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Abstract: Lipid rafts are specialized plasma membrane micro-domains highly enriched in cholesterol, sphingolipids and 

glycosylphosphatidylinositol (GPI) anchored proteins. Lipid rafts are thought to be located in the exofacial leaflet of 

plasma membranes. Functionally, lipid rafts are involved in intracellular trafficking of proteins and lipids, secretory and 

endocytotic pathways, signal transduction, inflammation and in cell-surface proteolysis. There has been substantial 

interest in lipid rafts in brain, both with respect to normal functioning and with certain neurodegenerative diseases. Based 

on the impact of lipid rafts on multitude biochemical pathways, modulation of lipid rafts is used to study related disease 

pathways and probably offers a target for pharmacological intervention. Lipid rafts can be targeted by modulation of its 

main components, namely cholesterol and sphingolipids. Other approaches include the modulation of membrane 

dynamics and it has been reported that protein-lipid interactions can vary the occurrence and composition of these 

membrane micro-domains. The present review summarizes the possibilities to modulate lipid rafts with focus on neuronal 

cells. 
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IMPACT OF LIPID RAFTS FOR PHYSIOLOGICAL 
AND PATHOPHYSIOLOGICAL FUNCTIONS IN THE 

CNS 

 Lipid rafts are specialized plasma membrane micro-
domains highly enriched in cholesterol, sphingolipids, sphin-
gomyelin [SM], gangliosides (GM)) and glycosylphospha-
tidylinositol (GPI) anchored proteins [1]. Alternatively, lipid 
rafts have been named as detergent insoluble glycolipid 
enriched membranes or detergent resistant membranes [2]. 
Caveolae are defined as membrane invaginations enriched in 
cholesterol and glycosphingolipids containing the protein 
caveolin, which play a role in endocytosis [3]. The reader is 
referred to recently published reviews for a comprehensive 
and detailed discussion of lipid rafts [1, 4-6]. The present 
review summarizes the impact and possibilities to modulate 
lipid rafts with focus on neuronal cells. 

 Lipid rafts are thought to be located in the exofacial 
leaflet of plasma membranes [7], although it has been 
suggested that lipid rafts may also be found in the cytofacial 
leaflet [8]. Potential explanations for raft formation include 
the preference of cholesterol for the saturated acyl chains of 
sphingolipids compared with glycerophospholipids and the 
dynamic interactions of protein–lipid and protein–protein 
linkages [6, 9]. An additional mechanism has been proposed 
whereby proteins are encased in a “lipid-shell” of cholesterol 
and sphingolipids [10, 11]. 

 The majority of studies on lipid rafts have used methods 
that takes advantage of the insolubility of the lipid fraction of 
membranes in detergents such as Triton X-100 [12-15]. 
There is evidence indicating that the composition of the  
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isolated lipid rafts may differ depending on whether a 
detergent is used [16-18]. It has been argued that the use of 
detergents may actually induce formation of deter-
gent resistant lipid domains and not to be representative for 
physiological membrane structures [19]. In addition, it has 
also been observed that different detergent/lipid ratios and 
starting materials can influence the lipid and protein 
composition, making comparisons among studies difficult 
[4]. Since it was suspected that the presence of detergent 
could produce artifacts, the use of non-detergent methods 
has been suggested [8, 20]. Accordingly, studies on brain 
synaptosomes revealed differences both qualitatively and 
quantitatively in proteins and lipids when detergent and non-
detergent methods were applied [20, 21]. Beside the 
biochemical characterization of isolated membrane fractions, 
different techniques for studying lipid rafts in situ such as 
functional imaging, cytometry, two-photon microscopy, 
electron microscopy, fluorescent-quenching and resonance 
energy transfer techniques have been developed [22-29]. 

 Functionally, lipid rafts are involved in intracellular 
trafficking of proteins and lipids, secretory and endocytic 
pathways, inflammation and in cell-surface proteolysis [16, 
30-34]. In the brain, there has been substantial interest in 
lipid rafts, with respect to both normal functioning and 
certain neurodegenerative diseases. It is well accepted that 
lipid rafts play an important role for signaling processes in 
the central nervous system [7]. Synaptic proteins such as 
synaptophysin or synaptotagmin associate with lipid rafts 
[35-38] and lipid rafts play a role in the control of post 
synaptic membrane viscosity [39]. Moreover, brain-derived 
neurotrophic factor, which exerts multiple biological 
functions in the CNS increased the levels of presynaptic 
proteins in lipid rafts of neurons [40]. Regulation of the 
glutamateric neurotransmission, which is involved in the 
formation of spatial memory, represents one example for the 
impact of lipid rafts on classical signaling processes [41].  
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Accordingly, NMDA-, AMPA- and metabotrobic glutamate 
receptors are regulated by lipid raft related pathways [42-44]. 
However, excess of extracellular glutamate induced by 
cerebral ischemia leads to neuronal cell death, which is 
accompanied by increased phosphorylation and redistribu-
tion of NMDA receptors between synaptic lipid rafts and 
post-synaptic densities in the rat brain [45]. 

 Lipid rafts have been attracted attention in neurodegene-
ration, such as Prion diseases, Parkinson`s disease and 
especially in AD [46-48]. Recently, alterations in lipid rafts 
isolated from AD brain were reported [49], including the 
localization of active -secretase in lipid rafts in human brain 
[50]. Active -secretase is involved in the pathological 
proce-ssing of the AD related amyloid precursor protein 
(APP). Neurotoxic -amyloid peptide (A ) is a product of 
the secretase cleavage of APP and both proteins have been 
located in lipid rafts [26, 51-54]. Moreover, it was 
demonstrated that the presenilin-1 protein, which is part of 
the -secretase complex, induces lipid raft formation in vivo 
[55].  

 Gradual changes in steady-state levels of A  in brain are 
considered as an initial step in the amyloid cascade 
hypothesis of AD. There is evidence that the membrane lipid 
environment may modulate secretase activity and alters its 
function. Cleavage of APP strongly depends on membrane 
properties and it was shown that A -oligomers from AD 
brains associate with a detergent-resistant membrane fraction 
in a cholesterol-dependent manner [56]. Since A  perturbs 
cell membrane fluidity, the cell membrane may be the 
location where the neurotoxic cascade of A is initiated. 
Based on the observation that A  binds to lipid raft related 
ganglioside GM-1 [57] the effects of oligomeric A  on 
membrane fluidity of whole living cells, the impact of 
exogenous and cellular A  on the processing of APP and the 
role of GM-1 ganglioside was tested recently [58]. Evidence 
was presented that oligomeric A  stimulates the amyloido-
genic processing of APP by reducing membrane fluidity and 
complexing with GM-1 ganglioside. It was concluded that 
this dynamic action of A  might start a vicious circle, where 
endogenous A  stimulates its own production [58].  

 In brains of AD patients, abundance of raft related 
flotillin proteins was reported to increase with progression of 
A deposition [59, 60]. However, abundance of flotillin-1 was 
reduced in lipid rafts isolated from mice harboring human 
apoE4, which represent an AD model [61]. Although, the 
function of flotillin is not well understood, it was proposed 
that it plays a role for neuronal regeneration [62, 63]. 
Sphingomyelin represent one of the major glycosphin-
golipids present in lipid rafts [17]. Changing sphingomyelin 
levels modify lipid raft structure and function [5, 64, 65]. 
Sphingomyelin levels were significantly lower in the lipid 
rafts isolated from synaptosomes of 12- and 24- month-old 
apoE4 mice in contrast to the 2-month-old apoE4 mice [61].  

 Based on the impact of lipid rafts on multitude bioche-
mical pathways, modulation of lipid rafts is used to study 
related disease pathway and probably offers a target for 
pharmacological intervention. Lipid rafts can be targeted by 
modulation of its main components, namely cholesterol, 
sphingo- and ganglioside lipids. Other approaches include 
the modulation of membrane biophysical parameters such as 
fatty acid composition.  

MEMBRANE CHOLESTEROL AND SPHINGO-
MYELIN – TARGETS FOR THE MODULATION OF 

LIPID RAFTS 

 Cholesterol is known to be essential for the functional 
activity of physiological membranes [66, 67] and plays an 
essential role in the regulation of synaptic function and 
plasticity [68, 69]. The highest cellular cholesterol load is 
found within the plasma membrane (PM). Levels and 
distribution of PM cholesterol are tightly regulated by the 
cell [70]. The capacity of the PM to incorporate cholesterol 
is largely a function of its sphingomyelin content [67]. PM 
polarity is conditioned by the asymmetric insertion of 
cholesterol as well as functional proteins and phospholipids. 
Inside the PM, about 70-85% of free cholesterol resides in 
the cytofacial bilayer leaflet, whereas only about 15-30% 
join the exofacial leaflet [67, 71, 72]. Even in this outer 
membrane domain the intra-membrane distribution of 
cholesterol follows a strict organization into structural pools 
and is altered during aging [73]. Cholesterol builds up lateral 
membrane domains or kinetic pools that probably mediate 
cellular cholesterol efflux and participate in the formation 
lipid raft domains [67]. 

 Cholesterol is highly enriched in lipid rafts [17] and 
evidence suggest that cholesterol condenses the packing of 
the sphingolipid molecules and thus cholesterol-sphingolipid 
microdomains form a separate lipid ordered phase in the 
exofacial leaflet of the membrane [74, 75]. Cholesterol levels 
and consequently lipid raft structure can be modulated either 
by physical extraction from the plasma membrane in vitro or 
by inhibition of the cellular biosynthesis using specific 
enzyme inhibitors in vivo. Changing membrane cholesterol 
domains also affect the cellular cholesterol homeostasis. 
Non-raft cholesterol pool within the plasma membrane 
primarily senses the amount of cellular bulk cholesterol [76]. 
Changing sphingomyelin levels modify lipid raft structure 
and function [5, 64, 65]. Raft destruction with sphingo-
myelinase shuttles cholesterol into the non-raft pool, which 
probably flows back to the endoplasmatic reticulum and thus 
blocks the intracellular translocation of the SREBP-SCAP 
complex to the Golgi and further cholesterol synthesis [76, 
77]. 

METHYL- -CYCLODEXTRIN – A BIOPHYSICAL 
TOOL TO MODULATE MEMBRANE CHOLES-

TEROL LEVELS 

 Cyclodextrins are torus-shaped cyclic oligosaccharides 
containing at least six glucose units attached by glycosidic 
bonds. They possess a hydrophilic outer surface and a 
hydrophobic inner cavity. Cyclodextrins enhance the 
solubility of non-polar substances (e.g., cholesterol) by 
incorporating them into their hydrophobic cavity and 
forming non-covalent water-soluble inclusion complexes. 
Cyclodextrins comprised of 6, 7, and 8 glucose units ( -, - 
and -forms, respectively) were used to alter the lipid 
composition of cells. Among those, -cyclodextrins and 
derivatives thereof such as methyl- -cyclodextrin (M CD) 
or 2-hydroxypropyl- -cyclodextrin were found to selectively 
extract cholesterol from the plasma membrane, in preference 
to other membrane lipids [78]. M CD affects membrane raft 
domains and modulates the location of raft-related proteins 
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[23, 79, 80]. Hence, M CD is commonly used to study lipid 
raft related processes in neuronal cells such as receptor 
mediated signaling [81-83] or processes related to 
neurodegeneration [66, 84-88]. Recently, the mechanism 
how M CD affect lipid rafts was studied in more detail: 
Treatment of synaptosomal plasma membranes (SPM) 
isolated from mouse brains with M CD significantly 
lowered SPM free cholesterol levels and the opposite was 
observed when cholesterol inclusion complexes were used 
[89]. Interestingly, M CD treatment resulted in significantly 
reduced exofacial percent cholesterol values in the 
membrane bilayer of SPM, leading to decreased exofacial to 
cytofacial cholesterol ratio values [89]. The idea that M CD 
preferentially extracts cholesterol from the detergent 
insoluble areas of the plasma membrane, is supported by the 
stronger reduction in cholesterol content of the lipid raft 
fractions from human T-cell lymphoblastic leukaemia cells 
after M CD incubation (~88% reduction) compared to the 
membrane preparations (~50% reduction) and crude cell 
lysate (~30%) preparation [90]. Hence, it could be concluded 
that M CD exclusively extracts exofacial membrane choles-
terol pools. Reversely, cholesterol enrichment with M CD-
cholesterol complexes induces contagious effects in SPM: 
Percent exofacial cholesterol levels are clearly enhanced. 
Accordingly, exofacial to cytofacial cholesterol ratio values 
were significantly increased in SPM of mice [89]. These data 
indicate that exofacial membrane cholesterol pools are most 
sensitive to external cholesterol manipulations using M CD 
complexes, where lipid raft domains reside [91]. 

STATINS – INHIBITORS OF THE CHOLESTEROL 
BIOSYNTHESIS 

 Statins are inhibitors of 3-hydroxy-3-methylglutaryl 
coenzyme A (HMG-CoA) reductase the rate-limiting 
enzyme in cholesterol biosynthesis [92]. The inhibition of 
HMG-CoA reductase not only prevents cholesterol biosyn-
thesis and induce significant plasma cholesterol reductions 
[93], but also affects the isoprenoid pathway, which accounts 
for statin´s pleiotropic effects [94, 95]. Simvastatin and 
lovastatin are prodrug lactone forms that are transformed to 
the active acid forms mainly by hepatocytes. Lipophilicity is 
further characterized by the behavior of compounds on the 
octanol/water phase. Based on the logarithm of the partition 
coefficient simvastatin, lovastatin, cerivastatin, fluvastatin, 
pitavastatin and atorvastatin are lipophilic, while pravastatin 
is hydrophilic [96]. Rosuvastatin is a relatively new statin, 
having a polar methane sulphonamide group, and it can be 
placed between cerivastatin and pravastatin [96]. Lactone 
and active acid forms of simvastatin and lovastatin were 
determined in picomolar levels in mouse brains after oral 
administration [97]. 

 Recently, the effects of statins including lovastatin and 
simvastatin as lipophilic agents as well as pravastatin as a 
hydrophilic compound was studied focussing on their effi-
ciency to affect subcellular membrane cholesterol pools in 
synaptosomal plasma membranes (SPM) of mice [72]. In 
contrast to the hydrophilic pravastatin, the lipophilic lovas-
tatin and simvastatin strongly reduced the levels of free 
cholesterol in SPM, confirming earlier data [98]. Interes-
tingly, statins significantly reduced cholesterol levels in the 
exofacial membrane leaflet. These changes were accom-

panied by modified membrane bulk fluidity. All three statins 
reduced the expression of the raft marker protein flotillin-1, 
which indicates that statins modulate lipid rafts in vivo [72]. 
Accordingly, Burns et al. demonstrated that changes in the 
distribution of cholesterol between the cyto- and exofacial 
membrane leaflet were directly related to lower levels of A , 
a lipid raft related process with impact on AD pathology (see 
above) [99]. 

 Neuroprotective effects of statins have been reported, 
including protection from NMDA-induced neuronal death 
[100, 101]. Excess of brain extracellular glutamate after 
cerebral ischemia over-activates NMDA receptors, which 
subsequently leads to neuronal death [102]. Since NMDA 
receptors have been reported to be associated with lipid rafts, 
the effect of simvastatin on levels on excitotoxicity and on 
association of NMDA receptors to lipid rafts was inves-
tigated recently. The data demonstrated that reduction of 
membrane cholesterol levels protects from NMDA-induced 
neuronal damage probably by reducing the association of 
NMDA receptors from lipid rafts [102].  

SEQUESTRATION OF CHOLESTEROL BY FILIPIN 

 Filipin represents a polyene antibiotic with macrolide 
structure and amphipatic nature, which forms a fluorescent 
complex with cholesterol and is commonly used to visualize 
the cellular distribution of free cholesterol [78]. Since filipin 
sequesters cholesterol it is also used to disrupt lipid raft 
structures [103-105]. For its action filipin requires a sterol 
partner with a free 3-OH group and it was speculated that 
filipin may form large planar aggregates between the two 
layers of the membrane, it may be absorbed at the membrane 
surface or located at the upper layer of the membrane [106]. 
However, different models have been generated to explain 
the organization of filipin–sterol complexes within the 
membrane bilayer [78]. Filipin is a cytotoxic compound and 
disrupts the integrity of sterol-containing membranes. Thus, 
sequestering of cholesterol using filipin should only be 
employed in fixed cells or tissues [78]. 

LONG-CHAIN POLYUNSATURATED FATTY ACIDS 
MODULATE LIPID RAFTS 

 Omega-3 fatty acids are taken up by virtually all body 
cells and affect membrane composition, eicosanoid biosyn-
thesis, cell signaling cascades, and gene expression [107]. 
Long-chain polyunsaturated fatty acids (LC-PUFA) like 
eicosapentaenoic acid (EPA, 20:5, n-3) and docosahexaenoic 
acid (DHA, 22:6, n-3) are especially important during human 
brain development. Maternal deficiency of omega-3 fatty 
acids leads to deficits in neurogenesis, neurotransmitter 
metabolism, and altered learning and visual function in 
animals [108] and may result in several neurological 
disorders [107]. Among various organs, in the brain omega-3 
fatty acids are most extensively studied. In fact, the brain is 
the organ richest in lipids and it was shown that the 
differentiation and functioning of cultured brain cells 
requires LC-PUFA [109].  

 A number of studies have demonstrated that dietary LC-
PUFA are incorporated into diverse cell types and appear to 
uniquely modulate cell membrane micro-domains [110-113]. 



Manipulation of Lipid Rafts in Neuronal Cells The Open Biology Journal, 2010, Volume 3     35 

Using a T-cell model, Stulnig et al. showed the ability of 
PUFA enrichment to selectively modify the cytoplasmic 
layer of lipid rafts [113, 114]. Accordingly, Chapkin and co-
workers showed that dietary n-3 PUFA reduced lipid raft 
sphingolipid content and altered raft fatty acid composition 
[110, 115, 116]. Recently, the same group studied the effects 
of DHA on the size and distribution of lipid rafts in living 
HeLa cells [117]. Selected PUFA can increase the clustering 
of proteins in cholesterol-dependent micro-domains, whereas 
non-raft mirco-domains were insensitive to DHA modulation 
[117]. The impact of these findings for neurodegenerative 
diseases is underlined by reports that DHA enhanced syn-
aptic membrane fluidity in aged mice [118] and decreased 
A  levels in cells and in brains of murine AD models [119-
123]. Moreover, lipid rafts from AD brains displayed 
abnormally low levels of LC-PUFA, as well as reduced 
unsaturation and peroxidation indexes [49].  

 LC-PUFA alter the basic properties of cell membranes 
and enhances membrane viscosity [124]. It was suggested 
that because of its polyunsaturation, PUFA are sterically 
incompatible with sphingolipid and cholesterol and, 
therefore appear to alter lipid raft behavior and protein 
function [125-127].  

CONCLUSIONS 

 In summary, lipid raft signaling is involved in multitude 
biochemical pathways. Modulation of cholesterol using 
physical extraction by methyl- -cyclodextrine, filipin or 
inhibition of cholesterol biosynthesis by statins is most 
commonly used to change lipid rafts in membranes. Size and 
distribution of lipid rafts depend also on the membrane 
environment, which could be chanced by long-chain 
polyunsaturated fatty acids. The alteration of lipid rafts 
represents a useful tool to study related disease pathways and 
probably offers a target for pharmacological intervention. 
However, it is not defined yet if targeting lipid rafts in vivo 
might impair physiological functions. For instance, it is not 
clear whether dietary LC-PUFA are incorporated into raft 
lipids or whether their low affinity to cholesterol disallows 
this and causes phase separation from rafts and displacement 
of raft proteins [128]. Moreover, it was shown that depletion 
of cholesterol leads to instability of surface AMPA-gluta-
mate in lipid rafts, which was accompanied by gradual loss 
of synapses and dendritic spines [129]. 
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