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Zusammenfassung

Es gibt nahezu unendliche viele Daten über biologische Systeme, aber bis heute nur
wenige Versuche, diese Daten in ein schlüssiges Gesamtbild zu fügen. Obwohl bio-
logische Systeme eine höhere Komplexität aufweisen als die meisten physikalischen
Systeme, können auch sie auf vielen Ebenen von theoretischen Modellen profitieren.

Das biologische System, dem sich diese Arbeit widmet, ist die Zelle, die fun-
damentale strukturelle und funktionale Einheit aller lebenden Organismen. Zellen
verfügen über eine komplexe interne Struktur und viele verschiedene Organellen, die
durch eine Plasmamembran von der Umgebung abgegrenzt sind.

Neue Entwicklungen moderner experimenteller Techniken zur Beobachtung von
einzelnen Zellen und deren Bewegungen (insbesondere das “two-photon imaging”)
schufen großartige Möglichkeiten für die Theoretische Biologie, da diese die Auf-
zeichnung von Zellformen und -migrationen im Inneren lebender Tiere erlauben.
Darüber hinaus wurden Techniken entwickelt, die es erlauben die Position von bis
zu 100 verschiedenen Molekülen im Zellinneren zu jedem beliebigen Zeitpunkt aufzu-
zeichnen.

Diese Entwicklungen erhöhen den Bedarf für ein theoretisches Zellmodell, mit
dem auch das Zellinnere ortsaufgelöst beschrieben werden kann. Herkömmliche Me-
thoden wie zum Beispiel Differenzialgleichungen eignen sich nur zur Beschreibung
großer Systeme, in denen das Verhalten einzelner Einheiten alleine das Verhalten des
Gesamtsystems nicht relevant beeinflusst und in denen Messgrößen als Durchschnitt
über das gesamte System bestimmt werden können. Zur Beschreibung kleiner Sys-
teme, in denen jede Einheit individuell identifiziert und ihr Verhalten untersucht
werde muss, werden Agenten-basierte Modelle benötigt.

Die Migration von Zellen ist intrinsisch mit ihrer Form verbunden. Aus diesem
Grund müssen theoretische Modelle zur Beschreibung der Migration auch die Form
der Zellen berücksichtigen. Dies wieder erfordert Kenntnisse über die interne Struk-
tur der Zelle. In diesem Fall genügt es nicht, Zellen als einzelne Punkte im Raum zu
betrachten, sondern es ist notwendig, diese durch eine Gruppe auf der Grundlage
bestimmter Eigenschaften interagierender Unterteilchen zu beschreiben. Die glei-
chen Anforderungen gelten für Modelle, die versuchen die Bewegung von Molekülen
im Zellinneren zu beschreiben: das Modell muss in der Lage sein, jede Zelle indi-
viduell zu beschreiben und zusätzlich mit einer gewissen Auflösung das Zellinnere
abzubilden.

Im letzten Jahrzehnt ermöglichte die Evolution der Computersysteme immer
mächtigere Simulationen von Zellen und Gewebe zum Verständnis von biologischen
Systemen. Allerdings muss immer ein Kompromiss zwischen der Größe eines Systems
und dem Detailgrad der Simulation gefunden werden. Eine weitere Komplexitäts-
stufe kommt hinzu, wenn die innere Struktur der Zellen ebenfalls aufgelöst werden
soll. Je höher der Detailgrad des Modells, desto kleiner sind die Systeme, die mittels
Computersimulationen abbildbar sind. Deshalb ist es notwendig, Modelle zu entwi-
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ckeln, die eine variable Auflösung der internen Zellstruktur ermöglichen, so dass man
sowohl kleine Systeme bei hoher Auflösung wie auch große Systeme mit geringerer
Auflösung simulieren kann.

Das Ziel dieser Arbeit ist die Entwicklung eines Modells für eine Zelle, wel-
ches die Eigenschaften der internen Struktur berücksichtigen kann. Hierzu wird ein
Agenten-basierter Ansatz verwendet, in dem die Zelle durch eine Vielzahl miteinan-
der wechselwirkender Teilchen simuliert wird. Prinzipiell können diese Teilchen jede
interne Struktur der Zelle repräsentieren. In dem hier besprochenen Modell werden
zwei Arten verwendet: Membranteilchen und zytosolische Elemente. Das entwickelte
Modell eignet sich damit sowohl zur Simulation von einzelnen Zellen als auch zur
Beschreibung multi-zellulären Systemen.

Modell

Eine kinetische und dynamische Delaunay-Triangulation wurde zur Definition der
Nachbarschaftsbeziehungen zwischen den Teilchen verwendet. Allerdings eignen sich
die Eigenschaften der Delaunay-Triangulation nicht, die Wechselwirkungen zwischen
Membranteilchen zu beschreiben. Die Zellmembran ist eine Lipid-Doppelschicht in
der keine langreichweitigen Wechselwirkungen existieren. Aus diesem Grund sollten
die Teilchen, die die Membran bilden, keine derartigen Wechselwirkungen aufweisen,
sondern ihre Interaktionen lediglich auf die zweidimensionale Fläche beschränken,
die die Membran repräsentiert.

Zur Lösung dieses Problems wurde eine Methode entwickelt, die aus der ur-
sprünglich dreidimensionalen Triangulation nur diejenigen Verbindungen auswählt,
die die Oberfläche der Zelle, also die Membran, bilden. Diese Methode wird im Detail
im Abschnitt Oberflächenrekonstruktion erläutert.

Die Wechselwirkungen zwischen den zytosolischen Elementen ist durch ein Len-
nard-Jones-Potenzial gegebenen, wie auch die Interaktionen zwischen den zytosoli-
schen Elementen und den Membranteilchen. Die Parameter für beide Wechselwir-
kungen waren jedoch unterschiedlich. An der Oberfläche, d.h. zwischen den Mem-
branteilchen, wurde eine rein elastische Wechselwirkung angenommen.

Die Bewegung jedes Teilchens wurde durch die zugehörige Bewegungsgleichung
beschrieben. Dabei wurde der Verlet-Algorithmus zur Lösung der Bewegungsgleich-
ungen gewählt. Da das Zytosol durch ein zähflüssiges Gel approximiert werden kann,
ist es eine gültige Vereinfachung, die Bewegung der Zytosolteilchen als stark ge-
dämpft anzusehen. Aus diesem Grund wurde für alle Wechselwirkungen die Nähe-
rung der starken Dämpfung (“overdamped approximation”) gewählt.

Zusätzlich wurde eine adaptiver Algorithmus verwendet, um die Größe des Zeit-
schritts für die Berechnung jeder Interaktion zu bestimmen. Dieses Vorgehen ist
besonders zu Beginn der Simulation hilfreich, da die nicht thermalisierten Teilchen
in künstlichen Konstellationen beliebig nah bei einander sein können und somit
starke unphysiologische Kräfte zwischen ihnen wirken.
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Oberflächenrekonstruktion

Wie im vorangegangenen Abschnitt erklärt, beschränken die biologischen Eigen-
schaften der Zellmembran die Wechselwirkungen zwischen den Membranteilchen
auf die Oberfläche, die sie bilden. Hierdurch ist die ursprünglich dreidimensionale
Delaunay-Triangulation nicht geeignet, die Interaktionen zwischen den Membranteil-
chen zu beschreiben, und es ist notwendig, eine auf die Oberfläche eingeschränkte
Delaunay-Triangulation zur Abbildung dieser Wechselwirkungen zu konstruieren.

Die Methode hierzu geht von einer Punktmenge P (Membranteilchen), die zu
einer Oberfläche R3 gehören, sowie einer zweiten Punktmenge Q aus, die die interne
Struktur der Zelle (zytosolische Elemente) beschreibt. Hieraus wird die dreidimen-
sionale Delaunay-Triangulation von P ∪ Q berechnet, die ohnehin benötig wird,
um die Wechselwirkungen zwischen den zytosolischen Elementen zu beschreiben.
Zusätzlich ist die dreidimensionale Delaunay-Triangulation der Ausgangspunkt zur
Definition der eingeschränkten Delaunay-Triangulation.

Die Methode funktioniert wie folgt: ausgehend von der dreidimensionalen Delau-
nay-Triangulation von P∪Q wird eine Struktur Quasi-Oberfläche genannt bestimmt.
Die Quasi-Oberfläche ist eine Untermeng der Delaunay-Triangulation und beinhal-
tet alle Verbindungen eingeschränkten Oberfläche sowie einige weitere. Aus diesem
Grund beinhaltet die Quasi-Oberfläche unerwünschte dreidimensionale Strukturen
(Simplexe oder Gruppen von Simplexen).

Die verbleibenden drei-dimensionalen Strukturen, die zur Quasi-Oberfläche ge-
hören, müssen aus dieser entfernt werden. Hierzu wird jede Gruppe verbundener
Simplexe (d.h. Simplexe, die eine gemeinsame Fläche haben) in der Quasi-Oberfläche
ausgewählt. Diese Simplex-Gruppen werden im Folgenden als Cluster bezeichnet.

Im Anschluss wird der Rand der ausgewählten Cluster identifiziert und die Ver-
tices geordnet. Dies geschieht mit Hilfe einer Prozedur, die für jede Verbindung
eines Clusters überprüft, ob sie zum Rand des Clusters gehört oder nicht. Nach-
dem jede Verbindung, die zur Membran gehört identifiziert ist, können die Vertices
anhand ihrer Verbindungen geordnet werden. Beispiel: Falls bei einem Cluster mit
vier Punkten die Verbindungen des Randes (A,B), (B,C), (C,D) und (D,E) sind,
dann ist der geordnete Rand (A,B,C,D,E).

Nachdem der Rand des Clusters identifiziert und geordnet ist, muss ein Retriang-
ulations-Algorithmus für jeden Cluster angewandt werden. Hierzu wurden zwei Al-
gorithmen entwickelt: der eine für Cluster mit internen Punkten und der andere zur
Lösung von Clustern ohne interne Punkte.

Die Retriangulationsmethode für Cluster ohne interne Punkte ähnelt dem Pro-
blem der Triangulation eines Polygons. Allerdings können im speziellen Fall hier
nur Verbindungen für die Triangulation ausgewählt werden, die in der originalen
Triangulation über alle Punkte enthalten waren.

Cluster mit vielen internen Punkten stellen besondere Herausforderungen an
die Retriangulation. Ihre Eigenschaften hängen stark von der Zahl der internen
Punkte und ihrer räumlichen Anordnung ab. Zur Entwicklung eines erfolgreichen
Algorithmus’ zur Retriangulation solcher Cluster ist in einer sorgfältigen Abwägung
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die Auswahl der Verbindungen einzuschränken, so dass die finale Triangulation die
gewünschte Oberfläche retrianguliert, und genügend Flexibilität zuzulassen, so dass
eine solche Konfiguration gefunden werden kann.

Einige Einschränkungen wurden bei der Auswahl der Verbindungen für die fi-
nale Triangulation eines Clusters mit internen Punkten eingeführt, hauptsächlich
mit dem Ziel eine möglichst glatte Retriangulation zu erzeugen. Zuerst werden kür-
zere Verbindungen bevorzugt – lange Verbindungen sind selten und die Auswahl
einer langen Verbindung führt mit großer Wahrscheinlichkeit zu einer Situation, in
der die Retriangulation des Clusters nicht abgeschlossen werden kann. Zusätzlich
ist es notwendig sicherzustellen, dass alle Dreiecke, die durch die Annahme zwei-
er Verbindungen erzeugt werden, die gleiche Orientierung habe. Falsch orientierte
Dreiecke machen es notwendig, lange Verbindungen auszuwählen, die wiederum eine
erfolgreiche Retriangulation erschweren. Weiterhin ist es erforderlich, dass die Pro-
jektion aller Punkte eines Clusters, die nicht Teil des Dreiecks sind, auf die Ebene
des Dreiecks außerhalb des Dreiecks liegen.

Ausgangskonfigurationen

Die Erzeugung einer Ausgangskonfiguration beginnt ausschließlich mit Membranteil-
chen. Diese Teilchen werden zufällig in einer künstlichen sphärischen Hülle erzeugt.
Um sicherzustellen, dass die Teilchen in dieser sphärischen Hülle bleiben, wurde eine
harte Begrenzung (“hard sphere”) eingeführt, die die Membranteilchen nicht durch-
dringen können. Zusätzlich wurde ein einzelnes künstliches Teilchen in das Zentrum
der sphärischen Hülle eingefügt. Dieses Teilchen übt anziehende Wechselwirkungen
ähnlich einem Zentralpotenzial auf die Membranteilchen aus.

In der sphärischen Hülle wechselwirken die Membranteilchen elastisch mit einan-
der. Bis zu diesem Zeitpunkt sind in dem System noch keine zytosolischen Teilchen
enthalten. Die Membranteilchen interagieren in dieser Anordnung bis sie gleichför-
mig in der sphärischen Hülle verteilt sind. Die Ausgangskonfiguration wird als ther-
malisiert angesehen, sobald eine bestimmte Genauigkeit im Abstand der Teilchen
erreicht wurde.

Eine Delaunay-Triangulation aller interagierender Teilchen wird zur Bestimmung
der Nachbarschaftsbeziehungen verwendet und in jedem Zeitschritt gemäß der ver-
änderten Teilchenpositionen angepasst.

Sobald die Membranteilchen in der sphärischen Hülle thermalisiert sind, wird
das künstliche Teilchen in der Mitte entfernt und die sphärische Hülle zufällig mit
zytosolischen Teilchen gefüllt. Diese interagieren miteinander und mit den Mem-
branteilchen, die sie umschließen, durch ein Lennard-Jones-Potential. Zu diesem
Zeitpunkt sind die Membranteilchen allerdings fixiert und unbeeinflusst von der
Wechselwirkung mit den zytosolischen Teilchen. In dieser Konfiguration wechselwir-
ken die zytosolischen Teilchen bis sie thermalisiert sind.
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Test der Oberflächenrekonstruktion

Nach der Implementation der Methode zur Retriangulation der Membrane wur-
de der Zeitbedarf zur Retriangulation eines einzelner Clusters studiert, gefolgt von
einer Analyse wie dieser Zeitbedarf mit der Anzahl der Punkte in einem Cluster va-
riiert. Die Häufigkeit, mit der jede Clustergröße im Gesamtsystem vorkommt, wurde
ebenfalls analysiert, da diese Information benötigt wird, um zu garantieren, dass die
Gesamtzeit, die benötigt wird eine Zelle zu retriangulieren, konvergent ist. Zuletzt
wurde die Gesamtzeit zur Retriangulation aufgezeichnet und das Skalenverhalten
mit der Variation der Membran bestimmt.

Die Zeit, die benötigt wird, einen Cluster zu retriangulieren wächst mit der
Größe der Cluster. Das beobachtete Verhalten ist ungefähr quadratisch, weicht
jedoch für kleine Clustergrößen ab. Dies kann dadurch erklärt werden, dass die
Retriangulations-Methode mit der Zahl der internen Punkte nicht jedoch mit der
Gesamtzahl der Punkte in einem Cluster quadratisch skaliert. Es konnte gezeigt
werden, dass die durchschnittliche Zeit, die benötigt wird, einen Cluster zu lösen,
weder von der Gesamtgröße des Systems noch von der Störung, die an das System
angelegt wurde, abhängt.

Ebenso interessant ist die durchschnittliche Zeit, die benötigt wird, alle Punkte
in einem Cluster zu retriangulieren. Je größer der Cluster, desto größer ist die Kom-
plexität und dadurch auch die Zeit, die benötigt wird, den kompletten Cluster zu
retriangulieren. Für große Clustergrößen wird eine lineare Skalierung gezeigt.

Eine weitere Größe von Bedeutung ist die Häufigkeit mit der Cluster einer be-
stimmten Größe in einer Simulation auftauchen. Da, wie oben erwähnt, die Retrian-
gulationszeit für große Cluster ungefähr quadratisch mit der Größe skaliert, könnte
die Gesamtzeit der Simulation explodieren, falls die Häufigkeit des Auftauchens
großer Cluster nicht ebenfalls mindestens quadratisch abnimmt. Glücklicherweise
nimmt die Häufigkeit exponentiell mit der Clustergröße ab und garantiert somit
eine kontrolliebare Simulationszeit auch für große Systeme.

Um dies zu bestätigen, wurde die Zeit bestimmt, die benötigt wird alle Cluster
einer Größe zu retriangulieren. Diese Zeit ist das Ergebnis der Multiplikation der
Häufigkeit mit der Cluster einer Größe auftauchen mit der durchschnittlichen Zeit,
die benötigt wird diese Cluster zu retriangulieren. Da die Häufigkeit exponentiell
abnimmt und die Retriangulationszeit quadratisch wächst, ist zu erwarten, dass
die Zeit alle Cluster einer Größe zu retriangulieren ebenfalls einen exponentiellen
Abfall mit der Clustergröße zeigt. Dies wurde für verschiedene Systemgrößen und
Pertubationen bestätigt.

Zuletzt wird gezeigt, dass die Gesamtzeit zur Retriangulation aller Cluster mit
dem Grad der Pertubation, d.h. die Abweichung der Membranpunkte von einer
perfekten Kugel, zunimmt.
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Diskussion und Schlußfolgerung

Das Problem der Rekonstruktion einer auf eine zwei-dimensionale gekrümmte Fläche
eingeschränkten Punktmenge ist sehr komplex und nicht vollständig gelöst. Der hier
vorgestellte Algorithmus ist stark an die spezifische Anwendung innerhalb dieser
Arbeit angepasst, aber nicht vollständig fehlerfrei. Die entwickelte Methode hat zwei
Schwachpunkte, an denen es zu Fehlern kommen kann: die Bestimmung und Auswahl
der Ränder der Cluster und zu strikte Einschränkungen bei der Retriangulation für
Cluster mit vielen internen Punkten.

Obwohl noch einige Erweiterungen möglich sind, ist die Autorin überzeugt, dass
die hier vorgestellte Arbeit einen wichtigen Schritt auf dem Weg zu einem Agenten-
basierten Modell ist, welches nicht nur die Simulation von sub-zellulären Struktu-
ren erlaubt sondern auch sinnvolle Wechselwirkungen zwischen Membranteilchen
berücksichtigt. Dieses Modell ist für eine große Anzahl potenzieller Anwendungen
interessant: von der Studie von Zellformen und Migration zur Studie der intrazel-
lulären Dynamik, einschließlich der Möglichkeit einzelne Moleküle in der Zelle mit
räumlicher Auflösung darzustellen.

Die Autorin hofft mit dieser Arbeit in einer sowohl zum Feld der sub-zellulären
Modelle wie auch zum Gebiet der Oberflächenrekonstruktion beigetragen zu haben.
Wenn nicht durch neue Anwendungen, so mit Sicherheit durch neue Ideen und einen
frischen Ansatz durch die Verbindung verschiedener Überlegungen aus unterschied-
lichen Bereichen der Theorie.



Abstract

The goal of this project is to develop a framework for a cell that takes in consid-
eration its internal structure, using an agent-based approach. In this framework,
a cell was simulated as many sub-particles interacting to each other. This sub-
particles can, in principle, represent any internal structure from the cell (organelles,
etc). In the model discussed here, two types of sub-particles were used: membrane
sub-particles and cytosolic elements.

A kinetic and dynamic Delaunay triangulation was used in order to define the
neighborhood relations between the sub-particles. However, it was soon noted that
the relations defined by the Delaunay triangulation were not suitable to define the
interactions between membrane sub-particles. The cell membrane is a lipid bilayer,
and does not present any long range interactions between their sub-particles. This
means that the membrane particles should not be able to interact in a long range.
Instead, their interactions should be confined to the two-dimensional surface sup-
posedly formed by the membrane.

A method to select, from the original three-dimensional triangulations, connec-
tions restricted to the two-dimensional surface formed by the cell membrane was
then developed. The algorithm uses as starting point the three-dimensional Delau-
nay triangulation involving both internal and membrane sub-particles. From this
triangulation, only the subset of connections between membrane sub-particles was
considered. Since the cell is full of internal particles, the collection of the membrane
particles’ connections will resemble the surface to be obtained, even though it will
still have many connections that do not belong to the restricted triangulation on
the surface. This “thick surface” was called a quasi-surface.

The following step was to refine the quasi-surface, cutting out some of the con-
nections so that the ones left made a proper surface triangulation with the mem-
brane points. For that, the quasi-surface was separated in clusters. Clusters are
defined as areas on the quasi-surface that are not yet properly triangulated on a
two-dimensional surface. Each of the clusters was then re-triangulated indepen-
dently, using re-triangulation methods also developed during this work.

The interactions between cytosolic elements was given by a Lennard-Jones po-
tential, as well as the interactions between cytosolic elements and membrane par-
ticles. Between only membrane particles, the interactions were given by an elastic
interaction.

For each particle, the equation of motion was written. The algorithm chosen to
solve the equations of motion was the Verlet algorithm. Since the cytosol can be
approximated as a gel, it is reasonable to suppose that the sub-cellular particles are
moving in an overdamped environment. Therefore, an overdamped approximation
was used for all interactions. Additionally, an adaptive algorithm was used in order
to define the size of the time step used in each interaction.

After the method to re-triangulate the membrane points was implemented, the
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time needed to re-triangulate a single cluster was studied, followed by an analysis
on how the time needed to re-triangulate each point in a cluster varied with the
cluster size. The frequency of appearance for each cluster size was also compared,
as this information is necessary to guarantee that the total time needed by to re-
triangulate a cell is convergent. At last, the total time spent re-triangulating a
surface was plotted, as well as a scaling for the total re-triangulation time with the
variation.

Even though there is still a lot to be done, the work presented here is an im-
portant step on the way to the main goal of this project: to create an agent-based
framework that not only allows the simulation of any sub-cellular structure of inter-
est but also provides meaningful interaction relations to particles belonging to the
cell membrane.
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1.1 Theory and experiments in physics and biology

In physics, theoretical models are considered to be a powerful tool, and extremely
successful theoretical models evolve towards becoming theories. Classical and quan-
tum mechanics, electromagnetism, or quantum chromodynamics are just some ex-
amples of such theoretical models. The aim of these theories is not to explain every
physical phenomena in an unified way (though this is the aim of some others – al-
beit none successfull so far), but just to describe a specific subset as efficiently and
accurately as possible.

Physical theories are not always right, even though some times it looks like this
is the case. Classical mechanics fails when sizes are too small or speeds are too high,
but it is still unbeatable for describing mechanical systems whose properties fall in
between. Using quantum mechanics or relativity to solve problems that fall within
the range of classical mechanics, although possible, is extremely cumbersome and
inefficient.

In biology, on the other side, the development of theoretical models is still fairly
recent, and sometimes confined to phenomenological use (fitting experimental data
but not allowing any deeper understanding of the system). Systems in biology are
extremely complex and, unlike in physics, do not behave always in the same way,
i.e., the laws that govern biological systems are not as rigid as the ones governing
physical systems. This makes the trajectory from theoretical models to theories
unlikely, since it is improbable that a single model can explain a large range of
biological phenomena.

The lack of rigid laws may explain why theoretical models were not widespread in
biology until recently, but it does not mean that biological systems cannot profit from
models. There exist a virtually infinite amount of data about biological systems,
but really few people trying to make sense of it inside a bigger picture. In order
for biology to really gain from a tighter integration between theoretical models and
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experiments, theoretical biologists should focus in creating models that are coherent
with the available experimental data and that have some predictive power, which in
turn can lead to new experiments and better models. In their paper “A framework
for consciousness” [Crick 2003], Christof Koch and Francis Crick say:

“A framework is not a detailed hypothesis or set of hypotheses; rather,
it is a suggested point of view for an attack on a scientific problem,
often suggesting testable hypotheses. Biological frameworks differ from
frameworks in physics and chemistry because of the nature of evolution.
Biological systems do not have rigid laws, as physics has. Evolution
produces mechanisms, and often sub-mechanisms, so that there are few
‘rules’ in biology which do not have occasional exceptions.

A good framework is one that sounds reasonably plausible relative to
available scientific data and that turns out to be largely correct. It
is unlikely to be correct in all the details. A framework often contains
unstated (and often unrecognized) assumptions, but this is unavoidable.”

1.2 Goals of this study

The aim of this work was to develop a framework for the simulation of cells (including
internal resolution) in an agent-based fashion.

The recent development of advanced experimental techniques in cell tracking
(specially with the advent of two-photon imaging [Denk 1990, So 2001, Miller 2002])
opened up great opportunities for theoretical biologists interested in modeling cell
shape and migration. With these techniques the shape and movement of individual
cells can be tracked inside living animals, generating data supposed to mirror the
real behavior of cells in vivo. Additionally, experimental techniques capable of
making snapshots of a cell with up to a hundred molecules at a time emerged
[Schubert 2003, Schubert 2006], calling for a cell model on which molecules can be
followed in a space-resolved manner.

Traditional methods like differential equations are only adequate to describe
big systems, where the behavior of one individual entity alone is not relevant to
the systems’ overall outcome, and where the properties one is interested in can be
averaged. In small systems, where particles must be individually identified and their
behaviors independently studied, agent-based models are needed.

The migration of cells is intrinsically connected to their shape [Alt 1995]. There-
fore, a theoretical model aiming in describing cell migration has to take cell shape
in consideration, which in turn requires knowledge about the internal structure of
the cell. Cells, in this case, cannot be simulated as a single point in space, but more
as a set of sub-particles interacting according to given properties. At the same time,
a model intending to follow molecules inside a cell requires the same properties: it
must treat cells individually and it needs to include some sort of internal resolution
of the cell.
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In the last decade the evolution of computer systems has allowed the simulation
of cells and tissues to become a powerful tool towards the understanding of bio-
logical systems. However, researchers developing theoretical models have to find a
compromise between the size of the system to be simulated and the level of details
included in the simulations. This becomes even more complicated once the inclusion
of resolution of the cell’s internal structure is taken into consideration. The more
detailed the model, the smaller the system one will be able to study with. Therefore,
a successful model to simulate cells should allow a variable internal resolution, being
flexible enough to simulate both small systems with high internal resolution and big
systems with low internal resolution.

The developed framework takes in consideration the cell’s internal struc-
ture and is suitable to simulate single cells as well as multi-cellular systems.
The cell is represented as a set of discrete interacting particles, and the neigh-
borhood relations between the sub-cellular particles are obtained via a kinetic
and dynamic three-dimensional Delaunay triangulation [Schaller 2004, Beyer 2005,
Meyer-Hermann 2008]. A set of interaction potentials is used to differentiate the
types of particles and to define their roles inside the cell. A model with two dis-
tinguished types of particles will be described in this thesis. Particles will belong
either to the membrane (membrane particles) or to the internal structure (cytosolic
elements) of the cell.

Even though the initial idea when developing this framework was that all par-
ticles should interact via the neighborhood relations provided by a Delaunay tri-
angulation, it was soon clear that this set of connections was not appropriated to
mimic the interactions between membrane particles. The cell membrane is mainly
composed by a lipid bilayer that can be approximated by a two-dimensional bended
surface. Therefore, membrane particles should only interact vial local connections
restricted to the two-dimensional bended surface formed by these membrane par-
ticles. In this case, the algorithm to define the neighborhood relations between
membrane particles should enforce that the membrane interactions only occur re-
stricted to this surface. This points to the usage of a two-dimensional Delaunay
triangulation restricted to the membrane surface for the connections between mem-
brane particles, instead of the classical three-dimensional Delaunay triangulation.

The problem of defining a Delaunay triangulation restricted to the surface rep-
resented by the membrane particles has some similarities with problems in surface
reconstruction: starting from a set of sample points, how can the surface that orig-
inally generated these points be reconstructed? Indeed, many of the methods used
for surface reconstruction consist in obtaining a restricted Delaunay triangulation
from a set of sample points, having as starting point its regular three-dimensional
Delaunay triangulation [Cazals 2006]. The restricted Delaunay triangulation will,
in this case, represent the desired surface.

Unfortunately, traditional surface reconstruction methods cannot be readily used
in the developed framework, as they allow the deletion of points in the original tri-
angulation [Amenta 1998, Amenta 1999]. In the problem of defining neighborhood
relations for membrane particles, the number of particles should not fluctuate, unless
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the size of the system (the membrane) is intentionally being changed.
However, a method that defines this restricted triangulation as a subset of the

three-dimensional Delaunay triangulation was still highly desired, as the original
Delaunay triangulation is needed to define the neighborhood relations between cy-
tosolic elements as well as the cross interactions between membrane particles and
cytosolic elements.

The development of a computational method to achieve this objective, providing
meaningful interaction relations to membrane particles, was a central goal in this
thesis.

1.3 Structure

This thesis is structured as following: chapter 2 starts with a description of the
state of the art of mathematical models in theoretical biology. This is followed by
an introduction of the relevant properties of the cell and its main structures, with
a special focus on the features most relevant to this work. A brief presentation of
two new experimental techniques that allow a deeper understanding of the shape
and internal structure of cells (two-photon imaging and multiple epitope ligand
cartography) is then given, followed by a review of the already available theoretical
models used to simulate the sub-cellular structure.

In chapter 3, an introduction to the sub-cellular model developed during this
work is presented. It starts with an introduction to the relevant properties of the
Delaunay triangulation and its dual, the Voronoi tessellation, followed by a pre-
sentation of the interaction potentials chosen for the interactions between the cell’s
sub-particles. The equations of motion and the method chosen to solve the dynamics
of the system are then given.

From chapter 3 it gets clear that a method to define the neighborhood relations
between the membrane particles is needed, so that the membrane particles are re-
triangulated in a surface. The introduction and explanation of this method is given
in chapter 4. The method identifies a rough surface (called quasi-surface), that
contains all connections belonging to the surface to be re-triangulated plus some
that do not. From that surface, smaller independent structures (called clusters) are
selected. Each of the clusters is then treated and re-triangulated independently. To
re-triangulate a cluster it is necessary to identify and order the vertices belonging its
boundary. At last, two re-triangulation algorithms are proposed, each one adequate
to a different class of clusters.

Chapter 5 contains examples and explanations about the initial configurations
generated using the potential and interactions described in chapter 3, as well as the
exact parameters chosen for these interactions for the results presented in this work.

Chapter 6 present the tests performed with the model and the results obtained
with it. The setup used for performing the simulations is given, and the perfor-
mance of the model with relation to time and the involved parameters is discussed.
Additionally, examples of re-triangulations are presented.
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Finally, in chapter 7, the advantages and disadvantages of the proposed model
are discussed, as well as its range of validity. At last, an outlook is given, where
potential developments and improvements for the method are proposed.
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2.1 Modeling techniques in biology

Even when restricted solely to the field of Immunology, biological systems vary by
orders of magnitude in size and time scale. Typical behaviors of the systems can also
vary widely. Movement, for example, can be active or passive, random or directed.
In order to account for the extremely different, complex behaviors, many different
mathematical models were developed along the time.

These mathematical models vary depending on the degree of representation of
both internal and physical space of the system in interest, and can be separated into
two large groups: continuum models and discrete models (see figure 2.1). Continuum
models have low internal representation of the system, while discrete models have
high representation of the system’s internal state. In continuum models the entire
system can be characterized by using continuous variables, while in discrete models
the internal state of the simulated system is at least partially characterized by
discrete variables. The higher the representation of internal or physical state, the
more complex the model.

The evolution of continuum models is usually given by differential equations.
At the bottom left of figure 2.1 are ordinary differential equations, with low rep-
resentation of both internal and physical state. Ordinary differential equations are
used, for example, to model population dynamics. At the bottom right of figure
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Figure 2.1: Mathematical models in theoretical biology.

2.1 are partial differential equations, used mostly for the study of density dynam-
ics. They offer a high representation of physical space, but still only a low repre-
sentation of internal state. A good review of continuum models can be found in
[Murray 2002, Murray 2003].

When a high representation of the internal state of a system is needed (for
example when cells are to be spatially followed) one must use agent-based models.
In these models, each agent in the system is a discrete particle. If the model has
no physical representation, it is called non-spatial. If the spatial representation is
needed, the agent-based model is called off-lattice (see top of figure 2.1).

A special class of agent-based models is the so called cellular automata. Cellular
automata models have both a representation of internal and physical state, but some
of the system variables are discretized in a lattice. Because of the use of a lattice,
space is also discretized in these models. The concept of cellular automata was first
introduced by John von Neumann [von Neumann 1966].
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The interaction between objects in a cellular automata model is usually given by
a set of rules. However, it can be quite difficult to draw connections between these
rules and physically measurable quantities. Additionally, cellular automata models
give sometimes rise to artifacts coming from the use of a lattice, and the stochastic
counter-strategies often employed make this connection even more difficult. A more
recent review can be found at [Wolfram 1994].

Off-lattice agent-based models are often computationally more demanding than
other models. However, they are extremely useful when cells or other agents in a
system must be followed individually and spatially. Additionally, the interactions
between objects is usually motivated by physical interactions, making off-lattice
agent-based models more easily connected with physical variables than the cellular
automata.

2.2 The cell

Figure 2.2: A schematic picture of a cell and its internal structure. Picture from
[Alberts 2002]

The system of interest in this work is a cell. Cells are the fundamental struc-
tural and functional units of living organisms, and had been extensively studied
experimentally. Cells can be divided into two main groups: eukaryotic and prokary-
otic. Prokaryotic cells have a simpler structure and are usually independent, while
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eukaryotic cells are often part of a multicellular organism. Eukaryotic cells are, in
general, bigger and more elaborate than prokaryotic cells. As the immune system
is the main subject of study in the Systems Immunology group at FIAS, where this
work was developed, emphasis will be given to the description of eukaryotic cells.

By definition, eukaryotic cells keep their DNA in an internal compartment, the
nucleus, separated from the cytoplasm by a double layer of membrane. Eukaryotic
cells are, typically, 10 times bigger in linear dimension and 1000 times larger in
volume than a prokaryotic cell. Additionally, they have a cytoskeleton, i.e., a system
of protein filaments that function as a scaffold to the cell, forming a system of girders,
ropes, and motors that gives the cell mechanical strength, controls its shape and
drives and guides its movements.

Apart from the nuclear envelope, there exist many other organelles inside the
cell, separated from the cytoplasm by internal membranes structurally similar to
the plasma membrane. Many of these organelles are involved in processes related
to digestion and secretion. Additionally, animal cells (and the free-living eukaryotic
cells called protozoa) can change their shape rapidly and engulf other cells and small
objects by phagocytosis.

In the next subsections a small overview about the cell membrane, the cytoplasm
and the cytoskeleton will be given. This overview is mainly based on information
from [Alberts 2002], one of the main reference books in cell biology.

2.2.1 The cell membrane

Figure 2.3: A schematic picture of the cell membrane. The lipid bilayer is drawn in
yellow and red, the blue and green objects are proteins (the figure is on the public
domain).

The cell membrane is a fundamental structure to the life of a cell. The plasma
membrane encloses and defines the cell boundary, allowing the cytosol to have char-
acteristics essentially different from the extracellular environment.
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The cell membrane consists of a very thin film of lipid and proteins. The lipid
molecules are structured as a continuous double layer approximately 5 nm thick. The
lipid bilayer behaves as a two-dimensional liquid, and individual lipid molecules are
able to diffuse rapidly laterally within their monolayer. The lipid bilayer serves also
as an impermeable barrier for the cell, impeding the passage of most water soluble
molecules.

There are three main classes of lipid molecules: phospholipids, cholesterol and
glycolipids, with the phospholipids being the most numerous. The lipid composition
of the two monolayers of the lipid bilayer can vary significantly. This asymmetry
reflects the different functions between the internal and external layers of the cell.

There are approximately 5 × 106 lipid molecules in a 1 µm × 1 µm area of
the lipid bilayer, or around 109 lipid molecules in the plasma membrane of a small
animal cell. All lipid molecules in the cell membrane have a hydrophilic (or polar)
and a hydrophobic (or nonpolar) end.

The mass of the cell membrane is about 50% constituted of lipid molecules.
The other half is almost entirely constituted of proteins. Proteins are responsible
for almost all the membrane functions, from the transport of specific molecules to
the catalysis of membrane-associated reactions. They serve as specific receptors,
enzymes, transport proteins and etc. Many proteins extend across the lipid bilayer.
Some proteins also serve as structural links, connecting the cytoskeleton through
the lipid bilayer to the extracellular matrix or to an adjacent cell. Others function
as receptors to detect and transduce chemical signals in the cell’s environment.

Many membrane proteins are able to diffuse rapidly in the plane of the mem-
brane, much like the lipid molecules. However, cells have mechanisms to immobilize
specific proteins and to confine both membrane proteins and lipid molecules to par-
ticular domains in the lipid bilayer. Proteins in the cell membrane can also form
clusters, or a cross-linked array of proteins (for example, the complex of proteins
that make the connections between actin filaments and the cell membrane).

Additionally, lipid bilayers are impermeable to water soluble molecules. There-
fore, the cell membrane must contain transport proteins, in order for these molecules
to be transported into and out of a cell. Transport proteins can belong to two dif-
ferent groups: carriers and channels.

2.2.2 The cytoplasm

The cytoplasm is everything in a cell that is enclosed by the cell membrane, with the
exception of the nucleus and its contents. It consists of cytosol and the cytoplasmic
organelles suspended in it. While prokaryotic cells generically consist of a single
intracellular compartment surrounded by the plasma membrane, eukaryotic cells
are subdivided into functionally distinct, membrane-enclosed compartments.
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2.2.2.1 The cytosol

The term cytosol is used to refer to the liquid phase of the cytoplasm in an intact
cell. It is a complex mixture of cytoskeleton filaments, dissolved molecules, and
water that fills a little more than 50% of the volume of a cell. The cytosol is a gel,
with a network of fibers dispersed through water. Additionally, most of the cell’s
intermediary metabolism, i.e., the many reactions by which some small molecules are
degraded and others synthesized to provide the building blocks for macromolecules,
happens on the cytosol.

An animal cell contains about 10 billion proteins of 10000–20000 different kinds,
and the synthesis of almost all of them begins in the cytosol. Each protein is then
delivered specifically to the cell compartment that needs it.

2.2.2.2 Organelles in eukaryotic cells

Figure 2.4: Schematics of an eukaryotic cell showing its main organelles. These
organelles are briefly described in 2.2.2.2. Picture from [Alberts 2002]

The organelles that are part of the cytoplasm are usually separated from the
cytosol via a membrane not unlike the cell membrane. All eukaryotic cells have the
same basic set of membrane-enclosed organelles.

Although many of the biochemical processes in a cell take place in or on the
membrane surfaces, intracellular membrane systems do more for the cell than just
provide increased membrane area. They create enclosed compartments that are
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separate from the cytosol, providing the cell with functionally specialized aqueous
spaces.

Nucleus: The nucleus contains the main genome and is the principal site of DNA
and RNA synthesis.

Endoplasmic reticulum About half the total area of membrane in a eukaryotic
cell encloses the endoplasmic reticulum (ER). The ER has many ribosomes bound
to its cytosolic surface. The ribosomes are engaged in the synthesis of membrane
proteins, that will either be secreted to the cell exterior or sent to other organelles.
The ER also produces most of the lipid for the rest of the cell, and functions as a
store for Ca2+ ions.

The Golgi apparatus The Golgi apparatus consists of organized stacks of com-
partments called Golgi cisternae. It receives lipids and proteins from the ER and
dispatches them to a variety of destinations.

Mitochondria Mitochondria take up oxygen and harness energy from the oxida-
tion of food molecules to generate most of the ATP used by cells to drive reactions
that require an input of free energy. They contain their own genetic material, and
probably evolved from bacteria that were taken up into the cytoplasm of the eu-
karyotic cells and survived as symbionts.

Lysosomes and endosomes Lysosomes contain digestive enzymes, used to de-
grade dead intracellular organelles, macromolecules and particles taken in from out-
side the cell by endocytosis. Before arriving at the lysosomes, endocytosed material
must first pass through a series of organelles called endosomes.

Peroxisomes Peroxisomes are small vesicular compartments that contain en-
zymes utilized in a variety of oxidative reactions.

In general, each membrane-enclosed organelle performs the same set of basic
functions in all cell types. Depending of the specialized functions of the cells, how-
ever, organelles can vary in quantity and might obtain additional properties specific
to that cell type.

2.2.3 The cytoskeleton

The cytoskeleton is a network of protein filaments that spatially organizes the cyto-
plasm. It is the structure responsible to keep cells correctly shaped and physically
robust, and allow cells to organize themselves in space and to interact mechanically
with their environment. It is also responsible for the ability of some cells to change
their shape and move from a place to another. Additionally, the cytoskeleton is
behind the rearrangement of the cells’ internal components as they grow, divide
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and adapt to a changing environment. It drives and guides the intracellular traffic
of organelles from one part of the cell to another, gives support to the cell mem-
brane and provides the mechanical linkages that let the cell bear stresses and strains
without being ripped apart as the environment shifts and changes. An important
function of the cytoskeleton not discussed here is its role in mitosis. During mitosis,
the cytoskeleton is responsible to pull the chromosomes apart and to split the cell
in two.

The many different functions of the cytoskeleton come from the behavior of
three families of proteins, which assemble to form three main types of filaments:
microtubules, actin filaments and intermediate filaments. Each type of filament has
distinct mechanical properties and dynamics.

Microtubules: Strong, rigid, hollow tubes. They determine the positions of
membrane-enclosed organelles and direct intracellular transport.

Actin filaments: Determine the shape of the cell’s surface and are fundamental
for cell movement. They are very thin, hard to stretch and easy to break.

Intermediate filaments: Provide the cell with mechanical strength and resis-
tance to shear stress. They are easy to bend but hard to break.

All three types of filaments form as helical assemblies of subunits that self-
associate using a combination of end-to-end and side-to-side protein contacts, and
exist as a result of a flow-equilibrium of the assembling and de-assembling of these
subunits. The differences in the structures of the subunits, as well as the way
they self-assemble, are responsible by the variety of mechanical properties of the
filaments. The combination of the properties of these three groups of filaments with
a large number of accessory proteins linking the filaments to each other and to other
cell components is what makes the cytoskeleton so useful and important to a cell.

The large-scale structures in the cytoskeleton are very dynamic, and can change
or persist according to the cells need. Since the individual components that form
the filaments are constantly moving and changing, a structural rearrangement in
a cell does not require a lot of extra energy. The time scale for the duration of a
large-scale structure in a cell ranges from less than a minute up to the cell’s lifetime.

2.3 Experimental landscape

Two relatively recent developments in experimental methods are of special inter-
est in the context of this work. The first, two- (or multi-) photon imaging, is a
new microscopy method that allows tracking of cell shape and movement inside
living animals, generating data supposed to mirror the real behavior of cells in
vivo [Denk 1990, So 2001, Helmchen 2005]. The second, named multi epitope lig-
and cartography (MELC), is a robotic immunofluorescence microscopy system able
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to identify up to hundred molecules inside a cell at a determined point in time
[Schubert 2003, Schubert 2006].

The framework developed during this work has the potential to be used to sim-
ulate both cell shape derived from two-photon imaging data and the tracking of
molecules inside a cell as obtained by multi epitope ligand cartography.

2.3.1 Two-photon image data

Two-photon fluorescence microscopy (combined with in vivo fluorescence labeling
techniques) allows three-dimensional imaging of biological specimens and tracking
of cell movement in living organs with only minimum disturbance (see figure 2.5).
Therefore, the behavior of the cells can be considered to be representative of real in
vivo behavior. Two-photon microscopy can also be used to study the progression of
diseases as Alzheimer and the development of tumors. The method was invented by
Denk et al. [Denk 1990], and revolutionized three-dimensional in vivo imaging of
cell and tissues. A good introduction and a great review in two-photon microscopy
can be found respectively in [So 2001] and in [Helmchen 2005].
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Imaging of Germinal Center Selection
Events During Affinity Maturation
Christopher D. C. Allen,* Takaharu Okada,*† H. Lucy Tang,‡ Jason G. Cyster†

The germinal center (GC) is an important site for the generation and selection of B cells bearing
high-affinity antibodies, yet GC cell migration and interaction dynamics have not been directly
observed. Using two-photon microscopy of mouse lymph nodes, we revealed that GC B cells are
highly motile and extend long cell processes. They transited between GC dark and light zones and
divided in both regions, although these B cells resided for only several hours in the light zone
where antigen is displayed. GC B cells formed few stable contacts with GC T cells despite frequent
encounters, and T cells were seen to carry dead B cell blebs. On the basis of these observations,
we propose a model in which competition for T cell help plays a more dominant role in the
selection of GC B cells than previously appreciated.

Germinal centers (GC) represent critical
sites within organized lymphoid tissues
in which B cell responses to antigen are

amplified and refined in specificity. A classical
model of GC function holds that B cells in the
dark zone undergo rapid rounds of proliferation

and somatic hypermutation of their antibody
genes, followed by exit from the cell cycle and
movement to the light zone, where the B cells
undergo selection based on the affinity of their
surface antibody for antigen (1–5). The selection
process is thought to involve competition be-
tween GC B cells for capture of antigen in the
form of immune complexes displayed on the
processes of follicular dendritic cells (FDCs)
(1, 3, 5, 6). However, recent experimental evi-
dence and computer simulations have contra-
dicted aspects of this classical model (3, 7–9),
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Fig. 1. Dynamics and motility of GC B cells compared
with follicular mantle (FM) B cells and plasma cells (PC).
(A) An 18-mm maximum intensity z-projection from two-
photon microscopy image stacks of a GC and FM in an
intact LN. A time-lapse recording corresponding to the
center of this region is shown in movie S1. (B) Rep-
resentative time-lapse images from two-photon micros-
copy showing the morphology of a GC B cell, FM B cell,
and PC. The FM B cells in this experiment were naïve
GFP+ cells that were also labeled with CMTMR (10), and
only the GFP channel is shown in the images. Scale bars,
10 mm. (C) Superimposed 15-min tracks of 40 randomly
selected cells of each indicated type in the xy plane,
setting the starting coordinates to the origin. Units are
in micrometers. WT, wild type. Each color represents one
cell’s path. (D) (Left) Maximum-intensity projection of
FM (red) and GC (green) B cells. (Right) Tracks of FM
(red) and GC (green) B cells. The gridlines are separated
by 20 mm.
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Figure 2.5: Time-lapse images from two-photon microscopy showing the morphology
of a B cell from the germinal center, a B cell from the follicular mantle, and a plasma
cell. The scale bars are 10 µm. Image from [Allen 2007].

Two-photon microscopy relies on a non-linear process called fluorescence exci-
tation by two-photon absorption. This process occurs when two photons arrive
simultaneously (within ∼ 0.5 fs) at a molecule, combining their energies and bring-
ing the molecule to an excited state. The sum of the energy carried by the two
photons must, of course, be at least equal to the energy gap between the molecule’s
ground and excited states. The excited molecule then proceeds along the normal
fluorescence emission.

The transition probability to an excited state via two-photon absorption is ex-
tremely low at normal light intensities. To make the transition probability higher,
the light source has to be concentrated in space and time, i.e., many photons must
arrive at the same place at the same moment. In order to achieve an efficient exci-
tation, a light source with intensity on the order of 1010 to 1012 Wcm−2 is needed.
This required radiance level can be obtained by a light from a 1W continuous-wave
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laser focused to a 10−9 cm2 diffraction-limited focal volume. The most common
light sources are lasers that provide ultrafast (width around 100 fs) pulses at the
high repetition rate of about 100 MHz. These lasers can be quite expensive.

Despite its high price, two-photon microscopy has several advantages over tradi-
tional confocal microscopy. First, since the quantum energy of two photons is com-
bined, the transitions excited have higher energies than the excitation light. This
means that, even though the multi-photon absorption occurs in the near-infrared
wavelength range (700 to 1000 nm), the photon emission occurs in the visible spec-
tral range. This is an advantage because the ability of light to penetrate scattering
tissue increases with its wavelength and, in general, near-infrared light is less pho-
totoxic, since most tissues lack significant endogenous absorbers.

Additionally, a fundamental property of two-photon microscopes is depth dis-
crimination. This means that, when the laser beam is focused through the mi-
croscope objective, the absorption of multiphotons is spatially confined to a region
about 1 µm thick around the focal point (perifocal region), where the photon density
is high. Depth discrimination occurs because the signal depends supralinearly on
the density of photons. The fluorescence that is excited outside the perifocal region
is virtually negligible, further reducing photodamage in the tissue.

In figure 2.6 a schematic view of a two-photon microscope is shown. A laser
source is used to generate near-infrared ultrashort pulses, followed by systems that
allow the adjust of intensity and bean size. The laser is then coupled to the mi-
croscope. The laser beam passes then by scan lens (fS), tube lens (fT) and by an
objective (fO), being then focused in the specimen. Two-photon excited fluorescence
is isotropically emitted, and can be collected in epi- and/or trans-collection mode.
In in vivo experiments epicollection is used exclusively. High-sensitivity detection
electronics are used to ensure maximal detection efficiency and signal dynamic range.

2.3.1.1 The use of two-photon microscopy in biological systems

The ability of the two-photon microscopy technique to do deep imaging while re-
ducing photodamage makes it a great tool to the study of biological systems. The
method is nowadays often used for high-resolution imaging in various organs of living
animals.

In order to be able to study a system with the technique, though, the structure
(cells, molecules) of interest must be labeled. In order to do so, synthetic dyes
must be inserted into the system. There exist a variety of methods that allow
the introduction of these synthetic labels into a system: injection into the blood
stream to label vasculature, filling of individual cells via recording electrodes, high-
affinity binding of certain dyes to protein aggregates and so on. In immunology,
the “design” of transgenic animals (mostly mice) expressing anatomical markers
that have a widespread cell-specific labeling is the focus of dedicated experimental
research.

The most common applications of two-photon imaging in the field of immunology
are in the study of T cell dynamics inside the lymph nodes [Miller 2002, Stoll 2002,
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y. (a) Jablonski diagram, illustrating two-photon absorption (2PA), 
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Figure 2.6: A schematic drawing of typical components in a two-photon microscope.
This system consists of a high-peak-power pulsed laser, a high-throughput scanning
microscope and high-sensitivity detection circuitry. Figure from [Helmchen 2005].

von Andrian 2002] and in the study of B cell dynamics inside germinal centers
[Allen 2007, Hauser 2007, Schwickert 2007].

2.3.2 Multi epitope ligand cartography

The multi epitope ligand cartography (MELC) was first described by Schubert et al.
[Schubert 2003, Schubert 2006]. It is an approach that allows the mapping of the
sub-cellular location of hundreds of proteins in a single sample. A single fluorophore
is used (with different antibodies) by repeated rounds of staining, imaging and
photobleaching. Images are registered in a sequence, that later on will be combined
in a single image of up to hundred proteins in the same tissue or cell (see figure 2.7).

The method is specially interesting because it gives access to information about
the system studied that is complementary to the information obtained by traditional
methods. While usual fluorescence microscopy methods provide temporal informa-
tion and high spatial resolution for a maximum of five to ten proteins at a time, this
method can provide the simultaneous observation of several layers of proteins and
molecules, albeit without temporal evolution.
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The procedure to map the dozens of different species or classes of molecules
in morphologically intact cells is completely automated and requires a robotic im-
munofluorescence microscopy system. The technology uses large molecular libraries
to detect and localize the many individual molecular species in cells using fluores-
cence. For that, a slide with a given specimen is placed on a inverted wide-field
fluorescence microscope equipped with fluorescence filters. Fluorochrome-labeled
antibodies and wash solutions are then added and removed from the sample robot-
ically under temperature control, without any displacement of the sample or of the
objective. In each cycle a pair of antibodies is added and phase contrast and fluo-
rescence images acquired by a high-sensitivity cooled CCD camera. The sample is
washed with PBS, bleached at the excitation wavelengths and post-bleaching phase
contrast and fluorescence images are acquired. All data acquisition is fully auto-
mated. Each individual molecule in a cell is detected and registered as a spatial
signal map, and aligned relative to other molecular signals in the same cell.
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Figure 2.7: Toponome map of a primary human hepatocyte produced by mapping
15 molecules, defining a set of sub-cellular combinatorial molecular phenotypes and
representing seven of them by different colors to display a set of mutually exclusive
compartments. Figure from [Schubert 2006].

MELC analyses the topological order, i.e., the cellular organization, of the major
molecular classes of a cell – proteins, carbohydrates, lipids, nucleic acids. It therefore
addresses the organizational equivalent of genome and proteome in a cell, referred
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to as a toponome. A toponome contains all functional protein networks of a cell.
The higher-complexity, higher-resolution information coming from automated mi-
croscopy can potentially allow training of substantially improved prediction systems,
which in turn can be used to guide new experiments.

2.4 Simulating the internal structure of a cell

Although cells have been extensively studied, there are still many open questions
about even their most basic behaviors. Additionally, until recently, there were only
few theoretical works trying to make sense of biological systems. The field of theo-
retical biology is still very young.

The long term goal of this work (that certainly surpasses the scope of this thesis)
is to provide a theoretical model for a cell that can help clarify basic questions related
to the mechanisms behind cell shape and movement. How do cells change shape?
How do cells move? These questions are definitely connected with each other, as
cells need to change shape in order to move [Alt 1995].

The cell’s sub-cellular structure is certainly fundamental for its ability to change
shape and move. Particularly important is the cell’s cytoskeleton. The cytoskeleton
works as a scaffold for the cell.

In order to make a model for a cell capable of giving some insight on its shaping
fundamental properties, the cell’s internal structure has to be taken in consideration.
Models that offer no resolution of the cell’s internal structure (continuum models,
for example, or even agent-based models that represent each cell as a single object)
will certainly fall short off this task.

Left are agent-based models where each cell is represented by a group of objects.
In this case, each of these objects can carry different properties and the interaction
between these objects can give rise to emerging behaviors that, in the best of the
hypothesis, mimic the behaviors observed in cells.

2.4.1 Sub-cellular models

There exist a few theoretical models aiming at describing cell shape and migration
taking into consideration its sub-cellular level. A brief review of these models will
be given in this section.

2.4.1.1 The extended Potts model

The extended Potts model [Graner 1992, Glazier 1993] (also known as cellular Potts
model) was developed by James Glazier and François Graner in 1992, as an extension
of large-Q Potts model simulations of coarsening in metallic grains and soap froths,
with the objective to simulate the sorting of a mixture of two types of biological cells
(see figure 2.8). Nowadays this is the most traditional model for the description of
cell shape.
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The model is a generalization of the Ising model with multiple spin states. It
discretizes the continuous cellular pattern on a lattice, and each lattice site has
a spin associated to it. A separate spin is associated to each cell in the pattern.
Each cell is then defined as all volume elements that have the same spin state, and
therefore need not to be simply connected. Additionally, each cell has also a cell
type associated to it.

In order to obtain the Hamiltonian used, the following properties have to be
taken into consideration: bonds between lattice sites with a similar spin have energy
zero (which means that the energy inside a cell is zero). At cell boundaries, there is
a cell-type-dependent surface energy. In addition, since biological cells generically
have a fixed range of sizes, an elastic term and a fixed target area (that may depend
on cell type) must also be included.

Changes in shape and, therefore, the movement of cells are governed by ther-
modynamic interactions. The following Monte Carlo algorithm is used: at each
time step in the simulation, a lattice site is randomly selected. The spin value of
the selected site is then converted to the spin value of a (also randomly chosen)
neighboring site with a probability dependent on the variation on the energy of the
system. The spin is always changed when the system is driven to a configuration
with smaller energy. However, if the configuration ends up having a bigger energy,
the exchange is done according to the probability exp(−∆H/kT ), where ∆H is
the energy variation, k is the Boltzmann constant and T is the temperature of the
system.

The Potts model is very simple and yet to a certain extent realistic, in that the
position and diffusion of the membrane determine the dynamics of the system, as
they do for real loosely aggregated cells. Relative contact energies and boundary
curvatures drive all motion, and thus vertices are always close to their equilibrium
conditions.

However, a change of the cells’ shape is always correlated to a change of the
cell’s volume, since a subunit on the lattice has to change its spin state to the one
of its neighbor, if the cell is to move. These volume fluctuations are averaged out
if longer time scales are considered and a volume conserving potential is included
in the energy entering the Boltzmann law. Therefore, these unphysical changes in
cell volume associated with cell movement are negligible in the limit of many sub-
cellular nodes per cell. On the other side, in order to apply the Potts model to cells
with a small number of subunits, additional rules are needed.

2.4.1.2 The Hyphasma

An alternative lattice model architecture which intrinsically includes the one- and
the multi-subunit limit was developed by Michael Meyer-Hermann and Philip Maini
in 2005 [Meyer-Hermann 2005]. The model was originally used to describe lympho-
cyte migration in secondary lymphoid organs, in order to interpret the results found
with the experimental method of two-photon imaging.

The intrinsic inclusion of the one- and multi-subunit limit on the model allows
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Figure 2.8: Example of cell sorting simulated using the Potts model. Different stages
of the simulation are shown. Figure from [Glazier 1993].

the possibility of determining the lattice constant by the size of the smallest cell in
the studied system, that then can be described as a single volume element. This
provides faster computation when one is interested only in differences in volume
(and not in the substructure of the cells).

The method uses a mechanism of cell movement that conserves the total volume
of the cell when no growth or shrinking is intended. All reaction kinetics are for-
mulated as reaction rates and actions are taken according to probabilistic decisions.
Additionally, the physical movement of the cells is formulated in terms of forces act-
ing on subunits of the cell. Cell objects are represented by the cell volume, the cell
polarity, a list of cell subunits, and internal velocity states. As only the movement
of free cells was examined, the cell velocity from the experiments was used directly
as input for the model. Additionally, an overdamped approximation was used in
order to calculate the cell displacement.

The kinetics of the cell subunits is based in two types of velocity: undirected
active movement with persistence of orientation and cell reshaping. The direction
of the active movement is determined by the polarity of the cell. This polarity is
assumed to change randomly with a probability per time step that represents the
persistence time.

For the active movement of the cell, the barycenter of the cell is virtually shifted
in the direction of the polarity to the border of the cell. Then every subunit rep-
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! =
exp!! dfar!dnear

"dnear " + #

1 + # exp!! dfar!dnear
"dnear " , !3"

and dfar and dnear are, respectively, the distance of furthest
and nearest point to the virtual barycenter within the set of
free neighbor points of the cell. The target point is chosen
randomly within this reduced set of points. In the limit of
"→0 and #=0 only the target point nearest to the virtual
barycenter is considered. Large values of " and # reduce
anisotropy but also limit cell elongation. We chose the small-
est values such that anisotropic effects are not detectable by
eye, leading to "=#=0.2. However, the model behavior is
robust against changes of these values as long as both values
remain in the range between 0.1 and 0.4.
The tolerated deviations from the target point nearest to

the virtual barycenter as described by Eq. !2" are designed to
be adaptive to the deformation state of the cell. For large cell
deformations !i.e., dfar$dnear" !→# holds, while !=1 for an
ideal spherical cell !i.e., dfar=dnear". However, the exact

choice of Eq. !2" is arbitrary. Alternative descriptions with
similar general properties are not distinguishable within the
accuracy of the model.
The displacement of subunits is stopped when either no

border subunit remains to be moved or the barycenter of the
cell has been displaced by one lattice constant. In the new
state the cell has reorganized its membrane and thus changed
its shape. Thereby the total volume !the cell area in two
dimensions" of the cell is conserved. Thus the movement of
the cell barycenter is realized by subunit rearrangements, and
inherently couples the cell movement to its deformation.
The velocity state of the cell determines the rate with

which the whole procedure is started, which translates into a
movement probability

pactive =
1
%

&t
&x

v̄active, !4"

with &t and &x being the time and space resolution, respec-
tively. Note that instead of moving all subunits within a
single time step their movement may be distributed on %
'1 time steps. Then only a fraction 1/% of the subunits is
moved per time step. This parameter !beside the lattice con-
stant &x" changes the stochastic variability of the cell move-
ment.
It is worth mentioning that the algorithm for rearrange-

ment of the cell subunits does not belong to the class of
Markov processes if N(1: Within every time step the sub-
units of a cell which have already moved determine which
subunits may still be moved. However, all other processes
are Markov-like. For example, the change of orientation de-
pends neither on the time passed since the last change nor on
the present or previous orientation.
Within this model framework every cell optionally can

embed different velocity states that are characterized by dif-
ferent mean active velocities v̄i. They are adopted randomly
and the velocity state is switched with a probability corre-
sponding to a persistence time of velocity states &tvi. The
latter can be constant for all states or may be shorter for
states with higher velocities. The assumption of more than
one velocity state for the active movement of cells will be
further discussed and compared to two-photon imaging data
in Sec. III.

C. Cell reshaping

The second ingredient of the cell motility model concerns
the cell shape stability #7$. During the procedure of active
cell movement all forces that reshape the cell towards a
sphere, i.e., hydrostatic pressure, reduced actin filament as-
sembly, actomyosin contraction, or membrane surface ten-
sion, are ignored. All these forces are included in a single
reshaping force. This overall elastic force drives the subunits
of an elongated cell back to the current barycenter and pro-
motes a spherical shape. Note that we do not attempt to
describe the intracellular processes that underlie this total
rearrangement in detail. The concentration of all these
mechanisms into a single force on the cell subunits has to be
considered as a phenomenological approximation.

FIG. 1. A schematic description of cell movement by subunit
rearrangement around a virtual barycenter. Immobile cell subunits
are shown in light grey, border subunits that may be moved in
white, putative free target points in dark grey, and other points in
black. The current barycenter is denoted by the dot, and the cell
polarity by the arrow attached to it. The arrow points the position of
the virtual barycenter at the border of the cell. The starting position
is shown on the top left. A random white subunit is chosen and
moved towards the target point nearest to the virtual barycenter
!open arrow upper panel". The result is shown in the lower panel.
Note that cell subunits that are neighbors of the target point are
removed from the to move list !turning them from white to light
grey". In the upper right panel another random !white" subunit is
moved towards the target point nearest to the virtual barycenter
!open arrow". In that case the moved subunit is at the back of the
cell and all cytosol subunits in between are shifted correspondingly.
The result is shown in the lower left panel. The procedure is re-
peated !the open arrow in the lower left panel shows a possible next
step" until all white subunits have been moved or removed from the
to move list. A possible final constellation with a recalculated bary-
center is shown in the lower right panel.
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Figure 2.9: A schematic description of how the cell movement works in the model.
The current barycenter is denoted by the dot, and the cell polarity by the arrow
attached to it, that also points to the position of the virtual barycenter at the border
of the cell. The cells subunits in light grey are immobile, the ones in white belong to
the border of the cell and may be moved. Free target points are shown in dark grey
and other points in black. On the top left the starting position is shown. Random
white cells are chosen and moved towards the target point nearest to the virtual
barycenter, one by one, until all white cells have been moved or are not allowed
to move anymore. A possible final configuration is shown on the lower right panel.
Figure from [Meyer-Hermann 2005].

resenting a border point of the cell is randomly moved towards free lattice points
near the new barycenter. The movement is suppressed in case the movement of a
border subunit would cause the subunits of the cell to disconnect from each other.
The displacement of subunits is stopped when either no border subunit remains to
be moved or the barycenter of the cell has been displaced by one lattice constant
(see figure 2.9).

All forces that reshape the cell towards a sphere, i.e., hydrostatic pressure, re-
duced actin filament assembly, actomyosin contraction, or membrane surface ten-
sion, are included in a single reshaping force. This force is implemented as an
overall elastic force that drives the subunits of an elongated cell back to the current
barycenter and promotes a spherical shape.

A nice feature of this model is that it generically couples cell deformation and
cell displacement in a way that is quantitatively consistent with two-photon imaging
data of lymphocytes.
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2.4.1.3 The sub-cellular element model

Off-lattice models, widely used in the simulation of multi-cellular systems
[Meineke 2001, Beyer 2008, Bock 2009, Galle 2008], are also often applied to sub-
cellular dynamics. In 2005, a model designed to allow the simulation of large num-
bers of cells, but still taking in consideration cell-shape dynamics with the use of
sub-cellular particles, was introduced by Timothy Newman [Newman 2005]. In this
model (named Sub-cellular Element Model) cells are not confined to a lattice, being
allowed to occupy any position on space.

In the model, each cell is composed of a determined number of sub-cellular parti-
cles (see figure 2.10). Chemical signaling is not included in the system, and the cells
interact to each other via local biochemical interactions. The position of each sub-
cellular element changes according to three processes: a weak stochastic component,
and elastic response to intracellular biomechanical forces and an elastic response to
intercellular biomechanical forces. Additionally, the movement is considered to be
overdamped. The dynamics of the elements is described by Langevin equations.
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individual cell by i ∈ (1, N) and an element in cell i by αi ∈ (1,M). For ease of
discussion we assume that chemical signaling is absent from the system, so that cells
respond purely to local biomechanical interactions. In this case, the position vector
of element αi is taken to change in time according to three processes: (i) a weak
stochastic component, which mimics the underlying fluctuations in the dynamics
of the cellular cytoskeleton; (ii) an elastic response to intracellular biomechanical
forces; and (iii) an elastic response to intercellular biomechanical forces. We assume
further that the elements’ motion is over-damped, so that inertial effects can be
ignored. The equation of motion for the position vector of element αi takes the
form:

ẏαi
= ηαi −∇αi

�

βi �=αi

Vintra(|yαi − yβi |)−∇αi

�

j �=i

�

βj

Vinter(|yαi − yβj |) . (1)

On the right-hand side, the noise term ηαi
is a Gaussian-distributed random variate

with zero mean and correlator

�ηm
αi

(t)ηn
βj

(t�)� = 2νδi,jδαi,βj
δmnδ(t− t�) , (2)

where m and n are vector component labels in the three-dimensional space. The
second and third terms on the right-hand side of equation (1) represent, respectively,
intra- and intercellular interactions between the elements. These interactions are
completely characterized by the phenomenological potentials Vintra and Vinter. At
this level of description, all relevant biological detail must be encoded into these
two potentials. The elemental composition of cells, along with the inter-elemental
potentials, are shown schematically in Figure 1. We have assumed that “two-body”
potentials are sufficient to describe the dynamics. It may be necessary to use “three-
body” potentials to capture the essence of more complicated interactions.

!i

"j

i j
Vintra

Vinter

Figure 1. Schematic diagram showing two cells, i and j, and
a subset of the intra- and intercellular interactions between their
elements. The elements of cell i are represented by open circles,
and those of cell j by filled circles. The intra- and intercellular
interactions are represented by solid and dashed lines respectively.

For given biological applications of this modeling framework, one must intuit
(or, better, derive) reasonable forms for Vintra and Vinter. For illustrative purposes,

Figure 2.10: Two cells (i and j) interacting according to the sub-cellular element
model. White elements belong to cell i and black to cell j. Intracellular interactions
are represented by solid lines, while intercellular interactions are represented by
dashed lines. αi is an element of cell i, βj an element of cell j, Vintra the intracellular
potential and Vinter the intercellular potential. Figure from [Newman 2005].

The intra- and inter- cellular interactions are characterized by phenomenological
potentials. All relevant biological details have to be encoded into these two poten-
tials. Since the choice of the potentials is purely phenomenological, some discussion
of the biological motivation for the choice is necessary.

The method provide efficient procedures to update neighborhood relations.
An interesting application in cell rheology of this model was recently published
[Sandersius 2008].
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2.4.1.4 The tensegrity model

An alternative approach to include the cells internal structure in a model to describe
cell shape and properties is given in [Ingber 2003a, Ingber 2003b]. In this approach a
cell is approximated by a tensegrity structure, where tensegrity structures are defined
as systems that stabilize their shape by continuous tension (“tensional integrity”)
rather than by continuous compression.

The idea was to create a cell model that relates mechanics to chemistry at the
molecular level, and that can be translated into mathematical terms. Tensegrity
includes two broad structural classes: prestressed and geodesic. Both fail to main-
tain shape stability when mechanically stressed without continuous transmission of
tensional forces. These tensional forces are supposed to be sustained by cytoskeletal
microfilaments and intermediate filaments, and balanced by internal microtubules
struts and extracellular matrix (ECM) adhesions.

Experimental validation of the cellular tensegrity model requires demonstration
of three major behaviors of living cells: that they behave mechanically as discrete
networks composed of different interconnected cytoskeletal filaments, that cytoskele-
tal prestress is a major determinant of cell deformability, and that microtubules
function as compression struts, and act in a complementary manner with ECM
anchors to resist cytoskeletal tensional forces.

In an article by Patrick Cañadas at al. from 2002 [Canadas 2002], this math-
ematical model is used for an analysis of the structural viscoelasticity of the cy-
toskeleton. For the simulation, a 30-element tensegrity structure was modified in
order to consider the viscoelastic properties of cables (figure 2.11). Cables were
assumed to behave like viscoelastic Voigt bodies (elastic element in parallel with
viscous dashpot). Additionally, the Young modulus and cross-sectional area that
characterize the cables and bars were kept constant, while the viscosity modulus of
cables and the length of bars were allowed to vary.

The viscoelastic response of the system was studied over a large range of initial
states of overall deformation by solving a system of differential equations where the
external-forces vector was related to both the nodal-displacement vector associated
with a global-rigidity matrix and the rate of nodal-displacement vector associated
with the global-damping matrix. This equilibrium equation system was solved for
small variations of force and displacement hypothesis, considering a linear incremen-
tal method.

Overall, the results supported the idea of a structural origin to cellular viscoelas-
ticity, and confirmed the biological relevance of the author’s model in this specific
problem.

2.4.1.5 Towards a new sub-cellular model

The model presented in the next chapters of this thesis embraces the strong features
of the aforementioned models into a single modeling framework. It is an off-lattice
agent-based model and can be run with any sub-cellular resolution. Many particle
interactions are used to define a cell. Neighborhood relations are defined via a
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b ) in the
bars, leading to the following relationships
(exponent ‘‘r’’ corresponds to the reference state)
(Mohri & Motro, 1993; Pugh, 1976):
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NODAL ATTACHMENT AND LOADING CONDITIONS

OF THE TENSEGRITY MODEL

The viscoelastic tensegrity model was sub-
jected to uniaxial extension or compression so

that the parallel bars [1–8] and [6–11] were
either pulled apart or brought closer together
by external forces applied at the endpoints
(nodes {#6, #11}). During shear, the forces
were applied at the nodes {#6, #11} along
the corresponding rigid bar axis and during
torque, the forces applied at these two nodes
were opposite and perpendicular to the bars
[6–11] and [4–12] (see Fig. 1). The bottom
nodes {#1, #2, #4 and #8} remained fixed
during deformation of the tensegrity structure
in order to mimic cellular attachment to
a non-deformable and non-planar substratum.

CONSTITUTIVE EQUATIONS OF THE

THEORETICAL MODEL

The constitutive equations describing the
dynamic behavior of the viscoelastic tensegrity
model are derived based on the equations
described previously in the case of pure elastic
tensegrity model (Wendling et al., 1999) applied,
in the present study, to the viscoelastic behavior
of cables. Taking into account the time depen-
dence of cable properties and assuming small
displacements, the methodology consists in
resolving the following system of differential
equations:

fFg ¼ ½K% & fugþ ½C% & f ’ug; ð3Þ

where the external-forces vector fFg is related
to both (i) the nodal-displacement vector fug
associated with the global-rigidity matrix
½K %; and (ii) the rate of nodal-displacement
vector f ’ug associated with the global-damping
matrix ½C%: fFg is a 1( 36-column vector
composed of the three-dimensional com-
ponents of external forces applied at the 12
nodes. Similarly, the vector size of both
nodal displacements fug and rate of nodal
displacement f ’ug is a 1( 36-column. The
overall rigidity matrix ½K% is a Boolean sum of
each elementary rigidity matrix ½K %p [see eqn (4)
and Wendling et al., 1999] which depends
exclusively on the Young modulus Ep; the
internal force Tp (i.e., tension in the cables or
compression in the bars), the cross-sectional area
Sp and the length lp of the element ‘‘p’’ as

Fig. 1. Spatial view of the tensegrity structure studied
(six bars and 24 viscoelastic cables). At the reference state
(no external forces applied to the structure), the four nodes
{#1, #2, #4, #8} are anchored and fixed in their spatial
positions (K). The rectangular base fx; y; zg is the
referential system. External forces are applied at nodal
points {#6, #11}. Extension and compression forces ðFzÞ are
applied along the z-axis. Shear forces ðFyÞ are applied along
the y-axis and the structure is submitted to a twisting torque
by opposite forces applied at node #6 ðFxÞ and at node #11
ð)FxÞ: We only consider first-order displacement in the
direction of applied force. Second-order displacements,
occurring at large deformation especially in shear, are not
considered. The overall deformation resulting from appli-
cation of external forces, is calculated by reference to the
length L0; defined as the distance between the inferior and
the superior planes of the structure at reference state. To
calculate the overall structural stress, we used a reference
circular area S0 (diameter L0) embedding the structure.
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Figure 2.11: 30 element tensegrity structure (6 bars and 24 viscoelastic cables) with
the external forces to be applied. Figure from [Canadas 2002].

Delaunay triangulation and the interacting particles have the possibility to hold
specific functions, like being part of the cell membrane or represent an organelle. It
is suitable to simulate single cells, a few interacting cells or multi-cellular systems.

The use of Delaunay triangulations allows a faster update of the neighbor-
hood relations between the interacting particles in relation to traditional off-
lattice methods. Some methods from molecular dynamics (like the one used in
[Newman 2005, Sandersius 2008]) also provide efficient procedures to update neigh-
borhood relations, as long as the motility of the cells is limited.

Delaunay triangulations have often been used in Biology, usually in the sim-
ulation of systems where many cells interact with each other (for example tis-
sues, primary lymphoid follicles formation) [Meineke 2001, Beyer 2008]. The
model described here is an extension on a framework developed in the last years
[Schaller 2004, Beyer 2005]. The program generates kinetic (moving vertices) and
dynamic (changing number of vertices) Delaunay triangulations for a set of agents,
being particularly useful for the simulation of evolving biological systems, where the
number of agents varies and at every time step the neighborhood relations must be
quickly adjusted.

This framework was extended by adding the possibility that particles interact
only in a subset of the defined interaction relations, more specifically in a subset
of the Delaunay triangulation restricted to a two-dimensional surface embedded
in three-dimensional space. The model will be applied to define the interaction
relations between membrane sub-particles of a three dimensional cell. The details
of the mathematical implementation will be discussed in chapter 3.
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The goal of this work was to develop a framework for the simulation of cells
in an agent-based fashion. The intended framework was designed so that it would
include the following desired properties:

1. It should take the internal structure of the cells into consideration. Practically,
this means that some resolution inside the cell is needed. Therefore, each cell
cannot be represented by a single particle, but should be simulated as a set
of sub-particles. The sub-particles, naturally, need to interact to each other.
This leads to the next desired property of the framework:

2. The interaction relations between the sub-particles should be defined via a De-
launay triangulation. Many reasons were involved in this decision. First, De-
launay triangulation is an efficient method to define neighborhood relations be-
tween particles, and it is widely used in the simulation of multi-cellular systems
[Meineke 2001, Beyer 2008, Bock 2009, Galle 2008], usually with each cell in
the system simulated as a single point of the triangulation. Second, former
members of the Systems Immunology group at FIAS developed during the last
years a framework to calculate kinetic (i.e., with the ability to handle moving
vertices) and dynamic (allowing the insertion and deletion of vertices) Delau-
nay triangulations [Schaller 2004, Beyer 2005, Meyer-Hermann 2008]. There-
fore, one of the goals of the project was to expand the already existing frame-
work to facilitate the simulation of sub-cellular structures.
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3. The framework should be flexible. It should be easy to change the number of
sub-particles in a cell, as well as to increase the complexity of the model (for
example, with the inclusion of cellular organelles) according to the complexity
needed for the system in consideration.

4. The minimum setup of the framework should already include two basic types
of sub-particles, distinguishing the particles belonging to the membrane from
the particles that make up the internal structure of the cell.

In this chapter the basic mechanisms of the framework will be explained, as well
as the necessary mathematical background. In section 3.1 an introduction to the
Delaunay triangulation (as well as to its dual, the Voronoi tessellation) will be given.
In section 3.2 the interaction potentials used during dynamics will be introduced and
justified, and in section 3.3 the equations of motion used throughout this work will
be presented. Finally, in section 3.4 the technique used to solve the dynamics of the
system will be explained.

3.1 The Delaunay triangulation

The Delaunay triangulation of a given set of points P is a special triangulation that
fulfills a set of mathematical criteria. In two-dimensions, it triangulates the set of
points in such a way that no point in the set is inside the circumcircle of any trian-
gle in the triangulation. Both the Delaunay triangulation and its dual, the Voronoi
tessellation, are well covered topics in the literature (specially in two-dimensional
space). A good review, as well as the fundamental definitions and properties of
Delaunay triangulations can be found in [Okabe 2000]. Additionally, detailed expla-
nations about the numerical implementation of a kinetic and dynamic triangulation
supporting insertion, removal and movement of spheres was also throughly discussed
in [Schaller 2005, Beyer 2007]. In this thesis, therefore, only a simple introduction
to the subject and the information relevant for understanding the model will be
given.

3.1.1 The Voronoi tessellation

Given a sample of points P , a Voronoi cell can be defined for every point p in the
sample as all points in R3 nearer to this point than to any other point p′:

Vp = {x ∈ R3 : |x− p| < |x− p′|,∀p′ ∈ P,p′ 6= p}. (3.1)

A Voronoi tessellation (see figure 3.1) is defined as the set of Voronoi cells for
all points of a sample P , and decomposes the R3 in convex polyhedrons.

3.1.2 Defining the Delaunay triangulation

The Delaunay triangulation (see figure 3.1) of P is the dual graph of the Voronoi
tessellation. Every point in P is a Delaunay vertex, and (in three dimensions)
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Figure 1: Voronoi tesselation (red) and Delaunay triangulation (grey) of a set of Points in two-
dimensions

Vp = {x ∈ R3 : |x− p| < |x− p�|,∀p� ∈ P, p� �= p}. (3.1)

The facet between two Voronoi cells will be called a Voronoi facet, the edges between three
Voronoi cells Voronoi edges, and the points between four Voronoi cells Voronoi vertices.

A Voronoi diagram (or Voronoi tessellation) is the set of Voronoi cells for all points on a
sample P , together with every Voronoi facet, edge and point, and decomposes the R3 in convex
polyhedrons (see figure 1).

3.2. Defining the Delaunay triangulation
Mathematicaly, the Delaunay triangulation (see figure 1) of P is the dual graph of its Voronoi
tessellation, decomposing the convex hull of the points in P in simplices.

Starting with the Voronoi diagram for a sample P , the Delaunay triangulation of the sample
can be intuitively constructed by connecting every pair of points in P whose Voronoi cells have
a common facet. In a more formal manner, a simplex whose vertices are the points p1, p2, . . . , pn

belongs to the Delaunay triangulation if the intersection of the Voronoi cells corresponding to these
points is non-empty.

A Delaunay cell, a Delaunay face and a Delaunay edge will be defined, respectively, as the
convex hull of four, three and two points in P whose corresponding Voronoi cells intersection is
non-empty. Every point in P is a Delaunay vertex, and Delaunay cells, faces, edges and vertices
are called generically simplices.

Throughout this work, unless otherwise noticed, the term simplex will be used as a synonym
to Delaunay cell. The terms vertex and point will refer to Delaunay vertices, and Delaunay edges
will also be referred as connections.

4

Figure 3.1: Voronoi tessellation and Delaunay triangulation of a sample P of points
in two-dimensions. The round dots are the points in the sample P , with the con-
nections between them forming their Delaunay triangulation. All other drawn con-
nections belong to the Voronoi tessellation of the sample.

a simplex is defined as the convex hull of four points in P whose corresponding
Voronoi cells intersection is non-empty. Starting with the Voronoi diagram for a
sample P , the Delaunay triangulation of the sample can be intuitively constructed
by connecting every pair of points in P whose Voronoi cells have a common facet.

Throughout this work the terms vertex and point will refer to Delaunay vertices,
and edges in the Delaunay triangulation will also be referred to as connections.

3.1.2.1 The Delaunay criterion

When the Voronoi tessellation is not known a priori, the Delaunay criterion is used
in order to construct a Delaunay triangulation.

Every simplex of vertices pi in R3 has a circumsphere. The radius and the center
of the circumsphere can be derived from the four sphere equations

(m− pi)2 = R2, i = 1, ..., 4, (3.2)

where m are the coordinates of the center of the circumsphere and R is its radius.
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For a triangulation to be considered a Delaunay triangulation, all of its simplices
must satisfy the empty-circumsphere-criterion (or Delaunay criterion), i.e., no vertex
of the triangulation may lie inside the circumsphere of the triangulation simplices.
Therefore, a Delaunay triangulation is uniquely defined if the points in P are in
extended general position, i.e., no two points are identical, no three points lie on a
common line, no four points lie on the same plane and no five points lie on a common
sphere (for the three-dimensional case discussed here) [Schaller 2004, Okabe 2000,
Mücke 1998, Cazals 2006].

A more general concept for the Delaunay criterion can be obtained by extending
the Euclidean distance measure to vertices with weights. In this case, a weighted
vertex can be defined as p̂ = (p, wp), and the orthogonal distance between two
points p̂1 = (p1, w1) and p̂2 = (p2, w2) as π(p1,p2) = (p1 − p2)2 − w1 − w2. A
vertex with positive weight can be understood as a sphere with radius R =

√
w

situated at position p. The problem presented in this work does not include weights
on the vertices of the triangulation, but it could be extended to include weights if
necessary.

The easiest way to verify whether or not a vertex lies inside the circumsphere
of a simplex is to solve the four sphere equations 3.2. However, a more efficient
method (called lifting transformation) to solve the problem exists, and it involves
the addition of one more dimension to the problem [Ferrez 2001, Shewchuk 1997].
For that, the coordinates in R3 are projected onto a paraboloid in R4 via

p = (px, py, pz)→ p† = (px, py, pz, p
2
x + p2

y + p2
z). (3.3)

Therefore, if a simplex is composed by four points (p1,p2,p3,p4), the four points
p†1, p†2, p†3, p†4 will define a hyperplane in R4. If q is a point that lies within the
circumsphere of (p1,p2,p3,p4), then q† will be below this hyperplane in R4 and
above otherwise. Consequently, the Delaunay criterion in R3 reduces to a simple
orientation computation in R4.

This lifting transformation will give the following:

in_circumsphere[(p1,p2,p3,p4),q] = orientation(p1,p2,p3,p4,q)

= sign

∣∣∣∣∣∣∣∣∣∣∣∣

p1x p1y p1z p2
1x + p2

1y + p2
1z 1

p2x p2y p2z p2
2x + p2

2y + p2
2z 1

p3x p3y p3z p2
3x + p2

3y + p2
3z 1

p4x p4y p4z p2
4x + p2

4y + p2
4z 1

qx qy qz q2x + q2y + q2z 1

∣∣∣∣∣∣∣∣∣∣∣∣

= sign

∣∣∣∣∣∣∣∣∣∣

p1x − qx p1y − qy p1z − qz (p2
1x + p2

1y + p2
1z)− (q2x + q2y + q2z)

p2x − qx p2y − qy p2z − qz (p2
2x + p2

2y + p2
2z)− (q2x + q2y + q2z)

p3x − qx p3y − qy p3z − qz (p2
3x + p2

3y + p2
3z)− (q2x + q2y + q2z)

p4x − qx p4y − qy p4z − qz (p2
4x + p2

4y + p2
4z)− (q2x + q2y + q2z)

∣∣∣∣∣∣∣∣∣∣

,

(3.4)

where sign gives the sign of the calculated determinant. A positive sign indicates
that the point q lies inside the circumsphere of (p1,p2,p3,p4), if the simplex is
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positively oriented in three dimensions. The lifting transformation gives rise to a
different viewpoint of Delaunay triangulations: a n-dimensional Delaunay triangu-
lation is determined by the boundary of the convex hull of the lifted vertices in n +
1 dimensions.

3.1.2.2 Computational implementation of the three-dimensional Delau-
nay triangulation

The underlying algorithms to calculate Delaunay triangulations used in this work
have been published before [Schaller 2004, Beyer 2005, Meyer-Hermann 2008] and
are available upon request.

The software used in this work calculates a fully kinetic and dynamic three-
dimensional Delaunay triangulation of a given set of particles, supporting both the
movement of vertices as well as their dynamic insertion and deletion [Schaller 2004,
Beyer 2005, Meyer-Hermann 2008]. It is therefore suitable for systems where the
number of particles may vary.

The implementation is done in C++ and is parallelized [Beyer 2005, Beyer 2006].
The software package offers many functions to deal with vertices and simplices which
will be considered as given during the description of the algorithms used to develop
this work.

• Vertex list: list of all vertices belonging to the triangulation. A vertex is
composed of a position in space and the associated object in this position.

• Neighbor list: function of a vertex. Given a determined vertex, this function
returns all neighbors of this vertex in the triangulation.

• Simplex list: function of a vertex. Given a vertex, this function returns all
simplices this vertex belongs to.

3.2 Interaction potentials

Any kind of internal structure belonging to a cell can, in principle, be included in the
model, by controlling the properties of the sub-particles. This allows, for example,
the definition of sub-particles as organelles inside the cell, as belonging to the actin
network, to the cytoskeleton or to any other sub-cellular structure one can think
of. However, the more detailed the internal structure of the cell, the more time
consuming the computation is. Therefore, the refinement of the model has to be
done with care, taking into consideration the growth in complexity as well.

In the present setup of the model only two different groups of particles are
considered: the ones belonging to the membrane (called membrane particles) and
the ones belonging to the internal structure of the cell (called cytosolic elements).
Membrane particles and cytosolic elements have different properties, and therefore
should interact under different conditions. In this simple setup, two interaction
potentials were set, one to mediate the interactions between membrane particles,
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and one to mediate the interactions between cytosolic elements and interactions
between both types of particles.

3.2.1 Cytosolic sub-particle interactions

In principle, all sub-particles interact with each other via the three-dimensional De-
launay triangulation. It will be shown later on, however, that the three-dimensional
Delaunay triangulation is not the best solution to define the interaction relations
between membrane particles. With exception to the neighborhood relations between
membrane particles, all other neighborhood relations on the system are given by the
three-dimensional Delaunay triangulation.

The potential chosen for the interaction between cytosolic elements is the
Lennard-Jones potential [Jones 1924]:

U(r) = 4ε

[(
σ

r

)12

−
(
σ

r

)6
]
, (3.5)

where ε is the depth of the potential and σ is the equilibrium distance where the
potential is zero. Here ε = ε∗ε0, where ε0 is the universal energy scale, σ = σ∗σ0

and r = r∗σ0, where σ0 is the universal length scale. From now on reduced units in
terms of ε0 and σ0 will be used. In this case, equation (3.5) becomes

U(r∗) = 4ε∗
[(

σ∗

r∗

)12

−
(
σ∗

r∗

)6
]
. (3.6)

For convenience we drop the stars in the remainder of this thesis.
The Lennard-Jones potential was proposed by John Lennard-Jones in 1924

[Jones 1924], with the goal to describe the interactions between a pair of neutral
atoms or molecules. The r12 term describes repulsion at short ranges and the r6

term describes attraction at long ranges. Originally, the repulsion term represented
Pauli repulsion at short ranges due to overlapping electron orbitals and the attrac-
tion term represented forces like van der Waals force or dispersion forces.

Although the Lennard-Jones potential was originally developed to describe in-
teractions between molecules, it is essentially a phenomenological potential. In this
case, it can be used to simulate the interaction between any kind of particles where
repulsion is expected at short ranges and attraction at long ranges. This potential
was chosen because it matched the desired behavior while being also convenient,
due to the ease and efficiency of computing r12 as the square of r6. Evidently, the
parameters of the potential ( ε0, σ0 and r0) should, in principle, be connected to rel-
evant quantities from experiments related to the system. A longer discussion about
the connection between the simulations and physical units will be given during the
calculation of initial configurations (chapter 5).
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3.2.2 Cross-interaction between membrane and cytosolic sub-
particles

The cross-interactions between membrane particles and cytosolic elements are gov-
erned by the same rules as the interactions between cytosolic elements only. The
neighborhood relations are defined via the original three-dimensional Delaunay tri-
angulations, and the particles interact via a Lennard-Jones potential as well. How-
ever, albeit the potential is the same, the parameters used in the simulations for the
interactions may differ depending on the interacting particles.

For the initial configurations used during this work, the depth of the potential ε
was the same for both interactions between cytosolic elements and cross-interactions
between cytosolic elements and membrane particles. The equilibrium distance (σ),
however, was modified. More details about the chosen parameters are given in
chapter 5.

3.2.3 Membrane sub-particle interactions

The properties expected from particles simulating a cell membrane are quite different
from the properties expected from particles simulating cytosolic elements. The
interactions between cytosolic elements should be flexible and, to a certain extent,
reproduce the characteristics of a liquid. The cell membrane, however, should be
elastic and behave as a liquid confined to two-dimensions. Therefore, the interactions
between membrane particles should be able to simulate these properties.

Additionally, as explained in section 5.1, the cell membrane is mainly composed
by a lipid bilayer. Little to no long range interactions happen in the lipid bilayer
and, therefore, it is reasonable to approximate the membrane by a two-dimensional
bended surface. As a result of this assumption, the interactions between particles
used to simulate the membrane should be local.

The initial intention was to let the three-dimensional Delaunay triangulation
handle all the neighborhood relations of the model. Early tests, however, showed
that, although the neighborhood relations coming from the Delaunay triangulation
are local, they are not sufficiently restrictive to be used to describe the interactions
between membrane particles. This happens because the connections generated by
the three-dimensional Delaunay triangulation still allow interactions to happen out-
side the two-dimensional surface that defines the cell membrane.

With the original Delaunay triangulation not being suitable to define the mem-
brane neighborhood relations, a new solution had to be proposed. However, the
three-dimensional Delaunay triangulation is still the method to get all other neigh-
borhood relations in the model. Therefore, a solution that could still make use of the
Delaunay triangulation (that is in any case calculated) would be welcome. With that
in mind, the following solution was proposed: the neighborhood between membrane
particles should be represented by a subset of the original three-dimensional Delau-
nay triangulation. Additionally, the connections belonging to this subset should be
the ones restricted to the membrane two-dimensional surface.
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Obtaining this restricted Delaunay triangulation from the original Delaunay tri-
angulation is a rather complicated problem. Although some methods from surface
reconstruction are available [Amenta 1998, Amenta 1999], they have specific prop-
erties that are not desired when applied to biological systems. In order to solve this
problem, an algorithm to define which connections belong to this restricted trian-
gulation was developed. This algorithm is an important part of this thesis, and it
will be explained in details in chapter 4.

Due to the cell membrane elastic properties, the potential chosen to mediate the
interactions between membrane particles was the elastic potential:

U(r) =
1
2
κ(r − r0)2, (3.7)

where κ is the elastic constant and r0 is the equilibrium distance of the potential. As
before, κ and r0 are given in reduced units, and need to be connected to experimental
parameters in order for the results to be given in physical units.

3.3 Equations of motion

Considering a system of a single cell that does not interact with the environment, the
equations of motion for membrane particles and cytosolic elements can be written
down separately. For each cytosolic element, the equation of motion will be

mc
d2

dt2
x(t) =

∑

Nc

(FLJ)c +
∑

Nm

(FLJ)cm, (3.8)

while for each membrane particle it will be

mm
d2

dt2
x(t) =

∑

Nc

(FLJ)cm +
∑

Nm

(Fel)m, (3.9)

where mc and mm are, respectively, the cytosolic and membrane particles’ masses.
Additionally, Nc and Nm represent the cytosolic and membrane neighbors of a par-
ticle, (FLJ)c is the force due to the Lennard-Jones potential between cytosolic ele-
ments, (FLJ)cm is the cross force between cytosolic elements and membrane particles
(also due to the Lennard-Jones potential), and (Fel)m is the elastic force between
membrane particles.

Using the elastic and the Lennard-Jones potential from equations (3.7) and (3.5),
the forces in equations (3.8) and (3.9) can be written as:

(FLJ)c = 24εc

(
2
σ12

c

r13
− σ6

c

r7

)
, (3.10)

(FLJ)cm = 24εcm

(
2
σ12

cm

r13
− σ6

cm

r7

)
, and (3.11)

(Fel)m = −κ(r − r0). (3.12)
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3.4 Dynamics

The evolution of the system in time is calculated using the Verlet algorithm
[Verlet 1967, Verlet 1968], a numerical method commonly used to integrate New-
ton’s equations of motion. The algorithm is often used in molecular dynamics, and
it is more stable than the usual Euler method. The Verlet algorithm calculates the
position at the next time step from the positions at the previous and current time
steps, and it does not depend on the velocity of the particle. This reduces the level
of errors introduced in the integration.

In order to derive the Verlet algorithm, Taylor expansions of x(t) both forward
and backward in time are needed:

x(t0 + ∆t) = x(t) + v(t)∆t+
1
2
a(t)(∆t)2 +

1
6
b(t)(∆t)3 +O(∆t4), and

x(t0 −∆t) = x(t)− v(t)∆t+
1
2
a(t)(∆t)2 − 1

6
b(t)(∆t)3 +O(∆t4),

(3.13)

where x is the position, v is the velocity, a in acceleration and b is the third derivative
of the position with respect to time. Summing the two expansions gives the following
equation for the position of a particle in the system in an instant of time t0 + ∆t:

x(t0 + ∆t) = 2x(t0)− x(t0 −∆t) + a∆t2. (3.14)

As it can be seen in the equation above, summing the two Taylor expansions
cancels both the first and the third-order terms out, making the Verlet integrator
an order more accurate than integration by simple Taylor expansion alone.

3.4.1 Overdamped approach

Biological systems are usually under a lot of drag and friction forces. A simple way
to implement this on the Verlet algorithm is to consider that part of the particle’s
speed is lost to the environment. This can be easily implemented in the form of a
factor in equation (3.14).

x(t0 + ∆t)− x(t0) = (1− f)(x(t0)− x(t0 −∆t)) + a∆t2, (3.15)

where f varies from 0 to 1 and is the percentage of speed lost due to friction. This
equation can also be written as:

x(t0 + ∆t) = (2− f)x(t0)− (1− f)x(t0 −∆t) + a∆t2. (3.16)

As stated in section 2.2.2.1, the cytosol is basically a gel, with a network of
fibers dispersed through water. Each cytosolic element can therefore be considered
to be moving through a gel environment, and an overdamped approach can be
implemented. In this case, the friction in the system is considered to be maximum,
setting f = 1. As a result, the displacement of a particle after the next time step is
purely proportional to its acceleration:

x(t0 + ∆t)− x(t0) = a∆t2. (3.17)
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3.4.2 Adaptive time step

In order to avoid artificial forces when particles happen to start the simulation too
near to each other, a routine to dynamically adapt the size of the time step used by
the system was implemented. In order to do that, a fixed value for the maximum
displacement of any particle in the system had to be chosen. This fixed value Dmax

is usually expressed as a percentage of the particle diameter.
Because of the enforced maximum displacement, not every size of time step is

allowed to be executed anymore. Instead, each time step will be chosen so that no
particle in any time step can move further than the chosen Dmax. This ensures that
no artificial displacement happens on the program. The following procedure is used
to implement the adaptive time step procedure:

• The displacement of every particle using the current time step size (∆tcur) is
calculated.

• The biggest displacement (Dbig) is stored. This displacement is then compared
to Dmax. Using equation (3.17) for Dmax and Dbig one obtains:

Dmax

Dbig
=
a(∆tmax)2

a(∆tcur)2
(3.18)

• The maximum time step allowed can be derived from equation (3.18):

∆tmax =

√
Dmax

Dbig
∆tcur. (3.19)

• The original ∆tcur is then substituted by the ∆tmax calculated above. With
this substitution, the particle that originally had the biggest displacementDbig

will only be displaced by the maximum displacement Dmax, and all the other
particles will have their displacements changed by a factor Dmax/Dbig.

Even though this procedure is important to the correct physical behavior of the
system, it slow down the simulations. This happens because, even if only one particle
would be moved by a displacement over Dmax, all the particles in the system have
their displacements lowered accordingly. A possible way to speed up the program
without allowing non-physical displacements is to modify this algorithm so that the
movement of particles is asynchronous. In this case, fast particles would have their
displacement broken down in many time steps while slow particles would be moved
in bigger time steps. However, the implementation of this kind of algorithm is trick
and requires the speed of the few fast particles to be really higher than the average
speed on the system. Since no extended simulations were used in this work, the
implementation of such algorithm was deemed unnecessary.
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As explained in chapter 3, the biological properties of the cell membrane restrict
the interactions between membrane particles to the surface they form. This makes
the original three-dimensional Delaunay triangulation inadequate to describe the
membrane particles’ interactions, and raises the necessity of the construction of a
restricted Delaunay triangulation to handle these interactions. In this chapter the
algorithm developed to generate this restricted Delaunay triangulation is described.

The method’s input is a given set P of points (membrane particles) defined to
belong to a surface embedded in R3, plus a set Q of points defined to belong to
the internal structure of the cell (cytosolic elements). The three-dimensional Delau-
nay triangulation of P ∪Q is calculated, as it is anyway needed for the interaction
relations between cytosolic elements. This three-dimensional Delaunay triangula-
tion will be used as the starting point for the definition of the restricted Delaunay
triangulation.

The method works as follows: from the three-dimensional Delaunay triangula-
tion of P ∪ Q a structure called quasi-surface is obtained. The quasi-surface is a
subset of connections from the Delaunay triangulation of P ∪Q, and it includes all
connections belonging to the desired surface plus some undesired ones (see figure
4.1). Therefore, the quasi-surface still has undesired three-dimensional structures
(simplices or groups of simplices). The formal definition of the quasi-surface, as well
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as an alternative method to define a similar structure when no cytosolic elements
are present, will be presented in the section 4.1.

Figure 4.1: The quasi-surface is obtained from the three-dimensional triangula-
tion involving membrane particles and cytosolic elements. Notice that it has areas
already triangulated on a two-dimensional surface and areas (highlighted) still in-
cluding three-dimensional structures.

The left-over three-dimensional structures belonging to the quasi-surface have
then to be eliminated. For that, the following sequence of steps is applied: all sets of
connected simplices (these structures will be called clusters) in the quasi-surface are
selected. The boundaries of the selected clusters are then identified and their vertices
ordered. At last, an algorithm is applied in order to select a subset of all connections
in the cluster which re-triangulates it on a proper surface. Notice that the resulting
triangulation of a cluster on a surface is a subset of the cluster’s connections and,
therefore, a subset of the three-dimensional Delaunay triangulation.

In the remaining of this chapter the steps briefly introduced above will be thor-
oughly explained. The chapter starts with the definition of the quasi-surface, fol-
lowed by the introduction of the concept of clusters. The algorithm used to define
a cluster’s boundary is then introduced, followed by the explanation of how to put
the vertices belonging to a cluster’s boundary in order.

Once the cluster’s boundary is identified and ordered, it is possible to apply
to it a re-triangulation algorithm. Two different re-triangulation algorithms are
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presented: one to deal with clusters that have internal points and one to deal with
clusters that do not have internal points. These two algorithms are explained in the
last section of this chapter.

4.1 Obtaining the quasi-surface

The method to obtain the quasi-surface takes advantage of specific features of the
model developed for a cell. In this model, presented in chapter 3, a cell consists of
membrane particles (in this case, the set P of input points) and cytosolic elements.
In order to define the neighborhood relations between the cytosolic elements or
between them and the membrane particles, a Delaunay triangulation of the union
of the two sets of points is always calculated. One can then make use of this
triangulation in order to define the quasi-surface.

Definition: The quasi-surface is the subset of the three-dimensional De-
launay triangulation formed by all connections between two membrane
points.

The quasi-surface will always be a rough surface (including all connections be-
longing to the desired surface plus some undesired ones) as long as the targeted
surface is convex and closed. This is true because, in this case, the surface’s medial
axis is always inside the surface.

Definition: The medial axis of an n-dimensional surface embedded in
Rn+1 is defined as the closure of the set of points with more than one
closest point on the surface.

If there were enough points (cytosolic elements or any kind of artificial points that
could have been included in the triangulation) inside the surface that fall into the
medial axis, there would be no long range connections between membrane points.

In the setup presented here, no artificial points are included inside the surface.
However, in order for the simulation to be meaningful, sufficient resolution is needed
inside the cell. This implies that there must always be sufficient cytosolic elements
so that no connection between two membrane particles cross the medial axis of the
surface.

Moreover, problems could arise if these cytosolic elements were not far enough
from the cell membrane, in which case holes could be generated. However, this
would not only cause problems in the algorithm but also in the model, as holes in
the membrane are seldom desired and should never happen randomly. Therefore,
the interaction potential between cytosolic elements and membrane particles must
be carefully chosen, in order to guarantee that cytosolic elements are far enough
from the membrane, being unable to cause holes on the surface.

In case the model to be simulated does not obey these assumptions, the following
algorithm to obtain a structure similar to the quasi-surface (the crust) may be used
instead.
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4.1.1 The crust (in two-dimensions)

Similarly to the quasi-surface, the crust is a set of connections that contains the
required surface but still contains some three-dimensional structures. It can be
obtained as an alternative to the quasi-surface when applying the model to a system
with no equivalent to the cytosolic particles. The concept of the crust was developed
by Nina Amenta et al [Amenta 1998, Amenta 1999], and is used in some of their
algorithms for surface reconstruction.

Consider the problem of obtaining a curve in two-dimensional space from a set
of sample points C. This is the two-dimensional problem analogous to the one of
obtaining a surface in three-dimensional space form a set of points P .

The algorithm to solve this problem is the following:

• Calculate the Delaunay triangulation of all points in C (see figure 4.2 - a).

• Calculate the Voronoi tessellation of the points in C (figure 4.2 - b). The set
of all Voronoi vertices will be called V .

• Now consider the set of points in R2 given by C ∪ V . Calculate the Delaunay
triangulation of this set (figure 4.2 - c).

• To finally obtain a polygonal approximation of the curve, only the connections
(in the last calculated Delaunay triangulation) between points belonging to C
are selected (figure 4.2 - d).

Amenta proved that, given certain restrictions to the set of points C, this
method always gives as output the desired polygonal approximation of the curve
[Amenta 1999].

This method works because, in two-dimensions, Voronoi vertices have the prop-
erty of, for sufficiently dense samples, always falling into the medial axis. However,
this method cannot be immediately generalized to solve the analogous problem in
three-dimensions. Unlike in the two-dimensional case, not all Voronoi vertices in the
three-dimensional problem fall into the medial axis. Some of them fall arbitrarily
near to the surface. Nevertheless, some of the Voronoi vertices do have this property,
lying in the medial axis. These Voronoi vertices are called poles. If, instead of using
all Voronoi vertices to calculate the second Delaunay triangulation (like in figure 3-
c), only the poles are included, the method can be generalized to three-dimensions.
For a detailed explanation of the method in three-dimensions, see [Amenta 1999].

When using the three-dimensional version of the method discussed above, the
final result will not be a polyhedral approximation of the surface. The method to
calculate the crust always works for well behaved samples (see [Amenta 1999] for
the method’s mathematical requirements) but, because it requires the calculation of
two separated Delaunay triangulations, it is not a sufficiently efficient algorithm for
the present purpose. Therefore, the crust should only be used when the calculation
of the quasi-surface is not possible.
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Figure 4.2: This figure illustrates the method to find the crust. a) Delaunay tri-
angulation of the points belonging to the curve C. b) Voronoi tessellation of the
points in C. c) Delaunay triangulation of C ∪ V . d) The polygonal approximation
of the curve is composed of the connections on the Delaunay triangulation of C ∪V
between points in C.

4.2 Clusters

Once obtained, the quasi-surface can be then subdivided in smaller structures called
clusters. Clusters are formed by the three-dimensional structures that are left in
the quasi-surface (see figure 4.3). Once the clusters are identified, each of them can
be triangulated separately, breaking an initially complex problem in many simpler
independent ones.

In order to identify each cluster on the quasi-surface, a list of all simplices in
the quasi-surface is needed. For a quasi-surface, this list is a subset of the list
of simplices of the original triangulation (involving membrane points and cytosolic
elements). If a simplex of the original list is composed of four points also belonging
to the quasi-surface, then it also belongs to the list of simplices of the quasi-surface.

Two simplices are neighbors if they have a common face. A cluster is defined
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Figure 3: A cluster is a not-properly-triangulated ‘island’ surrounded by triangulated surface.

to the orientation of the cluster). The algorithm to solve clusters is iterative: the boundary of
a cluster is identified, and a triangle with at least one connection belonging to the boundary of
a cluster is chosen. The acceptance criteria are checked and, if the triangle is accepted, a new
boundary for the cluster is defined, now without the accepted triangle (it was properly triangulated
and, therefore, could be taken out of the cluster). With the new boundary, the whole process is then
repeated until the whole cluster is triangulated.

The algorithm varies depending on whether the cluster has internal points (points that do not
belong to its boundary) or not. The details of the algorithm are to be published sometime in the
next year.

4.3. System dynamics
The evolution of the system in time is calculated using the Verlet algorithm [22, 23]. The position
of a particle in the system in a instant of time t0 + ∆t is given by:

x(x0 + ∆t) = 2xt0 − x(t0 − t) + a∆t2, (4.3)

where a is the acceleration of the particle, taken simply from the resulting force acting on it.
∆t is not the same for every timestep, but chosen so that the displacement suffered by the

particle is not bigger than a determined threshold max-disp. Before every timestep, the maximum
displacement a particle will suffer accordingly to the current size of the timestep is checked. If the
displacement of any of the particles is bigger than the threshold max-disp, the largest displacement
a particle would suffer (bigg-disp) is divided by max-disp in order to calculate how many times
bigger than max-disp bigg-disp is. This factor is then used in order to recalculate the timestep.

Since the displacement is proportional to the square of ∆t, we have that

∆tnew =
1

sqrt(f)
∆told, (4.4)

8

Figure 4.3: The cluster (filled area in the figure) is a not yet re-triangulated area
in the quasi-surface that is surrounded by a surface properly restricted to two-
dimensions. The connections belonging to the cluster and its surrounding (in red in
the figure) compose the cluster boundary. Only end vertices of boundary connections
have a common neighbor outside of the cluster.

as a set of simplices where each simplex has a common face with at least one other
simplex on the set. Each cluster is therefore stored as a list of simplices. A list is
also be used to store all the clusters in the quasi-surface. The algorithm used to
identify the clusters is the following:

1. A random simplex from the list of all simplices in the quasi-surface that does
not belong to any cluster yet is chosen.

2. A new cluster is then created, and the simplex included in the list of the new
cluster.

3. Every neighbor of the simplex that also belongs to the list of simplices of the
quasi-surface necessarily belongs to the same cluster. These simplices are also
included in the list of the cluster.

4. The procedure in 3 is recursively repeated to all the neighbors of the selected
neighbors and so on, until no neighbor satisfying the original condition is
found.

The quasi-surface can only be separated into clusters if some parts of it are
already triangulated on the desired two-dimensional surface, thus disconnecting the
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three-dimensional structures from each other. The validity of this assumption is
discussed in Section Testing.

4.3 Cluster boundaries

Every cluster has a two-dimensional boundary where it touches the surrounding
properly triangulated surface (see figure 4.3). Identifying this boundary is a neces-
sary step in order to obtain a valid two-dimensional triangulation for it.

A boundary can be uniquely identified by a set containing all its connections.
In order to obtain this set, a list of all vertices belonging to each cluster is needed.
This list is easily obtained by including all vertices belonging to the simplices of a
cluster into a hash set.

4.3.1 Selecting connections

All simplices originally in the quasi-surface were included in one of the clusters. It is
therefore assumed that two vertices that are endpoints of a connection belong to the
boundary if and only if they have at least a common neighbor outside the cluster
(see figure 4.3). This defines the algorithm to determine the boundary of a cluster:

• For each pair of neighbor vertices (p1, p2) in the cluster, all other neighbors of
p1 are selected.

• For every neighbor of p1, it is checked whether it belongs to the cluster.

• If a neighbor of p1 does not belong to the cluster, it is checked whether it is
also a neighbor of p2.

• If yes, the connection (p1, p2) belongs to the boundary of the cluster, and the
procedure is stopped.

• If not, the procedure has to be repeated until a common neighbor of p1 and p2

outside of the cluster is found, or until all neighbors are tested and no common
neighbor is found.

• If no common neighbor outside the cluster is found, the connection (p1, p2)
does not belong to the boundary of the cluster.

4.3.2 Wrongly selected connections

Even though every simplex in the quasi-surface is included in a cluster, three-
dimensional simplex-like structures are still spread through the quasi-surface. The
figure 4.4 illustrates such a structures. The configuration shown has four points
belonging to the surface sample and one external point (for example, a cytosolic
element). When all connections between the surface sample points and the external
point are cut (in order to obtain the quasi-surface), the four points belonging to
the surface will still form a three-dimensional simplex-like structure. However, since
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they were not forming a simplex in the original triangulation, they will also not
appear as a simplex in the quasi-surface, will not be in the simplex list and will not
be part of any of the clusters.

Figure 4.4: Example of a three-dimensional structure left on the quasi-surface. The
four red points belong to the surface sample, while the blue point is an external
point (for example, a cytosolic element). When all connections between the surface
sample points and the external point are cut (in order to obtain a quasi-surface),
the four points belonging to the surface will still be all connected to each other,
forming a simplex-like structure in the surface that does not belong to any cluster,
since they do not form a simplex.

This, in some rare cases, renders the method to select the boundary connections
wrong, allowing connections that do not belong to the boundary to have common
neighbors outside the cluster, as illustrated in figure 4.5. These connections will be
wrongly selected as belonging to the boundary. Further checks can be applied to
make sure that all selected connections do belong to the boundary, and to remove
wrongly selected connections.
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Figure 4.5: Three-dimensional structure next to a cluster. The four points in red
form a three-dimensional structure as the one shown in figure 4.4. The purple
connection will be wrongly identified as belonging to the boundary of the cluster,
since its vertices have a common neighbor outside of the cluster (connections to the
common neighbor are shown in orange).

4.3.3 Detecting wrongly selected edges

The number of connections in the boundary of a cluster shall be equal to the number
of vertices in the boundary. Moreover, every vertex in the cluster that belongs to its
boundary shall be part of exactly two connections also belonging to the boundary.
This can be used to define whether the boundary of a determined cluster was or was
not properly selected and, in the case it was not, count how many wrongly selected
connections are present.

For this purpose a list of pairs is created, where the first element of the pair is a
vertex and the second is the number of times this vertex is found in a connection at
the boundary. If any of the vertices is found in more than two boundary connections,
some connections were mistakenly selected in this cluster. These cases are restored
during ordering of the boundary.

4.4 Boundary ordering

The next necessary procedure is the ordering of the boundary connections. Wrongly
selected connections will also be thrown away in this step.

Any vertex on the list above that belongs to exactly two connections in the
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boundary can be taken to be the initial vertex of the ordered boundary. This vertex
is then included in the container where the ordered boundary will be kept. Having
the initial point, the procedure to obtain the boundary if no connections were mis-
selected is:

• Search for a connection in the list of boundary connections that contains the
initial vertex.

• Include the second vertex of this connection to the ordered boundary, and
delete the connection from the list of boundary connections.

• Repeat the procedure, but now looking for a connection containing the last
vertex that was included in the ordered boundary. When the second vertex in
a connection is the initial vertex, the boundary has been ordered.

This algorithm does not always work if connections that do not belong to the
boundary were mis-selected as belonging to it. Additionally, it does not take into
consideration that some clusters might have more than a boundary (there is nothing
that forbids an area inside a cluster to be already properly triangulated in a sur-
face). In order to take these more delicate cases into considerations, a more complex
variation of the algorithm above has to be implemented.

The algorithm to identify and order a boundary is similar to the one above.
However, the latter supposes that only one path can be constructed using the con-
nections in the boundary list. When this is not the case, all possible paths have to
be identified. The path that represents the ordered boundary of the cluster is the
one that contains all points in the boundary, each one a single time.

Dealing with multiple boundaries in a cluster is also not complicated. After
a boundary for a cluster is identified, it must be checked whether all connections
belonging to the original list of boundary connections were used. If some of these
connections were not used, they belong to a cluster boundary (or boundaries) that
has yet to be identified and ordered. The algorithm to identify a boundary has then
to be once more executed, but only with the connections left.

Clusters with multiple independent boundaries need an additional step before
they can be re-triangulated, because the algorithms used for the re-triangulation
suppose that each cluster only has a single boundary. However, solving that is
not difficult. First, the biggest boundary of the cluster has to be identified. This
will be the final boundary of the cluster. Then, all vertices that belong to the
smaller boundaries, as well as all vertices that belong to the areas bounded by these
boundaries (outside the cluster) must be included as internal particles of the cluster.
The normal algorithms to re-triangulate the clusters can then be used normally in
these clusters as well.

4.4.1 Exceptions

In the extremely majority of the cases, the algorithm described above is able to
retrieve the boundary of a cluster from a list with mis-selected connections. However,
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there are two cases where problems might still occur.
First, the procedure has to start with a vertex that belongs to exactly two

connections on the cluster. In the unlikely case where every vertex in the boundary
also belonged to a mis-selected connection, such a vertex would not be found and
the procedure would not start.

Second, the mis-selected connections in the boundary can be positioned in a
way that generates a boundary obeying the rules above, but that it is still not the
real boundary of the cluster (see figure 4.6). In this case, the procedure to find the
boundary would finish with two equally possible boundaries.

a

b

c

d

e

Figure 4.6: Configuration with two possible boundaries. If the connections in purple
are wrongly selected as belonging to the cluster boundary, then the following connec-
tions are in the boundary list: (a,b), (b,c), (c,d), (d,e), (e,a), (b,d) and (c,e). These
connections allow two possible orders for the boundary: (a,b,c,d,e) or (a,b,d,c,e).
At this point the algorithm is unable to identify which one is the real boundary.

4.4.2 Troubleshooting

In the cases above, the re-triangulation of the cluster is not possible. When a
cluster without a properly identified boundary is found, the program simply skips
the cluster and goes on to the next one. After a run through all other clusters on
the quasi-surface, it is checked whether any cluster was left untriangulated. When
the answer is positive, the program will once more try to order the boundaries and
re-triangulate the problematic clusters. This might be possible because, sometimes,
neighboring clusters are the cause of problems with some clusters boundaries.
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This procedure is repeated until either all clusters are re-triangulated or the
number of not-triangulated clusters stops changing from a run to the other. In
the first case the configuration was successfully triangulated, and in the latter the
re-triangulation algorithm failed. A discussion about what can be done when the
algorithm fails to properly re-triangulate a surface is given in the first sections of
chapter 7.

4.5 Clusters re-triangulation

With the boundary of a cluster ordered, all the information about the cluster nec-
essary to its re-triangulation is available. It is important to remark that the tri-
angulation of each cluster is independent, i.e., when the boundary of a cluster is
identified, this cluster can be re-triangulated independent of the state of any other
cluster. This is important because, in case the boundary of a cluster is not identified,
all the other clusters can still be re-triangulated. Additionally, due to the deletion
of joined connections, the re-triangulation of clusters surrounding a cluster with a
non-ordered boundary may help its ordering.

In this section the procedures used to the re-triangulation of clusters is explained.
The main goal of the re-triangulation is to delete connections belonging to the
interior of a cluster until all vertices in this cluster are re-triangulated in a surface,
with no holes and no crossed connections (see figure 4.7).

Figure 4.7: Example of a surface with a hole and crossed connections.

Two distinguished procedures are used, with either being chosen according to
the number of points in the selected cluster that do not belong to its boundary.
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Points in a cluster that do not belong to its boundary will be called internal points.
Clusters, therefore, are divided in two groups: cluster without internal points (all
points in the cluster belong to its boundary) and clusters with at least one internal
point.

For both cases a vector is created to store all connections selected to belong to
the final triangulation of the cluster. The vector is initialized with all connections
belonging to the cluster’s boundary, as all of them will be part of the final surface
configuration. After the re-triangulation of a cluster, the connection list contains
all the connections kept in the cluster.

4.5.1 No internal points

In a schematic way, the boundary of a cluster that has no internal points can be
understood as a polygon whose vertices have to be triangulated. This problem can
be stated as follows: given a convex polygon with n sides, divide it into triangles
by drawing non-intersecting diagonals connecting some of the polygon’s vertices.
The problem of re-triangulating polygons is known in computational geometry. A
polygon can be re-triangulated in many different configurations, and the first person
to offer a good counting argument for the number of possible configurations was the
mathematician Gabriel Lamé [Lamé 1838] (see figure 4.8).

For the specific problem of re-triangulating a cluster, however, not any possible
triangulation of the polygon is accepted, but only one of those in which all cho-
sen connections belong to the original triangulation (involving membrane particles
and cytosolic elements). Any selection of connections fulfilling this criterion that
properly re-triangulates the cluster is considered a good one (see figure 4.9).

Figure 4.8: All possible triangulations of a hexagon.

The following algorithm is used to re-triangulate a cluster where all vertices
belong to its boundary. This algorithm was based on mapping all possible triangu-
lations of a polygon, and it was implemented as a recursive function:
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Figure 4.9: Three possible final triangulations for the same cluster. Any re-
triangulation obtained for a cluster is acceptable.

• For all vertices i in the ordered boundary, it is checked whether the vertex i+2
is a neighbor. Periodic boundary conditions are necessary, since the boundary
is closed.

• If i and i + 2 are not neighbors, the procedure is restarted using the next
vertex on the list. If they are neighbors, the connection i, i+ 2 is included on
the vector of connections created beforehand.

• The boundary of the cluster is updated. This is done by deleting the vertex
i+1 from the ordered boundary. The updated boundary will be the boundary
of the part of the cluster still left to be re-triangulated.

• The routine is called again with the updated boundary as input.

• The routine finishes when the number of vertices in the cluster is equal to four.

Once the requirement to leave the recursive function is reached, only two possible
connections are left. Either one that exists in the original triangulation can be chosen
and is included in the connection list.

This procedure is based on two assumptions: first, that every connection selected
must belong to at least one possible triangulation of the cluster; second, that all
clusters are convex. While the first assumption is easily proven to be true, as every
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cluster is composed by a collection of simplices, it is pretty obvious that the second
assumption is false, since there is no property on the triangulation that could force
clusters to be convex.

Even though it is not true that every cluster is convex, the method used for
the re-triangulation still works. The reason for that lies on the second restriction
in the choice of a re-triangulation: that all connections must belong to the original
three-dimensional triangulation involving membrane points and cytosolic elements.
When a cluster is not convex, the connections between two vertices in the cluster
that would not lie inside the cluster simply do not exist in the original Delaunay
triangulation and, therefore, cannot be selected (see figure 4.10).

A

B

Figure 4.10: If the connection between the vertices A and B is inexistent, the cluster
is concave. If the connection exists, it will necessarily belong to the cluster. In this
case, the cluster is convex and contains one internal point.

In the case where a connection between two vertices in the cluster that lies
outside the cluster exists, this connection will be included in the cluster, since every
connection between two vertices belonging to a cluster is also considered to be in
the cluster. But, if this connection belongs to the cluster, than the cluster is convex,
has an internal point, and will therefore not be solved by this method, but by the
method explained below. This can be visualized with the help of figure 4.10.

4.5.2 Internal points

Clusters with many internal points can be rather challenging to be re-triangulated.
Their properties might vary a lot depending on the number of internal points and in
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the spatial organization of these points. The success of an algorithm to re-triangulate
such clusters involves a delicate balance of restricting sufficiently which connections
can be selected so that the final configuration re-triangulates the surface, while still
leaving enough flexibility so that a configuration can at all be found.

Every restriction included in the algorithm discussed here was included with the
goal of selecting the smoothest re-triangulation possible. First, shorter connections
are preferred (longer connections are rare, and the selection of a long connection is
likely to lead to a situation where the triangulation of the cluster cannot be finished –
see figure 4.11). Additionally, it is required the all triangles formed by two accepted
connections have the same orientation (the definition of orientation will be given
below). The problem with wrongly oriented triangles is that, in order to finish the
re-triangulation, a long connection will likely be required (see figure 4.11. At last,
it is required that, when projected to the plane defined by a triangle, other points
in the cluster do not fall inside this triangle (this would likely end up in a wrongly
oriented triangle – see figure 4.11).

The algorithm presented below works for the majority of cases but it is not fail
safe. A discussion of the limitations of this procedure and possible solutions is given
in chapter 7.

In order to re-triangulate a cluster with internal points, the following procedure
is used:

• One of the two possible ordering for the boundary connections is arbitrarily
defined as positive.

• Each triangle composed by at least two boundary points has its orientation
calculated.

• A global orientation of each cluster is calculated as the average orientation of
all the triangles.

• Distances from all internal points to the boundary are calculated.

• The number of consecutive connections between an internal point and the
boundary is calculated.

• For each triangle formed by an internal point and two of its consecutive con-
nections to the boundary, it is checked whether there is either another internal
point or a boundary point whose projection onto the plane defined by the tri-
angle falls inside the triangle.

• For each triangle formed by an internal point and two of its consecutive con-
nections to the boundary, it is checked whether its orientation is the same as
the cluster orientation.

• The internal point that has at least two consecutive connections to the bound-
ary with no projection inside and the same orientation as the cluster with the
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smallest distance to the boundary is then selected. The consecutive connec-
tion between this point and the boundary that obey the required restrictions
belong to the final configuration.

• The internal point used and its selected connections to the boundary are in-
cluded in the cluster boundary, modifying it.

• The whole process is repeated, with one less internal points and the updated
boundary.

• When all internal points are incorporated to the boundary, the hole left is
triangulated using a method similar to the case of clusters with no internal
points, but with the additional restrictions about orientation and projection
of points. It is important to notice that, due to these stronger restrictions, it
cannot be proven anymore that the two assumptions made for the method to
re-triangulate clusters without internal points are still valid here.
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a)

b)

c)

Figure 4.11: Illustration of the most common problems on the re-triangulation of a
cluster. a) Long selected connection (in purple) leads to unfinished re-triangulation
(if connections in red do not exist in the original triangulation); b) Wrongly oriented
triangle leads to long connection. In order to the triangle in purple to belong to the
final triangulation, the connection in red must exist; c) Allowing the projection of a
point to fall inside a triangle leads to wrongly oriented triangles. If the green triangle
with the point inside is selected, the only way to re-triangulate this point will be
via the triangle made by the red connections, that have the wrong orientation.
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In this chapter the thermalization of cell configurations prior to a simulation
will be explained. As detailed in chapter 3, a cell is composed of two different
types of sub-particles: membrane particles and cytosolic elements. The interaction
potentials and dynamics are also used as explained in chapter 3.

The generation of a initial configuration starts only with membrane particles.
These particles are generated randomly on an artificial spherical shell. In order for
these particles to stay on this spherical shell, a hard sphere where the membrane
particles cannot penetrate is included. Additionally, a single artificial particle is
generated and put to the center of the sphere. This particle interacts with the
membrane particles attractively, like a central potential.

Within the spherical shell, the membrane particles interact elastically. No cy-
tosolic elements are yet included, only the artificial particle responsible for the cen-
tral force. The membrane particles will interact in this setup until they are uniformly
distributed on the spherical shell. The configuration is accepted as thermalized when
a defined accuracy of the distance between the particles is achieved.

The Delaunay triangulation of all particles involved in the interactions is calcu-
lated and used in order to obtain the neighborhood relations of the system. The
triangulation is updated at every time step accordingly to the changes in the parti-
cles’ positions.

Once the membrane particles are thermalized on the spherical shell, the artificial
particle is removed and the cytosolic elements are randomly placed inside the shell.
They interact with each other and with the membrane particles using a Lennard-
Jones potential (equation (3.5)). However, the membrane particles, at this stage,
are fixed and therefore don’t feel the interaction with the cytosolic elements. The
cytosolic elements then interact until they are thermalized.

5.1 Thermalizing membrane particles

Supposing a cell withNmemb = 1000 membrane particles and a rest distance between
the particles equal to 1, the radius R of the spherical shell can be calculated as
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R =

√√
3

2
Nmemb

4π
. (5.1)

The elastic constant used for the elastic interaction between membrane points
(equation (3.7)) is κ = 30. Since the variance for the average distance between two
particles tends to an asymptotic value between 10% and 15%, thermalization is de-
fined to be achieved when the variance on the average distance is smaller than 14.5%.
In figure 5.1 the membrane particles are shown before and after thermalization.

Figure 5.1: Configuration of membrane particles before (left) and after (right) ther-
malization.

5.2 Thermalizing cytosolic elements

In this example, cytosolic elements are set to have a radius (and, therefore, an inter-
action rest distance) twice as big as membrane particles. The number of cytosolic
elements is calculated by

Nc = 0.74
(R− rm)3

r3c
, (5.2)

rounded up to the next integer. Here rm is the radius of a membrane particle and
rc is the radius of an internal particle. The factor 0.74 comes from the supposition
that, after thermalization, the spheres will be approximately in the densest possible
packing (known as cubic close packing). It has been proven [Hsiang 1993] that, in
this case, the density of spheres will be given by

π

3
√

2
≈ 0.74. (5.3)

The set of parameters used for the Lennard-Jones interaction between cytosolic
elements (equation (3.5)) was ε = 1 and σ = 2rc2−1/6, where 2rc equals the rest
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distance between the elements. For the Lennard-Jones interaction between mem-
brane particles and cytosolic elements (equation (3.5)) the parameters were ε = 1
and σ = (rc + rm)2−1/6.

The criteria to define whether thermalization was achieved is the same as for
membrane particles. In figure 5.2, a final thermalized configuration is shown. This
configuration can then be used as the initial configuration for a cell in a simulation.
Additionally, figure 5.3 visualizes all connections between cytosolic elements (i.e., of
the Delaunay triangulation) after thermalization.

Figure 5.2: Thermalized configuration with membrane particles (dark colored) and
cytosolic elements (light colored). In the right side, the cell is shown sliced in half.
Notice that in this example the radius of the cytosolic elements is twice as big as the
radius of the membrane particles. The size of the particles is related to the strength
of the potential as well as to the resolution used to describe the cell.
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Figure 5.3: The three-dimensional Delaunay triangulation of all cell’s cytosolic el-
ements after thermalization, for a simulated system with 500 membrane particles
(not shown) and 115 cytosolic elements.
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In this chapter results from tests performed with the surface reconstruction
method discussed in chapter 4 are presented. In section 6.1 the parameters used
in the generated initial configurations are introduced, and the computational setup
used in the simulations presented. Section 6.2 shows images of the generated con-
figuration, while section 6.3 presents a discussion of the convergence and simulation
times obtained with the surface reconstruction method.

6.1 Setup

For the simulation tests, many different sizes of systems were studied. Small systems
(with less then 500 membrane particles) function well, but the small number of
cytosolic elements is likely to limit the eventual production of blobs on the cell due
to the lack of internal resolution. On the other side, big systems (with much more
than 1000 membrane elements) were much more prone to lead to errors on the re-
triangulation and significantly slower. Therefore, for the results shown here, systems
with 500 and 1000 membrane points were chosen.

A system with 500 membrane points has 115 cytosolic elements, while a system
with 1000 points has 352, as calculated by equation (5.2). In order to have a variety
of systems to test, five initial configurations (with different random numbers)were
generated for each system size.

Additionally, the initial systems were set further apart from each other with
the use of a parameter called in this section variation. The variation represents a
displacement applied in a random direction for each membrane particle in the initial
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configuration used. Variations were also useful for the initial systems to get away
from the original spherical configurations imposed during the construction of initial
conditions.

The values used for the variations of the position of the membrane particles
were 0.01, 0.02, 0.03, 0.04 and 0.05, in the reduced units used in the program. For
comparison, the rest distance between membrane particles is, in the same units,
equals to 1. Variations also give a measure of how resilient the algorithm is to
changes in the membrane, i.e., how far a configuration can be from the spherical
initial system and still be properly re-triangulated. The bigger the variation, the
farer from the original initial configuration the new system is.

For each of the five initial conditions for each system size, 100 random appli-
cations of each variation value were made. Therefore, 500 different systems were
generated for each cell size and value of variation. Each pair of random application
of variation and initial condition was additionally run 500 times, solely for statistical
reasons. In total, 25000 runs were made for a single system composed of a number
of particles with a determined variation.

All simulations presented in this chapter were done in a Linux machine with an
Intel dual core of 2.4 GHz and 2 Gb of RAM memory.

6.2 Visualization

In order to better visualize what is happening when the re-triangulation method
is applied to a cell, snapshots were done before and after running the algorithm.
These snapshots show the connections between membrane points. A visualization
of all connections between cytosolic elements in a cell is shown in chapter 5 (figure
5.3).

On figure 6.1 the initial configuration of a cell with 500 membrane points and
variation 0.05 is shown. In the top panel the whole cell with all its clusters high-
lighted can be seen. The lower panels show a zoom to a set of clusters in the
membrane. The clusters in the left panel are highlighted with different colors, while
in the right panel the connections belonging to the clusters are shown.

Figure 6.2 shows the same cell as figure 6.1, but with the final configuration for
the membrane. The left panel shows an overview of the whole cell, while the right
panel shows a zoom to a small piece of the membrane.

Another interesting possibility is to compare how the number of clusters in a cell
changes with the variation. In figure 6.3 the triangulation of a cell membrane with
1000 points is shown. The variation used to generate the configurations were 0.01,
0.03 and 0.05. Both the quantity of clusters and their size grow withe the variance.

6.3 Testing results

In this section an analysis of the performance of the re-triangulation method pre-
sented in chapter 4 is given. First, the time needed to re-triangulate a single cluster
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Figure 6.1: Visualization of the initial configuration of a cell with 500 membrane
points and variation of 0.05. In the upper panel the membrane connections and the
clusters in the cell are shown. In the lower left panel a close up in a set of clusters
is shown, while in the right panel the same close up is shown, but now with the
connections in the cluster highlighted.

Figure 6.2: Visualization of the final configuration of a cell with 500 membrane
points and variation of 0.05. Left panel: overview of the whole membrane. Right
panel: zoom of a small part of the membrane.
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Figure 6.3: Visualization of the initial cluster configuration for cluster with 1000
membrane points and variances of 0.01, 0.03 and 0.05. Each cluster is identified by
a random color.
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is studied, followed by an analysis on how the time needed to re-triangulate each
point in a cluster varies with the cluster size. The frequency of appearance for each
cluster size are also compared, as this information is necessary to guarantee that the
total time needed by to re-triangulate a cell is convergent. At last, the total time
spent re-triangulating a surface is plotted, as well as a scaling for the total time with
the variation.

6.3.1 Solving time per cluster

The first property analyzed in the system was the scaling of the time needed to
re-triangulate a cluster versus the cluster size. In figure 6.4, the scaling behavior
for a system with 1000 membrane particles and variation of 0.05 is shown. Since
small clusters are much simpler to be re-triangulated than big clusters, the expected
behavior in that the time necessary to solve a cluster increases with the size of the
cluster.
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Figure 6.4: Average time needed to re-triangulate a cluster versus the cluster size,
for a system with 1000 membrane points and variation equals 0.05. Errors were
calculated using 25000 runs. The full line shows a quadratic fit for the experimental
data. The fit and the experimental data deviate for small cluster sizes.

Indeed, this expected behavior is observed on the simulation results. Addi-
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tionally, the observed behavior is approximately quadratic, as can be seen in the
quadratic fit plotted also in figure 6.4. However, for small cluster sizes, the observed
behavior deviates from the quadratic curve. This deviation occurs because the re-
triangulation routine is not quadratically dependent on the number of total points
in the cluster, but on the number of internal points only.

While the majority of the points in a big cluster is indeed internal, small clusters
tend to have few or none internal points, explaining both the quadratic behavior
for big clusters and the deviation for small clusters. An additional factor to explain
the deviation is the use of different algorithms to solve clusters with and without
internal points.

In the upper panel of figure 6.5 the curves for 500 and 1000 points are compared.
The average time needed to solve a cluster in the smaller system is in agreement to
the time needed to solve a cluster of the same size in the bigger one. In the lower
panel of figure 6.5, the time to solve a cluster is compared for different variations
in the surface. As the variation shouldn’t affect the time needed to solve a cluster,
there is no relevant difference between the results as well.

6.3.2 Solving time per cluster point

A noteworthy behavior easily derived from the one above is how much time in
average it takes to re-triangulate each point in a cluster. This result can be generated
by the previous one by dividing the total re-triangulation time by the cluster size.
Because the solving time per cluster is approximately quadratic with the cluster
size, it is expected that the solving time per point in a cluster versus the cluster size
approximate a linear behavior (for higher cluster sizes).

In figure 6.6 the re-triangulation time per point is plotted as a function of the
cluster size, for a system with 1000 membrane points and variation 0.05. The linear
result can be observed for cluster with more then 20 points.

Figure 6.7 plots the solving time per cluster point versus the cluster size, but
now comparing the results for, on the upper panel, systems with 500 and 1000 points
and, on the lower panel, clusters with 1000 points but distinguished variations. As
expected from the results shown in section 6.3.1, the average time per point does
not depend on the system size or on the variation value. Since these graphs only
show small cluster sizes (the values are only plotted up to the highest cluster size
observed in the smallest system), the presented behavior is not linear.

Despite being directly obtained from the results presented in section 6.3.1, know-
ing how the solving time per point in the cluster behaves with the cluster size is still
important. The fact that it behaves approximately linear means that the complex-
ity of the clusters grows with the cluster size. Re-triangulating a point in a bigger
cluster is more difficult than in a small cluster. Therefore, an important property
to be checked is how frequently big clusters appear on the system. This property
can show whether the re-triangulation algorithm implemented converges or not.
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Figure 6.5: Average time needed to re-triangulate a cluster versus the cluster size.
On the upper panel, curves for systems with 1000 and 500 points (variation = 0.05)
are plotted. On the lower panel, curves for systems with 1000 points but different
variations are given. Values are plotted up to the highest cluster size observed in
the smallest system (the one with 500 points in the upper graph and the one with
variation = 0.03 in the lower one).
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Figure 6.6: Average time needed to re-triangulate a cluster per cluster point versus
the cluster size. The simulated system has 1000 membrane points and variation
= 0.05. Although not plotted, an approximately linear behavior can be observed
for cluster above 20 points.



6.3. Testing results 67

Figure 6.7: Average time needed to re-triangulate a cluster per cluster point versus
the cluster size. On the upper panel, the results for systems with 1000 and 500
membrane particles (variation = 0.05) are compared, while on the lower the results
for three distinguished variations (in a system with 1000 particles) are seen. Values
are plotted up to the highest cluster size observed in the smallest system (the one
with 500 points in the upper graph and the one with variation = 0.03 in the lower
one).



68 Chapter 6. Testing the surface reconstruction

6.3.3 Cluster frequency

A fundamental property directly related to the convergence of the re-triangulation
algorithm is the frequency of the appearance of clusters with a determined size
in the simulations. Since, as seen in section 6.3.1, the re-triangulation time for
bigger clusters scales approximately with their size squared, simulation time risks to
explode if the frequency of appearance of big clusters does not scale down at least
with the same behavior.

In figure 6.8 the frequency of appearance of a cluster versus its size is shown. In
its upper panel, the frequency for systems with 500 and 1000 particles are compared.
For both system sizes the frequency decreases exponentially with the cluster size but,
as expected, the frequency decays faster for the smaller system. In the lower panel
of the figure the frequency is also plotted against the cluster size, but now for the
same system size (1000 membrane particles) and different variation values. As the
smaller the variation the less perturbation on the system, it is also expected that
the frequency decays faster for smaller variations.

The fact that the frequency scales exponentially with the cluster size is relieving,
as it suggests that the total simulation time for bigger systems will not diverge.

6.3.4 Total solving time

To confirm that the total re-triangulation time is not divergent, the total time
spent solving all clusters of each size was calculated. This was done by multiplying
the frequency of appearance of each cluster size by the average time needed to
re-triangulate a cluster of this size.

Since the frequency decays exponentially with the cluster size and the re-
triangulation time scales quadratically with it, the behavior for the total time is
expected to also exponentially decrease with the size of the clusters. This is con-
firmed for the different system sizes and variation degrees (see figure 6.9).

6.3.5 Analyzing variation

The scaling behavior of the the total time needed to re-triangulate all clusters versus
the variation was plotted (figure 6.10). The figure shows the total re-triangulation
time for a system with 1000 membrane particles and 5 variation values.

For a system with 1000 membrane particles and variation 0.05, the total time
needed to obtain the re-triangulated surface is around 0.26 seconds. Notice that
this time is only spent in the processes specific to the membrane re-triangulation
and does not involve the calculation of the original Delaunay triangulation.

6.3.6 Time efficiency of the algorithm

At last, a comparison between the time spent on the re-triangulation algorithm,
on the usual update of the three-dimensional Delaunay triangulation and on the
application was considered.
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Evidently, the time spent in each of these algorithms depends on the number of
particles in the system. Additionally, the algorithm to update the three-dimensional
Delaunay triangulation and the algorithm for the application depends on how big
the maximum displacement allowed to the particles in the system is, and the re-
triangulation algorithm presented in this thesis depends on how big the variation
chosen is.

As shown in figure 6.10, the total time needed to obtain the re-triangulated
surface was about 0.26 seconds for a variation of 0.05. However, the variation of a
cell will certainly not remain constant during the course of a simulation. Actually,
the most probable is that the variation of a cell gets bigger with the simulation time,
hopefully reaching a stable value after some time.

As, to the present moment, an application of the model was not done, it is
difficult do really make calculations about the time spent by the program in each of
the algorithms involved. However, preliminary studies made with small applications
show that, for a cell with 1000 membrane particles and variation of 0.05, whose
particles can move up to 10% of their radius each time step, the update of the three-
dimensional Delaunay triangulation takes around 0.7 seconds, the re-triangulation
algorithm takes from 0.15 to 1.5 seconds and the time spent in dynamics is virtually
negligible compared to the other two, in the order of 0.01 seconds.
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Figure 6.8: Frequency of appearance of a cluster of a determined size versus the
cluster size. On the upper panel, two system sizes (500 and 1000 membrane points)
are compared. On the lower panel, systems of the same (1000 membrane points)
size but with different variation values are compared. The full lines show the best
exponential fits for each plot.
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Figure 6.9: Total time spent re-triangulating all cluster of a determined size versus
the cluster size. Upper panel: plots for systems with 500 and 1000 membrane points
(variation = 0.05). Lower panel: system with 1000 membrane points and variations
= 0.03, 0.04 and 0.05. The full lines show the best exponential fits for each plot.
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Figure 6.10: Scaling of the total time needed to re-triangulate a surface versus its
initial variation. The system used had 1000 membrane points and the variation was
raised from 0.01 to 0.05.
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7.1 Error handling on the surface reconstruction

The problem of re-triangulating a set of points restricted to a two-dimensional
bended surface is very complex and not completely solved. The algorithm presented
here is highly tailored to a specific application, but still not fail-safe.

The method explained in chapter 4 has two weak points from where errors can
arise: boundary selection and too strong restrictions in the re-triangulation algo-
rithm for clusters with internal points. When no boundary can be selected, the spe-
cific cluster cannot be re-triangulated and the whole process fails, as without bound-
ary selection no re-triangulation algorithm can be applied to the cluster. When the
restrictions are too strong, none of the connections belonging to the cluster manage
to fulfill the algorithm requirements at some point, and a hole is left in the surface.

The number of surfaces not properly triangulated vary with the system char-
acteristics. It increases with both the variation used and the size of the system.
The number of runs that failed to generate a properly re-triangulated surface were
2 out of 500 and 15 of 500 for systems with 1000 membrane particles and variations
(random displacements on the initial positions of membrane points) of 0.04 and
0.05, respectively. Every configuration generated with a variation smaller then 0.04
successfully generated a properly triangulated surface.

Smaller systems (500 membrane particles) can tolerate higher values of variation
without failing. The first variation value for which a system with 500 membrane
particles fails is 0.1, with 8 out of 500 runs finishing not properly re-triangulated.
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7.1.1 Possible improvements

Although failures on the algorithm used to select the clusters’ boundaries happened
during the test simulations, no re-triangulation ever failed because of it. The prob-
lems were always reversed when the procedure to identify the boundary was rerun
after some of the clusters on the surface had been successfully re-triangulated.

Still, improvements on this routine could be achieved by using a boundary ori-
entation in order to decide, when two possible boundary orders are found for a given
cluster, which one is the right one. That would be a simple addition to the existing
procedure.

The impossibility to find a suitable triangulation for a cluster, leaving it partially
untriangulated (with a hole) was the cause for all failed configurations found in the
test simulations. Yet, finding a solution for these failures might, in the best case, take
a lot of tweaking of parameters in the model and, in the worst case, be impossible.

A possible improvement could involve a re-triangulation algorithm that imposes
restrictions in a progressive way according to the number of internal points in the
cluster. The more internal points a cluster has, the more complex it is, and the
more restrictions needed in order to find a suitable re-triangulation. However, these
restrictions are, sometimes, to strict when the cluster being re-triangulated does
not involve too many internal particles. By allowing connections in a cluster with
medium complexity (less than 10 internal points) to be selected using less restric-
tive conditions, some of the wrong configurations obtained with the tests could be
avoided.

The biggest problem with all restrictions included in the method to solve clusters
with internal points is related to the initial assumption that every connection in a
cluster belongs to a possible triangulation of this cluster. When, for example, long
connections are automatically deleted from the re-triangulation because they have
non-physical sizes, part of the cluster may only be able to be triangulated in a single
configuration. If then, by any reason, one of the connections left cannot be chosen
because of any of the other criteria included, the re-triangulation will fail to be
concluded.

In reality, every time all internal points of a cluster are re-triangulated and there
is a hole left, if this hole is not a set of simplices there is a probability that it
will not be properly triangulated. As stated in chapter 4, the clusters can only
certainly be re-triangulated because they are formed by simplices. With that in
mind, another possibility of improvement would be to, when a re-triangulation fails,
to try to recover a configuration including the not triangulated part that is composed
of simplices. The algorithm to re-triangulate a cluster without internal points could
then be used on the recovered configuration without modifications.

A more radical approach would be, when a cluster re-triangulation fails, to
restart it with different initial conditions until a valid re-triangulation is achieved.
This possibility could be implemented relatively fast, but has the drawback that it
would slow down the simulations substantially. It is, however, a last resort approach
that could be used in sporadic cases.
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When using the method to define neighborhood relations in a dynamic system, a
last approach for dealing with not re-triangulated clusters would be to simply ignore
them for a couple of runs, using instead the last connection this particle had before
the triangulation failed. This could lead to defects on the membrane (or whatever
surface is being simulated), like small holes or crossing connections. However, since
the system is dynamic, the position of the particles in the cluster would change every
time-step, and the configuration could evolve to a state where the cluster could then
be solved.

7.2 Adaptive membrane re-triangulation

Apart from the procedures discussed in the section above, there are other improve-
ments that could theoretically be applied to the surface reconstruction method.
One of the most interesting possibilities is the inclusion of an algorithm that just
updates the re-triangulation of a surface when it breaks, instead of re-triangulating
the whole surface at every time step. This idea is inspired by the function to update
a Delaunay triangulation dynamically. Such function is already implemented in the
program used to handle the three-dimensional Delaunay triangulations.

An algorithm that just updates the re-triangulated surface instead of calculating
a totally new re-triangulation could be extremely time efficient. The outline of
such an algorithm would be the following: before any dynamics is implemented in
the program, the re-triangulation of the initial surface is done using the surface
reconstruction algorithms presented in chapter 4 of this thesis. Then, at each time
step, after the update of the three-dimensional Delaunay triangulation, the existence
of the connections that belong to the actual restricted triangulation on the surface
are checked. The re-triangulation algorithm is then performed only in the areas
where the connections chosen before hand are no longer available.

The tricky part of the implementation of this idea comes from defining the
criteria to select the areas to be re-triangulated. Each area then would be handled
as a cluster, and the algorithms to re-triangulate clusters discussed in chapter 4 used
as normal. In this case, a total re-triangulation of the surface would only be needed
in rare cases where the original three-dimensional Delaunay triangulation changed
substantially between two time steps. This, however, happens rarely and usually
require a re-calculation of the original Delaunay triangulation from scratch as well.

7.3 Re-triangulating non-convex surfaces

The surface reconstruction algorithm discussed in chapter 4 was also tested in non-
convex surfaces, with mixed results. The test-surfaces were prepared using two
initial configurations for two spheres with different sizes, with half of the smaller
sphere being connected to the bigger sphere as a protrusion (see figure 7.1).

Although the algorithm was able to re-triangulate some of these surfaces, it was
not nearly as reliable as when used to re-triangulate convex surfaces. Non-convex
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Figure 7.1: Schematics on how to generate a non-convex initial configuration for
a cell. A small and a big spherical initial configurations are generated. The lower
half of the small sphere and part of the top of the big sphere are deleted, and both
spheres are glued together.

surfaces are particularly tricky with the cluster approach developed in this thesis.
Because of the non-convexity, long connections are generated connecting parts of the
membrane (figure 7.2). These long connections do not happen inside the membrane
due to the presence of the cytosolic elements. Even though long connections in
the membrane are always dismissed as non-physical, this only happens after the
identification of the clusters. And clusters formed as a sum of simplices including
these long connections have a tendency to be really big, even when the variation in
the surface is small.

Evidently, the bigger the cluster the more complicated it is to find a re-
triangulation. Additionally, initial configurations for cells with blobs are not prop-
erly thermalized, as they are generated by the composition of two spheres thermal-
ized separately (as shown in figure 7.1). This makes the connections on the edge
between the two spheres to be reasonably out of equilibrium.

In order for non-convex clusters to be properly re-triangulated, the first step
would be to smooth the initial configuration composed by the two spheres. Another
possibility is to include artificial points outside the cell. This would be a hybrid
solution between the methods to generate the quasi-surface and the crust (chapter
4). Improvements on the re-triangulation algorithm should make this case more
reliable as well.
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Figure 7.2: Long connections that are generated when the surface is non-convex
(shown in the figure in red). This connections do not happen inside the cell because
of the presence of cytosolic elements.

7.4 Simulating biological cells

In order for the framework presented in this thesis to be used in simulations for bio-
logical cells, the robustness of the surface reconstruction method for the membrane
neighborhood relations must be improved. At the moment, the eventual failure on
the membrane re-triangulation, specially on non-convex surfaces, can drastically re-
duce the situations where the method could be useful. The situation is definitely
better the smaller the system considered, showing that one possibility of success
could be to restrict the work to cells with up to 500 membrane particles.

Additionally, the path chosen for this dissertation was to stick to the originally
decided idea of using a subset of connections from the original three-dimensional
to define the membrane neighborhood relations. Even though this path led to the
development of all the surface reconstruction techniques, the neighborhood rela-
tions between membrane particles need not to be related to the original Delaunay
triangulation.

Alternatives methods to define the neighborhood relations between membrane
points include fixed neighborhood relations (that could become complicated with
the inclusion or deletion of membrane points – necessary for changing the cell’s size)
or neighborhood relations that depend on a distance cutoff. This method, however,
has a quadratic behavior with the number of particles, and does not make use of
the original available three-dimensional Delaunay triangulation.

Apart from the definition of the neighborhood relations, the next important step
would be to define more complex interactions between the sub-cellular particles. The
potentials included so far are good for simulating resting cells, but would not be
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sufficient in case of active cell movement or protrusions were included. The nature
of these interactions depends mostly on the specific application of the model.

7.5 Conclusions

In this thesis a framework for the simulation of cells taking into consideration their
internal structure was introduced. The framework involved sub-cellular particles,
divided in two main groups: membrane particles and cytosolic elements. The neigh-
borhood relations used in the model were defined via a three-dimensional Delaunay
triangulation. They were used for all interactions, with exception of the interac-
tions between membrane particles. The interactions and dynamics of the model
were discussed, together with rules on how to generate initial configurations for the
system.

Because of the nature of the interaction between membrane particles, it was
conjectured that the best way to define neighborhood relations between them would
be via a restricted Delaunay triangulation at the two-dimensional surface defined
by these particles.

A method to define this restricted Delaunay triangulation was not available
for the specific conditions required by the problem and, therefore, a method to
define, from a set of sample points belonging to a determined surface, a Delaunay
triangulation of the points restricted to this surface was developed and presented
in this thesis. The method did not involve the deletion of sample points, being
therefore specially suitable for applications in physics or life sciences.

The method consisted of many separated steps: obtaining a quasi-surface, subdi-
viding the quasi-surface in independent structures (clusters), obtaining and ordering
the boundary of each of the clusters and re-triangulating each of the clusters inde-
pendently.

The algorithm used to obtain the quasi-surface required a closed convex surface
and a minimum number of particles internal to the system (in this case, the cytosolic
particles). These restrictions can be circumvented by the use of a crust instead of a
quasi-surface.

At last, results for the time efficiency and reliability of the model, in particular
of the surface reconstruction method developed, were presented. The possibilities
to improve the methods and discussions about its limitations were included in this
chapter.

Even though much is still to be done, the author believes that the work presented
here is an important step on the way to the main goal of this project: to create
an agent-based framework that not only allows the simulation of any sub-cellular
structure of interest but also provides meaningful interaction relations to particles
belonging to the cell membrane.

This framework has a vast field of potential applications, that go from the study
of cell shape and migration to the study of intracellular dynamics, including the
ability to follow molecules inside the cell in a space-resolved manner. The framework
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could, in principle, be applied to different problems in fields other than cell biology
as well.

The author hopes to, with this work, have contributed in some meaningful way
for both the field of sub-cellular models and the field of surface reconstruction, at
least with new ideas and a fresh approach when trying to connect so different areas
of knowledge.





Appendix A

Algorithm implementation

As an example of how the algorithms explained in this thesis were implemented,
the details of the implementation of the routine used in the process of selecting and
ordering the boundary of a cluster will be given in this appendix.

The input for the method is the three-dimensional triangulation generated for the
membrane particles and cytosolic elements together. The program used to generate
this triangulation gives access to the following, important containers:

1. a list of all simplices on the triangulation;

2. a list of all vertices on the triangulation;

3. for each vertex on the triangulation, a list of all its neighbors.

From the list of all simplices on the triangulation, it is possible to obtain a list of
all clusters in the cell membrane. As explained in chapter 4, a cluster is defined as
a set of simplices from the original triangulation formed only by membrane points,
where every simplex shares a common face to at least another simplex in the set.

Each cluster on the membrane is an instance of a class. This class was called
Cluster on the simulation. This class provides the following containers and variables
(all private):

1. list_simp – a vector of all its simplices (the clusters are initialized with this
vector);

2. all_vert_in_cluster – a hash set with all its vertices;

3. ord_boundary – an ordered vector with all vertices in its boundary;

4. internal_points – a list of all vertices in the cluster that do not belong to
the boundary;

5. connections – a final vector of connections that belong to the cluster after
re-triangulation (a connection is itself a vector containing two vertices);

6. bound_properly_selected – a bool variable that is true when the boundary
is properly selected (each vertex in the boundary only belong to two connec-
tions);

7. retriangulated – a bool variable that is true when the cluster is successfully
re-triangulated.
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Additionally, a cluster contains (among others) the following private functions:

1. get_vert_in_cluster() – generates a vertex list;

2. define_boundary() – selects the connections that belong to the its boundary;

3. find_boundary() – orders the boundary;

4. call_retriangulation() – re-triangulates the cluster ;

and a public function retriangulate(), that can be called from the main program.
This public function calls all the other functions on the class, in order (see algorithm
1).

Algorithm 1 function retriangulate( )
call get_vert_in_cluster()
call define_boundary()
call find_boundary()
call call_retriangulation()

The first of these functions (get_vert_in_cluster()) is a straightforward func-
tion that goes through the list of simplices on the cluster (simp_list), look for
the vertices contained in each simplex and include them in a hash set. The sec-
ond, define_boundary, classifies every connection (i,j) as belonging or not to the
boundary of the cluster. The procedure is explained in algorithm 2. The auxiliary
lists boundary and not_boundary are use to store the connections.

Algorithm 2 Separating connections as belonging or not to the cluster’s boundary
for all pairs (i,j) of vertices in the cluster do
bool in_boundary = false
if i and j are neighbors then
for all k that is a neighbor of j do
if k is also a neighbor of i then
if k does not belong to the cluster then
include the connection (i,j) in boundary
in_boundary = true

end if
end if

end for
if !in_boundary then
include the connection (i,j) in not_boundary

end if
end if

end for

Even though all connections in a cluster are, according to the routine above,
separated as belonging or not to the cluster boundary, some connections might have
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been falsely selected as boundary connections (the reason for that is explained in
section 4.3.2 of chapter 4).

The third function called by retriangulate(), find_boundary(), is signifi-
cantly more complex than the two described above, since it is responsible to extract
and order the cluster boundary, despite the mis-selected connections in boundary.
Additionally, the routine checks whether the cluster has more than a boundary and,
if this is the case, defines which one will be used as the main boundary of the cluster,
and includes the vertices forming the other ones (and the vertices that do not belong
to the cluster that are bounded by them) as internal points in the cluster.

This routine is responsible to call three other big functions (see algorithm 3).
The first is called order_boundaries(ordered_boundaries, boundary), and se-
lects and orders all boundaries belonging to a cluster. These boundaries are
then stored in the ordered_boundaries vector. Additionally, this routine updates
bound_properly_selected, a bool variable belonging to the cluster that indicates
whether its boundary was properly identified. The second and third routines are
only called if this variable is returned true.

The second routine, get_biggest_boundary(ordered_boundaries), selects the
biggest boundary stored in ordered_boundaries and store it in the ord_boundary
vector. This boundary is then deleted from ordered_boundaries. The last routine
is called include_left_bound_to_int_points(ordered_boundaries). Its input is
ordered_boundaries (that now does not contain the biggest boundary of the cluster
anymore), and its function is to include all other boundaries of the cluster (that are
not the biggest one), as well as all connections and vertices surrounded by these
boundaries (that do not belong to the cluster), as internal points and connections
of the cluster.

Algorithm 3 Obtaining the ordered boundary of a cluster
vector ordered_boundaries
call order_boundaries(ordered_boundaries, boundary)
if bound_properly_selected then
for every pair (i,j) in boundary do

5: is_in_final_boundary = false
for every pair (k,l) of consecutive vertices on ordered_boundaries do
if (i,j) = (k,l) then
is_in_final_boundary = true

end if
10: end for

if !is_in_final_boundary then
delete (i,j) from boundary and include in not_boundary

end if
end for

15: call get_biggest_boundary(ordered_boundaries)
include all connections left in ordered_boundaries to not_boundary

end if
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From the three routines called, it will first be shown how the
order_boundaries(ordered_boundaries, boundary) was implemented (algo-
rithm 4). The function is recursive and it calls another routine (call_get_boundary)
that is responsible to select one single boundary of a cluster. If there are some con-
nections left unused in the boundary list, this means the cluster has more than a
boundary. The routine to find a boundary will then be once more called, and the
procedure repeats until no connection in the boundary list is left unused.

Algorithm 4 order_boundaries(ordered_boundaries, boundary)
vector obtained_boundary
vector copy
copy = boundary
bound_properly_selected = call_get_boundary(obtained_boundary, copy)
if !bound_properly_selected then
print “ERROR! Boundary could not be properly selected”

else
include obtained_boundary in ordered_boundaries
if copy not empty then
call order_boundaries(ordered_boundaries, boundary_copy

end if
end if

The routine call_get_boundary called in algorithm 4 receives a copy of the
vector boundary and gives as output the vector obtained_boundary, that contains
one of the boundaries of the cluster. Additionally, it returns a bool variable that is
set to true if the boundaries are properly selected (see algorithm 5).

The routine works as follows: it initializes a vector called possible_boundary,
needed by the get_boundary routine, the main routine that identifies a single bound-
ary. Besides possible_boundary, get_boundary needs copy as input, and it writes
its output in final_boundary. If the algorithm worked properly, final_boundary
only contains one element (a vector of the encountered boundary). This vector is
then copied to obtained_boundary, the vector that call_get_boundary gives as
output.

The last routine to be outlined is get_boundaries. It is a recursive function
that identifies every set of connections in the boundary vector that form a loop, and
evaluate if this loop might be a boundary of the cluster (in the function copy is
being used, a vector that is simply a copy of the boundary vector) – see algorithm
6. For that, it starts with one vertex that belongs to one of the boundaries in the
cluster, sent from call_get_boundary in the vector possible_boundary.

The possible_boundary also assures that this vertex only belongs to two con-
nections, so that any connection chosen to start the get_boundaries routine was
not selected to belong to the boundary of the cluster erroneously (in this case, the
vertex chosen would belong to at least three connections).

One of the two connections to which the initial chosen vertex belongs is then
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Algorithm 5 call_get_boundary(obtained_boundary, copy)
vector possible_boundary
initialize possible_boundary with any vertex from copy that belongs to exactly
two connections
if possible_boundary is empty then
print “ERROR, no vertex belongs to only two connections”
return false

else
find a connection in copy that contains the first element of possible_boundary
include the second vertex of the connection in possible_boundary
delete the connection from copy
vector< vector > final_boundary
get_boundaries(possible_boundary, copy, final_boundary)
if final_boundary size equals 1 then
obtained_boundary = final_boundary[0]
delete all connections used in final_boundary[0] from copy
return true

else
print “ERROR ORDERING BOUNDARY”
return false

end if
end if

chosen, and used to initialize a vector called tmp_connections. A loop is over the
vertices in tmp_connections is then started. First, it is checked whether the current
vertex in the loop is already an element of possible_boundary (it is not checked
whether this vertex is equal to the first vertex in possible_boundary). If this is
the case, a sequence of connections in the boundary that does not lead to a cluster
boundary is found, and this instance of the algorithm does not need to be finished.
Even though this is obviously not true at the first time the routine is called, this
check makes sense in later recursive calls of the routine.

When the above check comes negative (the chosen vertex is not an element
of possible_boundary – except maybe the first), a vector to hold a tentative
boundary for the cluster is created (my_possible_boundary) and initialized with
a copy of possible_boundary. Additionally, the current vertex in the loop over
tmp_connections is also included in my_possible_boundary. This vector will be
used as input to get_boundaries (in the place of possible_boundary) when the
routine calls itself.

The condition for the routine not to call itself is that the first and last vertices
in my_possible_boundary are equal. If this is the case, a sequence composed by
connections from boundary that could be a boundary of the cluster was found. The
found boundary will be included in the final_boundary vector, a vector that stores
all sequences of connections in the boundary vector that could be a cluster boundary.
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Two possibilities exist: first, final_boundary might still be empty. In this case,
my_possible_boundary is included as the first element of final_boundary. Second,
there is already an element in final_boundary. In this case, the sizes of the vector
already stored and of the new vector are compared.

If the vector already stored is smaller than the new one, it is deleted from the
final_boundary container, since if a bigger possible boundary started from the
same initial point exists, it will be the right one. If, however, both vectors have
the same size, the new found possible boundary is included in the final_boundary
vector without the deletion of the previous one. Notice that, by construction, it
is not possible for a later found possible boundary to be smaller than one already
stored in final_boundary. When the condition for the routine not to call itself is
not met, the routine will simply call itself once more.

If two (or more) possible boundaries are still on final_boundary when it is
received back by call_get_boundary, some of the wrongly selected connections in
boundary made to sequences of the same set of vertices possible to a boundary of the
cluster. In this case, there is a degeneration and the algorithm, up to the moment,
cannot define which configuration is the right one. Therefore, if this happens, the
algorithm to identify the boundary of the membrane failed.
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Algorithm 6 get_boundaries(possible_boundary, copy, final_boundary)
vector tmp_connections
find a connection in copy that contains the last vertex in possible_boundary
include the second vertex of the connection in tmp_connections
delete the connection from copy
for each vertex i in tmp_connections do
bool repeated = false
for each vertex j in possible_boundary except the last one do
if possible_boundary[j] == tmp_connections[i] then
repeated = true

end if
end for
if repeated then
continue

end if
vector my_possible_boundary
my_possible_boundary = possible_boundary
include tmp_connections[i] in my_possible_boundary
if first and last elements of my_possible_boundary are equal then
if final_boundary is empty then
includes my_possible_boundary in final_boundary

else if my_possible_boundary > last vector included in final_boundary
then
clear final_boundary
include my_possible_boundary in final_boundary

else if my_possible_boundary’s size == final_boundary’s last element size
then
include my_possible_boundary in final_boundary

end if
else
call get_boundaries(my_possible_boundary, copy, final_boundary)

end if
end for





Acknowledgments

This work would not have been done without the help and support of several other
people. Therefore, I would like to thank:

• My parents and my family for, although living far away, being still so close to
me.

• My husband, for being the sweetest person on Earth, and for being there for
me every single time I needed. Without him I would never have considered
calling Germany home.

• Prof. Dr. Michael Meyer-Hermann for the great supervision, allowing me to
be independent but still being present when I needed.

• All integrants of the Systems Biology group in Frankfurt for a nice work en-
vironment and helpful discussions, in particular Harald Kempf.

• Prof. Dr. Horst Stöcker and Prof. Dr. Takeshi Kodama, for giving me the
opportunity to come to study in Germany.

• The Vereinigung von Freunden und Förderern der Johann Wolfgang Goethe-
Universität Frankfurt am Main e.V. for financial support.

• And, at last, many many friends, in Germany or not, for making my life outside
of work more enjoyable.





List of Figures

2.1 Mathematical models in theoretical biology. . . . . . . . . . . . . . . 8
2.2 A schematic picture of a cell and its internal structure. . . . . . . . . 9
2.3 A schematic picture of the cell membrane. . . . . . . . . . . . . . . . 10
2.4 Schematics of an eukaryotic cell showing its main organelles. . . . . . 12
2.5 Time-lapse images from two-photon microscopy. . . . . . . . . . . . . 15
2.6 A schematic drawing of typical components in a two-photon microscope. 17
2.7 Toponome map of a primary human hepatocyte. . . . . . . . . . . . 18
2.8 Example of cell sorting simulated using the Potts model. . . . . . . . 21
2.9 A schematic description of how the cell movement works in the Hy-

phasma model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.10 Two cells (i and j) interacting according to the sub-cellular element

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.11 30 element tensegrity structure with the external forces to be applied. 25

3.1 Voronoi tessellation and Delaunay triangulation of a sample P of
points in two-dimensions. . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 The quasi-surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Illustration of the method to identify the crust. . . . . . . . . . . . . 41
4.3 The cluster: a not yet re-triangulated area in the quasi-surface that

is surrounded by a surface properly restricted to two-dimensions. . . 42
4.4 Example of a three-dimensional structure left on the quasi-surface. . 44
4.5 Illustration of a three-dimensional structure next to a cluster. . . . . 45
4.6 Cluster configuration with two possible boundaries. . . . . . . . . . . 47
4.7 Example of a surface with a hole and crossed connections. . . . . . . 48
4.8 All possible triangulations of a hexagon. . . . . . . . . . . . . . . . . 49
4.9 Three possible final triangulations for the same cluster. . . . . . . . . 50
4.10 Illustration of a concave cluster. . . . . . . . . . . . . . . . . . . . . . 51
4.11 Illustration of the most common problems on the re-triangulation of

a cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Configuration of membrane particles before and after thermalization. 56
5.2 Thermalized configuration with membrane particles and cytosolic el-

ements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 Three-dimensional Delaunay triangulation of all cell’s cytosolic ele-

ments after thermalization . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1 Visualization of the initial configuration of a cell with 500 membrane
points and variation of 0.05. . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Visualization of the final configuration of a cell with 500 membrane
points and variation of 0.05. . . . . . . . . . . . . . . . . . . . . . . . 61



92 List of Figures

6.3 Visualization of the initial cluster configuration for cluster with 1000
membrane points and variances of 0.01, 0.03 and 0.05. . . . . . . . . 62

6.4 Average time needed to re-triangulate a cluster versus the cluster size,
for a system with 1000 membrane points and variation equals 0.05. . 63

6.5 Average time needed to re-triangulate a cluster versus the cluster size. 65
6.6 Average time needed to re-triangulate a cluster per cluster point ver-

sus the cluster size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.7 Average time needed to re-triangulate a cluster per cluster point ver-

sus the cluster size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.8 Frequency of appearance of a cluster of a determined size versus the

cluster size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.9 Total time spent re-triangulating all cluster of a determined size ver-

sus the cluster size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.10 Scaling of the total time needed to re-triangulate a surface versus its

initial variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.1 Schematics on how to generate a non-convex initial configuration for
a cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.2 Illustration of long connections generated when the surface is non-
convex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



Bibliography

[Alberts 2002] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith
Roberts and Peter Walter. Molecular biology of the cell. Garland Science,
fourth édition, 2002. 9, 10, 12

[Allen 2007] Christopher D. C. Allen, Takaharu Okada, H. Lucy Tang and Jason G.
Cyster. Imaging of Germinal Center Selection Events During Affinity Mat-
uration. Science, vol. 315, no. 5811, pages 528–531, 2007. 15, 17

[Alt 1995] W. Alt and R. T. Tranquillo. Basic morphogenetic system modeling shape
changes of migrating cells: how to explain fluctuating lamellipodial dynamics.
Journal of Biol. Systems, vol. 3, no. 4, pages 905–916, 1995. 2, 19

[Amenta 1998] Nina Amenta, Marshall Bern and Manolis Kamvysselis. A new
Voronoi-based surface reconstruction algorithm. In SIGGRAPH ’98: Pro-
ceedings of the 25th annual conference on Computer graphics and interactive
techniques, pages 415–421, New York, NY, USA, 1998. ACM. 3, 34, 40

[Amenta 1999] N Amenta and M Bern. Surface reconstruction by Voronoi filter-
ing. Discrete & Computational Geometry, vol. 22, no. 4, pages 481–504,
December 1999. 3, 34, 40

[Beyer 2005] T Beyer, G Schaller, A Deutsch and M Meyer-Hermann. Parallel
dynamic and kinetic regular triangulation in three dimensions. Computer
Physics Communications, vol. 172, no. 2, pages 86–108, November 2005. 3,
25, 27, 31

[Beyer 2006] Tilo Beyer and Michael Meyer-Hermann. The treatment of non-
flippable configurations in three dimensional regular triangulations. WSEAS
Trans. Syst., vol. 5, no. 5, pages 1100–1107, 2006. 31

[Beyer 2007] Tilo Beyer. Spatio-Temporal Dynamics of Primary Lymphoid Follicles
During Organogenesis and Lymphneogenesis. PhD thesis, Frankfurt Institute
for Advanced Studies – Goethe University, 2007. 28

[Beyer 2008] Tilo Beyer and Michael Meyer-Hermann. Mechanisms of organogenesis
of primary lymphoid follicles. Int. Immunol., vol. 20, no. 4, pages 615–623,
2008. 23, 25, 27

[Bock 2009] Martin Bock, Amit Kumar Tyagi, Jan-Ulrich Kreft and Wolfgang Alt.
Generalized Voronoi Tessellation as a Model of Two-dimensional Cell Tissue
Dynamics, 2009. 23, 27

[Canadas 2002] Patrick Canadas, Laurent Valerie M, Christian Oddou, Daniel Is-
abey and Sylvie Wendling. A Cellular Tensegrity Model to Analyse the



94 Bibliography

Structural Viscoelasticity of the Cytoskeleton. Journal of Theoretical Biology,
vol. 218, no. 2, pages 155–173, 2002. 24, 25

[Cazals 2006] Frédéric Cazals and Joachim Giesen. Delaunay Triangulation Based
Surface Reconstruction. In Jean-Daniel Boissonnat and Monique Teillaud,
editeurs, Effective Computational Geometry for Curves and Surfaces, pages
231–276. Springer-Verlag, Mathematics and Visualization, 2006. 3, 30

[Crick 2003] Francis Crick and Christof Koch. A framework for consciousness. Na-
ture Neuroscience, vol. 6, no. 2, pages 119–126, February 2003. 2

[Denk 1990] W Denk, JH Strickler and WW Webb. Two-photon laser scanning
fluorescence microscopy. Science, vol. 248, no. 4951, pages 73–76, 1990. 2,
14, 15

[Ferrez 2001] J.-A. Ferrez. Dynamic triangulations for efficient 3d simulations of
granular materials. PhD thesis, EPFL, 2001. 30

[Galle 2008] Jörg Galle, Martin Hoffmann and Gabriela Aust. From single cells to
tissue architecture – a bottom-up approach to modeling the spatio-temporal
organisation of complex multi-cellular systems. Journal of Mathematical Bi-
ology, vol. 58, no. 1, pages 261–283, 2008. 23, 27

[Glazier 1993] James A. Glazier and François Graner. Simulation of the differential
adhesion driven rearrangement of biological cells. Phys. Rev. E, vol. 47, no. 3,
pages 2128–2154, Mar 1993. 19, 21

[Graner 1992] François Graner and James A. Glazier. Simulation of biological cell
sorting using a two-dimensional extended Potts model. Phys. Rev. Lett.,
vol. 69, no. 13, pages 2013–2016, Sep 1992. 19

[Hauser 2007] A.E. Hauser, T. Junt, T.R. Mempel, M.W. Sneddon, S.H. Kleinstein,
S.E. Henrickson, U.H. von Andrian, M.J. Shlomchik and A.M. Haberman.
Definition of Germinal-Center B Cell Migration In Vivo Reveals Predomi-
nant Intrazonal Circulation Patterns. Immunity, 2007. 17

[Helmchen 2005] Fritjof Helmchen and Winfried Denk. Deep tissue two-photon mi-
croscopy. Nature methods, vol. 2, no. 12, pages 932–940, 2005. 14, 15, 17

[Hsiang 1993] Wu-Yi Hsiang. On the sphere packing problem and the proof of Ke-
pler’s conjecture. Internat. J. Math., vol. 5, no. 4, page 739, 1993. 56

[Ingber 2003a] Donald E. Ingber. Tensegrity I. Cell structure and hierarchical sys-
tems biology. J Cell Sci, vol. 116, no. 7, pages 1157–1173, 2003. 24

[Ingber 2003b] Donald E. Ingber. Tensegrity II. How structural networks influence
cellular information processing networks. J Cell Sci, vol. 116, no. 8, pages
1397–1408, 2003. 24



Bibliography 95

[Jones 1924] J. E. Jones. On the Determination of Molecular Fields. II. From the
Equation of State of a Gas. Proceedings of the Royal Society of London.,
vol. 106, no. 738, pages 463–477, 1924. 32

[Lamé 1838] Gabriel Lamé. Un polygone convese étant donné, de combien de
manières peut-on le partager en triangles au moyen de diagonales? Journal
de Mathématiques Pures et Appliquées, vol. 3, pages 505–507, 1838. 49

[Meineke 2001] F. A. Meineke, C. S. Potten and M. Loeffler. Cell migration and or-
ganization in the intestinal crypt using a lattice-free model. Cell proliferation,
vol. 34, no. 4, pages 253–266, August 2001. 23, 25, 27

[Meyer-Hermann 2005] Michael E Meyer-Hermann and Philip K Maini. Interpreting
two-photon imaging data of lymphocyte motility. Phys Rev E Stat Nonlin Soft
Matter Phys, vol. 71, no. 6 Pt 1, page 061912, Jun 2005. 20, 22

[Meyer-Hermann 2008] Michael Meyer-Hermann. Delaunay-Object-Dynamics: cell
mechanics with a 3D kinetic and dynamic weighted Delaunay-triangulation.
Curr Top Dev Biol, vol. 81, pages 373–99, 2008. 3, 27, 31

[Miller 2002] M. J. Miller, S. H. Wei, I. Parker and M. D. Cahalan. Two photon
imaging of lymphocyte motility and antigen response in intact lymph node.
Science, vol. 296, pages 1869–1873, 2002. 2, 17

[Mücke 1998] Ernst P. Mücke. A Robust Implementation for Three-Dimensional
Delaunay Triangulations. Int. J. Comput. Geometry Appl., vol. 8, no. 2,
pages 255–276, 1998. 30

[Murray 2002] J. D. Murray. Mathematical biology i: An introduction, volume 17
of Interdisciplinary Applied Mathematics. Springer, third édition, 2002. 8

[Murray 2003] J. D. Murray. Mathematical biology ii: Spatial models and
biomedical applications, volume 18 of Interdisciplinary Applied Mathematics.
Springer New York, third édition, 2003. 8

[Newman 2005] Timothy J Newman. Modeling multicellular systems using subcellu-
lar elements. Mathematical Biosciences and Engineering, vol. 2, no. 3, pages
611–622, 2005. 23, 25

[Okabe 2000] Atsuyuki Okabe, Barry Boots, Kokichi Sugihara and Sung Nok Chiu.
Spatial tessellations: Concepts and applications of Voronoi diagrams. Prob-
ability and Statistics. Wiley, NYC, 2nd édition, 2000. 671 pages. 28, 30

[Sandersius 2008] Sebastian A Sandersius and Timothy J Newman. Modeling cell
rheology with the Subcellular Element Model. Physical Biology, vol. 5, no. 1,
page 015002 (13pp), 2008. 23, 25



96 Bibliography

[Schaller 2004] G Schaller and M Meyer-Hermann. Kinetic and dynamic Delaunay
tetrahedralizations in three dimensions. Computer Physics Communications,
vol. 162, no. 1, pages 9–23, September 2004. 3, 25, 27, 30, 31

[Schaller 2005] Gernot Schaller. On selected numerical approaches to Cellular Tis-
sue. PhD thesis, Frankfurt Institute for Advanced Studies – Goethe Univer-
sity, 2005. 28

[Schubert 2003] Walter Schubert. Topological proteomics, toponomics, MELK tech-
nology. Adv. Biochem. Engin. Biotechnol., vol. 83, pages 189–209, 2003. 2,
15, 17

[Schubert 2006] W. Schubert, Bernd Bonnekoh, Ansgar J. Pommer, Lars Philipsen,
Raik Böckelmann, Yanina Malykh, Harald Gollnick, Manuela Friedenberger,
Marcus Bode and Andreas W. M. Dress. Analyzing proteome topology
and function by automated multidimensional fluorescence microscopy. Nat.
Biotechnol., vol. 24, pages 1270–1278, 2006. 2, 15, 17, 18

[Schwickert 2007] Tanja A. Schwickert, Randall L. Lindquist, Guy Shakhar, Geulah
Livshits, Dimitris Skokos, Marie H. Kosco-Vilbois, Michael L. Dustin and
Michel C. Nussenzweig. In vivo imaging of germinal centres reveals a dynamic
open structure. Nature, vol. 446, no. 7131, pages 83–87, March 2007. 17

[Shewchuk 1997] J. R. Shewchuk. Adaptive precision floating-point arithmetic and
fast robust geometric predicates. Discrete and Computational Geometry,
vol. 18, no. 305–363, 1997. 30

[So 2001] Peter TC So. Two-photon Fluorescence Light Microscopy. Encyclopedia
of life sciences, May 2001. 2, 14, 15

[Stoll 2002] S. Stoll, J. Delon, T. M. Brotz and R. N. Germain. Dynamic Imaging of
T Cell-Dendritic Cell Interactions in Lymph Nodes. Science, vol. 296, pages
1873–1876, 2002. 17

[Verlet 1967] L. Verlet. Computer Experiments on Classical Fluids. I. Thermody-
namical Properties of Lennard-Jones Molecules. Phys. Rev., vol. 159, no. 1,
pages 98–103, 1967. 35

[Verlet 1968] L. Verlet. Computer experiments on classical fluids. II. Equilibrium
correlation functions. Phys. Rev., vol. 165, no. 1, pages 201–214, 1968. 35

[von Andrian 2002] U. H. von Andrian. T cell activation in six dimensions. 296,
pages 1815–1817, 2002. 17

[von Neumann 1966] J. von Neumann. Theory of self-reproducing automata. Uni-
versity of Illinois Press, 1966. 8

[Wolfram 1994] S. Wolfram. Cellular automata and complexity: Collected papers.
Wolfram Research, 1994. 9



Bibliography 97


	Motivation
	Theory and experiments in physics and biology
	Goals of this study
	Structure

	Introduction
	Modeling techniques in biology
	The cell
	The cell membrane
	The cytoplasm
	The cytoskeleton

	Experimental landscape
	Two-photon image data
	Multi epitope ligand cartography

	Simulating the internal structure of a cell
	Sub-cellular models


	The model
	The Delaunay triangulation
	The Voronoi tessellation
	Defining the Delaunay triangulation

	Interaction potentials
	Cytosolic sub-particle interactions
	Cross-interaction between membrane and cytosolic sub-particles
	Membrane sub-particle interactions

	Equations of motion
	Dynamics
	Overdamped approach
	Adaptive time step


	Surface reconstruction
	Obtaining the quasi-surface
	The crust (in two-dimensions)

	Clusters
	Cluster boundaries
	Selecting connections
	Wrongly selected connections
	Detecting wrongly selected edges

	Boundary ordering
	Exceptions
	Troubleshooting

	Clusters re-triangulation
	No internal points
	Internal points


	Generating initial configurations
	Thermalizing membrane particles
	Thermalizing cytosolic elements

	Testing the surface reconstruction
	Setup
	Visualization
	Testing results
	Solving time per cluster
	Solving time per cluster point
	Cluster frequency
	Total solving time
	Analyzing variation
	Time efficiency of the algorithm


	Discussion and conclusions
	Error handling on the surface reconstruction
	Possible improvements

	Adaptive membrane re-triangulation
	Re-triangulating non-convex surfaces
	Simulating biological cells
	Conclusions

	Algorithm implementation
	Bibliography

