
Foundations of Query Answering
in Relational Data Exchange

André Hernich

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14520376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Foundations of Query Answering
in Relational Data Exchange

Dissertation
zur Erlangung des Doktorgrades

der Naturwissenschaften

vorgelegt beim Fachbereich Informatik und Mathematik
der Johann Wolfgang Goethe-Universität

in Frankfurt am Main

von
André Hernich
aus Prenzlau

Frankfurt 2010
(D 30)

vom Fachbereich Informatik und Mathematik der
Johann Wolfgang Goethe-Universität als Dissertation angenommen.

Dekan: Prof. Dr.-Ing. Detlef Krömker
Gutachter: Prof. Dr. Nicole Schweikardt

Prof. Dr. Phokion G. Kolaitis
Datum der Disputation: 18. November 2010

Abstract

Data exchange deals with translating data structured in some format into data
structured in some other format, according to a specification of the relationship
between the source data and the target data. Such data translation tasks are
very common in practice. They arise as one of the many tasks in data inte-
gration, for example, in data restructuring, in ETL (Extract-Transform-Load)
processes used for updating data warehouses, or in data exchange between dif-
ferent, possibly independently created, applications. While systems for data
exchange have been implemented over the past decades, research on the theo-
retical foundations of data exchange started only recently with the influential
article by Fagin, Kolaitis, Miller and Popa. This thesis deals with relational
data exchange, where the source data and the target data are relational.

The basic setting in relational data exchange is the following. We are given
a schema mapping M that consists of a source schema (the format of the source
data) and a target schema (the format of the target data), and is defined by
a finite set Σ of logical formulas which describes the relationship between the
source data and the target data. For a source database S, the task is then to
find a solution for S under M , that is, a target database so that all formulas
in Σ are satisfied. Such a solution should reflect S as accurately as possible.
Usually, Σ is a set of tuple generating dependencies (tgds) and equality generating
dependencies (egds). Here, tgds are first-order formulas of the form

∀x̄∀ȳ(ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)),

where ϕ and ψ are conjunctions of relational atomic formulas R(ū), and x̄, ȳ
and x̄, z̄ are tuples of variables that contain precisely all variables in ϕ and ψ,
respectively. One distinguishes between source-to-target tgds (st-tgds), where ϕ
“speaks” about the source schema and ψ speaks about the target schema, and
target tgds (t-tgds), where both ϕ and ψ speak about the target schema. An
egd is a first-order formula of the form

∀x̄(ϕ(x̄)→ xi = xj),

where ϕ is a conjunction of relational atomic formulas that speak about the
target schema only, x̄ is a tuple of variables that contains precisely all variables
in ϕ, and xi, xj occur in x̄.

One of the major issues in relational data exchange is how to answer queries
that are posed against the target schema (i.e., queries that are posed against
the result of a data translation). The problem is that schema mappings are

vi

in general underspecified. In particular, there is often more than one possible
solution for a given source database, so that it is not a priori clear what the
answer to a query should be. A popular approach is to return the certain
answers to a query. That is, the set of answers to a query q on a schema
mapping M and a source database S consists of all tuples t̄ such that for all
solutions T for S under M we have: t̄ belongs to the set of answers to q on T
(written t̄ ∈ q(T)). For a large class of queries, including unions of conjunctive
queries which are fundamental in database theory, the issue of how to compute
the certain answers to such queries has been investigated quite well. Here,
an indispensable tool are the universal solutions, introduced by Fagin, Kolaitis,
Miller and Popa. Informally, universal solutions are “most general” solutions. In
particular, it was shown that for many queries q, including unions of conjunctive
queries, computing the certain answers to q on M and S eventually boils down
to evaluating q on an arbitrary universal solution for S under M .

For monotonic queries (queries, for which the set of answers does not de-
crease when adding tuples to the database), which also comprise the above-
mentioned unions of conjunctive queries, the certain answers intuitively corre-
spond to the set of answers a user would expect. However, it has been observed
that for some non-monotonic queries, the certain answers lead to answers that
intuitively do not seem to be accurate. The reason is that schema mappings
are often interpreted with additional implicit information – information that
is not mentioned explicitly by the schema mapping, but, due to the point of
view on the schema mapping, are nevertheless assumed to be implicitly repre-
sented in the schema mapping. Since there are many possible ways of formally
capturing the intuitive notion of “implicit information”, several semantics for
query answering taking into account implicit information have been proposed.
Those semantics are based on the closed world assumption (CWA), and their
definition is based on the following idea. Given a schema mapping M and a
source database S for M ,

1. identify a subset S of all solutions for S under M that is intended to be
the set of all possible outcomes of translating S to the target if implicit
information—in the formalized sense—is taken into account, and

2. answer queries q on M and S using the set S, typically by taking the
certain answers to q on S (i.e., the set of all tuples t̄ such that t̄ ∈ q(T)
for all T ∈ S).

Depending on the particular application and one’s point of view, one or the
other of these semantics may be useful.

The contributions of this thesis can be subdivided into three parts: 1. unde-
cidability results concerning computation of universal solutions and the so-called

vii

chase procedure, 2. query answering semantics that take into account implicit
information, and 3. the complexity of evaluating queries with respect to the
semantics considered in 2. In the following, these parts are described in more
detail.

1. Undecidability results concerning computation of universal solutions and the
so-called chase procedure.

A schema mapping M defined by tgds only is constructed such that the follow-
ing problem is undecidable: given a source database S for M , does S have a
universal solution under M? This in particular strengthens a result of Deutsch,
Nash, and Remmel (2008).

Furthermore, the proof of this result has several consequences concerning
termination of the chase procedure, which is essential in database theory and
is employed for computing universal solutions. More precisely, the chase is a
procedure that takes a database I and a set Σ of tgds and egds as input, and
iteratively tries to modify I so that the resulting database satisfies all tgds and
egds in Σ. Unfortunately, the chase does not always terminate. To this end,
various conditions on Σ that ensure chase termination have been proposed in
the literature. All of these conditions are sufficient, but not necessary for chase
termination. In fact, it follows from the proof of the above-mentioned result
that there is no decidable condition on Σ that is both sufficient and necessary
for chase termination: chase termination is undecidable, even with respect to
some fixed set Σ of tgds. This also strengthens a result of Deutsch, Nash, and
Remmel (2008).

2. Query answering semantics that take into account implicit information.
This thesis gives an overview of query answering semantics in relational data
exchange that take into account implicit information. In the following, a more
detailed description of the semantics contributed by this thesis is given.

The first query answering semantics that take into account implicit informa-
tion were introduced by Libkin. These semantics are based on CWA-solutions,
which were tailored by Libkin to schema mappings defined by st-tgds. CWA-
solutions are based on the CWA in the following sense:

1. Every tuple must be justified in some sense by the schema mapping and
the source database.

2. Each justification is used at most once.

3. A CWA-solution contains only “facts” that follow from the schema map-
ping and the source database.

viii

This thesis extends the definition of CWA-solutions to the more general case of
schema mappings defined by tgds and egds. The main difficulty is to formalize
the first two requirements. We do this in two ways: First, we use a derivation-
based approach using a suitably controlled version of the chase. Second, we
obtain an equivalent definition in terms of a game. We then show the following:

• CWA-solutions are universal solutions that can be derived as mentioned
above.

• A source database has a CWA-solution if and only if it has a universal
solution.

• The core of the universal solutions introduced by Fagin, Kolaitis and Popa
(the “smallest” universal solution) is the “smallest” CWA-solution.

Furthermore, the structure of the set of all CWA-solutions and the complexity
of computing CWA-solutions is explored. Finally, this thesis addresses the
complexity of the query evaluation problem with respect to the CWA-solution-
based semantics. Details to the latter topic are given in 3. below.

The CWA-solution-based semantics reflect an operational point of view on
tgds and egds. That is, tgds are considered as rules for deriving tuples, and egds
are considered as rules for identifying values. One of the consequences is that
these semantics do not take into account logical equivalence of schema mappings
(i.e., answers to queries may differ on schema mappings defined by logically
equivalent sets of formulas), and query answers do not necessarily reflect the
standard semantics of first-order quantifiers (e.g., existential quantifiers express
that there are one, two, three or more elements that satisfy the given property,
but this is not necessarily reflected by query answers).

For this reason, a second semantics, the GCWA∗-semantics, is developed
that takes implicit information into account and additionally respects logical
equivalence of schema mappings and reflects the standard semantics of first-
order quantifiers. First, translations of query answering semantics from the area
of deductive databases are studied in the context of relational data exchange.
Inspired by these semantics, the GCWA∗-semantics is developed. Under the
GCWA∗-semantics, queries are answered by the certain answers on GCWA∗-
solutions. In contrast to the preceding semantics and solution concepts, the
GCWA∗-semantics and GCWA∗-solutions are defined for all schema mappings
(rather than for schema mappings defined by tgds and egds). For schema map-
pings defined by st-tgds and egds, GCWA∗-solutions are simply solutions with-
out null values that are unions of inclusion-minimal solutions.

3. The complexity of evaluating queries with respect to the semantics in 2.
This thesis first addresses the complexity of evaluating queries with respect to
the CWA-solution-based query answering semantics. More precisely, the data

ix

complexity is considered, that is, the complexity with respect to fixed schema
mappings and fixed queries. It turns out that for a large number of monotonic
queries, including unions of conjunctive queries, two of the CWA-solution-based
semantics yield precisely the above-mentioned certain answers, so that all results
on computing the certain answers to such queries carry over to these semantics.
For properly restricted schema mappings, the query evaluation problem for first-
order queries with respect to the CWA-solution-based semantics is in co-NP
or NP, depending on the semantics. Furthermore, there are simple schema
mappings and conjunctive queries with just one additional inequality (6=) such
that this problem is complete for the corresponding class. In contrast, it is
known that the certain answers to such queries can be computed efficiently
with respect to a large number of schema mappings.

A larger part of this thesis deals with the complexity of evaluating queries
with respect to the GCWA∗-semantics. As above, the data complexity is con-
sidered. It is shown that on monotonic queries, the GCWA∗-semantics yields
precisely the above-mentioned certain answers, so that all results obtained for
computing certain answers on monotonic queries directly apply to the GCWA∗-
semantics. However, there are simple schema mappings M defined by st-tgds
and simple existential queries q (queries of the form ∃x̄ ϕ, where ϕ is quantifier-
free) such that the query evaluation problem

Eval(M, q)
Input: a source database S for M and a tuple t̄
Question: Is t̄ an answer to q with respect to the GCWA∗-semantics?

is co-NP-hard. Permitting only one additional universal quantifier can make this
problem undecidable. It seems then surprising that Eval(M, q) is in PTIME
for universal queries q (queries of the form ∀x̄ ϕ, where ϕ is quantifier-free) and
suitable restrictions on M .

This result is explained in more detail below. Precisely it states that for
every schema mapping M defined by certain st-tgds, called packed st-tgds, and
each universal query q, there is a polynomial time algorithm that takes the core
of the universal solutions for some source database S as input and computes
the set of all answers to q on M and S with respect to the GCWA∗-semantics.
Standard results on computing the core of the universal solutions (e.g., by Fagin,
Kolaitis and Popa) in particular imply that Eval(M, q) belongs to PTIME.

For proving the main result, it suffices to develop a polynomial time algo-
rithm for the following problem: given the core of the universal solutions for
some source database S and a tuple t̄, does t̄ belong to the set of answers to q
on M and S with respect to the GCWA∗-semantics? To this end, the problem

x

is reduced to the problem of checking whether there is a union of one or more
inclusion-minimal databases in poss(T0) that satisfies ¬q(t̄). Here, poss(T0) is
the set of all databases obtained from the core T0 of the universal solutions for
S by replacing null values with constants. By transforming ¬q into a kind of
disjunctive normal form, one can then focus, without loss of generality, on the
case that ¬q is logically equivalent to a formula q̄ = ∃x̄ ϕ, where ϕ is a conjunc-
tion of atomic formulas and negations of atomic formulas. If ϕ consists of one
atomic formula and x̄ is the empty tuple, the problem can be solved as follows.
First, the infinite set of all inclusion-minimal databases in poss(T0) is reduced
to a set S of possibly exponential size. The technically difficult part is then to
identify a particular subset of S of polynomial size from which all tuples that
occur in inclusion-minimal databases of poss(T0) can be reconstructed. Finally,
for solving the general problem, partial solutions are combined in a suitable way
to solutions to the whole problem, where the results proved for the case of one
atomic formula help to prove correctness of this construction.

Keywords: data exchange, certain answers, closed world assumption (CWA),
deductive database

Zusammenfassung

Beim Datenaustausch geht es darum, Daten von einem Format in ein ande-
res Format gemäß einer vorgegebenen Spezifikation zu transformieren. Solche
Datentransformationen finden sich in vielen Anwendungsbereichen wieder. Sie
kommen als eine der vielen Aufgaben in der Datenintegration vor, zum Beispiel
bei der Datenrestrukturierung, bei der Aktualisierung von Datenwarenhäusern
oder beim Datenaustausch zwischen verschiedenen, möglicherweise unabhängig
voneinander erstellten Anwendungen. Obwohl Systeme für den Datenaustausch
bereits seit einiger Zeit implementiert werden, wurde erst mit der einflussrei-
chen Arbeit von Fagin, Kolaitis, Miller und Popa (2005) damit begonnen, die
theoretischen Grundlagen des Datenaustauschs zu erforschen. Diese Dissertati-
on beschäftigt sich mit relationalem Datenaustausch, bei dem die Quell- und
die Zieldaten relational sind.

Die grundsätzliche Problemstellung im relationalen Datenaustausch ist die
Folgende: Gegeben ist ein so genanntes Schema-Mapping M , das aus einem
Quellschema (dem Format der Quelldatenbank) und einem Zielschema (dem
Format der Zieldatenbank) besteht und durch eine endliche Menge Σ von logi-
schen Formeln definiert wird, die die Beziehung zwischen Quell- und Zieldaten
beschreiben. Für eine Quelldatenbank S soll dann eine Lösung für S unter M
gefunden werden, d.h. eine Zieldatenbank, so dass alle Formeln aus Σ erfüllt
sind. Diese Lösung sollte S so genau wie möglich wiederspiegeln. Gewöhnlich
ist Σ dabei eine Menge von so genannten tgds („tuple generating dependencies“)
und egds („equality generating dependencies“). Hierbei sind tgds Formeln der
Logik erster Stufe der Form

∀x̄∀ȳ(ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)),

wobei ϕ und ψ Konjunktionen von Relationsatomen R(ū) und x̄, ȳ bzw. x̄, z̄
Variablentupel sind, die genau die in ϕ bzw. ψ frei vorkommenden Variablen
enthalten. Man unterscheidet zwischen st-tgds („source-to-target tgds“, bei de-
nen ϕ nur über das Quellschema und ψ nur über das Zielschema „spricht“)
und t-tgds („target tgds“, bei denen ϕ und ψ beide nur über das Zielschema
sprechen). Ein egd ist eine Formel der Form

∀x̄(ϕ(x̄)→ xi = xj),

wobei ϕ eine Konjunktion von Relationsatomen ist, die nur über das Zielschema
sprechen, x̄ ein Variablentupel mit genau den in ϕ frei vorkommenden Variablen
ist und xi, xj Variablen aus x̄ sind.

xii

Eine wichtige Frage im relationalen Datenaustausch ist, wie Anfragen über
dem Zielschema (d.h. Anfragen an das Resultat des Datenaustauschs) beant-
wortet werden sollen. Das Problem ist, dass Schema-Mappings im Allgemeinen
unterspezifiziert sind. Insbesondere gibt es oft mehrere mögliche Lösungen zu
einer Quelldatenbank, so dass nicht a priori klar ist, was die Antwort zu einer
Anfrage sein soll. Ein Ansatz ist, nur die sicheren Antworten zu einer Anfrage
zurückzuliefern. D.h. die Antwortmenge zu einer Anfrage q bzgl. eines Schema-
Mappings M und einer Quelldatenbank S besteht aus allen Tupeln t̄, so dass
für jede Lösung T für S unter M gilt: t̄ liegt in der Antwortmenge zu q auf
T (kurz: t̄ ∈ q(T)). Für eine große Klasse von Anfragen, die insbesondere die
in der Datenbanktheorie wichtige Klasse der konjunktiven Anfragen enthält,
wurde bereits gut erforscht, wie die sicheren Antworten für solche Anfragen
berechnet werden können. Ein wichtiges Hilfmittel dabei sind die von Fagin,
Kolaitis, Miller und Popa eingeführten universellen Lösungen, die intuitiv “all-
gemeinste Lösungen” sind. Insbesondere wurde gezeigt, dass für viele Anfragen
q, darunter auch konjunktive Anfragen, die Berechnung der sicheren Antworten
zu q bzgl. M und S im Prinzip nichts Anderes ist, als die Auswertung von q auf
einer beliebigen universellen Lösung für S unter M .

Für so genannte monotone Anfragen (Anfragen, für die die Antwortmenge
nicht kleiner wird, wenn Tupel zur Datenbank hinzugefügt werden), zu denen
auch die oben erwähnten konjunktiven Anfragen gehören, sind die sicheren Ant-
worten intuitiv genau die Antworten, die man als Benutzer erwarten würde.
Es wurde aber beobachtet, dass für einige nicht-monotone Anfragen die siche-
ren Antworten nicht dem entsprechen, was man intuitiv erwarten würde. Der
Grund dafür ist, dass Schema-Mappings oft mit zusätzlichen impliziten Infor-
mationen interpretiert werden – Informationen, die im Schema-Mapping nicht
explizit erwähnt, jedoch durch die Sichtweise auf das Schema-Mapping oft als
implizit gegeben angesehen werden. Da es viele Möglichkeiten gibt, den hochgra-
dig intuitiven Begriff „implizite Informationen“ formal einzufangen, existieren
verschiedene Anfragesemantiken, mit denen Anfragen unter Berücksichtigung
solcher impliziten Informationen beantwortet werden können. Diese Semanti-
ken basieren auf Varianten der Closed World Assumption (CWA) und werden
basierend auf der folgenden Idee definiert. Für ein gegebenes Schema-Mapping
M und eine Quelldatenbank S

1. identifiziert man die Menge S aller Lösungen für S unter M , die mögliche
Resultate der Transformation von S darstellen, wenn implizite Informati-
onen – im jeweils formalisierten Sinn – berücksichtigt werden, und

2. beantwortet Anfragen q mit Hilfe der Menge S, typischerweise durch die
sicheren Antworten zu q bzgl. S (d.h. die Menge der Tupel t̄, so dass
t̄ ∈ q(T) für alle T ∈ S).

xiii

Abhängig von der konkreten Anwendung und der eigenen Sichtweise kann die
eine oder die andere Semantik sinnvoll sein.

Die Beiträge dieser Dissertation können grob in drei Gruppen eingeteilt wer-
den: 1. Unentscheidbarkeitsresultate hinsichtlich der Berechnung universeller
Lösungen und der so genannten Chase-Prozedur, 2. Anfragesemantiken zur Be-
antwortung von Anfragen unter Berücksichtigung impliziter Informationen und
3. Bestimmung der Komplexität der Anfrageverarbeitung bezüglich der in 2. be-
trachteten Anfragesemantiken. Im Folgenden werden diese drei Gruppen etwas
näher beschrieben.

1. Unentscheidbarkeitsresultate hinsichtlich der Berechnung universeller Lösun-
gen und der so genannten Chase-Prozedur.

Es wird ein nur durch tgds definiertes Schema-Mapping M konstruiert, so dass
folgendes Problem unentscheidbar ist: Gegeben eine Quelldatenbank S für M ,
besitzt S eine universelle Lösung unter M? Dieses Resultat verstärkt insbeson-
dere ein Ergebnis von Deutsch, Nash und Remmel (2008).

Weiterhin hat der Beweis dieses Resultats einige Konsequenzen in Bezug auf
das Problem, ob die in der Datenbanktheorie essentielle und zur Berechnung
von universellen Lösungen eingesetzte Chase-Prozedur terminiert. Die Chase-
Prozedur bekommt als Eingabe eine Datenbank I und eine Menge Σ von tgds
und egds. Sie versucht dann, I iterativ mittels der tgds und egds in Σ so zu
modifizieren, dass die resultierende Datenbank die tgds und egds in Σ erfüllt.
Unglücklicherweise terminiert die Chase-Prozedur nicht immer. Jedoch wurde
eine Reihe von Kriterien an Σ vorgeschlagen, die sicherstellen, dass die Chase-
Prozedur terminiert. All diese Kriterien sind hinreichend, aber nicht notwendig
für die Terminierung der Chase-Prozedur. Tatsächlich folgt aus dem Beweis
des oben genannten Resultats, dass es kein entscheidbares hinreichendes und
notwendiges Kriterium an Σ gibt, das die Terminierung der Chase-Prozedur
sicherstellt. Es gibt nämlich eine Menge Σ, die nur tgds enthält, so dass das
folgende Problem unentscheidbar ist: Gegeben eine Datenbank I, terminiert die
Chase-Prozedur für I und Σ? Dies verstärkt ebenfalls ein Ergebnis von Deutsch,
Nash und Remmel (2008).

2. Anfragesemantiken zur Beantwortung von Anfragen unter Berücksichtigung
impliziter Informationen.

Die Dissertation gibt einen Überblick über Anfragesemantiken, die implizite In-
formationen berücksichtigen, und steuert selbst entsprechende Semantiken bei.
Im Folgenden werden die Hauptbeiträge dieser Dissertation zu diesem Thema
zusammengefasst.

Die ersten Anfragesemantiken, die implizite Informationen berücksichtigen,
wurden von Libkin eingeführt. Diese Semantiken basieren auf CWA-Lösungen,

xiv

die von Libkin speziell auf durch st-tgds definierte Schema-Mappings zuge-
schnitten wurden. CWA-Lösungen basieren im folgenden Sinn auf der CWA:

1. Alle Tupel müssen auf eine bestimmte Art durch das Schema-Mapping
und die Quelldatenbank gerechtfertigt sein.

2. Jede mögliche Rechtfertigung wird nur einmal eingesetzt.

3. Die CWA-Lösung enthält nur „Fakten“, die aus dem Schema-Mapping
und der Quelldatenbank folgen.

In dieser Dissertation wird die Definition von CWA-Lösungen auf durch tgds
und egds definierte Schema-Mappings erweitert. Die Hauptschwierigkeit besteht
in der Formalisierung der Anforderungen 1 und 2, die hier zum Einen durch
einen ableitungsbasierten Ansatz mittels einer passend kontrollierten Variante
der Chase-Prozedur und zum Anderen spielbasiert charakterisiert werden. Es
wird dann folgendes gezeigt:

• CWA-Lösungen sind universelle Lösungen, die in dem oben genannten
Sinn ableitbar sind.

• Eine Quelldatenbank besitzt genau dann eine CWA-Lösung, wenn sie eine
universelle Lösung besitzt.

• Der von Fagin, Kolaitis und Popa eingeführte Kern der universellen Lö-
sungen (die „kleinste“ universelle Lösung) ist die „kleinste“ CWA-Lösung.

Weiterhin wird die Struktur der Menge der CWA-Lösungen und die Komplexi-
tät der Berechnung von CWA-Lösungen untersucht. Schließlich wendet sich die
Dissertation der Komplexität des Auswertungsproblems für die CWA-Lösungs-
basierten Anfragesemantiken zu. Dies wird unter 3. näher beschrieben.

Die den CWA-Lösungs-basierten Semantiken zugrunde liegenden Annah-
men spiegeln die operationale Sichtweise auf tgds und egds wieder. Infolgedes-
sen berücksichtigen diese Semantiken jedoch nicht logische Äquivalenz zwischen
Schema-Mappings (d.h. auf Schema-Mappings, die durch logisch äquivalente
Mengen von Formeln definiert sind, können Anfragen verschieden beantwor-
tet werden), und auch die Standard-Semantik von Quantoren der Logik erster
Stufe (z.B. Existenzquantoren sagen aus, dass ein oder zwei oder drei usw. Ele-
mente mit der entsprechenden Eigenschaft existieren) wird nicht immer in den
Anfrageergebnissen wiedergespiegelt.

Aus diesem Grund wird eine zweite Semantik entwickelt, die GCWA∗-Se-
mantik, die implizite Informationen und zudem auch logische Äquivalenz von
Schema-Mappings und die Standard-Semantik von Quantoren der Logik erster

xv

Stufe berücksichtigt. Zunächst werden Anfragesemantiken aus dem Bereich der
deduktiven Datenbanken in den Kontext relationalen Datenaustauschs übertra-
gen und in diesem Kontext untersucht. Inspiriert von diesen Semantiken wird
dann die GCWA∗-Semantik entwickelt. Unter der GCWA∗-Semantik werden An-
fragen durch die sicheren Antworten auf GCWA∗-Lösungen beantwortet. Im Un-
terschied zu den vorhergehenden Semantiken und Lösungskonzepten sind die
GCWA∗-Semantik und GCWA∗-Lösungen für alle Schema-Mappings definiert
(nicht nur für solche, die durch tgds und egds spezifiziert werden). Für durch
st-tgds und egds definierte Schema-Mappings sind GCWA∗-Lösungen einfach
Lösungen ohne Null-Werte, die Vereinigungen von inklusionsminimalen Lösun-
gen sind.

3. Bestimmung der Komplexität der Anfrageverarbeitung bezüglich der in 2. be-
trachteten Anfragesemantiken.

Die Dissertation wendet sich in diesem Teil zuerst der Komplexität des Auswer-
tungsproblems für die CWA-Lösungs-basierten Anfragesemantiken zu. Genauer
wird die Datenkomplexität betrachtet, d.h. die Komplexität bzgl. eines festen
Schema-Mappings und einer festen Anfrage. Es stellt sich heraus, dass zwei die-
ser Semantiken für konjunktive Anfragen und einige Erweiterungen davon genau
die anfangs erwähnten sicheren Antworten liefern, so dass sich alle für die siche-
ren Antworten erhaltenen Resultate auf diese Semantiken übertragen. Bei aus-
reichender Einschränkung von Schema-Mappings liegt das Auswertungsproblem
für Anfragen in der Logik erster Stufe – abhängig von der jeweiligen Semantik
– in co-NP bzw. in NP. Außerdem existieren einfache Schema-Mappings und
konjunktive Anfragen mit nur einer Ungleichung (6=), bei denen dieses Problem
vollständig für die jeweilige Klasse ist. Im Gegensatz dazu ist bekannt, dass
die sicheren Antworten für solche Anfragen bzgl. einer Vielzahl von Schema-
Mappings effizient berechnet werden können.

Ein größerer Teil der Dissertation beschäftigt sich mit der Komplexität des
Auswertungsproblems bezüglich der GCWA∗-Semantik. Wie oben wird auch hier
die Datenkomplexität betrachtet. Es wird gezeigt, dass die GCWA∗-Semantik
auf monotonen Anfragen genau die anfangs erwähnten sicheren Antworten lie-
fert, so dass sich alle für die sicheren Antworten erhaltenen Resultate für mo-
notone Anfragen auf diese Semantiken übertragen. Allerdings gibt es einfache,
durch st-tgds definierte Schema-Mappings M und einfache existentielle Anfra-
gen q (Anfragen der Form ∃x̄ ϕ, wobei ϕ quantorenfrei ist), so dass das Aus-
wertungsproblem

Eval(M, q)
Eingabe: eine Quelldatenbank S für M und ein Tupel t̄
Frage: Ist t̄ eine Antwort zu q bzgl. der GCWA∗-Semantik?

xvi

co-NP-hart ist. Lässt man neben Existenzquantoren auch Allquantoren zu, so
kann dieses Problem unentscheidbar werden. Umso überraschender scheint es,
dass Eval(M, q) für universelle Anfragen q (Anfragen der Form ∀x̄ ϕ, wobei ϕ
quantorenfrei ist) bei passender Einschränkung von M in PTIME liegt.

Dieses Resultat soll zum Abschluss dieser Zusammenfassung noch etwas ge-
nauer beschrieben werden. Präziser besagt es, dass für jedes Schema-Mapping
M , das durch spezielle st-tgds, so genannte gepackte st-tgds, beschrieben wird,
und für jede universelle Anfrage q ein Polynomialzeitalgorithmus existiert, der
bei Eingabe des Kerns der universellen Lösungen einer Quelldatenbank S die
Antwortmenge zu q bzgl.M und S unter der GCWA∗-Semantik ausgibt. Aus Re-
sultaten zur Berechnung des Kerns der universellen Lösungen (z.B. von Fagin,
Kolaitis und Popa) folgt insbesondere, dass Eval(M, q) in PTIME liegt.

Um das Hauptresultat zu beweisen, reicht es aus, einen Polynomialzeital-
gorithmus für das folgende Problem anzugeben: Gegeben der Kern der uni-
versellen Lösungen einer Quelldatenbank S und ein Tupel t̄, liegt t̄ in der
Antwortmenge zu q bzgl. M und S unter der GCWA∗-Semantik? Dazu wird
das Problem zuerst auf den Test reduziert, ob eine Vereinigung von ein oder
mehr inklusions-minimalen Datenbanken aus poss(K) existiert, die ¬q(t̄) erfüllt.
Hierbei ist poss(K) die Menge der Datenbanken, die sich aus dem Kern K der
universellen Lösungen für S durch Ersetzen von Null-Werten durch Konstanten
ergeben. Durch Transformation von ¬q in eine Art disjunktive Normalform kann
man sich dann o.B.d.A. auf den Fall beschränken, dass ¬q äquivalent zu einer
Formel q̄ = ∃x̄ ϕ ist, wobei ϕ eine Konjunktion von atomaren und negierten
atomaren Formeln ist. Besteht ϕ aus einer atomaren Formel und ist x̄ das leere
Tupel, so lässt sich das Problem wie folgt lösen. Zuerst wird die unendliche Men-
ge der inklusions-minimalen Datenbanken in poss(K) auf eine endliche Menge
S möglicherweise exponentieller Größe reduziert. Der technisch aufwändigste
Teil besteht dann darin, eine Teilmenge von S polynomieller Größe ausfindig
zu machen, aus denen alle in inklusions-minimalen Lösungen vorkommenden
Tupel rekonstruiert werden können. Um schließlich das allgemeine Problem zu
lösen, setzt man dann Teillösungen in geeigneter Weise zu einer Gesamtlösung
zusammen, wobei die für den einfachen Fall bewiesenen Resultate helfen, die
Korrektheit dieser Konstruktion nachzuweisen.

Schlagwörter: Data Exchange, Sichere Antworten, Closed World Assumpti-
on (CWA), Deduktive Datenbank

Preface

This thesis presents most of the work I did on foundations of query answering
in relational data exchange during the past four years. Parts of the results have
been or are about to get published in journals, or proceedings of international
conferences. In particular, parts of the material in Chapters 2 and 3 are based on
Hernich and Schweikardt [2007, 2010]. Furthermore, Chapters 4 and 5 are based
on Hernich [2010], which was presented at the 13th International Conference
on Database Theory (ICDT 2010) and received one of the two ICDT 2010 Best
Student Paper Awards.

I assume basic familiarity with database theory, as it can be obtained, for
example, from the textbook by Abiteboul et al. [1995]. Wherever possible,
definitions are given directly preceding their first use.

This thesis would not have been possible without the support of many peo-
ple. First of all, I owe a particular debt to my advisor, Nicole Schweikardt. I
greatly benefited from many inspiring discussions with her, her patience and her
encouragement throughout the last five years of my research and the writing of
this thesis. The friendly and fruitful atmosphere in her working group led not
only to results on this thesis’ topic, but also to results on the topic of read/write
streams, published in Grohe et al. [2009] and Hernich and Schweikardt [2008].
Second, I thank Phokion G. Kolaitis very much for serving as a reviewer for
this thesis. When attending the Logic and Databases workshop at the Isaac
Newton Institute in Cambridge, UK, in 2006, I had the opportunity to listen
to interesting talks by Phokion G. Kolaitis and Georg Gottlob, which greatly
influenced the direction of my research. I thank the organizers, Anuj Dawar and
Martin Grohe, of this workshop for inviting me, and the Isaac Newton Institute
for their financial support enabling me to attend the workshop. Finally, I am
grateful to André Böhm, Dominik Freydenberger, Frederik Harwath and Lucas
Heimberg for reading parts of this thesis and their helpful comments.

André Hernich
Frankfurt am Main, March 2010

Für meine Eltern.

Contents

Abstract v

Zusammenfassung xi

Preface xvii

1 Introduction 1
1.1 The Central Concepts of Relational Data Exchange 2

1.1.1 Schema Mappings and Solutions 3
1.1.2 Logically Defined Schema Mappings 7

1.2 Research Topics in Relational Data Exchange 13
1.3 How to Answer Queries in Relational Data Exchange? 15

1.3.1 The Certain Answers Semantics 18
1.3.2 Coping With Implicit Information 21

1.4 Contributions of this Thesis . 25
1.5 Structure of this Thesis . 30

2 Computing the Certain Answers to Monotonic Queries 31
2.1 Review of Universal Solutions and Their Core 32
2.2 How to Compute Universal Solutions? 37

2.2.1 Review of the Chase . 37
2.2.2 Sufficient Conditions for Chase Termination 42
2.2.3 How to Compute the Core of the Universal Solutions? . . 44

2.3 Undecidability of the Existence of Universal Solutions 46
2.4 Queries With Inequalities . 57

3 Justification-Based Approaches to Query Answering 61
3.1 Definition and Basic Properties of CWA-Presolutions 63

3.1.1 Schema Mappings Defined by St-Tgds 63
3.1.2 Schema Mappings Defined by Tgds and Egds 68
3.1.3 A Game-Based Characterization 74

3.2 Definition and Basic Properties of CWA-Solutions 78
3.3 Semantics for Query Answering Using CWA-Solutions 87
3.4 Complexity of Query Answering Using CWA-Solutions 93

3.4.1 Queries Preserved Under Homomorphisms 94
3.4.2 First-Order Queries . 96

xxii Contents

3.5 Query Answering Based on Variants of CWA-Solutions 103
3.6 Limitations to the Justification-Based Approach 108

4 Deductive Databases and Relational Data Exchange 111
4.1 Definition of Deductive Databases 111
4.2 The Closed World Assumption (CWA) 113
4.3 The Generalized Closed World Assumption (GCWA) 115
4.4 Concepts Related to the GCWA 117

5 The GCWA∗-Answers Semantics 121
5.1 Definition of GCWA∗-Solutions and GCWA∗-Answers 122
5.2 A Characterization of GCWA∗-Solutions 128
5.3 The Complexity of Computing GCWA∗-Answers 131

5.3.1 Monotonic Queries . 132
5.3.2 Existential Queries and Beyond 133

5.4 Computing GCWA∗-Answers to Universal Queries 136
5.4.1 GCWA∗-Answers and the Core of the Universal Solutions 138
5.4.2 Finding Atoms of ⊆-Minimal Possible Worlds 140
5.4.3 Existentially Quantified Conjunctions of Atomic Formu-

las and Negations of Atomic Formulas 156
5.4.4 Putting Things Together 173
5.4.5 Proof of Proposition 5.13 174

6 Conclusion 177
6.1 Which Semantics are Appropriate for Answering Which Queries? 177
6.2 What Kind of Solution Should one Compute? 179
6.3 Open Problems and Suggestions For Future Work 182

Bibliography 185

Index 191

1 Introduction

Data exchange deals with translating data structured in some format into data
structured in some other format, according to a specification of the relation-
ship between the source data and the target data. Such data translation tasks
are very common in practice. They arise, for example, in data restructuring,
in ETL (Extract-Transform-Load) processes which are used for updating data
warehouses, or in data exchange between different, possibly independently cre-
ated, applications (see, e.g., Haas et al. [2005], Fagin et al. [2005a]). Over the
past decades, various systems that support data exchange have been imple-
mented [Shu et al., 1977, Haas et al., 2005].

Research on the theoretical foundations of data exchange started only re-
cently with the seminal articles of Fagin et al. [2005a,b]. These articles focused
on relational data exchange, that is, data exchange for the case that the source
data and the target data are relational (i.e., stored in relational databases).
A large body of work in the data exchange literature is devoted to relational
data exchange. However, data exchange based on other data models has been
considered, too. The case of XML data, for example, has been studied by Are-
nas and Libkin [2008] and Amano et al. [2009]. Also, extensions of the basic
setting of relational data exchange, where data is exchanged between multiple
“parties”, have been considered [Fuxman et al., 2006, De Giacomo et al., 2007].
Nevertheless, an important reason for studying relational data exchange is the
fact that some of the interesting fundamental issues of data exchange—like is-
sues related to query answering—arise already in the context of relational data
exchange. To understand these issues, it seems to be a good idea to first study
them in the basic setting of relational data exchange. For more background on
data exchange, I refer the interested reader to Fagin et al. [2005a], Haas et al.
[2005], or to the survey articles by Kolaitis [2005] and Barceló [2009].

One of the major issues in data exchange is query answering, which refers
to the problem of answering queries that are posed against target data (see,
e.g., Fagin et al. [2005a], Kolaitis [2005], Barceló [2009]). The main difficulty is
that data translations are usually underspecified. In particular, there is usually
more than one possibility to translate source data to the target, so that it is not
a priori clear what the answer to a query should be. One of the fundamental
goals in data exchange is to find appropriate semantics for query answering.
This is one of the goals pursued in this thesis.

The remaining part of this introductory chapter is organized as follows. In
Section 1.1, we review the central concepts of relational data exchange: schema

2 Chapter 1. Introduction

mappings and solutions. The presentation of these concepts is inspired by Sec-
tion 2 in Hernich and Schweikardt [2010]. A survey of research topics in re-
lational data exchange is given in Section 1.2. Section 1.3 explains the basics
of query answering in relational data exchange. First, it motivates and defines
the certain answers semantics, which seems to be the right semantics to answer
a large number of queries that are frequently encountered in practice. Second,
it explains why the certain answers semantics does not seem to be sufficient to
answer more general queries. Section 1.4 summarizes the main contributions of
this thesis, and Section 1.5 describes the structure of this thesis.

1.1 The Central Concepts of Relational Data Exchange

We begin by recalling some standard notions from database theory. A com-
prehensive introduction to database theory is the textbook by Abiteboul et al.
[1995]. Our notation slightly deviates from the notation used in that book.

A schema is a finite set of relation symbols. Each relation symbol R has an
associated positive integer ar(R), called its arity. Given a schema σ, an instance
I over σ assigns to each relation symbol R ∈ σ a finite ar(R)-ary relation RI .
The active domain of I, denoted by dom(I), is the set of all elements that
occur in the tuples of the relations of I, that is, dom(I) consists of all elements
u for which there is a relation symbol R ∈ σ and a tuple (t1, . . . , tar(R)) ∈ RI

with u ∈ {t1, . . . , tar(R)}. We assume a fixed infinite set Dom, whose elements
are called values, such that dom(I) ⊆ Dom for all instances I. The set of all
instances over σ is denoted by inst(σ).

Let us also fix the following notations that are used over and over again
throughout this thesis. Let f : X → Y be a mapping, where X and Y are
arbitrary sets. Given a tuple t̄ = (t1, . . . , tn) ∈ Xn, we extend f to t̄ by
applying f pointwise to t̄, that is, f(t̄) := (f(t1), . . . , f(tn)). Given a relation
R ⊆ Xn, we extend f to R by f(R) := {f(t̄) | t̄ ∈ R}. In particular, f(X) is
the range of f (we often consider sets as unary relations). Finally, if I is an
instance over a schema σ with dom(I) ⊆ X, and if Y ⊆ Dom, we let f(I) be
the instance with Rf(I) := f(RI) for each R ∈ σ.

Given two schemas σs and σt, a specification of the relationship between
instances over σs and instances over σt, and an instance S over σs, the goal in
relational data exchange is to translate S (the source instance) into an instance
T over σt (a target instance) that satisfies the given specification [Fagin et al.,
2005a]. The following example describes one specific setting, and is used as a
running example throughout the remainder of this section.

1.1 Example (Restructuring a library database)
Consider the scenario of restructuring a library database. Let us assume that

1.1. The Central Concepts of Relational Data Exchange 3

S is a source instance over the schema σs = {Books,Authors}, where BooksS
stores the books contained in the library as tuples of the form (isbn, title), and
AuthorsS stores the relation between books and authors as tuples of the form
(isbn, author_name). The goal is to restructure S into a target instance T over
the schema σt = {BookInfo,AuthorList,WrittenBy}, where BookInfoT stores
the books in the library as tuples of the form (isbn, title, genre), AuthorListT
stores information on the authors as tuples of the form (author_id, name), and
WrittenByT stores the relation between books and authors as tuples of the form
(isbn, author_id).

An additional requirement is that the attribute author_id of AuthorList is
a key (i.e., each value for author_id implies a unique value for the attribute
name), and that for every tuple (isbn, author_id) in WrittenByT , the relations
BookInfoT and AuthorListT contain entries for the book with ISBN number
isbn, and the author with author ID author_id, respectively.

A formal framework for specifying requirements such as those described in
Example 1.1 has been developed by Fagin et al. [2005a]. The central concepts
of this framework are schema mappings and solutions.

1.1.1 Schema Mappings and Solutions

This section reviews the central concepts for specifying requirements such as
those described in Example 1.1: schema mappings and solutions. These con-
cepts were developed by Fagin et al. [2005a].

A schema mapping is a binary relation between instances over a source
schema and instances over a target schema:

1.2 Definition (Schema mapping)
A schema mapping M is a subset of inst(σs) × inst(σt), where σs and σt are
schemas. We refer to σs as the source schema of M , and call an instance over
σs a source instance for M . Analogously, we refer to σt as the target schema of
M , and call an instance over σt a target instance for M .

This definition is essentially the definition of schema mappings used by Are-
nas et al. [2009b]. Schema mappings as defined by Fagin et al. [2005a] corre-
spond to logically defined schema mappings, which are the topic of Section 1.1.2.

The target instances to which a source instance S is associated by a schema
mappingM are called solutions (for S underM), and—recalling the goal stated
at the beginning of this section—solutions correspond to the target instances
to which S can be translated, given M :

1.3 Definition (Solution)
Let M be a schema mapping, and let S be a source instance for M . A solution

4 Chapter 1. Introduction

for S under M is a target instance T for M with (S, T) ∈ M . The set of all
solutions for S under M is denoted by sol(M,S).

Note that, despite of their name, schema mappings are not mappings in the
mathematical sense. That is, given a schema mapping M , it is in general not
the case that for every source instance S for M there is precisely one solution
for S under M .

1.4 Example (Library database restructuring, continued)
The requirements from Example 1.1 can be represented by a schema mapping
M that consists of all pairs (S, T) ∈ inst(σs)× inst(σt), where σs and σt are the
schemas from Example 1.1, and:

1. For every tuple (isbn, title) ∈ BooksS, there is some value genre such that
(isbn, title, genre) ∈ BookInfoT .

2. For every tuple (isbn, name) ∈ AuthorsS, there is some value author_id
such that (author_id, name) belongs to AuthorListT and (isbn, author_id)
belongs to WrittenByT .

3. For every (author_id, name) ∈ AuthorListT and every (isbn, author_id) ∈
WrittenByT , we have (isbn, name) ∈ AuthorsS.

4. If (author_id, name) and (author_id, name′) belong to AuthorListT , then
name = name′.

5. For every (isbn, author_id) ∈WrittenByT , there are values title, genre and
name such that (isbn, title, genre) ∈ BookInfoT and (author_id, name) ∈
AuthorListT .

For example, let S∗ be the source instance with

BooksS∗ = {(“0-201-53771-0”, “Foundations of Databases”)},
AuthorsS∗ = {(“0-201-53771-0”, “Serge Abiteboul”),

(“0-201-53771-0”, “Richard Hull”),
(“0-201-53771-0”, “Victor Vianu”),
(“0-201-53082-1”, “Christos H. Papadimitriou”)}.

Then the target instance T for M with

BookInfoT = {(“0-201-53771-0”, “Foundations of Databases”, “DB”),
(“0-201-53082-1”, “Computational Complexity”, “CC”)},

1.1. The Central Concepts of Relational Data Exchange 5

AuthorListT = {(1, “Serge Abiteboul”), (2, “Richard Hull”),
(3, “Victor Vianu”), (4, “Christos H. Papadimitriou”)},

WrittenByT = {(“0-201-53771-0”, 1), (“0-201-53771-0”, 2),
(“0-201-53771-0”, 3), (“0-201-53082-1”, 4)}

is a solution for S∗ under M . Furthermore, every target instance T ′ that is
obtained from T by replacing the values “Computational Complexity”, “DB”,
“CC”, 1, 2, 3 and 4 by other values leads to a solution for S∗ underM , provided
the replacements for 1, 2, 3 and 4 are pairwise distinct. On the other hand,
the target instance that is obtained from T by removing, say, the first tuple in
BookInfoT is no solution for S∗ under M .

This is a natural point to introduce the concept of labeled null values. In
relational data exchange, labeled null values (nulls, for short) are used as place-
holders for unknown values in target instances (i.e., values for which the schema
mapping just tells us that there is a value, but does not tell which particular
one).

1.5 Example (Library database restructuring, continued)
In Example 1.4, one could as well use nulls ⊥1, ⊥2 etc. to represent the unknown
book titles, book genres, and author IDs in a solution T ∗ for S∗ under M :

BookInfoT ∗ = {(“0-201-53771-0”, “Foundations of Databases”, ⊥1),
(“0-201-53082-1”, ⊥2, ⊥3)},

AuthorListT ∗ = {(⊥4, “Serge Abiteboul”), (⊥5, “Richard Hull”),
(⊥6, “Victor Vianu”), (⊥7, “Christos H. Papadimitriou”)},

WrittenByT ∗ = {(“0-201-53771-0”, ⊥4), (“0-201-53771-0”, ⊥5),
(“0-201-53771-0”, ⊥6), (“0-201-53082-1”, ⊥7)}.

Formally, we assume that the set Dom is the union of two disjoint infinite
sets, Const and Null. The values in Const are called constants and correspond
to the usual database values. The values in Null are the nulls. We use the letters
a, b, c (possibly with subscripts and/or superscripts) to denote constants, and
the symbol⊥ (possibly with subscripts and/or superscripts) to denote nulls. For
an instance I, let const(I) := dom(I) ∩ Const and nulls(I) := dom(I) ∩ Null.

1.6 Remark (Instances without nulls vs. instances with nulls)
From a conceptual point of view, the fact that instances may contain nulls
seems to be unsatisfying. After all, there is a huge difference between instances
without nulls (which correspond to instances as usually encountered in the
database literature) and instances with nulls. While an instance I without

6 Chapter 1. Introduction

nulls is viewed as a collection of the relations that constitute I, an instance
with nulls should be viewed as a representation of a set of instances without
nulls [Abiteboul et al., 1995]. Treating instances with nulls in the same way as
instances without nulls can lead to counter-intuitive results in query answering.
We will come back to this issue in Section 1.3.

Nevertheless, to be consistent with the data exchange literature, we allow
nulls to occur in instances. We should, however, bear in mind the difference
between instances without nulls and instances with nulls.

An instance without nulls is called ground instance. In the database liter-
ature, an instance that may contain nulls is also called naive table (see, e.g.,
Abiteboul et al. [1995]). In this thesis, we call an instance I naive table if we
want to emphasize that I may contain nulls.

Throughout this thesis, we make the following assumptions which are com-
mon in relational data exchange (cf., e.g., Fagin et al. [2005a,b], Kolaitis [2005],
Barceló [2009]):

1.7 Proviso (Source instances and target instances)
Source instances for schema mappings are ground instances unless stated oth-
erwise. Target instances for schema mappings are naive tables.

Before we deal with the question of how schema mappings can be speci-
fied, let us introduce a technical, but natural, restriction on schema mappings.
Intuitively, we would like schema mappings to depend on a finite number of
constants only. In other words, it should be possible to associate each schema
mapping M with a finite set C of constants, so that M is invariant under re-
namings of values in Dom \ C. Formally, this is captured by the notion of a
generic schema mapping. A schema mapping M with source schema σs and
target schema σt is called C-generic for a set C ⊆ Const if and only if for all
(S, T) ∈M , and for all bijective mappings π : Dom→ Dom, where π(c) = c for
all c ∈ C, we have (π(S), π(T)) ∈M :

S T

π(S) π(T)

π
M

M

π

We call M generic if and only if there is a finite set C ⊆ Const such that M is
C-generic

1.8 Proviso (Schema mappings)
We consider generic schema mappings, unless stated otherwise.

1.1. The Central Concepts of Relational Data Exchange 7

Note that genericity implies that the precise choice of nulls in solutions
does not matter. Intuitively, this is a desired property: For example, if we
rename each null ⊥i in the instance T ∗ from Example 1.5 to a null ⊥′i (so that
for distinct i, j ∈ {1, . . . , 7} we have ⊥′i 6= ⊥′j), then the resulting instance
should be a solution for S∗ under M , too, since nulls are just placeholders for
constants. The property that two instances are the same up to renaming of
nulls is formalized by isomorphisms:

1.9 Definition (Isomorphism, isomorphic)
Let I and J be instances over a schema σ.

• An isomorphism from I to J is a bijective mapping f : dom(I)→ dom(J)
such that f(I) = J , f(c) = c for each constant c ∈ const(I), and f(⊥) is
a null for each null ⊥ ∈ nulls(I).

• We say that I and J are isomorphic, and we write I ∼= J , if and only if
there is an isomorphism from I to J .

In the following, we often do not distinguish between isomorphic instances.
That is, given isomorphic instances I and J , we often view I and J as one and
the same instance.

1.1.2 Logically Defined Schema Mappings

In relational data exchange, one typically considers sets of formulas of a certain
logic for specifying schema mappings in a high-level declarative way. The sets of
formulas considered in the data exchange literature for schema mapping speci-
fication consist of sentences of some small fragment of first-order logic (FO), or
an extension thereof.

A FO formula over a schema σ is a FO formula that can refer to the relation
symbols in σ and the constants in Const. More precisely, a FO formula over σ
is built from atomic formulas of the form

• R(t̄), where R ∈ σ, and t̄ is an ar(R)-tuple over Var ∪ Const (where Var
is some fixed infinite set of variables disjoint to Dom), and

• t1 = t2, where t1 and t2 are elements of Var ∪ Const,

using negation (¬), disjunction (∨), conjunction (∧), existential quantification
(∃), and universal quantification (∀). We omit parentheses whenever this does
not introduce any ambiguities, and use ϕ1 → ϕ2 and ϕ1 ↔ ϕ2 as abbreviations
for ¬ϕ1 ∨ ϕ2, and (ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ¬ϕ2), respectively. The set of the free
variables of a FO formula ϕ, denoted by free(ϕ), is defined as usual. The

8 Chapter 1. Introduction

notation ϕ(x1, . . . , xk) indicates that ϕ is a formula with free(ϕ) = {x1, . . . , xk},
where x1, . . . , xk are pairwise distinct variables. A sentence is a formula without
free variables.

For evaluating FO formulas in an instance I, the natural semantics is used,
that is, quantified variables range over Dom, and each constant in Const is
interpreted by itself. More precisely, let an assignment for a set X ⊆ Var be a
mapping α : X ′ → Dom, where X ′ ⊆ Var and X ⊆ X ′. An assignment for a
FO formula ϕ is an assignment for free(ϕ). For every instance I over a schema
σ, every FO formula ϕ over σ, and every assignment α for ϕ, we define the
satisfaction relation I |= ϕ(α) (in words: “I satisfies ϕ under α”) in the usual
way. In particular:

• If ϕ has the form R(t1, . . . , tar(R)), where R ∈ σ and (t1, . . . , tar(R)) is a tu-
ple over Var∪Const, then I |= ϕ(α) if and only if (α∗(t1), . . . , α∗(tar(R))) ∈
RI , where for each i ∈ {1, . . . , ar(R)}, we have α∗(ti) := α(ti) if ti ∈ Var,
and α∗(ti) := ti otherwise.

• If ϕ has the form t1 = t2, where t1 and t2 are elements of Var ∪ Const,
then I |= ϕ(α) if and only if α∗(t1) = α∗(t2), where α∗ is defined in an
analogous way as above.

• If ϕ has the form ∃xψ, where x ∈ Var and ψ is a FO formula over σ,
then I |= ϕ(α) if and only if there is some u ∈ Dom such that I |= ψ(αu

x
),

where αu
x
is the assignment for ψ such that for all x′ ∈ X ∪{x}, where X

is the set of variables in α’s domain:

αu
x
(x′) :=

u, if x′ = x,
α(x′), otherwise.

• If ϕ has the form ∀xψ, where x ∈ Var and ψ is a FO formula over σ, then
I |= ϕ(α) if and only if for all u ∈ Dom we have I |= ψ(αu

x
), where αu

x
is

defined as above.

An assignment α for a formula ϕ(x1, . . . , xk) is often referred to by the tu-
ple (α(x1), . . . , α(xk)). So, for a FO formula ϕ(x1, . . . , xk) and a tuple ū =
(u1, . . . , uk) ∈ Domk, I |= ϕ(ū) is an abbreviation for I |= ϕ(α), where α maps
each xi to ui. If ϕ is a sentence, we omit the assignment. That is, we just write
I |= ϕ instead of I |= ϕ(ε), where ε is the empty tuple. For a set Φ of FO
sentences over σ, we write I |= Φ if and only if for all ϕ ∈ Φ we have I |= ϕ.

1.10 Remark (Why nulls are prohibited in formulas)
Although both, constants and nulls, may occur in instances, formulas can refer

1.1. The Central Concepts of Relational Data Exchange 9

only to constants. The reason is the intended semantics of nulls. Recall that
a null serves as a placeholder for an (unknown) constant. In particular, a null
has no definite value.

In later chapters, we also deal with the logic L∞ω, which is the extension
of FO logic, where disjunctions and conjunctions may range over an infinite
number of formulas, instead of just two formulas. The semantics of such infinite
disjunctions and conjunctions is a straightforward extension of the semantics
of their binary counterparts. A precise definition of L∞ω formulas and their
semantics is given directly preceding their first use. For the moment, the above
informal description should suffice.

Note that the number of assignments satisfying a given formula can be
infinite, and variables can be assigned to arbitrary elements of Dom. In the
following, we restrict attention to formulas ϕ such that satisfaction of ϕ in
an instance I depends only on dom(I) and dom(ϕ), where dom(ϕ) is the set
of all constants that occur in ϕ. More precisely, we consider formulas that
are domain independent in the following sense. Given an instance I, a set
D ⊆ Dom, a formula ϕ, and an assignment α for ϕ, we define I |=D ϕ(α) in
the same way as I |= ϕ(α) above, except that the quantifiers in ϕ range over
dom(I) ∪ dom(ϕ) ∪ D instead of Dom. A formula ϕ is domain independent if
and only if for all instances I, all sets D ⊆ Dom, and all assignments α for ϕ,

I |= ϕ(α) ⇐⇒ I |=D ϕ(α), and
α(x) ∈ dom(I) ∪ dom(ϕ) ∪D for all x ∈ free(ϕ).

In particular, it suffices to consider only assignments with range in dom(I) ∪
dom(ϕ). For syntactic restrictions of formulas that ensure domain indepen-
dence, we refer the interested reader to Abiteboul et al. [1995].

1.11 Proviso (Formulas)
We consider domain independent formulas, unless stated otherwise.

Sets of FO sentences or L∞ω sentences specify schema mappings as follows:

1.12 Definition (Logically defined schema mapping)
Given disjoint1 schemas σs and σt, and a finite set Σ of FO sentences (resp.,
L∞ω sentences) over σs ∪ σt, we let (σs, σt,Σ) be the schema mapping

{(S, T) ∈ inst(σs)× inst(σt) | S ∪ T |= Σ}.

Here, S ∪ T denotes the instance over σs ∪ σt such that for all R ∈ σs we have
RS∪T = RS, and for all R ∈ σt we have RS∪T = RT .

1The restriction to disjoint source schemas and target schemas is necessary in order to
distinguish between source and target in FO sentences, or L∞ω sentences, respectively.

10 Chapter 1. Introduction

Note that all schema mappings defined by sets of FO sentences are generic.
Moreover, all schema mappings defined by sets of L∞ω sentences containing a
finite number of constants are generic.

1.13 Example (Library database restructuring, continued)
For the schema mapping M from Example 1.4, we have M = (σs, σt,Σ), where
Σ contains the following FO sentences over σs ∪ σt:

χ1 := ∀x1∀x2
(
Books(x1, x2)→ ∃zBookInfo(x1, x2, z)

)
,

χ2 := ∀x1∀x2
(
Authors(x1, x2)↔ ∃z(AuthorList(z, x2) ∧WrittenBy(x1, z))

)
,

χ3 := ∀x1∀x2∀x3
(
AuthorList(x1, x2) ∧ AuthorList(x1, x3)→ x2 = x3

)
,

χ4 := ∀x1∀x2
(
WrittenBy(x1, x2)→

∃z1∃z2∃z3(BookInfo(x1, z1, z2) ∧ AuthorList(x2, z3))
)
.

Note that χ1 expresses condition 1 in Example 1.4, χ2 expresses conditions 2
and 3 in Example 1.4, χ3 expresses condition 4 in Example 1.4, and χ4 expresses
condition 5 in Example 1.4.

In practice, one has to be careful in the choice of the sentences used for
specifying schema mappings. The following example exhibits a schema mapping
M defined by a single FO sentence such that the problem

Existence-of-Solutions(M)
Input: a source instance S for M
Question: Is there a solution for S under M?

is undecidable. This example is based on [Kolaitis et al., 2006, Theorem 3.6]. A
different example based on the halting problem for Turing machines is sketched
in Kolaitis [2005], and an example based on Post’s correspondence problem is
sketched in Hernich and Schweikardt [2010]. Note that the difficulty in proving
the undecidability of Existence-of-Solutions(M) is that M is fixed. If M
would be part of the input, undecidability would easily follow from Trakhten-
brot’s Theorem (see, e.g., Ebbinghaus and Flum [1999], Libkin [2004]).

1.14 Example (Embedding problem for finite semigroups)
Consider the embedding problem for finite semigroups, which is defined as fol-
lows:

1.1. The Central Concepts of Relational Data Exchange 11

Embedding problem for finite semigroups
Input: a partial function p : X2 → X, where X is a finite set
Question: Is there a finite set Y ⊇ X and a total function f : Y 2 → Y

such that f is associative, and f extends p (i.e., if p(x, y) is
defined, then f(x, y) = p(x, y))?

This problem was shown to be undecidable in Kolaitis et al. [2006].
An input p : X2 → X to this problem can be represented by an instance

Sp over the schema σs := {R}, where RSp = {(x, y, z) ∈ X3 | p(x, y) = z}. A
solution f : Y 2 → Y can be represented by an instance Tf over the schema
σt := {R̃}, where R̃Tf = {(x, y, z) ∈ Y 3 | f(x, y) = z}.

It is now easy to construct a FO sentence ϕ over σs ∪ σt such that for a
given partial function p : X2 → X, there is a solution for Sp under the schema
mapping M = ({R}, {R̃}, {ϕ}) if and only if there is a finite set Y ⊇ X and
a total function f : Y 2 → Y that is associative and extends p. Indeed, we can
choose

ϕ := ∀x∀y∀z
(
R(x, y, z)→ R̃(x, y, z)

)
︸ ︷︷ ︸

“R ⊆ R̃”

∧ ∀x∀y∀z∀z′
(
R̃(x, y, z) ∧ R̃(x, y, z′)→ z = z′

)
︸ ︷︷ ︸

“R̃ is the graph of a function f”

∧ ∀x∀y
(
ψR̃(x) ∧ ψR̃(y)→ ∃zR̃(x, y, z)

)
︸ ︷︷ ︸

“f is a total function”

∧ ∀x∀y∀z∀u∀v∀w(R̃(x, y, u) ∧ R̃(u, z, v) ∧ R̃(y, z, w)→ R̃(x,w, v))︸ ︷︷ ︸
“f is associative”

,

where

ψR̃(x) := ∃x1∃x2∃x3
(
R̃(x1, x2, x3) ∧

3∨
i=1

x = xi
)

defines the set of values contained in R̃.
One therefore considers less powerful, but still sufficiently expressive, frag-

ments of FO logic to define schema mappings, such as the following types of
FO sentences:

• Source-to-target tuple-generating dependencies (st-tgds). These are FO
sentences of the form

∀x̄∀ȳ(ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)),

12 Chapter 1. Introduction

where ϕ is a conjunction of relational atomic FO formulas (i.e., conjunc-
tions of atomic FO formulas of the form R(t̄)) over the source schema,
and ψ is a conjunction of relational atomic FO formulas over the target
schema.

• Target tuple-generating dependencies (t-tgds). These are FO sentences of
the form

∀x̄∀ȳ(ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)),

where ϕ and ψ are conjunctions of relational atomic FO formulas over the
target schema.

• Equality-generating dependencies (egds). These are FO sentences of the
form

∀x̄(ϕ(x̄)→ xi = xj),

where ϕ is a conjunction of relational atomic FO formulas over the target
schema, x̄ = (x1, . . . , xk) for some integer k ≥ 2, and i, j ∈ {1, . . . , k}.

By a tgd we mean a st-tgd or a t-tgd. A full tgd is a tgd without existentially
quantified variables z̄.

For algorithmic results, we restrict our attention to schema mappings de-
fined by tgds and egds. On the other hand, for non-algorithmic results like
query answering semantics, we consider schema mappings that are as general
as possible.

In Example 1.13, χ1 is a st-tgd, χ3 is an egd, χ4 is a t-tgd. However, χ2
is neither a tgd nor an egd. A reformulation of the schema mapping from
Example 1.13 using tgds and egds is given in the following example:

1.15 Example (Library database restructuring, continued)
The schema mapping from Example 1.13 (more precisely, an approximation to
that schema mapping) can be specified as M = (σs, σt,Σ), where Σ consists of:

χ1 = ∀x1∀x2
(
Books(x1, x2)→ ∃zBookInfo(x1, x2, z)

)
,

χ′2 = ∀x1∀x2
(
Authors(x1, x2)→ ∃z(AuthorList(z, x2) ∧WrittenBy(x1, z))

)
,

χ3 = ∀x1∀x2∀x3
(
AuthorList(x1, x2) ∧ AuthorList(x1, x3)→ x2 = x3

)
,

χ4 = ∀x1∀x2
(
WrittenBy(x1, x2)→

∃z1∃z2∃z3(BookInfo(x1, z1, z2) ∧ AuthorList(x2, z3))
)
.

1.2. Research Topics in Relational Data Exchange 13

Note that, given a source instance S for the schema mapping M from Ex-
ample 1.15, every solution for S under M is a solution for S under the schema
mapping from Example 1.13, but not vice versa. Usually, one does not intend
to fully specify a schema mapping, as in Example 1.13. One rather specifies
only certain properties of solutions, as in Example 1.15, and tries to compute a
“good” solution that reflects the source instance as accurately as possible.

The question of which solutions are “good” solutions is of fundamental inter-
est in relational data exchange. A desirable property of such “good” solutions
is that they can be computed efficiently on important classes of schema map-
pings. This means that for fixed schema mappings M from such a class, there
is a polynomial time algorithm that takes a source instance for M as input,
and outputs a “good” solution if it exists. The assumption that the schema
mapping is fixed is typical in data exchange (see, e.g., Fagin et al. [2005a,b],
Kolaitis [2005], Barceló [2009], Hernich and Schweikardt [2010]), though there
are exceptions such as, for example, Kolaitis et al. [2006]. In this thesis, we
also make this assumption. Another desirable property of “good” solutions is
that the result of a query against the target can be computed from the solution,
without referring to the schema mapping or the source instance. This property
is motivated by the basic assumption underlying (relational) data exchange that
the schema mapping and the source data may not be available once the data
translation has been performed (see, e.g., Fagin et al. [2005a]). Furthermore,
the result of a query should intuitively not depend on a particular materialized
solution. The importance of this property becomes clearer when we deal with
the issue of how to answer queries in Section 1.3.

One particular kind of “good” solutions are the universal solutions intro-
duced by Fagin et al. [2005a], which, intuitively, are “most general” solutions,
and are studied in depth in Chapter 2 (strictly speaking, universal solutions
are “good” with respect to properly restricted schema mappings specified by
tgds and egds, and with respect to a large class of queries including unions of
conjunctive queries). The solution T ∗ from Example 1.5 is a universal solution
for the source instance S∗ under the schema mapping M from Example 1.15.

1.2 Research Topics in Relational Data Exchange

Identifying classes of solutions that are “good” in the sense described at the
end of Section 1.1 is certainly a fundamental research topic in relational data
exchange. Several notions of potential “good” solutions have been proposed in
the literature [Fagin et al., 2005a, Libkin, 2006, Hernich and Schweikardt, 2007,
Libkin and Sirangelo, 2008, Afrati and Kolaitis, 2008]. We already mentioned
the universal solutions from Fagin et al. [2005a], and we will present the other

14 Chapter 1. Introduction

solution concepts throughout this thesis, however, with a different focus. Her-
nich and Schweikardt [2010] surveys results on the question of which solutions
are “good” solutions.

Results concerning the complexity of computing various kinds of solutions
have been obtained in the literature [Kolaitis et al., 2006, Fagin et al., 2005a,b,
Hernich and Schweikardt, 2007, Gottlob and Nash, 2008]. Some of these results
will be mentioned in Chapter 2.

One topic that has gained a lot of attention in the past few years is the
semantics of operators for manipulating schema mappings. In particular, com-
position [Fagin et al., 2005c, Libkin and Sirangelo, 2008] and inversion [Fagin,
2007, Fagin et al., 2008b, Arenas et al., 2009b, Fagin et al., 2009] of schema
mappings have been considered. These operators are important in relational
data exchange for composing specifications of schema mappings, or undoing
the effect of data exchange. Moreover, they are basic components of the model
management framework introduced by Bernstein [2003] to deal with meta-data
problems. Besides the semantics of schema mapping composition and inversion,
the following questions have been addressed by the articles cited above:

• Which logical languages are needed to define the composition or the in-
verse of schema mappings as a new schema mapping?

• What is the complexity of computing the composition or the inverse of
schema mappings?

First steps towards a theory of schema mapping optimization (e.g., minimi-
zation)—a topic that is closely related to schema mapping composition and
inversion—were made by Fagin et al. [2008a]. In particular, the authors studied
various notions of equivalences between schema mappings.

Structural properties of schema mappings are the focus of Arenas et al. [2004]
and ten Cate and Kolaitis [2009]. In Arenas et al. [2004], structural properties
are used to show that certain queries cannot be answered over some “nice”
universal solution (using the certain answers semantics of Fagin et al. [2005a],
to be introduced in the next section). In ten Cate and Kolaitis [2009], languages
for specifying schema mappings (such as the set of all st-tgds) are characterized
in terms of structural properties of schema mappings.

A large part of the literature on relational data exchange deals with query
answering. Some of these articles [Fagin et al., 2005a, Mądry, 2005, Arenas
et al., 2004, 2009a] focus on the basic certain answers semantics by Fagin et al.
[2005a], while others [Fagin et al., 2005b, Libkin, 2006, Hernich and Schweikardt,
2007, Libkin and Sirangelo, 2008, Afrati and Kolaitis, 2008, Hernich, 2010] focus
on alternative query answering semantics. Let us now turn to the question of
how to answer queries in relational data exchange.

1.3. How to Answer Queries in Relational Data Exchange? 15

1.3 How to Answer Queries in Relational Data Exchange?

One of the major issues in data exchange is query answering, which refers to
the problem of answering queries that are posed against target data (see Fagin
et al. [2005a]). Before going into the details of query answering in the context of
relational data exchange, let us review some basic definitions regarding queries.
A comprehensive treatment of queries can be found in Abiteboul et al. [1995].

A query over a schema σ is a mapping q : inst(σ) → Domk, where k is a
nonnegative integer, and q(I) is finite for every instance I over σ. We also say
that q is a k-ary query over σ, and call ar(q) := k the arity of q. The set q(I)
is called the result of q on I. Answering (or evaluating) q on an instance I over
σ means to compute q(I).

In a similar way as for schema mappings, we restrict attention to generic
queries. A query q over a schema σ is called C-generic for some set C ⊆ Const
if and only if for all instances I over σ, and for all bijective mappings π : Dom→
Dom, where π(c) = c for all c ∈ C, we have q(π(I)) = π(q(I)):

I π(I)

q(I) π(q(I))

q

π

π

q

A query q over a schema σ is called generic if there is a finite set C ⊆ Const
such that q is C-generic.

1.16 Proviso (Queries)
We consider generic queries, unless stated otherwise.

We will almost always deal with queries defined by logical formulas. Given a
formula ϕ (e.g., a FO formula, or a L∞ω formula) over a schema σ, and a tuple
x̄ = (x1, . . . , xk) of pairwise distinct variables with free(ϕ) = {x1, . . . , xk}, let
qϕ,x̄ be the k-ary query over σ with

qϕ,x̄(I) := {(α(x1), . . . , α(xk)) | α is an assignment for ϕ with I |= ϕ(α)}

for every instance I over σ. Since we consider only domain-independent formulas
ϕ, we have

qϕ,x̄(I) = {(α(x1), . . . , α(xk)) | α : free(ϕ)→ dom(I) ∪ dom(ϕ), I |= ϕ(α)}.

We often identify qϕ,x̄ with the formula ϕ, assuming that the ordering of the
free variables x1, . . . , xk is clear from the context or does not matter. In this

16 Chapter 1. Introduction

case, we also write ϕ(I) instead of qϕ,x̄(I). We write ϕ(x1, . . . , xk) to make the
ordering x1, . . . , xk explicit. For example,

ϕ(x1, x2) := ∃z
(
E(x1, z) ∧ E(z, x2)

)
(1.1)

denotes the query qϕ,(x1,x2) such that for every instance I over {E},

ϕ(I) = qϕ,(x1,x2)(I) = {(v1, v2) ∈ dom(I)2 | there is some w ∈ dom(I) with
(v1, w) ∈ EI and (w, v2) ∈ EI}.

A FO query is a query qϕ,x̄, where ϕ(x̄) is a FO formula. For example, the
query (1.1) is a FO query. It can be shown that all FO queries are generic.
Moreover, all queries defined by L∞ω formulas containing a finite number of
constants are generic.

1.17 Remark (Query languages)
A number of query languages of different expressive power have been considered
in the database literature (see, e.g., Abiteboul et al. [1995]). I assume that the
reader is familiar with the most basic query languages (such as (unions of)
conjunctive queries and Datalog queries) and the complexity of evaluating such
queries on an instance. If we give a definition of a certain type of query, we will
do this just to fix a common notation. We will often tacitly use the fact that
the data complexity of FO queries (in particular, unions of conjunctive queries)
and of Datalog queries is in PTIME. That is, given a query q that is a FO
query or a Datalog query, there is a polynomial time algorithm that takes an
instance I as input and outputs q(I).

In the context of relational data exchange, query answering refers to the
following problem: we are given a schema mapping M , a source instance S for
M , and a query q over M ’s target schema, and the task is to answer q with
respect to M and S. The key issues are:

1. Typically, there is more than one solution for S under M , so that it is not
a priori clear what the answer to q with respect to M and S should be.
This is illustrated by Example 1.18 below.

2. We cannot assume that M and S are available after the data exchange
has been performed. Therefore, we have to identify a notion of “good”
solutions that can be computed in order to obtain the answers to queries
directly from that solution.

The following example illustrates the first issue.

1.3. How to Answer Queries in Relational Data Exchange? 17

1.18 Example (Library database restructuring, continued)
Recall the schema mapping M from Example 1.15 and the source instance S∗
from Example 1.4. A natural FO query over M ’s target schema is

q1(x) := ∃y∃z∃u
(
BookInfo(y, “Foundations of Databases”, z)∧

WrittenBy(y, u) ∧ AuthorList(u, x)
)
,

which asks for the names of all authors of the book “Foundations of Databases”.
It is easy to see that for every solution T for S∗ under M , we have

{“Serge Abiteboul”, “Richard Hull”, “Victor Vianu”} ⊆ q1(T). (1.2)

For the solution T ∗ from Example 1.5, q1(T ∗) contains precisely the three names
“Serge Abiteboul”, “Richard Hull” and “Victor Vianu”. On the other hand,
there are solutions T for S∗ under M , where the inclusion (1.2) is strict. For
example, for the solution T ′ for S∗ under M with

BookInfoT ′ = {(“0-201-53771-0”, “Foundations of Databases”, ⊥1),
(“0-201-53082-1”, ⊥2, ⊥3)},

AuthorListT ′ = {(⊥4, “Serge Abiteboul”), (⊥5, “Richard Hull”),
(⊥6, “Victor Vianu”), (⊥7, “Christos H. Papadimitriou”),
(⊥8, “Jeffrey D. Ullman”)},

WrittenByT ′ = {(“0-201-53771-0”, ⊥4), (“0-201-53771-0”, ⊥5),
(“0-201-53771-0”, ⊥6), (“0-201-53082-1”, ⊥7),
(“0-201-53771-0”, ⊥8)},

q1(T ′) consists of the names “Serge Abiteboul”, “Richard Hull”, “Victor Vianu”
and “Jeffrey D. Ullman”. So what should be the answer to q1 with respect to
M and S?

One way to deal with the first issue is to separate the data translation task
from query answering: If we are given a query q over M ’s target schema, we
imagine that a solution T for S under M has already been produced, and just
evaluate q on T . That is, we do not care about the fact that T is the result
of translating S according to M—we just view T as an ordinary instance, and
evaluate q on T as we usually do on such an instance. However, as demonstrated
in Example 1.18, the result of the query then depends on the particular solution.
Even more, Example 1.18 shows that for some solutions T , the result of q1 on
T contains information that is neither present in the schema mapping nor in
the source instance. For example, the result of q1 on T ′ tells us that “Jeffrey

18 Chapter 1. Introduction

D. Ullman” is one of the authors of the book “Foundations of Databases”, but
this information is neither contained in M nor in S∗.

As a work-around, we could compute (in some deterministic way) an “appro-
priate” solution (i.e., every source instance S is assigned to precisely one such
“appropriate” solution TS that is computed whenever S needs to be translated
to the target schema), and declare the result of a query to be the result of the
query on that solution. However, to answer the question of what an “appropri-
ate” solution is, it seems to be indispensable to first identify an “appropriate”
way of answering queries.

In Fagin et al. [2005a], an approach based on the notion of the certain
answers has been proposed to answer queries in relational data exchange. This
approach is described next.

1.3.1 The Certain Answers Semantics

The certain answers semantics has been introduced by Fagin et al. [2005a] to
answer queries in relational data exchange. As the name suggests, it is based
on the notion of the certain answers, which is commonly used for answering
queries on incomplete instances.

An incomplete instance I over a schema σ is a set of ground instances over
σ (see, e.g., Abiteboul et al. [1995]). Such an instance models an instance with
incomplete information: just think of I as representing an unknown instance
I, where I can turn out to be any of the instances in I. The instances in I
are called the possible worlds of I. Given a query q over σ, several ways of
evaluating q on I have been proposed in the literature (cf., van der Meyden
[1998]). A common way is to take the certain answers to q on I:

1.19 Definition (The certain answers for incomplete instances)
Let I be an incomplete instance over a schema σ, and let q be a query over σ.
The certain answers to q on I are defined as

cert(q, I) :=
⋂
{q(I) | I ∈ I}.

Here, for a set X, ⋂X denotes the intersection of all sets in X. Thus, cert(q, I)
consists of all tuples that occur in q(I) for all possible worlds I of I.

LetM be a schema mapping, and let S be a source instance forM . Basically,
the set sol(M,S) can be regarded as an incomplete instance over M ’s target
schema. Indeed, this makes perfect sense: think of the result of the translation
of S according to M as an unknown solution for S under M ; the unknown
solution could turn out to be any of the solutions in sol(M,S). Fagin et al.
[2005a] therefore proposed to answer a query q with respect to M and S by

1.3. How to Answer Queries in Relational Data Exchange? 19

the certain answers to q on M and S, defined as the set of all tuples that are
contained in q(T) for all solutions T for S under M .

However, depending on the particular query, evaluating the query this way
may lead to counter-intuitive answers. The reason is that sol(M,S) may con-
tain instances with nulls (i.e., naive tables), which, as already indicated in
Section 1.1.1, serve as representations for incomplete instances. Indeed, recall
that nulls are placeholders for unknown constant values. Thus, each instantia-
tion of the nulls in a naive table T by constants gives rise to a possible world
of T . Formally, let a valuation of T be a mapping f : dom(T) → Const such
that for all c ∈ const(T) we have f(c) = c. Then, the set of all possible worlds
of (the incomplete instance represented by) T is

poss(T) := {f(T) | f is a valuation of T}.

If query answering on a naive table is not done with care, counter-intuitive
results may arise (see, e.g., Abiteboul et al. [1995], Imielinski and Lipski, Jr.
[1984]). Therefore, it is desirable to define query answering semantics based on
ground solutions only. Actually, in my opinion, naive tables should not be taken
into account for defining the semantics of query answering, since naive tables
just serve as representations for incomplete instances.

In the case of the certain answers semantics of Fagin et al. [2005a], the
certain answers can in fact be defined without referring to solutions with nulls
(cf., Proposition 1.21). Therefore, we define:

1.20 Definition (The certain answers for schema mappings)
Let M be a schema mapping, let S be a source instance for M , and let q be
a query over M ’s target schema. The certain answers to q on M and S are
defined as

cert(q,M, S) := cert(q, solgr(M,S)),
where solgr(M,S) is the set of all ground solutions for S under M .

1.21 Proposition.
Let M be a schema mapping, let S be a source instance for M , and let q be a
query over M ’s target schema. Then,

cert(q,M, S) =
⋂
{q(T) | T ∈ sol(M,S)}.

Proof. The inclusion from right to left is clear. To prove the inclusion from left
to right, assume that t̄ ∈ cert(q,M, S). We must show that t̄ ∈ q(T) for every
solution T for S under M .

Let T be a solution for S under M . Since q is generic, there is a finite set
C ⊆ Const such that q is C-generic. Let X := const(T) ∪ C, and let Y be the

20 Chapter 1. Introduction

set of all values u ∈ Dom for which there is a tuple (u1, . . . , uk) ∈ q(T) with u ∈
{u1, . . . , uk}. Pick bijective mappings f1 : Dom → Dom and f2 : Dom → Dom
such that

• f1(c) = f2(c) = c for each constant c ∈ X,

• f1 and f2 map each null in T to a constant, and

• f1(Y) ∩ f2(Y) ⊆ X.

Such mappings exist: First pick an arbitrary bijective mapping f1 : Dom→ Dom
such that f1(c) = c for each c ∈ X, and f1(⊥) ∈ Const for each ⊥ ∈ nulls(T).
Then pick a bijective mapping f2 : Dom → Dom such that f2(c) = c for each
c ∈ X, f2(u) ∈ Const \ f1(Y) for each u ∈ Y \ X, and f2(⊥) ∈ Const for
each ⊥ ∈ nulls(T) \ Y . This is possible, since q(T) is finite by definition, and
therefore, Y and f1(Y) are finite.

Let i ∈ {1, 2}. Since M is generic, fi(T) is a ground solution for S under
M . Together with t̄ ∈ cert(q,M, S), we have t̄ ∈ q(fi(T)), and C-genericity of
q implies t̄ ∈ fi(q(T)). We now have t̄ ∈ f1(q(T)) ∩ f2(q(T)), which, together
with f1(Y) ∩ f2(Y) ⊆ X, implies that all values that occur in t̄ belong to X.
Consequently, t̄ = f−1

1 (t̄) ∈ f−1
1 (f1(q(T))) = q(T).

1.22 Example (The certain answers to q1 from Example 1.18)
Recall the schema mapping M from Example 1.15, the source instance S∗ from
Example 1.4, and the FO query q1 from Example 1.18. Eq. (1.2) implies

{“Serge Abiteboul”, “Richard Hull”, “Victor Vianu”} ⊆ cert(q1,M, S∗).

On the other hand, if T ∗ is the solution for S∗ underM from Example 1.5, then
q1(T ∗) contains precisely the three names “Serge Abiteboul”, “Richard Hull”
and “Victor Vianu”. Thus,

cert(q1,M, S∗) = {“Serge Abiteboul”, “Richard Hull”, “Victor Vianu”},

which is certainly the result that one intuitively expects.

1.23 Example (The certain answers to another simple query)
Consider the schema mapping M and the source instance S∗ for M from Ex-
ample 1.15 and Example 1.4, respectively. For the query

q2(x) := ∃yBookInfo(y, x, “DB”),

which asks for the titles of all books with genre “DB”, we have cert(q2,M, S∗) =
∅. Intuitively, this is the only reasonable result, since neitherM nor S∗ provides
any information about book genres, except that each book has a genre.

1.3. How to Answer Queries in Relational Data Exchange? 21

The certain answers semantics has been widely adopted as the right seman-
tics for answering monotonic queries. Given instances I and J over a schema
σ, we call I a subinstance of J , and we write I ⊆ J , if and only if for all R ∈ σ
we have RI ⊆ RJ . Then, a query q over a schema σ is called monotonic if and
only if for all instances I and J over σ with I ⊆ J , we have q(I) ⊆ q(J). Mono-
tonic queries form a fundamental class of queries that contains, for example, all
conjunctive queries and all unions of conjunctive queries.

1.24 Definition (Conjunctive query, union of conjunctive queries)
A union of conjunctive queries over a schema σ is a FO query over σ of the
form

ϕ(x̄) = ∃ȳ1 ψ1(x̄, ȳ1) ∨ · · · ∨ ∃ȳm ψm(x̄, ȳm), (1.3)

where for all i ∈ {1, . . . ,m}, ψi is a FO formula of the form R1(ū1)∧· · ·∧Rn(ūn)
(with n ≥ 1 and R1, . . . , Rn ∈ σ), and each variable x in x̄ is a free variable in
ψi. A conjunctive query is a query of the form (1.3), where m = 1.

Surprisingly, although the definition of the certain answers involves an in-
tersection over an infinite set, it has been shown in Fagin et al. [2005a] that the
certain answers to unions of conjunctive queries can be computed from an arbi-
trary universal solution by first evaluating the query on the universal solution,
and then removing all tuples with nulls from the result. Details on this are given
in Chapter 2. In order to be able to answer unions of conjunctive queries on the
target, it therefore suffices to translate source instances to universal solutions.
A similar result holds for monotonic queries and an appropriate extension of
the notion of universal solutions [Deutsch et al., 2008]. Details on this are given
in Chapter 2 as well.

1.3.2 Coping With Implicit Information

It has been observed by several authors (e.g., Fagin et al. [2005a], Arenas et al.
[2004], and Libkin [2006]) that, for some non-monotonic queries, the certain
answers semantics leads to answers that intuitively do not seem to be accurate.
Let us give a concrete example to illustrate this issue.

1.25 Example (Copying schema mappings)
Consider the schema mapping M = ({R}, {R′},Σ), where R and R′ are binary
relation symbols, and Σ consists of the st-tgd

∀x1∀x2
(
R(x1, x2)→ R′(x1, x2)

)
.

Taking into account that M specifies a translation from source to target, a
natural interpretation of M is “copy the relation R into the relation R′”. This

22 Chapter 1. Introduction

is the reason why schema mappings like M are often called copying schema
mappings (see, e.g., Arenas et al. [2004], Libkin [2006]). Given a source instance
S for M , it therefore seems natural to assume that the only possible result of
translating S to the target is the target instance TS for M with (R′)TS = RS

(the result of copying R to R′). This corresponds to the closed world assumption
(CWA) (see, e.g., Reiter [1978], Libkin [2006]).2

Admittedly, the CWA-based interpretation is a matter of opinion. In some
situations, it may be more natural to assume nothing about tuples t̄ ∈ Dom2

that do not occur in RS. That is, it may be more natural to leave open the
possibility whether such a tuple t̄ belongs to R′ or not, and consider every
solution for S under M as a possible result of translating S to the target.
This corresponds to the open world assumption (OWA) (see also Reiter [1978],
Libkin [2006]). Note that under the OWA-based interpretation, the certain
answers semantics leads to the expected query results. Nevertheless, in many
situations, the CWA-based interpretation seems to be more natural.

If we adopt the CWA-based interpretation, then the certain answers seman-
tics may lead to answers that intuitively do not seem to be accurate. Specifically,
consider the query

q(x) := ∃y
(
R′(x, y) ∧ ¬R′(y, x)

)
over M ’s target schema. Since for a given source instance S for M , we assume
that TS is the only possible outcome of translating S to the target, it seems to
be reasonable to expect that the answer to q on M and S is the answer to q
on TS. In particular, given the source instance S for M with RS = {(a, b)},
we would expect the answer to be q(TS) = {a}. However, contrary to this
expectation, we have cert(q,M, S) = ∅, since the target instance T for M with
(R′)T = {(a, b), (b, a)} is a ground solution for S under M .

Furthermore, the following example shows that the certain answers seman-
tics behaves in a rather unexpected way on Boolean queries. Recall that a
Boolean query is a query of arity 0. Thus, the result of a Boolean query is
either the empty set (which is interpreted as no) or the set that contains the
empty tuple (which is interpreted as yes).

1.26 Example (Arenas et al. [2004])
This example is an adaptation of Proposition 5.4 of Arenas et al. [2004] to the
copying schema mapping M = ({R}, {R′},Σ) from Example 1.25. Let q be
a non-trivial Boolean query over {R′} (i.e., q is not always true, and q is not

2For the moment, we do not need the general definition of the CWA. We use CWA just to
refer to the assumption that the only possible result of translating S to the target is TS . A
precise definition of the CWA and variants thereof will be given in Chapters 3, 4 and 5.

1.3. How to Answer Queries in Relational Data Exchange? 23

always false). It seems to be natural to expect that there is a source instance
S1 for M such that the answer to q on M and S1 is true, and a source instance
S2 for M such that the answer to q on M and S2 is false. However, contrary to
this expectation, we have

• cert(q,M, S) = ∅ for all source instances S for M , or

• cert(¬q,M, S) = ∅ for all source instances S for M .

That is, q or ¬q has a trivial result that does not depend on the source instance.
Indeed, suppose that cert(q,M, S) 6= ∅ for some source instance S for M .

Then for every ground solution T for S under M , we have q(T) 6= ∅. We use
this to show that for all source instances S ′ for M we have cert(¬q,M, S ′) = ∅.
Let S ′ be a source instance for M . Pick a ground solution T1 for S under M ,
and a ground solution T2 for S ′ under M . Then the target instance T for M
with (R′)T = (R′)T1 ∪ (R′)T2 is both a ground solution for S under M , and a
ground solution for S ′ under M . Since T is a ground solution for S under M ,
we have q(T) 6= ∅, and in particular, ¬q(T) = ∅. Since T is a ground solution
for S ′ under M , this implies cert(¬q,M, S ′) = ∅.

Taking into account the definition of logically defined schema mappings, it
is no surprise that the certain answers semantics behaves this way. In fact,
these effects are just consequences of underspecifying schema mappings. For
example, to obtain the CWA-based interpretation of the schema mapping M in
Example 1.25, one could add the FO sentence

∀x1∀x2
(
¬R(x1, x2)→ ¬R′(x1, x2)

)
toM . Then TS would be the only solution for a source instance S underM , and
the certain answers semantics intuitively yields the expected results. Note also
that for the modified schema mapping, the certain answers semantics does not
exhibit the “strange” behavior demonstrated in Example 1.26. However, while
this approach is feasible for simple schema mappings such as those in Exam-
ple 1.25, it seems to be infeasible or at least tedious for more complex schema
mappings. Furthermore, one would have to fully specify schema mappings,
which is not what one usually wants to do in practice.

Nevertheless, the above examples show that it is often natural to interpret
schema mappings M and source instances S for M with respect to certain
additional information on the target, which can be imagined to be implicit in
M and S. Namely, when adopting the CWA, sinceM and S specify a translation
of S from the source schema to the target schema, it is natural to interpret M
and S as if all data, for whichM and S do not explicitly mention the possibility
of occurring in the target, do not occur in the target. In Example 1.25, we

24 Chapter 1. Introduction

implicitly assumed that none of the tuples in Dom2 \ RS—of which M and S
do not explicitly mention that they are contained in R′—belongs to R′. If, in
Example 1.25, we would answer q on M and S by the certain answers to q
on {TS} (the set of all possible outcomes of translating S to the target with
respect to the information that none of the tuples in Dom2 \RS belongs to R′),
we would obtain the expected query result {a}. Furthermore, answering queries
on M and S by the certain answers on {TS} does not exhibit the behavior of
the certain answers semantics described in Example 1.26. A further example is:

1.27 Example (Library database restructuring, continued)
Consider the schema mapping M and the source instance S∗ for M from Ex-
ample 1.15 and Example 1.4, respectively. Consider also the FO query

q3(x) := ∃y∃z BookInfo(x, y, z)∧
¬∃y

(
WrittenBy(x, y) ∧ AuthorList(y, “Serge Abiteboul”)

)
,

which asks for all ISBN numbers of books where “Serge Abiteboul” is not an
author. Since “0-201-53082-1” is the only ISBN number in S∗ that is not as-
sociated with “Serge Abiteboul”, and M and S∗ intuitively do not explicitly
mention the possibility of an association of “0-201-53082-1” and “Serge Abite-
boul” in the target, it seems to be natural to assume the answer to q3 on M
and S∗ to be {0-201-53082-1}. Here, we implicitly assume that there are no
tuples in AuthorList and WrittenBy that associate “Serge Abiteboul” with the
ISBN number “0-201-53082-1”. We do this, since, intuitively, M and S∗ do not
explicitly mention the possibility of such an association.

Of course, as argued in Example 1.25, it may make perfect sense to assume no
additional information on the target, in which case the certain answers semantics
leads to the desired results. However, in the remainder of this thesis, we consider
the case that schema mappings and source instances are interpreted with respect
to certain implicit information as described above.

Note that, being an intuitive notion, there are several ways of capturing
implicit information in schema mappings and source instances. In fact, several
semantics for query answering using implicit information have been proposed
in the literature [Libkin, 2006, Hernich and Schweikardt, 2007, Libkin and Sir-
angelo, 2008, Afrati and Kolaitis, 2008, Hernich, 2010]. Depending on the par-
ticular application and one’s point of view, one or the other of these semantics
may be useful. In this thesis, I will describe these semantics in more detail. All
of these semantics are based on the following ideas. Given a schema mapping
M and a source instance S for M :

1. We identify a subset S of all solutions for S under M that is intended to
be the set of all possible outcomes of translating S to the target if implicit
information—in the formalized sense—is taken into account.

1.4. Contributions of this Thesis 25

2. Given a query q over M ’s target schema, we answer q on M and S using
the set S, typically by taking the certain answers to q on S.

For example, given the copying schema mapping M from Example 1.25 and a
source instance S for M , we would like to have S = {TS}. Then, the certain
answers to q on S yield the expected result q(TS).

It should be mentioned here that Fagin et al. [2005b] also proposed a seman-
tics for overcoming the counter-intuitive behavior of the certain answers seman-
tics on non-monotonic queries. Their semantics is based on universal solutions.
More precisely, queries are answered by the certain answers over universal so-
lutions. This semantics has very nice properties. For example, the answers to
an existential query can be computed by first evaluating the query on the core
of the universal solutions, and then removing from the set of answers all tuples
containing a null. However, as observed by Arenas et al. [2004] (see the full ver-
sion) and mentioned by Libkin [2006], that semantics exhibits counter-intuitive
behavior, too. To learn more about the universal solution-based semantics, the
interested reader is referred to Fagin et al. [2005b].

1.4 Contributions of this Thesis

The contributions of this thesis can be subdivided into three parts: the com-
plexity of computing universal solutions, semantics for query answering using
implicit information, and the complexity of evaluating queries using implicit
information. In the following, these three parts are described in more detail.

The Complexity of Computing Universal Solutions

Universal solutions, which are studied in depth in Chapter 2, are “good” solu-
tions in the sense that they are “most general”, and that the certain answers
to a large number of queries, including unions of conjunctive queries, can be
computed directly from a universal solution [Fagin et al., 2005a,b, Arenas et al.,
2009a]. This thesis’ main contribution concerning the complexity of computing
universal solutions is that there is a fixed schema mapping M defined by tgds
only such that it is undecidable whether a given source instance for M has a
universal solution under M (Theorem 2.33). This result appeared in Hernich
and Schweikardt [2007], and strengthens a result of Deutsch et al. [2008].

The proof of this theorem has several consequences concerning chase termi-
nation. The chase—a standard tool in database theory—is a procedure that
takes an instance I and a set Σ of tgds and egds, and iteratively tries to modify
I so that the resulting instance satisfies Σ. Since it was shown in Fagin et al.
[2005a] that the chase can be used to compute universal solutions for schema

26 Chapter 1. Introduction

mappings defined by tgds and egds, the chase has proved to be an indispens-
able tool in relational data exchange. Unfortunately, the chase does not always
terminate. To this end, various conditions for chase termination have been pro-
posed in the literature. All of these conditions are sufficient, but not necessary
for chase termination. In fact, the proof of Theorem 2.33 implies that there is
no decidable condition that is both sufficient and necessary for chase termina-
tion: chase termination is undecidable, even with respect to some fixed set of
tgds (Corollary 2.34). This also strengthens a result of Deutsch et al. [2008].

Semantics for Query Answering Using Implicit Information

This thesis introduces and studies a number of query answering semantics that
take into account implicit information in schema mappings and source instances.
In the following, semantics contributed by this thesis are listed. These semantics
can be divided into two groups.

The first group consists of semantics based on CWA-solutions. CWA-solu-
tions are particular solutions that have been proposed by Libkin [2006] (together
with corresponding query answering semantics) to answer queries in relational
data exchange. Libkin designed CWA-solutions for the case of schema mappings
defined by st-tgds. CWA-solutions are based on the CWA in the following sense:

1. Every tuple must be justified in some sense by the schema mapping and
the source instance.

2. Each justification is used at most once.

3. A CWA-solution contains only “facts” that follow from the schema map-
ping and the source instance.

This thesis extends the definition of CWA-solutions to the more general case
of schema mappings defined by tgds and egds (see Chapter 3). The main dif-
ficulty is to formalize the first two requirements. These are characterized by a
derivation-based approach based on a suitably controlled version of the chase,
and by a game-based approach. Moreover, the structure of the set of all CWA-
solutions for given source instances and schema mappings, and the complexity
of computing CWA-solutions is analyzed. In particular, it is shown that

• CWA-solutions are universal solutions that are derivable in some sense
from the source instance using the tgds and egds,

• CWA-solutions exist if and only if universal solutions exist, and

• the core of the universal solutions (the “smallest” universal solution in
the case of schema mappings defined by tgds and egds; cf., Fagin et al.
[2005b], or Chapter 2) is the “smallest” CWA-solution.

1.4. Contributions of this Thesis 27

Finally, results on the complexity of evaluating queries under the CWA-solution-
based semantics are obtained. Details on this are given below. All of the above-
mentioned results were published in Hernich and Schweikardt [2007].

The assumptions underlying the CWA-solution-based semantics reflect the
operational point of view on tgds and egds. That is, tgds are considered as rules
for deriving tuples, and egds are considered as rules for identifying values. Con-
sequently, these semantics do not take into account logical equivalence of schema
mappings. This means that there are schema mappings M1 = (σs, σt,Σ1) and
M2 = (σs, σt,Σ2), where Σ1 and Σ2 are logically equivalent sets of tgds and
egds, an instance S over σs, and a query q over σt such that the answer to q
on M1 and S differs from the answer to q on M2 and S. Furthermore, query
answers with respect to the CWA-solution-based semantics do not necessarily
reflect the standard semantics of first-order quantifiers (e.g., existential quan-
tifiers express that there are one, two, three or more elements that satisfy the
given property, but this is not necessarily reflected by the CWA-solution-based
semantics). Examples are given in Section 3.6.

The second group of semantics contributed by this thesis have been consid-
ered with the goal of finding semantics that

1. take into account implicit information in schema mappings and source
instances,

2. respect logical equivalence of schema mappings, and

3. reflect the standard semantics of FO quantifiers.

First, semantics for query answering on deductive databases are studied in the
framework of relational data exchange (see Chapter 4). In particular, semantics
based on Reiter’s CWA [Reiter, 1978], the generalized CWA (GCWA, for short)
[Minker, 1982], the extended GCWA (EGCWA, for short) [Yahya and Henschen,
1985], and the possible worlds semantics (PWS, for short) [Chan, 1993] are
studied. It turns out that in the context of relational data exchange, these
semantics seem to be either too weak (GCWA) or too strong (CWA, EGCWA),
and in one case (PWS), logical equivalence of schema mappings is not respected.

Inspired by the GCWA-semantics and the EGCWA-semantics, the GCWA∗-
answers semantics is developed in Chapter 5. Under the GCWA∗-answers se-
mantics, queries are answered by the certain answers on GCWA∗-solutions. In
contrast to the above-mentioned semantics and solution concepts, the GCWA∗-
answers semantics and GCWA∗-solutions are defined for all schema mappings
(rather than for schema mappings defined by tgds and egds). For schema map-
pings defined by st-tgds and egds, GCWA∗-solutions are just ground solutions

28 Chapter 1. Introduction

that are unions of ⊆-minimal solutions (solutions for which no proper subin-
stance is a solution). Finally, the GCWA∗-answers semantics is designed in such
a way that, intuitively, it meets the three goals 1–3 mentioned above.

The results concerning the second group of semantics were published in
Hernich [2010].

The Complexity of Evaluating Queries Using Implicit Information

This thesis also investigates the complexity of evaluating queries under query
answering semantics that take into account implicit information in schema map-
pings and source instances. We concentrate on the data complexity, that is, the
complexity with respect to fixed schema mappings and fixed queries (schema
mappings and queries do not belong to the input).

Concerning the CWA-solution-based query answering semantics, we show
the following. First, it turns out that two of the CWA-solution-based seman-
tics coincide with the certain answers semantics on a large class of monotonic
queries, including unions of conjunctive queries, and source instances that have
a CWA-solution (see Section 3.4.1). Hence, results on evaluating the certain
answers to such queries obtained in the literature carry over to those seman-
tics. For each of the CWA-solution-based semantics, it is then shown that for
properly restricted schema mappings M , and FO queries q, the complexity of
the following problem is in co-NP or NP, depending on the particular semantics:
given a source instance S forM and a tuple t̄ ∈ Domar(q), does t̄ belong to the set
of answers to q onM and S under the corresponding semantics (Theorem 3.44)?
Furthermore, there is a simple schema mapping M , and a conjunctive query q
with one additional inequality such that this problem may be complete for the
corresponding complexity class (Theorem 3.45).

A larger part of this thesis deals with the complexity of evaluating queries
with respect to the GCWA∗-answers semantics. It is shown that the GCWA∗-
answers semantics and the certain answers semantics coincide on monotonic
queries (Proposition 5.10), so that all results on computing the certain answers
to such queries obtained in the literature directly apply to the GCWA∗-answers
semantics. However, there are simple schema mappings M defined by st-tgds
and simple existential queries q of the form ∃x̄ ϕ, where ϕ is a conjunction of
three relational atomic formulas and just one negated relational atomic formula,
such that the problem

Eval(M, q)
Input: a source instance S for M , and a tuple t̄ ∈ Domar(q)

Question: Is t̄ an answer to q with respect to the GCWA∗-answers se-
mantics?

1.4. Contributions of this Thesis 29

is co-NP-hard (Proposition 5.11). Permitting only one additional universal
quantifier can make this problem undecidable (Proposition 5.12), which is even
true for schema mappings defined by st-tgds. It seems then surprising that
Eval(M, q) is in PTIME for universal queries q (queries of the form ∀x̄ ϕ,
where ϕ is quantifier-free) and suitable restrictions on M . This follows from
the following result.

This thesis’ main contribution concerning the complexity of evaluating que-
ries using implicit information is Theorem 5.15:

For every schema mapping M defined by certain st-tgds (called
packed st-tgds), and for each universal query q over M ’s target
schema, there is a polynomial time algorithm that takes the core
of the universal solutions for some source instance S under M as
input and computes the GCWA∗-answers to q on M and S.

In my opinion, this is also the technically most challenging contribution of this
thesis. By standard results on computing the core of the universal solutions
(see, e.g., Fagin et al. [2005b] or Chapter 2), it implies that Eval(M, q) is in
PTIME if M is defined by packed st-tgds and q is a universal query over M ’s
target schema.

In the following, we give some details on how Theorem 5.15 is proved. We
first observe that it suffices to develop a polynomial time algorithm for the
following problem: given the core of the universal solutions for some source
instance S for M , and a tuple t̄ ∈ Constar(q), decide whether t̄ belongs to the
GCWA∗-answers to q onM and S. We then reduce this problem to the problem
of checking whether there is a union T of one or more ⊆-minimal instances
in poss(T0) (see Section 1.3.1 for the definition), where T0 is the core of the
universal solutions for S under M , such that T |= ¬q(t̄). The key step to this
result is a characterization of ground ⊆-minimal solutions for S under M as
⊆-minimal instances in poss(T0). By transforming ¬q into a kind of disjunctive
normal form, we can then focus without loss of generality on the case that ¬q is
logically equivalent to a formula q̄ = ∃x̄ ϕ, where ϕ is a conjunction of atomic
formulas and negations of atomic formulas. If ϕ consists of one atomic formula
and x̄ is the empty tuple, then the problem can be solved as follows. First,
we reduce the infinite set of all ⊆-minimal instances in poss(T0) to a set S of
possibly exponential size. The technically difficult part is then to identify a
particular subset S ′ of S of polynomial size with the “right” properties so that
all tuples that occur in ⊆-minimal instances of poss(T0) can be reconstructed
from the instances in S ′. Finally, for solving the general problem, we combine
partial solutions to a solution to the whole problem, where the results proved for
the case of one atomic formula help us to prove correctness of this construction.

30 Chapter 1. Introduction

1.5 Structure of this Thesis

This thesis consists of four main chapters, plus the introduction and the con-
clusion.

Chapter 2 deals with computing the certain answers to monotonic queries.
Most of this chapter is devoted to the special case of computing the certain
answers to queries that are preserved under homomorphisms—a fundamental
class of queries that contains, for example, all unions of conjunctive queries. In
particular, we review universal solutions and the core of the universal solutions,
which are the basic tools for computing the certain answers to such queries, and
are also used in other chapters of this thesis. Furthermore, we review techniques
and results on computing universal solutions. This chapter also presents one of
the main results of this thesis: that there is a schema mapping M defined by
tgds for which it is undecidable whether a given source instance for M has a
universal solution under M .

Chapter 3 introduces and studies CWA-solutions and the corresponding
query answering semantics. It also discusses generalizations as well as spe-
cializations of CWA-solutions that appeared in the literature. The final section
discusses some limitations of the CWA-solution-based semantics.

Chapter 4 studies several semantics for query answering on deductive data-
bases in the context of relational data exchange.

In Chapter 5, we finally introduce and study the GCWA∗-answers semantics.
This chapter comprises the technically most challenging result of this thesis,
namely that for each schema mapping M defined by packed st-tgds and for
each universal query q, there is a polynomial time algorithm that takes the core
of the universal solutions for S under M as input, and computes the GCWA∗-
answers to q on M and S.

2 Computing the Certain Answers
to Monotonic Queries

This chapter deals with computing the certain answers to monotonic queries.
Recall from Section 1.3.1 that a query q over a schema σ ismonotonic if and only
if for all instances I and J over σ with I ⊆ J , we have q(I) ⊆ q(J). Monotonic
queries form a fundamental class of queries that contains, for example, all unions
of conjunctive queries and all Datalog queries. As mentioned in Section 1.3.1,
the certain answers semantics has been widely adopted as the right semantics
for answering monotonic queries.

Up to date, the special case of computing the certain answers to queries that
are preserved under homomorphisms is best understood. Most of this chapter
(Section 2.1 to Section 2.3) is devoted to this problem. We will define in Sec-
tion 2.1 what it means for a query to be preserved under homomorphisms.
Examples of queries preserved under homomorphisms are unions of conjunctive
queries, and, more generally, Datalog queries. From Rossman [2008] and At-
serias et al. [2006] it even follows that every FO query that is preserved under
homomorphisms is logically equivalent to a union of conjunctive queries!

The central tool for computing the certain answers to queries preserved
under homomorphisms are universal solutions. Universal solutions were intro-
duced by Fagin et al. [2005a] as a formalization of the intuitive notion of “most
general solutions”, and they showed that the problem of computing the certain
answers to a number of queries preserved under homomorphisms (like unions of
conjunctive queries, and Datalog queries) essentially reduces to the problem of
query answering on universal solutions. In fact, the certain answers to queries
preserved under homomorphisms can be obtained by evaluating the query on a
universal solution, and removing all tuples from the result that contain a null.
A particularly important role plays the core of the universal solutions, intro-
duced in Fagin et al. [2005b], which, for schema mappings defined by tgds and
egds, is the “unique smallest” universal solution (up to isomorphism). A formal
definition of universal solutions and their core, and a more detailed explanation
of how universal solutions can be used to compute the certain answers to queries
preserved under homomorphisms are given in Section 2.1.

As already mentioned in Section 1.1.2, for algorithmic results, we restrict at-
tention to schema mappings defined by tgds and egds. For computing universal
solutions under such schema mappings, the chase—a standard tool in database
theory and proposed for computing universal solutions in Fagin et al. [2005a]—

32 Chapter 2. Computing the Certain Answers to Monotonic Queries

is essential. The chase is a procedure that takes an instance I and a finite set Σ
of tgds and egds as input, and iteratively tries to modify I so that the resulting
instance satisfies Σ. Unfortunately, the chase does not always terminate. To
this end, various sufficient conditions have been proposed in the literature that,
imposed on a set Σ of tgds and egds, ensure chase termination for every given
instance I. All these conditions are sufficient, but not necessary for chase ter-
mination. On the positive side, given a fixed schema mapping M = (σs, σt,Σ),
where Σ satisfies one of these chase termination conditions, there is a polynomial
time algorithm that takes a source instance S forM as input, and either outputs
a universal solution for S underM if a solution for S underM exists, or outputs
that there is no solution for S under M . A corresponding result concerning the
core of the universal solutions (and one particular of these chase termination
conditions) has been proved by Gottlob and Nash [2008]. Section 2.2 formally
defines the chase, and explains its application to computing universal solutions
in more detail. It also presents some of the conditions for chase termination,
and surveys state-of-the-art algorithms for computing the core of the universal
solutions.

Section 2.3 then presents one of the main results of this thesis. Namely, we
show that chase termination is undecidable, even with respect to some fixed
schema mapping defined by tgds. Even more, we show that there is a fixed
schema mapping M defined by tgds only such that the following problem is
undecidable: given a source instance S for M , is there a universal solution for
S under M? Parts of the results of Section 2.3 were published in Hernich and
Schweikardt [2007].

Finally, Section 2.4 reviews standard techniques and results on evaluating
queries that are not preserved under homomorphisms.

2.1 Review of Universal Solutions and Their Core

Universal solutions were introduced by Fagin et al. [2005a] as a formalization
of the intuitive notion of “most general solutions”. The formal definition of
universal solutions is based on homomorphisms:

2.1 Definition (Homomorphism)
Let I and J be instances over a schema σ. A homomorphism from I to J is a
mapping h : dom(I)→ dom(J) such that

• for all R ∈ σ and all t̄ ∈ RI , we have h(t̄) ∈ RJ , and

• for all c ∈ const(I), we have h(c) = c.

2.1. Review of Universal Solutions and Their Core 33

2.2 Definition (Universal solution)
LetM be a schema mapping, and let S be a source instance forM . A universal
solution for S underM is a solution T for S underM such that for all solutions
T ′ for S under M there is a homomorphism from T to T ′.

2.3 Example (Library database restructuring, continued)
Let M be the schema mapping from Example 1.15, and let S∗ be the source
instance for M from Example 1.4. Then it is not hard to see that the target
instance T ∗ from Example 1.5, with

BookInfoT ∗ = {(“0-201-53771-0”, “Foundations of Databases”, ⊥1),
(“0-201-53082-1”, ⊥2, ⊥3)},

AuthorsT ∗ = {(⊥4, “Serge Abiteboul”), (⊥5, “Richard Hull”),
(⊥6, “Victor Vianu”), (⊥7, “Christos H. Papadimitriou”)},

WrittenByT ∗ = {(“0-201-53771-0”, ⊥4), (“0-201-53771-0”, ⊥5),
(“0-201-53771-0”, ⊥6), (“0-201-53082-1”, ⊥7)},

is a universal solution for S∗ under M .
Indeed, let T be an arbitrary solution for S∗ under M . Since S∗∪T satisfies

the tgd χ′1 (see Example 1.15 for the definition of χ′1), there must be some value
u1 such that BookInfoT contains the tuple

(“0-201-53771-0”, “Foundations of Databases”, u1).

Furthermore, since S∗ ∪ T satisfies the tgd χ′2, there must be values u4, u5, u6
and u7 such that AuthorsT contains the tuples

(u4, “Serge Abiteboul”), (u5, “Richard Hull”), (u6, “Victor Vianu”),
(u7, “Christos H. Papadimitriou”),

and WrittenByT contains the tuples

(“0-201-53771-0”, u4), (“0-201-53771-0”, u5), (“0-201-53771-0”, u6),
(“0-201-53082-1”, u7).

Finally, since S∗ ∪ T satisfies χ3 and χ4, there must be values u2 and u3 such
that BookInfoT contains the tuple

(“0-201-53082-1”, u2, u3).

Thus, the mapping h : dom(T ∗)→ dom(T) which satisfies h(⊥i) = ui for each
i ∈ {1, . . . , 7}, and h(c) = c for each constant c ∈ const(T ∗), is a homomorphism
from T ∗ to T .

34 Chapter 2. Computing the Certain Answers to Monotonic Queries

Note that T ∗ is not the only universal solution for S∗ underM . For example,
if ⊥,⊥′,⊥′′ are distinct nulls that do not occur in T ∗, the instance obtained from
T ∗ by adding the tuple (⊥,⊥′,⊥′′) to BookInfoT ∗ is a universal solution for S∗
under M , since a homomorphism can map the tuple (⊥,⊥′,⊥′′) to the tuple
(“0-201-53771-0”, “Foundations of Databases”, ⊥1) in BookInfoT ∗ .

Given a schema mapping M and a source instance S for M , there may be
many different universal solutions for S under M , or none (cf., Example 2.12);
furthermore, there may be universal solutions of different sizes (cf., Exam-
ple 2.3). On the other hand, Definition 2.2 immediately implies that any two
universal solutions for S under M are homomorphically equivalent:

2.4 Definition (Homomorphically equivalent)
We call instances I and J homomorphically equivalent if and only if there is a
homomorphism from I to J , and a homomorphism from J to I.

In some cases, however, homomorphic equivalence is not enough: one would
rather like to compute a “unique smallest” universal solution. To this end, Fagin
et al. [2005b] proposed to consider the core of the universal solutions, which, for
schema mappings defined by tgds and egds, is the “unique smallest” universal
solution (up to isomorphism). For example, the instance T ∗ in Example 2.3 is
the core of the universal solutions for S∗ under M . The formal definition is
based on the notion of cores:

2.5 Definition (Core, core of an instance)
Let I be an instance. We say that I is a core if and only if there is no homo-
morphism from I to an instance J ⊆ I with J 6= I. A core of I is an instance
J ⊆ I such that J is a core, and there is a homomorphism from I to J .

The following basic properties of cores have been obtained by Hell and
Nešetřil [1992] in the context of graphs (i.e., for instances over {E}, where
E is binary), and easily carry over to arbitrary instances.

2.6 Theorem (Hell and Nešetřil [1992]).

1. Every instance has a core.

2. Let I1 and I2 be homomorphically equivalent instances, let J1 be a core
of I1, and let J2 be a core of I2. Then J1 and J2 are isomorphic. In
particular, any two cores of an instance are isomorphic.

3. If J is a core of an instance I, then there is a homomorphism h from I
to J that is the identity on dom(J). In particular, h(I) = J .

2.1. Review of Universal Solutions and Their Core 35

We can now give the definition of the core of the universal solutions. Let M
be a schema mapping, and let S be a source instance forM . Suppose that there
is a universal solution for S under M . Since any two universal solutions for S
under M are homomorphically equivalent, Theorem 2.6(2) implies that there is
an instance T0 for M such that for every universal solution T ′ for S under M
and each core T ′0 of T ′, we have T0 ∼= T ′0. Since T0 is unique up to isomorphism,
we call T0 the core of the universal solutions for S under M . In Example 2.3,
T ∗ is the core of the universal solutions for S∗ under M . If there is no universal
solution for S under M , then the core of the universal solutions is undefined.

2.7 Definition (core of the universal solutions)
For every schema mapping M , and for every source instance S for M , let
Core(M,S) be a target instance for M that is isomorphic to the core of the
universal solutions for S under M if there is at least one universal solution for
S under M . Otherwise, let Core(M,S) be undefined.

As mentioned above, Core(M,S) is a universal solution for S under M if M
is defined by tgds and egds, but it may fail to be a solution otherwise:

2.8 Proposition (Fagin et al. [2005b]).

1. If M = (σs, σt,Σ) is a schema mapping, where Σ consists of tgds and egds,
and if S is a source instance for M for which Core(M,S) is defined, then
Core(M,S) is a universal solution for S under M .

2. There is a schema mapping M and a source instance S for M such that
Core(M,S) is defined, and Core(M,S) is no solution for S under M .

Universal solutions are interesting for relational data exchange not only be-
cause they are “most general” solutions, but because they can be used to com-
pute the certain answers to queries that are preserved under homomorphisms,
as shown by Theorem 2.10 below.

2.9 Definition (homomorphism-preserved query)
We say that a query q over a schema σ is preserved under homomorphisms if
and only if for all instances I and J over σ, and every homomorphism h from
I to J , the following is true: if t̄ ∈ q(I), then h(t̄) ∈ q(J).

Note that all homomorphism-preserved queries are monotonic, and that the
class of all queries that are preserved under homomorphisms contains all unions
of conjunctive queries, and, more generally, all Datalog queries. From Rossman
[2008] and Atserias et al. [2006], it even follows that every FO query that is
preserved under homomorphisms is logically equivalent to a union of conjunctive
queries!

36 Chapter 2. Computing the Certain Answers to Monotonic Queries

2.10 Theorem (essentially in Fagin et al. [2005a]).
Let M be a schema mapping, let S be a source instance for M , and let T be
a universal solution for S under M . Then for each homomorphism-preserved
query q over M ’s target schema, we have

cert(q,M, S) = {t̄ ∈ q(T) | t̄ contains only constants}.

Proof. The proof is a straightforward generalization of the analogous result
for unions of conjunctive queries obtained by Fagin et al. [2005a], taking into
account genericity of M and q.

Let us first prove the inclusion from right to left. Assume that t̄ ∈ q(T), and
that t̄ contains only constants. Let T ′ be a solution for S underM , and let h be
a homomorphism from T to T ′. Since q is preserved under homomorphisms, we
have h(t̄) ∈ q(T ′). Thus, since t̄ contains only constants, and homomorphisms
are the identity on constants, we have t̄ ∈ q(T ′).

Let us now prove the inclusion from left to right. To this end, assume that
t̄ ∈ cert(q,M, S). By Proposition 1.21, we have t̄ ∈ q(T). It remains to prove
that t̄ contains only constants.

This follows immediately from the genericity of M and q: Let C ⊆ Const
be such that q is C-generic, let X := const(T) ∪ C, and let Y be the set of
values (i.e., constants and nulls) that occur in q(T). Pick a bijective mapping
f : Dom→ Dom such that

• f(c) = c for each c ∈ X, and

• f(Y) ∩ Y ⊆ X.

SinceM is generic, f(T) is a solution for S underM , so by Proposition 1.21 and
t̄ ∈ cert(q,M, S), we have t̄ ∈ q(f(T)). Since q is C-generic, this leads to t̄ ∈
f(q(T)). Consequently, t̄ ∈ q(T)∩f(q(T)), which, together with f(Y)∩Y ⊆ X
implies that all values that occur in t̄ belong to the set X of constants.

We thus have:

2.11 Corollary.
Let M be a schema mapping, and let q be a union of conjunctive queries over
M ’s target schema. Then there is a polynomial time algorithm that, given a uni-
versal solution for some source instance S forM as input, outputs cert(q,M, S).

Proof. Let T be a universal solution for some source instance S for M . Given
T , the algorithm computes X := q(T), which is possible in time polynomial in
the size of T since q is fixed, and outputs all tuples t̄ ∈ X that contain only
constants. By Theorem 2.10, the set of all these tuples is cert(q,M, S).

2.2. How to Compute Universal Solutions? 37

The corollary holds, more generally, for all queries q that are preserved under
homomorphisms, and which have polynomial time data complexity (e.g., unions
of conjunctive queries, or Datalog queries). Thus, the crucial step in computing
the certain answers to such queries is to compute a universal solution.

2.2 How to Compute Universal Solutions?

In this section, we deal with the problem of computing universal solutions.
First observe that, even if a source instance S has a solution under a schema

mapping M , it may have no universal solution under M :

2.12 Example (Universal solutions may not exist)
Consider the schema mappingM = ({P}, {E},Σ), where Σ consists of the tgds

χ1 = ∀x(P (x)→ ∃y E(x, y)),

and

χ2 = ∀x∀y(E(x, y)→ ∃z E(y, z)).

Let S be the source instance for M with P S = {a}. We claim that there is no
universal solution for S under M .

Suppose, to the contrary, that there is a universal solution T for S under
M . Let n be the largest integer for which there are pairwise distinct values
u0, u1, . . . , un such that u0 = a, and (ui, ui+1) ∈ ET for all i ∈ {0, 1, . . . , n− 1}.
Such an n exists, because T is finite. Since T satisfies Σ, we must have (un, ui) ∈
ET for some i ∈ {0, 1, . . . , n}.

Now let T ′ be the solution for S under M , where ET ′ consists of an (n+ 2)-
cycle. That is, there are pairwise distinct values u′0, u′1, . . . , u′n+1 such that
u′0 = a, (u′i, u′i+1) ∈ ET ′ for each i ∈ {0, 1, . . . , n}, and (u′n+1, u

′
0) ∈ ET ′ . Then

there is no homomorphism from T to T ′. In particular, T is no universal solution
for S under M .

However, in many cases, universal solutions can be obtained using the chase.
In the following, we consider only schema mappings defined by tgds and egds.

2.2.1 Review of the Chase

The chase is the central tool for computing universal solutions for schema map-
pings defined by tgds and egds (see Fagin et al. [2005a]; for other applications
of the chase, see, e.g., Abiteboul et al. [1995]). The chase is a procedure that

38 Chapter 2. Computing the Certain Answers to Monotonic Queries

takes an instance I and a finite set Σ of tgds and egds as input, and iteratively
tries to modify I so that the resulting instance satisfies Σ.

For presenting the chase, it is convenient to view an instance as a set of
atoms. An atom is an expression R(ū), where R is a relation symbol, and
ū ∈ Domar(R). An atom of an instance I over a schema σ is an atom R(ū) with
R ∈ σ and ū ∈ RI . The set of all atoms of I is denoted by

atoms(I) := {R(ū) | R(ū) is an atom of I}.

We will often identify an instance I with the set atoms(I). That is, we view I
and atoms(I) as one and the same object. In particular, we can write R(ū) ∈ I
instead of ū ∈ RI , and R(ū) /∈ I instead of ū /∈ RI . Furthermore, operations and
relations defined on sets carry over to instances. For example, given instances I
and J , we write I∪J for the instance K with atoms(K) = atoms(I)∪atoms(J),
and I \ J for the instance K with atoms(K) = atoms(I) \ atoms(J).

Given an instance I over a schema σ, and a finite set Σ of tgds and egds over
σ, the chase starts with I0 := I, and proceeds in steps s = 1, 2, 3, . . . as follows.
In step s ≥ 1, an instance Is−1 has already been computed. If Is−1 |= Σ, then
the chase stops and outputs Is−1. We say that Is−1 is the result of the chase on
I and Σ. If Is−1 6|= Σ, there must be some tgd or egd χ ∈ Σ with Is−1 6|= χ.
The chase selects one such χ, and modifies Is−1 as follows.

Suppose that χ is a tgd of the form ∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)). Since
Is−1 6|= χ, there are tuples ū, v̄ such that Is−1 |= ϕ(ū, v̄), and there is no tuple
w̄ with Is−1 |= ψ(ū, w̄). We say that χ applies to Is−1 with ū, v̄. The chase now
picks an arbitrary tuple w̄ of pairwise distinct nulls that do not occur in Is−1,
and adds just those atoms to Is−1 so that the resulting instance Is satisfies ψ
under ū, w̄. Formally, Is = Is−1 ∪ ψ[ū, w̄], where ψ[·] is defined as follows:

2.13 Notation (ϕ[α], ϕ[ū])
Let ϕ(x1, . . . , xk) be a FO formula of the form R1(ū1)∧ · · · ∧Rn(ūn), and let α
be an assignment for {x1, . . . , xk}. Then,

ϕ[α] := {Ri(α∗(ūi)) | 1 ≤ i ≤ n}.

(Recall that α∗ is the extension of α to the identity on the constants that occur
in ϕ.) For a tuple ū = (u1, . . . , uk) ∈ Domk, we use ϕ[ū] as an abbreviation for
ϕ[α], where α maps each xi to ui.

Formally, such a chase step is captured by a tgd chase step:

2.14 Definition (Tgd chase step)
Let I be an instance, let χ be a tgd of the form ∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)),
and let α be an assignment for the variables in x̄ and ȳ.

2.2. How to Compute Universal Solutions? 39

• We say that χ applies to I with α if and only if I |= ϕ(α), and there is no
tuple w̄ ∈ Dom|z̄| such that I |= ψ(α(x̄), w̄).

• Given an instance J , we write I `χ,α J if and only if χ applies to I with
α, and J = I ∪ ψ[α(x̄), w̄], where w̄ is a tuple of pairwise distinct nulls
from Null \ dom(I).

Suppose now that χ is an egd of the form ∀x̄(ϕ(x̄) → xi = xj), where
x̄ = (x1, . . . , xk). Since Is−1 6|= χ, there is a tuple ū = (u1, . . . , uk) ∈ Domk such
that Is−1 |= ϕ(ū) and ui 6= uj. If ui and uj are constants, then the chase fails.
Otherwise, the chase identifies the two values ui and uj. Such a chase step is
formally captured by an egd chase step:

2.15 Definition (Egd chase step)
Let I be an instance, let χ be an egd of the form ∀x̄(ϕ(x̄)→ xi = xj), let α be
an assignment for the variables in x̄, let ui := α(xi), and let uj := α(xj).

• We say that χ applies to I with α if and only if I |= ϕ(α) and ui 6= uj.
If χ applies to I with α, and both ui and uj are constants, we say that χ
fails on I with α.

• Given an instance J , we write I `χ,α J if and only if χ applies to I with
α, χ does not fail on I with α, and J = f(I), where f : dom(I)→ dom(I)
is such that

– f(u) = f(v) = v, where u is one of the nulls in {ui, uj}, and v is the
other value in {ui, uj}, and

– f(u) = u for all u ∈ dom(I) \ {ui, uj}.

In general, we denote a chase step from an instance I to an instance J using
a tgd or an egd in Σ by I `Σ J . That is, we write I `Σ J if and only if there is
some χ ∈ Σ and an appropriate assignment α such that I `χ,α J .

The possible “runs” of the chase are formally described by chase sequences:

2.16 Definition (chase sequence)
Let I be an instance over a schema σ, and let Σ be a finite set of tgds and egds
over σ.

• A chase sequence on I and Σ is a (finite or infinite) sequence C = I0, I1, . . .
of instances over σ such that I0 = I, and for every instance Is in C with
s ≥ 1 we have Is−1 `Σ Is.

• Let C = (I0, I1, . . . , Il) be a finite chase sequence on I and Σ. We call Il
the result of C, and l the length of C.

40 Chapter 2. Computing the Certain Answers to Monotonic Queries

• A complete chase sequence on I and Σ is a finite chase sequence C =
(I0, I1, . . . , Il) on I and Σ such that there is no instance J with Il `Σ J .

• A successful chase sequence on I and Σ is a complete chase sequence C
on I and Σ such that the result of C satisfies Σ.

• A failing chase sequence on I and Σ is a complete chase sequence C on I
and Σ such that the result of C does not satisfy Σ.

2.17 Example (Library database restructuring, continued)
Let M = (σs, σt,Σ) be the schema mapping from Example 1.15, and let S∗
be the source instance for M from Example 1.4. Consider the sequence C =
(I0, I1, . . . , I7) with

• I0 = S∗,

• I1 = I0 ∪ {BookInfo(“0-201-53771-0”, “Found. of Databases”, ⊥1)},

• I2 = I1 ∪ {Authors(⊥4, “Serge Abiteboul”),
WrittenBy(“0-201-53771-0”, ⊥4)},

• I3 = I2 ∪ {Authors(⊥5, “Richard Hull”),
WrittenBy(“0-201-53771-0”, ⊥5)},

• I4 = I3 ∪ {Authors(⊥6, “Victor Vianu”),
WrittenBy(“0-201-53771-0”, ⊥6)},

• I5 = I4 ∪ {Authors(⊥7, “Christos H. Papadimitriou”),
WrittenBy(“0-201-53082-1”, ⊥7)},

• I6 = I5 ∪ {BookInfo(“0-201-53082-1”, ⊥2, ⊥3),
Authors(⊥7, ⊥8)},

• I7 = I6 \ {Authors(⊥7, ⊥8)}.

It is easy to see that C is a chase sequence on S∗ and Σ. For example, we have
I0 `χ′1,α I1, where α(x1) = “0-201-53771-0” and α(x2) = “Found. of Databases”.
The instances I2 to I6 can be obtained similarly using χ′2 (for I2 to I5) and χ4
(for I6). Finally, we have I6 `χ3,α′ I7, where α′(x1) = ⊥7, α′(x2) = “Christos H.
Papadimitriou” and α′(x3) = ⊥8.

Note that I7 = S∗ ∪ T ∗, where T ∗ is the universal solution for S∗ under M
from Example 1.5. It follows that C is successful.

We can now state the crucial properties of the chase that connect the chase
with the problem of computing universal solutions:

2.2. How to Compute Universal Solutions? 41

2.18 Theorem (Fagin et al. [2005a]).
Let M = (σs, σt,Σ) be a schema mapping, where Σ is a set of tgds and egds,
and let S be a source instance for M . Then we have:

1. Let I be the result of a successful chase sequence on S and Σ. Then I \ S
is a universal solution for S under M .

2. If there is a failing chase sequence on S and Σ, then there is no solution
for S under M .

2.19 Example (Library database restructuring, continued)
Recall the setting from Example 2.17. We have shown that I7 = S∗ ∪ T ∗ is the
result of a successful chase sequence on S∗ and Σ, and indeed, I7 \ S∗ = T ∗ is
a universal solution for S∗ under M .

Sometimes, we also need to refer to the following lemma, which is the key
lemma for the proof of Theorem 2.18 in Fagin et al. [2005a]:

2.20 Lemma (Fagin et al. [2005a]).
Suppose that I `χ,α J , where χ is a tgd or an egd, and α is an appropriate as-
signment. Let K be an instance such that K |= χ, and there is a homomorphism
from I to K. Then there is a homomorphism from J to K.

Lemma 2.20, in particular, implies:

2.21 Corollary.
If C is an arbitrary chase sequence on an instance I and a finite set Σ of tgds
and egds, K is an instance with K |= Σ, and there is a homomorphism from I
to K, then there is a homomorphism from the result of C to K.

From Theorem 2.18 we know that universal solutions can be computed using
the chase. Unfortunately, the chase does not always terminate:

2.22 Example (The chase may not terminate)
Consider the schema mapping M = (σs, σt,Σ) and the source instance S for M
from Example 2.12. Then there is no complete chase sequence C on S and Σ. If
there was such a sequence C, then C would be successful, since Σ contains only
tgds, and by Theorem 2.18, the result of C would lead to a universal solution
for S underM . However, in Example 2.12, we have shown that such a universal
solution does not exist.

Let us now add the t-tgd

χ3 := ∀x1∀x2∀x3(E(x1, x2) ∧ E(x2, x3)→ E(x1, x1))

42 Chapter 2. Computing the Certain Answers to Monotonic Queries

to M . That is, let M ′ = (σs, σt,Σ ∪ {χ3}). Then S has a universal solution
under M ′, namely the target instance T for M ′ with ET = {(a, a)}. However,
it is not hard to verify that there is no successful chase sequence on S and
Σ ∪ {χ3}.

Even worse, we show in Section 2.3 that chase termination is undecidable,
even with respect to some fixed finite set Σ of tgds only !

2.2.2 Sufficient Conditions for Chase Termination

A number of sufficient conditions for chase termination have been exposed in
the literature. The first such condition was weak acyclicity:

2.23 Definition (Weak acyclicity)
Let Σ be a finite set of tgds over a schema σ.

• A position over σ is a pair (R, p) such that R ∈ σ and p ∈ {1, . . . , ar(R)}.

• Let ϕ be a FO formula over σ of the form R1(ū1) ∧ · · · ∧ Rk(ūk), and
let x be a variable. We say that x appears at position (R, p) in ϕ if and
only if there is some i ∈ {1, . . . , k} such that Ri = R, ūi has the form
(ui,1, . . . , ui,ar(R)), and ui,p = x.

• The dependency graph of Σ is a directed graph, where the vertices are the
positions over σ, and for each tgd ∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)) in Σ, each
variable x in x̄, and each position (R, p) at which x appears in ϕ, there is

– a copying edge from (R, p) to every position at which x appears in
ψ, and

– an existential edge from (R, p) to every position at which some vari-
able from z̄ appears in ψ.

• Σ is called weakly acyclic if the dependency graph of Σ contains no cycle
with an existential edge.

Intuitively, weak acyclicity prevents the chase from cascading the creation
of nulls, that is, that a null is created at some position based on a null at the
same position.

2.24 Example
Consider the schema mapping M = ({P}, {E},Σ) from Example 2.12. The
dependency graph of Σ is shown below:

2.2. How to Compute Universal Solutions? 43

(P, 1) (E, 1) (E, 2)

Here, solid edges represent existential edges, while dotted edges represent copy-
ing edges. The loop at (E, 2) is a cycle through the existential edge. Thus, Σ
is not weakly acyclic.

We call a schema mapping M = (σs, σt,Σ) weakly acyclic if and only if Σ is
the union of a weakly acyclic set of tgds, and a set of egds.

2.25 Example (Library database restructuring, continued)
Recall the schema mapping M = (σs, σt,Σ) from Example 1.15. The depen-
dency graph of the set Σ′ of all tgds in Σ (i.e., Σ′ = {χ′1, χ′2, χ4}) is shown
below:

(Books, 1)

(Books, 2)

(Authors, 1)

(Authors, 2)

(BookInfo, 1)

(BookInfo, 2)

(BookInfo, 3)

(AuthorList, 1)

(AuthorList, 2)

(WrittenBy, 1)

(WrittenBy, 2)

As above, solid edges represent existential edges, while dotted edges represent
copying edges. Since the dependency graph of Σ′ contains no cycle through an
existential edge, Σ′ is weakly acyclic. Consequently, M is weakly acyclic.

For weakly acyclic schema mappings, it is known that the chase terminates
within a number of steps that is polynomial in the size ‖T‖ of T , where the size
of an instance I over a schema σ is defined as

‖I‖ :=
∑
R∈σ
|RI | · ar(R).

Furthermore, with respect to weakly acyclic schema mappings, universal solu-
tions exist if and only if solutions exist:

2.26 Theorem (Fagin et al. [2005a]).
Let M = (σs, σt,Σ) be a weakly acyclic schema mapping.

1. There is a polynomial pM such that, given a source instance S for M ,
each chase sequence of S with Σ has length at most pM(‖S‖).

44 Chapter 2. Computing the Certain Answers to Monotonic Queries

2. Let S be a source instance for M . Then there is a universal solution for
S under M if and only if there is a solution for S under M .

A matching lower bound follows from Theorem 2.26(2) and:

2.27 Theorem (Kolaitis et al. [2006]).
There is a weakly acyclic schema mapping M = (σs, σt,Σ), where Σ consists of
full tgds and a single egd, such that Existence-of-Solutions(M) is PTIME-
complete.

Weak acyclicity has been generalized in a number of ways. A first such gen-
eralization, called stratification, was identified by Deutsch et al. [2008]. Strati-
fication was further generalized by Lausen et al. [2009]. In fact, Lausen et al.
[2009] identified an infinite hierarchy of generalizations of weak acyclicity. The-
orem 2.26 holds as well for schema mappings satisfying one of these conditions.
Finally, Marnette [2009] identified a class of schema mappings that strictly gen-
eralizes the class of all weakly acyclic schema mappings, and for which the
oblivious chase, a generalization of the chase, is guaranteed to terminate within
a polynomial number of steps on every given source instance.

2.2.3 How to Compute the Core of the Universal Solutions?

Let us now turn to the problem of computing the core of the universal solutions.
In general, computing a core of a given instance is a hard problem. Using a
simple reduction from the 3-colorability problem (see, e.g., Garey and Johnson
[1979]), one can show that the corresponding decision problem (given instances
I and J , is I a core of J) is NP-hard [Fagin et al., 2005b]. It was established by
Fagin et al. [2005b] that this decision problem is actually DP-complete, where
DP is the class of all problems that can be written as the intersection of a
problem in NP and a problem in co-NP. For more background on the class DP,
see Fagin et al. [2005b] or Papadimitriou [1994].

Surprisingly, in a number of cases it is nevertheless possible to compute the
core of the universal solutions. A first such result was:

2.28 Theorem (Fagin et al. [2005b]).
Let M = (σs, σt,Σ) be a schema mapping, where Σ consists of st-tgds. Then
there is a polynomial time algorithm that takes a source instance S for M as
input and outputs Core(M,S).

Let M = (σs, σt,Σ) be a schema mapping, where Σ consists of st-tgds, and
let S be a source instance for M . The algorithm guaranteed by Theorem 2.28
exploits that universal solutions obtained from a successful chase sequence on
S and Σ have a very nice structure that can be described in terms of blocks:

2.2. How to Compute Universal Solutions? 45

2.29 Definition (Block)
Let I be an instance.

• The Gaifman graph of the nulls of I is the undirected graph whose vertices
are the nulls of I, and which has an edge between two nulls⊥,⊥′ ∈ nulls(I)
if and only if ⊥ 6= ⊥′, and there is an atom R(ū) of I such that both ⊥
and ⊥′ occur in ū.

• A block of I is the set of nulls in a connected component of the Gaifman
graph of the nulls of I.

2.30 Lemma (implicit in Fagin et al. [2005b]).
For every schema mapping M = (σs, σt,Σ), where Σ consists of st-tgds, there is
a positive integer b with the following property: If S is a source instance for M ,
and T is a solution for S under M such that S ∪ T is the result of a successful
chase sequence on S and Σ, then each block of T contains at most b nulls.

As a first step, the algorithm from Theorem 2.28 computes the result I of a
successful chase sequence on S and Σ. Note that Σ is a fixed set of st-tgds, and
therefore, every chase sequence on S and Σ has length polynomial in the size of
S, and every complete chase sequence on S and Σ is successful. The instance
T := I \S is then a universal solution for S underM , and by Lemma 2.30, each
block of T contains at most b nulls for some positive integer b that depends only
on M . Subsequently, the algorithm computes a core of T using the algorithm
guaranteed by:

2.31 Lemma (implicit in Fagin et al. [2005b]).
There is an algorithm that takes an instance I as input, and outputs a core
J ⊆ I of I in time O(‖I‖b+3), where b is the maximum number of nulls in a
block of I.

Proof. The following algorithm A is a modification of the blocks algorithm from
Fagin et al. [2005b]. To obtain the blocks algorithm from A, one first computes
T using a successful chase sequence on S and Σ as described above, and replaces
the instance I in step 1 of A with T .

On input I, A proceeds as follows:

1. Compute a list B1, . . . , Bm of all blocks of I, and initialize J to be I.

2. Check whether there is a homomorphism h from J to J such that h is not
injective, and there is some i ∈ {1, . . . ,m} such that h(u) = u for each
u ∈ dom(J) \Bi.

3. If such a h exists, then update J to be h(J), and go to step 2.

46 Chapter 2. Computing the Certain Answers to Monotonic Queries

4. Output J .

In Fagin et al. [2005b], it was shown that this algorithm correctly computes a
core of I, and that steps 2 to 4 can be accomplished in time O(‖I‖b+3). In
particular, this dominates the time needed to accomplish step 1.

Using more sophisticated techniques, Theorem 2.28 can be extended to
schema mappings defined by st-tgds and egds (see Fagin et al. [2005b]), and
even to weakly acyclic schema mappings:

2.32 Theorem (Gottlob and Nash [2008]).
Let M be a weakly acyclic schema mapping. Then there is a polynomial time
algorithm that takes a source instance S for M as input, and either outputs
Core(M,S) if it exists, or tells us that Core(M,S) does not exist.

Theorem 2.32 was further generalized by Marnette [2009].

2.3 Undecidability of the Existence of Universal Solutions

In Section 2.2, we reviewed results from [Fagin et al., 2005a, Deutsch et al.,
2008, Lausen et al., 2009, Marnette, 2009] showing that for every fixed schema
mapping M that is defined by tgds and egds, and that satisfies certain chase
termination conditions (e.g., weak acyclicity, stratification, or safe restriction),
there is an algorithm that takes a source instance S for M as input and either
computes some universal solution for S underM if there is any, or outputs that
there is no such universal solution. In this section, we show that for general
schema mappings, even for schema mappings defined by tgds only, such an
algorithm may not exist.

For a schema mapping M , consider the decision problem

Existence-of-Universal-Solutions(M)
Input: a source instance S for M
Question: Is there a universal solution for S under M?

The following theorem was published in Hernich and Schweikardt [2007]:

2.33 Theorem.
There is a schema mapping MHalt = (σs, σt,Σ), where Σ is a set of tgds, such
that Existence-of-Universal-Solutions(MHalt) is undecidable.

2.3. Undecidability of the Existence of Universal Solutions 47

Proof. We will construct MHalt in such a way that Turing machines can be
encoded as source instances for MHalt, and universal solutions correspond to
halting computations of Turing machines on the empty input.

In the following, we consider deterministic Turing machines with a single
tape that is infinite only to the right. Such Turing machines will be formally
represented by tuples (Q,A, δ, q0, QF), where Q is the set of states, A is the tape
alphabet, δ : (Q \ QF) × A → Q × A × {L,R} is the total transition function,
q0 ∈ Q is the start state, and QF ⊆ Q is the set of final states. Clearly, the
following problem is undecidable (see, e.g., Papadimitriou [1994]):

Halt
Input: a deterministic Turing machine M with a single tape that is

infinite only to the right
Question: Does M halt on the empty input?

Let M = (Q,A, δ, q0, QF) be a deterministic Turing machine with a single
tape that is infinite only to the right. We can encode M by an instance SM over
the schema σs = {∆,Q0}, where

• ∆SM = {(q, a, q′, a′, d) | q ∈ Q, a ∈ A, (q′, a′, d) = δ(q, a)} is the graph of
the transition function δ,1 and

• QSM
0 = {q0} contains the start state q0.

We choose σs as the source schema of MHalt.
Our next goal is to construct the target schema σt of MHalt, so that finite

computations of M can be encoded as instances over σt.
Let us first fix some basic notation concerning Turing machine computa-

tions. Recall that a computation γ of M on the empty input is a sequence
γ = (γ0, γ1, . . . , γn) of configurations of M , where γ0 is the start configuration
ofM on the empty input, and for each s ∈ {0, 1, . . . , n− 1}, γs+1 is the successor
configuration of γs. We represent each configuration γs by a triple (qs, ps, as),
where

• qs ∈ Q is the state in step s of γ,

• ps is the head position in step s of γ (w.l.o.g. a nonnegative integer, since
M’s tape is infinite only to the right), and

1We assume, without loss of generality, that Q∪A∪{L,R} ⊆ Const, and that the sets Q,
A and {L,R} are pairwise disjoint.

48 Chapter 2. Computing the Certain Answers to Monotonic Queries

• as = as,0as,1 · · · as,s+1 ∈ As+2 is the inscription of the tape at positions 0
to s+ 1 in step s of γ (we only list the inscriptions of the first s+ 2 tape
cells, since M can visit at most s tape cells in s steps, so that all other
tape cells contain blanks; we add 2 to simplify the presentation).

Note that γ0 = (q0, 0,��), where � denotes the blank symbol, which is assumed
to be in A. A configuration (q, p, a) is called final if and only if q ∈ QF . Note
that a final configuration has no successor configuration.

Now let γ = (γ0, γ1, . . . , γn) be a computation of M on the empty input,
where γs = (qs, ps, as,0 · · · as,s+1) for each s ∈ {0, 1, . . . , n}. To represent γ as
an instance—and also for the whole remaining part of this proof—it may be
helpful to view γ as a matrix as in Figure 2.1. The sth row of this matrix is

q0, p0

q1, p1

...

qn, pn

� �

a1,0 a1,1 �

an,0 an,1 an,2 an,3 an,n �

... ...

0

1

...

n

steps

0 1 · · · n+1

tape positions

Figure 2.1: Representation of the computation γ in matrix form

labeled with the state qs and the head position ps in configuration γs, and the
(highlighted) first s + 2 entries of row s correspond to the inscriptions of the
first s+ 2 tape cells in configuration γs.

Let us pick pairwise distinct values u0, u1, . . . , un, v0, . . . , vn+1 ∈ Dom, where
u0, u1, . . . , un will be used to encode the steps 0, 1, . . . , n, and v0, v1, . . . , vn+1 will
be used to encode the tape positions 0, 1, . . . , n + 1. Then we can represent γ
by an instance T ′γ over the schema σ′t = {Succt, Succp, State, Ins}, where:

• SuccT
′
γ

t = {(us, us+1) | 0 ≤ s ≤ n − 1} is the successor relation on the
“steps” u0, u1, . . . , un.

2.3. Undecidability of the Existence of Universal Solutions 49

• SuccT
′
γ

p = {(us, vp, vp+1) | 0 ≤ s ≤ n, 0 ≤ p ≤ s} contains the successor
relations on the “tape positions” v0, v1, . . . , vs+1 in each configuration γs.

• StateT ′γ = {(us, qs, vps) | 0 ≤ s ≤ n} contains information about the state
qs and the “head position” vps in each configuration γs. Note that the
unique tuple of the form (us, ·, ·) in StateT ′γ corresponds to the label of
row s in Figure 2.1.

• InsT ′γ = {(us, vp, as,p) | 0 ≤ s ≤ n, 0 ≤ p ≤ s + 1} contains information
about the inscriptions as,p at each “position” vp in each configuration γs.
Note that the tuples (us, ·, ·) in InsT ′γ correspond to the first s+ 2 entries
in row s in Figure 2.1.

Later, it will be important that u0, v0, v1 are constants, and the remaining values
u1, . . . , un, v2, . . . , vn+1 are nulls. Therefore, we fix u0 := 0 (for step 0), v0 := 0
(for tape position 0), v1 := 1 (for tape position 1), and we let all other values
u1, . . . , un, v2, . . . , vn+1 be nulls.

To support tgds in verifying that the relations SuccT
′
γ

p , SuccT
′
γ

p , StateT ′γ and
InsT ′γ indeed encode a computation, we need to extend T ′γ by some auxiliary
relations. As the target schema σt of MHalt, we therefore choose the schema
σ′t∪{∆̃,CopyL,CopyR,End}. Then, γ can be represented by an instance Tγ over
σt, where Tγ coincides with T ′γ on all relation symbols in σ′t, and:

• ∆̃Tγ = ∆SM is the graph of the transition function δ,

• CopyTγL = {(us, us−1, vp) | 1 ≤ s ≤ n, 0 ≤ p ≤ ps} will be used to verify
that configurations γs and γs−1 coincide on all “positions” to the left of
“position” vps (excluding position vps),

• CopyTγR = {(us, us−1, vp) | 1 ≤ s ≤ n, ps ≤ p ≤ s} will be used to verify
that configurations γs and γs−1 coincide on all “positions” to the right of
“position” vps (excluding position vps), and

• EndTγ = {(us, vs+1) | 0 ≤ s ≤ n} marks “tape position” vs+1 in each
configuration γs.

It remains to construct a finite set Σ of tgds such that universal solutions
for SM under MHalt represent halting computations of M on the empty input.
To simplify notation, we omit the universal quantifiers in front of tgds.

We start with an empty set Σ and add tgds to Σ as follows. To “copy” ∆
to ∆̃, and to “produce” a representation of the start configuration of M on the
empty input, we add the st-tgds

∆(q, a, q′, a′, d)→ ∆̃(q, a, q′, a′, d) (2.1)

50 Chapter 2. Computing the Certain Answers to Monotonic Queries

and

Q0(q)→ State(0, q, 0) ∧ Ins(0, 0,�) ∧ Ins(0, 1,�)
∧ Succp(0, 0, 1) ∧ End(0, 1) (2.2)

to Σ. Note that tgd (2.2) enforces that a solution for SM under MHalt contains
the atoms State(0, q0, 0), Ins(0, 0,�), Ins(0, 1,�), Succp(0, 0, 1) and End(0, 1),
which correspond to the start configuration (q0, 0,��) ofM on the empty input.

To simulate a transition (where the head moves to the left, or where the
head moves to the right), we add the t-tgds

ϕL(t, q, q′, p, p′, a, a′)→ ∃t′ ψ(t, t′, q′, p, p′, a, a′), (2.3)
ϕR(t, q, q′, p, p′, a, a′)→ ∃t′ ψ(t, t′, q′, p, p′, a, a′) (2.4)

to Σ, where

ϕd :=
State(t, q, p) ∧ Ins(t, p, a) ∧ Succp(t, p′, p) ∧ ∆̃(q, a, q′, a′, d), if d = L
State(t, q, p) ∧ Ins(t, p, a) ∧ Succp(t, p, p′) ∧ ∆̃(q, a, q′, a′, d), if d = R

states that a transition from the current configuration γt in step t to its successor
configuration γt′ in step t′ is possible, where the head moves to the left if d = L,
or to the right if d = R; and where

ψ := Succt(t, t′) ∧ State(t′, q′, p′) ∧ Ins(t′, p, a′) ∧ CopyL(t′, t, p) ∧ CopyR(t′, t, p)

“creates” an initial part of the configuration γt′ , and links γt to γt′ .
To enforce that the tape inscriptions in a configuration and its successor

configurations coincide on all unmodified tape cells, and to ensure that all tape
positions from step t occur in step t′ in the same order, we add the t-tgds

CopyL(t′, t, p) ∧ Succp(t, p′, p) ∧ Ins(t, p′, a) →
CopyL(t′, t, p′) ∧ Succp(t′, p′, p) ∧ Ins(t′, p′, a), (2.5)

CopyR(t′, t, p) ∧ Succp(t, p, p′) ∧ Ins(t, p′, a) →
CopyR(t′, t, p′) ∧ Succp(t′, p, p′) ∧ Ins(t′, p′, a) (2.6)

to Σ. Finally, to add a new tape cell to the end of the tape in step t′, and to
mark this cell the last tape cell for step t′, we add the t-tgd

Succt(t, t′) ∧ End(t, p) →
∃p′
(
Succp(t′, p, p′) ∧ Ins(t′, p′,�) ∧ End(t′, p′)

)
. (2.7)

2.3. Undecidability of the Existence of Universal Solutions 51

This finishes the construction of Σ.
Let MHalt = (σs, σt,Σ). We claim that M halts on the empty input if and

only if there is a universal solution for SM underMHalt. Even stronger, we show
that the following four statements are equivalent:

1. M halts on the empty input.

2. There is a successful chase sequence on SM and Σ.

3. Each chase sequence on SM and Σ can be extended to a successful chase
sequence on SM and Σ.

4. There is a universal solution for SM under MHalt.

In particular, Existence-of-Universal-Solutions(MHalt) is undecidable.
We first show by induction on n that:

For every computation γ = (γ0, γ1, . . . , γn) ofM on the empty input,
there is a finite chase sequence Cγ on SM and Σ with result SM∪Tγ.

(*)

For the case that n = 0, (*) follows immediately from γ0 = (q0, 0,��) and the
definition of Tγ.

Assume now that (*) is true for n. Let γ = (γ0, γ1, . . . , γn+1) be a computa-
tion of M on the empty input, and let γ′ := (γ0, γ1, . . . , γn). By the induction
hypothesis, there is a finite chase sequence Cγ′ on SM and Σ with result SM∪Tγ′ .
Suppose that γn = (q, p, an,0 · · · an,n+1) and γn+1 = (q′, p′, a′n+1,0 · · · a′n+1,n+2).
Then, we must have δ(q, an,p) = (q′, a′n+1,p, d) for some d ∈ {L,R}. Thus, by
construction of Tγ′ , either the tgd (2.3) (if d = L) or the tgd (2.4) (if d = R)
applies to Tγ′ with some assignment α. It follows immediately that Tγ can be
obtained from Tγ′ by a finite chase sequence C on Tγ′ and Σ by first applying
(2.3) or (2.4), then (2.5) and (2.6) as long as possible (note that this can be
done only finitely many times), and finally, (2.7). The concatenation of Cγ′ and
C is therefore a finite chase sequence on SM and Σ with result SM ∪ Tγ. This
completes the induction step.

We are now ready to prove the equivalence of the statements 1–4 above.

1 =⇒ 2: Suppose that M halts on the empty input. Then there is a compu-
tation γ = (γ0, γ1, . . . , γn) of M on the empty input, for which γn is final. By
(*), the instance SM ∪ Tγ is the result of a finite chase sequence C on SM and
Σ. Since γn is final, it is easy to verify that Tγ |= Σ. Thus, C is successful.

2 =⇒ 3: Consider an arbitrary chase sequence C on SM and Σ. By induction
on the length of C, it is easy to check that the result of C is isomorphic to some

52 Chapter 2. Computing the Certain Answers to Monotonic Queries

subinstance of SM ∪ Tγ. In particular, this implies that C can be extended to a
successful chase sequence on SM and Σ.

3 =⇒ 4: Since each chase sequence on SM and Σ can be extended to a successful
chase sequence on SM and Σ, there is a successful chase sequence C on SM and
Σ. Let I be the result of C. Then, by Theorem 2.18(1), I \ SM is a universal
solution for SM under MHalt.

4 =⇒ 1: Let T be a universal solution for SM under MHalt. Let n be the
largest integer for which there are pairwise distinct values u′0, u′1, . . . , u′n such
that u′0 = 0, and (u′s, u′s+1) ∈ SuccTt for all s ∈ {0, 1, . . . , n− 1}. We show that
M halts on the empty input.

Suppose, for a contradiction, thatM does not halt on the empty input. Then
there is a computation γ = (γ0, γ1, . . . , γn+1) of M on the empty input, where
γn+1 is not final. By (*), there is a chase sequence Cγ on SM and Σ with result
SM ∪ Tγ. By Corollary 2.21, there is a homomorphism h from Tγ to T . Recall
that

SuccTγt = {(us, us+1) | 0 ≤ s ≤ n}.

Therefore,

(h(us), h(us+1)) ∈ SuccTt for each s ∈ {0, 1, . . . , n}, (2.8)

and by the choice of n:

There are distinct k, l ∈ {0, 1, . . . , n+ 1} such that h(uk) = h(ul). (2.9)

Now extend Tγ to a solution T ′ for SM under MHalt as follows. First, add
(un+1, un+1) to SuccTγt . Second, for all p ∈ {0, 1, . . . , n+ 2},

• add (un+1, vp, vp′) to SuccTγp for all p′ ∈ {0, 1, . . . , n+ 2},

• add (un+1, q, vp) to StateTγ for all q ∈ Q,

• add (un+1, vp, a) to InsTγ for all a ∈ A,

• add (un+1, un+1, vp) to CopyTγL and to CopyTγR ,

• add (un+1, vp) to EndTγ .

Since T is a universal solution for SM under MHalt, there is a homomorphism
h′ from T to T ′. We show by induction on s that

h′(h(us)) = us for all s ∈ {0, 1, . . . , n+ 1}. (2.10)

2.3. Undecidability of the Existence of Universal Solutions 53

For s = 0, we have h′(h(u0)) = u0, since u0 = 0 is a constant, and homomor-
phisms are the identity on constants. Now assume that h′(h(us)) = us for some
s ∈ {0, 1, . . . , n}. Recall that, by (2.8), we have (h(us), h(us+1)) ∈ SuccTt . Since
h′ is a homomorphism from T to T ′, we have (h′(h(us)), h′(h(us+1))) ∈ SuccT ′t .
Furthermore, since h′(h(us)) = us, and (us, us+1) is the only tuple of the form
(us, ·) in SuccT ′t , we conclude that h′(h(us+1)) = us+1.

Since the values u0, u1, . . . , un+1 are pairwise distinct, (2.10) implies that
h(u0), h(u1), . . . , h(un+1) are pairwise distinct values. However, this is a contra-
diction to (2.9). Consequently, M must halt on the empty input.

Altogether, the proof of Theorem 2.33 is complete.

From the proof of Theorem 2.33, we immediately obtain:

2.34 Corollary.
There is a schema mapping M = (σs, σt,Σ), where Σ consists of tgds only, such
that the following problems are undecidable:

1. Given a source instance S for M , is there a successful chase sequence on
S and Σ?

2. Given a source instance S for M , can every chase sequence on S and Σ
be extended to a successful chase sequence on S and Σ?

Moreover, using the proof of Theorem 2.33, it is not hard to obtain Theo-
rem 1, Theorem 6 and Theorem 14 in Deutsch et al. [2008]. These theorems
use the following terminology:

2.35 Definition (model, strong and weak universal model)
Let Σ be a set of tgds and egds, and let I be an instance.

• A model for I and Σ is a (possibly infinite) instance J such that there
is a homomorphism from I to J and J |= Σ. In particular, J may have
relations RJ of infinite size.

• A strong universal model for I and Σ is a finite model J for I and Σ
such that for every (possibly infinite) model K for I and Σ there is a
homomorphism from J to K.

• A weak universal model for I and Σ is a finite model J for I and Σ such
that for every finite model K for I and Σ there is a homomorphism from
J to K.

54 Chapter 2. Computing the Certain Answers to Monotonic Queries

Note that, if I is a ground instance, then a model for I and a set Σ of tgds
and egds is a possibly infinite instance J ⊇ I with J |= Σ. Note also that, if
M = (σs, σt,Σ) is a schema mapping defined by tgds and egds, S is a source
instance forM , and T is a target instance forM , then S∪T is a weak universal
model for S and Σ if and only if T is a universal solution for S under M .

2.36 Theorem (Deutsch et al. [2008]).
There is a schema σ such that the following problems are undecidable, where
the input consists of an instance I over σ and a set Σ of tgds and egds over σ.

1. Decide whether there is some complete chase sequence on I and Σ.

2. Decide whether all chase sequences on I and Σ can be extended to a com-
plete chase sequence on I and Σ.

3. Decide whether a strong universal model for I and Σ exists.

4. Decide whether a weak universal model for I and Σ exists.

In fact, this is even true if I is restricted to be empty.

Proof. Let Σ be the set of all tgds of the schema mapping MHalt constructed
in the proof of Theorem 2.33. Given a deterministic Turing machine M as in
the proof of Theorem 2.33, let ΣM be the union of Σ and the set of all tgds
of the form → A, where A is an atom of SM. Let I be the empty instance,
that is, I = ∅. Then, every chase sequence on I and ΣM with result J can be
turned into a chase sequence on SM and Σ with result SM ∪ J . The other way
round, every chase sequence on SM and Σ can be turned into a chase sequence
on I and ΣM with the same result. Since Σ contains only tgds, every complete
chase sequence on SM and Σ is successful. Thus, as shown in the proof of
Theorem 2.33, it is undecidable whether there is a complete chase sequence on
I and ΣM. Furthermore, it is undecidable whether every chase sequence on
I and ΣM can be extended to a complete chase sequence on I and ΣM. This
proves 1 and 2.

For proving 3 and 4, observe the following. First, there is a universal solution
for SM under MHalt if and only if there is a weak universal model for I and ΣM.
Second, each model for SM and Σ is a model for I and ΣM. Third, every weak
universal model for I and ΣM is a strong universal model for I and ΣM. To see
this, let J be a weak universal model for I and ΣM. Then there is a universal
solution for SM underMHalt, and, as shown in the proof of Theorem 2.33, there
is a successful chase sequence on SM and Σ. By Corollary 2.21 (which holds
as well if K is an “infinite instance”), the result J ′ of this chase sequence is a
strong universal model for I and ΣM. Thus, let J ′′ be a model for I and ΣM.

2.3. Undecidability of the Existence of Universal Solutions 55

Then there is a homomorphism h′ from J ′ to J ′′. Since J ′ is a model for I
and ΣM, there also exists a homomorphism h from J to J ′. In particular, the
composition of h and h′ is a homomorphism from J to J ′′. This proves that J
is a strongly universal model for I and ΣM.

Together with the three observations above, Theorem 2.33 implies that it is
undecidable whether a strong universal model for I and ΣM, or a weak universal
model for I and ΣM exists. This proves 3 and 4.

Interestingly, the Existence-of-Solutions problem considered in Sec-
tion 1.1.2 is trivial for the schema mapping MHalt = (σs, σt,Σ) constructed in
the proof of Theorem 2.33. In fact, for every source instance S for MHalt, the
target instance T for MHalt, where RT = (dom(S) ∪ {0, 1,�})ar(R) for each
relation symbol R ∈ σt, is a solution for S under MHalt.

On the other hand, we have:

2.37 Theorem (Kolaitis et al. [2006]).
There is a schema mapping Memb = (σs, σt,Σ), where Σ consists of tgds and
egds, such that Existence-of-Solutions(Memb) is undecidable.

The schema mappingMemb = (σs, σt,Σ) constructed by Kolaitis et al. [2006]
for proving Theorem 2.37 has the property that inputs p : X2 → X to the em-
bedding problem for finite semigroups (recall the definition from Example 1.14)
can be encoded as source instances Sp for Memb, and solutions for Sp under
Memb correspond to solutions for p with respect to the embedding problem for
finite semigroups. As in Example 1.14, σs consists of a ternary relation sym-
bol R such that a partial function p : X2 → X for some finite set X can be
represented by an instance Sp over σs with

RSp = {(a, b, c) ∈ X3 | p(a, b) = c}.

Furthermore, σt consists of a ternary relation symbol R̃ such that a solution
f : Y 2 → Y for p with respect to the embedding problem for finite semigroups
can be represented as an instance Tf over σt with

R̃Tf = {(a, b, c) ∈ Y 3 | f(a, b) = c}.

To check that a target instance T indeed represents a solution for p with respect
to the embedding problem for finite semigroups, Σ consists of the tgds and egds

∀x∀y∀z
(
R(x, y, z)→ R̃(x, y, z)

)
, (2.11)

∀x∀y∀z1∀z2
(
R̃(x, y, z1) ∧ R̃(x, y, z2)→ z1 = z2

)
, (2.12)

∀x∀y∀z∀u∀v∀w
(
R̃(x, y, u) ∧ R̃(y, z, v) ∧ R̃(u, z, w)→ R̃(x, v, w)

)
, (2.13)

56 Chapter 2. Computing the Certain Answers to Monotonic Queries

and for all i, j ∈ {1, 2, 3}, the tgd

∀x1∀x2∀x3∀y1∀y2∀y3
(
R̃(x1, x2, x3) ∧ R̃(y1, y2, y3)→ ∃z R̃(xi, yj, z)

)
. (2.14)

Here, (2.11) and (2.12) state that T represents the graph of a (potentially
partial) function f : Y 2 → Y , where Y is a finite set and f extends p, (2.13)
states that f is associative, and the tgds (2.14) state that f is total.

The following example shows that the reduction from the embedding prob-
lem for finite semigroups to Existence-of-Solutions(Memb) described above
does not establish that Existence-of-Universal-Solutions(Memb) is un-
decidable.

2.38 Example
Consider the partial function p encoded by Sp = {R(0, 1, 1)}. Clearly, the
total function f : Y × Y → Y with Y := {0, 1} and f(x, y) := x + y mod 2 is
associative and extends p. However, we show that there is no universal solution
for Sp under Memb.

For a contradiction, assume that there is a universal solution T for Sp under
Memb. Let n be the largest integer for which there are pairwise distinct values
u0, u1, . . . , un with u0 = 0, and (ui, 1, ui+1) ∈ R̃T for each i ∈ {0, 1, . . . , n− 1}.
Such an n exists, since T is finite. By the choice of n, and since T satisfies
(2.14), there is an integer k ∈ {0, 1, . . . , n} with (un, 1, uk) ∈ R̃T . Thus, the
sequence

(uk, 1, uk+1), (uk+1, 1, uk+2), . . . , (un−1, 1, un), (un, 1, uk)

forms a “cycle” of length n− k + 1 ≤ n+ 1 in R̃T .
Now consider the target instance T ′ for Memb with

R̃T ′ = {(a, b, c) | a+ b = c mod n+ 2}.

It is easy to verify that T ′ is a solution for Sp under Memb. Since T is universal,
there is a homomorphism h from T to T ′. In particular, we must have

(h(ui), 1, h(ui+1)) ∈ RT ′ for each i ∈ {0, 1, . . . , n− 1}. (2.15)

We now have

h(ui) = i for each i ∈ {0, 1, . . . , n− 1}. (2.16)

This follows in an analogous way as in the proof of Theorem 2.33. First, note
that h(u0) = 0, since u0 = 0 is a constant, and homomorphisms are the identity
on constants. Now assume that h(ui) = i for some i ∈ {0, 1, . . . , n− 1}. Since

2.4. Queries With Inequalities 57

(h(ui), 1, h(ui+1)) ∈ RT ′ by (2.15), h(ui) = i, and (i, 1, i + 1) is the only tuple
in R̃T ′ of the form (i, 1, ·), it follows that h(ui+1) = i+ 1.

By (2.16) and (un, 1, uk) ∈ R̃T , we have (n, 1, k) = (h(un), 1, h(uk)) ∈ R̃T ′ .
However, (n, 1, n+ 1) is the only tuple in R̃T ′ of the form (n, 1, ·). We conclude
that there is no universal solution for Sp under Memb.

Even more, we can extendMemb to a schema mappingM ′
emb such that Exis-

tence-of-Solutions(M ′
emb) is undecidable, but Existence-of-Universal-

Solutions(M ′
emb) is trivial, which demonstrates once more the difference be-

tween the two problems Existence-of-Solutions and Existence-of-Uni-
versal-Solutions:

2.39 Example
Let M ′

emb = (σs, σ′t,Σ′) be obtained from Memb = (σs, σt,Σ) as follows. First,
add a new binary relation symbol E to the target schema σt. Second, add the
tgd → E(0, 1) to Σ (which ensures that every solution contains the tuple (0, 1)
in E), and third, add the tgd

χ2 = ∀x∀y(E(x, y)→ ∃z E(y, z))

from Example 2.12 to Σ. Then for every source instance S for M ′
emb, we have:

• There is a solution for S under M ′
emb if and only if there is a solution for

S under Memb. This is because χ2 is independent of the other tgds and
egds in Σ, and χ2 is satisfied in any solution T for S under M ′

emb with
(1, 0) ∈ ET .

• There is no universal solution for S under M ′
emb. This follows easily from

Example 2.12.
Hence, the problem Existence-of-Solutions(M ′

emb) is undecidable, while
the problem Existence-of-Universal-Solutions(M ′

emb) is trivial.

2.4 Queries With Inequalities

We conclude this chapter with a short overview on standard techniques and
results on computing the certain answers to monotonic queries that are not
preserved under homomorphisms. One particular class of such queries is the
class of unions of conjunctive queries with inequalities:

2.40 Definition (Unions of conjunctive queries with inequalities)
A union of conjunctive queries with inequalities over a schema σ is a FO query
over σ of the form

ϕ(x̄) = ∃ȳ1 ψ1(x̄, ȳ1) ∨ · · · ∨ ∃ȳm ψm(x̄, ȳm), (2.17)

58 Chapter 2. Computing the Certain Answers to Monotonic Queries

where for all i ∈ {1, . . . ,m}, ψi is a FO formula of the form A1 ∧ · · · ∧ An for
some positive integer n, and each Aj is a relational atomic FO formula over σ
or an inequality of the form ¬z = z′ for variables z, z′ that occur in x̄ or ȳi.
The subformulas ∃ȳi ψi(x̄, ȳi) are called the conjuncts of ϕ.

A conjunctive query with inequalities is a union of conjunctive queries with
one conjunct.

To compute the certain answers to queries that are not preserved under
homomorphisms, Deutsch et al. [2008] proposed universal solution sets.2 This
notion is tightly related to the notion of universal basis that appeared earlier
in the work of Fuxman et al. [2006], and to the universal solutions in Afrati
et al. [2008]. As the name suggests, universal solution sets are sets of solutions
(of course, with special properties). For each class F of mappings, there is a
corresponding notion of F -universal solution set that is suitable for computing
the certain answers to queries, where F is the class of mappings under which
these queries are preserved. Note that monotonic queries are preserved under
injective homomorphisms, that is, for all instances I, J , for all injective homo-
morphisms h from I to J , and for all tuples t̄ ∈ q(I), we have h(t̄) ∈ q(J)
(recall that we assume that queries are generic). Hence, we only consider uni-
versal solution sets with respect to the set ihom of all injective homomorphisms
(i.e., injective mappings that are the identity on constants). Given a set I of
instances over some schema σ, and an instance J over σ, we write I inj→ J if and
only if there is an instance I ∈ I and an injective homomorphism from I to J .

2.41 Definition (ihom-universal solution set)
Let M be a schema mapping, and let S be a source instance for M . An ihom-
universal solution set for S under M is a finite set T of solutions for S under
M with the following properties:

• T inj→ T for every solution T for S under M .

• There is no T ′ (T with T ′ inj→ T for every solution T for S under M .

As shown by Deutsch et al. [2008], the certain answers to a monotonic query
q on a schema mapping M and a source instance S for M can be computed
from an ihom-universal solution set T for S under M by taking the intersection
of the answers to q on the solutions in T , and by removing all tuples with nulls:

2.42 Theorem (Deutsch et al. [2008]).
Let M be a schema mapping, let S be a source instance for M , let T be an

2Deutsch et al. [2008] call universal solution sets universal model sets. Here, we prefer to
replace model by solution.

2.4. Queries With Inequalities 59

ihom-universal solution set for S under M , and let q be a monotonic query
over M ’s target schema. Then,

cert(q,M, S) = {t̄ | t̄ ∈ q(T) for all T ∈ T , and t̄ contains only constants}.

A drawback of ihom-universal solution sets is that they are in general very
large, so that it is not possible to compute such an ihom-universal solution set
in polynomial time.

2.43 Example
Consider the schema mapping M = ({P}, {R},Σ), where P is a unary relation
symbol, R is a ternary relation symbol, and Σ consists of the single st-tgd

∀x
(
P (x)→ ∃y∃z R(x, y, z)

)
.

Let n be a positive integer, and let S be a source instance for M with P S =
{1, . . . , n}. Then it is not hard to verify that there are � 2n many solutions in
every ihom-universal model set for M and S.

On the other hand, it follows from Mądry [2005] that ihom-universal solution
sets must be large:

2.44 Theorem (Mądry [2005]).
There is a schema mapping M defined by st-tgds, and a Boolean conjunctive
query q with two inequalities such that the following problem is co-NP-complete:
given a source instance S for M , decide whether the certain answers to q on S
and M are nonempty.

What seems to be more practical is to compute a “small” representation
of the set of all relevant solutions such as Core(M,S), and given a monotonic
query q over σt, compute a set of solutions that is sufficient for computing the
certain answers to q onM and S. For example, Fagin et al. [2005a] have shown:

2.45 Theorem (Fagin et al. [2005a]).
Let M be a weakly acyclic schema mapping, and let q be a Boolean query that is
the union of conjunctive queries with at most one inequality per disjunct. Then
there is a polynomial time algorithm that, given a universal solution for some
source instance S under M , computes the certain answers to q on M and S.

Roughly, the algorithm guaranteed by Theorem 2.45 works as follows. Given
a universal solution T for some source instance S under M , it first uses the
chase to compute a new solution T ′ for S under M from T . If the chase fails to
compute a solution, then the certain answers to q on M and S are nonempty.
Otherwise, the certain answers to q on M and S are q(T ′).

Arenas et al. [2009a] extended Theorem 2.45 to properly restricted classes
of unions of conjunctive queries with more than one inequality per disjunct.

60 Chapter 2. Computing the Certain Answers to Monotonic Queries

3 Justification-Based Approaches
to Query Answering

First semantics for query answering in relational data exchange that take into
account implicit information in schema mappings and source instances were
proposed by Libkin [2006]. These semantics are based on the concept of CWA-
solutions (the set of all CWA-solutions for a source instance S intuitively cor-
responds to the set of all possible outcomes of translating S to the target if
implicit information in the formalized sense is taken into account). Originally,
Libkin introduced CWA-solutions for the case of schema mappings defined by
st-tgds,1 but the definition was extended by Hernich and Schweikardt [2007] to
capture the more general case of schema mappings defined by tgds and egds.
This chapter introduces CWA-solutions and the corresponding query answer-
ing semantics, and discusses generalizations as well as specializations of CWA-
solutions considered by Libkin and Sirangelo [2008], Afrati and Kolaitis [2008],
and corresponding query answering semantics.

Sections 3.1 and 3.2 are devoted to the definition and basic properties of
CWA-solutions. As the name suggests, CWA-solutions are based on the closed
world assumption (CWA) [Reiter, 1978].2 The basic idea is that all data in the
target must be justified in some sense by the schema mapping and the source
instance. To put this into more concrete terms, Libkin identified three (rather
informal) requirements that a CWA-solution should have, and then formalized
them (in the context of schema mappings defined by st-tgds). One of these
requirements is that all atoms in a CWA-solution T for a source instance S
under a schema mapping M must be justified by M and S. For the case that
M is defined by st-tgds, this requirement was formalized by Libkin essentially
as: there is a st-tgd ∀x̄∀ȳ(ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)) of M , and tuples ū, v̄ such that
S |= ϕ(ū, v̄), the atom is one of the atoms in ψ[ū, w̄] for some tuple w̄, and T
contains all the atoms of ψ[ū, w̄]. Hence, a justification for the atom basically
consists of a st-tgd of M , and appropriate tuples ū and v̄. For the case that
M is defined by tgds and egds, the formalization is a bit more involved: the
atom must be “derivable” from S using the tgds of M as “rules” to “produce”
new atoms, in a similar way as in logic programming. Furthermore, all atoms

1Strictly speaking, the sentences considered by Libkin [2006] have the form ∀x̄∀ȳ(ϕ(x̄, ȳ)→
∃z̄ ψ(x̄, z̄)), which differ from st-tgds only in the fact that the body ϕ can be a (properly
restricted) FO formula rather than a conjunction of relational atomic FO formulas.

2In Chapter 4, we will consider the original definition of the CWA by Reiter [1978]. For
this chapter, the following requirements given by Libkin suffice.

62 Chapter 3. Justification-Based Approaches to Query Answering

obtained along the way must belong to T , and egds must be respected.
Note that this first requirement for CWA-solutions is very natural in the

following context. For simplicity, consider a schema mapping M = (σs, σt,Σ),
where Σ is a set of st-tgds, and let S be a source instance for M . Imagine
an algorithm A that translates S to σt by adding atoms to an initially empty
target instance T . Then it seems natural to assume that A adds only atoms to
T that can be obtained from S by “applying” a st-tgd in Σ to S. That is, if
∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)) is a st-tgd in Σ, and ū, v̄ are assignments for x̄, ȳ
with S |= ϕ(ū, v̄), then the algorithm may add the atoms of ψ[ū, w̄] to T for
some tuple w̄. So, atoms added to T are justified as indicated above.

The other two requirements for CWA-solutions say that justifications do not
“generate” more atoms than necessary, and that all facts (basically, statements
without negation) that are true in a CWA-solution follow from the schema
mapping and the source instance. Note that these requirements are natural
in the context described above, too. Table 3.1 summarizes the three informal
requirements for CWA-solutions.

(R1) Each atom is justified by the schema mapping and the source
instance.

(R2) Justifications for atoms are not “overused”: that is, each justifi-
cation for atoms does not “generate” more atoms than necessary.

(R3) Each fact in the target instance follows from the schema map-
ping and the source instance. That is, CWA-solutions contain no
“invented” facts.

Table 3.1: Informal requirements for CWA-solutions

Section 3.1 formalizes the first two requirements in Table 3.1. This re-
sults in the definition of CWA-presolutions, which are solutions that intuitively
satisfy the first two requirements in Table 3.1. Section 3.2 then defines CWA-
solutions by formalizing the third requirement in Table 3.1, and restricting
CWA-presolutions to CWA-presolutions that satisfy this third requirement. In
Section 3.2, we also identify basic properties of CWA-solutions. In particu-
lar, we characterize CWA-solutions as special universal solutions. Even more,
CWA-solutions exist if and only if universal solutions exist, and the core of the
universal solutions is the unique “minimal” CWA-solution, if it exists.

Sections 3.3 and 3.4 are devoted to the problem of answering queries us-

3.1. Definition and Basic Properties of CWA-Presolutions 63

ing CWA-solutions. In Section 3.3, we first present several semantics for query
answering based on CWA-solutions and illustrate them with examples. After-
wards, in Section 3.4, we investigate the complexity of evaluating FO queries
under these semantics. It turns out that for queries preserved under homomor-
phisms, the CWA-solution-based query answering semantics coincide with the
certain answers semantics, so that such queries can be evaluated in polynomial
time provided a universal solution can be computed in polynomial time, and
the query has polynomial time data complexity. However, for more expressive
queries, there are simple schema mappings such that the problem of deciding
whether a given tuple belongs to the set of answers to such a query may be
co-NP-hard or NP-hard, depending on the semantics.

Section 3.5 takes a closer look at generalizations and specializations of CWA-
solutions considered by Libkin and Sirangelo [2008] and Afrati and Kolaitis
[2008], and corresponding query answering semantics.

Finally, Section 3.6 discusses some limitations of the justification-based ap-
proaches for query answering presented in this chapter.

3.1 Definition and Basic Properties of CWA-Presolutions

In this section, we formalize requirements (R1) and (R2) in Table 3.1. This
results in the definition of CWA-presolutions, which are solutions that intuitively
satisfy the first two requirements in Table 3.1. As a warm-up, Section 3.1.1
reviews Libkin’s concept of CWA-presolutions for schema mappings defined by
st-tgds. The notation used in Section 3.1.1 differs considerably from Libkin’s
notation, and is chosen carefully to prepare for Section 3.1.2, where we define
CWA-presolutions for the more general case of schema mappings defined by
tgds and egds. Section 3.1.3 finally presents a game-based characterization of
CWA-presolutions that directly reflects the first two requirements of Table 3.1.

3.1.1 Schema Mappings Defined by St-Tgds

This section reviews the concept of CWA-presolutions from Libkin [2006] for
schema mappings defined by st-tgds. It serves as a warm-up for the more in-
volved definition of CWA-presolutions in Section 3.1.2. All concepts and results
presented in this section are from Libkin [2006]. However, we use a different
notation that will be more convenient in Section 3.1.2.

Let M = (σs, σt,Σ) be a schema mapping, where Σ consists of st-tgds, and
let S be a source instance for M . Given a target instance T for M and an atom
A of T , we say that A is justified in T under M and S if and only if A can be
obtained by “applying” a st-tgd in Σ to S, so that all atoms obtained “along
the way” belong to T as well. Formally, this is captured as follows:

64 Chapter 3. Justification-Based Approaches to Query Answering

3.1 Definition (Justification for atoms)
Let M = (σs, σt,Σ) be a schema mapping, where Σ consists of st-tgds, let S be
a source instance forM , let T be a target instance for M , and let A be an atom
of T .

• A justification for atoms under M and S is a triple (χ, ū, v̄) consisting of

– a st-tgd χ ∈ Σ of the form ∀x̄∀ȳ(ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)), and
– tuples ū ∈ Const|x̄| and v̄ ∈ Const|ȳ|

such that S |= ϕ(ū, v̄). If M and S are understood from the context, we
call (χ, ū, v̄) just justification.

• Let JM,S be the set of all justifications for atoms under M and S.

• Given j = (χ, ū, v̄) ∈ JM,S, where χ has the form ∀x̄∀ȳ(ϕ(x̄, ȳ) →
∃z̄ ψ(x̄, z̄)), we say that A is justified by j in T if and only if there is
a tuple w̄ ∈ Dom|z̄| with A ∈ ψ[ū, w̄] and ψ[ū, w̄] ⊆ T .

• We say that A is justified in T under M and S if and only if there is some
j ∈ JM,S such that A is justified by j in T .

3.2 Example (Library database restructuring, continued)
Consider the schema mapping M ′ = (σs, σt, {χ′1, χ′2}), where σs, σt, χ′1 and χ′2
are defined as in Example 1.15. Furthermore, let S∗ be the source instance for
M (resp., M ′) from Example 1.4. Then,

JM ′,S∗ =
{ (

χ′1, (“0-201-53771-0”, “Foundations of Databases”), ()
)
,(

χ′2, (“0-201-53771-0”, “Serge Abiteboul”), ()
)
,(

χ′2, (“0-201-53771-0”, “Richard Hull”), ()
)
,(

χ′2, (“0-201-53771-0”, “Victor Vianu”), ()
)
,(

χ′2, (“0-201-53082-1”, “Christos H. Papadimitriou”), ()
) }

.

Note that the instance T presented in Example 1.4 is a solution for S∗ under
M . The atom

Books(“0-201-53771-0”, “Foundations of Databases”), “DB”)

of T is justified by (χ′1, (“0-201-53771-0”, “Foundations of Databases”), ()) in
T . Moreover, the atoms

AuthorList(1, “Serge Abiteboul”) and WrittenBy(“0-201-53771-0”, 1)

of T are justified by (χ′2, (“0-201-53771-0”, “Serge Abiteboul”), ()) in T .

3.1. Definition and Basic Properties of CWA-Presolutions 65

Let T be a solution for S under M . Intuitively, T satisfies requirement
(R1) if we can label each atom A in T with at least one element j ∈ JM,S

such that A is justified by j in T . One possible way to model this labeling
is to provide a relation R between elements (χ, ū, v̄) ∈ JM,S, where χ has the
form ∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)), and tuples w̄ ∈ Dom|z̄| with ψ[ū, w̄] ⊆ T :
the element (χ, ū, v̄) then labels the atoms of ψ[ū, w̄]. See Figure 3.1 for an
illustration.

j = (χ, ū, v̄)

A1

A2

...

An

atoms of ψ[ū, w̄]
R

Figure 3.1: Assignment of justifications to atoms

Intuitively, T also satisfies (R2) if R associates each j ∈ JM,S with at most
one tuple w̄. In other words, R is a partial function on JM,S.

Note that we can assume, without loss of generality, that R is a (total)
function on JM,S. This is because each justification j = (χ, ū, v̄) ∈ JM,S, where
χ has the form ∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)), tells us that S |= ϕ(ū, v̄), and
thus, since T is a solution for S under M , there must be some tuple w̄ with
ψ[ū, w̄] ⊆ T . In other words, if R does not associate j with some tuple, then
we can modify R such that j is associated with w̄.

In the following, instead of working with functions that map justifications to
tuples of appropriate length, it will be more convenient to work with functions
that map pairs in

J ∗M,S := {(j, z) | j = (χ, ū, v̄) ∈ JM,S, where χ = ∀x̄∀ȳ(ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)),
and z is a variable in z̄}

to values in Dom. We can think of a mapping ζ : J ∗M,S → Dom as an assignment
of justifications j = (χ, ū, v̄) ∈ JM,S, where χ has the form ∀x̄∀ȳ(ϕ(x̄, ȳ) →
∃z̄ ψ(x̄, z̄)) and z̄ = (z1, . . . , zk), to tuples

ζ(j) := (ζ(j, z1), . . . , ζ(j, zk)),

or as a labeling of the atoms in

atoms(ζ, j) := ψ[ū, ζ(j)]

66 Chapter 3. Justification-Based Approaches to Query Answering

with j.
We are now ready to give the formal definition of CWA-presolutions:

3.3 Definition (CWA-presolution)
Let M = (σs, σt,Σ) be a schema mapping, where Σ is a set of st-tgds, and let
S be a source instance for M . A CWA-presolution for S under M is a target
instance T for S under M such that there is a mapping ζ : J ∗M,S → Dom with
T = TM,S,ζ , where

TM,S,ζ :=
⋃

j∈JM,S
atoms(ζ, j).

An immediate consequence of the definition of CWA-presolutions is that
every CWA-presolution for S under M is a solution for S under M .

3.4 Example (A CWA-presolution that is a universal solution)
Recall the schema mapping M ′ = (σs, σt, {χ′1, χ′2}) and the source instance S∗
for M ′ from Example 3.2. Let ζ : J ∗M ′,S∗ → Dom be defined as follows:

justification j ζ(j, z)(
χ′1, (“0-201-53771-0”, “Foundations of Databases”), ()

)
⊥1(

χ′2, (“0-201-53771-0”, “Serge Abiteboul”), ()
)

⊥4(
χ′2, (“0-201-53771-0”, “Richard Hull”), ()

)
⊥5(

χ′2, (“0-201-53771-0”, “Victor Vianu”), ()
)

⊥6(
χ′2, (“0-201-53082-1”, “Christos H. Papadimitriou”), ()

)
⊥7

Then we have TM ′,S∗,ζ = T , where

BookInfoT = {(“0-201-53771-0”, “Foundations of Databases”, ⊥1)},
AuthorsT = {(⊥4, “Serge Abiteboul”), (⊥5, “Richard Hull”),

(⊥6, “Victor Vianu”), (⊥7, “Christos H. Papadimitriou”)},
WrittenByT = {(“0-201-53771-0”, ⊥4), (“0-201-53771-0”, ⊥5),

(“0-201-53771-0”, ⊥6), (“0-201-53082-1”, ⊥7)}.

CWA-presolutions can be characterized in terms of a single universal solu-
tion: the canonical universal solution. The following definition of the canonical
universal solution is equivalent to the definition of the canonical universal solu-
tion from Arenas et al. [2004].

3.5 Definition (Canonical universal solution)
Let M = (σs, σt,Σ) be a schema mapping, where Σ consists of st-tgds, and let

3.1. Definition and Basic Properties of CWA-Presolutions 67

S be a source instance for M . The canonical universal solution for S under M
is defined by

CanSol(M,S) := TM,S,ζ ,

where ζ is some injective mapping from J ∗M,S to Null.3

In Example 3.4, we have CanSol(M ′, S∗) ∼= T . It should be clear from the
definition that CanSol(M,S) is a universal solution for S under M .

3.6 Proposition (Characterization of CWA-presolutions).
Let M = (σs, σt,Σ) be a schema mapping, where Σ consists of st-tgds, and let
S be a source instance for M . Then for every target instance T for M , the
following statements are equivalent.

1. T is a CWA-presolution for S under M .

2. There is a homomorphism h from CanSol(M,S) to T with the property
that h(CanSol(M,S)) = T .

Proof.

1 =⇒ 2: Suppose that T is a CWA-presolution for S under M . Then there is
a mapping ζ : J ∗M,S → Dom with T = TM,S,ζ . Furthermore, by Definition 3.5,
there is an injective mapping ζ ′ : J ∗M,S → Null with CanSol(M,S) = TM,S,ζ′ .

Now consider the mapping h : dom(CanSol(M,S))→ dom(T) such that

• h(ζ ′(j∗)) = ζ(j∗) for all j∗ ∈ J ∗M,S, and

• h(u) = u for all u ∈ const(CanSol(M,S)).

It is easy to verify that h is a homomorphism from CanSol(M,S) to T with
h(CanSol(M,S)) = T .
2 =⇒ 1: Let h be a homomorphism from CanSol(M,S) to T with the property
that h(CanSol(M,S)) = T . Let ζ ′ : J ∗M,S → Null be an injective mapping with
CanSol(M,S) = TM,S,ζ′ . Define a mapping ζ : J ∗M,S → Dom such that for every
j∗ ∈ J ∗M,S, we have ζ(j∗) := h(ζ ′(j∗)). Then h is a mapping as in the proof
of the direction from 1 to 2 above, so that T = h(CanSol(M,S)) = TM,S,ζ . In
particular, T is a CWA-presolution for S under M .

Proposition 3.6 now makes it easier to verify that a given solution is a CWA-
presolution or not.

3Note that CanSol(M,S) is defined only up to isomorphism.

68 Chapter 3. Justification-Based Approaches to Query Answering

3.7 Example (A CWA-presolution that is no universal solution)
Recall the schema mapping M ′ = (σs, σt, {χ′1, χ′2}), the source instance S∗ for
M ′, and the solution T for S∗ under M ′ from Example 3.2. Recall that T =
CanSol(M ′, S∗).

Now consider the solution T ′ for S∗ under M ′ with

BookInfoT ′ = {(“0-201-53771-0”, “Foundations of Databases”, “DB”)},
AuthorsT ′ = {(1, “Serge Abiteboul”), (2, “Richard Hull”),

(3, “Victor Vianu”), (4, “Christos H. Papadimitriou”)},
WrittenByT ′ = {(“0-201-53771-0”, 1), (“0-201-53771-0”, 2),

(“0-201-53771-0”, 3), (“0-201-53082-1”, 4)}.

It is easy to see that there is a homomorphism h from T to T ′ with h(T) = T ′.
The homomorphism h just has to map the null ⊥1 to “DB”, and the null ⊥i+3
to i for each i ∈ {1, 2, 3, 4}. Thus, by Proposition 3.6, T ′ is a CWA-presolution
for S∗ under M ′.

Note that T ′ is no universal solution for S∗ under M ′. For example, there
is no homomorphism from T ′ to T .

3.8 Example (A universal solution that is no CWA-presolution)
Recall the schema mapping M ′ = (σs, σt, {χ′1, χ′2}) and the source instance S∗
forM ′ from Example 3.2. Let T := CanSol(M ′, S∗), and let f : dom(T)→ Dom
be an injective mapping such that f(c) = c for each constant c ∈ const(T), and
f(⊥) /∈ dom(T) for each null ⊥ ∈ nulls(T). Then it is easy to see that T ′ :=
T ∪ f(T) is a universal solution for S∗ under M ′. However, by Proposition 3.6,
T ′ is no CWA-presolution for S∗ under M ′, since there is no homomorphism h
from T to T ′ such that h(T) = T ′.

3.1.2 Schema Mappings Defined by Tgds and Egds

In this section, we extend the definition of CWA-presolutions from Section 3.1.1
to capture schema mappings defined by tgds and egds.

First note that a CWA-presolution for a source instance S under a schema
mapping M ′ = (σs, σt,Σ′), where Σ′ consists of st-tgds, is in general no solution
for S under a schema mapping M = (σs, σt,Σ), where Σ is obtained from Σ′
by adding t-tgds and egds. In Example 3.4, T = CanSol(M ′, S∗) is a CWA-
presolution for S∗ under M ′. However, it is easy to see that T is no solution for
S∗ under M , since the tgd χ4 (cf., Example 1.15) is not satisfied. To capture
schema mappings with tgds and egds, we thus need to extend the definition of
CWA-presolutions.

3.1. Definition and Basic Properties of CWA-Presolutions 69

Let M = (σs, σt,Σ) be a schema mapping, where Σ consists of tgds and
egds, and let S be a source instance for M . In a similar way as in Section 3.1.1,
we will say that an atom A in a target instance T for M is justified in T under
M and S if A can be obtained by “applying” tgds in Σ to S, so that all atoms
obtained “along the way” belong to T as well. Note that egds that may be
present in Σ are ignored here; they are incorporated later. More precisely (but
still informal), A will be called justified in T under M and S if

1. there is a st-tgd ∀x̄∀ȳ(ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)) in Σ and tuples ū, v̄ such that
S |= ϕ(ū, v̄), A ∈ ψ[ū, w̄] for some tuple w̄, and ψ[ū, w̄] ⊆ T , or

2. there is a t-tgd ∀x̄∀ȳ(ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)) in Σ and tuples ū, v̄ such that
T |= ϕ(ū, v̄), A ∈ ψ[ū, w̄] for some tuple w̄, ψ[ū, w̄] ⊆ T , and the atoms of
ϕ[ū, v̄] are already “justified”.

When justifying atoms with t-tgds (according to condition 2 above), we
have to take care to avoid “circular justifications”: it should not be the case
that a t-tgd ∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)) and tuples ū, v̄ justify a set ψ[ū, w̄] of
atoms based on the atoms in ϕ[ū, v̄], while another t-tgd justifies some of the
atoms in ϕ[ū, v̄] based on some of the atoms in ψ[ū, w̄]. To avoid such “circular
justifications”, we use a derivation-based approach, adding atoms only if they
can be justified based on atoms that have already been justified. We start with
a CWA-presolution T0 for S under M ′ = (σs, σt,Σ′), where Σ′ consists of all st-
tgds in Σ, in the sense of Definition 3.3. This derives atoms that can be justified
according to condition 1 above. Based on the atoms of T0 we then derive further
atoms that can be justified according to condition 2. This is done by employing
a suitably “controlled” version of the chase (cf., Section 2.2.1), which we call
ζ-chase and which is defined below.

For defining the ζ-chase, we use the following relaxation of the notion of
justification (cf., Definition 3.1), which focuses on justifications of atoms in
terms of t-tgds, according to condition 2 above:

3.9 Definition (potential justification for atoms)
Let Σ be a set of tgds.

• A potential justification for atoms under Σ is a triple (χ, ū, v̄) consisting
of

– a tgd χ ∈ Σ of the form ∀x̄∀ȳ(ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)), and
– tuples ū ∈ Const|x̄| and v̄ ∈ Const|ȳ|.

If Σ is understood from the context, we call (χ, ū, v̄) just potential justifi-
cation.

70 Chapter 3. Justification-Based Approaches to Query Answering

• Let JΣ be the set of all potential justifications for atoms under Σ.

• Given a schema mapping M = (σs, σt,Σ) for a set Σ of tgds and egds, we
let JM := JΣ′ , where Σ′ consists of all t-tgds in Σ.

We will interpret potential justifications j = (χ, ū, v̄) ∈ JM , where χ has
the form ∀x̄∀ȳ(ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)), as follows. Suppose that we have already
“derived” a target instance T for M (i.e., all atoms of T are already justified)
such that T |= ϕ(ū, v̄). Then we can add the atoms of ψ[ū, w̄] for any tuple
w̄ ∈ Dom|z̄| to T , so that all atoms in the resulting instance are justified. In
other words, j serves as a justification for the atoms of ψ[ū, w̄] based on the
atoms of ϕ[ū, v̄] that are already justified.

3.10 Example (Library database restructuring, continued)
Consider the schema mapping M = (σs, σt,Σ) from Example 1.15. The only
t-tgd in Σ is χ4. Thus,

JM =
{ (

χ4, (“0-201-53082-1”,⊥7), ()
)
,(

χ4, (“0-201-53082-1”, “Christos H. Papadimitriou”), ()
)
,(

χ4, (“0-521-30442-3”, “Wilfrid Hodges”), ()
)
, . . .

}
.

Similarly as in Section 3.1.1, we will consider mappings ζ from the set

J ∗Σ := {(j, z) | j = (χ, ū, v̄) ∈ JΣ, where χ = ∀x̄∀ȳ(ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)),
and z is a variable in z̄}

to Dom for “labeling atoms with potential justifications”. Again, we can view
a mapping ζ : J ∗Σ → Dom as an assignment of potential justifications j =
(χ, ū, v̄) ∈ JΣ, where χ has the form ∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)) and z̄ =
(z1, . . . , zk), to tuples

ζ(j) := (ζ(j, z1), . . . , ζ(j, zk)),

or as a labeling of the atoms in

atoms(ζ, j) := ψ[ū, ζ(j)]

with j.
The ζ-chase is defined for sets of tgds only, since we need it only for the

purpose of justifying atoms according to condition 2 mentioned at the beginning
of the present Section 3.1.2. Given an instance I over a schema σ, and a set Σ of
tgds over σ, the ζ-chase starts—like the chase—with the input instance I0 := I
and proceeds in steps 1, 2, In step s ≥ 1, an instance Is−1 has already been
computed. If possible, the ζ-chase then makes a ζ-tgd chase step:

3.1. Definition and Basic Properties of CWA-Presolutions 71

3.11 Definition (ζ-tgd chase step)
Let ζ : J ∗Σ → Dom be defined with respect to a set Σ of tgds over a schema σ.
Let I be an instance over σ, let χ ∈ Σ have the form ∀x̄∀ȳ(ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)),
let α be an assignment for ϕ, and let j := (χ, α(x̄), α(ȳ)) ∈ JΣ.

• We say that χ applies to I with α and ζ if and only if I |= ϕ(α) and
atoms(ζ, j) * I.

• Given an instance J , we write I `ζχ,α J if and only if χ applies to I with
α and ζ, and J = I ∪ atoms(ζ, j).

• We write I `ζΣ J if and only if there is some χ ∈ Σ and an appropriate
assignment α such that I `ζχ,α J .

Otherwise, the ζ-chase stops and outputs Is−1. The possible “runs” of the
ζ-chase are formally described by ζ-chase sequences:

3.12 Definition (ζ-chase sequence)
Let ζ : J ∗Σ → Dom be defined with respect to a set Σ of tgds over a schema σ,
and let I be an instance over σ.

• A ζ-chase sequence on I and Σ is a (finite or infinite) sequence C =
I0, I1, . . . of instances over σ such that I0 = I, and for every instance Is
in C with s ≥ 1 we have Is−1 `ζΣ Is.

• Let C = (I0, I1, . . . , Il) be a finite ζ-chase sequence on I and Σ. We call
Il the result of C, and l the length of C.

• A successful ζ-chase sequence on I and Σ is a finite ζ-chase sequence
C = (I0, I1, . . . , Il) on I and Σ such that there is no instance J over σ
with Il `ζΣ J .

3.13 Example (Library database restructuring, continued)
Consider the schema mapping M = (σs, σt,Σ) and the source instance S∗ for
M from Example 1.15 and Example 1.4, respectively.

Let T be the target instance for M from Example 3.4, and let ζ : J ∗M →
Dom be such that on the potential justifications j and the variables z listed in
Table 3.2, ζ(j, z) has the given value.

It is not hard to see that the instance T ∗ from Example 1.5 is the result of
a successful ζ-chase sequence on T and the set Σ′ = {χ4} of all t-tgds in Σ.
Indeed, we have T `ζχ4,α T

∗, where α(x1) = “0-201-53082-1” and α(x2) = ⊥7.
Note also that there is no instance J with T ∗ `ζΣ J . Therefore, the sequence
C := (T, T ∗) is a successful ζ-chase sequence on T and Σ′.

72 Chapter 3. Justification-Based Approaches to Query Answering

potential justification j ∈ JM z ζ(j, z)(
χ4, (“0-201-53771-0”,⊥4), ()

)
z1 “Foundations of Databases”(

χ4, (“0-201-53771-0”,⊥4), ()
)

z2 ⊥1(
χ4, (“0-201-53771-0”,⊥4), ()

)
z3 “Serge Abiteboul”(

χ4, (“0-201-53771-0”,⊥5), ()
)

z1 “Foundations of Databases”(
χ4, (“0-201-53771-0”,⊥5), ()

)
z2 ⊥1(

χ4, (“0-201-53771-0”,⊥5), ()
)

z3 “Richard Hull”(
χ4, (“0-201-53771-0”,⊥6), ()

)
z1 “Foundations of Databases”(

χ4, (“0-201-53771-0”,⊥6), ()
)

z2 ⊥1(
χ4, (“0-201-53771-0”,⊥6), ()

)
z3 “Victor Vianu”(

χ4, (“0-201-53082-1”,⊥7), ()
)

z1 ⊥2(
χ4, (“0-201-53082-1”,⊥7), ()

)
z2 ⊥3(

χ4, (“0-201-53082-1”,⊥7), ()
)

z3 “Christos H. Papadimitriou”

Table 3.2: Definition of ζ for some potential justifications

The following lemma summarizes some basic properties of ζ-chase sequences:

3.14 Lemma.
Let I be an instance over a schema σ, let Σ be a set of tgds over σ, and let
ζ : J ∗Σ → Dom.

1. A successful ζ-chase sequence on I and Σ exists if and only if there is no
infinite ζ-chase sequence on I and Σ.

2. If C1, C2 are successful ζ-chase sequences on I and Σ, then C1 and C2
have the same result.

3. If J is the result of some ζ-chase sequence on I and Σ with J |= Σ, then
J is the result of some successful ζ ′-chase sequence on I and Σ, for some
ζ ′ : J ∗Σ → Dom.

Proof.

Ad 1: If there is no successful ζ-chase sequence on I and Σ, then all ζ-chase
sequences on I and Σ must be infinite.

Assume now that C = (I0, I1, . . . , Il) is a successful ζ-chase sequence on I
and Σ. For a contradiction, suppose that there is an infinite ζ-chase sequence
C ′ = (I ′0, I ′1, I ′2, . . .) on I and Σ. Note that I0 = I ′0 and that I0 ⊆ Il. Since in

3.1. Definition and Basic Properties of CWA-Presolutions 73

each ζ-tgd chase step at least one new atom is introduced, we have I ′0 (I ′1 (
I ′2 (· · · . Thus, there is a smallest index i ≥ 0 such that I ′i ⊆ Il and I ′i+1 * Il.

Let us assume that I ′i `ζχ,α I ′i+1 for some χ ∈ Σ, where χ has the form
∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)), and an appropriate assignment α. Then we have
I ′i |= ϕ(α) and atoms(ζ, j) * I ′i, where j := (χ, α(x̄), α(ȳ)). Since I ′i ⊆ Il and
I ′i+1 = I ′i ∪ atoms(ζ, j) * Il, this implies that Il `ζχ,α Il ∪ atoms(ζ, j). However,
this is impossible, because C is successful.
Ad 2: Let C = (I0, I1, . . . , Il) and C ′ = (I ′0, I ′1, . . . , I ′l′) be successful ζ-chase
sequences on I and Σ. For a contradiction, suppose that Il 6= I ′l′ . Without loss
of generality, I ′l′ * Il. Let i ≥ 0 be the smallest index such that I ′i+1 * Il. Then
we obtain the desired contradiction in the same way as in part 1 of the proof.
Ad 3: Let C = (I0, I1, . . . , Il) be a ζ-chase sequence on I and Σ with Il = J .
Consider all elements j = (χ, ū, v̄) ∈ JΣ, where χ has the form ∀x̄∀ȳ(ϕ(x̄, ȳ)→
∃z̄ ψ(x̄, z̄)), J |= ϕ(ū, v̄) and J 6|= ψ(ū, ζ(j)). For each such element, modify
ζ such that J |= ψ(ū, ζ(j)). This is possible, since J |= Σ, and therefore,
J |= ψ(ū, w̄) for some tuple w̄. Let ζ ′ be the resulting mapping. Then C is a
successful ζ ′-chase sequence on I and Σ with result J .

We are now ready to give the formal definition of CWA-presolutions.

3.15 Definition (CWA-presolution)
Let M = (σs, σt,Σ) be a schema mapping, where Σ consists of tgds and egds,
and let S be a source instance for M . Let Σst be the set of all st-tgds in Σ, and
let Σt be the set of all t-tgds in Σ.

A CWA-presolution for S under M is a target instance T for M with the
following properties:

1. There is a CWA-presolution T0 for S under M ′ = (σs, σt,Σst) in the sense
of Definition 3.3, and a mapping ζ : J ∗Σt → Dom such that T is the result
of some successful ζ-chase sequence on T0 and Σt.

2. T satisfies the egds in Σ.

Note how condition 1 formalizes the intuitive notion of being derivable from
the source instance described at the beginning of the present section. Condi-
tion 2 filters out all target instances that can be derived in such a way that
egds are respected. In particular, it follows from Definition 3.15 that all CWA-
presolutions for S under M are solutions for S under M .

3.16 Example (Library database restructuring, continued)
Consider the schema mapping M = (σs, σt,Σ) and the source instance S∗ for
M from Example 1.15 and Example 1.4, respectively.

74 Chapter 3. Justification-Based Approaches to Query Answering

Recall the target instance T forM from Example 3.4, and that it is a CWA-
presolution for S∗ under the reduced schema mappingM ′. In Example 3.13, we
have shown that the instance T ∗ from Example 1.5 is the result of a successful
ζ-chase sequence on T and Σt, where Σt is the set of all t-tgds in Σ, for some
mapping ζ : J ∗Σt → Dom. Thus, T ∗ is a CWA-presolution for S∗ under M .

Note that the two notions of CWA-presolutions, from Section 3.1.2 and
the present section, coincide on schema mappings with st-tgds. Often, a more
convenient “definition” of CWA-presolutions is:

3.17 Proposition.
LetM = (σs, σt,Σ) be a schema mapping, where Σ consists of tgds and egds, and
let S be a source instance for M . Then a CWA-presolution for S under M is a
solution T for S underM such that S∪T is the result of some successful ζ-chase
sequence on S and Σ′, where Σ′ consists of all tgds in Σ, and ζ : J ∗Σ′ → Dom.

Proof. Let Σst be the set of all st-tgds in Σ, and let Σt be the set of all t-tgds
in Σ. Then Σ′ = Σst ∪ Σt.

First assume that T is a CWA-presolution for S under M . Then T is a
solution for S under M . Moreover, there is

• a CWA-presolution T0 for S under M ′ = (σs, σt,Σst), and

• a successful ζ-chase sequence C on T0 and Σt for some mapping ζ : J ∗Σt →
Dom such that T is the result of C.

Let ζ ′ : J ∗M ′,S → Dom be such that T0 = TM ′,S,ζ′ . It is easy to see that S ∪ T is
the result of a successful ζ ′′-chase sequence on S and Σ′, where ζ ′′ : J ∗Σ′ → Dom
is such that for all j ∈ JM ′,S we have ζ ′′(j) = ζ ′(j), and for all j ∈ JΣt we have
ζ ′′(j) = ζ(j).

Finally assume that T is a solution for S under M , and that S ∪ T is the
result of a successful ζ-chase sequence on S and Σ′ for some ζ : J ∗Σ′ → Dom.
Define ζ ′ : J ∗M ′,S → Dom such that for all j ∈ JM ′,S we have ζ ′(j) = ζ(j), and
define ζ ′′ : J ∗Σt → Dom such that for all j ∈ JΣt we have ζ ′′(j) = ζ(j). Then
it is easy to see that T0 := TM ′,S,ζ′ is a CWA-presolution for S under M ′, and
that T is the result of a successful ζ ′′-chase sequence on T0 and Σt.

In the following Section 3.1.3, we give an alternative definition of CWA-
presolutions in terms of a game.

3.1.3 A Game-Based Characterization

CWA-presolutions can be characterized alternatively in terms of a game which
directly reflects requirements (R1) and (R2) in Table 3.1.

3.1. Definition and Basic Properties of CWA-Presolutions 75

Let M = (σs, σt,Σ) be a schema mapping, where Σ consists of tgds and
egds, let S be a source instance for M , and let T be a target instance for M .
The game, denoted by a(M,S, T), is played by two players, the verifier and
the falsifier. The verifier’s goal is to show that T satisfies requirements (R1)
and (R2) with respect to S and M , whereas the falsifier’s goal is to show the
converse. The game has at most |atoms(T)|+ 1 rounds.

In round 0, the verifier fixes the two sets A1 := atoms(T) and J1 := JΣ′ ,
where Σ′ is the set of all tgds in Σ (recall Definition 3.9), and picks a linear
order � on A1. Intuitively, A1 is the set of all atoms that need to be justified,
and J1 is the set of all potential justifications that may be used for this purpose.
The linear order � determines that for justifying an atom A, only atoms that
either belong to S or are smaller than A with respect to � can be used. In
particular, this ensures that there are no “circular justifications”.

The game proceeds in rounds 1, 2, In each round i ≥ 1, the falsifier
begins by picking an atom A in Ai, or loses if Ai is empty. Then, the verifier
has to justify A by picking a potential justification (χ, ū, v̄) ∈ Ji, where χ has
the form ∀x̄∀ȳ(ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)), and a tuple w̄ ∈ Dom|z̄| such that:

• S ∪ T |= ϕ(ū, v̄), T |= ψ(ū, w̄) and A ∈ ψ[ū, w̄], and

• for each atom A′ of ϕ[ū, v̄], either A′ is an atom of S, or A′ ≺ A.

If this is not possible, the verifier loses. Otherwise, the game proceeds with
round i+ 1, where Ai+1 consists of all atoms in Ai that do not occur in ψ[ū, w̄],
and Ji+1 := Ji \ {(χ, ū, v̄)}.

Note that by removing all atoms of ψ[ū, w̄] from Ai, we ensure that these
atoms do not need to be justified again (they are already justified by (χ, ū, v̄)).
By removing (χ, ū, v̄) from the set Ji, we ensure that every potential justification
is used at most once (this corresponds to requirement (R2)).

A winning strategy for the verifier (resp., falsifier) in the game a(M,S, T)
is a strategy that allows the verifier (resp., falsifier) to win the game regardless
of which moves the falsifier (resp., verifier) makes during the game. Note that
either the verifier or the falsifier has a winning strategy in a(M,S, T).

3.18 Example (Library database restructuring, continued)
Consider the schema mapping M = (σs, σt,Σ) and the source instance S∗ for
M from Example 1.15 and Example 1.4, respectively.

Let T ∗ be the target instance for M from Example 1.5. Then the ver-
ifier has a winning strategy in a(M,S∗, T ∗). Indeed, it is not difficult to
see that the verifier can win a(M,S∗, T ∗) by picking, in round 0, a linear
order � on atoms(T ∗) such that the atom BookInfo(“0-201-53082-1”,⊥2,⊥3)
is the largest atom with respect to �. Similarly, the verifier has a winning

76 Chapter 3. Justification-Based Approaches to Query Answering

strategy in a(M,S∗, T), where T is the solution for S∗ under M from Exam-
ple 1.4. Here, the verifier can pick a linear order � on atoms(T) such that
BookInfo(“0-201-53082-1”, “Computational Complexity”, “CC”) is the largest
atom with respect to �.

On the other hand, consider the solutions T1 and T2 for S∗ under M with

T1 = T ∗ ∪ { WrittenBy(“0-521-30442-3”, ⊥) },
T2 = T ∗ ∪ { BookInfo(“0-201-53082-1”, ⊥,⊥′) }.

Then the falsifier has a winning strategy in both games, a(M,S∗, T1) and
a(M,S∗, T2). To win the game a(M,S∗, T1), the falsifier simply picks the atom
WrittenBy(“0-521-30442-3”, ⊥) in round 1. Then the verifier cannot justify
this atom, because the only potential justification that could justify this atom
would have to be of the form (χ2, (“0-521-30442-3”, ·), ()). However, to “use”
such a potential justification, AuthorsS∗ would have to contain a tuple of the
form (“0-521-30442-3”, ·), which is not the case.

Furthermore, to win the game a(M,S∗, T2), the falsifier can choose the
atom A1 := BookInfo(“0-201-53082-1”, ⊥2,⊥3) in round 1, and the atom A2 :=
BookInfo(“0-201-53082-1”, ⊥,⊥′) in round 2. Both atoms, A1 and A2, can only
be justified using the potential justification j := (χ4, (“0-201-53082-1”,⊥7), ()).
Thus, the verifier would have to choose j in round 1 and round 2, which is
impossible.

3.19 Proposition (Game characterization of CWA-presolutions).
Let M = (σs, σt,Σ) be a schema mapping, where Σ consists of tgds and egds,
and let S be a source instance for M . For every target instance T for M , the
following statements are equivalent:

1. T is a CWA-presolution for S under M .

2. T is a solution for S under M , and the verifier has a winning strategy in
the game a(M,S, T).

Proof.

1 =⇒ 2: Suppose that T is a CWA-presolution for S under M . In particular,
T is a solution for S underM . It remains to show that the verifier has a winning
strategy in the game a(M,S, T).

Let Σ′ be the set of all tgds in Σ. By Proposition 3.17, S ∪T is the result of
a successful ζ-chase sequence C = (I0, I1, . . . , Il) on S and Σ′, for some mapping
ζ : J ∗Σ′ → Dom. From C, we obtain a winning strategy for the verifier in the
game a(M,S, T) as follows.

3.1. Definition and Basic Properties of CWA-Presolutions 77

The strategy will be such that:

If the verifier picks a justification j and a tuple w̄ in some round,
then w̄ = ζ(j). (*)

In round 0, the verifier fixes the sets A1 and J1 as described above, and picks
a linear order � on A1 such that for all atoms A,A′ ∈ A1, where A ∈ Ik−1 and
A′ ∈ Ik \ Ik−1 for some k ∈ {1, . . . , l}, we have A ≺ A′.

Let i ≥ 1 be such that Ai 6= ∅, and assume that in each of the rounds
i′ ∈ {1, . . . , i− 1}, the verifier played according to (*). Then round i proceeds
as follows. Let A ∈ Ai be the choice of the falsifier in round i. Let k be the
smallest integer in {0, 1, . . . , l} for which A ∈ Ik. Note that k ≥ 1, since I0 = S,
and A is an atom of T .

Assume that Ik−1 `ζχ,α Ik for some tgd χ ∈ Σ′ of the form ∀x̄∀ȳ(ϕ(x̄, ȳ) →
∃z̄ ψ(x̄, z̄)), and an assignment α. For j := (χ, α(x̄), α(ȳ)), we then have

• S ∪ T |= ϕ(α), T |= ψ(α(x̄), ζ(j)) and A ∈ ψ[α(x̄), ζ(j)], and

• for each atom A′ of ϕ[α], either A′ is an atom of S (if χ is a st-tgd), or
A′ ≺ A (if χ is a t-tgd, by construction of �).

Since the verifier plays according to (*), we have j ∈ Ji (otherwise, if j /∈ Ji,
then all atoms of atoms(ζ, j) would already be “justified”, that is, A /∈ Ai).
Thus, the verifier can choose j and the tuple w̄ := ζ(j) in round i.
2 =⇒ 1: Assume that T is a solution for S underM , and that the verifier has a
winning strategy in a(M,S, T). Let Σ′ be the set of all tgds in Σ. To show that
T is a CWA-presolution for S under M , it suffices to find, by Proposition 3.17,
a mapping ζ : J ∗Σ′ → Dom such that S ∪ T is the result of a successful ζ-chase
sequence on S and Σ′.

A play in a(M,S, T) is a sequence p = (p1, . . . , pn), where n ≥ 0 is the
number of rounds of the play, and each pi is a tuple of the form (A, j, w̄), where
A is the atom chosen by the falsifier in round i, and j and w̄ are the justification
and the tuple chosen by the verifier in round i. With each play p in a(M,S, T),
we associate a set A(p) ⊆ atoms(T) as follows.

• If p = (), then A(p) := atoms(T).

• If p = (p1, . . . , pn+1), where pn+1 = (A, j, w̄), j = (χ, ū, v̄) and χ has the
form ∀x̄∀ȳ(ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)), then A(p) := A(p1, . . . , pn) \ ψ[ū, w̄].

Hence, for each play p = (p1, . . . , pn) in a(M,S, T), A(p) coincides with the set
An+1 of atoms at the beginning of round n+ 1. Note that the verifier wins p if
and only if A(p) = ∅.

78 Chapter 3. Justification-Based Approaches to Query Answering

Consider a play p = (p1, . . . , pn) in a(M,S, T), where the verifier wins. For
every i ∈ {1, . . . , n}, let pi = (Ai, ji, w̄i), and assume that the falsifier plays
such that Ai is the minimal atom in A(p1, . . . , pi−1) with respect to �. Choose
a mapping ζ : J ∗Σ′ → Dom such that for every i ∈ {1, . . . , n} we have w̄i = ζ(ji).
This is possible, because each potential justification ji occurs once in p.

We now show that S ∪ T is the result of a ζ-chase sequence on S and Σ′.
To this end, we prove the following by induction on i ∈ {0, 1, . . . , n}:

There is a ζ-chase sequence Ci on S and Σ′ with result
(S ∪ T) \ A(p1, . . . , pi).

(∗)

For i = 0, we can choose C0 = (S). Now suppose that (∗) is true for some
i < n. That is, there is a ζ-chase sequence Ci = (I0, I1, . . . , Il) on S and Σ′ with
Il = (S ∪T) \A(p1, . . . , pi). Assume that ji+1 = (χ, ū, v̄), where χ has the form
∀x̄∀ȳ(ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)). Then,

• S ∪ T |= ϕ(ū, v̄), T |= ψ(ū, w̄i+1) and A ∈ ψ[ū, w̄i+1], and

• for each atom A′ of ϕ[ū, v̄], either A′ is an atom of S, or A′ ≺ A.

If ψ[ū, w̄i+1] ⊆ Il, then we can choose Ci+1 := Ci. In the following, we consider
the case that ψ[ū, w̄i+1] * Il.

Note that ϕ[ū, v̄] ⊆ Il. To see this, let A′ be an atom of ϕ[ū, v̄]. If A′ is
an atom of S, then A′ ∈ Il since S ⊆ Il. Otherwise, A′ ≺ A. If A′ would not
be an atom of Il, then A′ ∈ A(p1, . . . , pi). But this is impossible, since by the
construction of p, A is the minimal atom in A(p1, . . . , pi) with respect to �.

Since ϕ[ū, v̄] ⊆ Il, ψ[ū, w̄i+1] * Il, and w̄i+1 = ζ(ji+1) by the construction of
ζ, the sequence Ci+1 := (I0, I1, . . . , Il, Il ∪ ψ[ū, w̄i+1]) is a ζ-chase sequence on
S and Σ′ with result Il ∪ ψ[ū, w̄i+1] = (S ∪ T) \ A(p1, . . . , pi+1). This completes
the induction step.

To complete the proof, observe that by Lemma 3.14(3), it follows immedi-
ately that S ∪ T is the result of a successful ζ ′-chase sequence on S and Σ′, for
some mapping ζ ′ : J ∗Σ′ → Dom.

3.2 Definition and Basic Properties of CWA-Solutions

Note that a CWA-presolution for a source instance S under a schema mapping
M defined by tgds and egds may imply certain “facts” that do not “follow”
from S and M . Recall, for instance, the setting in Example 1.4. Here, the
solution T for S∗ under M is a CWA-presolution for S∗ under M , as shown by
Example 3.18 and Proposition 3.19. In particular, T tells us that “Christos H.
Papadimitriou” is author of the book “Computational Complexity”. However,

3.2. Definition and Basic Properties of CWA-Solutions 79

this fact intuitively does not follow from S∗ and M . The third requirement for
CWA-solutions, Requirement (R3), ensures that such “invented” facts do not
occur in CWA-solutions.

Let us now show how to formalize this third requirement. Formally, a fact
F over a schema σ is a FO sentence over σ of the form ∃z̄ ϕ(z̄), where ϕ is a
conjunction of relational atomic FO formulas. For example, recall the setting
in Example 1.4. Then the fact

∃z1∃z2∃z3
(
AuthorList(z1, “Christos H. Papadimitriou”) ∧
WrittenBy(z2, z1) ∧
BookInfo(z2, “Computational Complexity”, z3)

) (3.1)

tells us that “Christos H. Papadimitriou” is author of the book “Computational
Complexity”. We say that a fact F = ∃z̄ ϕ(z̄) over a schema σ is true in
an instance I over σ if and only if I |= F . Libkin [2006] formalized CWA-
solutions by requiring that each fact that is true in a CWA-solution is true in
the canonical universal solution. For the more general case of schema mappings
defined by tgds and egds, a solution like the canonical universal solution may
not exist. Here, we formalize CWA-solutions by requiring that each fact that is
true in a CWA-solution can be inferred from the source instance and the schema
mapping. Note that this directly corresponds to Requirement (R3).

3.20 Definition (CWA-solution)
Let M = (σs, σt,Σ) be a schema mapping, where Σ consists of tgds and egds,
and let S be a source instance for M .

• A CWA-solution for S under M is a CWA-presolution T for S under M
such that each fact that is true in T is also true in every solution for S
under M .

• The set of all CWA-solutions for S under M is denoted by solCWA(M,S).

The following theorem characterizes CWA-solutions as CWA-presolutions
that are universal. Note that in the context of schema mappings defined by st-
tgds, if we use the definition of CWA-solutions from Libkin [2006]—that a CWA-
solution is a CWA-presolution that has a homomorphism into the canonical
universal solution—this follows immediately from the fact that the canonical
universal solution is a universal solution.

3.21 Theorem (Characterization of CWA-solutions).
Let M be a schema mapping, where Σ consists of tgds and egds, and let S be a
source instance for M . Then, for every target instance T for M , the following
statements are equivalent:

80 Chapter 3. Justification-Based Approaches to Query Answering

1. T is a CWA-solution for S under M .

2. T is a universal solution for S under M , and T is a CWA-presolution for
S under M .

Proof.

1 =⇒ 2: Let T be a CWA-solution for S under M . In particular, T is a
CWA-presolution for S under M . To prove 2, it suffices therefore to show that
T is a universal solution for S under M .

Let ⊥1, . . . ,⊥k be an enumeration of all nulls that occur in T (without
repetition). Consider the fact FT := ∃z̄ ϕT (z̄), where z̄ = (z1, . . . , zk), and
ϕT (z̄) is the conjunction of all atomic formulas R(ū) obtained from an atom
R(t̄) of T by replacing each null ⊥i in t̄ with zi. Clearly, FT is true in T . Since
T is a CWA-solution for S under M , Definition 3.20 implies that FT is true in
every solution T ′ for S under M . We use this to show that for every solution
T ′ for S under M , there is a homomorphism from T to T ′, which proves that
T is a universal solution for S under M .

Let T ′ be an arbitrary solution for S under M . Since FT is true in T ′, there
is a tuple v̄ = (v1, . . . , vk) ∈ Domk such that T ′ |= ϕT (v̄). In other words, the
mapping h : dom(T)→ dom(T ′), where h(⊥i) = vi for each i ∈ {1, . . . , k}, and
h(c) = c for each constant c ∈ const(T), is a homomorphism from T to T ′.

2 =⇒ 1: Suppose that T is a universal solution for S under M , and that T
is a CWA-presolution for S under M . To show that T is a CWA-solution, it
remains to show that each fact that is true in T , is true in every solution T ′ for
S under M .

Let F = ∃z̄ ϕ(z̄) be a fact that is true in T , and let T ′ be an arbitrary
solution for S under M . Then there is a tuple v̄ ∈ Dom|z̄| such that T |= ϕ(v̄).
Since T is a universal solution for S under M , there is a homomorphism h from
T to T ′. Furthermore, since ϕ is preserved under homomorphisms, we have
T ′ |= ϕ(h(v̄)). Thus, F is true in T ′.

3.22 Example (Library database restructuring revisited)
Consider the schema mapping M = (σs, σt,Σ) and the source instance S∗ for
M from Example 1.15 and Example 1.4, respectively.

Recall that the target instance T ∗ forM from Example 1.5 is the core of the
universal solutions for S∗ under M . Furthermore, as shown in Example 3.16,
T ∗ is a CWA-presolution for S∗ under M . Thus, by Theorem 3.21, T ∗ is a
CWA-solution for S∗ under M .

3.2. Definition and Basic Properties of CWA-Solutions 81

It is not hard to see that the target instance T ′ for M with

BookInfoT ′ = BookInfoT ∗ ∪ { (“0-201-53771-0”, ⊥8, ⊥9),
(“0-201-53771-0”, ⊥10, ⊥11),
(“0-201-53771-0”, ⊥12, ⊥13) },

AuthorListT ′ = AuthorListT ∗ , and
WrittenByT ′ = WrittenByT ∗

is another CWA-solution for S∗ under M . Moreover, it is not hard to see that
for every CWA-solution T ′′ for S∗ under M there is a homomorphism h from
T ′ to T ′′ such that h(T ′) = T ′′.

Consider now the instance T from Example 1.4, which, as shown by Exam-
ple 3.18 and Proposition 3.19, is a CWA-presolution for S∗ under M . However,
T is no CWA-solution for S∗ under M , since (3.1) is a fact that is true in T ,
but not in T ∗.

Next, consider the instance T2 from Example 3.18. It is easy to see that T2
is a universal solution for S∗ under M : there is a homomorphism from T2 to T ∗
that simply maps ⊥ to ⊥2, and ⊥′ to ⊥3. However, it follows from Example 3.18
and Proposition 3.19 that T2 is no CWA-presolution (and therefore no CWA-
solution) for S∗ under M .

By Theorem 3.21, CWA-solutions are particular universal solutions. The
following theorem shows that the “smallest” universal solution—the core of the
universal solutions—is one of these CWA-solutions. In particular, it shows that
the core of the universal solutions is the “smallest” CWA-solution. The corre-
sponding result for CWA-solutions in the context of schema mappings defined
by st-tgds has been obtained by Libkin [2006].

3.23 Theorem.
Let M = (σs, σt,Σ) be a schema mapping, where Σ consists of tgds and egds,
and let S be a source instance for M such that Core(M,S) exists. Then,

1. Core(M,S) is a CWA-solution for S under M .

2. If T is a CWA-solution for S under M , then Core(M,S) is isomorphic to
a subinstance of T .

Proof. It suffices to prove 1. Then 2 follows immediately from Theorem 2.6(3)
and the fact that, by Theorem 3.21, every CWA-solution for S under M is a
universal solution for S under M . Since Core(M,S) is a universal solution for
S under M , it remains to show, by Theorem 3.21 and Proposition 3.17, that

82 Chapter 3. Justification-Based Approaches to Query Answering

S ∪ Core(M,S) is the result of a successful ζ-chase sequence C on S and Σ′,
where Σ′ is the set of all tgds in Σ, and ζ : J ∗Σ′ → Dom.

For i = 0, 1, . . . , let us inductively construct mappings ζi : J ∗Σ′ → Dom and
ζi-chase sequences Ci on S and Σ′ such that the result of Ci is a subinstance
of S ∪ Core(M,S). Let ζ0 : J ∗Σ′ → Dom be arbitrary, and C0 := (S). Assume
now that Ci = (I0, I1, . . . , Il) is a ζi-chase sequence on S and Σ′ with Il ⊆
S ∪ Core(M,S). If Il |= Σ, then stop. Otherwise, if Il 6|= Σ, there is some
χ ∈ Σ with Il 6|= χ. Note that χ is not an egd, since Il ⊆ S ∪ Core(M,S), and
S ∪ Core(M,S) satisfies all egds in Σ. Thus, χ is a tgd.

Let χ be of the form ∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)). Since Il 6|= χ, there are
tuples ū and v̄ such that Il |= ϕ(ū, v̄), and there is no tuple w̄ with Il |= ψ(ū, w̄).
On the other hand, we have S ∪ Core(M,S) |= χ, so that there is a tuple w̄
with S ∪ Core(M,S) |= ψ(ū, w̄). Let ζi+1 : J ∗Σ′ → Dom be the mapping such
that for j := (χ, ū, v̄) we have ζi+1(j) = w̄, and for all j′ ∈ JΣ′ with j′ 6= j we
have ζi+1(j′) = ζi(j′). It is easy to verify that Ci is a ζi+1-chase sequence on S
and Σ′. Moreover, we have Il `ζi+1

χ,ū,v̄ Il+1 for

Il+1 := Il ∪ ψ[ū, w̄] ⊆ S ∪ Core(M,S).

Consequently, Ci+1 := (I0, I1, . . . , Il+1) is a ζi+1-chase sequence on S and Σ′
with result Il+1 ⊆ S ∪ Core(M,S). This completes the induction step.

Since S ∪Core(M,S) is finite, and each step in a ζ-chase sequence on S and
Σ′ introduces at least one new atom, there must be some integer n such that the
result J of Cn satisfies Σ. By Lemma 3.14(3), J is the result of a successful ζ-
chase sequence on S and Σ′, for some ζ : J ∗Σ′ → Dom. Note also that T := J \S
is a solution for S under M . Even more, T is a universal solution for S under
M , since T ⊆ Core(M,S). Thus, we must have T = Core(M,S).

In particular, this implies:

3.24 Corollary.
For every schema mapping M defined by tgds and egds, and every source in-
stance S for M , the following statements are equivalent:

1. There exists a CWA-solution for S under M .

2. There exists a universal solution for S under M .

3. Core(M,S) exists.

Proof. If there is a CWA-solution for S under M , then this CWA-solution is
a universal solution for S under M by Theorem 3.21. If there is a universal
solution for S under M , then Core(M,S) exists. Finally, if Core(M,S) exists,
then Core(M,S) is a CWA-solution for S under M by Theorem 3.23(1).

3.2. Definition and Basic Properties of CWA-Solutions 83

Together with Theorem 3.23(1) and Theorem 2.32, this yields:

3.25 Corollary.
Let M be a weakly acyclic schema mapping. Then there is a polynomial time
algorithm that takes a source instance S for M as input, and either outputs a
CWA-solution for S under M if such a solution exists, or tells us that such a
solution does not exist.

Furthermore, by Theorem 2.33, we have:

3.26 Corollary.
There is a schema mapping M defined by tgds such that the following problem
is undecidable: given a source instance S for M , is there a CWA-solution for
S under M?

In some cases, we even have a CWA-solution T that is maximal in the sense
that for every CWA-solution T ′ for S underM there is a homomorphism h from
T to T ′ with h(T) = T ′. Under schema mappings defined by st-tgds, we have:

3.27 Proposition (Libkin [2006]).
Let M = (σs, σt,Σ) be a schema mapping, where Σ consists of st-tgds, and
let S be a source instance for M . Then CanSol(M,S) is the unique maximal
CWA-solution for S under M (up to isomorphism).

Proof. Clearly, CanSol(M,S) is both, a universal solution for S underM , and a
CWA-presolution for S underM . Theorem 3.21 thus implies that CanSol(M,S)
is a CWA-solution for S under M . Furthermore, Proposition 3.6 implies that
CanSol(M,S) is the unique maximal CWA-solution for S under M (up to iso-
morphism).

Furthermore, Proposition 3.27 can be extended to a slightly larger class of
schema mappings:

3.28 Proposition.
Let M = (σs, σt,Σ) be a schema mapping, where Σ consists of st-tgds and egds,
or all tgds in Σ are full. Let S be a source instance for M such that there is a
CWA-solution for S under M . Then there is a unique maximal CWA-solution
T for S under M (up to isomorphism).

Proof. First consider the case that all tgds of Σ are full. Then there is a unique
CWA-solution T for S under M ′ = (σs, σt,Σ′), where Σ′ is the set of all tgds
in Σ. Since there exists a CWA-solution for S under M , we have T |= Σ.
Therefore, T is the unique maximal CWA-solution for S under M .

84 Chapter 3. Justification-Based Approaches to Query Answering

In the following, we consider the case that Σ consist of st-tgds and egds.
Let M ′ = (σs, σt,Σst), where Σst is the set of all st-tgds in Σ, and let T0 :=
CanSol(M ′, S). Consider a complete chase sequence C = (T0, T1, . . . , Tl) on T0
and Σ \ Σst. Then C is successful: otherwise there would be no solution for S
under M , contradicting the proposition’s hypothesis. Let T := Tl. Note that T
is a CWA-solution for S under M . Moreover, T is unique up to isomorphism
(see, e.g., Beeri and Vardi [1984]). It remains to prove T is maximal.

To this end, let T ′ be a CWA-solution for S underM . We show by induction
on i that for every i ∈ {0, 1, . . . , l}, there is a homomorphism h from Ti to T ′
with h(Ti) = T ′. Note that T ′ is a CWA-presolution for S under M ′. Thus, by
Proposition 3.6(2), there is a homomorphism h from T0 to T ′ with h(T0) = T ′.

Suppose that for some i ∈ {0, . . . , l − 1}, there is a homomorphism h from
Ti to T ′ with h(Ti) = T ′. Let χ be an egd in Σ, and let ū be a tuple such that
Ti `χ,ū Ti+1. Say, χ has the form

∀x1 · · · ∀xk
(
ϕ(x1, . . . , xk)→ xi = xj

)
,

and ū = (u1, . . . , uk). Then Ti |= ϕ(ū) and ui 6= uj. Say, Ti+1 = g(Ti), where
for all v ∈ dom(Ti),

g(v) =
ui, if v = uj

v, otherwise.
(3.2)

Since Ti |= ϕ(ū), h(Ti) = T ′, and ϕ is preserved under homomorphisms, we
have T ′ |= ϕ(h(ū)). This implies that h(ui) = h(uj), since T ′ is a CWA-solution
for S under M , and hence T ′ |= Σ. But then,

h(g(uj))
(3.2)= h(ui) = h(uj)

and

h(g(v)) (3.2)= h(v) for all v ∈ dom(Ti) \ {uj}.

Consequently, h(Ti+1) = h(g(Ti)) = h(Ti) = T ′, which completes the induction
step.

The unique maximal CWA-solution guaranteed by Proposition 3.28 will be
called canonical universal solution:

3.29 Definition (canonical universal solution)
LetM = (σs, σt,Σ) be a schema mapping, where Σ consists of st-tgds and egds,
or all tgds in Σ are full, and let S be a source instance for M .

Then CanSol(M,S) is the unique maximal CWA-solution for S under M if
S has a CWA-solution under M , and undefined otherwise.

3.2. Definition and Basic Properties of CWA-Solutions 85

Thus, if M = (σs, σt,Σ) is a schema mapping, where Σ consists of st-tgds
and egds, or all tgds in Σ are full, then the set of all CWA-solutions for S under
M has two unique extreme points (see Figure 3.2): Core(M,S), which is the
unique minimal CWA-solution for S under M in the sense that every CWA-
solution for S underM contains a subinstance that is isomorphic to Core(M,S),
and CanSol(M,S), which is the unique maximal CWA-solution for S under M
(i.e., for every CWA-solution T for S underM there is a homomorphism h from
CanSol(M,S) to T with h(CanSol(M,S)) = T).

CanSol(M,S)

T

Core(M,S)

h h′

⊆

solCWA(M,S)

Figure 3.2: Structure of the set of all CWA-solutions for S under M in the case
thatM is a schema mappings defined by st-tgds and egds, or full tgds and egds.

3.30 Remark (Libkin [2006])
Let M = (σs, σt,Σ) be a schema mapping, where Σ consists of st-tgds, and
let S be a source instance for M . While every CWA-solution for S under M
contains a subinstance isomorphic to the minimal CWA-solution Core(M,S),
there can be CWA-solutions T for S under M such that the maximal CWA-
solution CanSol(M,S) contains no subinstance isomorphic to T .

For example, let M = ({R}, {R′},Σ), where Σ consists of the single st-tgd

∀x∀y
(
R(x, y)→ ∃z∃z′R′(x, z, z′)

)
.

Furthermore, let S be the source instance for M with RS = {(a, b), (a, c)}.
Then,

(R′)CanSol(M,S) = {(a,⊥1,⊥2), (a,⊥3,⊥4)}.
However, the target instance T for M with

(R′)T = {(a,⊥1,⊥), (a,⊥3,⊥)}

86 Chapter 3. Justification-Based Approaches to Query Answering

is a CWA-solution for S under M , and CanSol(M,S) contains no subinstance
that is isomorphic to T .

In general, Core(M,S) is still the unique minimal CWA-solution for S under
M . However, there may be no maximal CWA-solution. The following example
presents a very simple schema mapping M , a source instance S for M , and two
CWA-solutions T1, T2 under M such that {T1, T2} is a maximal CWA-solution
set for S under M . Here, a set T ⊆ solCWA(M,S) is called maximal CWA-
solution set for S under M if and only if for every CWA-solution T ′ for S under
M , there is some T ∈ T and a homomorphism h from T to T ′ with h(T) = T ′,
and there is no set T ′ (T with this property. The example also shows that for
every positive integer n, there is a source instance for M that has a maximal
CWA-solution set under M of size 2n.

3.31 Example
We consider a slight extension of the schema mapping M from Remark 3.30.
Let M = (σs, σt,Σ) be such that σs = {R}, σt = {R′, R′′}, and Σ consists of
the following tgds:

χ1 := ∀x∀y
(
R(x, y)→ ∃z∃z′R′(x, z, z′)

)
,

χ2 := ∀x∀x1∀x2∀y
(
R′(x, x1, y) ∧R′(x, x2, y)→ R′′(x, x1, x2)

)
.

For every positive integer n, let Sn be the source instance for M with RSn =
{(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ 2}.

Let us first consider the case n = 1. It is not hard to see that

T1 := {R′(1,⊥1,⊥2), R′(1,⊥3,⊥4), R′′(1,⊥1,⊥1), R′′(1,⊥3,⊥3)}
T2 := {R′(1,⊥1,⊥2), R′(1,⊥3,⊥2), R′′(1,⊥1,⊥1), R′′(1,⊥3,⊥3),

R′′(1,⊥1,⊥3), R′′(1,⊥3,⊥1)}

are CWA-solutions for S1 under M . Note that for every CWA-solution T for
S1 under M there is some i ∈ {1, 2} and a homomorphism h from Ti to T with
h(Ti) = T . Indeed, let T be a CWA-solution for S1 under M . Then there are
(not necessarily distinct) nulls ⊥′1,⊥′2,⊥′3,⊥′4 such that

(R′)T = {(1,⊥′1,⊥′2), (1,⊥′3,⊥′4)}.

If ⊥′2 6= ⊥′4, we have

(R′′)T = {(1,⊥′1,⊥′1), (1,⊥′3,⊥′3)},

so that T = h1(T1), where h1(1) = 1, and h1(⊥i) = ⊥′i for every i ∈ {1, 2, 3, 4}.
Furthermore, if ⊥′2 = ⊥′4, we have

(R′′)T = {(1,⊥′1,⊥′1), (1,⊥′3,⊥′3), (1,⊥′1,⊥′3), (1,⊥′3,⊥′1)},

3.3. Semantics for Query Answering Using CWA-Solutions 87

so that T = h2(T2), where h2(a) = a, and h2(⊥i) = ⊥′i for every i ∈ {1, 2, 3, 4}.
Furthermore, it is easy to see that there is no homomorphism h from T1 to T2
with h(T1) = T2, and vice versa. Thus, {T1, T2} is a maximal CWA-solution set
for S1 under M .

Finally, let n ≥ 1. Then for every set I ⊆ {1, . . . , n}, the target instance

TI :=
⋃
i∈I

{R′(i,⊥i1,⊥i2), R′(i,⊥i3,⊥i4), R′′(i,⊥i1,⊥i1), R′′(i,⊥i3,⊥i3)} ∪
⋃

i∈{1,...,n}\I

(
{R′(i,⊥i1,⊥i2), R′(i,⊥i3,⊥i2)} ∪ {R′′(i,⊥ik,⊥il) | k, l ∈ {1, 3}}

)
is a CWA-solution for Sn under M such that for every CWA-solution T for
Sn under M there is some I ⊆ {1, . . . , n} and a homomorphism h from TI to
T with h(TI) = T . Furthermore, for distinct I, I ′ ⊆ {1, . . . , n}, there is no
homomorphism h from TI to TI′ with h(TI) = TI′ . Thus, {TI | I ⊆ {1, . . . , n}}
is a maximal CWA-solution set for Sn under M of size 2n.

Thus, in general, the set of all CWA-solutions is as shown in Figure 3.3.

solCWA(M,S)

Core(M,S)

T

T1

T2

Tn

⊆

h

h1

h2

hn

Figure 3.3: Structure of the set of all CWA-solutions for S under M in the case
that M is a schema mappings defined by tgds and egds.

3.3 Semantics for Query Answering Using CWA-Solutions

Libkin [2006] defined various query answering semantics that are based on CWA-
solutions. In this section, we review these semantics, adapted to schema map-
pings defined by tgds and egds.

Given a schema mapping M = (σs, σt,Σ) defined by tgds and egds, a source
instance S for M , and a query q over σt, the basic idea for these semantics is

88 Chapter 3. Justification-Based Approaches to Query Answering

• to evaluate q on each individual CWA-solution for S under M , and

• to combine the answers to a single answer.
Note that CWA-solutions are in general incomplete instances (cf., Section 1.3.1).
For evaluating q on an individual CWA-solution, Libkin therefore uses tech-
niques developed for answering queries on incomplete instances. As mentioned
in Section 1.3.1, there are several ways of evaluating a query q on an incomplete
instance I. One of them is to take the certain answers to q on I, introduced
in Section 1.3.1, which can be seen as a “lower approximation” to the unknown
query result (i.e., the result of q on the unknown instance represented by I).
Another one considered by Libkin is to take the maybe answers to q on I
[van der Meyden, 1998], denoted by maybe(q, I), which are defined as the set
of all tuples that occur in q(I) for some instance I ∈ I. That is, the maybe
answers can be seen as an “upper approximation” to the unknown query result.

LetM = (σs, σt,Σ) be a schema mapping, where Σ is a set of tgds and egds,
and let S be a source instance for M . When we answer a query q on a target
instance T for M , we also have to take into account the t-tgds and egds of M
(see also van der Meyden [1998] for answering queries on incomplete instances
with respect to a set of constraints). That is, instead of taking the certain
answers or the maybe answers on poss(T), we take the certain answers or the
maybe answers on

possM(T) := {T̂ ∈ poss(T) | T̂ satisfies all t-tgds and egds in Σ}.

In particular, this makes sense if T is a solution for some source instance under
M . Then T represents an unknown solution with constants. Given a query q,
we let

�Mq(T) := cert(q, possM(T))

and

♦Mq(T) := maybe(q, possM(T)).

For combining answers to the individual CWA-solutions to a single answer
we can either look for tuples which are answers on all CWA-solutions, or for
tuples which are answers on some CWA-solution. By combining the different
possibilities of evaluating queries on individual CWA-solutions, and combining
answers to a single answer, one obtains the following four semantics:

3.32 Definition
Let M = (σs, σt,Σ) be a schema mapping defined by tgds and egds, let S be
a source instance for M , and let q be a query over σt. We define the following
semantics for answering q with respect to S and M :

3.3. Semantics for Query Answering Using CWA-Solutions 89

• The certain CWA-answers semantics. The certain CWA-answers to q on
M under S, denoted by cert�(q,M, S), consist of all ar(q)-tuples that
occur in �Mq(T) for every CWA-solution T for S under M . That is,

cert�(q,M, S) =
⋂

T∈solCWA(M,S)

⋂
T̂∈possM (T)

q(T̂).

• The potential certain CWA-answers semantics. The potential certain
CWA-answers to q on M and S, denoted by cert♦(q,M, S), consist of
all ar(q)-tuples that occur in �Mq(T) for some CWA-solution T for S
under M . That is,

cert♦(q,M, S) =
⋃

T∈solCWA(M,S)

⋂
T̂∈possM (T)

q(T̂).

• The persistent maybe CWA-answers semantics. The persistent maybe
CWA-answers to q on M and S, denoted by maybe�(q,M, S), consist of
all ar(q)-tuples that occur in ♦Mq(T) for every CWA-solution T for S
under M . That is,

maybe�(q,M, S) =
⋂

T∈solCWA(M,S)

⋃
T̂∈possM (T)

q(T̂).

• The maybe CWA-answers semantics. The maybe CWA-answers to q on
M and S, denoted by maybe♦(q,M, S), consist of all ar(q)-tuples that
occur in ♦Mq(T) for some CWA-solution T for S under M . That is,

maybe♦(q,M, S) =
⋃

T∈solCWA(M,S)

⋃
T̂∈possM (T)

q(T̂).

Let us now come back to the examples in Section 1.3.2. Each of the above-
mentioned semantics leads to the expected query result in Example 1.25 under
the CWA-based interpretation:

3.33 Example (Copying schema mappings)
Consider again the schema mapping M from Example 1.25. Let S be a source
instance for M . Then the target instance TS for M with (R′)TS = RS is the
unique CWA-solution for S under M , and therefore,

cert�(q,M, S) = cert♦(q,M, S) =
maybe�(q,M, S) = maybe♦(q,M, S) = q(TS),

as intuitively expected.

90 Chapter 3. Justification-Based Approaches to Query Answering

More generally, if M is a schema mapping defined by full tgds and egds,
and S is a source instance for M , then there is at most one CWA-solution TS
for S under M . This CWA-solution, if it exists, intuitively corresponds to the
expected result of translating S to the target, so that the answer to a query q
on M and S should be expected to be q(TS). Indeed, if TS exists, we have

cert�(q,M, S) = cert♦(q,M, S) =
maybe�(q,M, S) = maybe♦(q,M, S) = q(TS).

Note also that cert�, cert♦, maybe� and maybe♦ do not exhibit the behavior
of the certain answers semantics described in Example 1.26. Furthermore, the
certain CWA-answers semantics yields the expected answer to the query in
Example 1.27:

3.34 Example
Recall the setting from Example 1.27. Then,

cert�(q3,M, S∗) = cert♦(q3,M, S∗) = {0-201-53082-1},

as intuitively expected. To see this, we show that

�Mq3(T) = {0-201-53082-1} for each T ∈ solCWA(M,S∗). (3.3)

Indeed, if T ′ is the CWA-solution for S∗ under M from Example 3.22, then
�Mq3(T ′) = {0-201-53082-1}, since for each valuation f of T ′, where f(T ′)
satisfies the egd χ3 from Example 1.15, we have f(⊥4) 6= f(⊥7). This implies
(3.3) as follows. Let T be an arbitrary CWA-solution for S∗ under M . As
pointed out in Example 3.22, there is a homomorphism h from T ′ to T with
h(T ′) = T . Thus, for each valuation f of T , where f(T) satisfies the egd χ3 from
Example 1.15, the mapping f ◦h is a valuation of T ′ such that (f ◦h)(T ′) = f(T)
satisfies the egd χ3. Since �Mq3(T ′) = {0-201-53082-1}, we therefore have
0-201-53082-1 ∈ q3(f(T)). Consequently, (3.3) holds.

It is now easy to see that maybe♦(q3,M, S∗) = {0-201-53082-1}, and fur-
thermore, maybe�(q3,M, S∗) = {0-201-53082-1}.

Let M be a schema mapping defined by tgds and egds, let S be a source in-
stance forM , and let q be a query overM ’s target schema. Theorem 3.36 below
characterizes cert♦(q,M, S) as the certain answers to q on possM(Core(M,S)),
and maybe�(q,M, S) as the maybe answers to q on possM(Core(M,S)). Similar
characterizations, with Core(M,S) replaced by the canonical universal solution
for S under M , hold for cert�(q,M, S) and maybe♦(q,M, S) with respect to
restricted schema mappings. Hence, to evaluate a query under one of these
semantics, it often suffices to construct T = Core(M,S) or T = CanSol(M,S),
and to compute the certain answers or the maybe answers on possM(T). For
stating Theorem 3.36, we need the following proposition:

3.3. Semantics for Query Answering Using CWA-Solutions 91

3.35 Proposition.
Let M = (σs, σt,Σ) be a schema mapping, where Σ consists of tgds and egds,
and let S be a source instance for M . Then for every CWA-solution T for S
under M , we have

possM(Core(M,S)) ⊆ possM(T).

Moreover, if Σ consists of st-tgds and egds, or all tgds in Σ are full, then for
every CWA-solution T for S under M , we have

possM(T) ⊆ possM(CanSol(M,S)).

Proof. Let T be a CWA-solution for S under M .

Step 1: possM(Core(M,S)) ⊆ possM(T).
Let T̂ ∈ possM(Core(M,S)). Then there is a valuation f of Core(M,S) with
f(Core(M,S)) = T̂ . On the other hand, T is a universal solution for S under
M by Theorem 3.21. Thus, by Theorem 2.6(3), there is a homomorphism h
from T to Core(M,S) with h(T) = Core(M,S). It follows that the composition
f ′ := f ◦ h of h and f is a valuation of T with f ′(T) = f(Core(M,S)) = T̂ .
Hence, T̂ ∈ possM(T).

Step 2: possM(T) ⊆ possM(CanSol(M,S)) if Σ consists of st-tgds and egds, or
all tgds in Σ are full.
This can be proved in an analogous way as in step 1. Instead of Theorem 2.6(3),
use Proposition 3.28 to obtain a homomorphism h from CanSol(M,S) to T with
h(CanSol(M,S)) = T .

The following theorem generalizes the corresponding result from Libkin
[2006] for schema mappings defined by st-tgds:

3.36 Theorem (Characterization of CWA-answers semantics).
Let M = (σs, σt,Σ) be a schema mapping, where Σ consists of tgds and egds,
let S be a source instance for M that has a CWA-solution under M , and let q
be a query over σt. Then we have:

1. cert♦(q,M, S) = �Mq(Core(M,S)), and

2. maybe�(q,M, S) = ♦Mq(Core(M,S)).

Moreover, suppose that T ∗ is a CWA-solution for S underM such that for every
CWA-solution T for S under M we have possM(T) ⊆ possM(T ∗). Then:

3. cert�(q,M, S) = �Mq(T ∗), and

92 Chapter 3. Justification-Based Approaches to Query Answering

4. maybe♦(q,M, S) = ♦Mq(T ∗).

Proof. The proof is analogous to the corresponding proof by Libkin [2006]. We
first prove 1 and 2. By Proposition 3.35, each CWA-solution T for S under M
satisfies possM(Core(M,S)) ⊆ possM(T), and therefore

�Σtq(T) =
⋂

T̂∈possM (T)

q(T̂) ⊆
⋂

T̂∈possM (Core(M,S))

q(T̂) = �Mq(Core(M,S)),

(3.4)
♦Mq(T) =

⋃
T̂∈possM (T)

q(T̂) ⊇
⋃

T̂∈possM (Core(M,S))

q(T̂) = ♦Mq(Core(M,S)).

(3.5)

Consequently,

cert♦(q,M, S) =
⋃

T∈solCWA(M,S)
�Mq(T) (3.4)= �Mq(Core(M,S)),

maybe�(q,M, S) =
⋂

T∈solCWA(M,S)
♦Mq(T) (3.5)= ♦Mq(Core(M,S)).

For proving 3 and 4, let T ∗ be a CWA-solution for S under M such that for
every CWA-solution T for S under M we have possM(T) ⊆ possM(T ∗). Then,
in a similar way as above,

�Mq(T) =
⋂

T̂∈possM (T)

q(T̂) ⊇
⋂

T̂∈possM (T ∗)

q(T̂) = �Mq(T ∗), (3.6)

♦Mq(T) =
⋃

T̂∈possM (T)

q(T̂) ⊆
⋃

T̂∈possM (T ∗)

q(T̂) = ♦Mq(T ∗), (3.7)

and consequently,

cert�(q,M, S) =
⋂

T∈solCWA(M,S)
�Mq(T) (3.6)= �Mq(T ∗),

maybe♦(q,M, S) =
⋃

T∈solCWA(M,S)
♦Mq(T) (3.7)= ♦Mq(T ∗).

Note that together with Proposition 3.35, Theorem 3.36 directly leads to:

3.37 Corollary.
Let M = (σs, σt,Σ) be a schema mapping such that Σ consists of st-tgds and
egds, or all tgds in Σ are full. Let S be a source instance for M that has a
CWA-solution under M , and let q be a query over σt. Then:

3.4. Complexity of Query Answering Using CWA-Solutions 93

1. cert�(q,M, S) = �Mq(CanSol(M,S))

2. cert♦(q,M, S) = �Mq(Core(M,S))

3. maybe�(q,M, S) = ♦Mq(Core(M,S))

4. maybe♦(q,M, S) = ♦Mq(CanSol(M,S))

Furthermore, one can use Theorem 3.36 to establish the following relation-
ships between the new semantics. These relationships were pointed out by
Libkin [2006] for the case of schema mappings defined by st-tgds.

3.38 Corollary.
For each schema mapping M = (σs, σt,Σ) defined by tgds and egds, each source
instance S for M , and each query q over σt, we have:

cert�(q,M, S) ⊆ cert♦(q,M, S) ⊆ maybe�(q,M, S) ⊆ maybe♦(q,M, S).

Proof. The inclusions cert�(q,M, S) ⊆ cert♦(q,M, S) and maybe�(q,M, S) ⊆
maybe♦(q,M, S) follow directly from the definitions. To prove cert♦(q,M, S) ⊆
maybe�(q,M, S), observe that for all CWA-solutions T for S under M we have

�Mq(T) ⊆ ♦Mq(T).

Therefore, by Theorem 3.36, we have

cert♦(q,M, S) = �Mq(Core(M,S))
⊆ ♦Mq(Core(M,S)) = maybe�(q,M, S).

Notice also that for each schema mapping M , each source instance S for M ,
and each query q over M ’s target schema, cert(q,M, S) ⊆ cert�(q,M, S).

3.4 Complexity of Query Answering Using CWA-Solutions

We now turn to the problem of answering queries under the four semantics
from Definition 3.32. We focus on the data complexity, which assumes that
the schema mapping and the query is fixed (i.e., they do not belong to the
input). Since in data exchange, queries must usually be answered based on
some “materialized” solution, given a schema mapping M = (σs, σt,Σ) defined
by tgds and egds, and a query language L, we seek for algorithms A1,A2 with
the following properties:

• A1 takes a source instance S for M as input and computes a solution T
for S under M , and

94 Chapter 3. Justification-Based Approaches to Query Answering

• A2 takes a solution T computed by A1 and a query q ∈ L over σt as input
and computes the answers to q on M and S under one of the semantics
from Definition 3.32.

In particular, A1 takes care of the actual data exchange, while A2 answers
queries based on some materialized solution, independent of M and S. At best,
both A1, and A2 for fixed q ∈ L, run in polynomial time.

In Section 3.4.1, we will show that the certain CWA-answers semantics and
the potential certain CWA-answers semantics coincide with the certain answers
semantics on queries preserved under homomorphisms and source instances that
have a CWA-solution. Hence, if L is the class of all homomorphism-preserved
queries with polynomial time data complexity, andM is a weakly acyclic schema
mapping, say, then polynomial time algorithms A1 and A2 as above exist: A1
just has to compute an arbitrary universal solution T for S under M , while A2
evaluates a query q ∈ L on T and removes all tuples with nulls from the answer
(see Chapter 2).

Section 3.4.2 then considers FO queries in general. In particular, we will see
that beyond the class of queries preserved under homomorphisms, polynomial
time algorithms A1 and A2 as above may not exist. To show this, we consider, for
given semantics ans ∈ {cert�, cert♦,maybe�,maybe♦}, schema mappings M =
(σs, σt,Σ) defined by tgds and egds, and queries q over σt, the problem

Evalans(M, q)
Input: a source instance S for M , and a tuple t̄ ∈ Domar(q)

Question: Is t̄ ∈ ans(q,M, S)?

The complexity of this problem is a lower bound on the joint complexity of al-
gorithms A1 and A2 as above: if, for example, Evalans(M, q) is co-NP-complete,
then finding T is intractable, or computing ans(q,M, S) from T is intractable.

3.4.1 Queries Preserved Under Homomorphisms

In the following, we show that the certain CWA-answers semantics and the
potential certain CWA-answers semantics coincide with the certain answers
semantics on queries preserved under homomorphisms and source instances that
have a CWA-solution. Recall from Section 2.1 that, given a schema mapping
M = (σs, σt,Σ), a source instance S for M , a query q over σt, and an arbitrary
universal solution T for S under M , the certain answers to q on M and S are
characterized as

q(T)↓ := {t̄ ∈ q(T) | t̄ contains only constants}.

3.4. Complexity of Query Answering Using CWA-Solutions 95

We now have:

3.39 Lemma.
Let M = (σs, σt,Σ) be a schema mapping defined by tgds and egds, let S be
a source instance for M , and let q be a query over σt that is preserved under
homomorphisms. Then, for every CWA-solution T for S under M , we have

cert�(q,M, S) = cert♦(q,M, S) = q(T)↓.

Proof. Let Σ′ be the set of all t-tgds and egds in Σ. We first show the following
intermediate claim:

If T and T ′ are homomorphically equivalent target instances for M
and T ′ |= Σ′, then �Mq(T ′) = q(T)↓.

(?)

Let T and T ′ be target instances for M such that T ′ |= Σ′. Furthermore, let h
be a homomorphism from T ′ to T , and let h′ be a homomorphism from T to
T ′. We first show that �Mq(T ′) ⊆ q(T)↓.

Let t̄ ∈ �Mq(T ′). Then for all T̂ ∈ possM(T ′) we have t̄ ∈ q(T̂). This
implies that t̄ ∈ q(T ′) (here we need that T ′ |= Σ′), and that t̄ consists of
constants. Since h is a homomorphism from T ′ to T , and q is preserved under
homomorphisms, this leads to h(t̄) ∈ q(T). Since t̄ consists of constants, and h
is the identity on constants, we conclude that t̄ ∈ q(T)↓.

The proof for q(T)↓ ⊆ �Mq(T ′) is almost identical: If t̄ ∈ q(T)↓, then
t̄ ∈ q(T), and t̄ contains only constants. The remaining part of the proof is
then the same, except that T and T ′ must be interchanged, and h must be
replaced with h′.

Now, by Theorem 3.21, every two CWA-solution for S under M are homo-
morphically equivalent, and satisfy Σ′. Therefore, for every CWA-solution T
for S under M we have

cert�(q,M, S) =
⋂

T ′∈solCWA(M,S)
�Mq(T ′)

(?)=
⋂

T ′∈solCWA(M,S)
q(T)↓ = q(T)↓

and

cert♦(q,M, S) Thm. 3.36= �Mq(Core(M,S)) (?)= q(T)↓.

3.40 Corollary.
LetM = (σs, σt,Σ) be a schema mapping defined by tgds and egds, let S a source
instance for M that has a CWA-solution under M , and let q be a query over σt
that is preserved under homomorphisms. Then,

cert�(q,M, S) = cert♦(q,M, S) = cert(q,M, S).

96 Chapter 3. Justification-Based Approaches to Query Answering

Proof. Let T be a CWA-solution for S under M . By Lemma 3.39, we have
cert�(q,M, S) = cert♦(q,M, S) = q(T)↓. Furthermore, by Theorem 3.21 and
Theorem 2.10, we have q(T)↓ = cert(q,M, S).

Note that Corollary 3.40 and Theorem 2.26(2) imply that the certain CWA-
answers semantics and the potential certain CWA-answers semantics coincide
with the certain answers semantics on weakly acyclic schema mappings and
queries preserved under homomorphisms. Thus, given a weakly acyclic schema
mapping M = (σs, σt,Σ), and a query q over σt that is preserved under homo-
morphisms and has polynomial time data complexity, there are polynomial time
algorithms A1 and A2 as described at the beginning of the present Section 3.4:
A1 just has to compute an arbitrary universal solution T for S under M , while
A2 evaluates a query q ∈ L on T and removes all tuples with nulls from the
answer (cf., Chapter 2).

3.4.2 First-Order Queries

Next we consider the problem of answering FO queries under one of the seman-
tics from Definition 3.32.

As Proposition 3.41 below shows, the Evalans-problem may be undecidable
for ans ∈ {cert�,maybe♦} and FO queries, even with respect to a weakly acyclic
schema mapping.

3.41 Proposition.
There is a weakly acyclic schema mapping M and a FO query q over M ’s target
schema such that Evalcert�(M,¬q) and Evalmaybe♦(M, q) are undecidable.

Proof. We will construct M and q in such a way that the (undecidable) em-
bedding problem for finite semigroups (see Example 1.14) can be reduced to
Evalcert�(M,¬q) and Evalmaybe♦(M, q). The source schema σs and the tar-
get schema σt of M consist of ternary relation symbols R and R̃, respectively,
so that inputs p : X2 → X for the embedding problem for finite semigroups,
and solutions f : Y 2 → Y to p with respect to this problem will be encoded in
exactly the same way by instances Sp and Tf as in Example 1.14.

Let M = (σs, σt,Σ), where Σ consists of

∀x∀y∀z
(
R(x, y, z)→ R̃(x, y, z)

)
,

∀x∀y∀z
(
R̃(x, y, z)→ ∃x′∃y′∃z′ R̃(x′, y′, z′)

)
.

3.4. Complexity of Query Answering Using CWA-Solutions 97

Furthermore, let q be the FO query

∀x∀y∀z1∀z2
(
R̃(x, y, z1) ∧ R̃(x, y, z2)→ z1 = z2

)
∧

∀x∀y∀z∀u∀v∀w
(
R̃(x, y, u) ∧ R̃(y, z, v) ∧ R̃(u, z, w)→ R̃(x, v, w)

)
∧

∀x1∀x2∀x3∀y1∀y2∀y3
(
R̃(x1, x2, x3) ∧ R̃(y1, y2, y3)→

∧
1≤i,j≤3

∃zR̃(xi, yj, z)
)
.

Note that q is equivalent to a conjunction of the egd (2.12), and the tgds (2.13)
and (2.14) used by Kolaitis et al. [2006] in the proof of Theorem 2.37 (see the
end of Section 2.3). Note also that q is satisfied in a target instance T for M if
and only if R̃T encodes the graph of a total associative function f : Y 2 → Y for
some finite set Y .

We show that Evalmaybe♦(M, q) is undecidable. Since maybe♦ and cert� are
dual to each other (i.e., maybe♦(q,M, S) 6= ∅ if and only if cert�(¬q,M, S) = ∅),
this also implies that Evalcert�(M,¬q) is undecidable.

To show that Evalmaybe♦(M, q) is undecidable, we give a reduction from
the embedding problem for finite semigroups (see Example 1.14). Given an
associative partial function p : X2 → X, we map p to the source instance Sp
described in Example 1.14, and the empty tuple. It remains to show that
maybe♦(q,M, Sp) 6= ∅ precisely if p is a “yes”-instance for the embedding prob-
lem for finite semigroups.

If maybe♦(q,M, Sp) 6= ∅, then there is a CWA-solution T for Sp under M
and T̂ ∈ possM(T) with T̂ |= q. So, R̃T̂ represents the graph of a finite total
associative function f that extends p. Consequently, p is a “yes”-instance for
the embedding problem for finite semigroups.

On the other hand, suppose that p is a “yes”-instance for the embedding
problem for finite semigroups. That is, there is a total associative function
f : Y 2 → Y for some finite set Y ⊇ X such that f extends p. Consider
an enumeration (a1

1, a
1
2, a

1
3), . . . , (ak1, ak2, ak3) of all tuples (a1, a2, a3) ∈ Y 3 with

f(a1, a2) = a3 for which p(a1, a2) is undefined. Furthermore, pick pairwise dis-
tinct nulls ⊥1

1,⊥1
2,⊥1

3,⊥2
1, . . . ,⊥k3. Then the instance T with

R̃T = RSp ∪ {(⊥i1,⊥i2,⊥i3) | 1 ≤ i ≤ k}

is a CWA-solution for Sp underM : (⊥1
1,⊥1

2,⊥1
3) can be generated from an arbi-

trary tuple in RSp , and (⊥i+1
1 ,⊥i+1

2 ,⊥i+1
3) can be generated from (⊥i1,⊥i2,⊥i3).

Finally, consider the instance T̂ = v(T), where v maps each ⊥ij to aij. Then
T̂ |= q, which implies that maybe♦(q,M, Sp) 6= ∅.

In the following, we restrict attention to particular weakly acyclic schema
mappings, called richly acyclic schema mappings. Note that Proposition 3.41

98 Chapter 3. Justification-Based Approaches to Query Answering

depends entirely on the fact that, given a schema mapping M = (σs, σt,Σ)
defined by tgds and egds, a source instance S forM , a mapping ζ : J ∗Σ′ → Dom,
where Σ′ is the set of all tgds in Σ, and a tuple j∗ = (χ, ū, v̄, z) ∈ J ∗Σ′ , the value
of ζ(j∗) does not only depend on χ, ū and z, but also on v̄. This makes it
possible to cascade the creation of nulls even though the schema mapping is
weakly acyclic. Richly acyclic schema mappings prohibit this.

3.42 Definition (Richly acyclic schema mapping)
Let Σ be a set of tgds.

• The extended dependency graph of Σ is obtained from the dependency
graph of Σ (see Definition 2.23) as follows: for every tgd ∀x̄∀ȳ(ϕ(x̄, ȳ)→
∃z̄ ψ(x̄, z̄)) in Σ, every variable y in ȳ, and every position (R, p) at which
y appears in ϕ, add an existential edge from (R, p) to every position at
which some variable from z̄ appears in ψ.

• Σ is richly acyclic if and only if no cycle in the extended dependency
graph of Σ contains an existential edge.

• A schema mapping M = (σs, σt,Σ) is called richly acyclic if and only if Σ
is the union of a richly acyclic set of tgds, and a set of egds.

Note that every richly acyclic schema mapping is weakly acyclic, but not vice
versa. Furthermore, by Theorem 3.44 below, the Evalans-problem is decidable
for FO queries with respect to richly acyclic schema mappings. The crucial
property for proving Theorem 3.44 is:

3.43 Lemma.
Let M = (σs, σt,Σ) be a richly acyclic schema mapping, and let ζ : J ∗Σ′ → Dom,
where Σ′ is the set of all tgds in Σ. Then there is a polynomial pM such that,
given a source instance S for M , each ζ-chase sequence on S and Σ′ has length
at most pM(‖S‖).

The lemma can be proved in the same way as Theorem 2.26(1). In fact, the
proof given by Fagin et al. [2005a] for proving Theorem 2.26(1) works without
modification.

3.44 Theorem.
For every schema mapping M defined by tgds and egds, and each FO query q
over M ’s target schema, we have:

1. If the schema mapping M is weakly acyclic, then Evalcert♦(M, q) ∈ co-NP
and Evalmaybe�(M, q) ∈ NP.

3.4. Complexity of Query Answering Using CWA-Solutions 99

2. If the schema mapping M is richly acyclic, then Evalcert�(M, q) ∈ co-NP
and Evalmaybe♦(M, q) ∈ NP.

Proof. Let M = (σs, σt,Σ) be a schema mapping defined by tgds and egds, and
let q be a FO query over σt.

Ad 1: Since cert♦ and maybe� are dual to each other (i.e., for every tuple t̄ we
have t̄ ∈ cert♦(q,M, S) precisely if t̄ /∈ maybe�(¬q,M, S)), it suffices to show
that Evalmaybe�(M, q) ∈ NP.

Let S be a source instance for M , and let t̄ ∈ Domar(q). By Theorem 3.36,
we have

maybe�(q,M, S) = ♦Mq(Core(M,S))

if CWA-solutions for S underM exist. Note that if no CWA-solution for S under
M exist, then by Corollary 3.24, Core(M,S) does not exist. In particular, the
algorithm guaranteed by Theorem 2.32 will indicate that Core(M,S) does not
exist, so that we can outputmaybe�(q,M, S) = ∅. So in the following we assume
that CWA-solutions for S under M exist.

By Theorem 2.32, we can compute T0 := Core(M,S) in time polynomial in
the size of S. Thus, it remains to show that we can nondeterministically check
whether t̄ ∈ ♦Mq(T0) in time polynomial in the size of T0.

Note that t̄ ∈ ♦Mq(T0) if and only if there is an instance T̂ ∈ possM(T0) such
that t̄ ∈ q(T̂). Furthermore, if there is an instance T̂ ∈ possM(T) with t̄ ∈ q(T̂),
then there is such an instance T̂ with dom(T̂) ⊆ C ∪ f(nulls(T)), where C is
the set of all constants that occur in T , q and t̄, and f : nulls(T)→ Const \ C
is an injective function. Thus, we can check t̄ ∈ ♦Mq(T0) by the following
nondeterministic procedure:

1. “Guess” a valuation v : dom(T)→ C ∪ f(nulls(T)) of T .

2. Check whether T̂ := v(T0) satisfies all t-tgds and egds of Σ. If not, reject
the input.

3. If t̄ ∈ q(T̂), accept the input. Otherwise reject it.

Clearly, this procedure runs in time polynomial in the size of T0, which completes
the proof of 1.

Ad 2: Since cert� and maybe♦ are dual to each other (i.e., for every tuple t̄ we
have t̄ ∈ cert�(q,M, S) precisely if t̄ /∈ maybe♦(¬q,M, S)), it suffices to show
that Evalmaybe♦(M, q) ∈ NP.

Let S be a source instance for M , and let t̄ ∈ Domar(q). Then, t̄ ∈
maybe♦(q,M, S) if and only if there are a CWA-solution T for S under M

100 Chapter 3. Justification-Based Approaches to Query Answering

with t̄ ∈ ♦Mq(T). Therefore, the following nondeterministic algorithm decides
whether t̄ belongs to maybe♦(q,M, S):

1. Compute T0 := Core(M,S).

2. Generate a successful ζ-chase sequence C on S and Σ′, where Σ′ is the set
of all tgds in Σ, “guessing” the relevant values for ζ : J ∗Σ′ → Dom “along
the way”.4 Let S ∪ T be the result of C.

3. If T does not satisfy the egds of Σ, reject the input.

4. Check whether there is a homomorphism from T to Core(M,S). If not,
reject the input.

5. If t̄ ∈ ♦Mq(T), then accept the input. Otherwise reject the input.

Note that step 2–4 guarantee that T is a CWA-solution for S under M : step 2
and 3 ensure that T is a CWA-presolution for S under M , and step 4 ensures
that T is a universal solution for S underM . Thus, the algorithm indeed checks
whether t̄ ∈ maybe♦(q,M, S).

Furthermore, the algorithm runs in time polynomial in the size of S: By The-
orem 2.32, we can accomplish step 1 in time polynomial in ‖S‖. By Lemma 3.43,
step 2 can be accomplished in time polynomial in ‖S‖ as well. It is also easy to
see that steps 3 and 4 can be accomplished in time polynomial in ‖S‖. Finally,
we have shown in part 1 of the proof that step 5 can be accomplished in time
polynomial in ‖S‖.

On the other hand, there are richly acyclic schema mappingsM such that for
each ans ∈ {cert�, cert♦,maybe�,maybe♦} there is a FO query q overM ’s target
schema such that Evalans(M, q) is co-NP-complete if ans ∈ {cert�, cert♦}, and
NP-complete if ans ∈ {maybe�,maybe♦}. Indeed, it is not hard to see that
Mądry’s proof of Theorem 2.44 carries over to the semantics cert� and cert♦.
Since maybe♦ and cert� are dual and maybe� and cert♦ are dual, we get the
completeness results for maybe� and maybe♦. The following theorem improves
Theorem 2.44 in the sense that q can be chosen to be a Boolean conjunctive
query with only one inequality.

3.45 Theorem.
There is a richly acyclic schema mapping M and a conjunctive query q over
M ’s target schema with one inequality such that:

4Note that we can restrict attention to mappings ζ : J ∗Σ′ → dom(S)∪C ∪Null, where C is
the set of all constants that occur in Σ—all other choices do not lead to CWA-solutions for
S under M .

3.4. Complexity of Query Answering Using CWA-Solutions 101

1. Evalcert�(M, q) and Evalcert♦(M, q) are co-NP-complete.

2. Evalmaybe�(M,¬q) and Evalmaybe♦(M,¬q) are NP-complete.

Proof. We prove only 1, since 2 follows by duality. Let M = (σs, σt,Σ), where
σs = {R,C, L}, σt = {R′, C ′, L′}, and Σ consists of

• ∀i∀j∀p
(
R(i, j, p)→ R′(i, j, p)

)
,

• ∀i
(
C(i)→ ∃t C ′(i, t)

)
,

• ∀j∀p
(
L(j, p)→ ∃t L′(j, p, t)

)
,

• ∀i
(
C ′(i, 1)→ ∃j∃p(R′(i, j, p) ∧ L′(j, p, 1))

)
,

• ∀j∀p∀p′
(
L′(j, p, 1) ∧ L′(j, p′, 1)→ p = p′

)
.

Finally, let
q := ∃i∃t

(
C ′(i, t) ∧ t 6= 1

)
.

Note thatM is richly acyclic. Hence, Evalcert�(M, q) and Evalcert♦(M, q) are in
co-NP by Theorem 3.44. To prove co-NP-hardness, we give a reduction from the
complement of the NP-complete Sat, the satisfiability problem for propositional
formulas in conjunctive normal form (see, e.g., Papadimitriou [1994]).

The reduction is carried out as follows. On input of a propositional formula

ϕ(x1, x2, . . . , xn) := C1 ∧ C2 ∧ · · · ∧ Cm

in conjunctive normal form, we construct the source instance

Sϕ := {R(i, j, 1) | xj occurs in Ci} ∪ {R(i, j, 0) | ¬xj occurs in Ci}
∪ {C(i) | 1 ≤ i ≤ m} ∪ {L(j, b) | 1 ≤ j ≤ n and b ∈ {0, 1}}.

Note that there is exactly one CWA-solution for Sϕ (up to isomorphism), de-
noted by Tϕ. It consists of a copy of R, contains for each i ∈ {1, 2, . . . ,m} an
atom C ′(i,⊥i), and for each j ∈ {1, . . . , n} and b ∈ {0, 1} an atom L′(j, b,⊥j,b),
where the nulls ⊥i,⊥j,b introduced for each i, j and b are pairwise distinct.
Therefore, cert�(q,M, Sϕ) = cert♦(q,M, Sϕ) = �Mq(Tϕ). We claim that ϕ is
satisfiable if and only if �Mq(Tϕ) = ∅.

“Only if”: Let α : {x1, x2, . . . , xn} → {0, 1} be a satisfying truth assignment for
ϕ. We extend α to negated variables by α(¬xi) = 1 − α(xi). Then, for every

102 Chapter 3. Justification-Based Approaches to Query Answering

i ∈ {1, . . . ,m} there is a literal ` in Ci such that α(`) = 1. Define a valuation
v of Tϕ such that for each ⊥ ∈ nulls(Tϕ),

v(⊥) =

1 if ⊥ = ⊥i
α(xj) if ⊥ = ⊥j,1
α(¬xj) if ⊥ = ⊥j,0.

Then, v(Tϕ) belongs to possM(Tϕ), but v(Tϕ) does not satisfy q. Therefore,
�Mq(Tϕ) = ∅.

“If”: Assume now that �Mq(Tϕ) = ∅. Then possM(Tϕ) contains an instance
T̂ that does not satisfy q. Define a truth assignment α : {x1, . . . , xn} → {0, 1}
such that for each j ∈ {1, . . . , n},

α(xj) =
1 if L′(j, 1, 1) ∈ T̂

0 otherwise,

and extend it to negated variables as above. We claim that α satisfies ϕ; that
is, for each i ∈ {1, . . . ,m} there is a literal ` in Ci with α(`) = 1.

Let i ∈ {1, . . . ,m}. Then C(i, 1) ∈ T̂ , because T̂ 6|= q. Since T̂ ∈ possM(Tϕ),
there are j ∈ {1, . . . , n} and p ∈ {0, 1} such that R′(i, j, p) and L′(j, p, 1) are
in T̂ , and L′(j, 1 − p, 1) /∈ T̂ . If p = 0, then we have R′(i, j, 0) ∈ T̂ and
L′(j, 1, 1) /∈ T̂ . R′(i, j, 0) ∈ T̂ indicates that the literal ¬xj occurs in Ci, and
L′(j, 1, 1) /∈ T̂ indicates that α(¬xj) = 1 − α(xj) = 1. So, if p = 0, then Ci is
satisfied under α. It remains therefore to show that Ci is satisfied under α if
p = 1. If p = 1, then R′(i, j, 1) and L′(j, 1, 1) are in T̂ . R′(i, j, 1) ∈ T̂ indicates
that the literal xj occurs in Ci, and L′(j, 1, 1) ∈ T̂ indicates that α(xj) = 1.
Consequently, Ci is satisfied under α.

Contrast this with Theorem 2.45, which tells us that for every weakly acyclic
schema mapping M and for each union q of conjunctive queries with at most
one inequality per disjunct, there is a polynomial time algorithm that computes
the certain answers to q on M and S, given a source instance S for M as input.
It is not hard to see that this algorithm can be used to compute cert� and cert♦
for schema mappings M = (σs, σt,Σ), where Σ consists of st-tgds and egds, or
all tgds in Σ are full:

3.46 Proposition.
Let M = (σs, σt,Σ) be a schema mapping, where Σ consists of st-tgds and egds,
or all tgds in Σ are full, and let q be a Boolean query that is the union of
conjunctive queries with at most one inequality per disjunct. Then there is a
polynomial time algorithm that, given a source instance S for M , computes
cert�(q,M, S) and cert♦(q,M, S), respectively.

3.5. Query Answering Based on Variants of CWA-Solutions 103

Proof sketch. Let us consider the case of computing cert�(q,M, S) (the proof
for the case of computing cert♦(q,M, S) is the same, except that CanSol(M,S)
must be replaced by Core(M,S)). Given a source instance S for M , first com-
pute T0 := CanSol(M,S). If T0 does not exist, then S has no CWA-solution
under M , so that cert�(q,M, S) = ∅. Otherwise, Corollary 3.37 tells us that
cert�(q,M, S) = �Mq(T0).

Let A be the algorithm given by Fagin et al. [2005a] for proving Theo-
rem 2.45. This algorithm starts by computing a complete chase sequence C on
some universal solution T for S under M and a set Σ′ that consists of all t-tgds
and egds in Σ and additional egds obtained from q. Here, we let T = T0. If C is
failing, then by the construction of A, we have cert(q,M, S) 6= ∅. In particular,
cert�(q,M, S) 6= ∅.

Assume that C is successful, and let T ′ be the result of C. If T ′ |= q, then by
the construction of A, we have cert(q,M, S) 6= ∅, and thus, cert�(q,M, S) 6= ∅.

Otherwise, if T ′ 6|= q, we claim that cert�(q,M, S) = ∅. To see this, note
that since Σ′ consists of egds only, T ′ is a CWA-presolution for S under M ,
so that there is a homomorphism from T0 to T ′. In particular, there is an
injective valuation v of T ′ such that q(T ′) = q(v(T ′)), and by the properties of
T0 = CanSol(M,S), we have v(T ′) ∈ possM(T0). Consequently, there is some
T̂ ∈ possM(T0) such that T̂ 6|= q. This yields cert�(q,M, S) = �Mq(T0) = ∅.

Finally, it is easy to see that for every schema mappingM defined by full tgds
and egds, and each FO query q over M ’s target schema, there is a polynomial
time algorithm that takes a source instance S for M as input, and outputs
cert�(q,M, S) = cert♦(q,M, S) = maybe�(q,M, S) = maybe♦(q,M, S). Instead
of a source instance S, we could also evaluate the query on a CWA-solution for
S under M (note that there is at most one such CWA-solution for each source
instance S under M).

Table 3.3 summarizes the present section’s results on the complexity of
Evalcert�(M, q) for various restrictions of the schema mappingM and the query
language from which q is chosen. In Table 3.3, UCQ is the class of all unions
of conjunctive queries.

3.5 Query Answering Based on Variants of CWA-Solutions

Sometimes, the assumptions on which CWA-solutions, and thus, the CWA-
answers semantics, are based on are too strong or too weak. For this reason,
Libkin and Sirangelo [2008] and Afrati and Kolaitis [2008] respectively proposed
generalizations and specializations of CWA-solutions and corresponding query
answering semantics that seem to work better in some situations. This section
gives a short overview of these semantics. We will just give the definitions.

104 Chapter 3. Justification-Based Approaches to Query Answering

UCQ
UCQs, at most one
ineq. per disjunct FO

query language

weakly acyclic

richly acyclic

only st-tgds &
egds

only st-tgds

only full tgds &
egds

re
st
ric

tio
n
of

sc
he

m
a
m
ap

pi
ng

PTIME
(Section 3.4.1)

PTIME
(Prop. 3.46)

PTIME

co-NP-complete
(Thm. 3.44 & 3.45)

co-NP-complete
(Thm. 3.44 & 2.44)

co-NP-hard
(Thm. 3.45)

undecidable
(Prop. 3.41)

Table 3.3: Complexity of Evalcert�(M, q) for certain restrictions of the schema
mapping M and the query q.

For motivations and further results, I refer the interested reader to Libkin and
Sirangelo [2008] and Afrati and Kolaitis [2008].

Let us first consider the query answering semantics proposed by Libkin and
Sirangelo [2008]. These are based on a generalization of CWA-solutions, which
we call mixed world-solutions. Mixed world-solutions were defined for the case
of schema mappings defined by st-tgds only.

Let M = (σs, σt,Σ) be a schema mapping defined by st-tgds, and let S be a
source instance for M . Mixed world-solutions for S under M are still required
to satisfy the first two requirements in Table 3.1. However, we annotate each
position in such a solution as either open or closed, and we relax the third
requirement in Table 3.1. When answering a query on a mixed world-solution
T for S under M , the open and closed positions of T are taken into account as
follows. Instead of restricting the set of all possible worlds of T to be the set
of all images of T under some valuation of T , we take into account all ground
target instances T ′ for M that contain the image of T under some valuation
of T and for which each atom of T ′ \ T coincides with some atom of T on all
closed positions. In other words, atoms can be replicated arbitrarily often by
instantiating open positions with new values.

Let us now explain how this is formally captured. Let M = (σs, σt,Σ) be a
schema mapping, where Σ is a set of st-tgds. An annotation for a st-tgd χ in

3.5. Query Answering Based on Variants of CWA-Solutions 105

Σ of the form

∀x̄∀ȳ
(
ϕ(x̄, ȳ)→ ∃z̄

∧
1≤i≤n

Ri(ui,1, . . . , ui,ar(Ri))
)

is a mapping λ : Pχ → {cl, op}, where Pχ := {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ ar(Ri)}
is the set of all positions in ψ. That is, each occurrence of a constant or variable
in ψ is annotated with either closed (cl) or open (op). In the following, we write
annotations as superscripts of the corresponding positions in ψ.

3.47 Example (Library database restructuring, continued)
Consider the st-tgd χ′2 from Example 1.15. An annotated variant of χ′2 is

∀x1∀x2
(
Authors(x1, x2)→ ∃z(AuthorList(zcl, xop

2) ∧WrittenBy(xcl
1 , z

op))
)
.

Here, the occurrence of z in the first atom and the occurrence of x1 in the second
atom are annotated by cl. Furthermore, the occurrence of z in the second atom
and the occurrence of x2 in the first atom are annotated by op.

An annotation for M is a mapping ΛM that assigns to each st-tgd χ in Σ
an annotation ΛM(χ) : Pχ → {cl, op} for χ. An annotated schema mapping is
a pair (M,ΛM) consisting of a schema mapping M defined by st-tgds, and an
annotation ΛM for M .

Annotated schema mappings give rise to annotated target instances. Here,
an annotation for an instance I is a mapping ΛI that assigns to each atom
A = R(t1, . . . , tar(R)) of I a finite set ΛI(A) of mappings λ : {1, . . . , ar(R)} →
{cl, op}, which are called annotations of the positions of A. Strictly speaking,
each mapping λ ∈ ΛI(A) represents an annotated atom (R(t1, . . . , tar(R)), λ). In
particular, ΛI annotates each occurrence of a value in I with closed (cl) or open
(op) or both. In a similar way as for annotations of st-tgds, we will denote
annotations for instances as superscripts at the corresponding positions. An
annotated instance over a schema σ is a pair (I,ΛI) consisting of an instance
I over σ, and an annotation ΛI for I. An annotated target instance for an
annotated schema mapping (M,ΛM) is an annotated instance (T,ΛT) over M ’s
target schema.

Annotated schema mappings produce the following annotation for the ca-
nonical universal solution.

3.48 Definition (Annotation for the canonical universal solution)
Let (M,ΛM) be an annotated schema mapping, and let S be a source instance
for M . We define the following annotation ΛM,ΛM ,S for CanSol(M,S).

Recall that CanSol(M,S) = ⋃
j∈JM,S atoms(ζ, j) for some injective mapping

ζ from J ∗M,S to Null (cf., Definition 3.5). Let j = (χ, ū, v̄) ∈ JM,S, where χ has

106 Chapter 3. Justification-Based Approaches to Query Answering

the form
∀x̄∀ȳ

(
ϕ(x̄, ȳ)→ ∃z̄

∧
1≤i≤n

Ri(ui,1, . . . , ui,ar(Ri))
)
,

and let α be a mapping that is the identity on constants, and that maps each
variable w that occurs in x̄ or z̄ to the corresponding value assigned to w by ū
and ζ(j), respectively. For each i ∈ {1, . . . , n} and each p ∈ {1, . . . , ar(Ri)}, let
ΛM,ΛM ,S annotate the p-th position of the atom A := Ri(α(ui,1), . . . , α(ui,ar(Ri)))
by ΛM(χ)(i, p)

3.49 Definition (Library database restructuring, continued)
Consider the schema mapping M ′ = (σs, σt,Σ′) from Example 3.2. An annota-
tion ΛM ′ for M ′ could be as follows:

∀x1∀x2
(
Books(x1, x2)→ ∃zBookInfo(xcl

1 , x
op
2 , z

cl)
)
,

∀x1∀x2
(
Authors(x1, x2)→ ∃z(AuthorList(zcl, xop

2) ∧WrittenBy(xcl
1 , z

op))
)
.

Given the source instance S∗ from Example 1.4, T := CanSol(M ′, S∗) is then
annotated by ΛM ′,ΛM′ ,S∗ as follows:

BookInfoT = {(“0-201-53771-0”cl, “Foundations of Databases”op,⊥cl
1)},

AuthorListT = {(⊥cl
4 , “Serge Abiteboul”op), (⊥cl

5 , “Richard Hull”op),
(⊥cl

6 , “Victor Vianu”op), (⊥cl
7 , “Christos H. Papadimitriou”op)},

WrittenByT = {(“0-201-53771-0”cl,⊥op
4), (“0-201-53771-0”cl,⊥op

5),
(“0-201-53771-0”cl,⊥op

6), (“0-201-53082-1”cl,⊥op
7)}.

Let (M,ΛM) be an annotated schema mapping, and let S be a source in-
stance for M . Analogous to CWA-presolutions in Section 3.1.1, a mixed world-
presolution for S under (M,ΛM) is an annotated target instance (T,ΛT) for
(M,ΛM) such that there is a homomorphism h from CanSol(M,S) to T with
the property that h(CanSol(M,S)) = T , and the annotation ΛM,ΛM ,S is pre-
served. To make this more precise, let (I1,Λ1) and (I2,Λ2) be annotated in-
stances. Then a homomorphism from (I1,Λ1) to (I2,Λ2) is a homomorphism h
from I1 to I2 such that for all atoms R(t̄) of I1, we have Λ1(R(t̄)) = Λ2(R(h(t̄))).
A mixed world-presolution for S under (M,ΛM) is then an annotated tar-
get instance (T,ΛT) for (M,ΛM) such that there is a homomorphism h from
(CanSol(M,S),ΛM,ΛM ,S) to (T,ΛT) with h(CanSol(M,S)) = T .

As mentioned above, mixed world-solutions relax the third requirement in
Table 3.1. For the formalization of this requirement, I refer the interested reader
to Libkin and Sirangelo [2008]. Here, we will use the following characterization,
given by Libkin and Sirangelo [2008]. Namely, to satisfy the third requirement

3.5. Query Answering Based on Variants of CWA-Solutions 107

in Table 3.1, a mixed world-presolution for S under (M,ΛM) must have a ho-
momorphism into an expansion of (CanSol(M,S),ΛM,ΛM ,S). Formally, we call
an annotated instance (I2,Λ2) an expansion of an annotated instance (I1,Λ1)
if and only if I1 ⊆ I2, and all atoms of I2 \ I1 coincide with some atom of I1
on all closed positions. That is, for all atoms R(t′1, . . . , t′ar(R)) ∈ I2 \ I1, there
is an atom A := R(t1, . . . , tar(R)) ∈ I1 and some λ ∈ Λ1(A) such that for all
p ∈ {1, . . . , ar(R)} with λ(A, p) = cl we have t′p = tp.

Altogether, mixed world-solutions are defined as follows:

3.50 Definition (Mixed world-solution)
Let (M,ΛM) be an annotated schema mapping, and let S be a source instance
for M . A mixed world-solution for S under (M,ΛM) is an annotated target
instance (T,ΛT) for (M,ΛM) such that

• there is a homomorphism h from (CanSol(M,S),ΛM,ΛM ,S) to (T,ΛT) with
h(CanSol(M,S)) = T , and

• there is a homomorphism from (T,ΛT) to an expansion of (CanSol(M,S),
ΛM,ΛM ,S).

Let solmixed(M,ΛM , S) be the set of all mixed world-solutions for S under
(M,ΛM).

Given an annotated schema mapping (M,ΛM) withM = (σs, σt,Σ), a source
instance S for M , and a query q over σt, we can now answer q on M and S by
the certain answers to q on the set⋃

(T,ΛT)∈solmixed(M,ΛM ,S)
poss(T,ΛT),

where for each annotated instance (T,ΛT) over σt, we let

poss(T,ΛT) := {T̂ ∈ inst(σt) | T̂ is ground, v(T) ⊆ T̂ for some valuation v
of T , for each R(t′1, . . . , t′ar(R)) ∈ T̂ there are
A = R(t1, . . . , tar(R)) ∈ T and λ ∈ ΛT (A)
such that for all positions p ∈ {1, . . . , ar(R)}
with λ(p) = cl we have t′p = tp}.

Finally, let us consider the query answering semantics proposed by Afrati
and Kolaitis [2008], which we call endomorphic images semantics. Like the
mixed world-solution based semantics, the endomorphic images semantics have
been defined for the case of schema mappings defined by st-tgds only. Fur-
thermore, it has been designed with the goal of answering aggregate queries,

108 Chapter 3. Justification-Based Approaches to Query Answering

where Afrati and Kolaitis [2008] argued that one needs to restrict the notion of
CWA-solutions in order to obtain “good” answers. However, aggregate queries
are not the focus of this thesis; for more on the topic of answering aggregate
queries, see Afrati and Kolaitis [2008]. Under the endomorphic images seman-
tics, queries are answered by the certain answers on the endomorphic images of
the canonical universal solution. Here, an endomorphism of an instance I is a
homomorphism from I to I. An endomorphic image of I is an instance J for
which there is an endomorphism h of I with h(I) = J . Thus, given a schema
mapping M = (σs, σt,Σ) defined by st-tgds, a source instance S for M , and a
query q over σt, q is answered under the endomorphic images semantics by the
certain answers to q on the set of all endomorphic images of CanSol(M,S).

3.6 Limitations to the Justification-Based Approach

The requirements for CWA-solutions (recall Table 3.1) reflect the operational
point of view on tgds and egds. In many situations, this yields query results
that are intuitively expected (recall the examples given in Section 3.3). On the
other hand, if one is used to the standard semantics of FO quantifiers (e.g.,
existential quantifiers express that there are one, two, three or more elements
that satisfy the given property), these semantics may also yield results that
intuitively do not seem to be accurate.

3.51 Example
Let M = ({E}, {F,G},Σ) be the schema mapping, where E,F,G are binary
relation symbols, and Σ consists of the st-tgd

χ := ∀x1∀x2
(
E(x1, x2)→ ∃z(F (x1, z) ∧G(z, x2))

)
.

Let S be the source instance forM with ES = {(a, b)}. Then T = CanSol(M,S)
with F T = {(a,⊥)} and GT = {(⊥, b)} is the unique CWA-solution for S under
M , up to isomorphism. For the query

q(x) := ∃z
(
F (x, z) ∧ ∀z′(F (x, z′)→ z′ = z)

)
,

it follows therefore that cert�(q,M, S) = {a}. That is, cert�(q,M, S) excludes
the possibility that there is more than one value z with F (a, z). However, this
is inconsistent with χ and S, which, taking the usual semantics of existential
quantification, tell us that there are one or more z with F (a, z) and G(z, b). In
particular, χ and S explicitly state that it is possible that there is more than
one z with F (a, z).

This example can be modified to show that also the other CWA-solution-
based semantics lead to answers that intuitively do not seem to be right. For

3.6. Limitations to the Justification-Based Approach 109

cert♦, we only have to replace cert� with cert♦. For maybe� and maybe♦, we
take the query ¬q instead of q. Then maybe♦(q,M, S) = maybe�(q,M, S) = ∅.
Thus, maybe♦(q,M, S) and maybe�(q,M, S) tell us that it is not possible that
there are two distinct z with F (a, z), which, as above, is intuitively inconsistent
with M and S.

By choosing another query q, we can also show that the mixed world-based
semantics can lead to answers that intuitively do not seem to be right.

Furthermore, the semantics based on CWA-solutions and its variants do not
respect logical equivalence of schema mappings. Here, given schema mappings
M1 = (σs, σt,Σ1) and M2 = (σs, σt,Σ2) over the same source schema σs and
target schema σt, we call M1 and M2 logically equivalent if and only if Σ1 and
Σ2 are logically equivalent, that is, if each instance I over σs ∪ σt satisfies

I |= Σ1 ⇐⇒ I |= Σ2.

In particular, given an instance S over σs, each solution for S under M1 is a
solution for S underM2 and vice versa. Logical equivalence of schema mappings
is respected if the answer to a query is the same on logically equivalent schema
mappings. The next example shows that the semantics based on CWA-solutions
and its variants do not respect logical equivalence of schema mappings:

3.52 Example
Let M1 = (σs, σt,Σ1) and M2 = (σs, σt,Σ2) be schema mappings, where σs
contains a unary relation symbol P , σt contains a binary relation symbol E,

Σ1 :=
{
∀x
(
P (x)→ E(x, x)

) }
,

and

Σ2 := Σ1 ∪
{
∀x
(
P (x)→ ∃z E(x, z)

) }
.

Then M1 and M2 are logically equivalent.
Now let S be an instance over σs with P S = {a}. Furthermore, let T1 and T2

be instances over σt with ET1 = {(a, a)} and ET2 = {(a, a), (a,⊥)}. Note that
T1 is the unique CWA-solution for S under M1, and that T2 = CanSol(M2, S)
is a CWA-solution for S under M2. Thus, for the query

q(x) := ∃z
(
E(x, z) ∧ ∀z′(E(x, z′)→ z′ = z)

)
,

we obtain different answers cert�(q,M1, S) = {a} and cert�(q,M2, S) = ∅ to
the same query q on logically equivalent schema mappings M1 and M2.

Using M1, M2 and the query q in Example 3.52, one can also show that the
mixed world-based semantics, and the semantics based on endomorphic images
of the canonical universal solution do not respect logical equivalence of schema
mappings either.

110 Chapter 3. Justification-Based Approaches to Query Answering

Note that, given logically equivalent schema mappings M1 = (σs, σt,Σ1)
and M2 = (σs, σt,Σ2), the sets Σ1 and Σ2 intuitively describe one and the same
transformation. If two descriptions of transformations are logically equivalent,
it should intuitively not matter if a query is answered with respect to the one
description or the other one.

The goal in the following two chapters is to identify semantics such that

1. implicit information in schema mappings and source instances are taken
into account,

2. logical equivalence of schema mappings is respected, and

3. the standard semantics of FO quantifiers is reflected.

4 Deductive Databases &
Relational Data Exchange

As mentioned in Chapter 3, the concept of CWA-solutions is inspired by the
closed world assumption (CWA). Originally, the CWA has been introduced by
Reiter [1978] for answering non-monotonic queries on deductive databases, where
a deductive database is a set of universally quantified disjunctions of relational
atomic FO formulas and negations of relational atomic FO formulas (see, e.g.,
Gallaire et al. [1984]). A large body of work in the area of deductive databases
deals with semantics for answering non-monotonic queries. Interestingly, the
definitions of many of these semantics apply as well, or can be easily extended,
to more general sets of logical sentences, such as sets

Σ ∪ {R(c̄) | R ∈ σs, c̄ ∈ RS} ∪ {¬R(c̄) | R ∈ σs, c̄ ∈ Constar(R) \RS},

where Σ is the set of sentences of a schema mapping M = (σs, σt,Σ), and S is a
source instance for M . It is therefore tempting to use these semantics for query
answering in relational data exchange.

In this chapter, we translate various semantics for answering non-monotonic
queries on deductive databases into the framework of relational data exchange.
Furthermore, we study these semantics with respect to the following question:
which of these semantics is appropriate for answering non-monotonic queries in
relational data exchange, in the sense that logical equivalence of schema map-
pings is respected, and the standard semantics of FO quantifiers is reflected? As
it turns out, none of these semantics seems to be appropriate. For each of these
semantics we show that it is either too weak, too strong, or not preserved under
logical equivalence. Nevertheless, the ideas presented in the present chapter
are the starting point of—and may help to better understand—the semantics
developed in Chapter 5.

Section 4.1 begins by defining deductive databases, and by explaining their
relationship to relational data exchange. The subsequent sections 4.2 to 4.4
then study the semantics for query answering on deductive databases in the
context of relational data exchange.

4.1 Definition of Deductive Databases

In this section, we define deductive databases, and explain their relationship to
relational data exchange.

112 Chapter 4. Deductive Databases and Relational Data Exchange

4.1 Definition (Deductive database; see, e.g., Gallaire et al. [1984])
A deductive database over a schema σ is a set of clauses over σ, which are FO
sentences over σ of the form

∀x̄
(
¬R1(ū1) ∨ · · · ∨ ¬Rm(ūm) ∨R′1(v̄1) ∨ · · · ∨R′n(v̄n)

)
,

wherem and n are nonnegative integers withm+n ≥ 1. A model of a deductive
database D over σ is a ground instance I over σ with I |= D.

Given a deductive database D, we may view the subset of D that consists
of all clauses of the form R(c̄) with c̄ ∈ Constar(R) (i.e., clauses with m = 0,
n = 1, and no variables) as a ground instance, namely the instance I with
RI = {c̄ | R(c̄) ∈ D} for all R ∈ σ. A deductive database thus consists of
extensional data, which corresponds to a ground instance, and intensional data,
from which new data can be deduced.

4.2 Example (Ground instances)
Let I be a ground instance over a schema σ. Then I can be represented by the
following deductive database DI over σ:

DI := {R(c̄) | R ∈ σ, c̄ ∈ RI} ∪ {¬R(c̄) | R ∈ σ, c̄ ∈ Constar(R) \RI}.

Clearly, I is the only model of DI .

4.3 Example (Schema mappings defined by full tgds)
Let M = (σs, σt,Σ), where Σ is a set of full tgds, and let S be a source instance
for M . Note that every full tgd

χ = ∀x̄
(
R1(ū1) ∧ · · · ∧Rm(ūm)→ R′(v̄)

)
in Σ can be rewritten as a clause

χ′ := ∀x̄
(
¬R1(ū1) ∨ · · · ∨ ¬Rm(ūm) ∨R′(v̄)

)
.

Thus, M and S can be represented by the following deductive database D′M,S

over σs ∪ σt:

D′M,S := DS ∪ {χ′ | χ ∈ Σ},

whereDS, as defined in Example 4.2, is the deductive database that corresponds
to S. Note that for every ground instance I over σs ∪ σt, I is a model of D′M,S

if and only if there is a ground solution T for S under M with I = S ∪ T .

4.2. The Closed World Assumption (CWA) 113

Given a deductive database D over a schema σ, a query q over σ is usually
answered on D by cert(q, I), where I is a set of models of D that depends on the
particular query answering semantics. Various semantics for answering queries
on deductive databases exist, among them the above-mentioned CWA-based
semantics [Reiter, 1978], the semantics based on the generalized CWA (GCWA)
[Minker, 1982], the semantics based on the extended GCWA (EGCWA) [Yahya
and Henschen, 1985], and the possible worlds semantics (PWS) [Chan, 1993].
What makes these semantics interesting for relational data exchange is that the
definitions of these semantics apply as well, or can be extended, to more general
sets of logical sentences, such as

DM,S := DS ∪ Σ,

where Σ is the set of logical sentences of a schema mapping M = (σs, σt,Σ),
S is a source instance for M , and DS is defined as in Example 4.2. As shown
in Example 4.3, if Σ consists only of full tgds, it is even the case that DM,S is
logically equivalent to a deductive database.

In the following, we study the CWA, the GCWA, the EGCWA and the PWS
in more detail in the context of relational data exchange.

4.2 The Closed World Assumption (CWA)

The closed world assumption (CWA), first formalized by Reiter [1978], assumes
that every atomic formula R(c̄) with c̄ ∈ Constar(R) that is not implied by a
database is false. This is a common assumption for relational databases.

Reiter formalized the CWA, and defined a query answering semantics for
deductive databases based on the CWA, as follows. For a set Φ of logical
formulas and a formula ψ, we write Φ |= ψ if and only if ψ logically follows
from Φ, that is, if for all instances I with I |= Φ we have I |= ψ. Let D be a
deductive database over a schema σ. Under the CWA, all atomic formulas in
the set

D := {¬R(c̄) | R ∈ σ, c̄ ∈ Constar(R), D 6|= R(c̄)}

are assumed to be false. The models of D ∪D are then called the CWA-models
of D, and a query q over σ is answered by cert(q, I), where I is the set of all
CWA-models of D.

4.4 Example (Ground instances)
Let I be a ground instance over a schema σ, and consider the deductive database

D := {R(c̄) | R ∈ σ, c̄ ∈ RI}.

114 Chapter 4. Deductive Databases and Relational Data Exchange

The models of D are all the ground instances J over σ with I ⊆ J . However,
the only CWA-model of D is I. In particular, we have D ∪D = DI .

Translating CWA models and the CWA-based query answering semantics
into the framework of relational data exchange, we obtain:

4.5 Definition (RCWA-solution, RCWA-answers)
Let M = (σs, σt,Σ) be a schema mapping, let S be a source instance for M ,
and let q be a query over σt.

1. A RCWA-solution for S under M is a ground target instance T for M
such that S ∪ T is a CWA-model of DM,S.

2. The RCWA-answers to q on M and S are defined as certRCWA(q,M, S) :=
cert(q, I), where I is the set of all RCWA-solutions for S under M .

The RCWA-answers semantics coincides with the certain CWA-answers se-
mantics on schema mappings defined by full tgds and egds:

4.6 Proposition.
Let M = (σs, σt,Σ) be a schema mapping, where Σ consists of full tgds and
egds. Then for all source instances S for M , and all queries q over σt, we have
certRCWA(q,M, S) = cert�(q,M, S).

Proof. If there is no solution for S under M , we have certRCWA(q,M, S) =
cert�(q,M, S) = ∅. So assume that there is a solution for S under M . Since Σ
consists of full tgds and egds, it is easy to see that there is a unique ⊆-minimal
solution T0 for S underM . This means that T0 is a solution for S underM , and
there is no solution T ′0 for S under M with T ′0 (T0. Note that T0 is ground.

Furthermore, T0 is the unique RCWA-solution for S under M . Indeed,
for every ground solution T ⊇ T0 for S under M , every R ∈ σt and every
t̄ ∈ RT \RT0 , we have DM,S 6|= R(t̄), because S ∪T0 |= DM,S and S ∪T0 6|= R(t̄).
Thus, certRCWA(q,M, S) = q(T0).

Finally, T0 is the unique CWA-solution for S under M , and consequently,
certRCWA(q,M, S) = cert�(q,M, S) = q(T0).

However, for schema mappings that contain non-full tgds, certRCWA may lead
to answers that are intuitively inconsistent with M and S. This is illustrated
by the following example, which is based on Example 8 in Reiter [1978].

4.7 Example
Let M = ({P}, {E},Σ), where Σ consists of the st-tgd ∀x(P (x)→ ∃zE(x, z)),

4.3. The Generalized Closed World Assumption (GCWA) 115

and let S be the source instance for M with P S = {a}. Then there is no
RCWA-solution for S under M , because for all b, c ∈ Const, we have

DM,S = DS ∪ {∀x(P (x)→ ∃zE(x, z))} 6|= E(b, c).

This is due to the fact that the instance I with P I = {a} and EI = {(a, c′)},
where c′ ∈ Const \ {c}, satisfies DM,S, but not E(b, c). Therefore,

DM,S = {¬P (b) | b ∈ Const, b 6= a} ∪ {¬E(b, c) | b, c ∈ Const}.

For the query

q(x) := ∃z E(x, z),

we thus have certRCWA(q,M, S) = ∅. In other words, certRCWA(q,M, S) tells
us that there is no value z such that E(a, z) holds. This is clearly inconsistent
with M and S, since M and S tell us that there is a value z such that E(a, z)
holds. Thus, intuitively, the set of answers should be {a}.

4.3 The Generalized Closed World Assumption (GCWA)

Minker [1982] extended the CWA to the generalized closed world assumption
(GCWA) as follows.

We say that an instance I is ⊆-minimal in a set I of instances if and only
if I ∈ I, and there is no I ′ ∈ I with I ′ (I. If D is a deductive database over a
schema σ, then a ⊆-minimal model of D is a ⊆-minimal instance in the set of
all models of D. Moreover, ifM is a schema mapping and S is a source instance
for M , then a ⊆-minimal solution for S under M is a ⊆-minimal instance in
sol(M,S).

Let D be a deductive database over a schema σ. Under the GCWA, all
atomic formulas in the set

D := {¬R(c̄) | R ∈ σ, c̄ ∈ Constar(R), and for all ⊆-minimal models I of D
we have c̄ /∈ RI}

are assumed to be false. The models of D ∪ D are called GCWA-models of
D, and a query q over σ is answered by cert(q, I), where I is the set of all
GCWA-models of D.

The intuition behind the above definitions is that each ground atom in some
⊆-minimal model of D is in some sense an atom that D “speaks” about. For
ground atoms that do not occur in any ⊆-minimal model of D, this means that
they are merely “invented”, and can therefore safely be assumed to be false.

Translating the GCWA and the GCWA-based query answering semantics
into the framework of relational data exchange, we obtain:

116 Chapter 4. Deductive Databases and Relational Data Exchange

4.8 Definition (GCWA-solution, GCWA-answers)
Let M = (σs, σt,Σ) be a schema mapping, let S be a source instance for M ,
and let q be a query over σt.

• A GCWA-solution for S under M is a ground target instance T for M
such that S ∪ T is a GCWA-model of DM,S.

• The GCWA-answers to q onM and S are defined as certGCWA(q,M, S) :=
cert(q, I), where I is the set of all GCWA-solutions for S under M .

As for the RCWA-answers semantics, the GCWA-answers semantics coin-
cides with the certain CWA-answers semantics on schema mappings defined by
full tgds and egds.

4.9 Proposition.
Let M = (σs, σt,Σ) be a schema mapping, where Σ consists of full tgds and
egds. Then for all source instances S for M , and all queries q over σt, we have
certGCWA(q,M, S) = cert�(q,M, S).

Proof. If there is no solution for S under M , we have certGCWA(q,M, S) =
cert�(q,M, S) = ∅. Assume that there is a solution for S under M . As shown
in the proof of Proposition 4.6, there is a unique ⊆-minimal solution T0 for S
underM , which is ground. It follows immediately from Definition 4.8 that T0 is
the unique GCWA-solution for S underM . Since T0 is the unique CWA-solution
for S under M , we have certGCWA(q,M, S) = cert�(q,M, S) = q(T0).

Moreover, the GCWA-answers semantics yields the expected answer to the
query in Example 4.7:

4.10 Example
Recall the schema mapping M , the source instance S, and the query q from
Example 4.7. We now have

DM,S = {¬P (b) | b ∈ Const, b 6= a} ∪ {¬E(b, c) | b, c ∈ Const, b 6= a},

because for all c ∈ Const there is a ⊆-minimal model I of DM,S with (a, c) ∈ EI ,
and for all b, c ∈ Const with b 6= a and all ⊆-minimal models I of DM,S, we have
(b, c) /∈ EI . Therefore, the GCWA-solutions for S under M are precisely the
target instances T forM for which there is a finite nonempty set C ⊆ Const with
T = TC , where ETC = {(a, b) | b ∈ C}. It follows that certGCWA(q,M, S) = {a},
as desired.

Nevertheless, there are cases where the GCWA still seems to be too weak in
the sense that it removes not enough solutions from the set of all solutions.

4.4. Concepts Related to the GCWA 117

4.11 Example
Consider a slight extension of the schema mapping from Example 4.7, namely
the schema mapping M = ({P}, {E,F},Σ), where Σ consists of the st-tgd

χ := ∀x
(
P (x)→ ∃z1∃z2(E(x, z1) ∧ F (z1, z2))

)
.

Let S be the source instance for M with P S = {a}. Then,

DM,S = {¬P (b) | b ∈ Const, b 6= a} ∪ {¬E(b, c) | b, c ∈ Const, b 6= a}.

Note that for all b, c ∈ Const we have ¬F (b, c) /∈ DM,S, since the instance I
with P I = {a}, EI = {(a, b)} and F I = {(b, c)} is a ⊆-minimal model of DM,S.
So, the GCWA-solutions for S under M are the target instances T for M for
which there is a finite nonempty set C ⊆ Const with the following properties:

• ET = {(a, b) | b ∈ C}, and

• for at least one b ∈ C there is some c ∈ Const with (b, c) ∈ F T .

In particular, the target instance T ∗ for M with ET ∗ = {(a, b)} and F T ∗ =
{(b, c), (d, e)} is a GCWA-solution for S under M . For the query

q := ∀z1∀z2
(
F (z1, z2)→ ∃xE(x, z1)

)
we thus have certGCWA(q,M, S) = ∅.

So, certGCWA(q,M, S) tells us that it is possible that there is a tuple (b, c) in
F for which (a, b) is not in E. However, χ and S intuitively do not “mention”
this possibility. In particular, χ and S only tell us that there are one or more
pairs (b, c) ∈ Const2 such that E(a, b) and F (b, c) occur together in a solution.
Thus, whenever E(a, b) is present for some b ∈ Const, then F (b, c) should be
present for some c ∈ Const. Similarly, whenever F (b, c) is present for some
b, c ∈ Const, then E(a, b) should be present.

4.4 Concepts Related to the GCWA

Various extensions of the GCWA have been proposed in the literature. One
of these extensions is the extended GCWA (EGCWA) by Yahya and Henschen
[1985], which restricts the set of models of a deductive database D to the ⊆-
minimal models of D. So, given a schema mapping M = (σs, σt,Σ) and a
source instance S for M , an EGCWA-solution for S under M can be defined
as a ground ⊆-minimal solution for S under M , and given a query q over σt we
can define

certEGCWA(q,M, S) := cert(q, I),

118 Chapter 4. Deductive Databases and Relational Data Exchange

where I is the set of all EGCWA-solutions for S underM . Then, for the schema
mapping M , the source instance S for M , and the query q in Example 4.10,
certEGCWA(q,M, S) = certGCWA(q,M, S), and for the schema mapping M , the
source instance S forM , and the query q in Example 4.11, certEGCWA(q,M, S) 6=
∅, as desired. However, the EGCWA-based semantics seems to be too strong in
the sense that it removes too many solutions from the set of all solutions. This
is illustrated by the following example.

4.12 Example (Range queries)
Let M = ({P}, {E},Σ) be a schema mapping, where Σ consists of

χ := ∀x(P (x)→ ∃[2,3]zE(x, z)),

where ∃[2,3]z E(x, z) is an abbreviation for “there exist two or three z such that
E(x, z) holds”. Let S be the source instance for M with P S = {a}. Then the
⊆-minimal solutions for S under M have the form {E(a, b1), E(a, b2)}, where
b1, b2 are distinct constants. Thus, for the query

q(x) := ∃z1∃z2

(
E(x, z1) ∧ E(x, z2) ∧ ∀z3

(
E(x, z3)→ (z3 = z1 ∨ z3 = z2)

))
,

we have certEGCWA(q,M, S) 6= ∅. In other words, the answer certEGCWA(q,M, S)
excludes the possibility that there are three distinct values b1, b2, b3 such that
E(a, bi) holds for each i ∈ {1, 2, 3}. But χ and S explicitly mention this possi-
bility. Thus, intuitively, certEGCWA is inconsistent with M and S.

A semantics that seems to get rid of the above-mentioned problems is the
possible worlds semantics (PWS) by Chan [1993]. An obvious translation of
the PWS into the framework of relational data exchange for the case of schema
mappings defined by st-tgds is as follows: Let M = (σs, σt,Σ) be a schema
mapping, where Σ is a set of st-tgds, and let S be a source instance for M .
The definition of a PWS-solution for S under M can then be given in terms of
justifications as defined in Section 3.1. More precisely, a PWS-solution for S
under M is a ground solution T for S under M such that all atoms of T are
justified in T under M and S. For a query q over σt, we let

certPWS(q,M, S) := cert(q, I),

where I is the set of all PWS-solutions for S under M . However, certPWS does
not respect logical equivalence of schema mappings as can be easily verified
using the schema mapping, the source instance, and the query in Example 3.52:

4.13 Example (certPWS does not respect logical equivalence)
Let M1 = (σs, σt,Σ1) and M2 = (σs, σt,Σ2) be the logically equivalent schema

4.4. Concepts Related to the GCWA 119

mappings from Example 3.52. Furthermore, let S be the instance over σs from
Example 3.52. It is not hard to verify that the instance T1 over σt with ET1 =
{(a, a)} is the only PWS-solution for S under M1. Moreover, it is not hard
to verify that the instance T2 over σt with ET2 = {(a, a), (a, b)}, a 6= b, is a
PWS-solution for S under M2. Thus, for the query

q(x) := ∃z
(
E(x, z) ∧ ∀z′(E(x, z′)→ z′ = z)

)
,

we obtain different answers certPWS(q,M1, S) = {a} and certPWS(q,M2, S) = ∅
to the same query q on logically equivalent schema mappings M1 and M2.

120 Chapter 4. Deductive Databases and Relational Data Exchange

5 The GCWA∗-Answers Semantics

In this chapter, we introduce the concept of GCWA∗-solutions and the corre-
sponding GCWA∗-answers semantics. GCWA∗-solutions are inspired by GCWA-
solutions and EGCWA-solutions, introduced in the previous chapter. GCWA∗-
solutions, and thus GCWA∗-answers, are defined for general schema mappings.
For schema mappings defined by st-tgds and egds, GCWA∗-solutions are ground
solutions that are unions of ⊆-minimal solutions. We argue that the GCWA∗-
answers semantics intuitively meets the three goals identified at the end of
Section 3.6:

1. Implicit information in schema mappings and source instances are
taken into account.

2. Logical equivalence of schema mappings is respected.

3. The standard semantics of FO quantifiers is reflected.

Thus, it seems that the GCWA∗-answers semantics is well-suited for query an-
swering in relational data exchange.

A drawback is that it is in general hard to evaluate GCWA∗-answers, even for
simple schema mappings and existential queries with only one negated relational
atomic formula (Proposition 5.11 and Proposition 5.12). However, we identify
a certain kind of st-tgds, called packed st-tgds, such that the GCWA∗-answers to
universal queries (FO queries of the form ∀x̄ ϕ, where ϕ is quantifier-free) can
be evaluated in polynomial time on schema mappings defined by packed st-tgds.
More precisely, we show (see Theorem 5.15) that for each schema mapping M
defined by packed st-tgds and each universal query q, there is a polynomial
time algorithm that, given an instance that is isomorphic to Core(M,S) for
some source instance S for M , computes the GCWA∗-answers to q on M and
S. This is the technically most challenging result of this thesis. Note that, by
Theorem 2.28, this result implies that for each schema mapping M defined by
packed st-tgds and each universal query q, there is a polynomial time algorithm
that takes a source instance S for M and outputs the GCWA∗-answers to q on
M and S.

This chapter is structured as follows. In Section 5.1, we define GCWA∗-
solutions and the GCWA∗-answers semantics, and argue that the GCWA∗-
answers semantics intuitively meets the three goals mentioned above. In Sec-
tion 5.2, we then give a characterization of GCWA∗-solutions for schema map-

122 Chapter 5. The GCWA∗-Answers Semantics

pings defined by st-tgds and egds in the spirit of the definition of GCWA-
solutions. Section 5.3 presents first results towards understanding the complex-
ity of computing GCWA∗-answers. Finally, Section 5.4 deals with the problem
of computing GCWA∗-answers to universal queries. This section comprises the
main result of this chapter.

Most of the results of this chapter were published in Hernich [2010].

5.1 Definition of GCWA∗-Solutions and GCWA∗-Answers

In this section, we define GCWA∗-solutions and the GCWA∗-answers semantics,
and argue that the GCWA∗-answers semantics intuitively meets the three goals
mentioned at the beginning of this chapter.

As a motivating example, let us consider the schema mapping M and the
source instance S for M from Example 4.7. Let T be the set of all GCWA-
solutions for S under M . As shown in Example 4.10, T consists of all target
instances T for M such that there is a nonempty finite set C ⊆ Const with
T = TC , where

ETC := {(a, b) | b ∈ C}.

Intuitively, T precisely reflects the explicit and the implicit information in M
and S: taking the standard semantics of existential quantification, M and S
just tell us that there is one b ∈ Const such that E(a, b) holds, or there are two
distinct b1, b2 ∈ Const such that E(a, b1) and E(a, b2) hold, or there are three
distinct b1, b2, b3 ∈ Const such that E(a, b1), E(a, b2) and E(a, b3) hold, and so
on. The case that there are n distinct constants b1, . . . , bn such that E(a, bi)
holds for each i ∈ {1, . . . , n} is captured by TC , where C := {b1, . . . , bn}. Since
M and S specify a translation of S from source to target, it seems to be natural
to assume that the result of the translation is one of the instances in T . Thus,
intuitively, the certain answers to a query on T take into account explicit and
implicit information in M and S in such a way that the standard semantics of
FO quantifiers is reflected.

Note that T consists of all ground target instances for M that are unions of
⊆-minimal solutions for S under M . On the other hand, consider the schema
mapping M , the source instance S for M , and the GCWA-solution T ∗ for S
under M from Example 4.11. Then T ∗ is not a union of ⊆-minimal solutions
for S under M . However, let T be the set of all ground target instances for M
that are unions of ⊆-minimal solutions for S under M . That is, let T be the
set of all ground target instances T for M such that

ET = {(a, b) | (b, c) ∈ F T for some c ∈ Const} and F T 6= ∅.

5.1. Definition of GCWA∗-Solutions and GCWA∗-Answers 123

Then, intuitively, T precisely reflects the explicit and the implicit information
in M and S as well as the standard semantics of FO quantifiers: taking once
again the standard semantics of existential quantification, M and S tell us that
there is one pair (b, c) ∈ Const2 such that E(a, b) and F (b, c) hold, or there
are two pairs (b1, c1), (b2, c2) ∈ Const2 such that E(a, bi) and F (bi, ci) hold for
each i ∈ {1, 2}, and so on. Note that the certain answers to the query q from
Example 4.11 on T are nonempty, as desired.

Now let M be an arbitrary schema mapping, let S be a source instance for
M , and let q be a query over M ’s target schema. The preceding two examples
suggest that it might be a good idea to answer q on M and S by cert(q, T),
where T is the set of all ground solutions for S under M that are unions of
⊆-minimal solutions for S under M . For the moment, let us call such solutions
GCWA∗-solutions:

5.1 Definition (GCWA∗-solutions, preliminary version)
Let M be a schema mapping, and let S be a source instance for M . A GCWA∗-
solution for S under M is a ground solution for S under M that is the union of
one or more ⊆-minimal solutions for S under M .

Note that logically equivalent schema mappings have the same GCWA∗-
solutions for a given source instance. In particular, the certain answers on
GCWA∗-solutions respect logical equivalence of schema mappings.

Consider a schema mappingM = (σs, σt,Σ), where Σ is a set of st-tgds, and
a source instance S for M . Intuitively, each ground ⊆-minimal solution for S
under M corresponds to a possible interpretation of the existentially quantified
variables of the st-tgds in Σ by concrete constants. For example, if Σ contains
the st-tgd

χ := ∀x∀y
(
E(x, y)→ ∃z∃z′(F (x, z) ∧ F (y, z′))

)
,

where E ∈ σs and F ∈ σt, and if ES = {(a, b)}, then for each ground ⊆-
minimal solution T for S under M , there are constants c, c′ ∈ Const such that
F T = {(a, c), (b, c′)}. In particular, we can view the set of all pairs (c, c′) of
constants associated with some T as the set of all possible interpretations of
the variables z and z′ of χ. Note that M and S intuitively tell us that one of
these interpretations is possible, or two of these interpretations are possible, or
three of these interpretations are possible, and so on. This corresponds to the
union of one or more ground ⊆-minimal solution for S under M . Thus, the set
of all instances that are unions of one or more ground ⊆-minimal solutions for S
under M intuitively reflects the explicit and the implicit information contained
in M and S as well as the standard semantics of FO quantifiers.

124 Chapter 5. The GCWA∗-Answers Semantics

In the following we argue for a more general class of schema mappings,
including schema mappings defined by st-tgds, that with respect to such schema
mappings M , the set of all GCWA∗-solutions for a source instance S under M
intuitively reflects the explicit and the implicit information in M and S in such
a way that the standard semantics of FO quantifiers is respected.

Namely, we consider schema mappings defined by a certain kind of L∞ω
sentences. As indicated in Section 1.1.2, L∞ω logic extends FO logic by allowing
disjunctions and conjunctions to range over infinitely many formulas. L∞ω
formulas over a schema σ are defined like FO formulas over σ, except that we
add infinitary disjunctions ∨Φ and infinitary conjunctions ∧Φ, where Φ is an
arbitrary set of L∞ω formulas. The set of the free variables of ∨Φ or ∧Φ is
the set of all variables that occur free in some formula of Φ. The notions of
assignment and sentence easily carry over to L∞ω formulas. The semantics of
L∞ω formulas is a straightforward extension of the semantics of FO formulas.
In particular, given an instance I and an assignment α for ψ := ∨Φ, we have
I |= ψ(α) if and only if I |= ϕ(α) for some ϕ ∈ Φ. Furthermore, given an
instance I and an assignment α for ψ := ∧Φ, we have I |= ψ(α) if and only if
I |= ϕ(α) for all ϕ ∈ Φ.

Let M = (σs, σt,Σ) be a schema mapping, where Σ consists of right-mono-
tonic L∞ω-st-tgds, which are L∞ω sentences of the form

χ := ∀x̄(ϕ(x̄)→ ψ(x̄)),

where ϕ is a L∞ω formula over σs, and ψ is a monotonic L∞ω formula over
σt. We assume that for all instances S over σs, and all instances T over σt, we
have S ∪ T |= χ if and only if for all ū ∈ (dom(S) ∪ dom(χ))|x̄|, where dom(χ)
is the set of all constants that occur in χ, S |= ϕ(ū) implies T |= ψ(ū). This
can be enforced, for example, by relativizing the universal quantifiers, and the
quantifiers in ϕ to the active domain over σs, and by relativizing the quantifiers
in ψ to the active domain over σt. Note that right-monotonic L∞ω-st-tgds in
particular capture st-tgds. Now, given a source instance S for M , let

ΨM,S := {ψ(ū) | there exists ∀x̄(ϕ(x̄)→ ψ(x̄)) ∈ Σ
and ū ∈ Const|x̄| with S |= ϕ(ū)}.

Then for each ground target instance T for M , it holds that T is a solution for
S under M if and only if T satisfies all sentences in ΨM,S. Since all sentences
in ΨM,S are monotonic, ΨM,S is logically equivalent (on the set of all ground
instances over σt) to the sentence

ψM,S :=
∨

T0∈T0

∧
R(t̄)∈T0

R(t̄),

5.1. Definition of GCWA∗-Solutions and GCWA∗-Answers 125

where T0 is the set of all ⊆-minimal ground solutions for S under M (i.e., for
all ground instances T over σt, we have T |= ψM,S if and only if T satisfies all
sentences in ΨM,S). Note that ψM,S tells us that the target contains one ground
⊆-minimal solution for S under M , or the target contains two distinct ground
⊆-minimal solutions for S under M , and so on. So, intuitively, the information
contained in ψM,S (and thus in M and S) is reflected by the set of all instances
T over σt that are the union of one or more instances in T0. This set corresponds
to the set of all GCWA∗-solutions for S under M .

The following example shows that the certain answers on GCWA∗-solutions
may be appropriate beyond schema mappings defined by right-monotonic L∞ω-
st-tgds.

5.2 Example
Consider once again the schema mapping M , the source instance S for M , and
the query q from Example 4.12. For each ground target instance T for M that
is the union of ⊆-minimal solutions for S under M , there exists a nonempty
finite set C ⊆ Const with ET = {(a, b) | b ∈ C}. Due to the constraint χ in M ,
T is a GCWA∗-solution for S under M if and only if 2 ≤ |C| ≤ 3. Thus, the set
of all GCWA∗-solutions for S under M intuitively reflects the explicit and the
implicit information in M and S. Note that the certain answers to q on the set
of all GCWA∗-solutions for S under M are empty, as desired.

Let M = (σs, σt,Σ) be a schema mapping, where Σ does not entirely consist
of right-monotonic L∞ω-st-tgds, and let S be a source instance. Then the set
of the GCWA∗-solutions for S under M may suppress information that should
intuitively be taken into account when answering queries:

5.3 Example
Consider the schema mapping M = ({P}, {E,F}, {χ1, χ2}), where

χ1 := ∀x
(
P (x)→ ∃z∃z′E(z, z′)

)
,

χ2 := ∀x∀y
(
E(x, y) ∧ E(x′, y)→ F (x, x′)

)
,

and let S be the source instance for M with P S = {a}. Furthermore, let
c1, c2, c be constants with c1 6= c2. Then the target instance T forM with ET =
{(c1, c), (c2, c)} and F T = {(ci, cj) | 1 ≤ i, j ≤ 2} is a solution for S under M ,
but no GCWA∗-solution for S underM . Nevertheless, it seems to be reasonable
to take into account T when answering queries. The reason is that M and S
intuitively tell us that it is possible that E contains both (c1, c) and (c2, c).
So we should consider also all information implied by M and S for the case
that E contains (c1, c) and (c2, c): namely, that F contains (ci, cj) for each
i, j ∈ {1, 2}. Thus, for query answering, we should take into account not only

126 Chapter 5. The GCWA∗-Answers Semantics

ground solutions that are unions of ⊆-minimal solutions for S under M , but
also all ground solutions that are unions of solutions in T , where T consists of

• all ⊆-minimal solutions for S under M , and

• all solutions that are ⊆-minimal in the set of all solutions T0 for S under
M with {(c′1, c′), (c′2, c′)} ⊆ ET0 , for all c′1, c′2, c′ ∈ Const with c′1 6= c′2.

Note that the instance T considered above is the unique ⊆-minimal solution
among all solutions T0 for S under M with {(c1, c), (c2, c)} ⊆ ET0 .

To resolve this issue, we start with the set

T 0
M,S := {T | T is a ground ⊆-minimal solution for S under M},

and inductively add to this set solutions for S under M that are in some sense
minimal consequences of certain facts mentioned by M and S. For query an-
swering, we then take into account all solutions that are unions of one or more
solutions in the resulting set.

For each set I of instances, let

〈I〉 := {
⋃
I ′ | I ′ is a nonempty finite subset of I},

where for a set X, ⋃X is an abbreviation for ⋃x∈X x. Furthermore, for each
integer i ≥ 0, let

T i+1
M,S := T iM,S ∪ {T | T /∈ 〈T iM,S〉, and there is some T0 ∈ 〈T iM,S〉 such that

T is ⊆-minimal among all ground solutions T ′

for S under M with T0 ⊆ T ′}.

In some sense, each instance T ∈ T i+1
M,S \ T iM,S is a minimal consequence of some

fact that is mentioned by M and S. For instance, in Example 5.3, the solution
T for S under M belongs to T 1

M,S \ T 0
M,S, and is a minimal consequence of the

fact that it is possible that the relation E contains both (c1, c) and (c2, c).
Note that if Σ contains only st-tgds, we have T 0

M,S = T iM,S for all i ≥ 0,
and 〈T 0

M,S〉 is precisely the set of all GCWA∗-solutions for S under M (cf.,
Proposition 5.5). In Example 5.3, it is intuitively clear that the set of all
solutions for S under M that are contained in 〈T 1

M,S〉 reflects the explicit and
the implicit information in M and S in such a way that the standard semantics
of FO quantifiers is reflected; moreover, it is not hard to see that 〈T 1

M,S〉 = 〈T iM,S〉
for all i ≥ 1. In general, we take into account all solutions for S under M that
are unions of one or more instances in

T ∗M,S :=
⋃
i≥0
T iM,S.

5.1. Definition of GCWA∗-Solutions and GCWA∗-Answers 127

We are ready to give the final definition of GCWA∗-solutions and GCWA∗-
answers.

5.4 Definition (GCWA∗-solution, GCWA∗-answers, final version)
Let M be a schema mapping, let S be a source instance for M , and let q be a
query over M ’s target schema.

• A GCWA∗-solution for S under M is a solution for S under M that is a
union of one or more instances in T ∗M,S. The set of all GCWA∗-solutions
for S under M is denoted by solGCWA∗(M,S).

• The GCWA∗-answers to q on M and S are defined as

certGCWA∗(q,M, S) := cert(q, solGCWA∗(M,S)).

The following proposition shows that for schema mappings defined by st-
tgds and egds, GCWA∗-solutions in the sense of 5.4, and GCWA∗-solutions in
the sense of 5.1, coincide.

5.5 Proposition.
Let M = (σs, σt,Σ) be a schema mapping, where Σ is a set of st-tgds and egds,
and let S be a source instance for M . Then a target instance T for M is a
GCWA∗-solution for S under M if and only if T is the union of one or more
ground ⊆-minimal solutions for S under M , and T satisfies the egds in Σ.

Proof. It suffices to show that T 1
M,S = T 0

M,S. From the definition, it is clear that
T 0
M,S ⊆ T 1

M,S. So let T ∈ T 1
M,S. Then,

1. T ∈ T 0
M,S, or

2. T /∈ 〈T 0
M,S〉, and there is some T0 ∈ 〈T 0

M,S〉 such that T is ⊆-minimal
among all ground solutions T ′ for S under M with T0 ⊆ T ′.

Note that the second case is impossible due to the following. First note that
T0 is no solution for S under M , since otherwise, T = T0 ∈ 〈T 0

M,S〉, which is
not the case. Thus, T0 does not satisfy the egds in Σ. In particular, since
T0 ⊆ T , T does not satisfy the egds in Σ, and therefore, T /∈ T 1

M,S. It follows
that T ∈ T 0

M,S, as desired.

Moreover, an immediate consequence of Definition 5.4 is that the GCWA∗-
answers semantics respects logical equivalence of schema mappings:

5.6 Proposition (Preservation under logical equivalence).
Let M1 = (σs, σt,Σ1) and M2 = (σs, σt,Σ2) be logically equivalent schema map-
pings. Then for each instance S over σs, and each query q over σt, we have
certGCWA∗(q,M1, S) = certGCWA∗(q,M2, S).

128 Chapter 5. The GCWA∗-Answers Semantics

Proof. Let S be an instance over σs. Since M1 and M2 are logically equivalent,
we have sol(M1, S) = sol(M2, S). Thus, by induction on i we have T iM1,S = T iM2,S

for every i ≥ 0, and therefore T ∗M1,S = T ∗M2,S. By Definition 5.4, this implies
that solGCWA∗(M1, S) = solGCWA∗(M2, S). Hence, for each query q over σt, we
have certGCWA∗(q,M1, S) = certGCWA∗(q,M2, S).

5.2 A Characterization of GCWA∗-Solutions

This section presents a characterization of GCWA∗-solutions for schema map-
pings defined by st-tgds and egds in the spirit of the definition of GCWA-
solutions (Definition 4.8).

5.7 Definition (D∗M,S)
For every schema mapping M = (σs, σt,Σ) and every source instance S for M ,
we define the following set of L∞ω sentences over σs ∪ σt:

D∗M,S := {R(t̄)→ ϕ | R ∈ σs ∪ σt, t̄ ∈ Constar(R), and ϕ is a monotonic
L∞ω sentence over σs ∪ σt that is satisfied in every
⊆-minimal model I of DM,S with t̄ ∈ RI}.

5.8 Proposition (Characterization of GCWA∗-solutions).
Let M = (σs, σt,Σ) be a schema mapping, where Σ is a set of st-tgds and egds,
and let S be a source instance for M . Then for all ground target instances T
for M , the following statements are equivalent:

1. T is a GCWA∗-solution for S under M .

2. S ∪ T is a model of DM,S ∪D∗M,S.

Proof.

1 =⇒ 2: Suppose that T is a GCWA∗-solution for S under M . By Proposi-
tion 5.5, T is a ground solution for S underM , and there is a set T0 of⊆-minimal
solutions for S under M such that

T =
⋃
T0.

We have to show that
I := S ∪ T

satisfies DM,S ∪ D∗M,S. Since T is a solution for S under M , we already have
I |= DM,S. Thus, it remains to show that I |= D∗M,S.

5.2. A Characterization of GCWA∗-Solutions 129

To this end, consider an arbitrary sentence

ψ := R(t̄)→ ϕ

in D∗M,S, and assume that
I |= R(t̄).

Since I = S ∪T and T = ⋃
T0, there is some T0 ∈ T0 with t̄ ∈ RS∪T0 . Note that

I0 := S ∪ T0 is a ⊆-minimal model of DM,S. By Definition 5.7, we thus have
I0 |= ϕ. Since I0 ⊆ I and ϕ is monotonic, it follows that I |= ϕ. Consequently,
I satisfies ψ. This shows that I |= D∗M,S.

2 =⇒ 1: Suppose that
I := S ∪ T

is a model of DM,S ∪ D∗M,S. Since models are ground instances by definition,
it follows that T is a ground solution for S under M . To show that T is a
GCWA∗-solution for S under M , it remains to construct, by Proposition 5.5, a
set T0 of ⊆-minimal solutions for S under M such that T = ⋃ T0.

Let T0 be the set of all ⊆-minimal solutions T0 for S under M with T0 ⊆ T .
We claim that T = ⋃ T0. By construction, we have ⋃ T0 ⊆ T . Thus it remains
to show that it is not the case that ⋃ T0 (T .

Suppose, to the contrary, that ⋃ T0 (T . Then there is a relation symbol
R ∈ σt and a tuple t̄ ∈ Constar(R) such that

t̄ ∈ RT and t̄ /∈ RT0 for all T0 ∈ T0. (5.1)

On the other hand, there is at least one ⊆-minimal model I0 of DM,S with
t̄ ∈ RI0 . Otherwise, R(t̄) → ∨ ∅, which is equivalent to ¬R(t̄), would be in
D∗M,S, so that t̄ /∈ RI ⊇ RT would contradict Eq. (5.1). Let

I0 := {I0 | I0 is a ⊆-minimal model I0 of DM,S with t̄ ∈ RI0}.

Then,

ψ := R(t̄)→ ϕ with ϕ :=
∨

I0∈I0

∧
R′(t̄′)∈I0

R′(t̄′)

is satisfied in every ⊆-minimal model of DM,S. Since ϕ is monotonic, we thus
have ψ ∈ D∗M,S. Furthermore, since I |= D∗M,S and I |= R(t̄), it follows that
I |= ϕ. In particular, there must be some I0 ∈ I0 such that I |= ∧

R′(t̄′)∈I0 R
′(t̄′),

and thus, I0 ⊆ I. Note that I0 = S ∪ T0 for some T0 ∈ T0. Together with
t̄ ∈ RI0 and R ∈ σt, this implies that t̄ ∈ RT0 . However, this contradicts
Eq. (5.1). Consequently, ⋃ T0 = T .

130 Chapter 5. The GCWA∗-Answers Semantics

Let M = (σs, σt,Σ) be a schema mapping defined by st-tgds and egds, and
let S be a source instance for M . Note that each sentence in DM,S is logically
equivalent to a sentence in D∗M,S (since ¬R(t̄) is equivalent to R(t̄) → ∨ ∅).
An immediate consequence of Proposition 5.8 is therefore that every GCWA∗-
solution for S under M is a GCWA-solution for S under M . Furthermore,
it follows immediately from the definitions that every EGCWA-solution for S
under M is a GCWA∗-solution for S under M .

The following result translates Theorem 5 in Minker [1982] from GCWA-
solutions to GCWA∗-solutions. It shows that for a given schema mapping M
and a source instance S for M , the set DM,S ∪D∗M,S is maximally consistent in
the sense that the addition of any sentence of the form R(t̄) → ϕ, where ϕ is
a monotonic L∞ω sentence, leads to a set of sentences that is inconsistent with
DM,S ∪D∗M,S.

5.9 Proposition.
Let M = (σs, σt,Σ) be a schema mapping defined by st-tgds and egds, let S be a
nonempty source instance for M , and let D′M,S := DM,S ∪D∗M,S.

1. For all monotonic L∞ω sentences ϕ over σs ∪ σt, we have DM,S |= ϕ if
and only if D′M,S |= ϕ.

2. Let R ∈ σs ∪ σt, let t̄ ∈ Constar(R), let ϕ be a monotonic L∞ω sentence
over σs ∪ σt, and let ψ := R(t̄)→ ϕ with D′M,S 6|= ψ. Then,

(a) D′M,S ∪ {ψ} has no model, or
(b) there is a monotonic L∞ω sentence χ over σs ∪ σt such that D′M,S ∪
{ψ} |= χ, but D′M,S 6|= χ.

Proof.

Ad 1: Let ϕ be a monotonic L∞ω sentence over σs ∪ σt. Clearly, DM,S |= ϕ
implies D′M,S |= ϕ. It remains to show that D′M,S |= ϕ implies DM,S |= ϕ.

Suppose that D′M,S |= ϕ. Then every ⊆-minimal model of D′M,S satisfies ϕ.
Since every ⊆-minimal model of D′M,S is a ⊆-minimal model of DM,S, it follows
that ϕ is true in every ⊆-minimal model of DM,S. Since ϕ is monotonic, this
implies that ϕ is true in every model of DM,S. Consequently, DM,S |= ϕ.

Ad 2: If D′M,S ∪{ψ} has no model, we are done. Suppose that D′M,S ∪{ψ} has
a model. Let I0 be the set of all ⊆-minimal models of D′M,S ∪{ψ}, and consider
the monotonic L∞ω sentence

χ :=
∨

I0∈I0

∧
R′(t̄′)∈I0

R′(t̄′).

5.3. The Complexity of Computing GCWA∗-Answers 131

We claim that D′M,S ∪ {ψ} |= χ, and that D′M,S 6|= χ.
D′M,S ∪{ψ} |= χ: Let I be a model of D′M,S ∪{ψ}, and let I0 ∈ I0 be such that
I0 ⊆ I. Then, I0 |=

∧
R′(t̄′)∈I0 R

′(t̄′), and therefore, I0 |= χ. Since χ is monotonic
and I0 ⊆ I, this leads to I |= χ.
D′M,S 6|= χ: We first observe:

There is a ⊆-minimal model I0 of DM,S with I0 6|= ψ. (5.2)

Indeed, if ψ = R(t̄) → ϕ, this follows immediately from ψ /∈ D∗M,S, which in
turn follows from D∗M,S ⊆ D′M,S and D′M,S 6|= ψ. If ψ = ϕ, pick some R′ ∈ σs
and some t̄′ ∈ RS, which is possible since S is nonempty, and observe that
D′M,S 6|= ψ′, where ψ′ := R′(t̄′)→ ϕ. This is because for every model I ′ of D′M,S

we have t̄′ ∈ (R′)I′ , and D′M,S 6|= ψ = ϕ. In particular, ψ′ /∈ D∗M,S, and the
claim follows.

Note that every ⊆-minimal model of DM,S is a ⊆-minimal model of D′M,S,
so that by Eq. (5.2), there is a ⊆-minimal model I0 of D′M,S with

I0 6|= ψ. (5.3)

Let us fix such an instance I0.
To finish the proof, suppose, for a contradiction, that D′M,S |= χ. Since I0 is

a model of D′M,S, we then have I0 |= χ. Thus, there is an instance I ′0 ∈ I0 with
I0 |=

∧
R′(t̄′)∈I′0 R

′(t̄′), that is, I ′0 ⊆ I0. Since I0 and I ′0 are ⊆-minimal models of
D′M,S, this implies I ′0 = I0. However, since I ′0 ∈ I0, we have I ′0 |= ψ, and, in
particular,

I0 |= ψ.

This clearly contradicts Eq. (5.3). Consequently, D′M,S 6|= χ.

5.3 The Complexity of Computing GCWA∗-Answers

We now turn to the problem of computing GCWA∗-answers. As in Section 3.4,
we concentrate on the data complexity, and given a schema mapping M =
(σs, σt,Σ) and a query language L, we seek for algorithms A1,A2 such that

• A1 takes a source instance S for M as input and computes a solution T
for S under M ,

• A2 takes a solution T computed by A1 and a query q ∈ L over σt as input
and computes the GCWA∗-answers to q on M and S, and

• both A1, and A2 for fixed q ∈ L, run in polynomial time.

132 Chapter 5. The GCWA∗-Answers Semantics

In Section 5.3.1, we first deal with monotonic queries and show that on
such queries, the GCWA∗-answers semantics coincides with the certain answers
semantics (Proposition 5.10). Hence, if L is the class of all homomorphism-
preserved queries with polynomial time data complexity, and M is a weakly
acyclic schema mapping, say, then polynomial time algorithms A1 and A2 as
above exist: A1 just has to compute an arbitrary universal solution T for S
under M , while A2 evaluates a query q ∈ L on T and removes all tuples with
nulls from the answer (see Chapter 2).

Section 5.3.2 then considers the case of existential queries, and extensions
thereof. For such queries, polynomial time algorithms A1 and A2 as above may
not exist. As in Section 3.4, we show this by considering, for given schema
mappings M = (σs, σt,Σ), and queries q over σt, the problem

Eval(M, q)
Input: a source instance S for M , and a tuple t̄ ∈ Domar(q)

Question: Is t̄ ∈ certGCWA∗(q,M, S)?

Recall that the complexity of this problem is a lower bound on the joint com-
plexity of algorithms A1 and A2 as above: if, for example, Eval(M, q) is co-NP-
complete, then finding T is intractable, or computing certGCWA∗(q,M, S) from
T is intractable.

5.3.1 Monotonic Queries

The purpose of this short section is to point out that for monotonic queries, the
GCWA∗-answers semantics coincides with the certain answers semantics. This
can be seen as further evidence that—as indicated in Section 1.3.1—the certain
answers semantics is the “right” semantics for answering monotonic queries.
Moreover, all results presented in Chapter 2 carry over to the GCWA∗-answers
semantics.

5.10 Proposition.
Let M be a schema mapping, let S be a source instance for M , and let q be
a monotonic query over the target schema of M . Then, certGCWA∗(q,M, S) =
cert(q,M, S).

Proof. Since every GCWA∗-solution for S under M is a solution for S under
M , we have cert(q,M, S) ⊆ certGCWA∗(q,M, S). It therefore remains to prove
certGCWA∗(q,M, S) ⊆ cert(q,M, S).

Let t̄ ∈ certGCWA∗(q,M, S). We show that t̄ ∈ q(T) for all ground solutions
T for S under M , which implies t̄ ∈ cert(q,M, S). To this end, let T be a

5.3. The Complexity of Computing GCWA∗-Answers 133

ground solution for S under M . Pick an arbitrary ⊆-minimal solution T0 for S
under M with T0 ⊆ T . By Definition 5.4, T0 is a GCWA∗-solution for S under
M . Since t̄ ∈ certGCWA∗(q,M, S), we thus have t̄ ∈ q(T0). Since q is monotonic,
and since T0 ⊆ T , it follows that t̄ ∈ q(T).

In the remaining part of this section, we deal with computing the GCWA∗-
answers to non-monotonic queries.

5.3.2 Existential Queries and Beyond

We now turn to existential queries, which are FO queries of the form ∃x̄ ϕ, where
ϕ is a quantifier-free FO formula. A particular class of existential queries are
conjunctive queries with negation (CQ¬ queries, for short), which are queries of
the form ∃x̄(L1 ∧ · · · ∧ Lk) where each Li is a relational atomic FO formula, or
the negation of a relational atomic FO formula. A simple reduction from the
Clique problem (see, e.g., Garey and Johnson [1979]) shows that Eval(M, q)
is already co-NP-hard for schema mappings M defined by LAV tgds and CQ¬
queries q with only one negated atom. Here, a LAV tgd is a st-tgd of the form
∀x̄∀ȳ(ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)), where ϕ contains only one atom.

5.11 Proposition.
There is a schema mapping M = (σs, σt,Σ), where Σ consists of two LAV tgds,
and a Boolean CQ¬ query q over σt with one negated atomic FO formula such
that Eval(M, q) is co-NP-complete.

Proof. Let M = (σs, σt,Σ), where σs consists of binary relation symbols E0, C0,
σt consists of binary relation symbols E,C,A, and Σ consists of the following
LAV tgds:

χ1 := ∀x∀y
(
E0(x, y)→ E(x, y)

)
,

χ2 := ∀x∀y
(
C0(x, y)→ ∃z1∃z2(C(x, y) ∧ A(x, z1) ∧ A(y, z2))

)
.

Furthermore, let

q := ∃x∃y∃z1∃z2
(
C(x, y) ∧ A(x, z1) ∧ A(y, z2) ∧ ¬E(z1, z2)

)
.

We show that Eval(M, q) is co-NP-complete by showing that the complement
of Eval(M, q) is NP-complete.

The complement of Eval(M, q) is solved by a nondeterministic Turing ma-
chine as follows. Given a source instance S forM , the machine implicitly guesses
a GCWA∗-solution T for S under M , and accepts S if and only if T 6|= q. More
precisely, it guesses values vc ∈ Dom for each c ∈ CS

0 , and accepts S if and

134 Chapter 5. The GCWA∗-Answers Semantics

only if (vc, vc′) ∈ ES
0 for all c, c′ ∈ CS

0 . This is possible by the requirement that
(vc, vc′) ∈ ES

0 for all c, c′ ∈ CS
0 , which implies that the values vc can be chosen

from dom(S). Clearly, the machine runs in time polynomial in the size of S.
To show that the complement of Eval(M, q) is NP-hard, we present a re-

duction from the NP-complete Clique problem (see, e.g., Garey and John-
son [1979]). The Clique problem is to decide, given an undirected graph
G = (V,E) without loops and a positive integer k, whether G contains a clique
of size k, where a clique in G is a set C ⊆ V such that for all u, v ∈ C with
u 6= v we have {u, v} ∈ E.

Let G = (V,E) be an undirected graph without loops, and let k ≥ 2 be an
integer. If k = 1, then G has a clique of size k if and only if V is nonempty. That
is, we can reduce (G, k) to some predefined fixed source instance S for M such
that certGCWA∗(q,M, S) = ∅ if and only if V is nonempty (e.g., a source instance
S with CS

0 = ∅ if V is nonempty, and a source instance S with CS
0 = {(c, c)}

for some c ∈ Const if V is empty). If k ≥ 2, we construct the source instance
S for M with ES

0 = E and CS
0 = {(ci, cj) | 1 ≤ i, j ≤ k, i 6= j}, where c1, . . . , ck

is a sequence of pairwise distinct constants that do not occur in V . We claim
that G has a clique of size k if and only if certGCWA∗(q,M, S) = ∅.

“Only if”: Let C = {v1, . . . , vk} be a clique of size k in G, and let T be the
target instance for M with ET = E, CT = CS

0 and AT = {(ci, vi) | 1 ≤ i ≤ k}.
Then T is a ⊆-minimal solution for S under M , and, by Proposition 5.5, a
GCWA∗-solution for S under M . Furthermore, we have T 6|= q. To see this,
note that for all u, v, w1, w2 ∈ dom(T) with

T |= C(u, v) ∧ A(u,w1) ∧ A(v, w2),

there are distinct i, j ∈ {1, . . . , k} with u = ci and v = cj, so that w1 = vi and
w2 = vj. Since vi, vj ∈ C and ET = E, we thus have T |= E(w1, w2) for all such
u, v, w1, w2. Since T is a GCWA∗-solution for S under M , and T 6|= q, we have
certGCWA∗(q,M, S) = ∅.

“If”: Suppose that certGCWA∗(q,M, S) = ∅. Then there is a GCWA∗-solution T
for S under M with T 6|= q. For all i ∈ {1, . . . , k}, let

Vi := {v ∈ dom(T) | (ci, v) ∈ AT}.

Since S∪T |= χ2, each Vi is nonempty. Thus, there is a set C = {v1, . . . , vk} such
that vi ∈ Vi for each i ∈ {1, . . . , k}. Moreover, for all i, j ∈ {1, . . . , k} with i 6= j,
we have (vi, vj) ∈ E. To see this, observe that T |= C(ci, cj)∧A(ci, vi)∧A(cj, vj),
so that T 6|= q implies T |= E(vi, vj). It follows that C is a clique in G of size k
(since k ≥ 2 and G has no loops).

5.3. The Complexity of Computing GCWA∗-Answers 135

Adding only one universal quantifier may make the problem undecidable.
Specifically, as shown by Proposition 5.12 below, there is a simple schema map-
ping M and a ∃∗∀ FO query q over M ’s target schema such that Eval(M, q)
is undecidable. Here, a ∃∗∀ FO query is a FO query of the form

∃x1 · · · ∃xk∀y ϕ(x1, . . . , xk, y, z̄),

where ϕ is quantifier-free.

5.12 Proposition.
There is a schema mapping M = (σs, σt,Σ), where Σ consists of two LAV tgds,
and a Boolean ∃∗∀ FO query q over σt such that Eval(M, q) is undecidable.

Proof. Similar to Proposition 3.41, we will constructM and q in such a way that
the (undecidable) embedding problem for finite semigroups (see Example 1.14)
can be reduced to Eval(M, q). Let M = ({R}, {Rp, Rf},Σ), where R,Rp, Rf

are ternary relation symbols, and Σ consists of the st-tgds

χ1 := ∀x1∀x2∀x3
(
R(x1, x2, x3)→ Rp(x1, x2, x3)

)
,

χ2 := ∀x1∀x2∀x3
(
Rp(x1, x2, x3)→ ∃y1∃y2∃y3Rf (y1, y2, y3)

)
.

Let q′ := ¬ϕ, where ϕ is the FO formula from Example 1.14 with R replaced
by Rp, and R̃ replaced by Rf . That is,

¬q′ ≡ ∀x∀y∀z
(
Rp(x, y, z)→ Rf (x, y, z)

)
∧ ∀x∀y∀z∀z′

(
Rf (x, y, z) ∧Rf (x, y, z′)→ z = z′

)
∧ ∀x∀y

(
ψRf (x) ∧ ψRf (y)→ ∃zRf (x, y, z)

)
∧ ∀x∀y∀z∀u∀v∀w(Rf (x, y, u) ∧Rf (u, z, v) ∧Rf (y, z, w)→ Rf (x,w, v)),

where

ψRf (x) := ∃x1∃x2∃x3
(
Rf (x1, x2, x3) ∧

3∨
i=1

x = xi
)

defines the set of values contained in Rf . Note that q′ is equivalent to a Boolean
∃∗∀ FO query q. Furthermore, ¬q is true in a target instance T forM precisely if
RT
p ⊆ RT

f , and RT
f encodes the graph of a total associative function f : Y 2 → Y

for some finite set Y .
To show that Eval(M, q) is undecidable, we reduce the embedding prob-

lem for finite semigroups to Eval(M, q). Let p : X2 → X be a partial func-
tion, where X is a finite set. Construct the source instance Sp for M as in

136 Chapter 5. The GCWA∗-Answers Semantics

Example 1.14. We claim that certGCWA∗(q,M, Sp) = ∅ if and only if p is a
“yes”-instance of the embedding problem for finite semigroups.

By Proposition 5.5, the GCWA∗-solutions for S under M are all the target
instances T for M such that RT

p = RS, and either

1. RS = RT
p = RT

f = ∅, or

2. RT
f is a nonempty finite subset of Const3.

Therefore, certGCWA∗(q,M, S) = ∅ if and only if there is a GCWA∗-solution T for
S underM such that RT

f is the graph of a total function f : dom(T)2 → dom(T)
that is associative and extends p. This is the case precisely if p is a “yes”-instance
of the embedding problem for finite semigroups.

5.4 Computing GCWA∗-Answers to Universal Queries

This section presents the technically most challenging result of this thesis: Theo-
rem 5.15, which states that there is a polynomial time algorithm for computing
the GCWA∗-answers to universal queries under schema mappings defined by
certain st-tgds from the core of the universal solutions.

A universal query is a FO query of the form q(x̄) = ∀ȳ ϕ(x̄, ȳ), where ϕ is
quantifier-free. Recall that we assume domain-independence of queries. Note
also that, in Example 1.25, if we consider the query

q′(x) := ∀y
(
R′(x, y)→ R′(y, x)

)
and the source instance S ′ for M with ES′ = {(a, a)}, then the certain answers
to q′ onM and S ′ are empty, contrary to the expectation under the CWA-based
point of view that the answer to q′ on M and S ′ is the answer to q′ on the copy
of S ′, namely {a}.

An upper bound on the complexity of computing the GCWA∗-answers to
universal queries under schema mappings defined by st-tgds is:

5.13 Proposition.
Let M = (σs, σt,Σ) be a schema mapping, where Σ consists of st-tgds, and let q
be a universal query over σt. Then Eval(M, q) belongs to co-NP.

A proof of Proposition 5.13 is given at the end of Chapter 5, in Section 5.4.5.

In what follows, we prove that under schema mappings defined by st-tgds
that are packed in the sense as defined below, the GCWA∗-answers to universal
queries can be computed in polynomial time.

5.4. Computing GCWA∗-Answers to Universal Queries 137

5.14 Definition (packed st-tgd)
A st-tgd ∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ∧ni=1Ri(ūi)) is packed if for all i, j ∈ {1, . . . , n}
with i 6= j, there is a variable in z̄ that occurs both in ū1 and in ū2.

Although not as expressive as schema mappings defined by st-tgds, schema
mappings defined by packed st-tgds seem to form an interesting class of schema
mappings. Note that packed st-tgds still allow for non-trivial use of existential
quantifiers in the heads of st-tgds. For example, consider a schema mapping
M defined by st-tgds ∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)), where ψ contains at most
two atoms with variables from z̄. Then M is logically equivalent to a schema
mapping defined by packed st-tgds, since every st-tgd θ in M is logically equiv-
alent to a set Θ of packed st-tgds, where the size of Θ is at most the number of
atomic formulas in the head of θ. An example of a st-tgd that is not packed is
∀x(P (x)→ ∃z1∃z2∃z3(E(x, z1) ∧ E(z1, z2) ∧ E(z2, z3))).

We are now ready to state the main result of this section:

5.15 Theorem.
Let M = (σs, σt,Σ) be a schema mapping, where Σ consists of packed st-tgds,
and let q be a universal query over σt. Then there is a polynomial time algorithm
that takes a target instance T for M as input, and outputs a relation

R ⊆
(
const(T) ∪ dom(q)

)ar(q)

such that for all source instances S for M , we have

T ∼= Core(M,S) =⇒ R = certGCWA∗(q,M, S).

Before we tackle the proof of Theorem 5.15, let us note the following. First,
the algorithm from Theorem 5.15 runs in polynomial time for every given target
instance for M , but can output an arbitrary ar(q)-ary relation over const(T) ∪
dom(q) if T does not happen to be isomorphic to Core(M,S) for some source
instance S forM . Second, Theorem 5.15 and Theorem 2.28 immediately imply:

5.16 Corollary.
Let M = (σs, σt,Σ) be a schema mapping, where Σ consists of packed st-tgds,
and let q be a universal query over σt. Then there is a polynomial time algorithm
that takes a source instance S for M as input and outputs certGCWA∗(q,M, S).
In particular, Eval(M, q) is in PTIME.

Furthermore, an interesting consequence of Theorem 5.15 arises in combi-
nation with the results of Section 2.1. Let M be a schema mapping defined
by packed st-tgds, and let S be a source instance for M . The results of Sec-
tion 2.1 and Theorem 5.15 tell us that the same solution for S underM , namely

138 Chapter 5. The GCWA∗-Answers Semantics

Core(M,S), can be used to efficiently compute both the certain answers to
homomorphism-preserved queries on M and S, and the GCWA∗-answers to
universal queries on M and S (if M and the query are not part of the input). If
one considers to compute only the certain answers to homomorphism-preserved
queries on M and S, and the GCWA∗-answers to universal queries on M and S,
it suffices therefore to compute Core(M,S), which, by Theorem 2.28, is possible
in polynomial time if M is not part of the input.

Let us now turn to the proof of Theorem 5.15. Note that Theorem 5.15
easily follows from:

5.17 Theorem.
Let M = (σs, σt,Σ) be a schema mapping, where Σ consists of packed st-tgds,
and let q be a universal query over σt. Then there is a polynomial time algorithm
that takes a target instance T for M and a tuple t̄ ∈ Constar(q) as input, and
if T ∼= Core(M,S) for some source instance S for M , then it decides whether
t̄ ∈ certGCWA∗(q,M, S).

Indeed, each tuple in certGCWA∗(q,M, S) belongs, in particular, to q(T)
for all target instances T for M with T ∼= Core(M,S). Since q is domain-
independent, this implies that certGCWA∗(q,M, S) contains only ar(q)-tuples
over const(Core(M,S)) ∪ dom(q). Thus, given a target instance T for M with
T ∼= Core(M,S), we obtain certGCWA∗(q,M, S) by

• considering all ar(q)-tuples t̄ over const(T) ∪ dom(q) in turn, and

• determining all those tuples t̄ with t̄ ∈ certGCWA∗(q,M, S) using the algo-
rithm from Theorem 5.17.

By Theorem 5.17 and the fact that q is not part of the input, this yields a
polynomial time algorithm for computing the GCWA∗-answers to q on M and
S. Note that if T does not happen to be isomorphic to Core(M,S) for some
source instance S for M , this algorithm runs in polynomial time as well (since
the algorithm from Theorem 5.17 runs in polynomial time), but may output an
arbitrary ar(q)-ary relation over const(T) ∪ dom(q). In particular, this proves
Theorem 5.15.

The remaining part of this section is devoted to the proof of Theorem 5.17.
Let us begin by showing how membership of a tuple in certGCWA∗(q,M, S) can
be decided on the basis of an instance T with T ∼= Core(M,S).

5.4.1 GCWA∗-Answers and the Core of the Universal Solutions

Let M = (σs, σt,Σ) be a schema mapping, where Σ is a set of packed st-tgds,
and let q be a universal query over σt. Given an instance T with T ∼= Core(M,S)

5.4. Computing GCWA∗-Answers to Universal Queries 139

for some source instance S for M , and a tuple t̄ ∈ Constar(q), how can we decide
whether t̄ belongs to certGCWA∗(q,M, S)?

Note that t̄ does not belong to certGCWA∗(q,M, S) if and only if there is a
GCWA∗-solution T̃ for S under M with T̃ |= ¬q(t̄). By Proposition 5.5 and
the fact that Σ consists of st-tgds, the latter is the case precisely if there is
a nonempty finite set T of ground ⊆-minimal solutions for S under M with⋃ T |= ¬q(t̄). We can now reformulate this in terms of Core(M,S) using the
following lemma, which is based on the set poss(Core(M,S)) of the possible
worlds of Core(M,S) (cf., Section 1.3.1).

5.18 Lemma.
Let M = (σs, σt,Σ) be a schema mapping, where Σ consists of st-tgds, and let S
be a source instance for M . Then the set of all ground ⊆-minimal solutions for
S under M is precisely the set of all ⊆-minimal instances in poss(Core(M,S)).

Proof. Let T := Core(M,S). It suffices to show that each instance in poss(T)
is a solution for S under M , and that each ground ⊆-minimal solution for S
under M belongs to poss(T).

Step 1: Each instance in poss(T) is a solution for S under M .
Let f be a valuation of T . We claim that T ′ := f(T) is a solution for S under
M . To this end, let χ be a tgd in Σ of the form ∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)),
and let ū, v̄ be tuples with S |= ϕ(ū, v̄). We must show that there is a tuple
w̄ with T ′ |= ψ(ū, w̄). Since T is a solution for S under M , there is a tuple
w̄′ with T |= ψ(ū, w̄′). Thus, since f is a homomorphism from T to T ′, ψ is
preserved under homomorphisms, and f(ū) = ū, we have T ′ |= ψ(ū, w̄), where
w̄ := f(w̄′). It follows that T ′ is a solution for S under M .

Step 2: Each ground ⊆-minimal solution for S under M belongs to poss(T).
Let T0 be a ground ⊆-minimal solution for S underM . We show that T0 belongs
to poss(T).

We first show that T0 is a CWA-presolution for S under M . Indeed, for
each justification j = (χ, ū, v̄) ∈ JM,S, where χ has the form ∀x̄∀ȳ(ϕ(x̄, ȳ) →
∃z̄ ψ(x̄, z̄)), let us pick a tuple w̄j ∈ Dom|z̄| with T0 |= ψ(ū, w̄j). Note that such
a tuple exists, since T0 is a solution for S under M . Define ζ : J ∗M,S → Dom
such that ζ(j) = w̄j for each j ∈ JM,S. Then the CWA-presolution TM,S,ζ for
S under M is a subinstance of T0, which implies TM,S,ζ = T0, because T0 is a
⊆-minimal solution for S under M .

By Proposition 3.6, there is a homomorphism h0 from T ∗ := CanSol(M,S)
to T0 such that

h0(T ∗) = T0. (5.4)

140 Chapter 5. The GCWA∗-Answers Semantics

In fact, h0 is a valuation of T ∗, since T0 is a ground instance. Furthermore, since
T ∗ is a universal solution for S under M , each core of T ∗ is isomorphic to T ,
which implies that there is an injective homomorphism ι : dom(T)→ dom(T ∗)
such that

ι(T) ⊆ T ∗. (5.5)

Now consider the composition f := h0 ◦ ι of ι and h0. Note that f is a
valuation of T , since h0 is a valuation of T . Thus,

T ′ := f(T) ∈ poss(T), (5.6)

and, as shown in step 1 above, T ′ is a solution for S under M . On the other
hand, we have

T ′
(5.6)= f(T) = h0(ι(T))

(5.5)
⊆ h0(T ∗) (5.4)= T0,

which, since T ′ is a solution for S under M and T0 is a ⊆-minimal solution for
S under M , implies that T ′ = T0. Thus, by (5.6), T0 ∈ poss(T).

Since T is isomorphic to Core(M,S), we have poss(T) = poss(Core(M,S)).
We are thus left with the following problem: given an instance T with T ∼=
Core(M,S) for some source instance S forM , and a tuple t̄ ∈ Constar(q), decide
whether there is a nonempty finite set T of ⊆-minimal instances in poss(T) such
that ⋃ T |= ¬q(t̄).

Note that, since q is a universal query, ¬q is logically equivalent to an ex-
istential query of the form ∃ȳ ϕ(x̄, ȳ). Before tackling the general case in Sec-
tion 5.4.4, the following two sections deal with the case that ȳ contains no
variable and ϕ consists of a single atomic FO formula (Section 5.4.2), and the
case that ϕ is a conjunction of atomic FO formulas and negations of atomic FO
formulas (Section 5.4.3).

5.4.2 Finding Atoms of ⊆-Minimal Possible Worlds

In this section, we prove one of the two key lemmas, Lemma 5.31, for the proof of
Theorem 5.17. Originally, this lemma was proved to solve the following problem
in polynomial time, where M is a fixed schema mapping defined by packed st-
tgds: given a ground atom A (an atom of the form R(c̄), where c̄ contains only
constants), and an instance T that is isomorphic to Core(M,S) for some source
instance S for M , decide whether A is an atom of some ⊆-minimal instance in
poss(T). We will develop the lemma with this particular application in mind,
which gives us the opportunity to properly motivate all notions involved in the

5.4. Computing GCWA∗-Answers to Universal Queries 141

lemma’s statement. Sometimes, however, we will state results in a more general
fashion, to apply them later in the more general setting of Section 5.4.3.

First note that there may be infinitely many ⊆-minimal instances in poss(T),
so that it is impossible to check out all these instances. However, letting C be
the set of all constants that occur in A, it suffices to consider only the instances
in the set minC(T) defined as follows:

5.19 Definition (valC(T), minC(T))
Let T be a naive table, and let C ⊆ Const.

• Let valC(T) be the set of all mappings f : dom(T) → dom(T) ∪ C such
that f(c) = c for all constants c ∈ const(T).

• Let minC(T) be the set of all instances T0 for which there is some f ∈
valC(T) with f(T) = T0, and there is no f ′ ∈ valC(T) with f ′(T) (T0.

5.20 Proposition.
Let T be a naive table, and let C ⊆ Const.

1. For each T0 ∈ poss(T), the following statements are equivalent:

(a) T0 is a ⊆-minimal instance in poss(T).
(b) There is an instance T ′0 ∈ minC(T) and an injective valuation v of

T ′0 such that v(T ′0) = T0.
(c) There is an instance T ′0 ∈ minC(T) and an injective valuation v of

T ′0 such that v(T ′0) = T0, and v−1(c) = c for all c ∈ dom(T0) ∩ C.

2. If T is a core, then T ∈ minC(T).

3. Each instance in minC(T) is a core.

Proof.

Ad 1: Clearly, (c) implies (b). Therefore, it suffices to prove that (a) implies
(c), and that (b) implies (a).

We first prove that (a) implies (c). Assume that T0 is a ⊆-minimal instance
in poss(T). We show that there is an instance T ′0 ∈ minC(T) and an injective
valuation v of T ′0 such that v(T ′0) = T0, and v−1(c) = c for all c ∈ dom(T0) ∩C.

Let v0 be a valuation of T with v0(T) = T0. Furthermore, let v : dom(T0)→
dom(T) ∪ C be an injective mapping with

v(c) = c for each c ∈ dom(T0) ∩ (const(T) ∪ C), (5.7)

142 Chapter 5. The GCWA∗-Answers Semantics

and

v(c) ∈ nulls(T) for each c ∈ dom(T0) \ (const(T) ∪ C). (5.8)

Then the composition f := v ◦ v0 of v0 and v belongs to valC(T), and

T ′0 := f(T) = v(v0(T)) = v(T0). (5.9)

Now let v be the inverse of v on dom(T ′0). That is, v is an injective mapping
from dom(T ′0) to dom(T0) such that for all u ∈ dom(T ′0) and all u′ ∈ dom(T0),
we have v(u) = u′ if and only if v(u′) = u. By (5.7)–(5.9), v is an injective
valuation of T ′0 such that

v(T ′0) = T0, (5.10)

and v−1(c) = v(c) = c for each constant c ∈ dom(T0) ∩ C.
It remains to show that T ′0 ∈ minC(T). We already have T ′0 = f(T), where

f ∈ valC(T). Thus, it suffices to show that there is no f ′ ∈ valC(T) with
f ′(T) (T ′0. Suppose, for a contradiction, that there is such an f ′. Since v is
injective, we then have

v(f ′(T)) (v(T ′0) (5.10)= T0,

which is impossible, since v(f ′(T)) ∈ poss(T), and T0 is a ⊆-minimal instance
in poss(T).

To prove that (b) implies (a), let T ′0 ∈ minC(T) and let v be an injective val-
uation of T ′0. We show that T0 := v(T ′0) is a ⊆-minimal instance in poss(T). To
this end, let f ∈ valC(T) be such that f(T) = T ′0, and consider the composition
v0 := v ◦ f of f and v. Then v0 is a valuation of T , so that

T0 = v(T ′0) = v(f(T)) = v0(T) ∈ poss(T).

It remains, therefore, to show that there is no T̃0 ∈ poss(T) with T̃0 (T0. For
a contradiction, assume that there is such a T̃0. Let ṽ0 be a valuation of T with
ṽ0(T) = T̃0, and consider the composition f̃ := v−1 ◦ ṽ0 of ṽ0 and the inverse
v−1 of v on dom(T0). Since v−1 is an injective mapping on dom(T0), we have

f̃(T) = v−1(ṽ0(T)) = v−1(T̃0) (v−1(T0) = T ′0,

which is impossible, since f̃ ∈ valC(T) and T ′0 ∈ minC(T).

Ad 2: Assume that T is a core. Let f be the identity on dom(T). Clearly, we
have f ∈ valC(T) and f(T) = T . On the other hand, let f ′ ∈ valC(T) be such

5.4. Computing GCWA∗-Answers to Universal Queries 143

that f ′(T) ⊆ T . Then f ′ is a homomorphism from T to T , and since T is a
core, we cannot have f ′(T) (T . Consequently, T ∈ minC(T).

Ad 3: Let f ∈ valC(T) be such that T0 := f(T) belongs to minC(T). For a
contradiction, suppose that T0 is not a core. Let h be a homomorphism from T0
to T0 such that h(T0) is a core of T0. Since T0 is not a core, we have h(T0) (T0.
Thus, for the composition f ′ := h ◦ f of f and h, we have

f ′(T) = h(f(T)) = h(T0) (T0,

which is a contradiction to T0 ∈ minC(T). Hence, T0 is a core.

The converse of Proposition 5.20(3) does not hold, that is, a core does not
automatically belong to minC(T):

5.21 Example
Let T be a naive table over σ = {E,P}, where ET = {(a,⊥), (⊥,⊥′)} and
P T = {b}. The mapping f ∈ valC(T) with f(⊥) = a and f(⊥′) = b then
yields the instance f(T), where Ef(T) = {(a, a), (a, b)} and P f(T) = {b}. Hence,
f(T) is a core. However, f(T) does not belong to minC(T), since the mapping
f ′ ∈ valC(T) with f ′(⊥) = f ′(⊥′) = a yields the instance f ′(T) with Ef ′(T) =
{(a, a)} and P f ′(T) = {b}, which is a proper subinstance of f(T).

Note that the size of minC(T) can still be exponential in the size of T , so
that it is not possible to enumerate all instances in minC(T) in polynomial time,
given T and A as input. To tackle this problem, we take advantage of the fact
that, by Lemma 2.30, there is a constant b that depends only on M such that
all blocks of T have size at most b. The following variant of blocks will be
convenient:

5.22 Definition (atom block)
Let T be a naive table.

• The Gaifman graph of the atoms of T is the undirected graph whose
vertices are the atoms of T , and which has an edge between two atoms A
and A′ of T if and only if A 6= A′, and there is a null that occurs both in
A and A′.

• An atom block of T is the set of atoms in a connected component of the
Gaifman graph of the atoms of T .

Note that each atom block of T can be considered as a subinstance of T . Fur-
thermore, for each atom block B of T that contains at least one null, nulls(B) is
a block of T . Since each universal solution for S underM contains a subinstance
that is isomorphic to Core(M,S), Lemma 2.30 immediately implies:

144 Chapter 5. The GCWA∗-Answers Semantics

5.23 Lemma.
For every schema mapping M = (σs, σt,Σ), where Σ consists of st-tgds, there
is a positive integer b with the following property. If S is a source instance for
M , and B is an atom block of Core(M,S), then |nulls(B)| ≤ b.

The following naive algorithm now seems to decide on input T and A whether
there is an instance T0 ∈ minC(T) with A ∈ T0:

1. Compute the atom blocks of T .

2. Consider the atom blocks B of T in turn, and

3. if there is an instance B0 ∈ minC(B) with A ∈ B0, accept the input;
otherwise reject it.

Since |nulls(B)| ≤ b for each atom block B of T , we only have to consider at
most |valC(B)| = |dom(B) ∪ C|b mappings in step 3 to find all the instances
B0 in minC(B). Thus, the whole algorithm runs in polynomial time. However,
Example 5.24 below shows that this algorithm is incorrect. In particular, Ex-
ample 5.24 exhibits a naive table T that is a core, and an atom block B of T
such that there is an atom of some ⊆-minimal instance B0 ∈ poss(B) that is
not an atom of any ⊆-minimal instance in poss(T). For all sets C ⊆ Const, this
implies that there is an atom of some instance B0 ∈ minC(B) that is not an
atom of any instance in minC(T).

5.24 Example
Let T be the naive table over {E} with

ET = {(a, b), (a,⊥), (b,⊥), (b,⊥′), (b,⊥′′), (⊥′,⊥′′)},

and consider the atom block B of T with

EB = {(b,⊥′), (b,⊥′′), (⊥′,⊥′′)}.

Figure 5.1 represents T and B as a graph. Note that T is a core. It is not hard
to see that each ⊆-minimal instance in poss(B) has one of the following forms:

1. {E(b, b)},

2. {E(b, c), E(c, c)} with c ∈ Const \ {b}, or

3. {E(b, c), E(b, c′), E(c, c′)} with c, c′ ∈ Const \ {b} and c 6= c′.

5.4. Computing GCWA∗-Answers to Universal Queries 145

b

a

⊥

⊥′

⊥′′

B
T

Figure 5.1: The naive table T and the atom block B

Thus, there is a ⊆-minimal instance B0 in poss(B) of the third form such that
E(c, a) is an atom of B0 (replace c′ with a).

However, E(c, a) is not an atom of any ⊆-minimal instance in poss(T). Such
an instance must be obtained from T by a valuation v of T with v(⊥′) = c and
v(⊥′′) = a, since E(⊥′,⊥′′) is the only atom of T that could be the “preimage” of
E(c, a)—all other atoms either have the form E(a, ·) or E(b, ·). However, let v be
a valuation of T with v(⊥′) = c and v(⊥′′) = a, and let f : dom(T)→ dom(T)
be such that f(a) = a, f(b) = b, f(⊥′) = a and f(⊥) = f(⊥′′) = ⊥. Then, for
the composition v′ := v ◦ f of f and v, we have

v′(T) = {E(a, b), E(b, a), E(a, v(⊥)), E(b, v(⊥))}
({E(a, b), E(b, a), E(a, v(⊥)), E(b, v(⊥)), E(b, c), E(c, a)}
= v(T).

Thus, v(T) is not ⊆-minimal in poss(T).

We use a different approach: we identify a subset S of minC(T) of size
polynomial in the size of T such that it suffices to consider only the instances in
S in order to decide whether A is an atom of some instance in minC(T). More
precisely, the set S consists of all naive tables T0 for which there is an atom
block B of T with T0 ∈ minC(T,B), where minC(T,B) is defined below. For
the definition of minC(T,B), we fix, for each instance I, a core Core(I) of I:
the result of the algorithm from Lemma 2.31 on input I.

5.25 Definition (valC(T,B), minvalC(T,B))
Let T be a naive table, let B be an atom block of T , and let C ⊆ Const.

• Let valC(T,B) be the set of all mappings f ∈ valC(T) such that

– f(⊥) = ⊥ for each null ⊥ ∈ nulls(T \B), and
– each null that occurs in f(B) \ (T \B) belongs to nulls(B).

146 Chapter 5. The GCWA∗-Answers Semantics

• Let minvalC(T,B) be the set of all mappings f ∈ valC(T,B) such that
there is no f ′ ∈ valC(T,B) with f ′(T) (f(T).

• Let minC(T,B) := {Core(f(T)) | f ∈ minvalC(T,B)}.

Lemma 2.31 easily leads to:

5.26 Lemma.
There is an algorithm that takes a naive table T and a set C ⊆ Const as input,
and outputs a list of all instances that occur in minC(T,B) for some atom block
B of T in time O((n+ |C|)2b+4), where n is the size of T and b is the maximum
number of nulls in an atom block of T .

Proof. Given a naive table T and a set C ⊆ Const, we use the following algo-
rithm A to compute a list of all instances that occur in minC(T,B) for some
atom block B of T :

1. Compute the atom blocks B1, . . . , Bk of T .

2. For each i ∈ {1, . . . , k}:

(a) Compute a list f1, . . . , fl of all mappings in valC(T,Bi).
(b) Mark each mapping fj for which there is no j′ ∈ {1, . . . , l} with

fj′(T) (fj(T).
(c) For each marked mapping fj, output Core(fj(T)).

Clearly, A outputs a list of all instances that occur in minC(T,B) for some atom
block B of T .

Let us now analyze the running time of A. We first consider step 2(a). Let
i ∈ {1, . . . ,m}. Then the mappings f1, . . . , fn in valC(T,Bi) can be computed
using the following algorithm B:

I. Compute a list g1, . . . , gp of all mappings from nulls(Bi) to dom(T) ∪ C.

II. For each j ∈ {1, . . . , p}:

(a) Extend gj to a mapping f : dom(T)→ dom(T)∪C such that f(u) =
u for each u ∈ dom(T) \ nulls(Bi).

(b) Check whether each atom of f(Bi) that is no atom of T \Bi contains
only nulls from Bi. If so, output f .

(c) Continue with the next j.

5.4. Computing GCWA∗-Answers to Universal Queries 147

The overall running time of B is at most O((n + |C|)2b). To see this, note
that step I can be accomplished in time O((n+ |C|)b). Furthermore, step II is
repeated at most |dom(T) ∪ C|b ≤ (n+ |C|)b times, where step II(a) needs time
at most O(n), and step II(b) needs time at most O(n2).

Let us now consider step 2(b) and step 2(c) of A. Note that the number l of
mappings f1, . . . , fl computed in step 2(a) is at most |dom(T) ∪ C|b ≤ (n+|C|)b.
Step 2(b) can therefore be accomplished in time O(l2 · |T |) = O((n+ |C|)2b+1).
Furthermore, by Lemma 2.31, step 2(c) needs time at most O(l ·nb+3) = O((n+
|C|)2b+3) since the number of nulls in each block of fj(T) is bounded by b (by
the construction of the mappings in valC(T,B)).

Finally, note that T has at most |T | ≤ n atom blocks, which implies that
step 2 is repeated at most k ≤ n times. Using the bounds on the running time
for steps 2(a)–(c) obtained above, we conclude that step 2 needs time at most
O(n · (n+ |C|)2b+3) = O((n+ |C|)2b+4). This clearly dominates the time needed
for step 1. Thus, the running time of A is at most O((n+ |C|)2b+4).

The following Lemma 5.27 tells us that the instances in minC(T,B) indeed
belong to minC(T). To state and to prove the lemma, the notion of a retraction
is convenient. Given a naive table T , a retraction of T is a homomorphism h
from T to T such that h(u) = u for each element u in the range h(dom(T)) of
h. In particular, each atom R(ū) of h(T) belongs to T , and R(ū) = ū. It is
known that a core of T is a naive table T ′ for which there is a retraction h of T
with h(T) = T ′, and there is no retraction h′ of T ′ with h′(T ′) (T ′ (see, e.g.,
Hell and Nešetřil [1992]). A retraction of T over a set X ⊆ Dom is a retraction
h of T such that h(u) = u for each u ∈ X ∩ dom(T).

5.27 Lemma.
Let T be a naive table, let B be an atom block of T , and let C ⊆ Const. Then
for each f ∈ minvalC(T,B), there is a retraction h of T̂ := f(T) over the set of
the nulls of f(B) \ (T \B) such that

1. h(T̂) is a core of T̂ and

2. h(T̂) ∈ minC(T).

In particular, minC(T,B) ⊆ minC(T).

Proof. Fix B := T \ B and A := f(B) \ B. Let h be a retraction of T̂ over
nulls(A) such that for

T̂0 := h(T̂) = h(f(T)) (5.11)

we have:

There is no retraction h′ of T̂0 over nulls(A) with h′(T̂0) (T̂0. (5.12)

148 Chapter 5. The GCWA∗-Answers Semantics

We show that T̂0 is a core of T̂ , and that T̂0 ∈ minC(T).

Step 1: T̂0 is a core of T̂ .
Suppose, for a contradiction, that T̂0 is not a core of T̂ . Then there is a retraction
h′ of T̂0 with h′(T̂0) (T̂0. By (5.12), there is some ⊥ ∈ nulls(A) with h′(⊥) 6= ⊥.
Since h′ is a retraction of T̂0, and A ⊆ T̂0, this implies

h′(A) \B (A. (5.13)

Now consider the mapping f ′ : dom(T) → dom(T) ∪ C that is defined for
each u ∈ dom(T) by

f ′(u) :=
h′(h(f(u))), if u ∈ nulls(B),
u, otherwise.

Then f ′ ∈ valC(T,B), since f ∈ valC(T,B) and h, h′ are retractions. Moreover,

f ′(B) ⊆ h′(T̂0) = h′(T̂0 \B) ∪ h′(B) ⊆ h′(T̂0 \B) ∪B, (5.14)

where the first inclusion is true due to f ′(B) = h′(h(f(B))) and (5.11), and the
last inclusion is true, because h′ is a retraction of T̂0.

Observe that

T̂0 \B ⊆ A. (5.15)

Indeed, let A be an atom of T̂0 with A /∈ B. By (5.11), we have T̂0 = h(f(T)).
Together with f(T) = f(B) ∪ f(B), and the fact that h is a retraction of
f(T), this implies that A ∈ f(B) or A ∈ f(B). Note that A /∈ f(B), because
f(B) = B and A /∈ B. Hence, A ∈ f(B), which, together with A /∈ B, implies
that A ∈ A.

Consequently, we have

f ′(T) = f ′(B) ∪ f ′(B) since B ∪B = T

= f ′(B) ∪B since f ′ ∈ valC(T,B)
⊆ h′(A) ∪B by (5.14) and (5.15)
(A ∪B by (5.13)
= f(B) ∪B by the definition of A
= f(T) since B = f(B) and B ∪B = T ,

which is a contradiction to f ∈ minvalC(T,B). Thus, T̂0 is a core of T̂ .

5.4. Computing GCWA∗-Answers to Universal Queries 149

Step 2: T̂0 ∈ minC(T).
First observe that T̂0 = f0(T), where f0 := h ◦ f and f0 ∈ valC(T). It remains,
therefore, to show that there is no f ′ ∈ valC(T) with f ′(T) (T̂0.

Suppose, for a contradiction, that there is such a mapping f ′. Without loss
of generality, we can assume that f ′(T) ∈ minC(T). Moreover,

f ′(T) ⊆ T̂0
(5.11)= h(f(T)) ⊆ f(T) = f(B) ∪B. (5.16)

Let us next observe that

f ′(B) \B = f(B) \B. (5.17)

Otherwise, we could use f ′ to construct a mapping f ′′ ∈ valC(T,B) such that
f ′′(T) (f(T), which is impossible, because f ∈ minvalC(T,B). Indeed, assume
that (5.17) is not true. Then,

f ′(B) \B (f(B) \B, (5.18)

since by (5.16) we have f ′(B) ⊆ f(B)∪B. Let f ′′ : dom(T)→ dom(T)∪C be
such that for all u ∈ dom(T),

f ′′(u) =
f ′(u), if u ∈ nulls(B)
u, otherwise.

It is not hard to see that f ′′ ∈ valC(T,B). Moreover,

f ′′(T) = (f ′(B) \B) ∪B
(5.18)
((f(B) \B) ∪B = f(T).

Now, (5.17) implies that the mapping h′ : dom(T) → dom(T) ∪ C that is
defined for each u ∈ dom(T) by

h′(u) =
u, if u ∈ nulls(B)
f ′(u), otherwise

is a homomorphism from f(T) = f(B)∪B to f ′(T). Furthermore, by (5.16) we
have f ′(T) ⊆ f(T), and therefore, the identity on dom(f ′(T)) is a homomor-
phism from f ′(T) to f(T). This implies that f ′(T) and f(T) are homomorphi-
cally equivalent, and therefore, their cores are isomorphic. Since T̂0 is a core of
f(T) by step 1, and f ′(T) is a core by Proposition 5.20(3), we have T̂0 ∼= f ′(T).
This contradicts the assumption that f ′(T) (T̂0.

150 Chapter 5. The GCWA∗-Answers Semantics

Clearly, the union of the sets minC(T,B) over all atom blocks B of T does
not cover the whole set of instances in minC(T). However, Lemma 5.31 below
tells us that for each atom A of some instance T0 ∈ minC(T) there is an atom
block B of T and an instance TB ∈ minC(T,B) that contains an atom A′

isomorphic to A in the following sense:

5.28 Notation
We say that two atoms A1, A2 are isomorphic, and we write A1 ∼= A2, if and
only if the instances {A1} and {A2} are isomorphic.

Note that two atoms R(u1, . . . , ur) and R′(u′1, . . . , u′r′) are isomorphic if and
only if R = R′, r = r′, and for all i, j ∈ {1, . . . , r}, ui ∈ Const if and only if
u′i ∈ Const, ui ∈ Const implies ui = u′i, and ui = uj if and only if u′i = u′j.

Given an atom A = R(u1, . . . , ur) and a mapping f : X → Dom with
{u1, . . . , ur} ⊆ X, we let f(A) be the atom R(f(u1), . . . , f(ur)).

Finally, Lemma 5.31 is based on the following notion of packed atom block:

5.29 Definition (packed atom block)
An atom block B of a naive table is called packed if and only if for all atoms
A,A′ ∈ B with A 6= A′, there is a null that occurs both in A and A′.

Immediately from the definitions, we obtain:

5.30 Proposition.
If M = (σs, σt,Σ) is a schema mapping, where Σ consists of packed st-tgds, and
S is a source instance for M , then each atom block of Core(M,S) is packed.

We are now ready to state the present section’s main result:

5.31 Lemma.
Let T be a naive table such that T is a core and each atom block of T is packed.
Let C ⊆ Const, and let T0 ∈ minC(T). Then for each atom A ∈ T0, there is

1. an atom block B of T ,

2. an instance TB ∈ minC(T,B),

3. an atom A′ ∈ TB with A′ ∼= A, and

4. a homomorphism h from TB to T0 with h(TB) = T0 and h(A′) = A.

Proof. Let T be a naive table such that T is a core and each atom block of
T is packed, let C ⊆ Const, and let T0 ∈ minC(T). Let B1, . . . , Bn be an

5.4. Computing GCWA∗-Answers to Universal Queries 151

enumeration of all the atom blocks of T . We prove a stronger statement, namely:

For each i ∈ {1, . . . , n}, there is an instance Ti ∈ minC(T,Bi) and
a homomorphism hi from Ti to T0 with hi(Ti) = T0 such that the
following is true: For each atom A ∈ T0, there is an index i ∈
{1, . . . , n} and an atom A′ ∈ Ti with hi(A′) = A and A′ ∼= A.

(?)

Let f ∈ valC(T) be such that

f(T) = T0.

The construction of the instances Ti and the homomorphisms hi proceeds in
three steps. First, we “split” f into mappings f1 ∈ valC(T,B1), . . . , fn ∈
valC(T,Bn) such that each fi(Bi) is isomorphic to f(Bi). Second, we use these
mappings to construct the instances Ti and the homomorphisms hi. Third, we
show that for each atom A ∈ T0, there is an index i ∈ {1, . . . , n} and an atom
A′ ∈ Ti with hi(A′) = A and A′ ∼= A.

Step 1: “Split” f into mappings f1 ∈ valC(T,B1), . . . , fn ∈ valC(T,Bn) such
that each fi(Bi) is isomorphic to f(Bi).
Let i ∈ {1, . . . , n}. We construct a mapping fi ∈ valC(T,Bi) and an injective
homomorphism ri from fi(Bi) to f(Bi) with ri(fi(Bi)) = f(Bi) as follows. Pick
an injective mapping

r̄i : dom(f(Bi))→ const(f(Bi)) ∪ nulls(Bi)

such that r̄i(c) = c for each c ∈ const(f(Bi)), and r̄i(⊥) ∈ nulls(Bi) for each
⊥ ∈ nulls(f(Bi)). Then let fi : dom(T) → dom(T) ∪ C be such that for each
u ∈ dom(T), we have

fi(u) :=
r̄i(f(u)), if u ∈ nulls(Bi)
u, otherwise.

By the construction of fi, we have fi ∈ valC(T,Bi). Furthermore, for each atom
A of f(Bi), we have r̄i(A) ∼= A. In particular, each atom of f(Bi) is isomorphic
to an atom of fi(Bi), and vice versa. Let ri be the inverse of r̄i on dom(fi(Bi)).
Then, ri is an injective homomorphism from fi(Bi) to f(Bi) with

ri(fi(Bi)) = ri(r̄i(f(Bi))) = f(Bi). (5.19)

In particular,

ri(A) ∼= A for all atoms A ∈ fi(Bi). (5.20)

152 Chapter 5. The GCWA∗-Answers Semantics

Step 2: Construction of the instances Ti and the homomorphisms hi.
Let i ∈ {1, . . . , n}, and pick a mapping gi ∈ minvalC(T,Bi) with gi(T) ⊆ fi(T).
By Lemma 5.27, there is a retraction h′i of gi(T) over the set of the nulls of
gi(Bi) \ (T \Bi) such that

Ti := h′i(gi(T)) ∈ minC(T). (5.21)

Now consider the mapping hi : dom(gi(T)) → dom(T0) such that for each
u ∈ dom(gi(T)), we have

hi(u) :=
ri(u), if u ∈ dom(gi(T) \ (T \Bi))
f(u), otherwise.

Note that ri is defined for all values that occur in dom(gi(T) \ (T \ Bi)), since
gi(T) ⊆ fi(T) = fi(Bi) ∪ (T \Bi), and therefore,

gi(T) \ (T \Bi) ⊆ fi(Bi). (5.22)

Furthermore,

hi(gi(T) \ (T \Bi)) = ri(gi(T) \ (T \Bi))
(5.22)
⊆ ri(fi(Bi))

(5.19)= f(Bi) ⊆ T0,

and

hi(T \Bi) = f(T \Bi) ⊆ f(T) = T0,

which yields hi(gi(T)) ⊆ T0. In particular, we have

hi(h′i(gi(T))) ⊆ hi(gi(T)) ⊆ T0.

Since the composition hi ◦ h′i ◦ gi belongs to valC(T), and T0 ∈ minC(T), it
follows that hi(h′i(gi(T))) = T0, and hence,

hi(Ti)
(5.21)= hi(h′i(gi(T))) = T0.

Hence, the restriction h̃i of hi to dom(Ti) is a homomorphism from Ti to T0
with h̃i(Ti) = T0.

Step 3: For each atom A ∈ T0 there is an i ∈ {1, . . . , n} and an atom A′ ∈ Ti
with hi(A′) = A and A′ ∼= A.
Let

T ∗ :=
n⋃
i=1

(
gi(Bi) \ (T \Bi)

)
.

To prove (?), it suffices to show that there is a mapping r : dom(T ∗)→ dom(T0)
such that

5.4. Computing GCWA∗-Answers to Universal Queries 153

1. r(T ∗) = T0,

2. r(A′) ∼= A′ for each A′ ∈ T ∗, and

3. r(A′) = hi(A′) for each i ∈ {1, . . . , n} and each A′ ∈ gi(Bi) \ (T \Bi).

Indeed, let A ∈ T0. Since r(T ∗) = T0 by condition 1, there is some A′ ∈ T ∗

with r(A′) = A. So, by the construction of T ∗, there is an i ∈ {1, . . . , n} such
that A′ ∈ gi(Bi) \ (T \ Bi) ⊆ Ti. Condition 3 then yields hi(A′) = r(A′) = A,
and since r(A′) ∼= A′ by condition 2, we have A′ ∼= A.

Let r : dom(⋃ni=1 fi(Bi)) → dom(T0) be such that for each i ∈ {1, . . . , n}
and each u ∈ dom(fi(Bi)), we have

r(u) = ri(u).

This is well-defined, since nulls(fi(Bi))∩ nulls(fj(Bj)) = ∅ for all distinct i, j ∈
{1, . . . , n}, and each ri is the identity on constants. We claim that r satisfies
conditions 1–3 above.

By the construction of r and hi, r already satisfies conditions 2 and 3. To
see that r satisfies condition 2, let A′ ∈ T ∗. Then there is some i ∈ {1, . . . , n}
with A′ ∈ gi(Bi) \ (T \ Bi). By r(A′) = ri(A′), (5.20), and (5.22), we thus
have r(A′) ∼= A′. To see that r satisfies condition 3, let i ∈ {1, . . . , n} and
A′ ∈ gi(Bi) \ (T \ Bi). Then, r(A′) = ri(A′) = hi(A′), where the last equality
holds due to the construction of hi.

It thus remains to show that r(T ∗) = T0. Let us first show that r(T ∗) ⊆ T0.
Note that, by (5.22), we have

T ∗ ⊆
n⋃
i=1

fi(Bi).

Hence,

r(T ∗) ⊆ r

(
n⋃
i=1

fi(Bi)
)

=
n⋃
i=1

r(fi(Bi)) =
n⋃
i=1

ri(fi(Bi))
(5.19)=

n⋃
i=1

f(Bi) = T0.

To show that r(T ∗) = T0, we show that there is a mapping f ∗ ∈ valC(T) with
f ∗(T) = T ∗. Then, the composition f ′ := r ◦ f ∗ of f ∗ and r belongs to valC(T).
In particular, since T0 ∈ minC(T) and f ′(T) = r(f ∗(T)) = r(T ∗) ⊆ T0, this
implies r(T ∗) = T0, and the proof is complete.

Thus, it remains to show that there is a mapping f ∗ ∈ valC(T) with f ∗(T) =
T ∗. We find this mapping by constructing a sequence of appropriate mappings
that are obtained from the mappings g1, . . . , gn.

Let us first modify g1, . . . , gn as follows. Choose an arbitrary “renaming” of
the nulls of T . That is, pick an injective mapping ρ : dom(T) → const(T) ∪

154 Chapter 5. The GCWA∗-Answers Semantics

(Null \ nulls(T)) such that ρ(c) = c for each constant c ∈ const(T). Note that
ρ maps each null of T to a unique null that does not occur in T . Let

X := ρ(nulls(T)).

For each i ∈ {1, . . . , n} then define ĝi : dom(T) ∪ C ∪ X → dom(T) ∪ C ∪ X
such that for each u ∈ dom(T) ∪ C ∪ X ,

ĝi(u) :=

gi(ρ−1(u)), if u ∈ ρ(nulls(Bi)) and gi(ρ−1(u)) ∈ nulls(Bi)
ρ(gi(ρ−1(u)), if u ∈ ρ(nulls(Bi)) and gi(ρ−1(u)) /∈ nulls(Bi)
u, otherwise.

Note that for each i ∈ {1, . . . , n},

ĝi(ρ(Bi)) \ ρ(T) = gi(Bi) \ (T \Bi). (5.23)

Now let ĝ := ĝn ◦ · · · ◦ ĝ2 ◦ ĝ1. Furthermore, let ĝ0 := ρ, and for each s ≥ 0,
let ĝs+1 := ĝ ◦ ĝs. Since ĝ is the identity on dom(T) ∪ C, it is easy to see that

ĝ1(T) ⊇ ĝ2(T) ⊇ ĝ3(T) ⊇ · · · .

Since ĝ1(T) is finite, there exists therefore an integer s0 ≥ 1 such that ĝs0(T) =
ĝs(T) for each s ≥ s0. Let f ∗ := ĝs0 .

We show that f ∗(T) = T ∗. First observe that

T ∗ =
n⋃
i=1

(
gi(Bi) \ (T \Bi)

)
= ĝ1(T) \ ρ(T) = f ∗(T) \ ρ(T).

To see that T ∗ is not a proper subinstance of f ∗(T), we show that f ∗(T) contains
no atoms from ρ(T).

For a contradiction, suppose that f ∗(T) contains an atom A ∈ ρ(T). Then,
A ∈ ρ(Bi) for some i ∈ {1, . . . , n}. Since ĝ(f ∗(T)) = f ∗(T), we know that ĝ is
a bijection on dom(f ∗(T)). Furthermore, since ĝ is the identity on dom(T)∪C,
we have ĝ(⊥) ∈ X for each ⊥ ∈ X . It follows that

ĝi(A) ∼= A, and ĝi(A) ∈ ρ(Bj) for some j ∈ {1, . . . , n} \ {i}.

Let A′ := ρ−1(A). By the construction of ĝi, we have

gi(A′) ∼= A′, and gi(A′) ∈ Bj for some j ∈ {1, . . . , n} \ {i}.

Since Bi is packed and gi maps each null in A′ to a null in Bj, each atom in
gi(Bi) contains a null from Bj. Together with gi ∈ valC(T,Bi), this implies
gi(Bi) ⊆ Bj. In other words, gi is a homomorphism from T to T \ Bi, which
contradicts the fact that T is a core. Consequently, f ∗(T) = T ∗.

Altogether, the proof of Lemma 5.31 is complete.

5.4. Computing GCWA∗-Answers to Universal Queries 155

A straightforward polynomial time algorithm that, given T and A, decides
whether A = R(t̄) is an atom of some ⊆-minimal instance in poss(T) is now as
follows. Let C be the set of all constants in t̄. Consider each atom block B of
T , and each T0 ∈ minC(T,B) in turn, and accept the input if and only if A ∈ T0
for some T0. By Lemma 5.26, the instances T0 can be computed in polynomial
time, so the whole procedure runs in polynomial time.

The following example shows that the proof of Lemma 5.31 fails if T contains
atom blocks that are not packed.

5.32 Example
Let E be a binary relation symbol, and consider the naive table T over {E}
with

ET = {(⊥1, a), (⊥1, b), (⊥1,⊥′1), (⊥′1, c), (⊥2, a), (⊥2, b), (⊥2,⊥′2), (c,⊥′2)}.

Viewed as a graph, T looks as follows:

a

b

c

⊥1

⊥′1

⊥2

⊥′2

Note that T is a core, and that T has the two atom blocks

B1 = {E(⊥1, a), E(⊥1, b), E(⊥1,⊥′1), E(⊥′1, c)}, and
B2 = {E(⊥2, a), E(⊥2, b), E(⊥2,⊥′2), E(c,⊥′2)}.

Note also that neither B1 nor B2 is packed.
Consider f ∈ val∅(T) with f(⊥1) = f(⊥2) = a and f(⊥′1) = f(⊥′2) = b.

Then it is not hard to see that

f(T) = {E(a, a), E(a, b), E(b, c), E(c, b)} ∈ min∅(T).

Furthermore, for the mappings fi created in the proof of Lemma 5.31, we have

f1(T) = {E(a, a), E(a, b), E(b, c), E(⊥2, a), E(⊥2, b), E(⊥2,⊥′2), E(c,⊥′2)}

and

f2(T) = {E(a, a), E(a, b), E(c, b), E(⊥1, a), E(⊥1, b), E(⊥1,⊥′1), E(⊥′1, c)}.

156 Chapter 5. The GCWA∗-Answers Semantics

For gi ∈ val∅(T,Bi) with gi(⊥i) = ⊥3−i and gi(⊥′i) = b, it holds that gi ∈
minval∅(T,Bi), and moreover,

g1(T) = {E(⊥2, a), E(⊥2, b), E(⊥2,⊥′2), E(c,⊥′2), E(b, c)},
g2(T) = {E(⊥1, a), E(⊥1, b), E(⊥1,⊥′1), E(⊥′1, c), E(c, b)}.

It is not hard to see that g1(T) and g2(T) belong to min∅(T). Finally, note
that E(a, a) and E(a, b) occur in fi(Bi), but neither g1(T) nor g2(T) contains
an atom A′ with A′ ∼= E(a, a) or A′ ∼= E(a, b).

5.4.3 Existentially Quantified Conjunctions of Atomic Formulas and Nega-
tions of Atomic Formulas

In this section, we prove the second key lemma for the proof of Theorem 5.17:

5.33 Lemma.
Let q(x̄) = ∃ȳ ϕ(x̄, ȳ) be an existential query over a schema σ, where ϕ has
the form ∧p

i=1 ϕi, and each ϕi is an atomic FO formula or the negation of an
atomic FO formula. Then for each positive integer b, there is a polynomial time
algorithm that decides:

CoreEvalσ,b
Input: a naive table T over σ such that T is a core and each atom

block of T is packed and contains at most b nulls, and a tuple
t̄ ∈ Constar(q)

Question: Is there a nonempty finite set T of ⊆-minimal instances in
poss(T) such that ⋃ T |= q(t̄)?

The remainder of this section presents a proof of Lemma 5.33. Let q(x̄) =
∃ȳ ϕ(x̄, ȳ) be as in the hypothesis of Lemma 5.33. Without loss of generality,
there is no variable that occurs both in x̄ and in ȳ, and ϕ has the form ∧p

i=1 ϕi,
where each ϕi is a relational atomic FO formula, the negation of a relational
atomic FO formula, or the negation of an equality.

Let b be a positive integer. Then CoreEvalσ,b can be solved as follows.
Assume we are given a naive table T over σ such that T is a core and each atom
block of T is packed and contains at most b nulls, and a tuple t̄ ∈ Constar(q) as
input. In a first step, we rewrite ϕ to a formula ψ by replacing each variable
x in x̄ by the corresponding constant assigned to x by t̄. That is, if x̄ =
(x1, . . . , xk) and t̄ = (t1, . . . , tk), then ψ is obtained from ϕ by replacing, for
each i ∈ {1, . . . , k}, each occurrence of the variable xi in ϕ by ti. Let

q̃ := ∃ȳ ψ(ȳ).

5.4. Computing GCWA∗-Answers to Universal Queries 157

To check whether there is a nonempty finite set T of ⊆-minimal instances
in poss(T) such that ⋃ T |= q(t̄), it now suffices to check whether there is a
nonempty finite set T of ⊆-minimal instances in poss(T) such that ⋃ T |= q̃.

Let us assume that

ψ(ȳ) =
k∧
i=1

Ri(x̄i) ∧
l∧

i=1
¬Qi(w̄i) ∧

m∧
i=1
¬vi = v′i.

Let C := dom(ψ), and for each i ∈ {1, . . . , k}, let Xi be the set of all variables in
x̄i. Given an assignment α for a set X of variables, and a tuple t̄ over X∪Const,
we sloppily write α(t̄) for the tuple obtained from t̄ by replacing each occurrence
of a variable x ∈ X in t̄ with α(x).

To check whether there is a nonempty finite set T of ⊆-minimal instances
in poss(T) such that ⋃ T |= q̃, we now do the following:

1. For each i ∈ {1, . . . , s}, where

s := k +
l∑

i=1
|w̄i|+ 2 ·m,

we pick an injective mapping ρi : dom(T)∪C → Dom such that ρi(c) = c
for each c ∈ const(T) ∪ C, and such that for all distinct i, j ∈ {1, . . . , s},
we have nulls(ρi(T)) ∩ nulls(ρj(T)) = ∅.

2. We compute, for each i ∈ {1, . . . , k}, the set

Xi := {(T0, α) | T0 = ρi(T ′0) for some T ′0 ∈ minC(T,B)
and an atom block B of T ,
α : Xi → dom(T0), and α(x̄i) ∈ RT0

i }.

3. We join pairs in X1, . . . ,Xk that are compatible in the sense described be-
low to single pairs (T̃ , α̃) obtained by identifying as few values in T1, . . . , Tk
as possible such that for each i ∈ {1, . . . , k} we have α̃(x̄i) ∈ RT̃

i .

4. We check whether for one of the pairs (T̃ , α̃) from step 3, the extension
T̃ ∪⋃si=k+1 ρi(T) of T̃ by s− k disjoint copies of T satisfies q̃. If yes, then
we accept the input; otherwise, we reject it.

To formally describe the last two steps of the algorithm, we need to introduce
some more technical machinery.

Intuitively, (T1, α1) ∈ X1, . . . , (Tk, αk) ∈ Xk are compatible if, by identi-
fying values that occur in ⋃k

i=1 αi(Xi), it is possible to modify α1, . . . , αk to
assignments α̃1, . . . , α̃k such that

158 Chapter 5. The GCWA∗-Answers Semantics

• they agree on common variables (x ∈ Xi∩Xj implies α̃i(x) = α̃j(x)), and

• there is a bijection between αi(Xi) and α̃i(Xi) that preserves constants,
that is,

– αi(x) ∈ Const or α̃i(x) ∈ Const implies α̃i(x) = αi(x), and
– αi(x) = αi(x′) if and only if α̃i(x) = α̃i(x′).

In particular, the assignments α1, . . . , αk can be “joined” to a single assignment
α̃. Formally, this is captured as follows:

5.34 Definition (compatible)
Let (T1, α1) ∈ X1, . . . , (Tk, αk) ∈ Xk. We say that (T1, α1), . . . , (Tk, αk) are
compatible if and only if there is an equivalence relation ∼ on D := ⋃k

i=1 αi(Xi)
such that

1. for all i, j ∈ {1, . . . , k} and each x ∈ Xi ∩Xj, we have αi(x) ∼ αj(x),

2. for all u, u′ ∈ D, if u ∼ u′ and u ∈ Const, then u = u′, and

3. for each i ∈ {1, . . . , k} and all x, x′ ∈ Xi, we have αi(x) = αi(x′) if and
only if αi(x) ∼ αi(x′).

Given (T1, α1) ∈ X1, . . . , (Tk, αk) ∈ Xk, we can use the following algorithm
to check whether (T1, α1), . . . , (Tk, αk) are compatible, and if so, to find an
equivalence relation ∼ as in Definition 5.34.

5.35 Algorithm (Compatibility check)
Input: (T1, α1) ∈ X1, . . . , (Tk, αk) ∈ Xk
Output: a relation ∼ as in Definition 5.34 if (T1, α1), . . . , (Tk, αk) are com-

patible; otherwise “not compatible”

1. Initialize ∼ to be {(u, u) | u ∈ αi(Xi) for some i ∈ {1, . . . , k}}.

2. For all i, j ∈ {1, . . . , k} and each x ∈ Xi ∩Xj, add (αi(x), αj(x)) to ∼.

3. For each i ∈ {1, . . . , k} and all x, x′ ∈ Xi with αi(x) = αi(x′), add
(αi(x), αi(x′)) to ∼.

4. Update ∼ to be the symmetric and transitive closure of ∼.

5. If ∼ satisfies conditions 2 and 3 of Definition 5.34, then output ∼; other-
wise output “not compatible”.

5.4. Computing GCWA∗-Answers to Universal Queries 159

5.36 Proposition.
Given (T1, α1) ∈ X1, . . . , (Tk, αk) ∈ Xk, Algorithm 5.35 correctly decides in
time O(‖T‖), where ‖T‖ is the size of T , whether (T1, α1), . . . , (Tk, αk) are
compatible, and if so, outputs an equivalence relation ∼ on D := ⋃k

i=1 αi(Xi)
that satisfies conditions 1–3 of Definition 5.34; in fact, ∼ is the smallest such
equivalence relation (in terms of set inclusion).

Proof. Since k and X1, . . . , Xk are constant, it should be clear that each of the
steps 1–5 can be accomplished in constant time, after building the necessary
data structures from the input in time O(‖T‖) (note that for each i ∈ {1, . . . , k},
we have ‖Ti‖ ≤ ‖T‖, so that the length of the input is in O(‖T‖)).

Let us now show that the algorithm is correct. Assume first that the al-
gorithm outputs a relation ∼. By the construction of the algorithm, ∼ is an
equivalence relation on D that satisfies conditions 1–3 of Definition 5.34. In
particular, (T1, α1), . . . , (Tk, αk) are compatible.

Before we prove the other direction, let us prove that, if ∼∗ is an arbitrary
equivalence relation on D that satisfies conditions 1–3 of Definition 5.34, then
the relation ∼ produced in steps 1–4 of the algorithm satisfies ∼ ⊆ ∼∗. Let ∼∗
be an equivalence relation on D that satisfies conditions 1–3 of Definition 5.34.
Since ∼∗ satisfies condition 1, ∼∗ contains all pairs that are put into ∼ in step 2
of the algorithm. Furthermore, since ∼∗ satisfies condition 3, ∼∗ contains all
pairs that are put into ∼ in step 3 of the algorithm. Finally, since ∼∗ is an
equivalence relation, and thus reflexive, symmetric and transitive, ∼∗ contains
all pairs that are put into ∼ in steps 1 and 4 of the algorithm. Consequently,
we have ∼ ⊆ ∼∗.

This, in particular, shows that if the algorithm outputs a relation ∼, then
this is the smallest equivalence relation on D (in terms of set inclusion) that
satisfies conditions 1–3 of Definition 5.34.

Now assume that (T1, α1), . . . , (Tk, αk) are compatible. Then there is an
equivalence relation ∼∗ that satisfies conditions 1–3 of Definition 5.34. Further-
more, the relation ∼ produced in steps 1–4 of the algorithm is an equivalence
relation on D such that

• ∼ satisfies condition 1 of Definition 5.34,

• for each i ∈ {1, . . . , k} and all x, x′ ∈ Xi, αi(x) = αi(x′) implies αi(x) ∼
αi(x′), and

• ∼ ⊆ ∼∗, as shown above.

Since ∼∗ satisfies conditions 2 and 3 of Definition 5.34, this implies that ∼
satisfies conditions 2 and 3 of Definition 5.34, and therefore, ∼ is the output of
the algorithm.

160 Chapter 5. The GCWA∗-Answers Semantics

Let (T1, α1) ∈ X1, . . . , (Tk, αk) ∈ Xk be compatible. We define the join of
(T1, α1), . . . , (Tk, αk) in terms of the following algorithm:

5.37 Algorithm (Join)
Input: (T1, α1) ∈ X1, . . . , (Tk, αk) ∈ Xk, which are compatible
Output: a tuple (T̃ , α̃)

1. Let ∼ be the output of Algorithm 5.35 on input (T1, α1), . . . , (Tk, αk).

2. Pick some linear order � on the elements of D := ⋃k
i=1 αi(Xi),1 and for

each u ∈ D, let û be the minimal element in [u] := {u′ ∈ D | u′ ∼ u} with
respect to �.

3. For each i ∈ {1, . . . , k}, pick a mapping ri : dom(Ti) → Dom such that
for each u ∈ dom(Ti),

ri(u) :=
û, if u ∈ αi(Xi)
u, otherwise.

4. Output (T̃ , α̃), where T̃ := ⋃k
i=1 ri(Ti), and α̃ : ⋃ki=1Xi → Dom is such

that for each x ∈ ⋃ki=1Xi,

α̃(x) :=

r1(α1(x)), if x ∈ X1

...
rk(αk(x)), if x ∈ Xk.

Note that α̃ is well-defined by the construction of ∼ and r1, . . . , rk: if
x ∈ Xi ∩Xj, then αi(x) ∼ αj(x), and thus, ri(αi(x)) = rj(αj(x)).

The crucial property of Algorithm 5.37 for the correctness of our query
evaluation algorithm is:

5.38 Proposition.
Given compatible (T1, α1) ∈ X1, . . . , (Tk, αk) ∈ Xk, Algorithm 5.37 runs in time
O(‖T‖), where ‖T‖ is the size of T , and outputs a tuple (T̃ , α̃) with the following
properties:

1For definiteness, we can generate � as follows. Initialize � to be the empty relation. For
increasing i = 1, 2, . . . , k, consider the variables x ∈ Xi in some predefined fixed order, and if
u := αi(x) does not already occur in �, add u as the new maximal element to �. This takes
constant time since k and X1, . . . , Xk are fixed. Using such an ordering guarantees that the
algorithm produces a deterministic output, which, however, is not important for the following
construction.

5.4. Computing GCWA∗-Answers to Universal Queries 161

1. For each i ∈ {1, . . . , k}, there is a mapping ri : dom(Ti)→ Dom such that
the following is true:

(a) T̃ = ⋃k
i=1 ri(Ti), and α̃ : ⋃ki=1Xi → Dom is such that for each x ∈⋃k

i=1Xi,

α̃(x) =

r1(α1(x)), if x ∈ X1

...
rk(αk(x)), if x ∈ Xk.

(b) For each i ∈ {1, . . . , k}, we have ri(c) = c for each c ∈ const(Ti),
and ri(⊥) ∈ Null for each ⊥ ∈ nulls(Ti).

(c) Let ∼ be the output of Algorithm 5.35 on input (T1, α1), . . . , (Tk, αk).
Then for all i, j ∈ {1, . . . , k}, for each u ∈ dom(Ti) and for each
u′ ∈ dom(Tj), we have

ri(u) = rj(u′) ⇐⇒ u = u′, or u ∈ αi(Xi), u′ ∈ αj(Xj) and u ∼ u′.

(d) For each equivalence relation ∼∗ on D := ⋃k
i=1 αi(Xi) that satisfies

conditions 1–3 of Definition 5.34, for all i, j ∈ {1, . . . , k}, for each
u ∈ dom(Ti) and for each u′ ∈ dom(Tj), we have

ri(u) = rj(u′) =⇒
u ∼∗ u′, if u ∈ αi(Xi), u′ ∈ αj(Xj),
u = u′ otherwise.

(5.24)

(e) For each i ∈ {1, . . . , k}, ri is injective.

2. For each i ∈ {1, . . . , k}, we have α̃(x̄i) ∈ RT̃
i .

Proof. Let us first show that the algorithm runs in time O(‖T‖). By Propo-
sition 5.36, step 1 needs time at most O(‖T‖). Since k and X1, . . . , Xk are
fixed, step 2 needs only constant time. Furthermore, since k is constant and
‖Ti‖ ≤ ‖T‖ for each i ∈ {1, . . . , k}, step 3 needs time at most O(‖T‖). Fi-
nally, step 4 can be accomplished in time O(‖T‖). Altogether, the algorithm
terminates after at most O(‖T‖) steps.

Let (T̃ , α̃) be the output of the algorithm. We prove that (T̃ , α̃) has prop-
erties 1 and 2.

Ad 1: Let r1, . . . , rk be the mappings chosen in step 3 of the algorithm. We
prove that (a)–(e) are satisfied for r1, . . . , rk.

Ad 1(a): This follows directly from the construction of Algorithm 5.37.

162 Chapter 5. The GCWA∗-Answers Semantics

Ad 1(b): Let i ∈ {1, . . . , k}. To see that ri(c) = c for each c ∈ const(Ti), let
c ∈ const(Ti). If c /∈ αi(Xi), then by the construction of ri we have ri(c) = c.
Otherwise, if c ∈ αi(Xi), there is some x ∈ Xi with αi(x) = c, so that by
the construction of ri we have c = αi(x) ∼ ri(αi(x)) = ri(c). Condition 2 of
Definition 5.34 then yields ri(c) = c.

To see that ri(⊥) ∈ Null for each ⊥ ∈ nulls(Ti), let ⊥ ∈ nulls(Ti). As above,
if ⊥ /∈ αi(Xi), then ri(⊥) = ⊥ ∈ Null. Otherwise, ⊥ ∼ ri(⊥), so that by
condition 2 of Definition 5.34, ri(⊥) ∈ Null.

Ad 1(c): Let i, j ∈ {1, . . . , k}, u ∈ dom(Ti) and u′ ∈ dom(Tj). We show that

ri(u) = rj(u′) ⇐⇒ u = u′, or u ∈ αi(Xi), u′ ∈ αj(Xj) and u ∼ u′.

Assume first that u = u′. If i = j, we immediately have ri(u) = rj(u′). If
i 6= j, then nulls(Ti) ∩ nulls(Tj) = ∅ implies that u and u′ are constants, and
thus ri(u) = u = u′ = rj(u′) by (b).

Assume next that u ∈ αi(Xi), u′ ∈ αj(Xj) and u ∼ u′. Then there are
x ∈ Xi and x′ ∈ Xj such that αi(x) = u, αj(x′) = u′ and αi(x) ∼ αj(x′). By
the construction of ri and rj this immediately yields ri(u) = rj(u′).

Finally, assume that ri(u) = rj(u′). We distinguish the following cases:

• u /∈ αi(Xi) ∩ Null and u′ /∈ αj(Xj) ∩ Null:
By the construction of ri, rj and by (b), we have ri(u) = u and rj(u′) = u′.
Since ri(u) = rj(u′), this implies u = u′.

• u ∈ αi(Xi) ∩ Null or u′ ∈ αj(Xj) ∩ Null:
By symmetry it suffices to deal with the case that u ∈ αi(Xi) ∩ Null. So
assume that u ∈ αi(Xi) ∩ Null. By the construction of ri, we then have

u ∼ ri(u) = rj(u′).

We claim that u′ ∈ αj(Xj). Suppose, to the contrary, that u′ /∈ αj(Xj).
By the construction of rj, we have

u′ = rj(u′) = ri(u) ∼ u.

Note that u ∈ αi(Xi), ri(u) = u′ and the construction of ri imply that
u′ ∈ D := ⋃k

p=1 αp(Xp). Pick p ∈ {1, . . . , k} and x ∈ Xp with αp(x) = u′.
By u ∈ Null, ri(u) = u′ and (b), we have u′ ∈ Null. Moreover, since
u′ ∈ nulls(Tj), u′ = αp(Xp) ∈ nulls(Tp), and nulls(Tj) ∩ nulls(Tp) = ∅ for
j 6= p, we must have p = j. This, however, implies that u′ ∈ αj(Xj),
which is a contradiction to our assumption that u′ /∈ αj(Xj).

5.4. Computing GCWA∗-Answers to Universal Queries 163

Thus, u′ ∈ αj(Xj). This implies, by the construction of rj, that

u′ ∼ rj(u′) ∼ u.

In particular, u ∈ αi(Xi), u′ ∈ αj(Xj) and u ∼ u′, as desired.

Ad 1(d): Let ∼∗ be an equivalence relation on D that satisfies conditions 1–
3 of Definition 5.34. Furthermore, let ∼ be the output of Algorithm 5.35 on
input (T1, α1), . . . , (Tk, αk). By Proposition 5.36, ∼ is the smallest equivalence
relation on D that satisfies conditions 1–3 of Definition 5.34. Thus, for all
i, j ∈ {1, . . . , k}, each u ∈ αi(Xi) and each u′ ∈ αj(Xj), we have

u ∼ u′ =⇒ u ∼∗ u′. (5.25)

Now let i, j ∈ {1, . . . , k}, u ∈ dom(Ti) and u′ ∈ dom(Tj) such that ri(u) =
rj(u′). By (c), we have u = u′, or u ∈ αi(Xi), u′ ∈ αj(Xj) and u ∼ u′. Thus, by
(5.25), we have u = u′, or u ∈ αi(Xi), u′ ∈ αj(Xj) and u ∼∗ u′. In particular,
this implies (5.24).

Ad 1(e): Let i ∈ {1, . . . , k}, and let u, u′ ∈ dom(Ti) be such that ri(u) = ri(u′).
We have to show that u = u′. By (c), we have u = u′, or u, u′ ∈ αi(Xi) and
u ∼ u′. If u = u′, we are done. So assume that u, u′ ∈ αi(Xi) and u ∼ u′. Let
x, x′ ∈ Xi be such that αi(x) = u and αi(x′) = u′. Then αi(x) ∼ αi(x′), and by
condition 3 of Definition 5.34, we have u = αi(x) = αi(x′) = u′, as desired.

Ad 2: This follows immediately from 1(a) and 1(b).

We are now ready to present the main algorithm for CoreEvalσ,b:

5.39 Algorithm (Algorithm for CoreEvalσ,b)
Input: a naive table T over σ such that T is a core and each atom block of

T is packed and contains at most b nulls; a tuple t̄ ∈ Const|x̄|

Output: “yes” if there is a nonempty finite set T of ⊆-minimal instances in
poss(T) such that ⋃ T |= q(t̄); otherwise “no”

1. Transform q into the query q̃ = ∃ȳ ψ(ȳ), where

ψ(ȳ) =
k∧
i=1

Ri(x̄i) ∧
l∧

i=1
¬Qi(w̄i) ∧

m∧
i=1
¬vi = v′i,

2. Choose injective mappings ρ1, . . . , ρs from dom(T) ∪ C to Dom, where
ρi(c) = c for each c ∈ const(T) ∪ C, and nulls(ρi(T)) ∩ nulls(ρj(T)) = ∅
for all distinct i, j ∈ {1, . . . , s}.

164 Chapter 5. The GCWA∗-Answers Semantics

3. Compute the sets X1, . . . ,Xk.

4. For each (T1, α1) ∈ X1, . . . , (Tk, αk) ∈ Xk:

(a) Run Algorithm 5.35 to check whether (T1, α1), . . . , (Tk, αk) are com-
patible. If not, continue with next (T1, α1) ∈ X1, . . . , (Tk, αk) ∈ Xk.

(b) Let (T̃ , α̃) be the result of Algorithm 5.37 on (T1, α1), . . . , (Tk, αk).
(c) If T̃ ∪ ⋃si=k+1 ρi(T) satisfies q̃, output “yes”.

5. Output “no”.

Let us now show that the algorithm runs in time polynomial in the size of
T , and that the algorithm is correct.

5.40 Lemma (Running time).
Algorithm 5.39 runs in time polynomial in ‖T‖, where ‖T‖ is the size of T .
More precisely, Algorithm 5.39 runs in time

O
(
‖T‖(k+2)·(b+r+1)+2

)
,

where r is the maximum number of variables in a tuple x̄i over all i ∈ {1, . . . , k}.

Proof. The transformation from q to q̃ in step 1 can easily be done in constant
time. Furthermore, it takes time at most O(‖T‖) to pick the mappings ρ1, . . . , ρs
in step 2.

We now bound the running time for computing the sets Xi for each i ∈
{1, . . . , k} in step 3. Since k is constant, it suffices to bound the running time
for computing a single set Xi. Let i ∈ {1, . . . , k}. To compute Xi, we first
compute a list T1, . . . , Tp of all instances that occur in minC(T,B) for some
atom block B of T . By Lemma 5.26, this needs time at most

O
(
‖T‖2b+4

)
,

since |C| is constant. Starting with Xi initialized to be the empty set, we
then add for each j ∈ {1, . . . , p} and each assignment α : Xi → dom(Tj) with
α(x̄i) ∈ RTj

i the pair (ρi(Tj), ρi◦α) to Xi. Note that p is bounded by the number
of atom blocks of T times the maximum number of mappings in valC(T,B) for
some atom block B of T , which, in turn, is bounded by

|T | · (‖T‖+ |C|)b = O
(
‖T‖b+1

)
.

Furthermore, for each j ∈ {1, . . . , p}, there are at most

|dom(Tj)||Xi| ≤ ‖T‖r

5.4. Computing GCWA∗-Answers to Universal Queries 165

assignments α : Xi → dom(Tj). Checking whether such an assignment α sat-
isfies α(x̄i) ∈ R

Tj
i and computing the pair (ρi(Tj), ρi ◦ α) requires time at

most O(‖T‖). Altogether, the worst case running time for computing the sets
X1, . . . ,Xk is

O
(
‖T‖2b+4 + p · ‖T‖r · ‖T‖

)
= O

(
‖T‖2b+4 + ‖T‖b+r+2

)
= O

(
‖T‖2b+r+4

)
,

which is polynomial in ‖T‖, since b and r are constant.
Next we bound the time for step 4. Note that for each i ∈ {1, . . . , k}, we

have
|Xi| ≤ |T | · (‖T‖+ |C|)b · ‖T‖r = O

(
‖T‖b+r+1

)
.

Consequently, step 4 is repeated at most

O
(
‖T‖k·(b+r+1)

)
times. By Proposition 5.36 and Proposition 5.38, steps 4(a) and 4(b) need time
at most O(‖T‖). Furthermore, computing T ∗ := T̃ ∪⋃si=k+1 ρi(T) and checking
whether T ∗ |= q̃ in step 4(c) requires time at most O(‖T‖). Thus, step 4 can
be accomplished in time

O
(
‖T‖k·(b+r+1) · ‖T‖

)
= O

(
‖T‖k·(b+r+1)+1

)
.

Altogether, Algorithm 5.39 runs in time

O
(
‖T‖+ ‖T‖2b+r+4 + ‖T‖k·(b+r+1)+1

)
= O

(
‖T‖(k+2)·(b+r+1)+2

)
,

which is polynomial in ‖T‖.

5.41 Lemma (Correctness).
Algorithm 5.39 is correct. That is, the following two statements are equivalent:

1. Algorithm 5.39 outputs “yes” on input T and t̄.

2. There is a nonempty finite set T of ⊆-minimal instances in poss(T) such
that ⋃ T |= q̃.

Proof.

1 =⇒ 2: Assume that Algorithm 5.39 outputs “yes” on input T and t̄. Then
there are pairs (T1, α1) ∈ X1, . . . , (Tk, αk) ∈ Xk that are compatible, and given
(T1, α1), . . . , (Tk, αk), Algorithm 5.37 outputs an instance (T̃ , α̃) such that the
instance T ∗ := T̃ ∪⋃si=k+1 ρi(T) satisfies q̃. We construct a nonempty finite set
T of ⊆-minimal instances in poss(T) such that ⋃ T |= q̃.

166 Chapter 5. The GCWA∗-Answers Semantics

By Proposition 5.38(1), we have T̃ = ⋃k
i=1 ri(Ti), where each ri is an injective

mapping from dom(Ti) to Dom with ri(c) = c for each constant c ∈ const(Ti).
For each i ∈ {k + 1, . . . , s}, let Ti := ρi(T), and let ri be the identity mapping
on dom(Ti). Then,

T ∗ =
s⋃
i=1

ri(Ti), (5.26)

where each ri is an injective mapping from dom(Ti) to Dom with ri(c) = c for
each constant c ∈ const(Ti).

Note that each Ti is isomorphic to an instance T̂i ∈ minC(T). For i ∈
{1, . . . , k}, this follows from Lemma 5.27 and the fact that Ti is isomorphic to an
instance in minC(T,B) for some atom block B of T . For i ∈ {k + 1, . . . , s}, this
follows from the fact that Ti = ρi(T), that T is a core, and Proposition 5.20(2).
For each i ∈ {1, . . . , s}, let fi be an isomorphism from T̂i to Ti.

Let v : dom(T ∗)→ const(T ∗)∪ (Const\dom(q̃)) be an injective valuation of
T ∗. Let i ∈ {1, . . . , s}. Then the composition vi := v ◦ ri◦fi of fi, ri and v is an
injective valuation of T̂i. Together with T̂i ∈ minC(T) and Proposition 5.20(1),
this implies that vi(T̂i) is a ⊆-minimal instance in poss(T). Thus, the set

T := {vi(T̂i) | 1 ≤ i ≤ s}

is a nonempty finite set of ⊆-minimal instances in poss(T), and

⋃
T =

s⋃
i=1

vi(T̂i) =
s⋃
i=1

v(ri(Ti)) = v

(
s⋃
i=1

ri(Ti)
)

(5.26)= v(T ∗).

Since T ∗ |= q̃, v is injective, and v maps nulls in T ∗ to constants that do not
occur in q̃, we conclude that ⋃ T |= q̃.

2 =⇒ 1: Assume that there is a nonempty finite set T of ⊆-minimal instances
in poss(T) such that ⋃ T |= q̃. We show that Algorithm 5.39 outputs “yes” on
input T and t̄.

Note that by ⋃ T |= q̃ and the fact that q̃ is domain-independent, there is
an assignment β : free(ψ)→ dom(⋃ T) ∪ C with⋃

T |= ψ(β).

In particular, we can pick for each i ∈ {1, . . . , k} an instance T̂i ∈ T such that

β(x̄i) ∈ RT̂i
i .

Note that there are at most s− k values in β(free(ψ)) \C that do not occur in
β(x̄i) for some i ∈ {1, . . . , k}. Thus, we can fix instances T̂k+1, . . . , T̂s ∈ T such

5.4. Computing GCWA∗-Answers to Universal Queries 167

that each of the values in β(free(ψ)) \ C that does not occur in β(x̄i) for some
i ∈ {1, . . . , k} belongs to dom(T̂j) for some j ∈ {k + 1, . . . , s}. Note that β is
an assignment of ψ with range in dom(T̂1 ∪ · · · ∪ T̂s) ∪ C, and

s⋃
i=1

T̂i |= ψ(β). (5.27)

Let i ∈ {1, . . . , k}. By Proposition 5.20(1), there is an instance T̃i ∈
minC(T) and an injective valuation vi of T̃i such that vi(T̃i) = T̂i, and v−1

i (c) = c
for all c ∈ dom(T̂i) ∩ C. In particular, the atom

Ai := Ri(v−1
i (β(x̄i)))

is an atom of T̃i. By Lemma 5.31, there is an atom block Bi of T , an instance
T ′i ∈ minC(T,Bi), an atom A′′i ∈ T ′i with A′′i ∼= Ai, and a homomorphism h′i from
T ′i to T̃i such that h′i(T ′i) = T̃i and h′i(A′′i) = Ai. In particular, the composition
hi := h′i ◦ ρ−1

i is a homomorphism from Ti := ρi(T ′i) to T̃i such that

hi(Ti) = T̃i

and
hi(A′i) = Ai,

where A′i := ρi(A′′i) ∼= Ai. Let αi be an assignment for Xi such that

A′i = Ri(αi(x̄i)).

Note that (Ti, αi) ∈ Xi. In the following, we show that (T1, α1), . . . , (Tk, αk)
can be joined, and extended by s− k disjoint copies of T , so that the resulting
instance satisfies q̃. In particular, this will show that Algorithm 5.39 outputs
“yes” on input T and t̄.

The following properties of the assignments αi are crucial for showing this:

Claim 1.
Let i, j ∈ {1, . . . , k}, let x, x′ ∈ Xi and let x′′ ∈ Xj. Then,

1. vi(hi(αi(x̄i))) = β(x̄i). In particular, vi(hi(αi(x))) = β(x).

2. If β(x) ∈ const(T) ∪ C, then αi(x) = β(x).

3. αi(x) = αi(x′) if and only if β(x) = β(x′).

4. αi(x) = αj(x′′) implies β(x) = β(x′′).

168 Chapter 5. The GCWA∗-Answers Semantics

Proof.

Ad 1: Recall that hi(A′i) = Ai, that Ai ∈ T̃i, and that vi is injective on dom(T̃i).
In particular, we have hi(αi(x̄i)) = v−1

i (β(x̄i)). Applying vi to both sides yields
vi(hi(αi(x̄i))) = β(x̄i).

Ad 2: Let β(x) ∈ const(T) ∪ C. By 1, we have

vi(hi(αi(x))) = β(x), (5.28)

which implies

hi(αi(x)) = β(x). (5.29)

Indeed, if β(x) ∈ const(T), (5.29) follows immediately from (5.28), const(T) ⊆
const(T̃i), and the fact that vi is an injective mapping from dom(T̃i) that is
the identity on constants. On the other hand, if β(x) ∈ C, then (5.29) follows
immediately from (5.28), β(x) ∈ dom(T̂i), and the fact that v−1

i (c) = c for all
c ∈ dom(T̂i) ∩ C.

Now (5.29) and hi(A′i) ∼= A′i imply that αi(x) is a constant, and since hi is
the identity on constants, we have αi(x) = β(x).

Ad 3: By 1, we have vi(hi(αi(x̄i))) = β(x̄i). Recall also that vi is injective, and
that hi(A′i) = Ai ∼= A′i, which implies that hi is injective on αi(Xi). Altogether,
the composition fi := vi ◦ hi is a bijection from αi(Xi) to β(Xi). This implies
that αi(x) = αi(x′) if and only if β(x) = β(x′).

Ad 4: Let αi(x) = αj(x′′). If i = j, then β(x) = β(x′′) follows immediately
from 3. So assume that i 6= j. Since αi(x) ∈ dom(Ti), αj(x′′) ∈ dom(Tj) and
nulls(Ti)∩nulls(Tj) = ∅, αi(x) and αj(x′′) must be constants. By 1 and the fact
that the homomorphisms hi, hj as well as the valuations vi, vj are the identity
on constants, we conclude that β(x) = αi(x) = αj(x′′) = β(x′′). y

We now show that (T1, α1), . . . , (Tk, αk) are compatible, and thus “joinable”.
To this end, consider the relation

∼ :=
{

(αi(x), αj(x′)) | i, j ∈ {1, . . . , k}, x ∈ Xi, x
′ ∈ Xj, β(x) = β(x′)

}
on D := ⋃k

i=1 αi(Xi).

Claim 2.

1. For all i, j ∈ {1, . . . , k}, for each x ∈ Xi and for each x′ ∈ Xj, we have

αi(x) ∼ αj(x′) ⇐⇒ β(x) = β(x′).

5.4. Computing GCWA∗-Answers to Universal Queries 169

2. The relation ∼ is an equivalence relation on D that satisfies conditions 1–3
of Definition 5.34.

Proof.

Ad 1: Let i, j ∈ {1, . . . , k}, let x ∈ Xi and let x′ ∈ Xj. If β(x) = β(x′), then
the definition of ∼ immediately yields αi(x) ∼ αj(x′).

On the other hand, let αi(x) ∼ αj(x′). Then there are i′, j′ ∈ {1, . . . , k},
y ∈ Xi′ and y′ ∈ Xj′ such that

αi′(y) = αi(x) and αj′(y′) = αj(x′), (5.30)

and

β(y) = β(y′). (5.31)

By (5.30) and Claim 1(4), we have

β(y) = β(x) and β(y′) = β(x′),

which by (5.31) yields β(x) = β(x′), as desired.

Ad 2: It is easy to verify that ∼ is an equivalence relation on D. Reflexivity
and symmetry are clear, and transitivity is easy to show using 1.

It follows easily from 1 that ∼ satisfies condition 1 of Definition 5.34: Let
i, j ∈ {1, . . . , k} and let x ∈ Xi ∩ Xj. Since β(x) = β(x), 1 then immediately
yields αi(x) ∼ αj(x).

For proving that ∼ satisfies condition 2 of Definition 5.34, let u, u′ ∈ D be
such that u ∼ u′ and u ∈ Const. Since u ∼ u′, there are i, j ∈ {1, . . . , k},
x ∈ Xi and x′ ∈ Xj such that αi(x) = u, αj(x′) = u′, and

β(x) = β(x′). (5.32)

By Claim 1(1), we have vi(hi(αi(x))) = β(x). Since αi(x) is a constant and hi, vi
are the identity on constants, this implies that αi(x) = β(x). In particular,

β(x′) (5.32)= β(x) = αi(x) ∈ const(Ti) ⊆ const(T) ∪ C. (5.33)

By Claim 1(2), this yields β(x′) = αj(x′), and therefore,

u = αi(x) (5.33)= β(x′) = αj(x′) = u′,

as desired.
Finally, for proving that ∼ satisfies condition 3 of Definition 5.34, let i ∈

{1, . . . , k} and let x, x′ ∈ Xi. Then,

αi(x) = αi(x′)
Claim 1(3)⇐⇒ β(x) = β(x′) Claim 2(1)⇐⇒ αi(x) ∼ αi(x′),

as desired. y

170 Chapter 5. The GCWA∗-Answers Semantics

By Claim 2, (T1, α1), . . . , (Tk, αk) are compatible. Let (T0, α0) be the output
of Algorithm 5.37 on input (T1, α1), . . . , (Tk, αk). It remains to show that

T ∗ := T0 ∪
s⋃

i=k+1
Ti,

where Ti := ρi(T) for each i ∈ {k + 1, . . . , s}, satisfies q̃. In other words,
it remains to construct an assignment α for ψ such that T ∗ |= ψ(α). This
assignment will be constructed with the help of:
Claim 3.
There is a homomorphism h0 from T0 to T̂0 := ⋃k

i=1 T̂i with h0(T0) = T̂0, and
h0(α0(x̄i)) = β(x̄i) for each i ∈ {1, . . . , k}.
Proof. Proposition 5.38(1) tells us that for each i ∈ {1, . . . , k}, there is an
injective mapping ri : dom(Ti)→ Dom such that

T0 =
k⋃
i=1

ri(Ti), (5.34)

and α0 : ⋃ki=1Xi → Dom is such that for each x ∈ ⋃ki=1Xi,

α0(x) =

r1(α1(x)), if x ∈ X1

...
rk(αk(x)), if x ∈ Xk.

(5.35)

Furthermore, for all i, j ∈ {1, . . . , k}, for each u ∈ dom(Ti) and each u′ ∈
dom(Tj), we have

ri(u) = rj(u′) =⇒ u = u′, or u ∈ αi(Xi), u′ ∈ αj(Xj) and u ∼ u′. (5.36)

Let h0 : dom(T0) → dom(T̂0) be defined such that for each i ∈ {1, . . . , k}
and each u ∈ dom(ri(Ti)), we have

h0(u) = vi(hi(r−1
i (u))). (5.37)

We claim that h0 is a homomorphism from T0 to T̂0 with h0(T0) = T̂0, and that
for each i ∈ {1, . . . , k} we have h0(α0(x̄i)) = β(x̄i).

Step 1: h0 is well-defined.
To see that h0 is well-defined, let us assume that u ∈ dom(ri(Ti))∩dom(rj(Tj)),
where i, j ∈ {1, . . . , k} are distinct. Let ui := r−1

i (u) ∈ dom(Ti) and let uj :=
r−1
j (u) ∈ dom(Tj). We must show that

vi(hi(ui)) = vj(hj(uj)).

Since ri(ui) = u = rj(uj), (5.36) implies that

5.4. Computing GCWA∗-Answers to Universal Queries 171

1. ui = uj, or

2. ui ∈ αi(Xi), uj ∈ αj(Xj) and ui ∼ uj.

If ui = uj, then both ui and uj are constants, since nulls(Ti)∩ nulls(Tj) = ∅ for
i 6= j; therefore,

vi(hi(ui)) = ui = uj = vj(hj(uj)),

as desired. On the other hand, assume that there are xi ∈ Xi and xj ∈ Xj such
that ui = αi(xi), uj = αj(xj) and αi(xi) ∼ αj(xj). Then Claim 2(1) implies
β(xi) = β(xj). By Claim 1(1), we thus have

vi(hi(αi(xi))) = β(xi) = β(xj) = vj(hj(αj(xj))),

which implies vi(hi(ui)) = vj(hj(uj)), as desired. Altogether, this shows that
h0 is well-defined.

Step 2: h0 is a homomorphism from T0 to T̂0 with h0(T0) = T̂0.
First note that for each i ∈ {1, . . . , k}, we have

h0(ri(Ti))
(5.37)= vi(hi(Ti)) = T̂i.

Hence,

h0(T0) (5.34)= h0

(
k⋃
i=1

ri(Ti)
)

=
k⋃
i=1

h0(ri(Ti)) =
k⋃
i=1

T̂i = T̂0.

Step 3: For each i ∈ {1, . . . , k}, we have h0(α0(x̄i)) = β(x̄i).
This is easy:

h0(α0(x̄i))
(5.35)= h0(ri(αi(x̄i)))

(5.37)= vi(hi(αi(x̄i)))
Claim 1(1)= β(x̄i).

Altogether, the proof of Claim 3 is complete. y

Let h0 be a homomorphism as in Claim 3. It is easy to extend h0 to a
mapping h on dom(T ∗) ∪ C with the following properties:

1. h(T0) = h0(T0) = ⋃k
i=1 T̂i,

2. h(Ti) = T̂i for each i ∈ {k + 1, . . . , s}, and

3. h(c) = c for each c ∈ C.

172 Chapter 5. The GCWA∗-Answers Semantics

Note that the second condition can be satisfied, since for all i ∈ {k + 1, . . . , s}
and for all j ∈ {1, . . . , s} with j 6= i, we have nulls(Ti) ∩ nulls(Tj) = ∅, Ti ∼= T

and T̂i ∈ poss(T). Note also that

h(T ∗) =
s⋃
i=1

T̂i. (5.38)

Let us also extend α0 to an assignment α for free(ψ) such that

h(α(y)) = β(y) for each y ∈ free(ψ). (5.39)

Note that (5.39) holds for all variables y that occur in x̄i for some i ∈ {1, . . . , k},
because h is an extension of h0, and α is an extension of α0. For each variable y ∈
free(ψ) that does not occur in x̄i for some i ∈ {1, . . . , k}, we pick an arbitrary
value u ∈ const(T ∗) ∪ C with h(u) = β(y) and let α(y) := u. Note that such a
value u always exists. First recall that the range of β is in dom(⋃si=1 T̂i) ∪ C.
If β(y) ∈ dom(⋃si=1 T̂i), then by (5.38) there is some u ∈ dom(T ∗) with h(u) =
β(y). On the other hand, if β(y) ∈ C, then h(β(y)) = β(y), because h is the
identity on constants, so that we can choose u = β(y).

We are finally ready to show that T ∗ |= ψ(α). First note that by Proposi-
tion 5.38(2), we have α0(x̄i) ∈ RT0

i for each i ∈ {1, . . . , k}; since T0 ⊆ T ∗ and α
extends α0, this implies

α(x̄i) ∈ RT ∗

i for each i ∈ {1, . . . , k}. (5.40)

Furthermore, we have

α(w̄i) /∈ QT ∗

i for each i ∈ {1, . . . , l}. (5.41)

Otherwise, if there is some i ∈ {1, . . . , l} with α(w̄i) ∈ QT ∗
i , then by (5.38) and

(5.39), we have
β(w̄i) ∈ Q

⋃s

i=1 T̂i
i ,

which is impossible by (5.27). Finally, we have

α(vi) 6= α(v′i) for each i ∈ {1, . . . ,m}. (5.42)

Indeed, let i ∈ {1, . . . ,m}. By (5.39), we have h(α(vi)) = β(vi) and h(α(v′i)) =
β(v′i). On the other hand, (5.27) implies that β(vi) 6= β(v′i), so that α(vi) and
α(v′i) must be distinct. Altogether, (5.40)–(5.42) imply that T ∗ |= ψ(α).

In particular, Algorithm 5.39 outputs “yes” on input T and t̄.

Note that this completes the proof of Lemma 5.33.

5.4. Computing GCWA∗-Answers to Universal Queries 173

5.4.4 Putting Things Together

In this section, we give a proof of Theorem 5.17.
Let M = (σs, σt,Σ) be a schema mapping, where Σ consists of packed st-

tgds, and let q be a universal query over σt. We show that there is a polynomial
time algorithm that takes a target instance T for M and a tuple t̄ ∈ Constar(q)

as input, and if T ∼= Core(M,S) for some source instance S for M , then it
decides whether t̄ ∈ certGCWA∗(q,M, S).

As shown in Section 5.4.1, we have t̄ /∈ certGCWA∗(q,M, S) if and only if there
is a nonempty finite set T of ⊆-minimal instances in poss(T) with ⋃ T |= ¬q(t̄).
Now observe that ¬q is logically equivalent to a query q̄ of the form

q̄(x̄) =
m∨
i=1

qi(x̄),

where each qi is an existential query of the form

qi(x̄) = ∃ȳi
ni∧
j=1

ϕi,j,

and each ϕi,j is an atomic FO formula or the negation of an atomic FO for-
mula. Indeed, since q is a universal query, we have ¬q ≡ ∃ȳ ϕ(x̄, ȳ), where ϕ
is quantifier-free. By transforming ϕ into “disjunctive normal form”, we obtain
a query of the form ∃ȳ∨mi=1

∧ni
j=1 ϕi,j, where each ϕi,j is an atomic FO formula

or the negation of an atomic FO formula. By moving existential quantifiers
inwards, we finally obtain q̄. It remains therefore to decide whether there is
some i ∈ {1, . . . ,m} and a nonempty finite set T of ⊆-minimal instances in
poss(T) such that ⋃ T |= qi(t̄).

We are now ready to describe the algorithm. By Lemma 5.23, there is a
positive integer b such that for each source instance S forM and each atom block
B of Core(M,S), we have |nulls(B)| ≤ b. Fix such a constant b. Furthermore,
by Proposition 5.30, each atom block of Core(M,S) is packed. Given a target
instance T forM and a tuple t̄ ∈ Constar(q) as input, the algorithm then proceeds
as follows.

1. Determine the atom blocks of T and check whether for each atom block
B of T , we have |nulls(B)| ≤ b and that B is packed. If not, reject the
input.

2. Check whether T is a core. If not, reject the input.

3. For each i ∈ {1, . . . ,m}:

174 Chapter 5. The GCWA∗-Answers Semantics

(a) Check whether there is a nonempty finite set T of ⊆-minimal in-
stances in poss(T) such that ⋃ T |= qi(t̄).

(b) If there is such a set T , then reject the input.

4. Accept the input.
Step 1 can easily be accomplished in time polynomial in the size of T . Further-
more, step 2 can be accomplished in time polynomial in the size of T , using the
algorithm presented in the proof of Lemma 2.31: the output of this algorithm
is T if and only if T is a core. Finally, Step 3 can be accomplished in time
polynomial in the size of T by Lemma 5.33. Consequently, the whole algorithm
runs in time polynomial in the size of T .

Altogether, the proof of Theorem 5.17 is complete.

5.4.5 Proof of Proposition 5.13

Finally, let us give a proof of Proposition 5.13. Let M = (σs, σt,Σ) be a schema
mapping, where Σ consists of st-tgds, and let q be a universal query over σt.
As in Section 5.4.4, we can assume that ¬q is logically equivalent to a query q̄
of the form

q̄(x̄) =
m∨
i=1

qi(x̄),

where each qi is an existential query of the form

qi(x̄) = ∃ȳi
ni∧
j=1

ϕi,j,

and each ϕi,j is an atomic FO formula or the negation of an atomic FO formula.
Let S be a source instance for M , and let t̄ ∈ Constar(q). As shown in

Section 5.4.1, we have t̄ /∈ certGCWA∗(q,M, S) if and only if there is a nonempty
finite set T of ⊆-minimal instances in poss(Core(M,S)) with ⋃ T |= ¬q(t̄).
Hence, on input S and t̄, a nondeterministic Turing machine can decide whether
t̄ /∈ certGCWA∗(q,M, S) by computing Core(M,S), and by determining for each
i ∈ {1, . . . ,m}, whether there is a nonempty finite set T of ⊆-minimal instances
in poss(Core(M,S)) with ⋃ T |= qi(t̄). If so, it accepts the input, and otherwise,
it rejects it.

By Theorem 2.28, Core(M,S) can be computed in time polynomial in the
size of S (for fixed M).

In order to check whether there is a nonempty finite set T of ⊆-minimal
instances in poss(Core(M,S)) with ⋃ T |= qi(t̄), it suffices to “guess” a set T of
at most

s := ni ·max {ar(R) | R ∈ σt}

5.4. Computing GCWA∗-Answers to Universal Queries 175

instances in poss(Core(M,S)), and to check whether ⋃ T |= qi(t̄). Indeed, let
T be a set of ⊆-minimal instances in poss(Core(M,S)) with ⋃ T |= qi(t̄). Then
there is an assignment α for the variables in x̄ and ȳi such that α(x̄) = t̄ and⋃ T |= ϕi,j(α) for each j ∈ {1, . . . , ni}. Without loss of generality, assume that
ϕi,1, . . . , ϕi,k for 0 ≤ k ≤ ni are all the relational atomic FO formulas in qi.
For each j ∈ {1, . . . , k}, there is an instance Tj ∈ T with Tj |= ϕi,j(α). Let
T ′0 := {T1, . . . , Tk} ⊆ T . Then ⋃ T ′0 |= ϕi,j(α) for each j ∈ {1, . . . , k}. To
obtain a set T0 ⊆ T that satisfies ⋃ T0 |= qi(t̄), we extend T ′0 as follows. Let
j ∈ {k + 1, . . . , ni}. Then there are at most max {ar(R) | R ∈ σt} values that
occur in ϕi,j(α). In particular, we can pick max {ar(R) | R ∈ σt} instances from
T that contain all these values. Add those instances to T ′0 . The resulting set
T0 is a subset of T , and satisfies ⋃ T0 |= qi(t̄), since

⋃ T0 |= ϕi,j(α) for each
j ∈ {1, . . . , k}. Furthermore, T0 contains at most s instances.

Note also that to find a nonempty finite set T of ⊆-minimal instances in
poss(Core(M,S)) with |T | ≤ s and ⋃ T |= qi(t̄), it suffices to consider valuations
v of Core(M,S) with range in C, where C contains all constants in Core(M,S),
all constants in qi, all constants in t̄, and all constants in {c1, . . . , cs·k}, where k
is the number of nulls in Core(M,S), and c1, . . . , cs·k is a sequence of pairwise
distinct constants that do not occur in Core(M,S), qi, and t̄.

Finally, it is easy for a Turing machine to check whether a given instance
T ∈ poss(Core(M,S)) is ⊆-minimal. For each atom A ∈ T , it just has to check
that the instance T \ {A} is no solution for S under M .

Altogether, given a source instance S for M , and a tuple t̄ ∈ Constar(q),
a nondeterministic Turing machine can check whether t̄ /∈ certGCWA∗(q,M, S).
This shows that Eval(M, q) belongs to co-NP, and in particular this proves
Proposition 5.13.

Membership in co-NP seems to be only a very rough upper bound on the
complexity of computing the GCWA∗-answers to universal queries under schema
mappings defined by st-tgds. I conjecture that the complexity of this problem
is in polynomial time. In fact, it seems that all what has to be done is to prove
Lemma 5.31 for the case that the atom blocks of T are not packed. This then
would yield the analogue of Theorem 5.15 for the case of schema mappings
defined by general st-tgds. It is conceivable that Theorem 5.15 even holds for
schema mappings defined by general st-tgds and egds.

176 Chapter 5. The GCWA∗-Answers Semantics

6 Conclusion

Query answering is an important issue in relational data exchange [Fagin et al.,
2005a, Kolaitis, 2005, Barceló, 2009]. In this thesis, several semantics for query
answering in relational data exchange, and the complexity of evaluating queries
with respect to these semantics have been discussed. This concluding chapter
finally addresses the following two questions:

1. Which semantics are appropriate for answering which queries? And what
are the relations between the different semantics?

2. What kind of solution should one compute so that queries can be evaluated
under the desired semantics using this kind of solution? In other words,
what are “good” solutions?

We deal with the first question in Section 6.1, and with the second one in Sec-
tion 6.2. The last section discusses some open questions, and possible extensions
of this thesis’ results.

6.1 Which Semantics are Appropriate for Answering Which
Queries?

The semantics for query answering in relational data exchange that have been
discussed throughout this thesis can be grouped into two categories: semantics
for answering monotonic queries, and semantics for answering non-monotonic
queries.

For answering monotonic queries, the following facts strongly suggest that
the certain answers semantics proposed by Fagin et al. [2005a] intuitively leads
to the desired results. First, the certain answers semantics has been widely used
for answering queries preserved under homomorphisms (see, e.g., Kolaitis [2005]
and Barceló [2009]), an important subclass of monotonic queries. Many exam-
ples have shown that the certain answers semantics leads to the desired results
with respect to those examples. Second, many of the other semantics considered
in this thesis coincide with the certain answers semantics on monotonic queries.
For the GCWA∗-answers semantics, this is shown by Proposition 5.10, and anal-
ogous proofs show this for the semantics from Chapter 4. For all but two of the
semantics from Chapter 3, this holds at least for queries preserved under homo-
morphisms (cf., e.g., Corollary 3.40). Third, consider a schema mapping M , a
source instance S forM , and a monotonic query q. Then one easily verifies that

178 Chapter 6. Conclusion

the certain answers to q on M and S can be defined as the certain answers to q
on the ⊆-minimal solutions for S underM . For query answering, it seems to be
reasonable to take into account at least the ⊆-minimal solutions for S underM .
Thus, intuitively, the certain answers to q onM and S lead to the desired set of
answers to q. Finally, monotonic queries are intuitively unable to ask whether
a relation of an instance does not contain a tuple; they can only ask whether
a tuple does belong to the particular relation. Thus, implicit information in
the sense described in Section 1.3.2 intuitively does not influence the certain
answers to monotonic queries.

Turning to non-monotonic queries, there seems to be no general query an-
swering semantics that is appropriate for all situations. Rather, the answer
to the question of the appropriate semantics depends on the particular appli-
cation and one’s point of view. If schema mappings are interpreted “as they
are”—without any additional information—then the certain answers semantics
intuitively leads to the desired results (cf., Section 1.3.2). However, as argued
in Section 1.3.2, it is often natural to interpret schema mappings with addi-
tional implicit information. In this case, the certain answers semantics can
yield answers that intuitively do not seem to be accurate.

For answering queries with respect to implicit information, several semantics
have been discussed throughout this thesis:

• On the one hand, we have the CWA-solution-based semantics, the mixed
world-solution-based semantics, and the endomorphic images semantics
(cf., Chapter 3). These semantics reflect the operational point of view on
tgds and egds. That is, tgds are considered as rules to derive new atoms,
whereas egds are considered as rules for identifying two values.

• On the other hand, we have the GCWA∗-answers semantics (cf., Chap-
ter 5) that reflects a semantic point of view on the schema mapping.
That is, schema mappings that are defined by logically equivalent sets of
formulas are considered as descriptions of one and the same data trans-
lation. In particular, on logically equivalent schema mappings, queries
have identical results. As shown in Section 3.6, this is not the case for the
above-mentioned semantics. Furthermore, the GCWA∗-answers semantics
reflects the standard semantics of FO quantifiers, which makes it more in-
tuitive if one is used to, for example, existential quantifiers expressing that
there are one, two, three or more elements that satisfy a given property.
Finally, the GCWA∗-answers semantics is defined for all schema mappings,
rather than schema mappings defined by tgds and egds.

For schema mappings defined by full tgds and egds, it is easy to verify that all of
the above-mentioned semantics for query answering with implicit information

6.2. What Kind of Solution Should one Compute? 179

lead to the same query answers. However, for more general schema mappings,
query answers may vary considerably.

The relations between the query answering semantics considered in this the-
sis are shown in Figure 6.1, and follow easily from the definitions and results
of this thesis. In Figure 6.1, an arc from semantics sem1 to semantics sem2
indicates that for all schema mappings M for which sem1 and sem2 are de-
fined, for all source instances S for M , and for all queries q over M ’s target
schema, we have sem1(q,M, S) ⊆ sem2(q,M, S). Furthermore, the semantics
cert∃op

mixed shown in Figure 6.1 is the following mixed world solution-based se-
mantics: For a schema mapping M defined by a set Σ of st-tgds, we let ΛM

be the annotation for M that annotates each position in the head of a st-tgd
of Σ, where an existentially quantified variable occurs, with op, and all other
positions with cl. Then for all source instances S for M , and all queries q over
M ’s target schema, cert∃op

mixed(q,M, S) denotes the certain answers to q on the
set ⋃(T,ΛT)∈solmixed(M,ΛM ,S) poss(T,ΛT).

6.2 What Kind of Solution Should one Compute?

Assuming an appropriate semantics for query answering in a particular situation
is identified, what kind of solution should one compute so that queries can be
evaluated under the desired semantics using this kind of solution? In other
words, what are “good” solutions? The answer to this question depends, as the
reader might have guessed, on the particular semantics, the schema mapping
and the query to be answered.

In a lot of cases, universal solutions are good for computing query answers.
Under almost all of the semantics considered in this thesis, the answers to
queries preserved under homomorphisms can be computed directly from an ar-
bitrary universal solution. For example, as shown by Fagin et al. [2005a] (see
also Section 2.1), the certain answers to queries preserved under homomor-
phisms can be computed directly from an arbitrary universal solution. More
precisely, given a schema mapping M , a source instance S for M , a universal
solution T for S under M , and a homomorphism-preserved query q over M ’s
target schema, the certain answers to q on M and S are precisely all tuples
that belong to q(T), and contain only constants. Since most of the semantics
considered in this thesis coincide with the certain answers semantics on queries
preserved under homomorphisms (cf., Section 6.1), this result carries over to
those semantics. However, we have seen that universal solutions can be good
even in cases where queries are not preserved under homomorphisms. One such
case is computing the certain answers to unions of conjunctive queries with at
most one inequality per disjunct with respect to weakly acyclic schema mappings

180 Chapter 6. Conclusion

mixed world solution-
based semantics

cert

endomorphic
images

semantics

cert∃op
mixed

cert�

cert♦

maybe�

maybe♦

certPWS

certGCWA∗

certGCWA

certEGCWA

certRCWA

for schema mappings
defined by st-tgds and
egds

if a unique ⊆-minimal
solution exists

Figure 6.1: Relations between the semantics considered in this thesis. An arc
from semantics sem1 to semantics sem2 indicates that for all schema mappings
M with respect to which sem1 and sem2 are defined, for all source instances S
for M , and for all queries q over M ’s target schema, we have sem1(q,M, S) ⊆
sem2(q,M, S).

6.2. What Kind of Solution Should one Compute? 181

(see Fagin et al. [2005a], or Section 2.4). In this case, one does not evaluate the
query directly on the universal solution T , but modifies T first to obtain another
solution on which the query is then evaluated. Another case is computing the
GCWA∗-answers to universal queries with respect to schema mappings defined
by packed st-tgds (see Section 5.4). Here, the universal solution must either be
the core of the universal solutions, or some universal solution of which the core
can be computed efficiently in order for the algorithm presented in Section 5.4
to work correctly. The crucial property is that the core of the universal solu-
tions for a source instance S under a schema mapping M defined by packed
st-tgds represents the set of all ⊆-minimal solutions for S under M , on which
the GCWA∗-solutions for S underM can be defined. These ⊆-minimal solutions
are precisely the ⊆-minimal instances in poss(Core(M,S)). Hence, one needs
only Core(M,S) in order to reconstruct all GCWA∗-solutions for S under M .
This property suffices to compute the GCWA∗-answers to universal queries on
M and S.

Furthermore, in many cases, universal solutions can be computed in polyno-
mial time from a given source instance. In particular, as shown by Fagin et al.
[2005a] (see also Section 2.2.2), this is possible if M is a fixed weakly acyclic
schema mapping (cf., Section 2.2). So, for example, if M is a weakly acyclic
schema mapping, it suffices to compute an arbitrary universal solution T for
a given source instance S for M in polynomial time in order to answer fixed
unions of conjunctive queries (with at most one inequality per disjunct), or Dat-
alog queries, later in polynomial time. Moreover, by the results mentioned in
Section 2.2.3, the core of the universal solutions can be computed in polynomial
time for fixed weakly acyclic schema mappings. On the other hand, we have
shown in Section 2.3 that there are schema mappings M (even defined by a set
of tgds only) such that the Existence-of-Universal-Solutions(M) prob-
lem is undecidable. In particular, there is no algorithm that computes universal
solutions for given source instances under M .

Besides the class of universal solutions, no other classes of solutions have
been identified such that queries can be evaluated based on a solution from this
class. However, in some cases where universal solutions cannot be used, univer-
sal solution sets introduced by Deutsch et al. [2008] (see also Section 2.4) may
be helpful. Universal solutions are not single solutions—they consist of a finite
number of solutions. However, it was shown that the certain answers to mono-
tonic queries, or other classes of queries, can be computed from universal solu-
tion sets in a similar way as computing the certain answers to homomorphism-
preserved queries from a universal solution. Furthermore, universal solution sets
can often be computed using an extension of the chase. I refer the interested
reader to Deutsch et al. [2008] to learn more about this topic.

182 Chapter 6. Conclusion

6.3 Open Problems and Suggestions For Future Work

Quite a number of interesting research problems remain open. Some of these
problems are described in the following.

First of all, since universal solutions are at the core of computing the cer-
tain answers to queries preserved under homomorphisms, and queries preserved
under homomorphisms are a fundamental class of database queries, I think it is
an important task to identify further classes of schema mappings M for which
universal solutions can be computed, that is, for which there is an algorithm
that takes a source instance S for M as input, and computes a universal so-
lution for S under M if such a solution exists, and outputs that there is no
solution otherwise. It is then interesting to analyze the exact complexity of the
algorithm. It could be fruitful to first identify classes of schema mappings, for
which chase termination is decidable, preferably in polynomial time. It seems
to be possible to achieve such a decidability result for schema mappings defined
by st-tgds and guarded tgds, where a tgd ∀x̄∀ȳ(ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)) is guarded
if and only if ϕ contains an atomic formula R(ū) such that all variables from
x̄ and ȳ occur in ū. Guarded tgds have been considered by Calì et al. [2008,
2009], who studied the problem of evaluating conjunctive queries on the result
of the chase on a given instance and a set of guarded tgds. Some ideas from
Johnson and Klug [1982], Calì et al. [2004, 2008, 2009] may help to show that
chase termination for schema mappings defined by st-tgds and guarded tgds is
indeed decidable in polynomial time.

Universal solutions, or special universal solutions like the core of the univer-
sal solutions, are good for query evaluation in various settings. For example,
universal solutions are good in the case of a weakly acyclic schema mapping
and a query that is preserved under homomorphisms. Other results have been
mentioned throughout this thesis. It is interesting to identify further classes
of schema mappings and queries, for which universal solutions are good. That
is, for which query answering semantics sem, for which schema mappings M
and for which queries q, is there a polynomial time algorithm that, given (an
arbitrary or a specific) universal solution for some source instance S for M ,
computes the answers to q on M and S with respect to sem?

It is also an interesting task to identify classes of solutions on which query
answers can be computed if universal solutions do not suffice. One should not
only restrict attention to single solutions, but consider other representation
mechanisms that are useful for query answering, too. For example, universal
solution sets should be further studied.

As mentioned at the end of Chapter 5, I believe that it is possible to extend
Theorem 5.15 to schema mappings defined by st-tgds and egds. To obtain the
result for schema mappings defined by st-tgds, it seems that all what has to be

6.3. Open Problems and Suggestions For Future Work 183

done is to prove Lemma 5.31 for the case that the atom blocks of T are not
packed.

A lot of more work has to be done for understanding the complexity of
query answering under the various semantics discussed in this thesis. The fact
that for some schema mappings M defined by st-tgds, and for some existential
queries q the data complexity of computing the GCWA∗-answers to q under M
is hard does not imply that it could not be in polynomial time for other schema
mappings defined by st-tgds, and other queries. The same comment applies
to the other semantics. Furthermore, we only considered the data complexity
of query answering – we did not consider the combined complexity, where the
schema mapping and the query belong to the input.

For the case that query answering is hard under the desired semantics, one
could also try to approximate the set of the query answers. Different kinds
of approximations are conceivable. For example, one could try to compute a
subset, or a superset respectively, of the answers that is as close to the optimal
set of answers as possible.

Finally, it should be possible to fruitfully apply the various approaches for
capturing implicit information in schema mappings to the schema mapping op-
erators mentioned in Section 1.2. For example, one could study the composition
operator or the inversion operator under the assumption that the only solutions
are CWA-solutions, or GCWA∗-solutions. For the composition operator, this
was done already by Libkin and Sirangelo [2008] with respect to mixed world
solutions. It is conceivable that composition and inversion of schema mappings
can be specified by schema mappings defined by languages that are strictly less
expressive than the languages required in the general case.

184 Chapter 6. Conclusion

Bibliography

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

Foto N. Afrati and Phokion G. Kolaitis. Answering aggregate queries in data ex-
change. In Proceedings of the 27th ACM Symposium on Principles of Database
Systems (PODS), pages 129–138, June 2008.

Foto N. Afrati, Chen Li, and Vassia Pavlaki. Data exchange in the presence of
arithmetic comparisons. In Proceedings of the 11th International Conference
on Extending Database Technology (EDBT), pages 487–498, March 2008.

Shun’ichi Amano, Leonid Libkin, and Filip Murlak. XML schema mappings. In
Proceedings of the 28th ACM Symposium on Principles of Database Systems
(PODS), pages 33–42, June 2009.

Marcelo Arenas and Leonid Libkin. XML data exchange: Consistency and
query answering. Journal of the ACM, 55(2):Article 7, May 2008.

Marcelo Arenas, Pablo Barceló, Ronald Fagin, and Leonid Libkin. Locally con-
sistent transformations and query answering in data exchange. In Proceedings
of the 23th ACM Symposium on Principles of Database Systems (PODS),
pages 229–240, June 2004.

Marcelo Arenas, Pablo Barceló, and Juan Reutter. Query languages for data
exchange: Beyond unions of conjunctive queries. In Proceedings of the 12th
International Conference on Database Theory (ICDT), pages 73–83, March
2009a.

Marcelo Arenas, Jorge Pérez, and Cristian Riveros. The recovery of a schema
mapping: Bringing exchanged data back. ACM Transactions on Database
Systems, 34(4):Article 22, December 2009b.

Albert Atserias, Anuj Dawar, and Phokion G. Kolaitis. On preservation under
homomorphisms and unions of conjunctive queries. Journal of the ACM, 53
(2):208–237, March 2006.

Pablo Barceló. Logical foundations of relational data exchange. SIGMOD
Record, 38(1):49–58, March 2009.

186 Bibliography

Catriel Beeri and Moshe Y. Vardi. A proof procedure for data dependencies.
Journal of the ACM, 31(4):718–741, October 1984.

Philip A. Bernstein. Applying model management to classical meta-data prob-
lems. In Proceedings of the 1st Conference on Innovative Data Systems Re-
search (CIDR), pages 209–220, January 2003.

Andrea Calì, Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini.
Data integration under integrity constraints. Information Systems, 29(2):
147–163, April 2004.

Andrea Calì, Georg Gottlob, and Michael Kifer. Taming the infinite chase:
Query answering under expressive relational constraints. In Proceedings of
the 11th International Conference on Principles of Knowledge Representation
and Reasoning (KR), pages 70–80, September 2008.

Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. A general datalog-based
framework for tractable query answering over ontologies. In Proceedings of
the 28th ACM Symposium on Principles of Database Systems, pages 77–86,
June 2009.

Edward P. F. Chan. A possible world semantics for disjunctive databases. IEEE
Transactions on Knowledge and Data Engineering, 5(2):282–292, April 1993.

Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo
Rosati. On reconciling data exchange, data integration, and peer data man-
agement. In Proceedings of the 26th ACM Symposium on Principles of
Database Systems (PODS), pages 133–142, June 2007.

Alin Deutsch, Alan Nash, and Jeff Remmel. The chase revisited. In Proceedings
of the 27th ACM Symposium on Principles of Database Systems (PODS),
pages 149–158, June 2008.

Heinz-Dieter Ebbinghaus and Jörg Flum. Finite Model Theory. Springer, 1999.

Ronald Fagin. Inverting schema mappings. ACM Transactions on Database
Systems, 32(4):Article 25, November 2007.

Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data
exchange: Semantics and query answering. Theoretical Computer Science,
336(1):89–124, May 2005a.

Ronald Fagin, Phokion G. Kolaitis, and Lucian Popa. Data exchange: Getting
to the core. ACM Transactions on Database Systems, 30(1):174–210, March
2005b.

Bibliography 187

Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang Chiew Tan. Com-
posing schema mappings: Second-order dependencies to the rescue. ACM
Transactions on Database Systems, 30(4):994–1055, December 2005c.

Ronald Fagin, Phokion G. Kolaitis, Alan Nash, and Lucian Popa. Towards a
theory of schema-mapping optimization. In Proceedings of the 27th Sympo-
sium on Principles of Database Systems (PODS), pages 33–42, June 2008a.

Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang Chiew Tan. Quasi-
inverses of schema mappings. ACM Transactions on Database Systems, 33
(2):Article 11, June 2008b.

Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang Chiew Tan. Reverse
data exchange: Coping with nulls. In Proceedings of the 28th Symposium on
Principles of Database Systems (PODS), pages 23–32, June 2009.

Ariel Fuxman, Phokion G. Kolaitis, Renée J. Miller, and Wang Chiew Tan.
Peer data exchange. ACM Transactions on Database Systems, 31(4):1454–
1498, December 2006.

Hervé Gallaire, Jack Minker, and Jean-Marie Nicholas. Logic and databases: A
deductive approach. ACM Computing Surveys, 16(2):153–185, June 1984.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

Georg Gottlob and Alan Nash. Efficient core computation in data exchange.
Journal of the ACM, 55(2):Article 9, May 2008.

Martin Grohe, André Hernich, and Nicole Schweikardt. Lower bounds for pro-
cessing data with few random accesses to external memory. Journal of the
ACM, 56(3):Article 12, May 2009.

Laura M. Haas, Mauricio A. Hernández, C. T. Howard Ho, Lucien Popa, and
M. Roth. Clio grows up: From research prototype to industrial tool. In
Proceedings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD), pages 805–810, June 2005.

Pavol Hell and Jaroslav Nešetřil. The core of a graph. Discrete Mathematics,
109(1–3):117–126, November 1992.

André Hernich. Answering non-monotonic queries in relational data exchange.
In Proceedings of the 13th International Conference on Database Theory
(ICDT), pages 143–154, March 2010.

188 Bibliography

André Hernich and Nicole Schweikardt. CWA-solutions for data exchange set-
tings with target dependencies. In Proceedings of the 26th ACM Symposium
on Principles of Database Systems (PODS), pages 113–122, June 2007.

André Hernich and Nicole Schweikardt. Reversal complexity revisited. Theo-
retical Computer Science, 401:191–205, July 2008.

André Hernich and Nicole Schweikardt. Logic and data exchange: Which so-
lutions are “good” solutions? In Giacomo Bonanno, Benedikt Löwe, and
Wiebe van der Hoek, editors, Logic and the Foundations of Game and Deci-
sion Theory – LOFT 8, volume 6006 of Lecture Notes in Computer Science,
pages 61–85. Springer-Verlag, 2010.

Tomasz Imielinski and Witold Lipski, Jr. Incomplete information in relational
databases. Journal of the ACM, 31(4):761–791, October 1984.

David S. Johnson and Anthony C. Klug. Testing containment of conjunctive
queries under functional and inclusion dependencies. In Proceedings of the 1st
ACM Symposium on Principles of Database Systems, pages 164–169, March
1982.

Phokion G. Kolaitis. Schema mappings, data exchange, and metadata manage-
ment. In Proceedings of the 24th ACM Symposium on Principles of Database
Systems (PODS), pages 61–75, June 2005.

Phokion G. Kolaitis, Jonathan Panttaja, and Wang Chiew Tan. The complexity
of data exchange. In Proceedings of the 25th ACM Symposium on Principles
of Database Systems (PODS), pages 30–39, June 2006.

Georg Lausen, Michael Meier, and Michael Schmidt. On chase termination
beyond stratification, September 2009. CoRR, arXiv:0906.4228v2.

Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.

Leonid Libkin. Data exchange and incomplete information. In Proceedings of
the 25th ACM Symposium on Principles of Database Systems (PODS), pages
60–69, June 2006.

Leonid Libkin and Cristina Sirangelo. Data exchange and schema mappings
in open and closed worlds. In Proceedings of the 27th ACM Symposium on
Principles of Database Systems (PODS), pages 139–148, June 2008.

Aleksander Mądry. Data exchange: On the complexity of answering queries
with inequalities. Information Processing Letters, 94(6):253–257, June 2005.

Bibliography 189

Bruno Marnette. Generalized schema mappings: From termination to tractabil-
ity. In Proceedings of the 28th ACM Symposium on Principles of Database
Systems (PODS), pages 13–22, June 2009.

Jack Minker. On indefinite databases and the closed world assumption. In
Donald W. Loveland, editor, Proceedings of the International Conference on
Automated Deduction (CADE), volume 138 of Lecture Notes in Computer
Science, pages 292–308. Springer-Verlag, June 1982.

Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

Raymond Reiter. On closed world data bases. In Hervé Galaire and Jack
Minker, editors, Logic and Data Bases, pages 55–76. Plenum Press, 1978.

Benjamin Rossman. Homomorphism preservation theorems. Journal of the
ACM, 55(3):Article 15, July 2008.

Nan C. Shu, Barron C. Housel, Robert W. Taylor, Sakti P. Ghosh, and Vin-
cent Y. Lum. EXPRESS: A data EXtraction, Processing, and REStructuring
system. ACM Transactions on Database Systems, 2(2):134–174, June 1977.

Balder ten Cate and Phokion G. Kolaitis. Structural characterizations of
schema-mapping languages. In Proceedings of the 12th International Con-
ference on Database Theory (ICDT), pages 63–72, March 2009.

Ron van der Meyden. Logical approaches to incomplete information: A survey.
In Logics for Databases and Information Systems, pages 307–356. Kluwer,
1998.

Adnan H. Yahya and Lawrence J. Henschen. Deduction in non-Horn databases.
Journal of Automated Reasoning, 1(2):141–160, June 1985.

190 Bibliography

Index

�Mq(T), 88
(σs, σt,Σ), 9
♦Mq(T), 88
αu
x
, 8

α∗, 8⋂, 18⋃, 124
`Σ, 39
`χ,α, 38, 39∼=, 7
|=, 8, 113
|=D, 9
D, 113
D, 115
ϕ(I), 15
ϕ(x̄), 7
ϕ[α], ϕ[ū], 38
\, 38
‖I‖, 43
inj→, 58
⊆, 20
∪, 9, 38
ζ(j), 65, 70
f(A), 148
q(I), 14
q(T)↓, 94
qϕ,x̄, 15

active domain, 2, 122
aggregate query, 107
algorithm

~ for CoreEvalσ,b, 161
blocks ~, see blocks algorithm
compatibility check, 156
join, 158

annotated atom, 105

annotated instance, 105–107
annotated schema mapping, 105–107
annotated target instance, 105–107
annotation, 104, 105

for a schema mapping, 105, 177
for a st-tgd, 104
for an instance, 105
for the canonical universal

solution, 105
answer to a query, see query
ar(q), 14
ar(R), 2
arity

of a query, 14
of a relation symbol, 2

assignment
for a formula, 8, 9, 122, 155, 156,

163–165, 168, 170
for a propositional formula, 101
for a set of variables, 8, 122, 155,

173
of justifications to tuples, 65, 70

atom, 37
atom block, 141

packed, see packed atom block
atomic formula, see formula
atoms(I), 37
atoms(ζ, j), 65, 70

block, 44, 141
blocks algorithms, 45
Boolean query, 22, 59, 100, 102, 131,

133

C-generic
query, 15, 19, 20, 36
schema mapping, 6

192 Index

canonical universal solution, 66–68, 79,
83–85, 90–92, 102, 105–107, 109,
137

CanSol(M,S), see canonical universal
solution

cert(q, I), 18
cert(q,M, S), 19
cert�(q,M, S), 89, 114, 116
cert♦(q,M, S), 89
certEGCWA(q,M, S), 117
certGCWA(q,M, S), 116
certGCWA∗(q,M, S), 125
certPWS(q,M, S), 118
certRCWA(q,M, S), 114
certain answers

for incomplete instances, 18
for schema mappings, 14, 17–21,

25, 31, 58, 63
counter-intuitive answers, 21–24

certain CWA-answers, 89
chase, 25, 31, 37–41, 69

result, 38
termination, see chase termination

chase sequence, 39
complete, 39
failing, 40
length, 39
result, 39
successful, 39

chase step, 39
egd ~, 39
tgd ~, 38

chase termination, 41, 42, 53
clause, 112
Clique, 131
closed world assumption, see CWA
3-colorability, 44
composition of schema mappings, see

schema mapping management
computation

of query results, see query answer-
ing

of solutions, 13
conjunct, 57
conjunctive query, 16, 20

with inequalities, 57
with negation, 131

consequence relation (|=), 113
Const, 5
const(I), 5
constant, 5
copying edge, 42
copying schema mapping, 21
core, 34

of an instance, 34
of the universal solutions, 26, 31,

34–35, 81
computation, 44–46

Core(I), 143
Core(M,S), 35
CoreEvalσ,b, 154
CQ¬, 131
CWA, 21, 27, 61, 111, 113
CWA-answers, 114
CWA-model, 113
CWA-presolution, 63, 66, 68, 73–74, 78

game, see a(M,S, T)
game characterization, 76

CWA-solution, 25–26, 61, 79
maximal, 83, 85
minimal, 85
requirements, 61, 62
structure of the set of ~, 85–87

DI , 112, 113
DM,S, 113
data complexity

of queries on instances, 16
of queries w.r.t. schema mappings,

27, 93, 129
data exchange

Index 193

in general, 1
multiple “parties”, 1
relational, see relational data

exchange
systems, 1
XML ~, see XML data exchange

data restructuring, 1
data translation, see data exchange
data warehouse, 1
Datalog query, 16, 31, 35
deductive database, 27, 111, 112
dependency graph, 42

extended ~, see extended depen-
dency graph

Dom, 2, 5
dom(ϕ), 9
dom(I), 2
domain independent, 9

EGCWA, 27, 113, 117
EGCWA-solution, 117
egd, 12

application, 39
failing application, 39

egd chase step, see chase step
embedding problem for finite

semigroups, 10, 55
endomorphic image, 107
endomorphic images semantics, 107
endomorphism, 107
equality generating dependency,

see egd
ETL (Extract-Transform-Load), 1
Eval, 28, 130
Evalcert�(M, q), 94
Evalcert♦(M, q), 94
Evalmaybe�(M, q), 94
Evalmaybe♦(M, q), 94
Existence-of-Solutions, 10, 54, 55
Existence-of-Universal-

Solutions, 46, 55–57

existential edge, 42
existential query, 28, 131
∃∗∀ FO query, 133
expansion, 106
extended dependency graph, 98
extended GCWA, see EGCWA
extension of a function, 10
extensional data, 112

fact, 79
falsifier, 75
first-order logic (FO), 7
FO formula, see formula
FO query, 15
formula

atomic, 7
domain independent, see domain

independent
FO ~, 7, 9
L∞ω, 122
L∞ω ~, 9
relational atomic, 7
without free variables, see sentence

free variables, 7
free(ϕ), 7
full tgd, see tgd

a(M,S, T), 74–75
Gaifman graph

of the atoms, 141
of the nulls, 44

game for CWA-presolutions, see
a(M,S, T)

GCWA, 27, 113, 115
GCWA∗-answers, 27, 119, 120, 125
GCWA∗-solution, 27, 119–121, 125
GCWA-answers, 116
GCWA-model, 115
GCWA-solution, 116
generalized CWA, see GCWA
generic

194 Index

query, 15
schema mapping, 6, 9

“good” solution, 12–13, 16
ground instance, 6

Halt, 46
halting problem, 10, 46
homomorphically equivalent, 34
homomorphism, 32, 106

ihom-universal solution set, 58–59
implicit information, 23, 24
incomplete instance, 18
inst(σ), 2
instance, 2

ground, see ground instance
incomplete, see incomplete

instance
size, 43
with nulls, see naive table
without nulls, see ground instance
without nulls vs. with nulls, 5–6

intensional data, 112
inversion of schema mappings, see

schema mapping management
isomorphic

atoms, 148
instances, 7

isomorphism, 7

JM , 70
JM,S, 64
J ∗M,S, 65
JΣ, 70
J ∗Σ, 70
justification, 61, 64, 70, 118

“circular”, 69
potential ~, see potential justifica-

tion
justified, 61, 63, 64, 69

L∞ω formula, see formula

L∞ω logic, 9
labeled null value, see null
ΛM,ΛM ,S, 105
LAV tgd, see tgd
library database example

basic description, 2–5
defined by tgds and egds, 12
logically defined, 10
solution with nulls, 5

Memb, 55
MHalt, 46, 54
maximal CWA-solution, see CWA-so-

lution
maybe answers, 88
maybe CWA-answers, 89
maybe�(q,M, S), 89
maybe♦(q,M, S), 89
⊆-minimal

~ model, 115
~ solution, 27, 115
in a set of instances, 115

minimal CWA-solution, see CWA-so-
lution

minimization of schema mappings, see
schema mapping management

minC(T), 139
minC(T,B), 143
minvalC(T,B), 143
mixed world solution, 103, 106
mixed world-presolution, 106
mixed world-solution, 107
model, 53

of a deductive database, 112
model management, 14
monotonic query, 20, 21

naive table, 6
natural semantics, 8
Null, 5
null, 5

Index 195

nulls(I), 5

oblivious chase, 44
open world assumption, see OWA
optimization of schema mappings, see

schema mapping management
OWA, 21

packed atom block, 148
packed st-tgd, see tgd
peer data exchange, see data exchange
persistent maybe CWA-answers, 89
position over a schema, 42

appearance at a ~, 42
poss(I), 18
poss(T,ΛT), 107
possM(T), 88
possible world

of a naive table, 18
of an incomplete instance, 18

possible worlds semantics, see PWS
Post’s correspondence problem, 10
potential certain CWA-answers, 89
potential justification, 69
preserved under homomorphisms, see

query
PWS, 27, 113, 118
PWS-solution, 118

query, 14, 15
Boolean, see Boolean query
C-generic, see C-generic
conjunctive, see conjunctive query
Datalog, see Datalog query
existential, see existential query
∃∗∀, see ∃∗∀ FO query
FO ~, see FO query
generic, see generic
k-ary, 14
logically defined, 15
monotonic, see monotonic query

preserved under homomorphisms,
31, 35, 63

result, 14
union of conjunctive queries, see

union of conjunctive queries
universal, see universal query

query answering
complexity, 25, 27
counter-intuitive answers, 6, 18
in relational data exchange, 1, 13,

14, 16–18
on deductive databases, 113
on incomplete instances, 18, 88
on instances, 14, 16
using implicit information, 24, 25,

27, 61
query answering semantics, 14, 24, 87

taking into account implicit infor-
mation, 25, 27, 61

query evaluation, see query answering
query languages, 16

conjunctive queries, see
conjunctive query

Datalog, see Datalog query
monotonic queries, see monotonic

query
unions of conjunctive queries, see

union of conjunctive queries

range, 2
RCWA-answers, 114
RCWA-solution, 114
relation symbol, 2
relational atomic formula, see formula
relational data exchange, 1, 13

basic goal, 2
formal framework, 3

result
of a chase sequence, see chase se-

quence
of a query, see query

196 Index

of a ζ-chase sequence, see ζ-chase
sequence

of the chase, see chase
retraction, 145
richly acyclic, 97
right monotonic L∞ω-st-tgd, see tgd

satisfaction relation (|=), 8
w.r.t. a set of values, 9

schema, 2
schema mapping, 3, 4, 6

C-generic, see C-generic
copying, see copying schema map-

ping
defined by tgds and egds, 11–12
equivalences, 14
generic, see generic
logical equivalence, 26, 109
logically defined, 3, 9
richly acyclic, see richly acyclic
specification, 7, 9–12, 23
specification languages, 14
structural properties, 14
weakly acyclic, see weakly acyclic

schema mapping management
composition, 13
inversion, 13
minimization, 14
optimization, 14

sentence, 7, 122
sol(M,S), 3, 18
solCWA(M,S), 79
solGCWA∗(M,S), 125
solgr(M,S), 19
solmixed(M,ΛM , S), 107
solution, 3

canonical universal ~, see canoni-
cal universal solution

CWA-~, see CWA-solution
CWA-pre~, see CWA-presolution
EGCWA-~, see EGCWA-solution

GCWA∗-~, see GCWA∗-solution
GCWA-~, see GCWA-solution
“good” ~, see “good” solution
mixed world ~, see mixed world so-

lution
mixed world-~, see mixed world-

presolution
PWS-~, see PWS-solution
RCWA-~, see RCWA-solution
universal, see universal solution

source instance, 3, 6
source schema, 3
st-tgd, see tgd
stratification, 44
subinstance, 20

t-tgd, see tgd
TM,S,ζ , 66
target instance, 3, 6
target schema, 3
tgd, 12

application, 38
full, 12
LAV, 131
packed st-tgd, 28, 119, 134
right monotonic L∞ω-st-tgd, 122
st-tgd, 11
t-tgd, 12

tgd chase step, see chase step
the certain answers

for schema mappings, 19
Trakhtenbrot’s Theorem, 10
tuple generating dependency, see tgd

union of conjunctive queries, 16, 20, 21,
31, 35

with inequalities, 57
universal model

strong, 53
weak, 53, 54

universal model set, 57

Index 197

universal query, 28, 119, 134
universal solution, 13, 21, 25, 31, 32,

34–37, 46, 53
core of the ~, see core

universal solution set, 57
F -~, 58
ihom ~, see ihom-universal

solution set

valC(T), 139
valC(T,B), 143
valuation, 18
value, 2

constant, see constant
null, see null

Var, 7
verifier, 75

weak acyclicity, 42–43
weakly acyclic

schema mapping, 42, 43
set of tgds, 42

XML data exchange, 1

ζ-chase, 69–71
ζ-chase sequence, 71–73

result, 71
successful, 71

198 Index

Lebenslauf

22.01.1980 geboren in Prenzlau

1986–1992 Grundschule in Schmölln (bei Prenzlau)

1992–1994 Lindenschule in Prenzlau
(Gesamtschule mit gymnasialer Oberstufe)

1994–1999 Gesamtschule Talsand in Schwedt/Oder
(Gesamtschule mit gymnasialer Oberstufe)

Juni 1999 Abitur

1999–2000 Wehrdienst

2000–2005 Informatikstudium mit Nebenfach Mathematik an
der Technischen Universität Berlin

Febr. 2005 Diplom in Informatik
Diplomarbeit: Combining Self-Reducibility with Par-
tial Information Algorithms (Betreuer: Prof. Dr. Dirk
Siefkes und Dr. Arfst Nickelsen)

Mai 2005–Nov. 2007 wissenschaftlicher Mitarbeiter in der Arbeitsgruppe
Logik und Datenbanktheorie von Prof. Dr. Nicole
Schweikardt an der Humboldt-Universität zu Berlin

Nov. 2007–März 2010 wissenschaftlicher Mitarbeiter in der Arbeitsgruppe
Theorie komplexer Systeme von Prof. Dr. Nicole
Schweikardt an der Goethe-Universität Frankfurt am
Main

seit Apr. 2010 wissenschaftlicher Mitarbeiter in der Arbeitsgruppe
Logik in der Informatik von Prof. Dr. Martin Grohe
an der Humboldt-Universität zu Berlin

	Abstract
	Zusammenfassung
	Preface
	Introduction
	The Central Concepts of Relational Data Exchange
	Schema Mappings and Solutions
	Logically Defined Schema Mappings

	Research Topics in Relational Data Exchange
	How to Answer Queries in Relational Data Exchange?
	The Certain Answers Semantics
	Coping With Implicit Information

	Contributions of this Thesis
	Structure of this Thesis

	Computing the Certain Answers to Monotonic Queries
	Review of Universal Solutions and Their Core
	How to Compute Universal Solutions?
	Review of the Chase
	Sufficient Conditions for Chase Termination
	How to Compute the Core of the Universal Solutions?

	Undecidability of the Existence of Universal Solutions
	Queries With Inequalities

	Justification-Based Approaches to Query Answering
	Definition and Basic Properties of CWA-Presolutions
	Schema Mappings Defined by St-Tgds
	Schema Mappings Defined by Tgds and Egds
	A Game-Based Characterization

	Definition and Basic Properties of CWA-Solutions
	Semantics for Query Answering Using CWA-Solutions
	Complexity of Query Answering Using CWA-Solutions
	Queries Preserved Under Homomorphisms
	First-Order Queries

	Query Answering Based on Variants of CWA-Solutions
	Limitations to the Justification-Based Approach

	Deductive Databases and Relational Data Exchange
	Definition of Deductive Databases
	The Closed World Assumption (CWA)
	The Generalized Closed World Assumption (GCWA)
	Concepts Related to the GCWA

	The GCWA*-Answers Semantics
	Definition of GCWA*-Solutions and GCWA*-Answers
	A Characterization of GCWA*-Solutions
	The Complexity of Computing GCWA*-Answers
	Monotonic Queries
	Existential Queries and Beyond

	Computing GCWA*-Answers to Universal Queries
	GCWA*-Answers and the Core of the Universal Solutions
	Finding Atoms of Minimal Possible Worlds
	Existentially Quantified Conjunctions of Atomic Formulas and Negations of Atomic Formulas
	Putting Things Together
	Proof of Proposition 5.13

	Conclusion
	Which Semantics are Appropriate for Answering Which Queries?
	What Kind of Solution Should one Compute?
	Open Problems and Suggestions For Future Work

	Bibliography
	Index

