,p',p) A Ins(t, p',a) —

Copy,,(t',t,p") A Succ,(t',p', p) AN Ins(t',p', a), (2.5)
Copyr(t', t,p) A Succy(t,p,p’) A Ins(t,p',a) —

Copyr(t',t,p") A Suce,(t', p,p') A Ins(t',p',a) (2.6)

to X. Finally, to add a new tape cell to the end of the tape in step ¢/, and to
mark this cell the last tape cell for step t/, we add the t-tgd

Sucey(t, t') A End(t,p) —
EIp’(Succp(t’,p,p’) A Ins(t',p',0) A End(t’,p’)). (2.7)
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This finishes the construction of 3.

Let Myar = (05,04, %). We claim that M halts on the empty input if and
only if there is a universal solution for Sy under My,;;. Even stronger, we show
that the following four statements are equivalent:

1. M halts on the empty input.
2. There is a successful chase sequence on Sy and .

3. Each chase sequence on Sy and ¥ can be extended to a successful chase
sequence on Sy and Y.

4. There is a universal solution for Sy under My, r.

In particular, EXISTENCE-OF-UNIVERSAL-SOLUTIONS(Mj,r) is undecidable.
We first show by induction on n that:

For every computation v = (Yo, 71, - - ., 7,) of M on the empty input,
there is a finite chase sequence C, on Sy and X with result Sy UT,. ()
For the case that n = 0, (*) follows immediately from vy = (o, 0, 30) and the
definition of T’,.

Assume now that (*) is true for n. Let v = (70,71, - - -, Vnt1) be a computa-
tion of M on the empty input, and let 7' := (y0,71, .. .,7). By the induction
hypothesis, there is a finite chase sequence C.s on Sy and ¥ with result SyUT,.
Suppose that v, = (¢,p,an 0 npt1) and Y1 = (¢, 0 Q10 Opi pso)-
Then, we must have d(q, anp) = (¢, ay,,1,,d) for some d € {L,R}. Thus, by
construction of T, either the tgd (2.3) (if d = L) or the tgd (2.4) (if d = R)
applies to 1., with some assignment «. It follows immediately that T, can be
obtained from T by a finite chase sequence C' on T and ¥ by first applying
(2.3) or (2.4), then (2.5) and (2.6) as long as possible (note that this can be
done only finitely many times), and finally, (2.7). The concatenation of C., and
C' is therefore a finite chase sequence on Sy and X with result Sy U T%,. This
completes the induction step.

We are now ready to prove the equivalence of the statements 1-4 above.

1 = 2: Suppose that M halts on the empty input. Then there is a compu-
tation v = (Y0,71,---,va) of M on the empty input, for which =, is final. By
(*), the instance Sy U T, is the result of a finite chase sequence C' on Sy and
¥. Since 7, is final, it is easy to verify that 7. |= X. Thus, C' is successful.

2 = 3: Consider an arbitrary chase sequence C' on Sy and Y. By induction
on the length of C, it is easy to check that the result of C' is isomorphic to some
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subinstance of Sy U T,. In particular, this implies that C' can be extended to a
successful chase sequence on Sy and Y.

3= /: Since each chase sequence on Sy; and ¥ can be extended to a successful
chase sequence on Sy and X, there is a successful chase sequence C' on Sy and

Y. Let I be the result of C. Then, by Theorem 2.18(1), I \ Sy is a universal
solution for Sy under Mypr.

4 = 1: Let T be a universal solution for Sy under My, . Let n be the
largest integer for which there are pairwise distinct values ug, u), ..., u, such
that uy = 0, and (u},u.,,) € Succ; for all s € {0,1,...,n — 1}. We show that
M halts on the empty input.

Suppose, for a contradiction, that M does not halt on the empty input. Then
there is a computation v = (79,71, .-, Vnt1) of M on the empty input, where
Ynt1 1S not final. By (*), there is a chase sequence C, on Sy and ¥ with result
Sw UT,. By Corollary 2.21, there is a homomorphism £ from T, to T'. Recall
that

Sucel” = {(ug, uss1) | 0 < s < n}.

Therefore,
(h(us), h(ugs1)) € Succl  for each s € {0,1,...,n}, (2.8)
and by the choice of n:
There are distinct k,1 € {0,1,...,n+ 1} such that h(u) = h(w).  (2.9)

Now extend T, to a solution 7" for Sy under M, as follows. First, add
(Unt1, Ups1) tO SucctTV. Second, for all p € {0,1,...,n+ 2},

o add (Up+1,Vp, V) to Succ? for all p’ € {0,1,...,n+ 2},
e add (un41,q,v,) to State’™ for all ¢ € Q,

o add (up+1,vp, @) to Ins™ for all a € A,

o add (Up+1, Unt1,0p) tO Copyf” and to Copy?,

e add (uny1,v,) to End™.

Since T is a universal solution for Sy under My, there is a homomorphism
B from T to T'. We show by induction on s that

h'(h(us)) = us forall s € {0,1,...,n+ 1} (2.10)
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For s = 0, we have h/(h(ug)) = g, since uy = 0 is a constant, and homomor-
phisms are the identity on constants. Now assume that h'(h(us)) = us for some
s €{0,1,...,n}. Recall that, by (2.8), we have (h(us), h(usy1)) € Succl . Since
I is a homomorphism from T to T”, we have (h/(h(u,)), I (h(uss1))) € Succl .
Furthermore, since h'(h(us)) = us, and (us, us11) is the only tuple of the form
(us,-) in Succl”, we conclude that h/(A(tgs1)) = gy

Since the values wug,uq, ..., u,41 are pairwise distinct, (2.10) implies that
h(ug), h(uy), ..., h(u,y1) are pairwise distinct values. However, this is a contra-
diction to (2.9). Consequently, Ml must halt on the empty input.

Altogether, the proof of Theorem 2.33 is complete. ]

From the proof of Theorem 2.33, we immediately obtain:

COROLLARY.
There is a schema mapping M = (04,04, %), where 3 consists of tgds only, such
that the following problems are undecidable:

1. Given a source instance S for M, is there a successful chase sequence on
S and X7

2. Given a source instance S for M, can every chase sequence on S and ¥
be extended to a successful chase sequence on S and X ¢

Moreover, using the proof of Theorem 2.33, it is not hard to obtain Theo-
rem 1, Theorem 6 and Theorem 14 in Deutsch et al. [2008]. These theorems
use the following terminology:

DEFINITION (MODEL, STRONG AND WEAK UNIVERSAL MODEL)
Let 3 be a set of tgds and egds, and let I be an instance.

o A model for I and ¥ is a (possibly infinite) instance J such that there
is a homomorphism from [ to J and J |= . In particular, J may have
relations R’ of infinite size.

o A strong universal model for I and ¥ is a finite model J for I and X
such that for every (possibly infinite) model K for I and ¥ there is a
homomorphism from J to K.

o A weak universal model for I and ¥ is a finite model J for I and ¥ such
that for every finite model K for I and X there is a homomorphism from
J to K.
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Note that, if I is a ground instance, then a model for I and a set ¥ of tgds
and egds is a possibly infinite instance J O [ with J = X. Note also that, if
M = (og,01,%) is a schema mapping defined by tgds and egds, S is a source
instance for M, and 7' is a target instance for M, then SUT is a weak universal
model for S and ¥ if and only if T is a universal solution for S under M.

THEOREM (DEUTSCH ET AL. [2008]).
There is a schema o such that the following problems are undecidable, where
the input consists of an instance I over o and a set ¥ of tgds and egds over o.

1. Decide whether there is some complete chase sequence on I and 3.

2. Decide whether all chase sequences on I and Y can be extended to a com-
plete chase sequence on I and 3.

3. Decide whether a strong universal model for I and X exists.
4. Decide whether a weak universal model for I and 3 exists.
In fact, this is even true if I is restricted to be empty.

Proof. Let X be the set of all tgds of the schema mapping My, constructed
in the proof of Theorem 2.33. Given a deterministic Turing machine M as in
the proof of Theorem 2.33, let ¥y be the union of ¥ and the set of all tgds
of the form — A, where A is an atom of Sy. Let I be the empty instance,
that is, I = (). Then, every chase sequence on I and Yy with result J can be
turned into a chase sequence on Sy and ¥ with result Sy U J. The other way
round, every chase sequence on Sy and ¥ can be turned into a chase sequence
on I and Xy with the same result. Since ¥ contains only tgds, every complete
chase sequence on Sy and ¥ is successful. Thus, as shown in the proof of
Theorem 2.33, it is undecidable whether there is a complete chase sequence on
I and Xy;. Furthermore, it is undecidable whether every chase sequence on
I and ¥y can be extended to a complete chase sequence on I and ;. This
proves 1 and 2.

For proving 3 and 4, observe the following. First, there is a universal solution
for Sy under My, r if and only if there is a weak universal model for I and >y.
Second, each model for Sy and ¥ is a model for I and >y;. Third, every weak
universal model for I and Yy is a strong universal model for I and Y. To see
this, let J be a weak universal model for I and >y;. Then there is a universal
solution for Sy under My, r, and, as shown in the proof of Theorem 2.33, there
is a successful chase sequence on Sy and X. By Corollary 2.21 (which holds
as well if K is an “infinite instance”), the result J’ of this chase sequence is a
strong universal model for I and Xy;. Thus, let J” be a model for I and Y.
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Then there is a homomorphism A’ from J' to J”. Since J’ is a model for [
and Yy, there also exists a homomorphism h from J to J’. In particular, the
composition of h and A’ is a homomorphism from J to J”. This proves that J
is a strongly universal model for I and .

Together with the three observations above, Theorem 2.33 implies that it is
undecidable whether a strong universal model for I and >y, or a weak universal
model for I and Xy exists. This proves 3 and 4. O]

Interestingly, the EXISTENCE-OF-SOLUTIONS problem considered in Sec-
tion 1.1.2 is trivial for the schema mapping My, .+ = (05, 0, 2) constructed in
the proof of Theorem 2.33. In fact, for every source instance S for My, the
target instance T for My, where RT = (dom(S) U {0,1,0})*@ for each
relation symbol R € oy, is a solution for S under My, .

On the other hand, we have:

THEOREM (KOLAITIS ET AL. [2006]).
There is a schema mapping Moy, = (05,04, %), where ¥ consists of tgds and
egds, such that EXISTENCE-OF-SOLUTIONS (M) s undecidable.

The schema mapping Mem, = (05, 0, %) constructed by Kolaitis et al. [2006]
for proving Theorem 2.37 has the property that inputs p: X? — X to the em-
bedding problem for finite semigroups (recall the definition from Example 1.14)
can be encoded as source instances S, for My, and solutions for S, under
Mpy, correspond to solutions for p with respect to the embedding problem for
finite semigroups. As in Example 1.14, o, consists of a ternary relation sym-
bol R such that a partial function p: X? — X for some finite set X can be
represented by an instance S, over os with

R% = {(a,b,c) € X* | p(a,b) = c}.

Furthermore, o, consists of a ternary relation symbol R such that a solution
f:Y? =Y for p with respect to the embedding problem for finite semigroups
can be represented as an instance 7T over oy with

R = {(a,b,c) € Y*| f(a,b) = c}.

To check that a target instance T" indeed represents a solution for p with respect
to the embedding problem for finite semigroups, > consists of the tgds and egds

VxVy\v’z(R(x, y,z) — R(z,, Z)), (2.11)
VaVyVz Ve (R(m,y, 2) AR(z,y, 2) = 21 = 22), (2.12)
V:UVszVquVw(é(x,y, u) A R(y, z,v) A R(u, z,w) — R(z,v, w)), (2.13)
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and for all 7,7 € {1,2,3}, the tgd

Va1 Vo VasVy Vya Vs (R(ml, T9,73) A R(y1,y2,y3) — 3z R(x;, Yy, z)) (2.14)

Here, (2.11) and (2.12) state that T represents the graph of a (potentially
partial) function f: Y? — Y, where Y is a finite set and f extends p, (2.13)
states that f is associative, and the tgds (2.14) state that f is total.

The following example shows that the reduction from the embedding prob-
lem for finite semigroups to EXISTENCE-OF-SOLUTIONS(Mepp,) described above
does not establish that EXISTENCE-OF-UNIVERSAL-SOLUTIONS( M) is un-
decidable.

EXAMPLE

Consider the partial function p encoded by S, = {R(0,1,1)}. Clearly, the
total function f: Y xY — Y with Y := {0,1} and f(z,y) := 2 + y mod 2 is
associative and extends p. However, we show that there is no universal solution
for S, under M.

For a contradiction, assume that there is a universal solution T for .S, under
Memp- Let n be the largest integer for which there are pairwise distinct values
Ug, Uy, - . . Up With ug = 0, and (u;, 1,u;41) € R” for each i € {0,1,...,n — 1}
Such an n exists, since T is finite. By the choice of n, and since T' satisfies
(2.14), there is an integer k € {0,1,...,n} with (u,,1,u;) € RT. Thus, the
sequence

(uka 17 ukJrl)a (uk+17 17 uk+2)7 R (unfla 17 uﬂ)a (un? 17 uk)

forms a “cycle” of length n —k+1 <n+1in RT.
Now consider the target instance T” for Mgy, with

R" = {(a,b,c) | a+b=cmodn+2}.

It is easy to verify that 7" is a solution for S, under Mey,. Since T is universal,
there is a homomorphism h from T" to T”. In particular, we must have

(h(w;), 1, h(uisq)) € RT for each i € {0,1,...,n —1}. (2.15)
We now have
h(u;) =i for each i€ {0,1,...,n —1}. (2.16)

This follows in an analogous way as in the proof of Theorem 2.33. First, note
that h(ug) = 0, since ug = 0 is a constant, and homomorphisms are the identity
on constants. Now assume that h(u;) = i for some ¢ € {0,1,...,n — 1}. Since
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(h(u;),1, h(uiy1)) € RT by (2.15), h(u;) = i, and (i,1,i + 1) is the only tuple
in R™ of the form (4, 1,-), it follows that h(u; 1) =i -+ 1.

By (2.16) and (un,1,u;) € RT, we have (n,1,k) = (h(uy), 1, h(u)) € RT".
However, (n,1,n4 1) is the only tuple in R”" of the form (n,1,-). We conclude
that there is no universal solution for S, under Mepp. O

Even more, we can extend My, to a schema mapping M, _, such that EX1s-
TENCE-OF-SOLUTIONS(M ;) is undecidable, but EXISTENCE-OF-UNIVERSAL-

€

SOLUTIONS(M(,,,) is trivial, which demonstrates once more the difference be-

tween the two problems EXISTENCE-OF-SOLUTIONS and EXISTENCE-OF-UNI-
VERSAL-SOLUTIONS:

EXAMPLE

Let M., = (os,0(,%") be obtained from Mey, = (05, 0, 2) as follows. First,
add a new binary relation symbol F to the target schema o¢. Second, add the
tgd — E(0,1) to ¥ (which ensures that every solution contains the tuple (0, 1)
in £), and third, add the tgd

X2 = VaVy(E(z,y) = 3z E(y, 2))
from Example 2.12 to ¥. Then for every source instance S for M, ., we have:

o There is a solution for S under M , if and only if there is a solution for
S under Mey,. This is because ys is independent of the other tgds and
egds in ¥, and y- is satisfied in any solution 7" for S under M/ , with
(1,0) € ET.

o There is no universal solution for S under M/ .. This follows easily from
Example 2.12.

Hence, the problem EXISTENCE-OF-SOLUTIONS(M!

emb

the problem EXISTENCE-OF-UNIVERSAL-SOLUTIONS(M/

emb

) is undecidable, while
) is trivial. O

Queries With Inequalities

We conclude this chapter with a short overview on standard techniques and
results on computing the certain answers to monotonic queries that are not
preserved under homomorphisms. One particular class of such queries is the
class of unions of conjunctive queries with inequalities:

DEFINITION (UNIONS OF CONJUNCTIVE QUERIES WITH INEQUALITIES)
A union of conjunctive queries with inequalities over a schema o is a FO query
over o of the form

(p(;f‘) = Elgl ¢1(£agl) VoV Elgmwm(jagm)a (217)
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where for all i € {1,...,m}, ¢; is a FO formula of the form A; A --- A A, for
some positive integer n, and each A; is a relational atomic FO formula over o
or an inequality of the form —z = 2’ for variables z, 2’ that occur in z or ;.
The subformulas 3y; ¥;(Z, y;) are called the conjuncts of .

A conjunctive query with inequalities is a union of conjunctive queries with
one conjunct.

To compute the certain answers to queries that are not preserved under
homomorphisms, Deutsch et al. [2008] proposed universal solution sets.* This
notion is tightly related to the notion of universal basis that appeared earlier
in the work of Fuxman et al. [2006], and to the universal solutions in Afrati
et al. [2008]. As the name suggests, universal solution sets are sets of solutions
(of course, with special properties). For each class F' of mappings, there is a
corresponding notion of F-universal solution set that is suitable for computing
the certain answers to queries, where F' is the class of mappings under which
these queries are preserved. Note that monotonic queries are preserved under
injective homomorphisms, that is, for all instances I, J, for all injective homo-
morphisms A from I to J, and for all tuples ¢ € ¢(I), we have h(t) € q(J)
(recall that we assume that queries are generic). Hence, we only consider uni-
versal solution sets with respect to the set ihom of all injective homomorphisms
(i.e., injective mappings that are the identity on constants). Given a set Z of

. . . inj .
instances over some schema o, and an instance .J over o, we write Z = .J if and
only if there is an instance I € Z and an injective homomorphism from I to J.

DEFINITION (IHOM-UNIVERSAL SOLUTION SET)

Let M be a schema mapping, and let S be a source instance for M. An ithom-
universal solution set for S under M is a finite set 7 of solutions for S under
M with the following properties:

o T X T for every solution T for S under M.

o Thereisno 7' C T with 7’ ™ T for every solution T for S under M.

As shown by Deutsch et al. [2008], the certain answers to a monotonic query
q on a schema mapping M and a source instance S for M can be computed
from an ihom-universal solution set T for S under M by taking the intersection
of the answers to ¢ on the solutions in 7, and by removing all tuples with nulls:

THEOREM (DEUTSCH ET AL. [2008]).
Let M be a schema mapping, let S be a source instance for M, let T be an

2Deutsch et al. [2008] call universal solution sets universal model sets. Here, we prefer to
replace model by solution.
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thom-universal solution set for S under M, and let ¢ be a monotonic query
over M’s target schema. Then,

cert(q, M, S) = {t|t € q(T) for all T € T, and t contains only constants}.

A drawback of ihom-universal solution sets is that they are in general very
large, so that it is not possible to compute such an ihom-universal solution set
in polynomial time.

EXAMPLE
Consider the schema mapping M = ({ P}, {R},Y), where P is a unary relation
symbol, R is a ternary relation symbol, and ¥ consists of the single st-tgd

Va:(P(x) — Jy3z R(x, y, z))

Let n be a positive integer, and let S be a source instance for M with P¥ =
{1,...,n}. Then it is not hard to verify that there are > 2" many solutions in
every ihom-universal model set for M and S. O

On the other hand, it follows from Madry [2005] that ihom-universal solution
sets must be large:

THEOREM (MADRY [2005]).

There is a schema mapping M defined by st-tgds, and a Boolean conjunctive
query q with two inequalities such that the following problem is coNP-complete:
given a source instance S for M, decide whether the certain answers to q on S
and M are nonempty.

What seems to be more practical is to compute a “small” representation
of the set of all relevant solutions such as Core(M, S), and given a monotonic
query q over o, compute a set of solutions that is sufficient for computing the
certain answers to ¢ on M and S. For example, Fagin et al. [2005a] have shown:

THEOREM (FAGIN ET AL. [2005A]).

Let M be a weakly acyclic schema mapping, and let g be a Boolean query that is
the union of conjunctive queries with at most one inequality per disjunct. Then
there is a polynomial time algorithm that, given a universal solution for some
source instance S under M, computes the certain answers to g on M and S.

Roughly, the algorithm guaranteed by Theorem 2.45 works as follows. Given
a universal solution T for some source instance S under M, it first uses the
chase to compute a new solution 7" for S under M from T'. If the chase fails to
compute a solution, then the certain answers to ¢ on M and S are nonempty.
Otherwise, the certain answers to ¢ on M and S are ¢(7”).

Arenas et al. [2009a] extended Theorem 2.45 to properly restricted classes
of unions of conjunctive queries with more than one inequality per disjunct.
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3 Justification-Based Approaches
to Query Answering

First semantics for query answering in relational data exchange that take into
account implicit information in schema mappings and source instances were
proposed by Libkin [2006]. These semantics are based on the concept of CWA-
solutions (the set of all CWA-solutions for a source instance S intuitively cor-
responds to the set of all possible outcomes of translating S to the target if
implicit information in the formalized sense is taken into account). Originally,
Libkin introduced CWA-solutions for the case of schema mappings defined by
st-tgds,! but the definition was extended by Hernich and Schweikardt [2007] to
capture the more general case of schema mappings defined by tgds and egds.
This chapter introduces CWA-solutions and the corresponding query answer-
ing semantics, and discusses generalizations as well as specializations of CWA-
solutions considered by Libkin and Sirangelo [2008], Afrati and Kolaitis [2008],
and corresponding query answering semantics.

Sections 3.1 and 3.2 are devoted to the definition and basic properties of
CWA-solutions. As the name suggests, CWA-solutions are based on the closed
world assumption (CWA) [Reiter, 1978].2 The basic idea is that all data in the
target must be justified in some sense by the schema mapping and the source
instance. To put this into more concrete terms, Libkin identified three (rather
informal) requirements that a CWA-solution should have, and then formalized
them (in the context of schema mappings defined by st-tgds). One of these
requirements is that all atoms in a CWA-solution T for a source instance S
under a schema mapping M must be justified by M and S. For the case that
M is defined by st-tgds, this requirement was formalized by Libkin essentially
as: there is a st-tgd VaVy(eo(z,y) — 32 ¢(Z, 2)) of M, and tuples u, v such that
S = ¢(u,v), the atom is one of the atoms in ¥ [u, w] for some tuple w, and T’
contains all the atoms of v[u,w]. Hence, a justification for the atom basically
consists of a st-tgd of M, and appropriate tuples « and v. For the case that
M is defined by tgds and egds, the formalization is a bit more involved: the
atom must be “derivable” from S using the tgds of M as “rules” to “produce”
new atoms, in a similar way as in logic programming. Furthermore, all atoms

1Strictly speaking, the sentences considered by Libkin [2006] have the form VZVi(o(Z,7) —
3z ¢(Z, z)), which differ from st-tgds only in the fact that the body ¢ can be a (properly
restricted) FO formula rather than a conjunction of relational atomic FO formulas.

2In Chapter 4, we will consider the original definition of the CWA by Reiter [1978]. For
this chapter, the following requirements given by Libkin suffice.
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obtained along the way must belong to 7', and egds must be respected.

Note that this first requirement for CWA-solutions is very natural in the
following context. For simplicity, consider a schema mapping M = (o, oy, 2),
where X is a set of st-tgds, and let S be a source instance for M. Imagine
an algorithm A that translates S to oy by adding atoms to an initially empty
target instance T'. Then it seems natural to assume that A adds only atoms to
T that can be obtained from S by “applying” a st-tgd in X to S. That is, if
Vavy(e(z,y) — Jz¢(x, 2)) is a st-tgd in X, and @, v are assignments for z,y
with S = ¢(u,v), then the algorithm may add the atoms of ¢[u,w] to T for
some tuple w. So, atoms added to T are justified as indicated above.

The other two requirements for CWA-solutions say that justifications do not
“generate” more atoms than necessary, and that all facts (basically, statements
without negation) that are true in a CWA-solution follow from the schema
mapping and the source instance. Note that these requirements are natural
in the context described above, too. Table 3.1 summarizes the three informal
requirements for CWA-solutions.

(R1) Each atom is justified by the schema mapping and the source
instance.

(R2) Justifications for atoms are not “overused”: that is, each justifi-
cation for atoms does not “generate” more atoms than necessary.

R3) Each fact in the target instance follows from the schema map-
g
ping and the source instance. That is, CWA-solutions contain no
“invented” facts.

Table 3.1: Informal requirements for CWA-solutions

Section 3.1 formalizes the first two requirements in Table 3.1. This re-
sults in the definition of CWA-presolutions, which are solutions that intuitively
satisfy the first two requirements in Table 3.1. Section 3.2 then defines CWA-
solutions by formalizing the third requirement in Table 3.1, and restricting
CWA-presolutions to CWA-presolutions that satisfy this third requirement. In
Section 3.2, we also identify basic properties of CWA-solutions. In particu-
lar, we characterize CWA-solutions as special universal solutions. Even more,
CWA-solutions exist if and only if universal solutions exist, and the core of the
universal solutions is the unique “minimal” CWA-solution, if it exists.

Sections 3.3 and 3.4 are devoted to the problem of answering queries us-
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ing CWA-solutions. In Section 3.3, we first present several semantics for query
answering based on CWA-solutions and illustrate them with examples. After-
wards, in Section 3.4, we investigate the complexity of evaluating FO queries
under these semantics. It turns out that for queries preserved under homomor-
phisms, the CWA-solution-based query answering semantics coincide with the
certain answers semantics, so that such queries can be evaluated in polynomial
time provided a universal solution can be computed in polynomial time, and
the query has polynomial time data complexity. However, for more expressive
queries, there are simple schema mappings such that the problem of deciding
whether a given tuple belongs to the set of answers to such a query may be
coNP-hard or NP-hard, depending on the semantics.

Section 3.5 takes a closer look at generalizations and specializations of CWA-
solutions considered by Libkin and Sirangelo [2008] and Afrati and Kolaitis
[2008], and corresponding query answering semantics.

Finally, Section 3.6 discusses some limitations of the justification-based ap-
proaches for query answering presented in this chapter.

Definition and Basic Properties of CWA-Presolutions

In this section, we formalize requirements (R1) and (R2) in Table 3.1. This
results in the definition of CWA-presolutions, which are solutions that intuitively
satisfy the first two requirements in Table 3.1. As a warm-up, Section 3.1.1
reviews Libkin’s concept of CWA-presolutions for schema mappings defined by
st-tgds. The notation used in Section 3.1.1 differs considerably from Libkin’s
notation, and is chosen carefully to prepare for Section 3.1.2, where we define
CWA-presolutions for the more general case of schema mappings defined by
tgds and egds. Section 3.1.3 finally presents a game-based characterization of
CWA-presolutions that directly reflects the first two requirements of Table 3.1.

Schema Mappings Defined by St-Tgds

This section reviews the concept of CWA-presolutions from Libkin [2006] for
schema mappings defined by st-tgds. It serves as a warm-up for the more in-
volved definition of CWA-presolutions in Section 3.1.2. All concepts and results
presented in this section are from Libkin [2006]. However, we use a different
notation that will be more convenient in Section 3.1.2.

Let M = (o5, 01, %) be a schema mapping, where ¥ consists of st-tgds, and
let S be a source instance for M. Given a target instance T' for M and an atom
A of T, we say that A is justified in T under M and S if and only if A can be
obtained by “applying” a st-tgd in ¥ to S, so that all atoms obtained “along
the way” belong to T as well. Formally, this is captured as follows:
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DEFINITION (JUSTIFICATION FOR ATOMS)
Let M = (og, 0, 2) be a schema mapping, where 3 consists of st-tgds, let S be
a source instance for M, let T' be a target instance for M, and let A be an atom

of T.

A justification for atoms under M and S is a triple (x, 4, v) consisting of

— a st-tgd x € ¥ of the form VzVy(p(z,y) — Iz ¢(z, 2)), and
— tuples @ € Const™ and v € Const!?!

such that S = ¢(u,v). If M and S are understood from the context, we
call (,u,v) just justification.

o Let Jus be the set of all justifications for atoms under M and S.

e Given j = (x,u,v) € Jms, where x has the form VaVy(p(z,y) —
3z¢(7, 2)), we say that A is justified by j in T if and only if there is
a tuple w € Dom*! with A € [, w] and [a,w] C T.

o We say that A is justified in T under M and S if and only if there is some
J € Ju,s such that A is justified by j in 7T

EXAMPLE (LIBRARY DATABASE RESTRUCTURING, CONTINUED)

Consider the schema mapping M’ = (os, o¢, {X], X5}), where og, oy, X} and x5
are defined as in Example 1.15. Furthermore, let S* be the source instance for
M (resp., M') from Example 1.4. Then,

Imr s+ = { (X’l, (“0-201-53771-0", “Foundations of Databases”), ()),
(Xh, (40-201-53771-0", “Serge Abiteboul”), ()),
(4, (40-201-53771-0", “Richard Hull"), ()),
(34, (40-201-53771-0", “Victor Vianu”), ()),
(X5, (“0-201-53082-17, “Christos H. Papadimitriou”), ()) }.

Note that the instance T presented in Example 1.4 is a solution for S* under
M. The atom

Books(“0-201-53771-0", “Foundations of Databases”), “DB”)

of T is justified by (x}, (“0-201-53771-0", “Foundations of Databases”), ()) in
T. Moreover, the atoms

AuthorList(1, “Serge Abiteboul”) and WrittenBy(“0-201-53771-07, 1)
of T are justified by (x5, (“0-201-53771-0”, “Serge Abiteboul”), ()) in T O]
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Let T be a solution for S under M. Intuitively, T' satisfies requirement
(R1) if we can label each atom A in 7' with at least one element j € Ju.s
such that A is justified by j in 7. One possible way to model this labeling
is to provide a relation R between elements (x,u,v) € Ju,s, where x has the
form VaVy(p(z,y) — 3z1¢(z,2)), and tuples w € Dom"! with Ylu,w] C T
the element (x,u,v) then labels the atoms of ¥[u,w]. See Figure 3.1 for an
illustration.

atoms of ¥[u, w]

Figure 3.1: Assignment of justifications to atoms

Intuitively, T" also satisfies (R2) if R associates each j € Jy s with at most
one tuple w. In other words, R is a partial function on Jas,s.

Note that we can assume, without loss of generality, that R is a (total)
function on Jyss. This is because each justification j = (x,u,v) € Jus, where
x has the form VaVy(eo(z,y) — Jz¢(x,Z2)), tells us that S = ¢(u,v), and
thus, since T is a solution for S under M, there must be some tuple w with
Ylu,w] C T. In other words, if R does not associate j with some tuple, then
we can modify R such that j is associated with w.

In the following, instead of working with functions that map justifications to
tuples of appropriate length, it will be more convenient to work with functions
that map pairs in

Tirs = {0,2) | = (x,@,0) € Jars, where x = YaVg(o(,§) — 329(z, 2)),

and z is a variable in z}

to values in Dom. We can think of a mapping ¢: J3; ¢ — Dom as an assignment
of justifications j = (x,u,v) € Ju.s, where x has the form VzVy(p(z,y) —
3zY(z,2)) and z = (21,. .., 2x), to tuples

C(]) = (C(]? Zl)? st 7C(j7 Zk))7

or as a labeling of the atoms in

atoms((,7) = ¥[u,((j)]
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with 7.
We are now ready to give the formal definition of CWA-presolutions:

3.3 DEFINITION (CWA-PRESOLUTION)
Let M = (0,04, %) be a schema mapping, where ¥ is a set of st-tgds, and let
S be a source instance for M. A CWA-presolution for S under M is a target
instance 7' for S under M such that there is a mapping ¢: Jy; ¢ — Dom with
T = Ty,s¢, where
Tuse == |J atoms(¢,j).

J€IM,s

An immediate consequence of the definition of CWA-presolutions is that
every CWA-presolution for S under M is a solution for S under M.

3.4 EXAMPLE (A CWA-PRESOLUTION THAT IS A UNIVERSAL SOLUTION)
Recall the schema mapping M’ = (o5, o¢, {x}, x4}) and the source instance S*
for M’ from Example 3.2. Let (: J, M Dom be defined as follows:

justification j (%)
X1, (“0-201-53771-0”, “Foundations of Databases”), ()) 1
Xb: (“0-201-53771-0", “Serge Abiteboul”), () Ly
XQ, (“0-201-53771-0”, “Richard Hull”), ()) Ls
b, (“0-201-53771-0", “Victor Vianu”), () L
Xb, (40-201-53082-1", “Christos H. Papadimitrion”), ()) | Ls

Then we have Ty g+ ¢ =T, where

BookInfo! = {(“0-201-53771-0”, “Foundations of Databases”, 1)},
Authors” = {(L4, “Serge Abiteboul”), (Ls, “Richard Hull”),
(Lg, “Victor Vianu”), (L7, “Christos H. Papadimitriou”)},
WrittenBy" = {(“0-201-53771-0”, L), (“0-201-53771-07, L),
(“0-201-53771-0", Lg), (“0-201-53082-1", L7)}. [

CWA-presolutions can be characterized in terms of a single universal solu-
tion: the canonical universal solution. The following definition of the canonical
universal solution is equivalent to the definition of the canonical universal solu-
tion from Arenas et al. [2004].

3.5 DEFINITION (CANONICAL UNIVERSAL SOLUTION)
Let M = (o5, 01, %) be a schema mapping, where ¥ consists of st-tgds, and let
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S be a source instance for M. The canonical universal solution for S under M
is defined by

C&HSOI(M, S) = TM,S,{)
where ( is some injective mapping from Jy; ¢ to Null?

In Example 3.4, we have CanSol(M’,S*) = T. It should be clear from the
definition that CanSol(M, S) is a universal solution for S under M.

PROPOSITION (CHARACTERIZATION OF CWA-PRESOLUTIONS).

Let M = (04,04, %) be a schema mapping, where X2 consists of st-tgds, and let
S be a source instance for M. Then for every target instance T for M, the
following statements are equivalent.

1. T is a CWA-presolution for S under M.

2. There is a homomorphism h from CanSol(M,S) to T with the property
that h(CanSol(M, S)) =T.

Proof.

1 = 2: Suppose that T is a CWA-presolution for S under M. Then there is

a mapping ¢: Jy; ¢ — Dom with T' = Ty 5. Furthermore, by Definition 3.5,

there is an injective mapping ¢': J3; g — Null with CanSol(M, S) = Thss,¢'-
Now consider the mapping h: dom(CanSol(M, S)) — dom(7’) such that

« W('(G7) = C(") for all j* € Ty 5, and
e h(u) =wu for all u € const(CanSol(M, S)).

It is easy to verify that A is a homomorphism from CanSol(M,S) to T with
h(CanSol(M, S)) =T.

2= 1: Let h be a homomorphism from CanSol(M, S) to T' with the property
that h(CanSol(M, S)) =T. Let (": Jy; s — Null be an injective mapping with
CanSol(M, S) = Ths,s,r- Define a mapping ¢: J3; 5 — Dom such that for every
J* € Jars, we have ((5*) := h(¢’(5*)). Then h is a mapping as in the proof
of the direction from 1 to 2 above, so that T' = h(CanSol(M, S)) = T sc. In
particular, T" is a CWA-presolution for S under M. O

Proposition 3.6 now makes it easier to verify that a given solution is a CWA-
presolution or not.

3Note that CanSol(M, S) is defined only up to isomorphism.
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EXAMPLE (A CWA-PRESOLUTION THAT IS NO UNIVERSAL SOLUTION)
Recall the schema mapping M’ = (o, o, {X}, x4}), the source instance S* for
M', and the solution T for S* under M’ from Example 3.2. Recall that T =
CanSol(M’, S*).

Now consider the solution 7" for S* under M’ with

BookInfo' = {(“0-201-53771-0”, “Foundations of Databases”, “DB”)},
Authors” = {(1, “Serge Abiteboul”), (2, “Richard Hull”),
(3, “Victor Vianu”), (4, “Christos H. Papadimitriou”)},
WrittenBy" = {(“0-201-53771-07, 1), (“0-201-53771-0”, 2),
(“0-201-53771-0", 3), (“0-201-53082-1", 4)}.

It is easy to see that there is a homomorphism A from T to 7" with h(T) = T".
The homomorphism A just has to map the null 1; to “DB”, and the null 1,3
to i for each i € {1,2,3,4}. Thus, by Proposition 3.6, 7" is a CWA-presolution
for S* under M’.

Note that 7" is no universal solution for S* under M’. For example, there
is no homomorphism from 7" to T. O]

EXAMPLE (A UNIVERSAL SOLUTION THAT IS NO CWA-PRESOLUTION)

Recall the schema mapping M’ = (o, 0v, {X1, x5}) and the source instance S*
for M’ from Example 3.2. Let T' := CanSol(M’, S*), and let f: dom(7) — Dom
be an injective mapping such that f(c) = ¢ for each constant ¢ € const(7"), and
f(L) ¢ dom(T) for each null L € nulls(7T"). Then it is easy to see that 7" :=
T'U f(T) is a universal solution for S* under M’. However, by Proposition 3.6,
T’ is no CWA-presolution for S* under M’, since there is no homomorphism h
from T to T" such that h(T) =T". O

Schema Mappings Defined by Tgds and Egds

In this section, we extend the definition of CWA-presolutions from Section 3.1.1
to capture schema mappings defined by tgds and egds.

First note that a CWA-presolution for a source instance S under a schema
mapping M’ = (o, 0y, ¥'), where ¥/ consists of st-tgds, is in general no solution
for S under a schema mapping M = (og, 0y, %), where 3 is obtained from >
by adding t-tgds and egds. In Example 3.4, T = CanSol(M’, S*) is a CWA-
presolution for S* under M’. However, it is easy to see that T is no solution for
S* under M, since the tgd x4 (cf., Example 1.15) is not satisfied. To capture
schema mappings with tgds and egds, we thus need to extend the definition of
CWA-presolutions.
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Let M = (os,0t,%) be a schema mapping, where ¥ consists of tgds and
egds, and let .S be a source instance for M. In a similar way as in Section 3.1.1,
we will say that an atom A in a target instance T for M is justified in T under
M and S if A can be obtained by “applying” tgds in ¥ to S, so that all atoms
obtained “along the way” belong to T" as well. Note that egds that may be
present in ¥ are ignored here; they are incorporated later. More precisely (but
still informal), A will be called justified in 7" under M and S if

1. there is a st-tgd VaVy(eo(z,y) — 3z ¢(x, 2)) in X and tuples u, v such that
S = p(u,v), A € yplu,w] for some tuple w, and ¢[u, w] C T, or

2. there is a t-tgd VzVy(e(z,y) — Iz ¢¥(Z, z)) in ¥ and tuples u, v such that
T E p(u,v), A € ¢|u, w] for some tuple w, [u, w] C T, and the atoms of
plu, v] are already “justified”.

When justifying atoms with t-tgds (according to condition 2 above), we
have to take care to avoid “circular justifications”: it should not be the case
that a t-tgd VYaVy(e(z,y) — 329 (Z, 2)) and tuples u, v justify a set ¢[u, w] of
atoms based on the atoms in ¢[u, v], while another t-tgd justifies some of the
atoms in @[u, v] based on some of the atoms in ¢ [u, w]. To avoid such “circular
justifications”, we use a derivation-based approach, adding atoms only if they
can be justified based on atoms that have already been justified. We start with
a CWA-presolution T for S under M’ = (oy, 0, '), where ¥’ consists of all st-
tgds in X, in the sense of Definition 3.3. This derives atoms that can be justified
according to condition 1 above. Based on the atoms of T;y we then derive further
atoms that can be justified according to condition 2. This is done by employing
a suitably “controlled” version of the chase (cf., Section 2.2.1), which we call
(-chase and which is defined below.

For defining the (-chase, we use the following relaxation of the notion of
justification (cf., Definition 3.1), which focuses on justifications of atoms in
terms of t-tgds, according to condition 2 above:

DEFINITION (POTENTIAL JUSTIFICATION FOR ATOMS)
Let X be a set of tgds.

o A potential justification for atoms under X is a triple (x,u,v) consisting

of

— a tgd x € ¥ of the form VzVy(p(z,y) — 32¢(7, 2)), and
— tuples @ € Const™ and © € Const?l.

If 3 is understood from the context, we call (x,u,v) just potential justifi-
cation.
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o Let Jx be the set of all potential justifications for atoms under .

o Given a schema mapping M = (o, 0y, X2) for a set 3 of tgds and egds, we
let Jar := Jsv, where ' consists of all t-tgds in 3.

We will interpret potential justifications j = (x,u,v) € Juy, where x has
the form VaVy(p(z,y) — 3z (z, 2)), as follows. Suppose that we have already
“derived” a target instance T" for M (i.e., all atoms of T" are already justified)
such that T' = ¢(u,v). Then we can add the atoms of ¥[u, w] for any tuple
w € Dom™ to T, so that all atoms in the resulting instance are justified. In
other words, j serves as a justification for the atoms of t[u,w| based on the
atoms of p[u, v] that are already justified.

EXAMPLE (LIBRARY DATABASE RESTRUCTURING, CONTINUED)
Consider the schema mapping M = (o, 0y, %) from Example 1.15. The only
t-tgd in X is y4. Thus,

T = { (xa (“0-201-53082-1", L7), (),
(X4, (*0-201-53082-17, “Christos H. Papadimitriou”), ())’
(1, (“0-521-30442-3", “Wilfrid Hodges”), ()), ... }. -

Similarly as in Section 3.1.1, we will consider mappings ¢ from the set

T = {G2) | = (0 0) € Te, where x = Yi¥ii(p(#,5) - 370(z, 7)),
and z is a variable in z}

to Dom for “labeling atoms with potential justifications”. Again, we can view
a mapping (: Jys — Dom as an assignment of potential justifications j =
(x,u,v) € T, where x has the form VzVy(eo(z,y) — Jz¢(z,2)) and z =
(z1,...,2k), to tuples

C(]) = (C(]v Zl)? st 7C(j7 Zk))?

or as a labeling of the atoms in

atoms((, ) = [ ()
with 7.

The (-chase is defined for sets of tgds only, since we need it only for the
purpose of justifying atoms according to condition 2 mentioned at the beginning
of the present Section 3.1.2. Given an instance I over a schema o, and a set X of
tgds over o, the (-chase starts—Ilike the chase—with the input instance Iy := [
and proceeds in steps 1,2, .... In step s > 1, an instance I,_; has already been
computed. If possible, the (-chase then makes a (-tgd chase step:
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DEFINITION ((-TGD CHASE STEP)

Let ¢: Jss — Dom be defined with respect to a set X of tgds over a schema o.
Let I be an instance over o, let x € ¥ have the form VzVy(o(z,y) — 3z ¢(Z, 2)),
let a be an assignment for ¢, and let j := (x, a(Z), a(y)) € Js.

o We say that x applies to I with o and ¢ if and only if I &= ¢(a) and
atoms(¢, j) € 1.

o Given an instance J, we write [ l—i’a J if and only if y applies to I with
a and ¢, and J = I Uatoms((, j).

o We write [ l—% J if and only if there is some xy € ¥ and an appropriate
assignment « such that I+, J.

Otherwise, the (-chase stops and outputs I;_;. The possible “runs” of the
(-chase are formally described by (-chase sequences:

DEFINITION ((-CHASE SEQUENCE)
Let ¢: Jst — Dom be defined with respect to a set X of tgds over a schema o,
and let I be an instance over o.

o A (-chase sequence on I and ¥ is a (finite or infinite) sequence C' =
Iy, I, ... of instances over o such that Iy = I, and for every instance I
in C' with s > 1 we have I,_; l—% 1.

o Let C = (o, I1,...,I;) be a finite (-chase sequence on I and 3. We call
I; the result of C', and [ the length of C.

o A successful (-chase sequence on I and ¥ is a finite (-chase sequence
C = (Ip, I1,...,1;) on I and ¥ such that there is no instance J over o
with [, F§ J.

EXAMPLE (LIBRARY DATABASE RESTRUCTURING, CONTINUED)
Consider the schema mapping M = (o5, 0y, %) and the source instance S* for
M from Example 1.15 and Example 1.4, respectively.

Let T be the target instance for M from Example 3.4, and let (: J;; —
Dom be such that on the potential justifications j and the variables z listed in
Table 3.2, ((7, z) has the given value.

It is not hard to see that the instance T from Example 1.5 is the result of
a successful (-chase sequence on 7" and the set X' = {x4} of all t-tgds in X.
Indeed, we have 7'+, , T*, where a(z;) = “0-201-53082-1” and «a(x2) = L7.
Note also that there is no instance .J with T* F$, J. Therefore, the sequence
C = (T,T*) is a successful (-chase sequence on T" and 7. O]
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potential justification j € Jyr | 2 ¢(4,2)

X4, (“0-201-53771-07, L4), ()) | 21 | “Foundations of Databases”
o, (40-201-53771-07, 1Ly), () | 2 1,

X4, (“0-201-53771-07, L4), () | 23 “Serge Abiteboul”

X4, (“0-201-53771-07, L5), ()) | 21 | “Foundations of Databases”
a, (40-201-53771-07, L3), () | 2 1,

X4, (10-201-53771-07, L5), ()) | 23 “Richard Hull”

X4, (¥0-201-53771-0", L), ()) | 21 | “Foundations of Databases”
Xa, (40-201-53771-0", L), ()) | 2 1,

X4, (¥0-201-53771-0", Lg), ()) | 23 “Victor Vianu”

o, (40-201-53082-17, 12), ()) | = 1,

a4, (40-201-53082-17, 15), () | 2 1,

X4, (“0-201-53082-17, L7), ()) | 23 | “Christos H. Papadimitriou”

Table 3.2: Definition of ¢ for some potential justifications

The following lemma summarizes some basic properties of (-chase sequences:

3.14 LEMMA.
Let I be an instance over a schema o, let 3 be a set of tgds over o, and let
¢: Iy — Dom.

1. A successful (-chase sequence on I and X exists if and only if there is no
infinite (-chase sequence on I and X.

2. If C1,Cy are successful (-chase sequences on I and X, then Cy and Cs
have the same result.

3. If J is the result of some (-chase sequence on I and X with J = X, then
J is the result of some successful ('-chase sequence on I and X, for some
¢' Jss — Dom.

Proof.

Ad 1: If there is no successful (-chase sequence on I and », then all (-chase
sequences on I and ¥ must be infinite.
Assume now that C' = (Iy, I1,...,I;) is a successful (-chase sequence on [

and Y. For a contradiction, suppose that there is an infinite (-chase sequence
C" = (I}, I, 15,...) on I and X. Note that Iy = [ and that Iy C [;. Since in
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each (-tgd chase step at least one new atom is introduced, we have I C I] C

I}, C ---. Thus, there is a smallest index ¢ > 0 such that I; C [; and I/,  I;.
Let us assume that I} F$, I/, for some x € X, where x has the form

VaVy(e(z,y) — 32 (z,2)), and an appropriate assignment . Then we have
I! E () and atoms(¢,j) € I}, where j := (x, (), a(y)). Since I C I; and
I}, = I; Uatoms(C,j) ¢ I, this implies that [; -, [; Uatoms((, j). However,
this is impossible, because C' is successful.

Ad 2: Let C = (Ip, I1,...,I;) and C" = (I}, 1},..., 1) be successful (-chase
sequences on I and X. For a contradiction, suppose that I; # I;,. Without loss
of generality, I,  I;. Let ¢ > 0 be the smallest index such that I/ ; ¢ I;. Then
we obtain the desired contradiction in the same way as in part 1 of the proof.

Ad 8: Let C' = (Iy, I1,...,1I;) be a (-chase sequence on [ and ¥ with [, = J.
Consider all elements j = (x, u4,v) € Jx, where x has the form VazVy(o(Z,y) —
zY(z,2)), J E ¢(u,v) and J = ¥(u,((j)). For each such element, modify
¢ such that J = v¥(u,((j)). This is possible, since J = ¥, and therefore,
J = ¢(u,w) for some tuple w. Let ¢’ be the resulting mapping. Then C' is a
successful (’-chase sequence on I and ¥ with result J . O

We are now ready to give the formal definition of CWA-presolutions.

DEFINITION (CWA-PRESOLUTION)
Let M = (os,0¢,2) be a schema mapping, where 3 consists of tgds and egds,
and let S be a source instance for M. Let ¥ be the set of all st-tgds in X, and
let 3¢ be the set of all t-tgds in X.

A CWA-presolution for S under M is a target instance T' for M with the
following properties:

1. There is a CWA-presolution Ty for S under M’ = (o, 0y, 2gt) in the sense
of Definition 3.3, and a mapping (: Js, — Dom such that T"is the result
of some successful (-chase sequence on Ty and 3.

2. T satisfies the egds in X.

Note how condition 1 formalizes the intuitive notion of being derivable from
the source instance described at the beginning of the present section. Condi-
tion 2 filters out all target instances that can be derived in such a way that
egds are respected. In particular, it follows from Definition 3.15 that all CWA-
presolutions for S under M are solutions for S under M.

EXAMPLE (LIBRARY DATABASE RESTRUCTURING, CONTINUED)
Consider the schema mapping M = (o, 0y, X) and the source instance S* for
M from Example 1.15 and Example 1.4, respectively.
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Recall the target instance T for M from Example 3.4, and that it is a CWA-
presolution for S* under the reduced schema mapping M’. In Example 3.13, we
have shown that the instance T™ from Example 1.5 is the result of a successful
(-chase sequence on T and X;, where X; is the set of all t-tgds in X, for some
mapping ¢: Js, — Dom. Thus, T* is a CWA-presolution for S* under M. [

Note that the two notions of CWA-presolutions, from Section 3.1.2 and
the present section, coincide on schema mappings with st-tgds. Often, a more
convenient “definition” of CWA-presolutions is:

PROPOSITION.

Let M = (04,04, %) be a schema mapping, where 3 consists of tgds and egds, and
let S be a source instance for M. Then a CWA-presolution for S under M is a
solution T' for S under M such that SUT is the result of some successful (-chase
sequence on S and X', where ¥ consists of all tgds in X, and (: Jg — Dom.

Proof. Let ¥ be the set of all st-tgds in 3, and let 3; be the set of all t-tgds
in . Then ¥ = X UX,.

First assume that T is a CWA-presolution for S under M. Then T is a
solution for S under M. Moreover, there is

o a CWA-presolution Ty for S under M’ = (oy, 0, 3yt ), and

« a successful (-chase sequence C' on Ty and ¥ for some mapping ¢: Jy, —
Dom such that T is the result of C.

Let ¢': Ty g — Dom be such that Ty = Ty 5. It is easy to see that SUT is
the result of a successful (”-chase sequence on S and ¥’, where (": 7, — Dom
is such that for all j € Jyr.¢ we have ¢"(j) = ('(j), and for all j € Jx, we have
¢"(7) = C0)-

Finally assume that 7T is a solution for S under M, and that S UT is the
result of a successful (-chase sequence on S and ¥’ for some (: J5&% — Dom.
Define ¢": Ty g — Dom such that for all j € Jyr s we have ('(j) = ¢(j), and
define ¢": J3, — Dom such that for all j € Js, we have ¢"(j) = ¢(j). Then
it is easy to see that Ty := Ty g is a CWA-presolution for S under M’, and
that T' is the result of a successful (”-chase sequence on T and . O]

In the following Section 3.1.3, we give an alternative definition of CWA-
presolutions in terms of a game.
A Game-Based Characterization

CWA-presolutions can be characterized alternatively in terms of a game which
directly reflects requirements (R1) and (R2) in Table 3.1.
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Let M = (os,0t,%) be a schema mapping, where ¥ consists of tgds and
egds, let S be a source instance for M, and let T be a target instance for M.
The game, denoted by o(M, S, T), is played by two players, the verifier and
the falsifier. The verifier’s goal is to show that T satisfies requirements (R1)
and (R2) with respect to S and M, whereas the falsifier’s goal is to show the
converse. The game has at most |atoms(7")| + 1 rounds.

In round 0, the verifier fixes the two sets A; := atoms(T) and J; = Js,
where 3 is the set of all tgds in ¥ (recall Definition 3.9), and picks a linear
order < on A;. Intuitively, A; is the set of all atoms that need to be justified,
and 7 is the set of all potential justifications that may be used for this purpose.
The linear order < determines that for justifying an atom A, only atoms that
either belong to S or are smaller than A with respect to < can be used. In
particular, this ensures that there are no “circular justifications”.

The game proceeds in rounds 1,2,.... In each round 7 > 1, the falsifier
begins by picking an atom A in A;, or loses if A; is empty. Then, the verifier
has to justify A by picking a potential justification (x,u,v) € J;, where y has
the form VzVi(p(z, §) — 32¢(, 2)), and a tuple w € Dom!*! such that:

e SUT E ¢(u,v), T E¢(u,w) and A € ¥[u,w], and
o for each atom A’ of p[u,v], either A’ is an atom of S, or A" < A.

If this is not possible, the verifier loses. Otherwise, the game proceeds with
round i+ 1, where A;, consists of all atoms in A; that do not occur in ¥[u, w],
and Ji1 = T \ {(x, 4, 0)}.

Note that by removing all atoms of v [u,w| from A;, we ensure that these
atoms do not need to be justified again (they are already justified by (x, u,v)).
By removing (x, u, v) from the set J;, we ensure that every potential justification
is used at most once (this corresponds to requirement (R2)).

A winning strategy for the verifier (resp., falsifier) in the game o(M, S, T)
is a strategy that allows the verifier (resp., falsifier) to win the game regardless
of which moves the falsifier (resp., verifier) makes during the game. Note that
either the verifier or the falsifier has a winning strategy in (M, S, T).

EXAMPLE (LIBRARY DATABASE RESTRUCTURING, CONTINUED)
Consider the schema mapping M = (o5, 0y, %) and the source instance S* for
M from Example 1.15 and Example 1.4, respectively.

Let T* be the target instance for M from Example 1.5. Then the ver-
ifier has a winning strategy in o(M,S*,T*). Indeed, it is not difficult to
see that the verifier can win oO(M,S*,T*) by picking, in round 0, a linear
order = on atoms(7™) such that the atom BookInfo(“0-201-53082-17, 15, 13)
is the largest atom with respect to <. Similarly, the verifier has a winning
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strategy in O(M, S*,T), where T is the solution for S* under M from Exam-
ple 1.4. Here, the verifier can pick a linear order < on atoms(7’) such that
BookInfo(“0-201-53082-1”, “Computational Complexity”, “CC”) is the largest
atom with respect to <.

On the other hand, consider the solutions 77 and T, for S* under M with

T, = T*U{ WrittenBy(“0-521-30442-3", 1) },
Ty = T U{ BookInfo(0-201-53082-1", 1, 1) }.

Then the falsifier has a winning strategy in both games, O(M,S*,T1) and
O(M, S*,Ty). To win the game O(M, S*,T7), the falsifier simply picks the atom
WrittenBy(“0-521-30442-3”, 1) in round 1. Then the verifier cannot justify
this atom, because the only potential justification that could justify this atom
would have to be of the form (y2, (“0-521-30442-3”, - ), ()). However, to “use”
such a potential justification, Authors® would have to contain a tuple of the
form (“0-521-30442-3”, - ), which is not the case.

Furthermore, to win the game O(M,S* T3), the falsifier can choose the
atom A; := BookInfo(“0-201-53082-1”, Lo, 13) in round 1, and the atom Ay :=
BookInfo(“0-201-53082-17, 1, 1’) in round 2. Both atoms, A; and A, can only
be justified using the potential justification j := (g4, (“0-201-53082-1", L7),()).
Thus, the verifier would have to choose j in round 1 and round 2, which is
impossible. [

PROPOSITION (GAME CHARACTERIZATION OF CWA-PRESOLUTIONS).

Let M = (05,04, %) be a schema mapping, where ¥ consists of tgds and egds,
and let S be a source instance for M. For every target instance T' for M, the
following statements are equivalent:

1. T is a CWA-presolution for S under M.

2. T is a solution for S under M, and the verifier has a winning strateqy in
the game O(M, S, T).

Proof.

1 = 2: Suppose that T is a CWA-presolution for S under M. In particular,
T is a solution for S under M. It remains to show that the verifier has a winning
strategy in the game O(M, S, T).

Let > be the set of all tgds in ¥. By Proposition 3.17, SUT is the result of
a successful (-chase sequence C' = (Iy, I1,...,1;) on S and ¥, for some mapping

¢: Js — Dom. From C, we obtain a winning strategy for the verifier in the
game O(M,S,T) as follows.
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The strategy will be such that:

If the verifier picks a justification 7 and a tuple w in some round, (%)
then w = ((j).

In round 0, the verifier fixes the sets A; and J; as described above, and picks
a linear order < on A; such that for all atoms A, A" € A, where A € I;,_; and
A€ I\ Ij—; for some k € {1,...,l}, we have A < A’

Let 7 > 1 be such that A; # 0, and assume that in each of the rounds
i" € {1,...,i— 1}, the verifier played according to (*). Then round ¢ proceeds
as follows. Let A € A; be the choice of the falsifier in round 7. Let k£ be the
smallest integer in {0, 1,...,l} for which A € I;. Note that k > 1, since [y = S,
and A is an atom of T

Assume that Ij,_; I—§<7a I, for some tgd x € ¥/ of the form VaVy(p(z,y) —
3z 4¢(Z, z)), and an assignment «. For j := (x, a(Z),a(y)), we then have

« SUT = p(a), T |= ¢(a(r),¢(j) and A € ¢]a(z),¢(j)], and

« for each atom A’ of pla], either A’ is an atom of S (if x is a st-tgd), or
A" < A (if x is a t-tgd, by construction of <).

Since the verifier plays according to (*), we have j € J; (otherwise, if j ¢ T,
then all atoms of atoms((,7) would already be “justified”, that is, A ¢ A;).
Thus, the verifier can choose j and the tuple w := ((j) in round i.

2 = 1: Assume that T is a solution for S under M, and that the verifier has a
winning strategy in (M, S, T)). Let ¥/ be the set of all tgds in 3. To show that
T is a CWA-presolution for S under M, it suffices to find, by Proposition 3.17,
a mapping (: Jsv — Dom such that S U T is the result of a successful (-chase
sequence on S and Y.

A play in O(M,S,T) is a sequence p = (p1,...,pn), where n > 0 is the
number of rounds of the play, and each p; is a tuple of the form (A, j,w), where
A is the atom chosen by the falsifier in round 7, and j and w are the justification
and the tuple chosen by the verifier in round i. With each play p in O(M, S, T),
we associate a set A(p) C atoms(7') as follows.

o If p= (), then A(p) := atoms(7T).

o If p=(p1,.-..,Pns1), where p,.1 = (A, j,w), j = (x,u,v) and x has the
form Vavy(o(z,y) — 32¢(, 2)), then A(p) := A(p1, ..., pn) \ Y[u, w].

Hence, for each play p = (p1,...,p,) in O(M, S, T), A(p) coincides with the set
A1 of atoms at the beginning of round n + 1. Note that the verifier wins p if
and only if A(p) = 0.
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Consider a play p = (p1,...,p,) in O(M, S, T), where the verifier wins. For
every i € {1,...,n}, let p; = (4, j;,w;), and assume that the falsifier plays
such that A; is the minimal atom in A(py, ..., p;—1) with respect to <. Choose
a mapping (: Jy — Dom such that for every i € {1,...,n} we have w; = ((j;).
This is possible, because each potential justification j; occurs once in p.

We now show that S U T is the result of a (-chase sequence on S and ¥'.
To this end, we prove the following by induction on i € {0,1,...,n}:

There is a (-chase sequence C; on S and ¥ with result

(SUT)\ Alpr, - - pi)- (%)

For i = 0, we can choose Cy = (S). Now suppose that (k) is true for some
i < n. That is, there is a (-chase sequence C; = (Iy, I1,...,1;) on S and ¥’ with
I =(SUT)\ A(p1,...,pi). Assume that j;11 = (x,u,v), where x has the form
VaViy(o(z,y) — 32¢(z, 2)). Then,

o SUT = p(u,v), T E ¢(u, wiy1) and A € lu, wiy,], and
o for each atom A’ of ¢[u,v], either A" is an atom of S, or A" < A.

If Y[u, w;y1] C I;, then we can choose C;;; := C;. In the following, we consider
the case that ¥[u, w;+1] € ;.

Note that ¢[u,v] C [;. To see this, let A" be an atom of plu,v]. If A’ is
an atom of S, then A" € I; since S C I;. Otherwise, A’ < A. If A" would not
be an atom of [;, then A" € A(py,...,p;). But this is impossible, since by the
construction of p, A is the minimal atom in A(py, ..., p;) with respect to <.

Since ¢[u,v] C I, Ylu, wit1] € I, and w1 = ((Ji+1) by the construction of
¢, the sequence Cjyy = (ly, I1,..., 1), [; U|u,w;11]) is a (-chase sequence on
S and ¥’ with result [; U ¢[u, w;41] = (SUT) \ A(py, - .., pit1). This completes
the induction step.

To complete the proof, observe that by Lemma 3.14(3), it follows immedi-
ately that S UT is the result of a successful ('-chase sequence on S and ', for
some mapping ¢": Js — Dom. ]

Definition and Basic Properties of CWA-Solutions

Note that a CWA-presolution for a source instance S under a schema mapping
M defined by tgds and egds may imply certain “facts” that do not “follow”
from S and M. Recall, for instance, the setting in Example 1.4. Here, the
solution T for S* under M is a CWA-presolution for S* under M, as shown by
Example 3.18 and Proposition 3.19. In particular, T" tells us that “Christos H.
Papadimitriou” is author of the book “Computational Complexity”. However,
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this fact intuitively does not follow from S* and M. The third requirement for
CWA-solutions, Requirement (R3), ensures that such “invented” facts do not
occur in CWA-solutions.

Let us now show how to formalize this third requirement. Formally, a fact
F over a schema o is a FO sentence over ¢ of the form 3z ¢(z), where ¢ is a
conjunction of relational atomic FO formulas. For example, recall the setting
in Example 1.4. Then the fact

J21329323 (AuthorLz’st(zl, “Christos H. Papadimitriou”) A
WrittenBy(za, 21) A (3.1)
BookInfo(zy, “Computational Complexity”, z3))

tells us that “Christos H. Papadimitriou” is author of the book “Computational
Complexity”. We say that a fact F' = 3z p(2) over a schema o is true in
an instance I over o if and only if I = F. Libkin [2006] formalized CWA-
solutions by requiring that each fact that is true in a CWA-solution is true in
the canonical universal solution. For the more general case of schema mappings
defined by tgds and egds, a solution like the canonical universal solution may
not exist. Here, we formalize CWA-solutions by requiring that each fact that is
true in a CWA-solution can be inferred from the source instance and the schema
mapping. Note that this directly corresponds to Requirement (R3).

DEFINITION (CWA-SOLUTION)
Let M = (05,01, %) be a schema mapping, where 3 consists of tgds and egds,
and let S be a source instance for M.

o A CWA-solution for S under M is a CWA-presolution T for S under M
such that each fact that is true in 7' is also true in every solution for S
under M.

« The set of all CWA-solutions for S under M is denoted by solcwa (M, S).

The following theorem characterizes CWA-solutions as CWA-presolutions
that are universal. Note that in the context of schema mappings defined by st-
tgds, if we use the definition of CWA-solutions from Libkin [2006]—that a CWA-
solution is a CWA-presolution that has a homomorphism into the canonical
universal solution—this follows immediately from the fact that the canonical
universal solution is a universal solution.

THEOREM (CHARACTERIZATION OF CWA-SOLUTIONS).

Let M be a schema mapping, where 3. consists of tgds and egds, and let S be a
source instance for M. Then, for every target instance T" for M, the following
statements are equivalent:
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1. T is a CWA-solution for S under M.

2. T is a universal solution for S under M, and T is a CWA-presolution for
S under M.

Proof.

1 = 2: Let T be a CWA-solution for S under M. In particular, 7" is a
CWA-presolution for S under M. To prove 2, it suffices therefore to show that
T is a universal solution for S under M.

Let Li,..., 1 be an enumeration of all nulls that occur in 7' (without
repetition). Consider the fact Fr := 3z ¢p(2), where 2 = (z1,...,2;), and
or(Z) is the conjunction of all atomic formulas R(u) obtained from an atom
R(t) of T by replacing each null L; in ¢ with z;. Clearly, Fr is true in T. Since
T is a CWA-solution for S under M, Definition 3.20 implies that Fr is true in
every solution 7" for S under M. We use this to show that for every solution
T’ for S under M, there is a homomorphism from 7" to 7", which proves that
T is a universal solution for S under M.

Let T" be an arbitrary solution for S under M. Since Fr is true in 7", there
is a tuple v = (vy,...,v) € Dom" such that T |= ¢p(0). In other words, the
mapping h: dom(7T") — dom(7”), where h(L;) = v; for each i € {1,...,k}, and
h(c) = ¢ for each constant ¢ € const(T), is a homomorphism from 7" to 7".

2 = 1: Suppose that T is a universal solution for S under M, and that T
is a CWA-presolution for S under M. To show that T is a CWA-solution, it
remains to show that each fact that is true in 7', is true in every solution 7" for
S under M.

Let ' = Jz¢(Z) be a fact that is true in 7', and let 7" be an arbitrary
solution for S under M. Then there is a tuple © € Dom/*! such that T' = ¢(0).
Since T is a universal solution for S under M, there is a homomorphism h from

T to T'. Furthermore, since ¢ is preserved under homomorphisms, we have
T" = o(h(v)). Thus, F is true in 7. O

EXAMPLE (LIBRARY DATABASE RESTRUCTURING REVISITED)
Consider the schema mapping M = (o, 0y, %) and the source instance S* for
M from Example 1.15 and Example 1.4, respectively.

Recall that the target instance T for M from Example 1.5 is the core of the
universal solutions for S* under M. Furthermore, as shown in Example 3.16,
T* is a CWA-presolution for S* under M. Thus, by Theorem 3.21, T* is a
CWA-solution for S* under M.
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It is not hard to see that the target instance 7" for M with

BookInfo' = BookInfo™ U { (0-201-53771-07, Lg, L),
(“0-201-53771-0", L9, L11),
(“0-201-53771-0", L9, Li3)},
AuthorList! = AuthorList’”, and
Wm’ttenByT, = WrittenBy"

is another CWA-solution for S* under M. Moreover, it is not hard to see that
for every CWA-solution 7" for S* under M there is a homomorphism A from
T" to T" such that h(T") =T".

Consider now the instance T' from Example 1.4, which, as shown by Exam-
ple 3.18 and Proposition 3.19, is a CWA-presolution for S* under M. However,
T is no CWA-solution for S* under M, since (3.1) is a fact that is true in 7T,
but not in T™.

Next, consider the instance T, from Example 3.18. It is easy to see that T5
is a universal solution for S* under M: there is a homomorphism from 75 to T
that simply maps L to Lo, and L’ to L3. However, it follows from Example 3.18
and Proposition 3.19 that T3 is no CWA-presolution (and therefore no CWA-
solution) for S* under M. O

By Theorem 3.21, CWA-solutions are particular universal solutions. The
following theorem shows that the “smallest” universal solution—the core of the
universal solutions—is one of these CWA-solutions. In particular, it shows that
the core of the universal solutions is the “smallest” CWA-solution. The corre-
sponding result for CWA-solutions in the context of schema mappings defined
by st-tgds has been obtained by Libkin [2006].

THEOREM.
Let M = (04,04, %) be a schema mapping, where 3 consists of tgds and egds,
and let S be a source instance for M such that Core(M, S) exists. Then,

1. Core(M,S) is a CWA-solution for S under M.

2. If T is a CWA-solution for S under M, then Core(M, S) is isomorphic to
a subinstance of T.

Proof. 1t suffices to prove 1. Then 2 follows immediately from Theorem 2.6(3)
and the fact that, by Theorem 3.21, every CWA-solution for S under M is a
universal solution for S under M. Since Core(M,S) is a universal solution for
S under M, it remains to show, by Theorem 3.21 and Proposition 3.17, that
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S U Core(M, S) is the result of a successful (-chase sequence C' on S and ¥,
where Y’ is the set of all tgds in ¥, and (: J5% — Dom.

For ¢ =10,1,..., let us inductively construct mappings ¢;: Jsv — Dom and
(;-chase sequences C; on S and Y’ such that the result of C; is a subinstance
of SU Core(M,S). Let (o: Jsv — Dom be arbitrary, and Cj := (S). Assume
now that C; = (lo, I1,...,I;) is a (;-chase sequence on S and ¥’ with I; C
S U Core(M,S). If I E X, then stop. Otherwise, if I; £ ¥, there is some
x € ¥ with [; = x. Note that x is not an egd, since I; C S U Core(M, S), and
S U Core(M, S) satisfies all egds in ¥. Thus, y is a tgd.

Let x be of the form VaVy(p(z,y) — Jz(x, 2)). Since I; = x, there are
tuples u and v such that I; = ¢(u, v), and there is no tuple w with I; |= 1(u, w).
On the other hand, we have S U Core(M, S) = x, so that there is a tuple w
with S U Core(M, S) | ¥(u,w). Let (11: Jsy — Dom be the mapping such
that for j := (x,u,v) we have (;41(j) = w, and for all j* € Js with j' # j we
have (;11(j') = Gi(j'). It is easy to verify that C; is a (;;1-chase sequence on S

Cit1

and ¥'. Moreover, we have I; =0 Ij, for

Iy = L UyYlu,w] € SUCore(M,S).

Consequently, C;1 = (ly, I1,...,I;11) is a (;11-chase sequence on S and ¥
with result ;41 € S U Core(M,S). This completes the induction step.

Since S'UCore(M, S) is finite, and each step in a (-chase sequence on S and
Y introduces at least one new atom, there must be some integer n such that the
result J of C,, satisfies X.. By Lemma 3.14(3), J is the result of a successful (-
chase sequence on S and ¥/, for some (: Jy, — Dom. Note also that T := J\ S
is a solution for S under M. Even more, T is a universal solution for S under
M, since T' C Core(M, S). Thus, we must have T = Core(M, S). O

In particular, this implies:

COROLLARY.
For every schema mapping M defined by tgds and egds, and every source in-
stance S for M, the following statements are equivalent:

1. There exists a CWA-solution for S under M.
2. There exists a universal solution for S under M.
3. Core(M,S) exists.

Proof. If there is a CWA-solution for S under M, then this CWA-solution is
a universal solution for S under M by Theorem 3.21. If there is a universal
solution for S under M, then Core(M, S) exists. Finally, if Core(M, S) exists,
then Core(M, S) is a CWA-solution for S under M by Theorem 3.23(1). O
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Together with Theorem 3.23(1) and Theorem 2.32, this yields:

COROLLARY.

Let M be a weakly acyclic schema mapping. Then there is a polynomial time
algorithm that takes a source instance S for M as input, and either outputs a
CWA-solution for S under M if such a solution exists, or tells us that such a
solution does not exist.

Furthermore, by Theorem 2.33, we have:

COROLLARY.
There is a schema mapping M defined by tgds such that the following problem
is undecidable: given a source instance S for M, is there a CWA-solution for
S under M ¥

In some cases, we even have a CWA-solution T that is mazimal in the sense
that for every CWA-solution 7" for S under M there is a homomorphism A from
T to T" with h(T) = T'. Under schema mappings defined by st-tgds, we have:

PROPOSITION (LIBKIN [2006]).

Let M = (04,04 3%) be a schema mapping, where ¥ consists of st-tgds, and
let S be a source instance for M. Then CanSol(M,S) is the unique mazximal
CWA-solution for S under M (up to isomorphism,).

Proof. Clearly, CanSol(M, S) is both, a universal solution for S under M, and a
CWA-presolution for S under M. Theorem 3.21 thus implies that CanSol(M, 5)
is a CWA-solution for S under M. Furthermore, Proposition 3.6 implies that
CanSol(M, S) is the unique maximal CWA-solution for S under M (up to iso-
morphism). O

Furthermore, Proposition 3.27 can be extended to a slightly larger class of
schema mappings:

PROPOSITION.

Let M = (05,04, %) be a schema mapping, where ¥ consists of st-tgds and egds,
or all tgds in % are full. Let S be a source instance for M such that there is a
CWA-solution for S under M. Then there is a unique mazimal CWA-solution
T for S under M (up to isomorphism).

Proof. First consider the case that all tgds of 3 are full. Then there is a unique
CWA-solution T for S under M’ = (oy, 04, %), where ¥’ is the set of all tgds

in 3. Since there exists a CWA-solution for S under M, we have T' = X.
Therefore, T is the unique maximal CWA-solution for S under M.
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In the following, we consider the case that X consist of st-tgds and egds.
Let M' = (0,04, %), where Y is the set of all st-tgds in X, and let Tj =
CanSol(M’, S). Consider a complete chase sequence C' = (T, Ty, ...,T;) on Ty
and X\ Xg. Then C is successful: otherwise there would be no solution for S
under M, contradicting the proposition’s hypothesis. Let T := T;. Note that T’
is a CWA-solution for S under M. Moreover, T is unique up to isomorphism
(see, e.g., Beeri and Vardi [1984]). It remains to prove T is maximal.

To this end, let 7" be a CWA-solution for S under M. We show by induction
on i that for every ¢ € {0,1,... 1}, there is a homomorphism h from T; to T’
with h(7;) = T". Note that 7" is a CWA-presolution for S under M'. Thus, by
Proposition 3.6(2), there is a homomorphism A from Ty to 7" with h(Ty) = T".

Suppose that for some i € {0,...,l — 1}, there is a homomorphism A from
T; to T' with h(T;) = T'. Let x be an egd in X, and let u be a tuple such that
T; by a Tiv1. Say, x has the form

‘v’xl---ka<g0(x1,...,xk) — x; = xj>,

and 4 = (uy,...,ux). Then T; = p(u) and u; # ;. Say, Ti11 = g(1;), where
for all v € dom(T;),

g(v) = {“ o= (3.2)

v, otherwise.

Since T; = p(u), h(T;) =T', and ¢ is preserved under homomorphisms, we
have T" |= ¢(h(w)). This implies that h(u;) = h(u;), since T" is a CWA-solution
for S under M, and hence 7" = 3. But then,

hg(u;)) E hw) = hiu)

and

h(gw)) 2 h(v) for all v € dom(T}) \ {u;}.
Consequently, h(T;+1) = h(g(T;)) = h(T;) = T', which completes the induction
step. ]

The unique maximal CWA-solution guaranteed by Proposition 3.28 will be
called canonical universal solution:

DEFINITION (CANONICAL UNIVERSAL SOLUTION)
Let M = (og, 01, %) be a schema mapping, where 3 consists of st-tgds and egds,
or all tgds in ¥ are full, and let .S be a source instance for M.

Then CanSol(M, S) is the unique maximal CWA-solution for S under M if
S has a CWA-solution under M, and undefined otherwise.
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Thus, if M = (oy, 01, %) is a schema mapping, where ¥ consists of st-tgds
and egds, or all tgds in 3 are full, then the set of all CWA-solutions for S under
M has two unique extreme points (see Figure 3.2): Core(M, S), which is the
unique minimal CWA-solution for S under M in the sense that every CWA-
solution for S under M contains a subinstance that is isomorphic to Core(M, S),
and CanSol(M, S), which is the unique maximal CWA-solution for S under M
(i.e., for every CWA-solution T for S under M there is a homomorphism h from
CanSol(M, S) to T with h(CanSol(M, S)) =T).

CanSol(M, S)

solcwa (M, S)

Core(M, S)

Figure 3.2: Structure of the set of all CWA-solutions for S under M in the case
that M is a schema mappings defined by st-tgds and egds, or full tgds and egds.

REMARK (LIBKIN [2006])
Let M = (os,04, %) be a schema mapping, where ¥ consists of st-tgds, and
let S be a source instance for M. While every CWA-solution for S under M
contains a subinstance isomorphic to the minimal CWA-solution Core(M, S),
there can be CWA-solutions 7" for S under M such that the maximal CWA-
solution CanSol(M, S) contains no subinstance isomorphic to 7.

For example, let M = ({R},{R'}, %), where ¥ consists of the single st-tgd

VaVy (R(x, y) = 3232'R/(x, 2, z/)) :

Furthermore, let S be the source instance for M with RS = {(a,b), (a,c)}.
Then,
(R/)CanSol(M,S) — {(a’ J_1’J_2)7(a’ J_37J_4)},

However, the target instance T' for M with

(R/)T = {(aa Ly, J—)’ ((Z, L, J—)}
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is a CWA-solution for S under M, and CanSol(M, S) contains no subinstance
that is isomorphic to T'. O

In general, Core(M, .S) is still the unique minimal CWA-solution for S under
M. However, there may be no maximal CWA-solution. The following example
presents a very simple schema mapping M, a source instance S for M, and two
CWA-solutions 77, Ty under M such that {71, T} is a mazimal CWA-solution
set for S under M. Here, a set T C solowa(M,S) is called mazimal CWA-
solution set for S under M if and only if for every CWA-solution 7" for S under
M, there is some T € T and a homomorphism h from 7" to 7" with h(T) = T",
and there is no set 7' C T with this property. The example also shows that for
every positive integer n, there is a source instance for M that has a maximal
CWA-solution set under M of size 2.

EXAMPLE

We consider a slight extension of the schema mapping M from Remark 3.30.
Let M = (og, 01, %) be such that o = {R}, oy = {R',R"}, and ¥ consists of
the following tgds:

X1 = VxVy(R(x, y) — 3232 R/ (x, 2, z’)),
X2 = VxVxl‘v’xQ‘v’y(R’(x,xl, y) A R'(z,29,y) — R"(x, xl,xQ)).
For every positive integer n, let S, be the source instance for M with R» =

{(i,5) |1 <i<n,1<j<2}
Let us first consider the case n = 1. It is not hard to see that

Ty = {R'(1, 14, 1,),R'(1, L3, Ly4), R"(1, Ly, L1), R"(1, L3, L3)}
T, = {R'(1,14, Ls), R'(1, L3, Lo), R"(1, Ly, L), R"(1, Ls, L3),
R”<1aJ—17J—3)7R”(17L37—L1>}

are CWA-solutions for S; under M. Note that for every CWA-solution T for
S1 under M there is some i € {1,2} and a homomorphism A from T; to T with
h(T;) = T. Indeed, let T be a CWA-solution for S; under M. Then there are
(not necessarily distinct) nulls L7, 15, 15 1) such that

(BT = {(1,19,15),(1, 15, L)}
If 1} # 1/, we have
(R”)T - {(LJ—,le—/l)’(l?J-g’nJ—é)}v

so that T'= hy(T7), where hy(1) = 1, and hy(L;) = L/ for every i € {1,2,3,4}.
Furthermore, if 1}, = 1/, we have

(R//)T = {(17 J_ll’ J"l)? (17 J‘é’ J"g)’ (17 J"l? J‘g)’ (1’ J_é7 J"l)}’
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so that T' = ha(T»), where he(a) = a, and ho(L;) = L for every i € {1,2,3,4}.
Furthermore, it is easy to see that there is no homomorphism A from 7; to T3
with h(Ty) = T, and vice versa. Thus, {T1,T>} is a maximal CWA-solution set
for S; under M.

Finally, let n > 1. Then for every set Z C {1,...,n}, the target instance

Tr = |J A{R(G, L, LY, R, L5 L), R, L5, L), R (i, L5, L)} U
U ({RG, L3, 1), R, L, L)Y U{R"(, L}, 1) | kL € {1,3}})

is a CWA-solution for S, under M such that for every CWA-solution T for
Sy, under M there is some Z C {1,...,n} and a homomorphism A from T7 to
T with h(T7) = T. Furthermore, for distinct Z,7" C {1,...,n}, there is no
homomorphism A from 77 to T with h(T7) = Tp. Thus, {T7r | Z C {1,...,n}}
is a maximal CWA-solution set for S,, under M of size 2". O

Thus, in general, the set of all CWA-solutions is as shown in Figure 3.3.

solcwa (M, S)

Core(M, 5)

Figure 3.3: Structure of the set of all CWA-solutions for S under M in the case
that M is a schema mappings defined by tgds and egds.

Semantics for Query Answering Using CWA-Solutions

Libkin [2006] defined various query answering semantics that are based on CWA-
solutions. In this section, we review these semantics, adapted to schema map-
pings defined by tgds and egds.

Given a schema mapping M = (o, 0y, ) defined by tgds and egds, a source
instance S for M, and a query ¢ over oy, the basic idea for these semantics is
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e to evaluate ¢ on each individual CWA-solution for S under M, and

e to combine the answers to a single answer.

Note that CWA-solutions are in general incomplete instances (cf., Section 1.3.1).
For evaluating ¢ on an individual CWA-solution, Libkin therefore uses tech-
niques developed for answering queries on incomplete instances. As mentioned
in Section 1.3.1, there are several ways of evaluating a query ¢ on an incomplete
instance Z. One of them is to take the certain answers to ¢ on Z, introduced
in Section 1.3.1, which can be seen as a “lower approximation” to the unknown
query result (i.e., the result of ¢ on the unknown instance represented by 7).
Another one considered by Libkin is to take the maybe answers to ¢ on T
[van der Meyden, 1998], denoted by maybe(q,Z), which are defined as the set
of all tuples that occur in ¢(I) for some instance I € Z. That is, the maybe
answers can be seen as an “upper approximation” to the unknown query result.

Let M = (o5, 01, %) be a schema mapping, where 3 is a set of tgds and egds,
and let S be a source instance for M. When we answer a query ¢ on a target
instance 1" for M, we also have to take into account the t-tgds and egds of M
(see also van der Meyden [1998] for answering queries on incomplete instances
with respect to a set of constraints). That is, instead of taking the certain
answers or the maybe answers on poss(T'), we take the certain answers or the
maybe answers on

possy (T) := {T € poss(T) | T satisfies all t-tgds and egds in X}

In particular, this makes sense if T" is a solution for some source instance under
M. Then T represents an unknown solution with constants. Given a query g,
we let

Oanq(T) = cert(q, possy (T))

and

Omq(T) = maybe(q, possy (T)).

For combining answers to the individual CWA-solutions to a single answer
we can either look for tuples which are answers on all CWA-solutions, or for
tuples which are answers on some CWA-solution. By combining the different
possibilities of evaluating queries on individual CWA-solutions, and combining
answers to a single answer, one obtains the following four semantics:

DEFINITION

Let M = (og, 04, %) be a schema mapping defined by tgds and egds, let S be
a source instance for M, and let ¢ be a query over g;. We define the following
semantics for answering ¢ with respect to .S and M:
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e The certain CWA-answers semantics. The certain CWA-answers to ¢ on
M under S, denoted by certq(q, M, S), consist of all ar(g)-tuples that
occur in Hyq(T) for every CWA-solution 7" for S under M. That is,

certn(q, M, S) = N N ).

Tesolowa (M,S) Tepossy; (T)

o The potential certain CWA-answers semantics. The potential certain
CWA-answers to ¢ on M and S, denoted by certy(q, M, S), consist of
all ar(g)-tuples that occur in Oyq(T) for some CWA-solution 7' for S
under M. That is,

@ M) = U N e

Tesolowa (M,S) Tepossy; (T)

o The persistent maybe CWA-answers semantics. The persistent maybe
CWA-answers to ¢ on M and S, denoted by maybe-(q, M, S), consist of
all ar(q)-tuples that occur in {nq(T) for every CWA-solution T for S
under M. That is,

maybe(q, M, S) = ﬂ U q(T).

Tesolowa (M,S) Tepossy, (T)

o The maybe CWA-answers semantics. The maybe CWA-answers to ¢ on
M and S, denoted by maybe,(q, M, S), consist of all ar(q)-tuples that
occur in Qprq(7T) for some CWA-solution 7" for S under M. That is,

maybe,(q, M, S) = U U q(T)

Tesolcwa (M,S) T'cpossy, (T)

Let us now come back to the examples in Section 1.3.2. Each of the above-
mentioned semantics leads to the expected query result in Example 1.25 under
the CWA-based interpretation:

EXAMPLE (COPYING SCHEMA MAPPINGS)

Consider again the schema mapping M from Example 1.25. Let S be a source
instance for M. Then the target instance Ty for M with (R)Ts = RS is the
unique CWA-solution for S under M, and therefore,

certo(q, M, S) = certy(q, M, S) =
maybGD(Q7M7‘S’) = maybeO(anaS) = Q(TS)a

as intuitively expected. [
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More generally, if M is a schema mapping defined by full tgds and egds,
and S is a source instance for M, then there is at most one CWA-solution Ty
for S under M. This CWA-solution, if it exists, intuitively corresponds to the
expected result of translating S to the target, so that the answer to a query q
on M and S should be expected to be ¢(Ts). Indeed, if T exists, we have

certny(q, M, S) = certy(q, M, S) =
mayben(q, M, S) = maybey(q, M,S) = q(Ts).

Note also that certg, certy,, maybeq and maybe, do not exhibit the behavior
of the certain answers semantics described in Example 1.26. Furthermore, the
certain CWA-answers semantics yields the expected answer to the query in
Example 1.27:

EXAMPLE
Recall the setting from Example 1.27. Then,

certa(qs, M, S*) = certy(qs, M,S*) = {0-201-53082-1},
as intuitively expected. To see this, we show that
Oags(T) = {0-201-53082-1} for each T' € solowa (M, S™). (3.3)

Indeed, if T" is the CWA-solution for S* under M from Example 3.22, then
Oags(T") = {0-201-53082-1}, since for each valuation f of 7", where f(7")
satisfies the egd x3 from Example 1.15, we have f(L4) # f(L7). This implies
(3.3) as follows. Let T be an arbitrary CWA-solution for S* under M. As
pointed out in Example 3.22, there is a homomorphism A from 7" to T with
Rh(T") = T. Thus, for each valuation f of T', where f(7T') satisfies the egd x5 from
Example 1.15, the mapping foh is a valuation of 7" such that (foh)(T") = f(T)
satisfies the egd x3. Since Opq3(T") = {0-201-53082-1}, we therefore have
0-201-53082-1 € ¢3(f(T")). Consequently, (3.3) holds.

It is now easy to see that maybey(qs, M,S*) = {0-201-53082-1}, and fur-
thermore, maybe (g3, M, S*) = {0-201-53082-1}. ]

Let M be a schema mapping defined by tgds and egds, let S be a source in-
stance for M, and let ¢ be a query over M’s target schema. Theorem 3.36 below
characterizes certy(q, M, S) as the certain answers to ¢ on poss,,;(Core(M, S)),
and maybes(q, M, S) as the maybe answers to g on poss,,;(Core(M,.S)). Similar
characterizations, with Core(M, S) replaced by the canonical universal solution
for S under M, hold for certs(q, M,S) and maybey(q, M, S) with respect to
restricted schema mappings. Hence, to evaluate a query under one of these
semantics, it often suffices to construct 7' = Core(M, S) or T' = CanSol(M, S),
and to compute the certain answers or the maybe answers on poss,,;(T"). For
stating Theorem 3.36, we need the following proposition:
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PROPOSITION.

Let M = (04,04, %) be a schema mapping, where 3 consists of tgds and egds,
and let S be a source instance for M. Then for every CWA-solution T for S
under M, we have

possy;(Core(M, S)) C possy (T).

Moreover, if ¥ consists of st-tgds and egds, or all tgds in X are full, then for
every CWA-solution T for S under M, we have

possy (T) € possy (CanSol(M, S)).
Proof. Let T be a CWA-solution for S under M.

Step 1: possy (Core(M,S)) C possy (T).

Let T' € possy;(Core(M,S)). Then there is a valuation f of Core(M, S) with
f(Core(M,S)) = T. On the other hand, T is a universal solution for S under
M by Theorem 3.21. Thus, by Theorem 2.6(3), there is a 