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Abstract. Biomedical research requires deep domain expertise to per-
form analyses of complex data sets, assisted by mathematical expertise
provided by data scientists who design and develop sophisticated meth-
ods and tools. Such methods and tools not only require preprocessing
of the data, but most of all a meaningful input selection. Usually, data
scientists do not have sufficient background knowledge about the origin
of the data and the biomedical problems to be solved, consequently a
doctor-in-the-loop can be of great help here. In this paper we revise the
viability of integrating an analysis guided visualization component in an
ontology-guided data infrastructure, exemplified by the principal compo-
nent analysis. We evaluated this approach by examining the potential for
intelligent support of medical experts on the case of cerebral aneurysms
research.
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1 Introduction

Medicine is constantly turning into a data intensive science and the quantity
of available health data is enormously increasing - far beyond what a medical
doctor can handle [4]. Within such large amounts of data, relevant structural
and/or temporal patterns (“knowledge”) are often hidden and not accessible to
the medical doctors [14].

However, the real problem is not only in the large quantities of data (collo-
quially called: “big data”), but in “complex data”. Medical doctors today are
confronted with complex data sets in arbitrarily high dimensions, mostly het-
erogeneous, semi-structured, weakly-structured and often noisy [15] and of poor
data quality. The handling and processing of this data is known to be a major
technical obstacle for (bio-)medical research projects [2]. However, it is not only
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the data handling that contains major obstacles, also the application of advanced
data analysis and visualization methods is often only understandable for data
scientists. This situation will become even more dramatic in the future due to
the ongoing trend towards personalized medicine with the goal of tailoring the
treatment to the individual patient [12].

Interestingly, there is evidence that human experts sometimes still outperform
sophisticated algorithms, e.g., in the instinctive, often almost instantaneous inter-
pretation of complex patterns. A good example is diagnostic radiologic imaging,
where a promising approach is to fill the semantic gap by integrating the physi-
cians high-level expert knowledge into the retrieval process by acquiring his/her
relevance judgments regarding a set of initial retrieval results [1].

Consequently, the integration of the knowledge of a domain expert may some-
times greatly enhance the knowledge discovery process pipeline. The combina-
tion of both human intelligence and machine intelligence, by putting a “human-
in-the-loop” would enable what neither a human nor a computer could do on
their own. This human-in-the-loop can be beneficial in solving computation-
ally hard problems, where human expertise can help to reduce an exponential
search space through heuristic selection of samples, and what would otherwise
be an NP-hard problem, reduces greatly in complexity through the input and
the assistance of a medical doctor into the analytics process [13]. This app-
roach is supported by a synergistic combination of methodologies of two areas
that offer ideal conditions towards unraveling such problems: Human-Computer
Interaction (HCI) and Knowledge Discovery/Data Mining (KDD), with the goal
of supporting human intelligence with machine intelligence to discover novel,
previously unknown insights into data (HCI-KDD approach [11]).

From the theory of human problem solving it is known that, for example,
medical doctors can often make diagnoses with great reliability – but without
being able to explain their rules explicitly [6]. Here this approach could help
to equip algorithms with such “instinctive” knowledge. The importance of this
approach becomes clearly apparent when the use of automated solutions due to
the incompleteness of ontologies is difficult [3].

The immediate integration of the domain expert into data exploration has
already proved to be very effective, for example in knowledge discovery [9], or in
subspace clustering [17], compelling the domain expert to face the major chal-
lenge of detecting mutual influences of variables. Having already an idea of those
dependencies, the domain expert’s goal, here: the medical doctor, is to confirm
his suspicions; contrary to the data scientist, who has hardly any domain knowl-
edge and therefore no insight in reasonable input for specific tools. Frequently,
for many domain experts it is even not possible to have access to worthwhile,
already long-time existing data analysis tools, including, e.g., the Principal Com-
ponent Analysis (PCA), due to a lack of mathematical knowledge, on the one
side, and missing computational knowledge, on the other side. Consequently, the
role of the domain expert turns from a passive external supervisor – or customer
– to an active actor of the process, which is necessary due to the enormous
complexity of the medical research domain [5].
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A survey from 2012 among hospitals from Germany, Switzerland, South
Africa, Lithuania, and Albania [23] showed that only 29 % of the medical per-
sonnel of responders were familiar with practical applications of data mining.
Although this survey might not be representative globally, it clearly shows the
trend that medical research is still widely based on standard statistical meth-
ods. One reason for the rather low acceptance rate of data mining tools is the
relatively high technical obstacle that often needs to be taken in order to apply
complex algorithms combined with the limited knowledge about the algorithms
themselves and their output. Especially in the field of exploratory data analysis
deep domain knowledge of the human expert is a crucial success factor.

In order to address this issue, we developed a data infrastructure for sci-
entific research that actively supports the domain expert in tasks that usually
require IT knowledge or support, such as: structured data acquisition and inte-
gration, querying data sets of interest by non-trivial search conditions, data
aggregation, feature generation for subsequent data analysis, data preprocessing,
and the application of advanced data visualization methods. It is based upon
a generic meta data model and is able to store the current domain ontology
(formal description of the actual research domain) as well as the correspond-
ing research data. The whole infrastructure is implemented at a higher level of
abstraction and derives its manifestation and behavior from the actual domain
ontology at run-time. Just by modeling the domain ontology, the whole system,
including electronic data interfaces, web portal, search forms, data tables, etc.,
is customized for the actual research project. The central domain ontology can
be changed and adapted at any time, whereas the system prevents changes that
would cause data loss or inconsistencies. In this context, medical experts are
offered assistance in their research purposes.

In many cases, these domain experts are unfamiliar with the variety of math-
ematical methods and tools which greatly simplify data exploration. In order to
overcome impediments concerning mathematical expertise or the selection and
application of suitable methods, we propose ontology-guided implementations for
domain-expert-driven data exploration. One of those major methods is Principal
Component Analysis (hereinafter referred to as PCA, see Sect. 2), representing
a powerful method for dimensionality reduction.

In order to assist domain experts data preprocessing is automated as far as
possible using the user-defined domain-ontology to overcome technical obsta-
cles already in advance. Thus, the domain expert is capable of performing the
fundamental analysis on his own. By selecting data of interest and starting the
calculations, PCA is run in the background and results in an inbuilt visualization
for more convenient access of data information.

2 Principal Component Analysis

Principal Component Analysis (PCA) is a method for reducing the dimension of
a data set such that the new set contains most of the information of the original
set and can be interpreted more easily. PCA was first described by Pearson [25]
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and since then has been reinvented in different fields such as Economic Sciences
[16], Psychology [28,29], and Chemistry [20,27] under different names like Fac-
tor Analysis or Singular Value Decomposition. Also in other fields, including
Geo Sciences and Social Sciences, PCA is an established method. For a good
introduction to PCA see for example [18,26].

In the following paragraph we sketch the main idea of PCA. We are given
a set of observations of m variables. PCA then computes the direction of maxi-
mal variance in these data in m-dimensional space. This direction forms a new
variable (a linear combination of the original variables), the first principal com-
ponent. This process is repeated with the remaining variance of the data until
a specified number of principal components is reached or a specified percentage
of the original variance is covered (explained variance of the system). Every suc-
ceeding principal component is orthogonal to the preceding ones and adds to
the explained variance of the new system. There cannot be more principal com-
ponents than original variables and if their number is equal then the explained
variance is 100 %. Mathematically, PCA is a solution to the eigenvalue prob-
lem of the covariance resp. correlation matrix of the original variables where
the eigenvectors form the principal components and the eigenvalues indicate
the importance of the components (the higher the eigenvalue, the higher the
explained variance of the component).

Of interest in interpreting the results of a PCA are the scores (projection of
the original data points into the new vector space), loadings (eigenvectors multi-
plied by the square root of the corresponding eigenvalues, i.e., the loadings also
include variance along the principal components), residuals and their respective
plots. The score plot depicts the scores with respect to two selected principal
components that form the axes of the plot. It is used to detect outliers and pat-
terns in the data. The loadings plot depicts the original variables with respect
to two selected principal components that form the axes of the plot. It is used to
examine correlations between the original variables and to examine the extent to
which the variables contribute to the different principal components. The biplot
displays both scores and loadings simultaneously and allows to investigate the
influence of the variables on the individual data points or groups of data points,
respectively.

First ideas of introducing PCA in the medical field came up in the early 70 s,
gradually increasing. From 2006 onwards, the annual increase of research results
is still growing very fast, comprising already about 670 scientific results in 2015
on NCBI [22]. Currently, PCA establishes a satisfying solution in various medical
sub domains for different purposes. The application field ranges from image
processing, like image compression or recognition [21], to data representation,
for facilitating analysis.

3 Ontology-Guided PCA

In this section, we briefly review the main integration actions of the PCA method
(see Sect. 2) into the data infrastructure. Above all the term ontology has to be
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clarified as there is a degree of uncertainty around the terminology, whereby for
computer scientists an ontology is described as formal descriptions, properties
and relationships between objects in the world [30].

3.1 Ontology-Guided Clinical Research Infrastructure

The theoretic base for the already mentioned ontology-based research infrastruc-
ture is a revision and adaption of the established process models for knowledge
discovery. In the commonly known definitions of this process (see [19] for a good
overview) the domain-expert is seen in a supervising, consulting and customer
role. A person who is outside the process and assists in crucial aspects with
domain knowledge and receives the results. All the other steps of the process
are performed by so called data analysts, who are supported by the domain-
experts in understanding the for the current research project relevant aspects
of the research domain and interpreting the results. We revised these process
models and proposed a new, domain-expert-centric process model for medical
knowledge discovery [8]. Based upon this process model we developed a generic
research infrastructure, which supports the domain expert throughout the whole
process — from data model, over data acquisition and - integration, data process-
ing, and quality-management to data exploration. The research infrastructure is
domain independent and derives its current appearance and behavior from the
user-defined domain ontology at run-time. The researcher is able to define what
data structure he or she needs to answer the research questions. This definition
— the domain ontology — then builds the base for the whole system. From a
user’s point of view, the infrastructure consists of three main modules:

1. The Management Tool: This Java rich-client application allows the user to
defined and maintain the domain ontology. Furthermore, the whole data set of
the system can be searched, filter, processed and analyzed in this application.
The here presented work is integrated into this application.

2. The Data Integration Module: This module is a plug-in to an established
open-source ETL (Extract-Transform-Load) Suite. It allows to access struc-
tured data from almost arbitrary sources and to properly integrate this data
into the research infrastructure.

3. The Web Interface: If data needs to be acquired manually, the web inter-
face offers domain-derived forms to view, enter, process the data via a web
browsers. In the clinical context this is often necessary when information from
semi- or unstructured documents (e.g. doctor’s letters, care instructions, etc.)
needs to be stored in a structured way.

For more detailed information on this infrastructure the reader is kindly
referred to [7].

3.2 Background Processes

The execution of PCA requires structured processing of data. In our data
infrastructure all of those preparatory steps are based on ontological meta-
information and are automatically performed in the background. In this case
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the domain expert neither has to be concerned about data types, data transfor-
mation, starting the corresponding algorithm nor about collecting and depicting
results. Therefore, solely a few steps remain, explicitly data selection and para-
meter setting, in order to start PCA. After variable selection out of a (sub) set of
data and adjusting parameter configuration PCA performs the projection into
lower dimensional space. The result is visualized in interactive two dimensional
charts (loading-, score- and biplot), offering manipulation of axes and therefore
displaying different combinations of principal components. Backtracking to the
pristine records can establish a better idea of relationships when selecting the
scores. In a few steps data is ready for analysis.

3.3 Implementation

For the actual implementation, we used the WEKA library [10] for performing
PCA. Therefore some partial integration has been necessary in order to acquire
mathematical PCA output for visualization purposes.

Step 1. First, an ontology-guided transformation of the data into the WEKA
data structure (weka.core.Instances) and converting our variables to WEKA
conform attributes (weka.core.Attribute) has to be performed. An evalu-
ator (weka.attributeSelection.PrincipalComponents, defining the evaluation
method) has to be configured by setting the variance covered by the principal
component as well as whether the correlation or the covariance matrix has to
be used. All of those transformations are performed in an ontology-guided,
hidden behavior from the researcher’s perspective.

Step 2. The key component of the WEKA PCA is represented and performed
by the feature selection (weka.attributeSelection.AttributeSelection), hence
a ranker (weka.attributeSelection.Ranker, defining the search method) as
well as the evaluator configured in step 1 have to be assigned. The speci-
fied ranker’s task is to supervise whether the defined threshold (explained
variance) or a specified number of components is reached, thus PCA has
finished.

Step 3. After completion of the embedded WEKA PCA process, an internal
PCA result class is prepared, carrying the most essential output includ-
ing eigenvectors and eigenvalues, scores and loadings as well as the number
of principal components and proposed features. Accordingly, the generated
output is subject to back transformation in the prescribed ontology and is
processed for being displayed in a scatter chart related visualization.

Step 4. In order to determine the quality of the result some key figures have
to be determined. Therefore we take into account linearity of the input data,
the size of the data set, the variance covered as well as tests on normal distri-
bution. The outcome of the quality test is displayed within the visualization,
supporting the researcher in evaluating the significance of the outcome. Since
PCA is vulnerable to outliers, outlier detection is provided in the visualiza-
tion, making it possible for the user to exclude these points and re-initiate a
PCA. In particular, the rationale for various quality outcomes is the quality
of the input data.
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4 Results

We evaluated the viability of this approach to perform PCA within an ontology-
guided data infrastructure for scientific research purposes on a data set of 1237
records, representing a cerebral aneurysm each. This vulnerability of a blood
vessel is described as the dilation, ballooning-out, or bulging of part of the wall
of an artery in the brain [24]. Those samples were taken from patients, regis-
tered by the Institute of Neuroradiology at Neuromed Campus of the Kepler
University Klinikum. The aim of this collaboration was to collect and analyze
the medical outcome data of their patients, who have cerebral aneurysms. The
main research subject of the database is the clinical and morphological follow up
of patients with cerebral aneurysms, which were treated either with an endovas-
cular procedure, surgically or conservative [9].

We attempt to show the feasibility of the ontology-based research, done by
the domain expert without assistance of a data scientist. In this context the
domain experts are from the field of neurosurgery and neuro-radiology. The fol-
lowing parameters of the aneurysm were taken into account: the age of patient at
diagnosis, number of aneurysms in total for this patient, the number of recorded
clinical events (complications), the number of surgical treatments, the number of
endovascular treatments, as well as the width, depth, height, neck and size of an
aneurysm. It was not aim of this evaluation to discover new medical knowledge,
but rather to verify the method by being able to demonstrate already known
knowledge about the data.

The result in form of the loadings plot is shown in Fig. 1. It shows the first two
principal components (PC) with the highest percentage of explained variance.
The first PC is displayed on the x-axis and the second PC is shown on the y-
axis. It is apparent from this plot that there is a strong relationship between the
Width, Depth and Height of aneurysms, as they are located close to one another.
From a medical point of view, this is obvious, since aneurysms are spheric in
most of the cases. Another variable is in the surrounding of this variable cluster,
namely the variable Neck. The neck describes the diameter of the opening of the
aneurysm to the supplying blood vessel. Here again, a correlation is indicated
by the nature of the matter. The bigger the aneurysm is in all its dimensions,
the bigger the neck tends to be. On the other principal component, the opposing
position of the number of endovascular treatments on the one hand and surgical
treatments on the other side is appealing. This is given due to the fact, that
most aneurysms are either treated the one or the other way. The position of the
variable Age of Patient at Diagnosis very close to the center of the visualization
indicates that there are hardly any correlations between this variable and the
others and this variable has no influence on the shape of the data cloud.

While the previous observations were easily explained with already known
facts, the opposing position of the width-depth-height-cluster on the left-hand-
side of the first PC and the variable Total Number of Aneurysms for Patient on
the right-hand-sind struck the attention of the medical researchers. Preceding
visualization with other methods already indicated a (weak) reverse correlation
between the total number of aneurysms a patient suffers from and the size of
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Fig. 1. A two dimensional loadings plot of the aneurysm data set, embedded in an
ontology-guided data infrastructure. The x-axis represents the first principal compo-
nent, expressing 33.96 % of the total variance. The second principal component conveys
14.98 %, depicted by the y-axis.

these aneurysms. All methods, including this PCA-run, showed evidence, that
patients with numerous aneurysms tend to have smaller ones. This phenomenon
will now be investigated. This is a very good example for what the ontology-
guided approach for the doctor-in-the-loop is able to do. It allows the researching
domain experts to explore their complex data and generate new hypotheses for
subsequent research.

The automatic calculation of the relevant key figures indicate that this PCA-
run yielded an acceptable and meaningful result. The covered percentage of the
variance is acceptable and colored in green. The result of this key number calcula-
tion and interpretation is visualized in the upper right corner of the visualization
and giving an indication to the researcher how reliable this output is.

5 Discussion and Conclusion

For considerably complex mathematical methods results cannot be interpreted
unambiguously at first glance, contrary to a simple bar chart or box plot. How-
ever, this is all the more important to provide guidance throughout data process-
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ing actions. The generated numerical output of the principal components method
is conclusive for mathematical experts. By contrast, domain experts with basic
mathematical and technical knowledge can neither see any immediate use regard-
ing eigenvectors and eigenvalues, nor are they able to assess the significance of the
output. This is precisely the point where assistance of an ontology-guided data
infrastructure takes effect. Detecting relationships and correlations can be much
more simplified by visualizing the results of the principal component method.
Thus, Fig. 1 is quite revealing, as the visualized eigenvectors (loadings) substan-
tially better illustrate strong relationships between the three variables (Width,
Depth, Height) than a non-guided numerical output. As suspected, they are sit-
uated close together in the loadings plot, since aneurysms are rather circular in
almost all cases.

This research sheds new light on the support for domain experts in mathe-
matical and technical issues through smooth guidance of data exploration. The
example of applying PCA pursues the objective to reveal previously unsuspected
relationships when the number of input variables is supremely high. This way
of ontology-guided data preprocessing is considered as an intermediate step in
(medical) data analysis and requires extensive mathematical skill and knowledge.
Only few systems are capable of intelligent assistance for guiding the medical
domain expert through data analysis in an acquainted data infrastructure.

Quick and effortless access to different statistical and mathematical methods
and tools often represents the fundamental challenge for medical experts due to
the lack of comprehensive technological knowledge. Initially, it becomes necessary
to give domain experts an understanding of the variety of available methods. Even
if an appropriate method has been found, the major obstacle is the related realiza-
tion, provided that the researcher is aware of mathematical science.

Not all results of a PCA-run are equally good and meaningful. It is very
dangerous to use the PCA without further exploration of some statistical key
numbers. The visualization tries to bring the result of the automatic calculation
of these key features to the user. The percentage of the covered variance is col-
ored, in a range from green (acceptable) over orange to red (unacceptable) (see
Fig. 1). These two and the other key numbers are summarized in the info field
Result Quality in the upper right corner of the visualization. There is of course
no clear cut between the qualities of PCA results, but the sum of key numbers
and their coloring provides guidance to the user to interpret the results. For very
inexperienced users it provides a first barrier to use PCA results without any
control of the key figures. This aspect clearly distinguishes the PCA from our
preceding attempts (e.g., [9]) to make complex data mining and data visualiza-
tion algorithms accessible to researching domain experts.

We realized that not all data mining and data visualization algorithms are
meant to be used by non-data-scientists. We consequently try to push the tech-
nical barrier towards complex methods and algorithms in order to enable the
biomedical domain experts to take advantage of them. Thus far, the results of
these methods (non-linear mapping, parallel coordinates, etc.) were easy to inter-
pret with limited danger to mis-interpretation. Here, in the case of PCA even
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very promising looking visualization might be completely worthless, and without
checking the corresponding key-figures an interpretation is not possible. Only an
intelligent research-platform designed for domain-expert-driven knowledge dis-
covery can help by automatically calculating these key-figures and bringing them
to a prominent position in the user interface.

6 Open Challenges and Future Work

Since the feasibility for PCA only subsists as numerical attributes are used, a
small part of variables can be taken into consideration. Further work is required
to establish the viability of extensive and automated ontology-based data pre-
processing. Thus, especially in the medical domain, information is stored in cat-
egorical or boolean attributes. Extending the data infrastructure will lead to a
PCA for categorical variables (multiple correspondence analysis, factor analysis
for mixed data).
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