
Engineering Coordination
A Methodology for the Coordination of Planning Systems

Dissertation

zur Erlangung des Doktorgrades

der Naturwissenschaften

vorgelegt beim Fachbereich Informatik und Mathematik

der Johann Wolfgang Goethe – Universität

in Frankfurt am Main

von

René Schumann

aus Delmenhorst

Frankfurt (2010)

(D 30)

vom Fachbereich Informatik und Mathematik der

Johann Wolfgang Goethe – Universität als Dissertation angenommen

Dekan: Prof. Dr. Tobias Weth .

Gutachter: Prof. Dr. Ingo J. Timm, .
Prof. Dr. Jürgen Sauer, .
Prof. Dr. Ulrich Schwanecke .

Datum der Disputation: 06.10.2010 .

Acknowledgement

The work this thesis is based on, has been done over several years and at three
different locations. During my appointment at the OFFIS Institute for Informa-
tion Technology in Oldenburg, while I was employed at the Goethe University in
Frankfurt am Main, and during my research stays at the Artificial Intelligence
group at the Rey Juan Carlos University in Móstoles (Spain).

The issue of coordination of autonomous planning systems has been at the center
of my research for more than six years now. It started when I was a student at
the Carl von Ossietzky University Oldenburg. This project took longer than I
expected and I moved to locations I never thought I would visit when I started it.
Consequently, over the course of time I have to thank a number of people I have
meet during this time at the various locations.

First of all, I would like to thank my main supervisor Prof. Dr. Ingo J. Timm
(Goethe University Frankfurt am Main). I met him in 2005 at a conference and
moved to Frankfurt in 2007 to become part of his group. I would like to thank him
for the opportunity to move to Frankfurt. It was not only a geographical change,
but also offered me a complete new perspective on research. I am very grateful
for all the valuable advice and encouragement that he still gives me.

Furthermore, I would like thank apl. Prof. Dr. Jürgen Sauer (Carl von Ossiet-
zky University Oldenburg). He supervised my diploma thesis in 2004 and to this
day still gives me valuable advice. He encouraged me to start with my PhD and
support me continuously even after I left Oldenburg.

I also want to thank Prof. Dr. Ulrich Schwanecke (Hochschule RheinMain
University of Applied Sciences) for the valuable advice he gave me since I joined
the Sensyble graduate school.

I am deeply grateful for the hospitality and valuable discussions of Prof. Dr.
Sascha Ossowski and his entire group. I spent 10 days in June 2009 and three
month (Feb.–Apr.) in 2010 as a visiting researcher in his group. Large parts of
this thesis have been written there.

I want to express my gratitude to Dr. Christoph Mayer (OFFIS Institute for
Information Technology). Christoph Mayer was the division manager of the R&D
division Business Information Management at the OFFIS Institute, and my first

iii

iv Acknowledgement

superior. I would like to thank him for his support, his advice and the chance to
learn a lot about projects and leadership in science.

A very special thanks goes to the entire Information Systems and Simulation
group at the Goethe University Frankfurt am Main. The people that accompa-
nied me during my time at this group (in addition to Prof. Dr. Ingo J. Timm)
are Marion Terrell, Dr. Andreas Lattner, Tjorben Bogon, Yann Lorion, Pascal
Katzenbach and Jörg Dallmeyer. I have to thank all of them, and in particular
Dr. Andreas Lattner, for their support and advices.

Also, a very special thank you goes to my dear friend Mathias Uslar (OFFIS
Institute for Information Technology), a former colleague of mine. Especially in
my first years of my endeavors in research he supported me with a lot of valuable
advice while in the last years he offered much needed moral support.

I also have to thank Jens Oehlerking (University Oldenburg), who also sup-
ported me during the writing of this thesis.

Another person I met during my time as PhD student, who became a friend
that also helped me is Dr. Leif Meier (Proctor & Gamble Service GmbH). He got
me involved in the container terminal management problem and we have worked
collaboratively on this issue. Also, I would like to thank him for the planning
systems he provided to me.

I was also supported by Dr. David Sabel (Goethe Universität Frankfurt) and
want to thank him for supporting the Latex template this thesis uses.

I would like to thank Dr. Michael Schwind (Goethe Universität Frankfurt) for
the insightful discussions concerning combinatorial auctions.

I am very grateful to my former diploma students, who have contributed to as-
pects of my research that can partially be found in this thesis. In particular, I have
to mention Thomas Timmermann (Ernst & Young GmbH) and Zijad Kurtanovic
(Healy Hudson GmbH).

Also, I have to thank the students who participated in the practical course
“Praktikum Wirtschaftsinformatik und Simulation” in the winter term 2009/2010
for their efforts in developing planning systems and encapsulate them using web
services.

While I was employed at the Goethe University I was additionally supported
by GRADE, the Goethe Graduate Academy (former Otto Stern School) support-
ing me with subsidies for childcare. I received travel funding from the Herrmann
Willkomm-Stiftung in 2008 and 2009. Furthermore, I was supported by the EU-
COST Action Agreement Technologies. I received a grant for a short-term sci-

Acknowledgement v

entific mission (STSM) for a 10 day visit of the group of Prof. Dr. Sascha Os-
sowski in 2009. Finally, I was supported by the German Academic Exchange
Service (DAAD) with a short-term grant for doctorate students (grant number
D/09/48031). This scholarship allowed me to stay in Spain for three month in
2010.

For their ongoing support in so many different ways I would like to thank my
parents. I am very grateful for their support.

Especially in the last months of this thesis, my family supported me very much.
They had to put up with my stress and the fact that I was not there for three
month. Therefore, I am very grateful.

I would like to thank my two sons Philipp Ephraim and Simon Casimir for their
ongoing lecture they give to me to focus on the important aspects of life. They
were born during the time this thesis has been written, and know their father only
as a PhD. student, so far.

All these persons have influenced me, and consequently, the way this thesis looks
like. But there would be no thesis in any way without the support and love of my
wife. I am deeply indebted to Jennifer for the advice and support she provided to
me during all this time. She brought me back on track when I lost sight of reality.

vi Acknowledgement

Zusammenfassung

Reale Planungsprobleme, wie etwa die Produktionsplanung in einer Supply Chain,
sind komplex Planungsprobleme. Eine übliche Strategie derart komplexen Proble-
men zu lösen, ist es diese Probleme in einfachere Teilprobleme zu zerlegen und diese
dann separat, meist sequentiell, zu lösen (divide-and-conquer Strategie). Dieser
Ansatz erlaubt die Erstellung von (suboptimalen) Plänen für eine Reihe von realen
Anwendungen und ist heute in den Organisationsstrukturen von größeren Un-
ternehmen institutionalisiert worden. Allerdings werden Abhängigkeiten zwischen
den Teilproblemen nicht ausreichend berücksichtigt, da die Partialprobleme se-
quentiell ohne Feedback gelöst werden. Die erstellten Teillösungen müssen deswe-
gen oft nachträglich koordiniert werden. Die Beispiele, die in dieser Arbeit genutzt
werden, sind die Koordination von Planungssysteme in der Produktion und Dis-
tribution von Gütern, die Koordination der Planungssysteme von Partner eines
Supply Chain, und die Koordination der Planungssysteme die im Rahmen des
Container Terminal Managements.

In dieser Arbeit wird die operative Koordination von existierenden Planungssys-
temen betrachtet. Dabei wird von einer inhärent gegebenen Problemstellung aus-
gegangen in der für verteilte, abhängige Planungsentscheidungen automatische
Planungssysteme eingesetzt werden. Die Pläne dieser Planungssysteme müssen
koordiniert werden, um die Realisierbarkeit dieser Pläne unter Berücksichtigung
evtl. wechselseitiger Abhängigkeiten der Planungsprobleme zu gewährleisten. Je
nach gegebener Problemstellung kann dabei der Fokus neben der reinen gemein-
samen/parallelen Realisierbarkeit einer Menge von verteilt erstellten Plänen auch
die Verbesserung einer Gesamtsystemperformance im Fokus liegen. Eine Koordi-
nation von Planungsprozessen auf der taktischen oder strategischen Ebene wird
in dieser Arbeit nicht betrachtet. Ein Beispiel für derartige taktische oder stra-
tegische Koordinationsprobleme sind etwa die Auswahl eines Netzwerkes oder die
Zerlegung des Gesamtproblems in unterschiedliche Teilprobleme.

Im Rahmen der hier vorliegenden Arbeit wird zuerst ein Einblick in die Grund-
lagen von Planungssystemen und Systemen der verteilten Künstlichen Intelligenz
gegeben. Anschließend wird im dritten Kapitel ein breiter Überblick über den
Stand der Forschung gegeben. Dabei werden mehrere Bereiche untersucht. Zuerst
wird die Modellierung von Abhängigkeiten betrachtet und dabei grundsätzliche

vii

viii Zusammenfassung

Überlegungen zu Problemen und Komplexität bei der Koordination von au-
tonomen Planungssystemen vorgestellt.

Anschließend wird das Gebiet der Koordination wird in verschiedenen For-
schungsgebieten, wie etwa der verteilten Künstlichen Intelligenz, den Wirtschafts-
wissenschaften oder der Spieltheorie untersucht. Weiterhin wird das Gebiet des
agentenorientiertem Software Engineering betrachtet. Dieses wird insbesondere
auf dessen Beitrag zur Wiederverwendung von bereits entwickelten Methoden
hin betrachtet. Dabei ist festzuhalten, dass der Hauptbeitrag der Wiederverwen-
dung von Konzepten des Gebietes des agentenorientierten Software Engineering im
Rahmen von Agentenframeworks stattfindet. Darüber hinaus bietet der aktuelle
Stand der Forschung kaum Möglichkeiten bzw. Methoden, die die Wiederverwen-
dung von existierenden Verfahren adressieren. Als Ausnahmen sind lediglich die
Ansätze von Jonker et al. [JTY05] für die Nutzung von Organisationsformen und
Bussmann et al. [BJW03] für die Auswahl von Interaktionsprotokollen zu nennen.
Beide Ansätze basieren auf der Idee existierende Verfahren/Methoden anhand von
spezifischen Kriterien zu klassifizieren und über diese Spezifikation der Charakter-
istika der aktuellen Situation eine gerichtete Suche in den existierenden Verfahren
nach diesen Kriterien durchzuführen.

In dieser Arbeit werden aus diesem Grund die existierenden Verfahren zur
Klassifikation von Koordinationsverfahren untersucht. Existierende Klassifika-
tionen orientieren sich an eingesetzten Technologien (etwa bei Stockheim et
al. [SSWG02]), der Perspektive auf das System (etwa bei Schumacher [Sch01])
oder auf Basis von allgemeinen Theorien über Koordination (etwa bei Busi
et al. [BCGZ01]). Diese Klassifikationskriterien spiegeln die unterschiedlichen
Forschungsrichtungen und Theorien wieder, die einen Beitrag zur Erforschung
der Koordination im Rahmen der verteilten Künstlichen Intelligenz geleistet
haben. Keine dieser Klassifikationsansätze erlaubt eine Aussage über Ein-
satzmöglichkeiten und Designentscheidungen der jeweiligen Koordinationsver-
fahren aus. Aus diesem Grund wird im Rahmen dieser Arbeit einen problem-
orientierten Ansatz vorgestellt. Durch die Identifikation von Charakteristika von
Koordinationsproblemen und der Herausarbeitung dieser Anforderungen an ein
Koordinationsverfahren wird das Konzept der Coordination Requirements ent-
wickelt. Dies sind formalisierte Anforderungen an ein Koordinationsverfahren, die
das Koordinationsverfahren erfüllen muss, um in der gegeben Situation anwend-
bar zu sein. Es wird somit die Möglichkeit eröffnet eine formale Spezifikation des
Sachverhalts der Anwendbarkeit für eine Koordinationsaufgabe zu spezifizieren.

Im Abschnitt 4.1 präsentieren wir auf Basis der in dieser Arbeit verwendeten
beispielhaften Koordinationsprobleme die folgenden sechs Charakteristika:

• Ist ein Allokationsproblem vorhanden?

Zusammenfassung ix

• Sind die lokalen Zielfunktionen vergleichbar?

• Sind die Planungssysteme homogen?

• Existiert eine globale Zielfunktion?

• Ist information hiding notwendig?

• Existieren zyklische Abhängigkeiten?

Auf Basis dieser sechs Charakteristika werden die vorgestellten Koordinationsver-
fahren klassifiziert. Dies alleine ist zwar nicht ausreichend für die Identifikation
von vorhanden geeigneten Koordinationsverfahren, allerdings kann es, wie in den
durchgeführten Fallstudien gezeigt wird, den Auswahlprozess beschleunigen, da
schnell geeignete Kandidaten identifiziert werden können, die in einer genaueren
Analyse auf deren Anwendbarkeit hin untersucht werden können.

Für die strukturierte Durchführung der Identifikation von geeigneten Koordi-
nationsverfahren wird im Rahmen dieser Arbeit ein Prozessmodell vorgestellt, der
sogenannte ECo-Prozess (Engineering Coordination). Dieser Prozess soll sowohl
den Auswahlprozess, als auch, sofern nötig, den Designprozess eines neuen Koordi-
nationsverfahrens unterstützen. Der Prozess ist in die folgenden Schritte eingeteilt,
die iterativ durchlaufen werden können:

• Modellierung der Problemstellung und des relevante Kontextes

• Formulierung von Anforderungen an einen Koordinationsmechanismus

• Auswahl/Entwurf eines Koordinationsmechanismuses

• Implementierung des Koordinationsverfahrens

• Evaluation des Koordinationsverfahrens

Diese Schritte werden im Rahmen der vorliegenden Arbeit detailliert beschrieben.
Die Modellierung der Problemstellung stellt dabei den ersten Schritt dar, um die
Problemstellung analytisch zugänglich zu machen.

Wie bereits oben erläutert ist die Aufgabe der Coordination Requirements den
Sachverhalt der Anwendbarkeit zu operationalisieren. Die Anforderungen sollen
dabei auf Basis der vorangegangen Modellierung formuliert werden, d.h. die Re-
quirements haben eine formale Grundlage. Die in Frage kommenden Koordina-
tionsverfahren sollen im nächsten Schritt, der Auswahl eines geeigneten Koordi-
nationsverfahrens, daraufhin betrachtet werden, ob sie die aufgestellten Anfor-
derungen erfüllen. Dies wird als qualitative Evaluation bezeichnet. Da die Co-
ordination Requirements eine formale Definition besitzen, kann diese Evaluation

x Zusammenfassung

ebenfalls formal durchgeführt werden. Das Ergebnis der qualitativen Evaluation
ist eine Menge von möglichen Koordinationsverfahren, die im gegeben Kontext an-
wendbar sind. Dies erlaubt allerdings keine weiteren Aussagen, wie gut, im Sinne
eines global erreichbaren Qualitätsmaßes, diese Verfahren sind. Dies geschieht erst
in der später folgenden quantitativen Evaluation. Der von den Anforderungen
getrieben Auswahlprozess ist ein Kernstück der hier vorgestellten Arbeit. Durch
die Formulierung der Anforderungen und der Annotation eines Koordinations-
mechanismus bezüglich der erfüllten und nicht erfüllten Anforderungen werden
die Motive für Designentscheidungen dieses Verfahren expliziert. Wenn Koor-
dinationsverfahren anhand dieser Anforderungen klassifiziert werden können, ist
es weiterhin möglich den Auswahlprozess zu vereinfachen und zu beschleunigen.
Stellt sich in diesem Schritt heraus, dass kein existierenden/bekannter Koordina-
tionsansatz alle Anforderungen erfüllt ist ein solches Koordinationsverfahren nun
auf Basis des Modells des Anwendungsfalles und der aufgestellten Coordination
Requirements zu entwerfen.

Um eine quantitative Evaluation durchführen zu können, ist es notwendig die in
Frage kommenden Verfahren zu implementieren. Für die Unterstützung der Imple-
mentierung eines Koordinationsansatzes wird in dieser Arbeit zusätzlich der CoPS
Prozess (Coordination of Planning Systems) vorgeschlagen. Der CoPS Prozess
erlaubt einen ganzheitlichen systematischen Ansatz für den Entwurf und die Im-
plementierung eines Koordinationsverfahrens. Dabei werden im CoPS sowohl As-
pekte auf der globalen Netzwerkebene, wie die Auswahl von Konversationspro-
tokollen, als auch Entscheidungen, die lokal bei dem Entwurf eines jeden Agenten
getroffen werden müssen berücksichtigt. Beispiele für lokale Designentscheidun-
gen sind etwa die Spezifikation von Verhaltensmustern in Konversationen oder die
Adaption existierender Planungssysteme, etwa mittels Web Services.

Zur Unterstützung des CoPS Prozesses wird in dieser Arbeit das CoPS Frame-
work vorgestellt. Auf Basis dieses Frameworks soll eine schnellere Imple-
mentierung ermöglicht werden. Hierzu bietet das CoPS Framework etwa die
Möglichkeit an Konversationsprotokolle als textuelle Beschreibung zu spezifizie-
ren und diese dann automatisiert zum Einen in Verhaltensautomaten zu trans-
formieren, in denen ein lokales Entscheidungsverfahren modelliert werden kann,
und zum Anderen kann diese textuelle Beschreibung in Sequenzdiagramme trans-
formiert werden, um den Entwicklern des Systems eine geeignete Dokumentation
zu liefern. Ziel des CoPS Frameworks ist es eine Plattform mit Basisfunktion-
alität eines Agenten bereit zu stellten der für die Koordination von Planungssys-
temen verantwortlich ist. Dabei ist es die Zielstellung des CoPS Frameworks
die Erstellung eines Prototyps eines agentenbasierten Koordinationsmechanismus
für existierende Planungssysteme. Dieser Prototyp soll dazu dienen den letzten

Zusammenfassung xi

Schritt, die Evaluation des Koordinationsverfahrens auf Basis quantitativer Daten
zu ermöglichen. Das CoPS Framework ist zurzeit für der produktiven Betrieb nicht
geeignet, da hierzu relevante Funktionalitäten, etwa bzgl. der Skalierbarkeit, der
Performance und der Persistenz nicht ausreichend unterstützt werden.

Als abschließender Schritt des ECo Prozesses steht die Evaluation. Hierbei
soll eine Evaluation der Performance, etwa in Bezug auf die Performance des
Gesamtsystems hin, durchgeführt werden. Dieser Schritt wird auch als quanti-
tative Evaluation bezeichnet, um dies zur oben erwähnten qualitativen Evalua-
tion abzugrenzen. Die quantitative Evaluation ist ein wichtiger Prozessschritt,
da sie die Überprüfung der beabsichtigten Performancekriterien sicherstellt und
somit überprüft wird, ob das koordinierte Gesamtsystemverhalten im akzeptablen
Bereich liegt. Hierbei sind etwa Vergleiche mit alternativen Methoden oder eine
Einordnung der Lösungsqualität möglich, etwa durch den Vergleich mit Verfahren,
die die Coordination Requirments nicht einhalten, und so in der Regel in der Lage
sind bessere Lösungen zu finden. Beispielhaft ist hier etwa die zentrale Planung zu
nennen, die oft bessere Ergebnisse erzielen kann, als eine Menge von koordinierten
verteilten Plänen. Aus Basis der Ergebnisse der quantitativen Evaluation kann
dann eine Auswahl eines Koordinationsvefahrens für die gegebene Problemstel-
lung erfolgen.

Neben der reinen Definition eines Prozesses ist es weiterhin notwendig die An-
wendbarkeit des Prozesses zu belegen. Des Weiteren ist es für eine Verwendung
eines derartigen Prozesses im industriellen Kontext notwendig eine empirische
Studie über die Potentiale des Prozesses durchzuführen. Eine derartige soziol-
ogisch fundierte empirische Studie ist nicht im Fokus dieser Arbeit. Um die
Anwendbarkeit und Nutzbarkeit des ECo-CoPS Ansatzes zu zeigen werden in
dieser Arbeit zwei Fallstudien untersucht. Das Ziel dieser Fallstudien ist es die
Möglichkeiten dieses Ansatzes zu demonstrieren und auf Grund der ersten Anwen-
dungen des Prozesses Rückschlüsse auf dessen Stärken und weitere Forschungsfra-
gen zu ziehen. Als Fallstudie dient zum einen die Produktion und Distribution
von Gütern in einem Unternehmen, bestehend aus drei Planungssystemen zum
Scheduling, Packen und für die Tourenplanung. Das zweite Fallbeispiel stellt
einen vereinfachten Ausschnitt aus der operativen Koordination einer Supply
Chain dar, indem die Schedulingssysteme zweier Unternehmen koordiniert wer-
den müssen. In beiden Fallstudien hat sich der ECo-CoPS Ansatz als sehr hilf-
reich erwiesen ein strukturiertes, ingenieursmäßiges Vorgehen bei der Identifika-
tion/Implementierung eines Koordinationsverfahrens für autonome Planungssys-
teme zu ermöglichen.

Im Anschluss an die beiden Fallstudien wird eine kritische Würdigung des
ECo-CoPS Ansatzes auf Basis der in den Fallstudien gesammelten Erfahrungen

xii Zusammenfassung

durchgeführt. Hieran schließt sich eine Zusammenfassung der gesamten Arbeit
und ein Ausblick auf sich aus dieser Arbeit ergebenden weiteren Forschungsfra-
gen.

Contents

Acknowledgement iii

Zusammenfassung vii

List of Figures xv

List of Tables xvii

Nomenclature xix

1. Introduction 1

1.1. Motivation and goal of this study 1
1.2. Motivating example: Container terminal management 3
1.3. Context, scope, and findings of this study 7
1.4. Organization of this study . 10

2. Foundations and principles 13

2.1. The case studies . 13
2.1.1. Production scheduling and distribution of goods 13
2.1.2. Supply chain management 15

2.2. Planning, Scheduling and Optimization 18
2.2.1. Planning, scheduling and optimization: definitions and models 18
2.2.2. Examples for other planning problems 24
2.2.3. Dynamic environments . 26
2.2.4. Dependencies among planning problems 34

2.3. Distributed Artificial Intelligence 38
2.3.1. Agents: From reflex to intelligent agents 38
2.3.2. Agent Architecture . 43
2.3.3. Internal state representation 47
2.3.4. Multiagent system: foundation for emergence 49

3. State of the art 55

3.1. Coordination . 55
3.1.1. Coordination concepts in business administration 57

xiii

xiv Contents

3.1.2. Coordination in DAI . 66
3.1.3. Coordination concepts in game theory 87

3.2. Agent-oriented Software Engineering 99
3.2.1. Surveying agent-oriented software engineering 100
3.2.2. Reuse of existing methodology in AOSE 106

3.3. Identification of research gap and goals of this thesis 110

4. The ECo-CoPs approach 113

4.1. Characteristics of coordination problems and techniques 115
4.2. The ECo Process . 121

4.2.1. Modeling the scenario . 124
4.2.2. Coordination requirements 127
4.2.3. Selection of appropriate coordination mechanisms 130
4.2.4. Implementation of coordination mechanisms 132
4.2.5. Evaluation of coordination mechanisms 134

4.3. CoPS process and framework . 138
4.3.1. Concept of the coordination process in the CoPS approach 139
4.3.2. CoPS process . 140
4.3.3. CoPS framework . 155

5. Engineering coordination: The SPT case study 165

5.1. The SPT case study . 165
5.2. Modeling the scenario . 166
5.3. Coordination requirements . 179
5.4. Selection of appropriate coordination mechanisms 182
5.5. Implementation of coordination mechanisms 187
5.6. Evaluation of coordination mechanisms 189
5.7. Criticisms of the ECo-CoPS approach 199

6. Engineering Coordination: The SCM case study 201

6.1. The SCM case study . 201
6.2. Modeling the scenario . 202
6.3. Coordination requirements . 216
6.4. Selection of appropriate coordination mechanisms 230
6.5. Implementation of coordination mechanisms 240
6.6. Evaluation of coordination mechanisms 249
6.7. Criticism of the ECo-CoPS approach 259

7. Conclusion and Perspectives 261

Bibliography 269

Contents xv

Curriculum Vitae 301

A. Representation of conversation protocols 303

A.1. Textual Representation of the iterative contract net protocol . . . 303
A.2. Graphical Representation of the iterative contract net 303
A.3. Representation of the generated automata 306

B. Evaluation Coordination: The SPT case study 307

B.1. Task specification . 307
B.2. Overview of symbols and formulae for the SPT case study 310
B.3. Data exchange format for the SPT case study 312
B.4. Empirical Evaluation . 315

C. Evaluation Coordination: The SCM case study 317

C.1. Overview of symbols and formule for the SCM case study 317

D. Implementation and evaluation data 321

D.1. Implementation . 321
D.2. Evaluation . 321

xvi Contents

List of Figures

1.1. Decision fields in the container terminal 4
1.2. Dependencies of the decision fields in the container terminal 5
1.3. Linear planning sequence of the CTMP 5
1.4. Planning process of the CTMP . 6
1.5. Network layout draft . 8

2.1. Shop layout . 14
2.2. Workflow of a the production and distribution example 15
2.3. Ideal of an integrated supply chain 16
2.4. Planning in supply chains . 16
2.5. Tours of a MDVRPTW planning instance 26
2.6. Exemplary conditional plan . 29
2.7. A taxonomy for online planning . 31
2.8. Characteristic plan’s quality trend over time 33
2.9. Dependency graph of the SPT scenario 34
2.10. Extended dependency graph of the SPT scenario 35
2.11. Dependency graph of the container terminal management problem 35
2.12. Coordination complexity in a static environment 37
2.13. Coordination complexity in a dynamic environment 37
2.14. Agents interaction with its environment 39
2.15. Schematic diagram of a simple reflex agent 40
2.16. Schematic diagram of a model-based reflex agent 40
2.17. Schematic diagram of a goal-based agent 41
2.18. Schematic diagram of a utility-based agent 42
2.19. BDI architecture . 45
2.20. Information and control flow of a horizontal layered architecture . 46
2.21. Information and control flow of a vertical one pass layered architecture 47
2.22. Information and control flow of a vertical two pass layered architecture 47

3.1. Timeline of coordination activities 56
3.2. Taxonomy of interdependencies . 59
3.3. Types of coordination . 60
3.4. Taxonomy of plan relations . 68

xvii

xviii List of Figures

3.5. Objective task structure in TÆMS 71
3.6. Graphical representation of a trade-off relationship 74
3.7. Classic seller strategies . 97
3.8. AUML diagram of the contract net protocol 102
3.9. Components of a simulation tool for validating MAS 105

4.1. ECo process model . 124
4.2. Example of an unfair comparison 137
4.3. Example of an fair comparison . 138
4.4. Process of setting up a network, according to the CoPS process . . 140
4.5. Overview of the CoPS process . 141
4.6. Generated sequence diagram of the contract net protocol 145
4.7. Behavior automaton for the initiator role 146
4.8. Behavior automaton for the participant role 146
4.9. Directed forest representation of a trade-off strategy 149
4.10. Graphical of trade-off strategy . 149
4.11. Example of a decision tree, representing a conversation behavior. . 151
4.12. General agent software integration scenario 153
4.13. Package diagram of the CoPS framework 156
4.14. Class diagram of the framework.CA package 157
4.15. FIPA Subscribe Interaction Protocol 158
4.16. Design of the PAA . 159
4.17. Class diagram of the framework.PAA package 161

5.1. Workflow of a the production and distribution example 165
5.2. Context of the modeling step in the ECo process 166
5.3. Dependency graph for the SPT case study 169
5.4. Context of the requirement definition step in the ECo process . . . 180
5.5. Context of the selection step in the ECo process 182
5.6. Context of the implementation step in the ECo process 187
5.7. FIPA Request interaction protocol 188
5.8. Context of the evaluation step in the ECo process 189
5.9. Performance comparison, part 1 . 191
5.10. Performance comparison, part 2 . 192
5.11. Performance comparison, part 3 . 193
5.12. Histogram for the sequential and improved approach for instance 9 194
5.13. Histogram for the sequential and improved approach for instance 17 195
5.14. Histogram for the sequential and improved approach for instance 24 195
5.15. Box plots for instance 2 and 5 comparing sequential and improved

coordination approach . 196

List of Figures xix

5.16. Box plots for instance 13 and 18 comparing sequential and improved
coordination approach . 197

5.17. Box plots for instance 23 and 25 comparing sequential and improved
coordination approach . 198

5.18. Box plots for instance 21 and 30 comparing sequential and improved
coordination approach . 199

6.1. Context of the modeling step in the ECo process 202
6.2. AND/OR tree representing the planning problem 203
6.3. Context of the requirement definition step in the ECo process . . . 216
6.4. Context of the selection step in the ECo process 230
6.5. Example of a bid structure with 7 time slots and 3 resource 232
6.6. Context of the implementation step in the ECo process 241
6.7. ABACO representation of a production network 242
6.8. Architecture of a ABACO PAA agent 242
6.9. Conversation protocol of an improvement discussion 244
6.10. Context of the evaluation step in the ECo process 249
6.11. Comparison of ABACO, due-date heuristic, and optimal solution . 253
6.12. Comparison of ABACO, due-date heuristic for 1–15 orders 255
6.13. Comparison of ABACO, due-date heuristic for 15–30 orders 256
6.14. Box plots for instances with 5, 10, and 14 orders 258

7.1. The ECo process . 263

A.1. Generated sequence diagram of the iterated contract net 305
A.2. Conversation automata for the iterated contract net, initiator role 306
A.3. Conversation automata for the iterated contract net, participant role306

xx List of Figures

List of Tables

2.1. Processing plan for different jobs 14
2.2. Product descriptions of the production network 17
2.3. Capabilities of production network members 17
2.4. Examples of characteristics of scheduling problems 21
2.5. FIPA ACL Message Parameters . 52
2.6. FIPA interaction protocols and their cardinality 52

3.1. Dependency classification . 69
3.2. Payoff matrix of the prisoner’s dilemma 88
3.3. Payoff matrix of the penny matching game 90
3.4. Payoff matrix of the road side choosing game 90
3.5. Payoff matrix of the battle of sexes 90
3.6. Payoff matrix of the video technology decision 91
3.7. Payoff matrix of an anti-coordination game 91
3.8. Bid matrix for a combinatorial auction 93

4.1. Characteristics of the SPT, SCM and CTM problem 116
4.2. Suitability of mechanisms according to characteristics 118

5.1. Dimensions and weight for products 189

6.1. Product descriptions of the production network 201
6.2. Capabilities of production network members 201
6.3. Summarizing the event decommitment of the commitment m . . . 219
6.4. Summarizing the event change request of the commitment m . . . 220
6.5. Summarizing the event tender of instantiated job ji 221
6.6. Summarizing the event new order o 221
6.7. Summarizing the event withdraw of an order o 222
6.8. Summarizing the event change of an order o 222
6.9. Summarizing the event an agent a enters the network ν 223
6.10. Summarizing the event an agent a leaves the network ν 224
6.11. Details of local production details for SC operations 237
6.12. Growth of complexity for computing bids for a CA 238
6.13. Scalability for optimal solutions . 251

xxi

xxii Nomenclature

6.14. Comparison heuristics and optimal solution 252
6.15. Updated details of local production details for SC operations . . . 254
6.16. Comparison between heuristics . 257

B.1. Listing of labels . 310
B.3. Listing of functions of labels . 310
B.2. Listing of used sets . 312

C.1. Listing of labels . 317
C.2. Listing of used sets . 317
C.3. Listing of functions . 318
C.4. Listing of events . 320

Nomenclature

ABACO agent-based coordination

ACL agent communication languages

ADL Action Description Language

AI Artificial Intelligence

AOSE agent-oriented software engineering

APS advanced planning systems

ARB agent resource broker

AUML Agent UML

BAP berth allocation problem

CA coordination agent

COP constraint optimization problem

CoPS Coordination of Planning Systems

COTS commercial off-the-shelf

CSP cranes scheduling problem

CTM container terminal management

DAI Distributed Artificial Intelligence

DCOP distributed constraint optimization

DCSP distributed constraint satisfaction problem

ECo Engineering Coordination

edd earliest due date first

EMF Eclipse Modeling Framework

xxiii

xxiv Nomenclature

FIPA Foundation of Intelligent Physical Agents

GPGP Generalized Partial Global Planning

KIF knowledge interchange format

KQML knowledge query and manipulation language

MAS Multiagent System

MDD model-driven development

MPL Mathematical Programming Language

NFA non-finite automata

OCL object constraint language

OWL web ontology language

PAA planning authority agent

PDA production data acquisition

PDDL planning domain definition language

PGP Partial Global Planning

PIM platform independent model

pit point in time

SCM Supply Chain Management

SLP storage location problem

SPT scheduling, packing, and transportation

STRIPS Stanford Research Institute Problem Solver

TPP transportation planning problem

TÆMS Task Analysis, Environment Modeling, and Simulation

VDP vehicle dispatching problem

VRP vehicle routing problem

1. Introduction

1.1. Motivation and goal of this study

Real scheduling problems, like production scheduling are very complex. A com-
mon strategy to handle such complex problems is the ’divide and conquer’ strategy.
Thus, the overall problem is divided into simpler sub-problems and these are solved
in most cases sequentially. This approach enables the generation of (sub-optimal)
plans for a number of real-world-applications and has been implemented in orga-
nization structures of companies. Consequently, these partial solutions have to
be coordinated. In the research of Distributed Artificial Intelligence (DAI), busi-
ness administration, and game theory, various coordination mechanisms have been
presented. But there is no commonly applicable coordination mechanism [Dec95,
p. 2]. Thus, the designer of a system has to choose a coordination mechanism
well suited for the situation at hand. Unfortunately, there exists no appropriate
and general methodology to select or design a coordination mechanism for a given
situation. As the ability to coordinate its activities “with others constitutes a cen-
trepiece of agenthood” [Oss08, p. 2] a huge number of coordination approaches
have been presented in the last decades.

To support this claim with facts we outline here some number of Google Scholar
search results. Google Scholar is a search engine for scholarly literature1.

For the search string “agent coordination” the search without references but
at least a summary returns a result of about 819.000 documents2. As the search
engine is not specific for a given research discipline it may be useful to restrict the
search more towards the field of DAI and multiagent systems, which is primarily
addressed in this study. Therefore, we can narrow down the search by adding
the search term multiagent system. So the search string is “agent coordination

multiagent” the result set has about 26.900 elements3. If we use the search string
“agent coordination multi agent” the result set has a size of about 198.000

1http://scholar.google.com/intl/en/scholar/about.html, Accessed: 04/25/2010
2http://scholar.google.com/scholar?hl=de&q=agent+coordination&lr=&as_ylo=&as_vis=

1, Accessed: 04/24/2010
3http://scholar.google.com/scholar?hl=de&q=agent+coordination+multiagent&btnG=

Suche&lr=&as_ylo=&as_vis=1, Accessed: 04/25/2010

1

http://scholar.google.com/intl/en/scholar/about.html
http://scholar.google.com/scholar?hl=de&q=agent+coordination&lr=&as_ylo=&as_vis=1
http://scholar.google.com/scholar?hl=de&q=agent+coordination&lr=&as_ylo=&as_vis=1
http://scholar.google.com/scholar?hl=de&q=agent+coordination+multiagent&btnG=Suche&lr=&as_ylo=&as_vis=1
http://scholar.google.com/scholar?hl=de&q=agent+coordination+multiagent&btnG=Suche&lr=&as_ylo=&as_vis=1

2 1. Introduction

documents4.
So even if we can reduce the result set by adding more specific terms that may

characterize the situation at hand more precisely one has to state that the body of
existing research, and therefore the body of proposed coordination techniques as
well, is quite large. Moreover, as we point out in this thesis, there exists currently
no methodology for selecting appropriate coordination mechanisms. Thus, the
identification of appropriate coordination mechanisms is a complex task, for that
no structure has been proposed, up to now.

A coordination mechanism “determines its [the agents] internal dynamics, i.e.,
the interactions between agents, as well as the external properties of the society”
[Oss98, p. 48]. It is possible within a coordination mechanism to destinction
between cases, and apply different coordination techniques for different cases. Ex-
amples for such case-by-case analysis are the destinctions between predicitive and
reactive planning steps, which can be found, for instance, in the ABACO coordi-
nation approach [SS05]. Coordination techniques are means for coordination that
define interaction protocols or more abstract agents interactions, like auctions,
for instance. Coordination techniques do not require any destinction of cases as
they focus on the pure coordination and not the context of is applicatibility. The
destinction between the terms mechanism and techniques is not common sense in
the literature, but to enables a clear presentation.

Within this thesis a process (the ECo process) is presented that clarifies how co-
ordination mechanisms can be chosen and that can assist if no appropriate coordi-
nation mechanism is available. ECo is the acronym for Engineering Coordination.
The ECo process comprises of the following five steps:

• Modeling the coordination environment

• Formulating the coordination requirements

• Choosing/designing coordination mechanisms

• Implementing the coordination mechanisms

• Evaluating the coordination mechanisms

Within this study these steps are detailed out and applied to the coordination
process that is necessary for the coordination of our planning systems.

The domain is formally modeled, and based upon this model, coordination re-
quirements are specified. The main idea for the selection of coordination mecha-
nisms is that the coordination mechanisms have to regard the current context and

4http://scholar.google.com/scholar?hl=de&as_sdt=2000&as_vis=1&q=agent+

coordination+multi+agent, Accessed: 04/25/2010

http://scholar.google.com/scholar?hl=de&as_sdt=2000&as_vis=1&q=agent+coordination+multi+agent
http://scholar.google.com/scholar?hl=de&as_sdt=2000&as_vis=1&q=agent+coordination+multi+agent

1.2. Motivating example: Container terminal management 3

domain they should be used in to be applicable. This can be specified by require-
ments towards the coordination mechanisms. The requirement driven selection
of coordination mechanisms represents an effective way for mechanism selection
and is a key issue introduced in this thesis. It enables making the motivation for
design decisions of the design and implementation of a coordination mechanism
explicit.

To support the implementation of coordination mechanisms a framework (the
CoPS framework) has been developed and is presented in this thesis as well. CoPS
is the acronym for Coordination of Planning Systems. This framework supports
the implementation of coordination mechanisms based on direct communication
between the entities. To apply the framework to a given scenario the framework
has to be localized on two layers. On the first layer of the network activities have to
be coordinated. This comprises the specification of the coordination mechanisms,
here encoded in form of communication protocols. If an entity wants to join
a network, it is a priori informed about the protocols used for coordination by
the network members. Based on this information it can specify its negotiation
strategy. In this strategy the planning entity defines which information about its
abilities it is willing to publish and which concessions it is willing to make and to
whom in the network. The second layer is the localization level. The network wide
communication protocol have to be adapted to implement the local negotiation
strategy. By these two extension points the coordination framework can be used
for various coordination protocols. The necessary aspects of the implementation
are structured in the CoPS process which is presented in this thesis, too. Based
on the evalution of the applicable, implemented coordination mechanisms a final
decision for one particular coordination mechanism can be made on a quantitative
base.

1.2. Motivating example: Container terminal management

In this introduction we want to give an example for a complex coordination prob-
lem of interdependent planning systems. The problem presented here is the con-
tainer terminal management (CTM). The task of the CTM is to plan required
operations that have to be performed to serve container ships within a port. Con-
tainers have to be unloaded, stored and other stored containers have to be loaded
on the ship. In the literature, e.g., Zhang et al. [ZLW+03] the problem is divided
into the sub-fields shown in Figure 1.1. For the management of the container
terminal itself, the field of stowage planning of vessels is not part of the problem
scope. This information is typically assumed to be given. This is reasonable as the
stowage planning is within the responsibility of the shipping company and not the
company running the container terminal. The implementation of the generated

4 1. Introduction

Figure 1.1.: Decision fields in the container terminal; [ZLW+03, p. 886]

plans are not regarded as fields of the container terminal management problem
[Mei08, p. 80]. Which results in the fact that no reactive planning capabilities are
integrated. The container terminal operations are often divided into the following
four sub-processes:

1. Ship arrival: When a ship arrives the CTM has to locate a berth position.
The berth allocation problem (BAP) has to answer the questions when and
where the arriving ship should be placed at the berth.

2. Loading and Unloading: Quay cranes and transport equipment have to be
allocated to ships for loading and unloading of containers. This allocation
problem is also called quay cranes scheduling problem (CSP).

3. Storage location problem (SLP): Containers are stored on the yard. They
stay at the yard until they leave the terminal (by ship or truck). So for all
unloaded containers storage space has to be allocated at the yard. The stor-
age space allocation comprises decisions concerning stacking density, yard
stack configuration, and container allocation.

4. Transportation planning problem (TPP): An effective transport of contain-
ers from and to the cranes is an important aspect as the cranes are often
bottleneck resources. This transportation planning comprises planning the
trucks transporting the containers, thus routing and truck assignment to
cranes are exemplified problems that have to be solved. This problem is also
referred to as vehicle dispatching problem (VDP).

1.2. Motivating example: Container terminal management 5

BAP

TPPSLP

CSP

Figure 1.2.: Dependencies of the decision fields in the container terminal, [MS07]

Figure 1.3.: Linear planning sequence of the CTMP

More detailed descriptions of the CTMP can be found, for example in Henesey et
al. [HDP06] or Meier [Mei08].

Obviously, the planning tasks of the different sub-processes are interdependent.
Their interdependencies have been described in Meier and Schumann [MS07] and
are shown in Figure 1.2.

As pointed out by Meier [Mei08, p. 80, p. 220] and in accordance to the model
presented by Zhang et al. [ZLW+03] (see Figure 1.1) the planning process is
typically performed in a linear manner. Therefore, required inputs that are not
given by previous planning steps are estimated, like the service time of the ships
for the berth allocation planning. The sequence in which the planning steps are
performed is shown in Figure 1.3.

The estimated vales, e.g., for service times of the ships do not have to be correct,
as the result of later planning steps may allow to state these values more precisely.
For instance, the service time of a vessel depends heavily on the crane scheduling,
which is done after the berth allocation. Consequently, inefficient or infeasible
plans are the result of this simplified sequential planning process, omitting existing
dependencies.

To generate a feasible schedule, the different planning steps have to be per-
formed more coordinated. This is a particular hard task, as it is not possible
simply to allow feedback information. For instance, after the crane scheduling

6 1. Introduction

Figure 1.4.: Planning process of the CTMP; [Mei08, p. 222]

the service times are known for each vessel, an information required in a previ-
ous planning step. So it is not reasonable to simply restart the berth allocation
planning system with these computed service times as inputs. The resulting berth
allocation plan would result in a completely different crane schedule and thus dif-
ferent service times. Results from Meier and Schumann [MS07] supports this. In
our experiments we performed iteratively the planning steps for BAP and CSP,
and found no indications for convergence concerning any of our metrics.

To allow for a more consistent planning, Meier has proposed a different plan-
ning process in his dissertation [Mei08]. He defines a planning process in a way
that some planning steps are done more often. Moreover, the BAP planner can
offer a set of solutions to the subsequent planning steps. He follows the approach
suggested in [MS07] to represent each planning system by an agent, which then co-
ordinates their local plan. The process defined by Meier [Mei08, p. 222] is shown
in Figure 1.4. After an initial run of the BAP and SLP planning, determining
an initial berth allocation and an initial allocation of containers on the yard are
computed. Based on the computed storage allocation the berth allocation is ad-
justed and a number of BAP solutions are generated that are all acceptable to the
BAP planner. In the following crane scheduling step one of these berth allocation
plans is selected and an appropriate crane schedule is computed. Subsequently, it
is checked if the resulting changes of the storage allocation plan are acceptable. If
so, the transportation planning problem is solved in the final planning step. Oth-
erwise the planning process is restarted. For more details of this planning process
see Meier [Mei08, Chap. 6.1].

The coordination problem within the CTMP is a particular difficult one, in fact
its computational hard. That is and will remain an open research issue in the near
future. Its complexity comes from two aspects: first, the sub-problems are highly
interdependent, and second, each sub-problem is a complex optimization problem
in itself. We use this example in this study, as it allows us to illustrate aspects of
the coordination of interdependent planning entities.

1.3. Context, scope, and findings of this study 7

1.3. Context, scope, and findings of this study

This study is focussed on the coordination of existing planning systems. Therefore,
we take a research perspective primarily from the fields of Artificial Intelligence
(AI) and software engineering. Findings of other research areas are mentioned as
well, but are not primarily focussed here.

Commonly, the terms planning and scheduling are used in a distinct way in AI.
Often planning is associated with problems like choosing and sequencing actions,
like STRIPS planning (see Section 2.2.1). Scheduling is seen as planning with
time. Actions have a duration and typically requires resources either consumable
or non-consumable. A well-known instance is the job shop scheduling problem. As
we deal here with different planning and scheduling problems the term planning
is used as a more generic term within this thesis.

The global and local planning problems discussed here can be formulated as
optimization problems, too. The terms planning and optimization often are used
interchangeable. In the terminology of this study the term optimization is not
used because it is often used in the mathematical meaning of optimization, which
does not apply here exactly. We do so because the optimality of a solutions is not
emphasized as the only criteria. Moreover, the solution quality is an important
aspect among others, like computation time or computational resources, for in-
stance. We assume that local planning systems are capable of finding good, even
though not optimal solutions, which is true for heuristics which are mostly applied
in real world planning systems.

It is assumed in this thesis that a global planning problem exists that is in-
herently distributed. The distribution among planning entities is assumed to be
pre-existing and not in the focus of this study.

It is not intended here to follow an approach that integrates the sub-problems
in favor of an integrated solution method. In the focus of our research is the
coordination of planning systems that are responsible for the operative planning
of activities within organizational entities. We do not explicitly address planning
systems for tactical or strategic decision support. Even though the ECo-CoPS ap-
proach can be used for the selection of coordination mechanisms for these problems
as well, we do not address them here specifically. Planning systems are embed-
ded in an organizational entity that is responsible for the planning task and the
resulting plan, and uses the planning system to generate the plan. These entities
are referred to as planning entities or planning authorities within this study. In
fact, if we are going to address the coordination of plans we have to coordinate the
activities of the planning entities. Thus, these planning entities are first class en-
tities in our system model and are represented by agents. We do not argue here in
favor of a complete agentification of all concepts but only for the first class entities

8 1. Introduction

Figure 1.5.: Network layout draft

in our model. If a number of planning entities have to coordinate their activities,
i.e., their plans, then they form a network. Typically, such a network has been
established beforehand on management level. We advocate that for each network
a coordination agent can offer centralized infrastructure services like registration
and bookkeeping. This avoids a number of broadcasts that would be necessary
otherwise. If this coordination agent is a trusted third party the confidentiality
level within the network can be improved, too. Moreover, we assume that agents
can communicate via direct message passing. The overall layout of a network as
pointed out here is shown in Figure 1.5.

The agents form an additional layer in the software system that offers additional
services. They enable the multiagent system to coordinate the local plans gener-
ated by the local planning systems. Thereby, we strive towards the generation of
plans that are feasible for a joint execution. Aspects like the quality of a plan or
the joint plan are not effected, as there is no guarantee that a certain overall or
local quality can be achieved.

After we have outlined the context we discuss the major findings of this study.
We have investigated existing work done so far concerning the reuse within the
field of agent-oriented software engineering and mechanism selection in software
engineering. As a result of our survey we have to state the reuse of existing mech-
anisms in agent-oriented software engineering has not been addressed intensively
so far. For instance, no process exist for the selection of coordination mechanisms

1.3. Context, scope, and findings of this study 9

for a given problem, also, other reuse aspects have not been addressed, either.
Within this thesis we give a wide overview of existing coordination techniques

that have been proposed in DAI and also related fields of research like game
theory, economics, and management. Furthermore, existing classification schemes
for coordination mechanisms have been surveyed. Classification is either done by
methodological [SSWG02], perspective [Sch01], or on the basis of general models
criteria [BCGZ01].

The ECo process, presented in this thesis, provides a systematic approach for
the selection of an existing coordination mechanism for a given context. Thereby,
we identify the specification of coordination requirements as a key concept. If
coordination mechanisms can be classified according to requirements they either
fulfill or fail, the selection process can be facilitated. The ECo process structures
the process of the selection of a coordination mechanism, which is currently not
supported sufficiently by engineering methodologies for distributed systems, in
particular agent-oriented software engineering.

Results of a generalized survey concerning coordination techniques and, typi-
cally, characteristics of coordination problems are pointed out. They can be used
for the identification of suitable coordination mechanisms and, therefore, can guide
the concrete selection of a mechanism. These results have been used in the case
studies presented in this study and allow us to reduce the set of possible candidate
mechanisms considerably fast.

For the implementation of coordination approaches the CoPS process is sug-
gested here. It addresses the implementation of coordination mechanisms from an
engineering perspective. The CoPS process enables an integrated systematical ap-
proach that guides the implementation of the selected coordination mechanisms.
Additionally, the CoPS process is supported by the CoPS framework which can
be used to ease the implementation process, as it offers a platform for the imple-
mentation of agents that can coordinate their local plans.

Within the CoPS process, techniques for the design and engineering of conver-
sations in the context of agent-oriented software engineering, are discussed com-
prehensively. The design of conversations is an issue that has a much more general
scope than the specification of message encodings as discussed by the FIPA5. The
design and implementation of conversations between agents that is discussed in
the CoPS process is not limited to the coordination of planning systems. It is
suitable for the design and implementation for all agent-based systems in general.

The ECo-CoPS approach that is suggested in this study is applied exemplary
using two case studies from the management/logistic domain. In the first case

5FIPA is the acronym for the IEEE standard organization for the “Foundation of Intelligent

Physical Agents” http://www.fipa.org, Accessed: 05/17/2010.

http://www.fipa.org

10 1. Introduction

study the planning systems for production, packaging and transportation of goods
have to be coordinated. In the second case study the coordination of planning
systems of entities forming a production network is addressed.

1.4. Organization of this study

This thesis is structured as follows. In the next chapter (Chapter 2) the fun-
damentals of this study are introduced. This comprises the introduction of the
case studies (Section 2.1) that are used within this study, exemplifying certain
aspects of the coordination problem, but also are used for the validation of the
ECo-CoPS approach. The fundamentals of planning problems are introduced in
Section 2.2. In particular, we are addressing the modeling of planning problems
(Section 2.2.1), examples of different planning problems that could be effected by
coordination efforts (Section 2.2.2), the modeling of dynamics and its effects to
the problem solving procedure (Section 2.2.3) and finally we discuss dependencies
between planning systems. Note that techniques for solving planning and opti-
mization problems are not discussed in this thesis. This study does not contribute
to the solution of planning problems, at all.

A second foundation of this study is the field of DAI although termed multia-
gent system (MAS). Basis concepts are introduced in Section 2.3. The aspects of
communication and interactions between agents is presented in Section 2.3.4.

After the foundation of this study has been laid out the state of the art is
discussed (Chapter 3). The state of the art presented in this study covers the field
of coordination (Section 3.1), and the field of agent-oriented software engineering
(Section 3.2).

The research concerning coordination is a multidisciplinary one. Coordination
is addressed in different fields of research, including computer science and orga-
nizational science, for instance. We review the state of the art in the field of
DAI (Section 3.1.2) but also address the research concerning coordination in the
related research fields of business administration (Section 3.1.1) and game theory
including mechanism design (Section 3.1.3).

The last part of the state of the art addresses the field of agent-oriented software
engineering (AOSE). We survey the field of agent-oriented software engineering
in Section 3.2.1. Then particular aspect of reuse strategies within the field are
discussed (Section 3.2.2). A result of our survey is, that the reuse within the field
of AOSE is primarily limited to the usage of platforms for agent development.
Almost no concepts and methods for the reuse of mechanisms exist that can be
incorporated into agents. Consequently, neither no approaches exist for the effi-
cient identification and selection of coordination mechanisms for planning agents

1.4. Organization of this study 11

or agents that represent autonomous planning entities.

As a consequence of our findings surveying existing research, we propose the
ECo-CoPS approach in the following chapter (Chapter 4).

A first step to an efficient identification of coordination mechanism is their clas-
sification. In the first section of the chapter (Section 4.1) we point out six char-
acteristics of coordination scenarios that have great impact on the applicability
of coordination mechanisms. These characteristics depend on the local planning
systems, their dependencies among each other, and on context information, as
well. Based on this characterization, the coordination mechanisms are classified
in accordance to their abilities to be applicable concerning given attributes of the
characterization. This allows a first and fast identification of coordination mech-
anisms candidates for a given situation that can be investigated in more detail.

Then we introduce the ECo process that is presented in detail in Section 4.2.
Each step of the ECo process is detailed and appropriate examples are given. For
the implementation process of the coordination mechanisms, which is a step of
the ECo process, the CoPS process is presented. The goal of the CoPS process
is to guide the implementation decisions that have to be made during the imple-
mentation of the selected coordination mechanisms. To further ease the work of
the developer, the CoPS framework is proposed that allows to ease the implemen-
tation process by providing basic features like easier protocol specification and
runtime adaptation of conversation protocols. The CoPS process and framework
are detailed in Section 4.3.

In the following chapters the ECo-CoPS approach is validated. This is done by
presenting the applicability and feasibility of the ECo-CoPS approach. We apply
the ECo-CoPS appraoch in two case studies presented previously in Section 2.1.
In Chapter 5 the coordination of three different planning systems for scheduling,
packaging, and transportation is demonstrated, while in Chapter 6 the coordina-
tion of different planning entities within a production network is demonstrated.

Finally, in Chapter 7 a conclusion is drawn. The findings and results of this
study are summarized and future research is outlined.

In the appendices additional detailed information concerning the representation
of conversation protocols (Appendix A) and the case studies used in the validation
(appendix B and C) are given.

12 1. Introduction

2. Foundations and principles

In this chapter the foundation used in this study are presented. At first, we intro-
duce the case studies that are used to exemplify different aspects of coordination
between autonomous planning entities. For that reason, we present two case stud-
ies from the logistic domain. Then the two sub-disciplines from the field of AI
that this word is based on are presented. These are planning and scheduling and
DAI.

2.1. The case studies

In this section the case studies used in this study are introduced. They are taken
from the domain of production and logistics, not because the problem of coordinat-
ing autonomous entities is limited to those domains, but it allows us to outline and
demonstrate the problems clearly. The first case study is motivated by a situation
in a mid-sized company, covering production and distribution of goods. The sec-
ond case study reflects the situation in a production network/supply chain where
different companies have to cooperate to achieve a common goal and thereby coor-
dinate their activities to perform them cost-efficient and stay competitive. These
case studies covers different kinds of coordination problems that can exist be-
tween planning systems. These examples differ in their complexity and in types
of dependencies that exist between the planning entities.

2.1.1. Production scheduling and distribution of goods

Suppose a factory that applies a build to order strategy. The production schedule
is generated based on the given set of orders. An order specifies the quantity of
a certain product that has to be delivered to the customer within a given time
frame. If this frame is missed, e.g., by late delivery, a penalty has to be paid per
each time unit the deadline is missed. It is allowed to fulfill the order by partial
deliveries. An order is fulfilled if all ordered products have arrived at the customer
site.

As the resources for the production are expensive they have to be used efficiently
to gain a high utilization of the resources. To achieve this goal a scheduling
system is used that optimizes the utilization of the existing equipment. To detail

13

14 2. Foundations and principles

Figure 2.1.: Shop layout, according to [CBM+99]

the production environment, assume the shop layout shown in Figure 2.1. Each
shop has an input and an output buffer. It offers exactly one operation. For
simplicity reasons transportation within the shop floor is not modeled explicitly.
It is assumed that enough transport capacity is always available and transportation
time is zero.

The job characteristics were taken from Brennan and O [BO00]. In Table 2.1 the
duration and shop sequences are summarized. Five different job types exist, which

Step/job type 1 2 3 4

J1 6/1 8/2 13/3 5/4
J2 4/1 3/2 8/3 3/4
J3 3/4 6/2 15/1 4/3
J4 5/2 6/1 13/3 4/4
J5 5/1 3/2 8/4 4/3

Table 2.1.: Processing plan for different jobs, encoded as time/operation, according

to [BO00]

differ in their processing time for each operation and the sequence of operations
that have to be performed to fulfill a job.

The goods have to be placed on loading devices before they can be shipped to
the customer. The placement of the goods on the loading devices defines a packing
problem. To ensure an efficient usage of these loading devices a specialized software
solution has been implemented to ensure an efficient usage of loading devices. Each
product has a given volume and a loading device has a maximum volume. The
resulting problem is a 3-D bin packing problem, i.e., the number of loading devices
has to be minimized to reduce the costs induced by those devices. To simplify
matters we assume that only one kind of loading device with fixed volume and
costs per device exists.

2.1. The case studies 15

Figure 2.2.: Workflow of a the production and distribution example

After the goods have been packed, they can be shipped to the customers by
trucks. Therefore, a homogeneous fleet of trucks is available. Homogeneous in-
dicates here that all trucks have the same capacity for loading devices, the same
speed, and a fixed cost rate per distance unit. The resulting transportation prob-
lem is to transport the goods within the loaded devices to the corresponding
customers. We assume a linear relation between traveling time and distance, i.e.,
constant speed. The trucks start at the depot in the morning and have to return
to the depot after their tour is finished or their maximum hours of working are
elapsed. The workflow of this scenario is summarized in Figure 2.2.

This is a typical example for a sequence of steps that have to be performed
to serve a customer, which include three different complex planning problems.
Each of these optimization problems: scheduling, bin packing, and transporta-
tion planning is computational hard and has been subject of research itself. As
described, planning systems have been developed and are in place to solve those
problems, but these systems are not aware of the context of their application and
therefore optimize their plans according to a local objective function. This local
optimization will not necessarily lead to a good overall performance.

Similar examples of coordination problems can be found in manufacturing, e.g.,
in the automobile industry with press, paint, and assembly shops which has been
discussed, e.g., by Eppinger et al. [EHNO08]. Each shop has its objective func-
tion while the sequence of cars can only change slightly, which makes it a hard
task to compute a sequence of cars that have to be produced by the overall sys-
tem. Sequences leading to a good solution for one shop might cause a miserable
performance for another shop.

This rather simplified example shows that the coordination of planning systems
can be found in a number of situations and is not limited to multi-national large
companies. But as we show in the next section this problem arises there as well.

2.1.2. Supply chain management

The management of the activities of a supply chain has become an entire branch
of research concerning the issue of supply chain management [SK02]. The ideal
view of a supply chain is depicted in Figure 2.3. There exists one global control

16 2. Foundations and principles

Figure 2.3.: Ideal of an integrated supply chain, on the base of http://be.wi-ol.

de/35677.html, Accessed: 01/06/2010

Figure 2.4.: Planning in supply chains, on the base of http://be.wi-ol.de/35677.

html, Accessed: 01/06/2010

steering all activities within the supply chain. Typically, it is assumed that this
control is done by the focal company, i.e., the company with the market power, like
an OEM. For such companies additional software, the advanced planning systems
(APS), have been introduced [SK02] to support these planning activities.

But this ideal view of a supply chain has not been realized, by any means.
The companies within a supply chain are autonomous entities in the legal and,
sometimes with restriction, economical sense. They can be part of different supply
chains with different roles [CG01]. Thus, each entity in a supply chain has its own
local planning system optimizing the local profit. Therefore, the situation is more
likely to the one shown in Figure 2.4.

Moreover, within a supply chain companies can have overlapping competences

http://be.wi-ol.de/35677.html
http://be.wi-ol.de/35677.html
http://be.wi-ol.de/35677.html
http://be.wi-ol.de/35677.html

2.1. The case studies 17

Product Variant Operations

1 11 111, 112, 113, 114
2 21 211, 212, 213, 214

Table 2.2.: Product descriptions of the production network

company offered operations

A 111, 114, 211, 212, 213, 214
B 112, 113, 211, 212, 213, 214

Table 2.3.: Capabilities of production network members

[CG01]. In consequence, the relation between the companies has elements of
cooperation and competition, as companies have to cooperate to achieve the goals
of the supply chain on the one hand, whereas they have to protect their competence
from their competitor on the other hand.

We restrict this case study to only small instance, because each planning prob-
lem can become quite complex and time consuming and thus evaluation becomes
untractable. In the following, we outline this particular scenario. Our network
comprises only two planning entities, who offer different operations to the net-
work. The network is able to generate two different products. For each product
only one variant to produce them is defined. A variant is a sequence of operations
that can be performed by the supply chain partners. The products offered and
their description how to build them is shown in Table 2.2.

An order for the network specifies a certain quantity of one product that has to
be produced in a given time window. As pointed out before, each company can
offer a different set of operations that are necessary to fulfill incoming orders. In
the following Table 2.3 the capabilities of the companies are summarized.

As it becomes clear from Table 2.3, both companies have overlapping compe-
tences how to perform operations, even though they may be performed in differ-
ent ways, i.e., using different resources and vary in the duration of the operation.
Moreover, for orders of the product 1 both companies have to cooperate, as each
of them cannot perform all necessary operations on their own. Thus, both com-
panies have a relationship with cooperative and competitive elements, as outlined
above.

In a production network as sketched here, each operation can be a complex
task comprising different planning steps like cutting material, manufacture parts,
paint parts, and assemble parts to products. In the perspective of a supply chain,
these necessary steps to perform one operation are not detailed any more, as they

18 2. Foundations and principles

are part of the execution of one operation that is performed by one supply chain
partner. The resulting complexity each supply chain partner has to solve can
become quite high, so that each supply chain partner runs a local planning system
that details the necessary activities to perform an operation and schedule their
execution. Thus, each supply chain partner has a scheduling problem to solve.
These local schedules have to be coordinated to ensure that the overall schedule
is feasible. It has to contain all operations that are required to fulfill all existing
orders in the correct sequence. Moreover, the global plan should try to meet the
time windows of orders, if possible.

2.2. Planning, Scheduling and Optimization

In this section an introduction in AI planning and scheduling is provided. While
planning and scheduling are fields that are within the scope of AI, the term op-
timization is more likely used in operations research. Nevertheless, optimization
is introduced here as well, as some problems and techniques discussed here are
discussed in operations research, too. As we are dealing with the coordination of
planning systems in this thesis, the planning systems themselves are not the focus
of this study. The techniques for solving those problems are not subject of this
study, as well. If appropriate, references will be provided.

2.2.1. Planning, scheduling and optimization: definitions and models

At first, the modeling of planning problems is discussed. Hereby, planning is also
used as the more general term that can be used to subsume scheduling and opti-
mization problems. As already mentioned planning and scheduling have different
notions in AI. While planning tries to determine the sequence of actions that has
to be performed to achieve a certain goal, the task of scheduling is to determine
when and how a set of actions should be performed to achieve a goal efficiently.
Thus, the activities/operations that have to be scheduled are typically known in
advance, but their execution may have to regard resource and time constraints,
which is typically the task of scheduling.

Modeling problems

Here we give a short introduction into the modeling of planning problems. Gen-
eral techniques are presented in contrast to domain specific modeling that maybe
suitable for a certain domain but cannot be used in a broader field of applications.
Examples of more domain specific descriptions are exemplified, e.g., in Section
2.2.2.

2.2. Planning, Scheduling and Optimization 19

Modeling planning problems According to Ghallab et al. [GNT04, p. 19] there
exist three different representations for classical planning problems, which are all
expressively equivalent. These representations are the:

• set-theoretic representation: A state of the world is a set of propositions.
Actions have sets of propositions for their precondition, a set of propositions
that it removes, and a set of propositions that are added to the new world
state.

• classical representation: States and actions are similar defined as in the
set-theoretic representation, but first-order literals and logical connectives
instead of propositions are used. This representation is according to Ghallab
et al. [GNT04, p. 19] most widespread.

• state-variable representation: A state is represented by a tuple of n at-
tributes. {x1, ...xn}. Actions are formulated as partial functions that map
this tuples into some other tuples in the space of the n-tuple space.

In the following, we present the well-known classical representation. The Stanford
Research Institute Problem Solver (STRIPS) language, which was one of the first
wide spread language for representation of planning problems. Note that it become
evident that the expressive power of STRIPS is not sufficient, and therefore other
language like the Action Description Language (ADL) have been developed, which
extend STRIPS. Both languages can be described out of three components: the
states of the environment, the goal(s) that have to be achieved, and the actions
that can be executed. A more detailed description of the STRIPS language and a
comparison between STRIPS and ADL can be found at Russell and Norvig [RN03,
pp. 377–379].

In the STRIPS language states can be represented by logical conditions of the
environment in the form of conjunctions of positive literals. Those literals must be
grounded and no function expressions are allowed. Note that STRIPS rely on the
closed world assumption, i.e., the state of the environment can only be changed
by the execution of an action. The goals can be expressed as a conjunction of
positive literals. Actions are characterized by their name and a list of parameters.
An action has a precondition that must be fulfilled to execute the action. A
precondition is a conjunction of function-free positive literals. The effects of an
action describe how the state of the world is affected by the action. It is described
as a conjunction of function free literals. To improve the readability of the effects
of an action the literals are divided into an add list and a delete list. That is literals
that are added to the world state belong in the add list, while the other are in the
delete list. It is assumed that all literals of a state that are not mentioned in the

20 2. Foundations and principles

effects of an action remain unchanged when the action is executed1.
A language recently developed to describe planning problems is the planning do-

main definition language (PDDL). PDDL was developed for the international plan-
ning competition in 1998 to describe and exchange the planning task [MGH+98].
Therefore, PDDL has been extended and additional expressive power has been
added to describe various planning problems. PDDL is currently available in
version 3.1 [Hel09].

A very detailed and sound survey regarding the modeling of planning problems
is given by Ghallab et al. [GNT04, Chap. 2].

Modeling scheduling problems There exist a number of representations for
scheduling problems. They can be characterized either as based on mathemat-
ical model or based on set-constraint models. Mathematical model origins from
the field of operations research. In contrast set-constraint models have their foun-
dations in AI [Sau02, p. 27].

Nevertheless, both approaches share some communalities in their problem for-
mulation. The communalities are presented here in a way similar to Sauer [Sau93,
pp. 21,22]. The task is commonly to schedule n orders on m machines. To gen-
erate a schedule a set of operations have to be scheduled. An operation can be
described in its simplest form as a tripe (i, j,K), which encodes the operation j

of order i that has to be performed on resource/machine k. Each operations has
a duration d(i, j, k). Between different operations a precedence relation <p can
exist. If (i, j, k) <p (i, j′, k′) holds operation j has to be finished before j′ can be
started.

Typically a number of assumptions are made to reduce the complexity of
scheduling problems. These assumptions are:

• All jobs are known in advance: This assumption can be relaxed for planning
in dynamic environments, which is discussed below (Section 2.2.3).

• Operations cannot be interrupted: This is also referred to as non-preemptive
scheduling. Preemptive scheduling is not in the scope of this study and
therefore not described here.

• Only one resource per operation exist: In the later discussed models these
assumption is relaxed and alternative resources are allowed.

• No alternative precedence relations: There exists only one precedence rela-
tion per order. In the models presented below variants are introduced, that
represent alternative precedence relationships.

1This is the so called STRIPS assumption.

2.2. Planning, Scheduling and Optimization 21

values for α meaning

1 one single machine exists
Pm m parallel identical machines exist
Fm m machines forming a flow shop problem
Om m machines forming an open shop problem
Jm m machines forming a job shop problem

values for β meaning

rj jobs have release dates
prec precedence relations have to be regarded
premp preemptions are allowed
Mj restrictions for machines exist (e.g., set-up times)

values for γ meaning

Lj lateness of jobs
TJ tardiness (i.e., max lateness of a job)

Table 2.4.: Examples of characteristics of scheduling problems

If the precedence relation is equal for all orders the resulting problem is called
a flow shop scheduling problem, as all orders flows in the same sequence through
the shop floor. If no sequence exists the problem is called an open shop scheduling
problem in such a setting. All operations for each order have to be executed, and
it is not allowed to do that in parallel but the sequence of the operations does
not have to be regarded. If different sequences exist for the orders the problem is
called job shop scheduling problem. In such a type of problem each job/order can
have its individual precedence relations for its operations.

Mathematical models The most prominent mathematical classification and de-
scription means for scheduling problems has been presented by Graham et al.
[GLLK79]. A scheduling problem can be described with the triple (α|β|γ). Hereby
α denotes the type of the problem, β indicates the characteristics of the jobs and
γ gives the objective function. Examples of values for values for α, β and γ are
shown in Table 2.4.

To describe a planning problem one element for the α has to be chosen, whereas
a number of elements can be used to describe the β fraction of the description and
exactly one objective function has to be specified in the γ part.

A more detailed overview of possible values can be found in [Sau02, pp. 27,28].
Researchers in operations research aim to solve those kinds problems optimally.

Unfortunately, most of these problems are NP-hard and an optimal solution cannot

22 2. Foundations and principles

be provided even for small problem instances in reasonable time. For instance,
the problems 1|release-dates|max-tardiness, J2||max-tardiness and O3||maxspan
are NP-hard [GNT04, p. 359].

Set-constraints-based modeling The set constraint-based modeling rely on the
specification of characteristics of a planning problem by describing the relevant
entities and their relationships. Different approaches have been proposed that
differ in their granularity and expressive power.

According to Keng et al. [KYR88] and Ghallab et al.[GNT04, pp. 351,352] a
scheduling problem is characterized by

• a set of resources and their future availability,

• a set of action that have to be scheduled and their required resources,

• a set of constraints that have to be regarded, and

• an objective function.

A more extended characterization has been presented by Sauer, e.g., discussed
in [Sau02, Chap. 2.3.2]. Sauer models a planning problem as a 7-tuple:
(R,P,A,HC,SC,Z,E). Thereby, the elements are defined as follows:

• R = {r1, ..., rn} a set of resources. Each resource is at each point in time
available with a given capacity.

• P = {p1, ..., pn} a set of products that can be produced. For each product the
production knowledge is available. Within this knowledge a set of variants
are defined. A variant is defined by a set of operations and a precedence
relation. Operations requires resources and have a duration.

• A = {a1, ..., an} a set of orders. An order specifies a product p ∈ P, the
quantity of the demanded product, an earliest start time and a due date.

• HC = {hc1, ..., hcn} a set of hard constraints. These constraints have to be
guaranteed. Examples of such constraints are, e.g., that only one variant
of a product has to be produced, that the precedence relations have to be
regarded, or that resource capacity restrictions are satisfied.

• SC = {sc1, ..., scn} a set of soft constraints. These constraints should be
regarded. They are used to model economic restrictions. Thus, soft con-
straints should guide the scheduler.

• Z = {z1, ..., zn} a set of objective functions. An objective functions maps a
schedule to a real number.

2.2. Planning, Scheduling and Optimization 23

• E = {e1, ..., en} a set of events. Events change the environment which may
invalidate the current schedule. Events are discussed in more detail below
in Section 2.2.3. Thereby, classes of possible events are defined and not
concrete instances.

Modeling of optimization problems The mathematical modeling of scheduling
problems has been already mentioned and is not discussed here in detail. In the
following a prototype of a linear programming problem formulation is shown.

min/max :c1x1 + c2x2 + ...+ cnxn

subject to

a11x1 + a12x2 + ...+ a1nxn = b1

a21x1 + a22x2 + ...+ a2nxn ≤ b2
. . .

ai1x1 + ai2x2 + ...+ ainxn ≥ bi
x1, x2, ..., xn ≥ 0

If the formulae used in the objective and the subject part have a linear form, the
problem is called a linear programming problem. If all variables < x1, x2, ..., xn >

have an integer domain the problems becomes significantly harder and is called
integer programming problem. If some variables can have real number and other
only can have integer values the resulting problem is called mixed-integer pro-
gramming problem. The advantage to use those modelings is that general pur-
pose solver are available that can find optimal solutions efficiently. On the one
hand it can become a difficult task to formulate a given problem in terms of such
an optimization problem. On the other hand the solving of such a problem can
become a hard task as well. For instance, mixed integer programming is known to
be NP-hard. In such situations if it is either to complex to formulate or solve the
problem in this more classical formulation for mathematical optimization prob-
lems heuristics and in particular metaheuristics are used. Introduction into the
field of metaheuristics are provided, e.g., by Talbi [Tal09]. These metaheuristics
rely on specific models. If such techniques are used the modeling heavenly depend
on the applied solution techniques.

A detailed introduction in optimization modeling and solving techniques is pro-
vided, e.g., by Neumann and Morlock [NM04].

Modeling solutions

In this section the modeling of plans is discussed. In classical AI planning a plan
is defined as a sequence of actions, that if applied to the initial state will produce a

24 2. Foundations and principles

state that will satisfy the conditions specified in the goal description. The notion
of a schedule in scheduling is more complex. For each operation that has to be
performed an allocation tuple has to be provided. An allocation is defined as
(x, i, ki,mnki). Whereby x is the starting time of operation ki of order i on the
resource mnki.

A schedule S is feasible if it satisfies all (hard) constraints. If the used model
of the scheduling problem contains soft constraints and the feasible schedule S
satisfy those constraints, as well, the schedule is consistent . A schedule S is
optimal if no other schedule exists with a higher/lower objective value according
to the objective function f . So if the goal is to minimize the objective function
formally S is optimal iff

∀S′ ∈ ℘(S) : f(S) ≤ f(S′).

2.2.2. Examples for other planning problems

After classical AI planning and scheduling have been presented here, a selection
of other planning problems is presented here, as they are used in the subsequent
chapters. In particular these are packing and transportation planning.

Cutting and packing problems

Cutting and packing problems constitute two well-known problems, namely the
bin packing problem and the knapsack planning problem.

A bin packing problem can be described as the task to place a fixed number of
small items into the minimal number of boxes. All items have to be placed. In
contrast to the knapsack problem were a finite number of boxes are available and
the provided space should be utilized most effectively by trying to maximize the
number of small items that can be placed into the boxes.

Dyckhoff [Dyc90] advocates the use of typical characteristics to identify similar
groups of cutting and packing problems. These characteristics are:

1. dimensionality (1, 2, 3, n)

2. kind of assignment (B, V)

• (B) all objects and a selection of items

• (V) a selection of objects and all items

3. assortment of large objects (O, I, D)

• (O) one object

• (I) identical figures

2.2. Planning, Scheduling and Optimization 25

• (D) different figured

4. assortment of small items (F, M, R, C)

• (F) few items (of different figures)

• (M) many items of many different figures

• (R) many items of relatively few different figures

• (C) congruent figures

Detailed discussions about this notation are provided by Dyckhoff [Dyc90] and
Wäscher et al. [WHS07]. A problem description of a cutting or packing problem
is a 4-tuple, describing the problem in respect to the mentioned characteristics.

Packing and cutting packing are manifold and have various different application
fields. For instance, the packaging planning of potted plants, as a special form of
a 3-D bin packing. This project has been described in Schumann et al. [SPS10].

Transportation planning

The field of transportation planning is currently mainly focused on the field of
operations research, even though it is also well studied in computer science. In
the field of transportation planning different standardized benchmark problems
exist that can be extended for different applications and research issues. Here
three base classes and one extension is presented.

The probably most well-known problem class is the traveling salesman problem.
The problem can be described as the task to visit n cities. The distances between
all cities are known. The task is to find a trip starting from city vi, comprises all
other cities exactly one time, ending the trip in city vi, and thereby minimizing the
traveled distance. A detailed discussion can be found, for instance, in Neumann
and Morlock [NM04, Chap. 3.5].

The vehicle routing problem (VRP) is an extension of the traveling salesman
problem. Starting from a depot a number of customers i ∈ N = {1, ...n} have to
be served with di units of a unified good. The task is to minimize the total costs
of delivery. Delivery is done by a number of trucks each starting in the depot
and must return to the depot, as well. Typically, it is assumed that all trucks
are homogenous concerning their capacity and speed. The distances between all
customers and the depot are given. A more detailed description is provided, e.g.,
by Geiger and Wenger [GW07] and Neumann and Morlock [NM04, pp. 468–473].
Geiger and Wenger pointed out clearly that the VRP can be decomposed into a
clustering problem, assigning the customers to the trucks, and a routing problem,
computing the tours for the trucks.

26 2. Foundations and principles

The pick-up and delivery problem relaxes the assumption that all goods are
available at the depot. Instead a number of transportation request have to be
fulfilled. Each transportation request specifies a single origin and a single des-
tination. All vehicles start and end their tours at a central depot. A broader
discussion of the pickup and delivery problem and related problems is presented,
e.g., by Savelsbergh and Sol [SS95].

A specialization of the VRP is the MDVRPTW, that is the multi depot vehicle
routing problems with time windows. As indicated by the name there exist not
only one but many depots that could serve customers. And each customer has a
time window assigned. In this time window the customer has to be served. If hard
time windows are assumed a delivery is only possible within the time windows. If
soft time windows are assumed a delivery not in the time window will result in a
penalty. An example of a solution for a MDVRPTW is shown in Figure 2.5. This
figure shows a solution of the problem instance pr20 by Cordeau et al. [CLM04]
computed by a solution developed by Timmermann and Schumann [TS08].

Figure 2.5.: Tours of a MDVRPTW planning instance

2.2.3. Dynamic environments

The environment for planning, scheduling and coordination should allow dynam-
ics. This is a pre-requisite to transfer results into practical applications. In this
section the characteristics and consequences of dynamics in planning and schedul-
ing are discussed.

2.2. Planning, Scheduling and Optimization 27

Characterizing dynamics in planning

In nearly all models for reactive planning dynamics is modeled by events that
change the environment, and may invalidate the current plan2. Those events are
often abstractions from data collected in reality. Note that not all events that are
observed in reality have to lead to an infeasible plan at all. For example, a resource
breakdown of an unscheduled resource does not disturb the plan, but, of course,
these events have to be monitored, as it cannot take for granted that this resource
is never used3. Events can influence the current plan in a positive or negative way.
An example of a negative effect on an existing plan is the arrival of a new order.
Typically, it is encoded as a hard constraint that all existing orders have to be
integrated into the plan. Thus, this event obviously influence negatively the plan,
as it becomes invalid. An example of an event that can have positive effects on a
plan is the cancelation of an existing order. Different strategies exist how to react
on this type of event:

• Ignore the event completely and do not change the plan, at all. Of course
there are unnecessary actions within the plan, but commonly the plan will
not be decreased4.

• Delete the assignments planned to fulfill the withdrawn order. Thereby, one
cannot decrease the plan. It can eventually improve, if the fulfillment of this
order have negative effects on the plan, i.e., the fulfillment of this order was
delayed.

• Delete the assignments planned to fulfill the withdrawn order. Then evaluate
if other assignments in the existing plan can be changed to improve the plan’s
quality, by using freed resources to improve the fulfillment of the remaining
orders.

Actually, it is an open question to what kinds of events an online planning system
has to react. One would expect that online planning reacts when a plan becomes
invalid. But a literature survey provided by Schumann and Sauer [SS09], shows
that this is not common ground, so far. For example in Larsen [Lar01] only the
event of new customers is regarded, which is not the only event that can invalidate
a plan. The set of regarded events in transportation planning has been extended
by Schumann et al. [STT09] to at least five different events that could invalidate

2This is not the only way to handle plan adaption in dynamic environments, of course. In their

framework Vieira et al. [VHL03] classify the approaches into event-driven or periodic. In a

periodic approach the plan is regularly updated regarding to a rolling time horizon.
3This situation only indicates a not efficient investment strategy.
4Expect you have some contribution margin elements in your objective function, which is rather

infrequent.

28 2. Foundations and principles

the plan. The number of events that can occur is even higher in the job shop
scheduling domain, for example Reheja et al. [RRS03] list 17 different events that
can occur in their model.

It is arguable to only react on negative events, as the plan’s quality is typi-
cally decreased by those events, but potentials to improve the plan are not used.
Improvement potential often arise as a consequence of positive, i.e., not plan in-
validating events.

Reacting to events results typically in change the current plan, which can de-
crease the stability of a plan. It is only can here, because a plan adoption might
save future adjustments of the plan, as a consequence of upcoming events in the
future. This depends on the characteristics of future events and the event handling
strategy. Current discussions on plan stability can be found in [FGLS06, PKM07].

Handling dynamic environments

Planning in dynamic environments also termed planning under uncertainty has
been dealt in classical AI planning, scheduling, and optimization approaches as
well.

Classical AI planning under uncertainty In most planning approaches presented
in the following it is assumed that the planning can start with initial information
about the environment that does not change while the planning is performed,
but might change during the plan’s execution. Some simple approaches have been
summarized by Russell and Norvig [RN03, pp. 430 – 449]. These are the following
techniques:

• sensorless planning,

• conditional/contingency planning,

• execution, monitoring and replanning

• continuous planning

In sensorless planning no perception about the current plan’s execution is pro-
vided. Therefore, a plan has to be constructed that satisfy the goals in all possible
circumstances, regardless of the changes in the environments that might happen
during plan execution.

In conditional planning, also called contingency planning, a plan is computed
that provide a plan for different situations. Conditional steps are introduced
in the plan. In a conditional step the state of the environment is evaluated.
Depending on the received world state the conditional step can branch into a

2.2. Planning, Scheduling and Optimization 29

8

3 687

157 84 2

Left Suck

Right Suck Left SuckGOAL

GOAL

LOOP

LOOP

Figure 2.6.: Exemplary conditional plan [RN03, p. 434]

specific sub-plan that is appropriate/specified for this state of the environment.
An exemplary conditional schedule from Russell and Norvig is presented in Figure
2.6. Creating a conditional plan is very complex, as all possible states of the
environment have to be anticipated and corresponding plans have to be generated.
A detailed discussion of conditional planning is provided by Russell and Norvig
[RN03, Chap. 12.4]. Ghallab et al. discuss some sophisticated planning techniques
for conditional planning using Markov decision processes and model checking for
details see [GNT04, Chap. 16, 17].

The idea of the execution, monitoring and execution approach is that a plan is
generated, e.g., with one of the techniques already presented. The execution of
the plan is monitored. The monitoring can either focus on the next planned action
or the entire plan. If only the next action is monitored, it is checked if the next
planned action can be executed in the current situation. Otherwise the open plan
is monitored. The open plan is the sequence of action that has not been executed
so far. This is done by checking all preconditions of the remaining actions that are
not generated by previous executable actions. If the monitoring detects a problem,
i.e., the next action or the open plan cannot be executed successfully, a replanning
is triggered. During the replanning a new plan is generated that tries to make the
existing plan executable again or an alternative plan is generated that leads to
the desired goals. Note that this notion of the term replanning is not consistent
with the use of the term replanning below. An elaborated discussion about this
approach can be found in Russell and Norvig [RN03, Chap. 12.5].

The idea of continuous planning is to interleave planning and execution within
an infinite loop. The planner does not terminate when a certain goal is satisfied,
so it can handle also dynamic addition of goals. The control loop is sketched in
Algorithm 1.

30 2. Foundations and principles

Algorithm 1 Control loop of a continuous planner
while true do

monitor environment
plan
execute

end while

The planner can be, e.g., a partial order planner. During the planning process open
preconditions are refined and existing conflicts are resolved. A detailed discussion
is proved by Russell and Norvig [RN03, Chap. 12.6].

Scheduling in dynamic environments Before we present the techniques used for
handling dynamics in scheduling and optimization, some terminological issues have
to be clarified. Especially in the handling of dynamic environments techniques in
scheduling and optimization have reached a significant overlap, that justifies to put
them together in one section. But as a consequence of their distinct development
their terminology is still inconsistent.

Some terminology issues The problem of keeping existing plans in a dynamic en-
vironment feasible is addressed in different fields of research and applications. The
fields addressed here are operations research and AI. The applications mentioned
here are vehicle routing problems and (job-shop) scheduling problems. Different
terminologies have been established and terms are used partially interchangeable.
Therefore, it is necessary to clarify the terminology. The most general term we
use is online planning5. Online planning comprises the fields of reactive schedul-
ing and latest commitment planning. The term reactive planning is discussed
intensively in Sauer [Sau02, pp. 17–20]. Latest commitment approaches were
presented, e.g., by Pollack [Pol96] and Sauter and Parunak [SP99]. Interestingly
mechanisms based on latest commitment strategies do not play an important role
in current research regarding online planning, even if they are used in practical
applications [FHK+07].

Technically there exist two major approaches how reactive planning can be
implemented [FGLS06]:

• Plan repair: An existing plan is going to be adapted to a changed situation.
Approaches are presented, e.g., in [Smi94, AGO08].

5The background for the term online and offline planning are presented, e.g., by Ghallab et al.

[GNT04, pp. 14–15].

2.2. Planning, Scheduling and Optimization 31

Figure 2.7.: A taxonomy for online planning

• Replanning: If an event occurs the existing plan is discarded and a new plan
is computed from scratch [CK05].

Both approaches have their strengths and weaknesses. From the perspective of
complexity it has been shown by Nebel and Koehler [NK95] that both approaches
face the same problem structure. A comparison of both approaches emphasizing
stability can be found in [FGLS06].

Summarizing the terminology discussed above, the taxonomy of terms in the
field of online planning is shown in Figure 2.7. It has to be mentioned that this ter-
minology outlined here is not exclusive. There are different naming schemes in use.
For example, in Vieira et al. [VHL03] the most general term used is rescheduling.
The authors present an interesting framework for rescheduling approaches that
can be classified in their framework. Thereby, they distinguish between dynamic
scheduling and predictive-reactive scheduling. Dynamic scheduling is characterize
situations where no plan exist a priori, like in latest commitment strategies. Fur-
thermore the authors mention that other names for dynamic scheduling are online
scheduling or reactive scheduling.

Techniques for handling online planning The goals of reactive planning are
according to Dorn [Dor04] threefold:

1. The reaction to an event should be fast. The current plan should become
feasible quickly. This is motivated by two reasons. First the plan execution
should not be stopped (to long) until a new feasible plan is available. Ideally
the execution is going on, while the plan for future activities is adapted.
Second in a dynamic environment, like the shop floor or the transportation
domain, events are rather frequent. If the system would react to slow the
new plan is overtaken by reality as it is computed.

2. The existing plan should be widely conserved. This is required as it is
intended that steps that have already been performed, should be considered

32 2. Foundations and principles

in the new plan, if possible. So work done so far should not be discarded.
Moreover, this enforces plan stability that is important for the coordination
of the plan with other planning problems, like procurement, and for the
reputation of the planning systems.

3. The third goal is to maintain the plan’s quality. A key motivation for using
enhanced planning systems is, of course, the ability to compute plans of good
quality in short time. Lower evaluated plans lead to inefficient transporta-
tion or production and in consequence to operational loss of the company.
It goes without saying that this has to be avoided. Therefore, to be prac-
tical applicable planning systems have to perform at least acceptable and
comparable to human planners in dynamic environments which is measured
in plan quality.

As previously outlined we can identify different techniques for reactive scheduling.
Therefore, we can identify different technologies for plan repair and replanning,
even if there exist technologies that can be applied for both approaches, e.g.,
metaheuristics.

In the following we are going to discuss techniques that have been applied to
plan repair. An important techniques is to use local search techniques. Thereby,
plan modification actions are tested to modify the given plan at one position at a
time. A typical plan modification is the shifting of dispatched operations in the
future (right shift) or pull them backwards in time (left shift). An approach using
those techniques is implemented in the OPIS system presented by Smith [Smi94].
Based on local search techniques, metaheuristics can be applied to plan repair as
well. A counterargument therefore is the longer reaction time. But metaheuristics
strive fast to good solutions, so that the computation can be interrupted at a
given time and results can be of good quality. A typical trend of metaheuristics
for their plan’s quality over time is sketched in Figure 2.86. An approach using
tabu-search and genetic algorithms for plan repair has been presented by Dorn
et al. [DGSS96]. Other approaches, that have been applied to plan repair are
multiagent systems and concepts from the field of swarm intelligence.
Using the characteristics that agents can adopt their behavior and their plans to
their environment has motivated the usage of multiagent systems for planning
in dynamic environments. Often orders and resources are represented by agents.
Agents negotiate about the assignments. Typically, orders want to be processed as
quickly as possible while resources want to maximize their utilization. Examples
for the usage of agents in dynamic environments in the manufacturing domain
can be found in [CGMT00, SL95, WW06b], for instance. Applications in the
transportation domain have been presented by [FMPS95, Pol96], for example.

6This figure was provided by Tjorben Bogon, also affiliated at the IS-group in Frankfurt.

2.2. Planning, Scheduling and Optimization 33

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Step

Fi
tn

es
s

Figure 2.8.: Characteristic plan’s quality trend over time, using different parameter

sets

Agent-based approaches have also been combined with ant algorithms, e.g., by
Heeren [Hee06] or Verstrate and Valckenaers [VV06]. Thereby, the main idea
is that if an event changes the planning environment that cannot be handled
locally by an agent, this agent starts a plan repair sequence that uses concepts of
ant algorithms. The ants collect local information of different authorities to find
’paths’ for an effective production.

For the field of replanning different techniques have been investigated. A com-
plete replanning compromise the generation of a new plan for all activities not
executed so far. In contrast to partial replanning where only a subset of activities
is rescheduled. Other parts of the plan remain fixed and scheduled resources are
marked as blocked. After a new schedule has been computed, which can be done
faster as the initial computation, because the number of activities to be scheduled
have been reduced, the unchanged elements of the plan and the newly computed
plan can be joined. The quite common technique to remove orders that are af-
fected by an event, update those data, and then integrate those events as new
orders is a special case of partial replanning. According to Pfeiffer et al. [PKM07]
complete replanning leads to better plan’s quality than partial replanning.
Of course, looking at aspects, like plan stability, complete replanning is problem-
atic, as the plan can change with each event completely. This effect has been
described as chaotic planning behavior by Henseler [Hen98, p. 31]. Chaotic plan-
ning behavior is characterized by the fact that small changes in the input of a
planning system can lead to completely different plans or can result in no changes
at all. Chaotic planning behavior can be observed either by predictive planning
and reactive planning [Hen98, p. 37]. One can try to soften those effects by adding

34 2. Foundations and principles

Figure 2.9.: Dependency graph of the SPT scenario

new constraints to the planning problem that fixes parts of the plan in favor of
stability. This decreases typically the ability to find feasible plans at all, because
it is unknown to what degree similarity can be archived at all.

2.2.4. Dependencies among planning problems

In this part of the study we discuss the modeling of dependencies for analytical
purposes. These analyses allow us to gain a fast understanding of the depen-
dencies of planning systems that have to be coordinated. Note that it does not
allow us to automatically reason about the dependencies, but it gives an intuitive
and fast understanding of the coordination problem at hand, and enables to find
appropriate mechanisms for the coordination problem.

According to Meier and Schumann [MS07] dependencies between planning sys-
tems can be modeled using dependency graphs. A planning system is, from a
very abstract point of view, an algorithm that transforms an input I to an output
O concerning a set of constraints C. A dependency exists between two planning
systems a, b iff the output of a has an effects on the input or constraints of b. The
dependency graph is defined as follows:

G = (V,E),
V = {A set of nodes, each node representing a planning entity}, and
E = {A set of dependency edges, an edge connects two nodes (a, b), iff

there exist a dependency relation as previously defined}.

A simple example of a dependency graph is shown in Figure 2.9. It depicts
the dependencies of the production scheduling and distribution of goods example,
presented in Section 2.1.1. The dependencies are defined by the material flow that
is linear in the system. Note that SPT is the abbreviation for scheduling, packing,
and transportation.

Suppose that we have a more intelligent packing planning entity that tries to put
together groups of customers that are located in the same region. This strategy
depends on information of the transportation planning, i.e., the regions that are
typically used to cluster the transportation request to different routes. In such a
situation the resulting dependency graph is shown in Figure 2.10.

Another example of a dependencies graph is given in Figure 2.11 for the con-
tainer terminal management example presented in Section 1.2 as motivating ex-

2.2. Planning, Scheduling and Optimization 35

Figure 2.10.: Extended dependency graph of the SPT scenario

BAP

TPPSLP

CSP

Figure 2.11.: Dependency graph of the container terminal management problem,

[MS07]

ample. A detailed discussion of the dependencies of the CTM example can be
found, for instance, in Meier and Schumann [MS07] or Meier [Mei08, Chap. 3.3].

The definition of a dependency graph is a rather abstract one, aiming to get
a fast overview and awareness of existing dependencies. Its definition might be
extended towards an arc-labeled graph in a way that each arc specifies the de-
pendencies. Thus, a label might look like output/input or output/constraint

tuple.
Another technique to encode the dependencies in a machine understandable

way is the use of ontologies for representing the planning problems and their
plans. Ontology alignment technologies can be used to express the dependencies
between corresponding/dependent concepts in the models of the isolated problems.
To allow a fast analysis of dependencies either existing ontologies can be used, e.g.,
for scheduling by Pries [Pri08] or specialized ontologies can be derived from an
abstract ontology. In those, more abstract ontologies concepts are provided that
could be found in different planning problem. An example for such an abstract
ontology has been developed by Koutis [Kou08]. His ontology is an abstraction
of ontologies for scheduling, packing and transportation planning problems. The
approach using ontologies and ontology alignment is not used in this thesis for the
following reasons: Ontologies for planning problems, like scheduling have been
proposed in the literature, e.g., by Smith et al. or Pries [SB97, Pri08]. But
for more specialized problems no widely accepted ontological representation are

36 2. Foundations and principles

available. Moreover severe, the field of ontology alignment and ontology matching
is itself a field of research, that is currently evolving. Especially as the alignment
technologies do not have to identify the same concepts in this application scenario
but have to identify dependencies, which is a more complicated task.

Implications of interdependencies between planning systems

If a dependency exists between two planning systems the need for coordination
become obvious. Of particular interest are interdependencies, i.e., cycles in the
dependency graph. As already mentioned, in Section 3.1.1 these interdependencies
are often not regarded in sequential planning processes that have been suggested
by researchers from the field of business administrative research. The iterative
plan formation (see Section 3.1.2) is not a solution for handling interdependencies
because of the chaotic behavior planning system can exhibit, as experiments from
Meier and Schumann [MS07] gives no indication that such an approach leas to
converging between plans for the iteratively planning BAP and CSP. This obser-
vation is supported by the following theoretical consideration. A naive approach
is to estimate the input data of the first planning system and use the results of this
system as input of the second one. Then, if the second planning system has com-
puted its plan, derive the required information and use them as input for the first
planning system. The underlying idea of this procedure is to compute a fix-point.
To ensure termination of this process it is necessary to ensure that the coordi-
nated schedules converge to a stable state (the fix-point) [MS07]. But scheduling
problems can be chaotic, as already mentioned. Thus, in the general case it is
not possible to show that iteratively coordinated scheduling system convergence
towards a stable state. Consequently, cyclic dependencies have to be dealt with.
They have to be respected and are not only of academic interest, as shown in the
aforementioned examples. Note that not all planning systems are chaotic. Thus,
iteratively coordination can work if no such chaotic behavior is present. For in-
stance, Jung and Jeong [JJ05] even provide a proof that their iteration process
between two planning steps will terminate.

Complexity of Coordination

Adam et al. [ABTV04] try to estimate the complexity of coordination along three
dimensions:

• the number of systems that have to be coordinated,

• the time the systems has to be kept coordinated, and

• the complexity of the systems that has to be coordinated.

2.2. Planning, Scheduling and Optimization 37

Figure 2.12.: Coordination complexity in a static environment, according to [ABTV04,

p. 25]

In the worst case the dependency graph is fully connected. Each planning prob-
lem depends on all others. In such a situation each and every entity has to be
coordinated with one another. Adam et al. [ABTV04, pp. 25,26] present a graph
structure to visualize these coordination dependencies that is very similar to the
aforementioned definition of dependency graphs, even though they provide no for-
mal definition for the graph. An example of such a dependency graph is shown in
Figure 2.12.

The complexity resulting from dynamics can be modeled by extending the afore-
mentioned graph. For each point in time, a dependency sub-graph is added with
time dependencies as additional edges. Consequently, the complexity grows lin-
ear in time. A resulting complexity graph in a dynamic environment is shown
in Figure 2.13. The number of edged in this dependency graphs indicates the
coordination complexity. Of course, the maximal number of edges in a directed
graph grows quadratic to the number of nodes and thus the potential complexity
of coordination grows quadratical, too. Adam et al. argue that by introducing or-
ganizational structures into a system, i.e., arranging the node in an organizational
structure, a tree for example [ABTV04, p. 27], the set of edges is bounded and
thus coordination complexity. The needed amount of coordination can be reduced
as fewer systems have to be coordinated with each other.

Concerning the complexity of the local systems Adam et al. claim that the
need for coordination grows with the complexity of the systems that has to be
coordinated exponentially7 [ABTV04, p. 22].

7In German: “dass der Koordinationsbedarf mit dem Komplexitätsgrad des zu koordinierenden

Systems exponentiell steigt” [ABTV04, p. 22].

38 2. Foundations and principles

Figure 2.13.: Coordination complexity in a dynamic environment, according to

[ABTV04, p. 26]

2.3. Distributed Artificial Intelligence

In this section key concepts of the field of DAI are introduced. Thereby, we start
with a single entity, the agent. Agents can be rather simple, like reflex agents, or
can be very complex, like intelligent agent. Systems that are composed out of a
number of agents are called multiagent systems.

2.3.1. Agents: From reflex to intelligent agents: complexity and
architectures

In this section, and for the rest of this study, we use the notion of agency that
is primarily motivated by Wooldridge [Woo09]. The author is aware of the fact,
that the term agents was subject of discussion itself and a number of other defini-
tions have been proposed, e.g., by Ferber [Fer99]. Nevertheless, the definition by
Wooldridge is currently predominant. The definition of an agent by Wooldridge
is the following:

“An agent is a computer system that is situated in some environ-
ment, and that is capable of autonomous action in this environment
in order to meet its delegated objectives.” [Woo09, p. 21]8

This definition emphasize that an agent has orders that are delegated to him, that
he is acting on behalf of somebody else. This somebody might be a human or

8Adapted version from Wooldridge and Jennings [WJ95].

2.3. Distributed Artificial Intelligence 39

Figure 2.14.: Agents interaction with its environment, according to [RN03, p. 33]

another agent. In the following we refer to this somebody as the principal9 of the
agent. The aspect of a situated agent, also referred to as embodiment (discussed
for instance by Schumacher [Sch01, pp. 11,12]), is pointed out more precisely in
the definition presented by Russell and Norvig [RN03]:

“An agent is anything that can be viewed as perceiving its envi-
ronment through sensors and action upon that environment through
actuators.” [RN03, p. 32]

This definition is also referred to by Wooldridge [Woo09, p. 22, Fig.2.1]. Thus,
each agent can be described as a system with a perception of its environment and
its actions performed on the environment. This is shown in Figure 2.14. Typi-
cally, the internal computing, that specify which actions are taken into account
is summarized as reasoning of the agent. The complexity of the reasoning within
the agent can vary drastically. Starting from very simple reflex agents, that per-
form an action according to the given input up to complex agents, also referred
to as intelligent agents. In this introduction the different levels of complexity
are presented, starting with rather simple agent structures and then discuss more
complex ones. This introduction base on [RN03, Woo09].

Simple reflex agents

As already mentioned, we start with the simplest structure for agents that are
simple reflex agents, also referred to as purely reactive agents, which react on
their current perception, and do not take a history of their earlier perceptions and
actions into account. A schematic diagram of a reflex agent is sketched in Figure
2.15. This form of agent has some similarity with simple feedback loops, described
in control theory [AM09, Chap. 2]. The delegated objectives that these kinds of

9Even if this term is borrowed from the principal agent theory it is not intended to restrict the

term agent in this study by any means.

40 2. Foundations and principles

Figure 2.15.: Schematic diagram of a simple reflex agent,[RN03, p. 47]

agents can achieve might be the execution of simple repetitive tasks that can be
described in the form of condition-action rules10. This kind of agent is simple but
from an observers point of view, can only act correctly if the environment is fully
observable for the agent [RN03, p. 47]. A more detailed discussion about reflex
agents can be found at [RN03, pp. 46–48] or [Woo09, p. 36].

Model-based reflex agents

The next, more complex, form of agents are model-based reflex agents. This type
of agent has an internal state that is updated by the current perception. This
state can results from the complete perception sequence of the agent. The next
action that has to be executed is chosen according to a set of rules, based on the
current (updated) internal state of the agent. Thus, the agent works like a Moore
machine (see Hopcroft, Ullman for more details [HU79, p. 42]). The structure of
a model-based reflex agent is shown in Figure 2.16. A more detailed discussion
can be found at [RN03, pp. 48,49] or [Woo09, p. 37].

Goal-based agent

Based on an internal state that enables to reason about the entire perception
sequence the action selection can be improved. This can be done by allowing the
agent to reason about its next actions. In the models presented so far, the action
selection was done at design-time and encoded in condition-action rules. A more
elaborated way is to specify the objective the agent has to satisfy and not only
how an agent should behave in a specified situation. This can be stated as goals
the agent has to achieve. Thereby, the agent is autonomous in deciding how to
10Typically, encoded in the form of if-then rules.

2.3. Distributed Artificial Intelligence 41

Figure 2.16.: Schematic diagram of a model-based reflex agent [RN03, p. 49]

Figure 2.17.: Schematic diagram of a goal-based agent [RN03, p. 50]

achieve these goals. The resulting structure of such an agent is shown in Figure
2.17. The necessary reasoning that an agent has to perform increase the required
computational effort drastically in comparison to the types of agents presented
so far. It is not only a check of some conditionals to find the rules that apply
to the current local state anymore. It can become a complex search or planning
problems, which is addressed in AI research itself. This extra effort enables the
agent to act much more flexible in contrast to other approaches. It is argued, that
this flexibility of goal-based agents and more complex forms of agents offer are a
key characteristic for agency in computer science (see for instance Kirn [Kir06]).

42 2. Foundations and principles

Figure 2.18.: Schematic diagram of a utility-based agent [RN03, p. 52]

Utility-based agent

By specifying the goal of an agent it remains to the agent how efficient it tries to
achieve the goal. Thus, efficiency is out of the scope of goal-based agents. Goals
can be either satisfied or not. With a utility function, mapping a state into a real
number, the outcome is not binary anymore. Therefore, the next more complex
form of an agent is a utility-based agent . The utility function enables the agent to
measure its performance. So an agent can evaluate its possible actions according
to a utility function while trying to maximize its earned utility. The structure of
such an agent is shown in Figure 2.18. Utility functions are seen as an efficient
way to specify the objectives that are delegated to the agent [Woo09, p. 38].
Utility-based agent are discussed in game theoretic research as well, e.g., as agents
that can act in worth oriented domains [RZ98b, Chap. 7]. According to Russell
and Norvig the existence of an explicit utility function is a prerequisite for an
agent to act rational [RN03, p. 51]. An agent is classified to be a rational agent if
it compliant with the characterization presented by Russell and Norvig as follows:

“For each possible percept sequence, a rational agent should select
an action that is expected to maximize its performance measure, given
the evidence provided by the percept sequence and whatever built-in
knowledge the agent has.” [RN03, p. 36]

Other terms used in DAI research for characterizing agents into different tax-
onomies are according to Wooldridge [Woo09] and Timm [Tim04, p. 17]:

• behavioral agent: an agent that decides what do without reasoning

• deliberative agents: an agent that decides what to do via logical/symbolic
reasoning

2.3. Distributed Artificial Intelligence 43

• cognitive agents: agents with enhanced adaption and learning abilities

Intelligent agent

In this section we introduce the term intelligent agent . Here the definition of
Wooldridge [Woo09, pp. 26,27]11 is presented. An intelligent agent is an agent
that has the following abilities:

• Reactivity: Intelligent agents are able to react on changes in their environ-
ment in a timely fashion in a way to satisfy their delegated objectives.

• Proactiveness: Intelligent agent act without an external event to achieve
their goals, typically the delegated objectives/goals.

• Social ability: Intelligent agents can interact with other agents to achieve
their goals.

Of course, this definition is not exclusive. There exist other definitions for intel-
ligent agents that emphasize other aspects, e.g., the notion of intelligent agents
by Nwana [Nwa96], who claims that intelligent agents should incorporate learn-
ing abilities. As pointed out before, we focus here on the definition presented by
Wooldridge.

2.3.2. Agent Architecture

Depending on the type of agent that has to be build different architectures are
suitable. In those architectures the components of the agent’s implementation
and their interactions are defined. An introduction to software architecture can
be found in Taylor et al. [TMD09] or Sommerville [Som06, Chap. 11] for instance.

The selected architecture must be suitable for the intended type of agent. For
instance, a utility-based agent cannot be realized using a reactive/reflex agent’s
architecture. According to Wooldridge [Woo99] four different agent architectures
can be classified into:

• Logic-based agents, decision making is done based on logic deduction.

• Reactive agents, decision making is done by a mapping from a situation to
an action.

• BDI agents, decision making is done by manipulation of data structures
representing beliefs, desires and intentions.

11Originally this definition comes from Wooldridge and Jennings [WJ95].

44 2. Foundations and principles

• Layered architectures, decision making is done in a number of software layers.
Each layer realizes some reasoning based on parts of, possibly abstracted,
environment models.

The idea of purely logic-based agent origins in the traditional symbolic logic
oriented AI. Their description is according to Wooldridge [Woo99, pp. 42–48] as
follows. The agent decision making is seen as a deduction process. An agent has a
theory for specification and it can reason about and execute action based on this
reasoning. The main idea of their reasoning mechanism is the cyclic behavior of
perception, reasoning (here deduction) and action, as already described in Section
2.3.1. Agents have a database with their current believe set, a set of logic formulae.
The perception updates the agent’s database, i.e., facts that have become false are
removed and others may be added. For the action selection the agents tries to
deduce a predicate of the form Do(a) or at least tries to falsify a predicate like
¬Do(a) from his current database and given theory.

Some disadvantages of purely logic-based arise form the fact, that their inference
can become computational complex, as automated theorem proving is, in general.
Thus if the agent has to regard time constraints, logic-based architecture can be-
come a problem. Especially as it is necessary that the environment stay stable
during the inference process within the agent, which restricts the field of appli-
cations. Nevertheless, for more theoretical investigations this model is interesting
because of its pure logical structure and its resulting clear semantics.

Next the architecture of a reactive agent is discussed. These architectures are
not based on symbolic logic, and historically were designed as a consequence of the
intractability problems logic-based architectures. These type of architectures was
heavily influenced by Brooks12 [Bro86]. The idea this type of architecture is that
an agent can have one or more behavior modules. A behavior module implements a
state machine. All these modules have access to the input. Typically, in each state
of a behavior module a mapping function exists that maps the input to an activity.
In case that more than one behavior module is activated by an input, i.e., there
exists a mapping entry within this module for the given input; an action selection
process has to be provided. Therefore, the behavior modules are prioritized. So
if more than one module is activated the output, i.e., action, from the module
with the highest priority is chosen. A more elaborated presentation of this type
architectures is provided, e.g., by Wooldridge [Woo99, pp. 48–54].

The main idea of BDI agents is that the knowledge-base of an agent is composed
out of three elements, its beliefs, its desires and its intentions. This approach is
motivated by psychology model by Bratman [Bra87] and has been formalized for

12see Wooldridge [Woo99, p. 48] for historical insights.

2.3. Distributed Artificial Intelligence 45

Figure 2.19.: BDI architecture; [Woo99, p. 58]

usage in DAI by Rao and Georgeff [RG95]. Typically, the representation of beliefs,
desires and intentions is done using logical formulae, for instance, in first-order
logic. The BDI agent architecture is therefore a more practical way to formulate
logic-based inferencing agents. The beliefs of an agent can be interpreted as the
representation of the current world state the agent believes to be true. While
the goals and plans of an agent are stored in the set of desires and intentions
respectively. An abstract BDI architecture is shown in Figure 2.19. The function
brf is the belief revision function, it updates the believe set, according to the
current perception of the agent. The function generate options computes the
current desires based on the current belief set and intentions of the agent. This
function of the agent calculates the plans that should be applied to achieve its
intentions. Within the filter function the agent updates its intentions, for instance,
if it is not possible to realize an intention, i.e., there exist no valid plan to do so,
it might be reasonable to give up this intention. Based on the updated intentions
an executable intention is chosen to be perform a step towards the fulfillment of

46 2. Foundations and principles

the selected intention. This is done by the action-function. A detailed description
this architecture can be found in [Woo99, pp. 58–60]. For the paradigm of BDI
agents a number of architectures have been presented, a specific overview about
those architectures is provided by Haddadi and Sundermeyer [HS96].

A class of agents, called hybrid agents have layered architectures [Woo09, Chap.
5.2]. There exist different strategies how the components of the agents can be ar-
ranged in either horizontal or vertical structures. In a horizontal layering the input
is processed by a number of components and then this information is aggregated
to determine the output/action of the agent. The information and control flow
of a horizontal architecture is shown in Figure 2.20. In contrast to the horizontal

Figure 2.20.: Information and control flow of a horizontal layered architecture;

[MPT95, p. 263]

arrangement of components are vertical layered architectures. Vertical layered
architectures can be subdivided into one pass control or two pass control architec-
tures. In one pass layered architectures the input is processed in each stage and
then delegated to the next one. This architecture is therefore similar to the pipes
and filters architecture pattern. See Taylor et al. [TMD09, [p. 110] or Buschmann
et al. [BMR+02, pp. 53–70] for a detailed presentation of this pattern. The in-
formation and control flow of a vertical one pass architecture is shown in Figure
2.21.

Figure 2.21.: Information and control flow of a vertical one pass layered architecture;

[MPT95, p. 263]

2.3. Distributed Artificial Intelligence 47

The two pass vertical layered architecture pass processed input up to higher
layers in the architecture, where more abstracted decision making is implemented.
The information and control flow in such an architecture is sketched in Figure 2.22.
The results of higher layers are delegated back to the lower layers for execution. A
prominent example of systems based on layered architectures are the InterRRap
architecture presented, e.g., by Fischer et al. [FMP96, pp. 403–405].

Figure 2.22.: Information and control flow of a vertical two pass layered architecture;

[MPT95, p. 263]

Layered architectures have also been established in robotics, e.g., Alamai et
al. [ACF+98]. The authors present an architecture where aspects like collision-
avoidance are implemented based on a reflex-based layer while more complex
steering or planning activities are done on higher-levels of abstraction. Another
example of a layered architecture in robotics is the architecture of Stanley the au-
tonomous driving robot, e.g., Wooldridge [Woo09, p. 99]. A detailed description
of Stanley’s architecture can be found in Thrun et al. [TMD+06].

These architectures remain abstract and have to be instantiated based on the
existing agent implementation languages or frameworks.

2.3.3. Internal state representation

In the following the structure of the internal state of an agent is presented. There-
fore, we review the concept of the state of an agent in the aforementioned archi-
tectures.

The state of a logic-based agent is the sum of formulae that are in his database.
These formulae encodes what the agent assumes to be true about its environment.
If reactive agents use an explicit state model, like model-based reflex agents (intro-
duced in Section 2.3.1) their internal state is the current state they are currently
in. Reflex agents without the notion of states, like simple reflex agents, can be
modeled as stateful agents with exactly one state. For example, if agent a has the

48 2. Foundations and principles

set of possible internal states S, at time t its internal state is st ∈ S.
The state of a BDI agent is given by its current beliefs, desires and intentions

(B,D,I) [Woo99, p. 58]. With B⊆ Bel , whereby Bel the set of all possible beliefs
is, D ⊆ Des with Des the set of all possible desires, and I ⊆ Int with Int the set
of all possible intentions.

The state of an agent with a layered architecture is harder to specify. From an
abstract perspective it is, like in the case of reactive agent defined as an element
of the powerset of states each layer can have. But the states of a layer cannot
be enumerated on this abstract level, as this depends on what layers exist and
how they are realized. Nevertheless, it is possible to specify their state, as, for
instance, discussed by Thrun et al. [TMD+06, p. 666].

Even if no specific architecture is referred to, there exist common understanding
of some aspects of the agent’s internal state, which is also referred to as belief set
, e.g., by Decker [Dec95], or knowledge-base, e.g., by Finin et al. [FFMM93]. The
term knowledge-base origins from research done in knowledge-based systems. The
term belief set is motivated by the aforementioned BDI architecture, although it
is not limited to those architectures. Russell and Norvig use the term belief set in
the following notion:

“We call each such set of states a belief state, representing the agent’s
current beliefs about the possible physical state it might be in.” [RN03,
p. 84]

Thus, the term belief set is used to refer to the representation of the environment
the agent has perceived, so far. This notation does not have any implication for
the architecture of an agent. There are two way how a fact can be added to the
belief set, either by perception of the agent, including communication with other
agents, or by reasoning, done by the agent itself. Therefore, the agent has some
form of logics that enables him to add new facts, derived from existing ones to the
internal state.

Thus, theoretically the knowledge of such an agent at a certain point in time
is defined by its logics and its internal state. From a more practical perspective
it has to be mentioned that the available computational power of that agents is
a limiting factor. If a fact is not in its internal state and can be derived from it,
this fact is unknown to the agent.

2.3.4. Multiagent system: foundation for emergence

If multiple agents form one system, this system can be called a multiagent System
(MAS). A key characteristic of a MAS is that the agents within a MAS can interact
via direct or indirect communication.

2.3. Distributed Artificial Intelligence 49

In previous research, e.g., von Martial [Mar92], Ossowski [Oss98] or Rosen-
schein and Zlotkin [RZ98a] systems with multiple agents has been distinct in two
subclasses: distributed problem solving systems and multiagent systems.

Distributed problem solving systems are systems composed out of different
agents, that have been designed to solve a given problem, most probably by one
designer. The entire system aims to solve a global problem and thus, the agents in
such a system are benevolent. In contrast a MAS was composed out of agents that
only try to optimize their local utility function that was given by their designer.
So in one system agents from different designers and with different objective func-
tions can exist. The entire system does not necessarily has to have a global goal
that has to be achieved. A more detailed discussion is provided by Weiss [Wei99,
p. 4] or by Jennings et al. [JSW98].

This distinction has become less relevant as a lot of researchers investigated
hybrid forms of those systems. The term multiagent system is now widely accepted
as a system of multiple agents, independently of their local utility functions. So
according to Wooldridge it can be defined as follows:

“Multiagent systems are systems composed of multiple interaction
computing elements, known as agents.” [Woo09, p. xiii]

An even stricter version of this definition is given by Weiss, where the agents have
to be intelligent13.

[A multiagent system is a] “...systens in which several interaction, in-
telligent agents pursue some set of goals of perform some set of tasks.”
[Wei99, p. 1]

It has to be mentioned that these definitions are not exclusive, there exist other
definitions as well. But they were chosen by the author as they offer a valid
foundation for this study, and they are widely accept in the research community.

According to Jennings et al. [JSW98] a MAS can be characterized by the facts
that

• each agent has incomplete information, or capabilities for solving the prob-
lem, thus each agent has a limited viewpoint;

• there is no global system control;

• data is decentralized; and

• computation is asynchronous.
13Thereby, flexibility and rationality are pointed out as key characteristics of those intelligent

agents [Wei99, pp. 2,3].

50 2. Foundations and principles

As a consequence of these characteristics presented by Jennings et al. a MAS can
show emergence behavior as it has been characterized by Timm [Tim04, p. 24].
According to Timm emergence behavior is

• surprising, as it cannot be predicted as a consequence of simple interactions,

• establishing organization forms in complex systems that have not been in-
tended before, and

• creating intelligent behavior, based on the interactions of individuals on a
less intelligent level.

Communication in MAS

As pointed out before, the interaction among agents plays a central role in MAS.
Thereby, communication play a central role, as the most prominent form of agent
interaction. We present here the foundations of agent communication because
communication is essential for coordination or by quoting Ferber “all coordination
must necessarily go through communication” [Fer99, p. 407].

Agent interaction can be direct or indirect. Indirect interaction uses parts of
a shared environment as a mediator. Indirect interaction can either be intended
as indirect communication or can be coincidence as two agents interfere as they
access a non-sharable resource in the environment. Indirect communication can be
implemented by marking the environment, e.g., with artificial pheromone traces
which are used in ant algorithms.

Direct interaction between agents is done via communication, i.e., message pass-
ing. This communication requires a common language, a shared ontology and
an agent communication infrastructure like a yellow-page service and a message
forwarding protocol. Major research efforts have been undertaken to build appro-
priate forms of agent communication languages (ACL), knowledge representation
and communication infrastructure. These efforts included the knowledge query
and manipulation language (KQML) and the knowledge interchange format (KIF)
(see Huhns and Stephens [HS99] or Wooldridge [Woo09, Chap. 7] for an introduc-
tion). The appropriate design of ontologies for agent communication is described
by Wooldridge [Woo09, Chap. 6] and a good description for ontology design in
general is provided by Noy and McGuinness [NM01]. Both KIF and KQML were
developed within the DARPA knowledge sharing effort (summarized by Finin et
al. [FFMM93], for instance, and were forerunners of the FIPA standards. FIPA is
the Foundation for Intelligent Physical Agents an IEEE standards organization.
More details about the FIPA organization can be found at the FIPA homepage
[FIP10]14. FIPA has standardized among other:
14http://www.fipa.org/index.html accessible at 02/04/2010

http://www.fipa.org/index.html

2.3. Distributed Artificial Intelligence 51

Parameter Category of Parameters

performative Type of communicative acts
sender Participant in communication
receiver Participant in communication
reply-to Participant in communication
content Content of message
language Description of Content
encoding Description of Content
ontology Description of Content
protocol Control of conversation
conversation-id Control of conversation
reply-with Control of conversation
in-reply-to Control of conversation
reply-by Control of conversation

Table 2.5.: FIPA ACL Message Parameters [FIP02c, p. 2]

• agents and agent platforms, e.g., [FIP02a, FIP02h]

• Message Transportation, e.g., [FIP02d, FIP02b]

• Message structure, e.g., [FIP02n, FIP02c]

• interaction protocols15, e.g., [FIP02l, FIP02j]

All standards can be downloaded for free from the referred websites. An
overview of the standards can be found as well16. Note that within the FIPA
standards only direct communication is considered [FIP02a, pp. 14–16]. The
communication facilities have to be provided by the agent environment see Huhns
and Stephens [HS99, p. 81] and FIPA standard [FIP02a].

According to FIPA the exchange of messages between agents it the favorable
form for inter-agent communication. To ensure efficient communication and inter-
operability the format of messages is standardized by FIPA. The overall structure
of the message format has been outlined in FIPA standard [FIP02a, pp. 28–35].
In standard [FIP02c] is has been detailed. A message contains a number of fields,
also called parameters. An overview of these fields is shown in Table 2.5. This
format has been influenced by previously research concerning KQML. An intro-
duction to KQML and FIPA based communication can be found in Wooldridge
[Woo09, pp. 136–146].
15FIPA interaction protocols are discussed in more detail below.
16http://www.fipa.org/repository/standardspecs.html Accessed: 02/04/2010

http://www.fipa.org/repository/standardspecs.html

52 2. Foundations and principles

Interaction protocol relation quantity

Request Interaction Protocol [FIP02l] 1:1
Query Interaction Protocol [FIP02j] 1:1
Request When Interaction Protocol [FIP02m] 1:1
Contract Net Interaction Protocol [FIP02f] 1:n
Iterated Contract Net Interaction Protocol [FIP02g] 1:n
Brokering Interaction Protocol [FIP02e] 1:1
Recruiting Interaction Protocol [FIP02k] 1:1
Subscribe Interaction Protocol [FIP02o] 1:1
Propose Interaction Protocol [FIP02i] 1:1
English Auction Interaction Protocol [FIP01c] 1:n
Dutch Auction Interaction Protocol [FIP01b] 1:n

Table 2.6.: FIPA interaction protocols and their cardinality

Interaction protocols among agents play an important role, as they structure a
sequence of messages that are exchanged between agents. As Huhns and Stephens
point out by means of these interaction protocols agents can have a conversation

“Interaction protocols govern the exchange of a series of messages
among agents - a conversation.” [HS99, p. 96] 17

Interaction protocols can be defined for one sender and one receiver, than they
are called binary as they represent a 1:1 relationship. Although interaction pro-
tocols can be defined for one sender and n receivers, in which case they are called
n-ary as they represent a 1:n relationship [HS99, p. 86]. Wooldridge [Woo09, p.
317] also mention the case of many-to-many negotiations. But this type of nego-
tiations is rare to find in multiagent research, probably because of the resulting
complexity. For the interaction protocols specified by the FIPA these cardinalities
of the interaction protocols are shown in Table 2.6.

Note that the Dutch and English auction protocol are no confirmed standards
by the FIPA yet. They are still in the experimental stage, but shown here for
completeness of the specified FIPA interaction protocols.

In the FIPA standards the interaction protocols are visualized by an UML1.x
extension named Agent UML (AUML) presented by Odell et al. [OPB01]. AUML
is discussed in more detail in Section 3.2.1 in the context of agent-oriented software
engineering.

17A similar statement can be found at [HS99, p. 79].

3. State of the art

In this chapter we give an introduction to the current state of the art of the research
of coordination in multiagent systems. Nevertheless, the field of coordination is
not a exclusive for researchers from the field of DAI. For that reason research
concerning coordination from related fields, like business administration (Section
3.1.1) and game theory (Section 3.1.3) are discussed in this chapter, as well.

In the second section of this chapter the engineering of DAI systems, typically
termed agent-oriented software engineering (AOSE) is focused and especially as-
pects of research concerning reuse of concepts in AOSE is presented. Thereby, we
point out the current shortcomings in the field of reuse of methodologies in AOSE
and for the coordination of planning systems in particular. Based on this findings
we identify the research question and issues this thesis has to tackle.

3.1. Coordination

Research considering coordination has attracted researchers from different fields
of research and thus the body of existing work is hardly to survey, at all. And
even within the lines of research, like computer science. The scope of research con-
cerning coordination is wide. Omicini et al. [ORVR04] consequently paraphrase
it in the following way:

“Research on coordination possibly represents the most un-coordi-
nated activity in the history of computer science.” [ORVR04]

Consequently, in this section only an extraction of existing work is presented,
from fields that have a direct connection to DAI, and thus it cannot claim to be
complete. In the following coordination is described from a rather broad perspec-
tive and in the following subsections focused from the perspective of the fields of
business administration, DAI, and game theory.

The term coordination is used in different disciplines with different notations.
Coordination as a topic by itself can only be found only rarely. One of the most
prominent papers that suggests to establish a “coordination theory” has been
presented by Malone and Crowston [MC94, p. 88]. In their interdisciplinary
study they compare the research about coordination in different fields of research,

53

54 3. State of the art

Figure 3.1.: Timeline of coordination activities

in particular they address the fields of computer science, economics, operations
research, and organization theory. A consequence of their work is the widely
accepted definition of coordination. In their work they define coordination as:

“Coordination is managing dependencies between activities.”
[MC94, p. 90]

A fundamental underlying problem of coordination is that actions and/or decisions
are executed/made in a distributed manner. And as Malone and Crowston pointed
out the decision making and/or execution have to be managed to achieve a goal or
perform an efficient behavior [MC94, 90]. Thus, in all coordination scenarios we
can find a distributed scenario, in other cases all decision making and execution
are centralized and no coordination is necessary. Then the coordination problem
becomes a planning problem.

Nevertheless, the term coordination comprises a wide field of activities, as it does
not point out when the coordination takes place. This is pointed out in the Figure
3.1. Activities are executed in the execution phase. The execution of activities
is supervised by a controlling entity. Before the execution of a set of actions is
started, typically a planning process has arranged the activities. Coordination
can be performed during execution/control, planning, or even before the planning
phase started.

A group of research addresses coordination from strategic [WCDH00] and op-
erational [CWDH00] point of view. The strategic coordination is not addressed
in this study, as already pointed out. The work done by Coates et al. [CWDH00]
is more an update of the work done by Malone and Crowston addressing resource
management, planning, and scheduling. The authors surveyed the application
of coordination techniques in different fields of application. Among other they
present planning and scheduling as techniques for coordination.

The vision of Malone and Crowston [MC94] that a research field for coordination
forms has not become truth so far. Today coordination is subject of research in
different areas. Therefore, it is fruitful to address current fields of research dealing
with coordination. Another introduction into the field of research concerning
coordination from the DAI perspective is provided by Ossowski [Oss98, Chap. 2].

3.1. Coordination 55

3.1.1. Coordination concepts in business administration

In this section the perspective of business administration on coordination is pre-
sented. Thereby, different perspectives are presented. According to Hansen and
Neumann a number of theories exist that try to explain the coordination of eco-
nomical exchange processes [HN09, p. 945]. These authors mention, for instance,
the exchange theory1 and the resource dependence theory. The exchange theory
is rooted in sociology. It assumes that resources are rare, the entities/participants
have different specializations/abilities. Under these assumption an exchange hap-
pens between the participants if they both gain profit from the exchange. The
main idea of the resource dependence theory is that companies are dependent on
exchange facing rare resources. A consequence is that the companies will lose au-
tonomy as they depend on external resources. According to this theory this leads
to establishing networks, to make the dependency bilateral. Companies engage
in networks to reduce their dependency and gain influence on other [CG01, pp.
14–15].

The approaches and ideas presented in this section form the context and ad-
ministrative background for the development of actual information and planning
systems that are established today.

In the following the notion of coordination is presented from the perspective
of decision-oriented business administration2. This field of research has been es-
tablished by Heinen [Hei86]. A practically motivated introduction is presented by
Adam et al. [ABTV04]. The focus of this line of research lies on the decision
making [ABTV04, p. 1]. Decisions are the consequences of plans, developed for
models of the reality [ABTV04, p. 3]. Thus, decision making is a consequence
of planning activities. Thereby, the planning problem is decomposed into four
elements [ABTV04, p. 3]:

1. decision field element: containing all causal relationships, necessary to esti-
mate the effects of different action alternatives.

2. evaluation element: mapping the expected outcome to an economic quality
measure.

3. objective element: describes what should be achieved.

4. decision making element: computes the optimal solution

If all these aspects are well defined, i.e., they are fully operational defined,
then decision making becomes a computing task [ABTV04, p. 4]. In fact the

1in German: Austauschtheorie
2in German originally termed “Entscheidungsorientierte Betriebswirtschaftslehre”

56 3. State of the art

authors state that these problems can be rarely found in real world settings. Most
often the planning problem definition has some defects that prohibit an effective
computation. Possible defects are [ABTV04, p. 4,5]:

• Causal defects: the causal relationships cannot be described in detail.

• Evaluation defects: the results of actions cannot directly mapped to a one
dimensional economic metric.

• Objective defects: the objective cannot be formulated precisely in a one
dimensional objective function.

• Solution defects: there exists no efficient method for solving the planning
problem.

Those defects are, from the business administration point of view, the motivation
for dividing defect problems into a number of less defect sub-problems. Even
though the authors are aware of the fact that this divide and conquer strategy can
endanger the overall solution quality3.

The decomposition of planning problems can be done along two different di-
mensions [Wöh02, pp. 104–108]:

• factually, e.g., distribution, finance, production, and

• chronological, e.g., in strategically, tactically and operationally planning.

Consequently, resulting interdependencies have factually or chronological charac-
teristics. Corsten and Gössinger summarize those dependencies among other as
objective interdependencies4 [CG01, pp. 45–47]. The taxonomy of Corsten and
Gössinger is presented in Figure 3.2. According to the taxonomy of interdepen-
dencies presented by these authors objective interdependencies can exist either by
restrictions or goals. A restriction is defined by physical restriction imposing the
interdependencies. Shared resources or precedence constraint during a production
are example for such dependencies. A goal dependency can be defined in form
of profit, evaluation measurements or risk dependencies on other entities. In con-
trast to objective interdependencies are behavior interdependencies. A behavior
interdependency exists if the decision making of an entity depends on, or is taken
into account, the expected decision making behavior of another entity. This is, for
instance, a typically assumption in game theory, when there exists no dominate
strategy.

3In German “Die Bildung von Teilprobleme fördert Partialsichten und steht daher einem

übergreifenden Denken entgegen.” [ABTV04, p. 8].
4In German “Sachinterdependenzen”, to avoid ambiguities we translated them not as factual

interdependencies.

3.1. Coordination 57

Figure 3.2.: Taxonomy of interdependencies adapted from [CG01, p. 47]

A typical example for the decomposition of large problems in business admin-
istration is the management of a company. According to Adam et al. [ABTV04,
p. 7] and Wöhe [Wöh02, p. 332] management of a company can be decomposed
into the sub-problems of:

• distribution planning

• production planning

• investment planning

• finance planning

This is in fact a factually decomposition from a strategic perspective. Each of
these planning problems is abstract and complex, such that automation on this
level of detail is not realistic. Especially as the planning has to respect various only
weakly defined constraints, like aspects from legal regulations, corporate policies
and secondary objectives.

A consequence of the decomposition is the necessity for coordination. Dur-
ing the integration of the solution of sub-problems, existing dependencies have
to respected [ABTV04, p. 5]. This arises due cutting of potentially existing
dependencies in the decomposition step. Therefore, Adam et al. characterize co-
ordination as adjusting and controlling dependent decision fields from an overall
perspective5. The authors have an abstract view on coordination, which becomes
obvious in their classification of coordination techniques that is shown in Figure
3.3. According to their classification, coordination can either be done by market-

5“Die Notwendigkeit zur Koordination ergibt sich aus der Arbeitsteilung bzw. Teilproblem-

bildung, wenn durch die Zerlegung die zwischen den gebildeten Teilbereichen bestehende

Kopplungen zerschnitten werden.” [ABTV04, p .10]

58 3. State of the art

Figure 3.3.: Types of coordination, according to [ABTV04, p. 21]

based mechanisms or by mechanisms relying on hierarchy, which is also stated by
Hansen and Neumann [HN09, p. 946]. These authors agree that hybrid approaches
are possible, too. Examples for hybrid coordination forms are, for instance, enter-
prise networks [HN09, p. 946]. Enterprise networks have been extensively studies,
e.g., by Corsten and Gössinger [CG01].

The authors discuss that the selection of the appropriate coordination approach
on this coarse grained level depends on the environment6. If the environment is
simple, static and has a low degree of uncertainty then centralized hierarchical
coordination promises to be more efficient. While in more complex, dynamic
environments with possibly higher degree of uncertainty the coordination has to
be appropriate to the current situation. This can be achieved by decentralized
and self-aware decision making [ABTV04, pp .23]. Thus, changing environment
enforces paradigm shifts in the coordination philosophy [ABTV04, p. 24].

Taking the assumption that coordination deals mainly with the integration of
different plans that have been motivated so far. We now discuss more concrete
techniques that have been proposed in business administration. Wöhe [Wöh02,
pp. 108–112] presents three forms how planning could be structured:

• continuous planning for the combination of chronological decomposed plan-
ning,

• top-down, bottom-up or top-down/bottom-up planning for the combination
of different partial plans, or

• bottleneck-first planning.

6This statement is true, also for more concrete coordination mechanisms, see [Dec95].

3.1. Coordination 59

Continuous planning uses different levels of details for planning ahead of time. The
nearby future is planned very accurate, while parts of the plan that are further
ahead in time are only planned based on rough estimations or on a coarse grained
level. Finding the right level of detail can become a problem [Kur05, p. 40].

In the following the top-down, bottom-up and the top-down/bottom-up ap-
proach are presented and references to some applications of coordination in these
ways are given. More details can be found at [Wöh02, pp. 109–110].

The top-down approach for combining existing partial plans, assumes that there
exist a superior entity that create abstract plans that are refined in subordinated
entities. Thereby, plans become more and more concrete. To apply this approach
it is necessary that each superordinate entity has enough information about the
capabilities of all of its direct subordinated entities. This enables the superor-
dinate entity to generate feasible abstract plans that can be implemented by all
its subordinates. This problem is referred to as vertical interdependencies. This
implies that the information has to be available to each superordinate entity and
it has to be updated regularly. The information availability and quality is critical,
thus it is mentioned by Kurbel as a counter-argument for the use of simultaneous
planning [Kur05, p. 40]. The idea of top-down planning has been implemented,
for instance, in hierarchical planning [HM73]. This approach have similarities with
the approach to perform coordination in a pre-planning phase, which is proposed
by Witteveen et al. [WW06a, SW07]. The authors propose to add additional con-
straints to the original planning problem to ensure that the local planning does
not generate conflicting plans.

The bottom-up approach for combining existing partial plans follows a different
approach. Each entity plans its activities locally. To enforce a feasible plan all
these partial plans are communicated to a coordinating entity that is superordi-
nate to all planning entities. It is the task of this entity to ensure that the resulting
partial plans are coordinated. This approach assumes that the coordinating entity
has at least abstracted knowledge of the capabilities of the local planning entities.
Moreover, it requires some coordination knowledge. The coordination knowledge
comprises knowledge how conflicts in different partial plans are can be resolved.
In a worst case scenario, were all partial plans are maximal conflicting the coor-
dination entity has the task to implement a simultaneous planning. An example
of such a post-planning coordination step has been proposed for instance by von
Martial [Mar92].

In the top down/bottom up approach is a first step guidelines are generated
in a top down way. The feasibility of these abstract plans is then tested by the
subordinate planning entities that try to generate a concrete plan respecting all
given guidelines. If a conflict occurs or if it is not possible to fulfill all guidelines
a feedback is given and the superordinate entity has to adapt its plan. The in-

60 3. State of the art

corporation of feedback in the planning give the global planning entity additional
information about the local abilities to generate feasible plans and that also can
be used to adapt the global plan to changes that may occur during execution. An
example of such a planning system for multi-site scheduling has been proposed
within the MUST approach by Sauer [Sau02].

A heuristic approach to handle the coordination problem is, as described earlier,
the sequential solution of the partial problems, and the usage of the results of
earlier computations in later ones [Wöh02, p. 331]. Thereby, the ordering of
the partial problems should be done in a bottleneck-first heuristic using forward
and backward planning from the bottleneck [Wöh02, p. 331]. Of course, this
approach suffers if multiple bottlenecks exist or bottlenecks depends on the current
workload. Moreover, in reactive planning/scheduling scenarios the bottlenecks can
shift depending on the event that occurred. The interdependencies of planning
systems cannot be handled in this approach, too.

Summarizing, there exists literature that has analyzed the motivation for the
dividing of decision/planning problems and the required integration of partial
solutions. Nevertheless, the findings concerning coordination remain abstract,
from a computer scientists point of view, as these models cannot be operationalized
easily.

Another aspect that is mentioned, e.g., by Kurbel [Kur05, pp. 244–246] and
Hansen and Neumann [HN09, p. 947] is the efficient, ideally automated, informa-
tion flow between different entities. Thus, it is emphasized in business informatics
that electronic data exchange [HN09, pp. 958–965] and enterprise application
integration [RMB01] are important technologies to enable efficient coordination.
These approaches mainly deal with the required information infrastructure needed
for the management to coordinate the actions of different companies not only on
the strategic level.

Recently, there exists although a trend in business administration to apply tech-
nologies that have been developed in the filed of DAI as well as joint research
efforts. For instance, Meier [Mei08] deals in his work with the coordination of dif-
ferent planning systems in the container terminal management problem, see the
motivating example, Section 1.2. Coordination is achieved by wrapping the plan-
ning systems with agents and communicates the plans, or more precisely specific
relevant information for planning, to agents who are responsible for plan/planning
system that depend on the first one.

In the context of a joint research project, conducted by economics and computer
scientist coordination techniques incorporating multiagent systems have been in-
vestigated as well. In the priority research program “Intelligent Agents and Re-
alistic Commercial Application Scenarios” Agent.Enterprise has been introduced

3.1. Coordination 61

as demonstrator for distributed planning and scheduling. An introduction can be
found in Woelk et al. [WRZN06]. In the context of this effort mechanisms for
coordinating companies forming a supply chain has been investigated. Results
have been presented in Frey et al. [FSWZ03] and Stockheim et al.[SSWG02], for
instance.

The field of auctions has been excluded from this section as they are discussed
in the section coordination in game theory and mechanism design (see Section
3.1.3).

Collaborative planning in operations research

The need for coordination among different autonomous planning systems has also
been realized in the field of operations research. This research area has mainly
evolved from the field of supply chain management [Sta09], as a consequence of
the fact that conventional production planning techniques like MRP II (for an
introduction see [Kur05, Chap. 4]) are not suitable for supply chains [Dud04,
p. 14]. According to the perspective of operations research there exists two ap-
proaches how plans can be coordinated in a supply chain, either by hierarchical
or collaborative planning [Dud04, p. 12]. Hierarchical planning has been men-
tioned above and is implemented in current advanced planning system solutions,
see Dudeck [Dud04, p. 15], and Stadler and Kilger [SK02]. According to Stadtler
[Sta09, p. 5] hierarchical planning approaches suffer, as already mention, from the
inherent information asymmetry in networks of autonomous entities. Moreover,
Stadtler points out that hierarchical planning cannot cope with the existence of
local, possibly conflicting, objective functions. Each planning entity might have lo-
cal constraints that might cause conflicts [Sta09, p. 5]. In contrast to hierarchical
planning collaborative planning aims to overcome these weaknesses by accepting
the fact that autonomous entities have to coordinate their activities. According
to a broad definition collaborative planning can be defined

“as a joint decision making process for aligning plans of individual
SC [supply chain] members with the aim of achieving coordination in
light of information asymmetry.” [Sta09, p. 6]

A typical collaborative planning mechanism has been presented by Dudeck
[Dud04]. He present a collaboration planning mechanism based on non-hierar-
chical negotiation among independent supply chain partners. Doing so, the mas-
ter plans have been identified as the appropriate level for collaborative planning
[Dud04, p. 20]. Note that a master plan frames the production for a time horizon
for about 3 up to 18 month ahead, depending on the line of business. Dudeck
assumes that all supply chain partners apply a mathematical program to solve

62 3. State of the art

their local planning problem. As a local planning problem the multi-level capaci-
tated lot-sizing problem [Dud04, pp. 30–32] is chosen. Planning entities exchange
proposals and counterproposals that have been generated by their local planning
systems. But this approach is limited by the fact that a mathematical program is
assumed for all supply chain partners and that the coordination focuses primar-
ily on the material supply on a coarse grained level, which are rather typically
restrictions for approaches presented in the field of collaborative planning.

Techniques used in collaborative planning rely on the publication of information
concerning local cost structures or side payments. Within a side payment an agent
gives or asks for additional payment to commit to a change in its plan, e.g., by
adding an additional task. Both techniques can be used to achieve solutions of
higher quality from the global perspective. But these techniques impose the risk
of agents behave opportunistic and thus do not publish information truthfully.
These risks have been discussed, e.g., by Dudeck [Dud04, Chap. 6.2].

As already pointed out most of the work on collaborative planning has been
performed on rather abstract plans, like master plans, that fixes the activities for
the next couples of months. A work concerning more concrete schedules have been
presented by Scheckenbach [Sch09]. In his thesis, Scheckenbach assumes that at
each side a resource constraint project scheduling problem has to be solved, which
is solved by an SAP Detailed Scheduling Optimizer [Sch09, pp. 59, 87]. The
plans are much more detailed. Even though a restricting assumption is used, that
all planning entities have to solve homogenous planning problems. Interestingly
Scheckenbach does not use side-payments, as he argue that non-carefully designed
side-payment schemes leads to agents that cheat and probe. For coordination
Scheckenbach propose a mixture of hierarchical planning and a distributed evo-
lutionary algorithm. More details concerning his methodology can be found in
[Sch09, Chap. 4].

A work concerning collaborative planning that is not based in the applica-
tion field of supply chain management, has been presented by Püttmann [Püt07].
Püttmann addresses the coordination within a transportation network, concern-
ing the transport of goods by multiple parties, in intermodal freight transporta-
tion. This scenario address a coordination that is comes closer to the operational
level, than the coordination in a supply chain. Their approach base on result-
sharing techniques and is based on a mathematical optimization model, presented
in Püttmann and Stadtler [PS10].

A recent survey of the state-of-the-art has been presented by Stadtler [Sta09].
Stadtler also suggest a framework for classifying these coordination approaches
according to three categories [Sta09, p. 12]:

• structure of the supply chain and it’s members,

3.1. Coordination 63

• the decision structure of each supply chain member, and

• characteristics of the collaboration planning scheme.

The first two characteristics describe properties of the problem domain, the third
one tries to gather properties of solutions. These categories are not discussed here
in more detail.

Between the field of collaborative planning and multiagent systems research a
number of similar assumptions and metaphors exist: for example decision makers
are distributed and are autonomously, their interaction is specified by a protocol
[Sta09, p. 20], and negotiations are used to coordinate their plans. Even though
similarities exist there has not been much exchange between those fields of re-
search. From the perspective of collaborative planning software agents are seen
as one implementation architectures for collaborative planning mechanisms. They
are primarily seen as a pure software architectural issue [Sta09, p. 11].

Negotiation in business administration

A common technique to reach coordinated behavior are negotiations. Negotia-
tions can be modeled in different fields, and are discussed in subsequent sections
especially from the perspective of DAI. In the field of business administration a
negotiation can be defined as:

“A negotiation is an interactive communication process that may
take place whenever we want something from someone else or another
person wants something from us.” [She06, p. 6]

There exist no protocols or constraints on the interaction. The negotiation process
can be characterized by four steps:

• preparation,

• information exchange,

• bargaining, and

• closing, commitment.

During a negotiation the negotiator should therefore search for boundaries and
options for possible agreements that allow reciprocal accommodation, because a
deal can only be reached in a win-win situation. Shell [She06, p. xvi] argues that
all deals made between human negotiators have to be win-win situation because
otherwise there would not exist a deal, or it would be irrational for for one party
to participate in the deal. Moreover, the win-win situation is a strong motivation

64 3. State of the art

for the implementation of the deal. So if both sides profits from the deal, no
one has a motivation to break or resolve the deal, as long as their exist no more
profitable solution. Negotiations from the perspective of business adminstration
have a significant overlap with psychology. For instance, Shell points out that
it is important that “people need to feel they have earned concessions” [She06,
p. xviii]. Regardless of the fact if these concessions are real or would have been
given without negotiations anyway. Moreover, ethical guidelines and personal
negotiation styles, as part of an individual character of the negotiator play’s a
significant role. Shell distinct between the following negotiation styles [She06, pp.
9–12]:

• avoiding,

• compromise,

• accommodation,

• competitive, and

• collaborative/problem solving.

Even though a lot of psychological aspects come into play, it should not be the
dominant factor in a negotiation. But those are aspects that have to be taken
into account in the preparation phase of a negotiation. Therefore, authors like
Fisher et al. [FUP91] suggest that the negotiator should try to keep out these
personal feelings and focus on the problem and not the people. Moreover, in
human negotiations it has to be mentioned that the motivation for people to
negotiate is an important information, as they try to achieve a certain interest
that is not necessarily identical to their initial position. But this information can
be crucial to come to a deal that allow all negotiating parties to gain something
out of the negotiation and therefore accommodate all parts. Fisher et al. [FUP91]
therefore present the idea of the principled negotiation strategy, that tries to focus
on the problem at hand, and avoid some of the inter-personal psychology aspects
that can hinders finding a solution during a negotiation.

Although in the field of business administration the idea that negotiations can be
automated by agents representing humans. These automated negotiations should
be inspired and guided by principles discovered in negotiations done by humans.
This idea has been adopted by researchers in multiagent systems as well. So
Vassileva and Mudgal [VM02] argue that it is important to ensure a win-win
situation. And in Schumann, Kurtanovic and Timm [SKT09] a methodology to
model negotiation strategies and trade-offs in a human readable way, that can
automatically transformed to information accessible for agents, is presented.

3.1. Coordination 65

3.1.2. Coordination in DAI

In this section research concerning coordination in the field of DAI is addressed.
In general coordination in multiagent systems research tries to impose a desired
behavior among autonomous agents. Note that we try to limit on research pri-
marily rooted in DAI, research closely related to DAI rooted in game theory, like
the research on decommitments done by Sandholm, is presented in Section 3.1.3.
The approaches are grouped into three different fields of research. First, research
based on classical AI approaches is presented. The second line of research is
strongly motivated by research from distributed computing and resulting coordi-
nation mechanisms. Finally, in the third section the approaches combining the
previous ones are discussed.

Classical DAI coordination

At first, the modeling of dependencies performed in AI research is presented.
Thereafter mechanisms for handling existing dependencies are described. These
mechanisms base on ideas of task or result sharing techniques. Finally, coordina-
tion is considered as a planning problem and appropriate techniques are discussed.

Modeling and detecting of dependencies According to Ossowski [Oss08] the
coordination process can be decomposed into two parts. First, existing dependen-
cies have to be detected, and second, coordination actions have to be selected that
are appropriate. Both are formulated within a coordination mechanism that an
agent can apply. But as Omicini et al. [ORVR04, p. 275] state dependency detec-
tion is a knowledge intensive task, that can hardly be achieved by agents based
on local knowledge and local perception. As dependency detection is a topic on
its own, it is not detailed in this thesis.

Taxonomy of dependencies The most widespread taxonomy of dependencies,
that can exist between different plans of agents, has been presented by von Mar-
tial [Mar92]. This taxonomy is shown in Figure 3.4. Dependencies can either
be negative or positive. Negative relationships between plans can be resource
conflicts concerning some consumable or non-consumable resources. A conflict
concerning a consumable resource is characterized by a demand concerning this
resource that exceeds the existing amount of this resource. A conflict concerning
a non-consumable resource is given if two or more agents are not allowed to use
the same resource at the same time. Other negative relationships are called in-
compatibilities between plans. An example for such a plan incompatibility is a
situation in which two agents who wants to meet and end up at different places,
as they did not coordinate properly on the locality to meet.

66 3. State of the art

Figure 3.4.: Taxonomy of plan relations according to [Mar92, p. 90]

Positive relationships are equality, favor, and subsumption. An equality relation
exists in two plans, if there is redundancy between the plans that could be avoided
if only one of the agents performs the task. A favor relationship exists between
if the plan of one agent can contribute to the execution of another agent’s plan.
A subsumption relation exists if an action in a plan of an agent will lead to
the fulfillment of a goal in another agent’s plan. Thus, the second agent is not
required to incorporate the necessary actions to achieve this goal in its plan, as a
more general action has already been planned.

The third class of relations that can exist are the obvious relations between two
plans of agents. They are obvious, as they are requested by the agent. An agent
can either perform an actor request or an action request. Using an actor request
an agent requests a specific agent to perform an action. In contrast in an action
request an agent requests that an action is performed, regardless by which agent
the action is performed.

Another classification of dependencies has been proposed by Malone and Crow-
ston [MC94]. This classification origins from their attempt of the authors to
survey different fields of research like organization theory, computer science and
economics for coordination techniques. A simplified version of their taxonomy is
presented in Table 3.1. Note that the authors do not claim that this structure is
complete. Malone and Crowston identified four different types of dependencies,
that can have special subcategories [MC94, pp. 91–97]. The first category are
shared resources, where different activities share limited resources, in those cases

3.1. Coordination 67

Dependency Example for coordination process

shared resources e.g., first come/first serve, priority order
task assignment as shared resources

producer/consumer relationships
prerequisite constraint notification, sequencing, tracking
transfer inventory management
usability standardization, participatory design

simultaneity constraints scheduling, synchronization
task/subtask goal selection, task decomposition

Table 3.1.: Dependency classification, simplified version of table in [MC94, p. 91]

a resource allocation has to be done, to coordinate the activities. Task assignment
is seen as a special case of resource allocation, where the rare resource is the time
of the actors.

The second large group of dependencies are producer/consumer relationships.
Malone and Crowston identified different subcategories. Prerequisite constraints
ensure that an activity is finished before the consumer’s activity starts. Activities
have to be sequenced or a notification mechanism has to be in place. The second
subcategory is transfer. Thereby, it is indicated that a product that has been
generated by the producer must be delivered/transported to the consumer as well.
This can be done either by physical transportation of goods or by communication
of results. The third subcategory is usability. This aspect is mainly motivated
by the design of goods, but by far means limited to such scenarios. The product
has to be usable for the consumer. This implies that it has all needed properties
to get used by the consumer and that the consumer is able to use it. Example
for techniques to coordinate these dependencies are data-exchange standard that
define the syntax and semantic of information that is send via communication.

The third category of dependencies are simultaneity constraint, so that two or
more activities have to be performed simultaneously. An example where such
dependencies have to be dealt with is meeting scheduling or other conventional
synchronization problems in computer science, where often things are not allowed
to happen simultaneously.

The fourth dependency category are task/subtask relationships. Tasks are re-
fined by subtask. Thus, to fulfill a task it is typically necessary to fulfill all is to
be assumed if its subtasks are fulfilled. Coordination approaches like task decom-
position or hierarchical planning might be used to coordinate these dependencies.

Other ways to classify dependencies have been proposed by Jennings [Jen96] and
Decker [Dec95]. A dependency that has to be respected is called strong depen-

68 3. State of the art

dencies [Jen96, p. 192] or hard coordination relationships [Dec95, p. 136]. These
relations have the character of negative relationships according to von Martials
classification. Opposed to these strict dependencies weak dependencies [Jen96,
p. 192] or soft coordination relationships [Dec95, p. 136] are dependencies that
do not necessarily have to be regarded. Of course, all positive relationships have
such a character. But not all weak dependencies are positive for the overall plans.
Decker, for example, classifies its hinders relation (see the TÆMS description be-
low) as a soft constraint relationship [Dec95, p. 136]. It goes without saying that
dependencies between two entities are directed. Thus, dependencies between two
plans can be either unidirectional, i.e., only one plan depends on the other; or
bidirectional, i.e., the plans are interdependent [Jen96, p. 192].

TÆMS TÆMS is an acronym for Task Analysis, Environment Modeling, and
Simulation framework designed by Decker [Dec95, Chap. 3]. A task environment
in TÆMS is described on three levels:

• the objective level,

• the subjective level, and

• the generative level.

On the objective level “the particular problem-solving situation or instance over
time” [Dec95, p. 50] is modeled. That is, the overall situation is formally de-
scribed, where the coordination has to be done. The tasks that have to be per-
formed are modeled in a tree like form, i.e., they are decomposed into subtask.
The leaves of this tree, the executable tasks, are called methods. Each method has
a certain time interval, in which it has to be processed, a maximal quality that can
be achieved, and a duration the execution requires to achieving maximal quality.
Quality can only be achieved if the task is performed within its time interval.
Note that method execution is preemptive, i.e., the execution of a method can be
interrupted, gaining lower quality. The execution can be continued within time
interval of the task. To model certain aspects of the environment it is possible to
use so-called local effects. Those effects can be used to describe if a task can be
interrupted and and how the gained quality is effected by the duration the task
is executed. If a method is executed after its deadline no more quality can be
achieved. Each (sub)task, that is not a method, has a quantifier that specifies
how the quality gained from its subtasks has to be aggregated. Decker introduced
four different functions to do so [Dec95, pp. 51.52]. For example taking the mini-
mal quality of all sub-tasks can be used to model AND relationships. Taking the
maximum quality of a sub-task can be used to model OR relationships. Other
quantifiers introduced by Decker are the summation of qualities or the average

3.1. Coordination 69

Figure 3.5.: Objective task structure in TÆMS, from [Dec95, p. 58]

quality of all subtasks. In the environment different tasks can exist simultane-
ously. Dependencies can exist between different task structures, as well. These
dependencies can be modeled using non-local effects. Non-local effects are edges
in the task graph, ending in the node that depends on the execution of the node
the edge starts from. Non-local effects can effect duration or quality of a method.
Decker [Dec95, pp. 55,56] propose the following set of non-local effects: enables,
facilitates, hinders, precedes, favors, cancels and causes. Decker stated that these
set can be extended if necessary. A resulting TÆMS objective structure is shown
in Figure 3.5.

The subjective level of TÆMS is a mapping of the objective task structure to
the part of the structure each agents can perceive. Thus, agents do not necessarily
perceive the complete task structure or the correct task structure.

In the generative level of a TÆMS model characteristics of a certain domain,
measured by statistical measures, are stored. The information on the generative
levels could be used, to configure a generator of current instances of task groups.

A number of domains have been modeled in TÆMS. Among others, models of
distributed sensor networks, hospital patient scheduling [Dec95, Chap. 3.6] and
supply chain management [WGP03] have been presented.

Moreover, TÆMS has been extended into CTÆMS, mainly by adding a number
of additional non-local effects. CTÆMS was used as modeling language in the re-
cently finished DARPA project COORDINATOR7. In this project three research

7see http://www.darpa.mil/ipto/programs/coor/coor.asp Accessed: 02/11/2010

http://www.darpa.mil/ipto/programs/coor/coor.asp

70 3. State of the art

groups investigated coordination and planning techniques for various coordination
tasks modeled in CTÆMS. Techniques that was used were hierarchical task net-
works by Smith et al. [SGZ+06] and Markov decision processes by Maheswaran
et al. [MSB+08], for instance.

Task sharing is an idea origin from the research of cooperative distributed prob-
lem solving. A task of an agent can be decomposed into a number of sub-tasks.
An agent can decompose a task into sub-tasks. These sub-tasks can be distributed
among a number of agents that either perform the subtask or decompose and dis-
tribute them again. Thus, the main steps of this problem solving technique are,
according to Durfee [Dur99, p. 124]:

• to decompose a complex task into simpler ones,

• allocate the subtasks to an appropriate agent,

• the subtask are accomplished in parallel, and

• finally, the results of the subtasks are combined and a result for the overall
task is synthesized.

A well-known protocol that has been proposed for such situations is the contract
net protocol [DS83]. Within the contract net protocol the contracting process is
organized in form of a public announcement and a bidding process. One agent,
that wants to share a task, takes the role of a manager that make a task an-
nouncement. If the manager has a prior knowledge about potential agents that
can perform the task, he can send the task announcement only to these specific
agents. If no such knowledge is available to the manger he can broadcast the
announcement. Agents that receive an announcement evaluate if they can per-
form the task. If so, they send a bid to the manager specifying the conditions
for performing the task. The manager might receive a number of bids. He can
then select one bid according to a preference function. The successful bidder is
informed via an award message.

If the manager does not receive a bid or no appropriate one, he can react
according to Durfee [Dur99, pp. 128,129] in the following ways:

• broadcasting: If previously the manager has send the task announcement
to a selected group of agents, he can broadcast the task announcement, to
reach agents that he is not was aware of that they could perform the task
as well.

• retry: The manager could, even periodically, retry to allocate the task to
the agents, by periodically send out the same task announcement.

3.1. Coordination 71

• announcement Revision: The manager might consider relaxing some con-
straints he has defined for the fulfillment of the task. Thus, if he relaxes
constraints the task might become executable, or more attractive for other
agents to perform.

• alternative decompositions: The manager can try to find another decompo-
sition of the task that might be not optimal but resulting in a set of subtasks
that can be distributed, to achieve the best implementable plan.

The contract net protocol is widely known and has also become part of the
FIPA specification [FIP02f, FIP02g]. Moreover, the contract net protocol has
been extended by Sandholm [San99] using marginal costs, which is explained in
more detail in Section 3.1.3. In the following we discuss aspects of negotiations in
multiagent systems.

Negotiations in MAS The notion of negotiation is often used in multiagent
systems. Consequently, no coherent definition is available. We use here a definition
given by Bussmann and Müller. According to their definition a negotiations is
detailed as “the communication process of a group of agents in order to reach a
mutually accepted agreement” [BM92]. Negotiations are typically used for task
allocation or conflict resolution among agents [Mül96, p. 212]. According to Müller
[Mül96, p. 213] research issuing negotiation can be grouped into the following
classes:

• negotiation languages,

• negotiation decision, and

• negotiation process.

As pointed out in Section 2.3.4 negotiation between agents base on communication
between the negotiating agents. Therefore, in earlier research concerning negoti-
ations the topic of adequate negotiation languages has been addressed. Special
languages, like COOL [BF95], have been developed for coordinating agents. As a
consequence of the FIPA standardizing process most issues concerning negotiation
languages, like languages primitives or languages for message exchange, have been
standardized and are consequently no active research issue anymore. An excep-
tion are negotiation protocols, i.e., interaction protocols for negotiation. If FIPA
interaction protocols8 do not offer a natural fit or an efficient solution, additional
more specialized protocols can be defined for negotiations.

8FIPA interaction protocols have been presented in Section 3.1.3 and summarized in Table 2.6

on page 52.

72 3. State of the art

Figure 3.6.: Graphical representation of a trade-off relationship, see [SKT09] for more

details

As any other communication process, negotiations have a content. The content
of a negotiation is the issue or item the negotiation is about. This issue can ei-
ther be described by one or more attributes that are regarded in the negotiation
process. If only one attribute is the subject of the negotiation it is called a sin-
gle issue negotiation otherwise it is called a multiple issue negotiation [Woo09,
p. 316]. Single issue negotiations are easier to perform, as they boil down to
the question which negotiation partner makes what concession. In multiple issue
negotiation it becomes more complicated, as each negotiation partner has a set of
private trade-off relations among the attributes that guide him in his negotiation
process. A graphical representation of some trade-off relations, introduced in joint
work with Kurtanovic and Timm [SKT09], is illustrated in Figure 3.6. Defining
those trade-offs and then computing efficient offers to efficiently come to an agree-
ment can become difficult, as pointed out in [SKT09]. In this article we provide a
way to specify trade-offs in a human readable way that can automatically trans-
formed into a representation that can be use by agents in negotiations. We have
also presented techniques for efficiently computing bids. Therefore, we compute
preference hierarchies offline and store them in a relational database. More details
are provided in Schumann et al. [SKT09] and Kurtanovic [Kur08].

Negotiations can be sketched into three layers:

• The negotiation protocol: the protocol specify the possible sequences of
messages, or more precisely, of performative.

• The negotiation behavior: the negotiation behavior specifies for each possible
step in the negotiation process hot the agent should behave, i.e., what kind
of message according to the protocol should be send next.

3.1. Coordination 73

• Negotiation data: the data is on the one hand the data that is exchanged
between the agents, and on the other hand also the data and functions that
are required to provide enough information to the negotiation behavior.

A negotiation can end with a conflict or with a mutual agreement. These
agreements are often referred to as commitments. In the following the role of
commitments for the coordination among agents is discussed.

Commitments and conventions According to Jennings [Jen96, pp. 194,195] a
commitment is a binding pledge an agent gives about its actions or beliefs. An
agent can give a commitment to another agent, which reduce the uncertainty
about the future behavior of the first agent, the second agent has. An example
might be that agent A commit to agent B to perform task t in a certain time
window. After this time windows has elapsed agent B assumes that the task t has
been performed and eventually gets a confirmation by A. An agent can also give
commitments to himself, which can be seen as an internal plan representation.
Commitments can also be conditional, i.e., there exists a condition that has to be
satisfied to activate the commitment. As aforementioned a commitment reduces
the uncertainty about the behavior of an agent, but on the other hand the agent
that has given the commitment has to reserve resources to perform the action he
has committed to do and this limits its flexibility. Thus, an agent is limited in its
future choices by its given commitment. If a number of agents wants to achieve a
goal together that requires a joint action, i.e., an action that require a number of
agents to perform it at the same time; these agents need a joint commitment. A
joint commitment is a commitment that is given by all participating agents.

Even though commitments are binding it is possible for the agents to drop them.
This can only be done with mutual agreement of all effected agents. A situation
in which it makes sense to drop a commitment is if the commitment is satisfied
or unreachable. Jennings [Jen96, p. 196] termed those rules to reason about
commitments conventions. Additionally, Jennings [Jen96, p. 198] describes social
conventions, which encode the rules for the agent how to behave towards other
agents if its local reasoning about commitments has changed its opinion concerning
a commitment. If the agent comes, by local reasoning, to the resolution that a
joint commitment is not achievable anymore, it is not allowed to unilateral skip
it by social conventions, for instance. A possible social convention might be that
the agent has to inform all other participating agent of the joint commitment that
the current joint action will not be successful, according to its local reasoning.

According to Jennings [Jen96, p. 200] commitments and conventions are es-
sential for the coordination among agents. Therefore, Jennings formulated the

74 3. State of the art

following equation [Jen96, p. 200]:

Coordination = commitments+conventions+social conventions+local reasoning.

Jennings encoded all conventions in forms of rules. This enables him to build
agents using rule-based systems to coordinate the behavior of the agents. These
ideas were implemented in the ARCHON system, a short overview can be found
in Wooldridge [Woo09, p. 168] and a more elaborated description is provided by
Cockburn and Jennings [CJ96]. Another interesting example has been presented
by Busetta et al. [BMRL03].

Result sharing By task sharing, a set of task can be allocated to a number of
agents. Result sharing becomes necessary if the different task depend on each
other or influence each other. Result sharing enables agents to achieve better
performance. Durfee [Dur99, p. 131] has characterized four kinds of positive
effects that could be achieved:

• Confidence: if multiple agents have computed the same results their confi-
dence in their results can increase.

• Completeness: if the agents have computed results for subtask they can gain
a more complete plan by combining their solutions.

• Precision: if agents consider actions taken by other agents into account in
their planning process, they can generate more coherent plans.

• Timeliness: if results from other agents restrict the search space of an agent,
it can generate its results faster.

There exist different strategies for the communication of the results to different
agents, ranging from broadcasting, which is typically very costly in terms of com-
munication costs, to single point to point communication. So in a contract net
like task/subtask topology, results are typically reported back to the manager that
contracted the current task. Other approaches use the idea of building structur-
ing organizational structure in MAS to guide the flow of information and existing
dependencies. Result sharing can either done during the planning process, i.e.,
partial plans are shared; or after the local planning systems have finished their
computation. Examples of result sharing during the planning process are for-
warding techniques like forward checking in (distributed) constraint satisfaction,
see Yokoo [Yok01, p. 11]. A more detailed discussion of result sharing is provided
by Durfee [Dur99].

For the coordination of planning entities, and thus plans, result sharing during
the planning process is not well suited. As already mentioned, in Section 2.2.3

3.1. Coordination 75

planning systems can show chaotic behavior. Thus, sharing plans in progress
cannot be used to achieve coordination among planning systems, as the published
plan can still drastically change during the local planning process.

The idea of first completing local planning and then share the results, and if
necessary, adapt the plans is applied, for instance, in von Martials work addressing
the coordination of plans from different agents [Mar92, Chap. 3].

Generalized Partial Global Planning (GPGP) Decker [Dec95, Chap. 5] intro-
duced GPGP as an extension of the partial global planning (PGP) from Durfee9.
GPGP was designed to work in environments described in TÆMS. A driving idea
of GPGP was to separate the coordination procedure from the local scheduling
system [Dec95, p. 100]. GPGP comprises a set of coordination mechanisms for a
team of cooperative computational agents. According to Decker [Dec95, p. 117]
the coordination mechanism has to be detailed concerning aspects like:

• how and when communicate/construct non-local views,

• how and when exchange partial results, and

• how and when make and break commitments.

A non-local view is an enriched representation of the objective environment an
agent can build using the subjective view of the agent plus additional information
received from other agents. GPGP emphasizes result sharing and information
sharing about the task structure, thus meta-information, as well. Therefore, it is
not a strict result sharing approach. For applying the GPGP mechanism it has
to be configured. Configuration is done via specifying strategies for five different
coordination activities. These activities are [Dec95, Chap. 5.6]:

• Updating non-local viewpoints: Defines what degree of local information
about the problem state has to be published, e.g., all, nothing or fractional.

• Communicating results: Defines the strategy that is used to send results to
other agents, e.g., minimal to satisfy commitments, all results or send results
to interested agents.

• Handling simple redundancy: Defines the strategy how to deal with dupli-
cated redundancy in agent’s plan, e.g., a redundant task is performed by one
arbitrary chosen agent out off the agents that wants to perform the task,
and results are communicated to all of them.

9An introduction to PGP is provided by Durfee in [Dur99, pp. 153–157].

76 3. State of the art

• Handling hard coordination relationships: Define the strategy how to deal
with the violation of hard coordination relationships: e.g., perform a local
replanning.

• Handling soft coordination relationships: Define the strategy how to deal
with the violation of soft coordination relationships: e.g., check if a replan-
ning is reasonable or not.

Note that hard and soft coordination relationships have been discussed above.
As a consequence of the flexibility GPGP offers in configure, the coordination
algorithm can be detailed to a family of coordination mechanisms. According
to Decker [Dec95, p. 125] the GPGP mechanism can be configured in 72 ways,
leading to different results for a given environment at hand. Thus, the mechanism
can be specialized for its target environment.

GPGP has two kinds of commitments, local and non-local ones. Thereby, non-
local commitments are given to other agents. A local schedule is generated by
the local scheduling system that has to try to regard all commitments, locals
and non-locals. If the plan is computed, the coordination mechanism identifies
which non-local commitments could not be satisfied, these commitments have to
be resolved, as they cannot be fulfilled anymore. While local commitments that
could be satisfied can be published to other agents, and thus become non-local
commitments [Dec95, p. 127].

GPGP, as well as TÆMS, have been applied in a number of domains, like
distributed vehicle monitoring by Decker [Dec95], hospital patient scheduling by
Decker and Li [DL00] and supply chain management by Wagner et al. [WGP03].

Coordination as a planning problem Another perspective to tackle coordination
problems is to see them as a planning problem. Durfee distinguished three different
cases [Dur99, Chap. 3.5]. These cases are presented in the following.

Centralized planning for decentralized execution The main idea is that there
exists a centralized planner that has all required knowledge to compute a global
plan. This kind of approach has communalities with the top-down and top-
down/bottom-up planning approach presented in Section 3.1.1. Consequently, the
same problems arise, for instance, the centralized planner requires a large amounts
of information to perform its task. This information has to be kept updated over
time, which is another problem and the centralized planner has to have the power
to enforce that the agents commit to its plans. Due to these problems this type
of coordination is not focused in this study.

3.1. Coordination 77

Decentralized planning form a global plan The idea of this approach is that
a number of experts compute together a plan. Durfee [Dur99, p. 141] especially
mention here planning problems from the fields of supply chain and logistics. Nev-
ertheless, in the example he presents the planning was performed in a sequential
way, i.e., results were passed from one planning agent to another. Limitations of
this sequential solution generation have already been discussed in Section 3.1.1.
If there exist interdependencies, and thus cyclic dependencies in the dependency
graph, this approach cannot be applied. As shown, for instance, by Meier and
Schumann [MS07], cyclic dependencies can be found in real world planning and
coordination problems, and are not purely of academic interest. Thus this ap-
proach might be used solving problems with linear dependencies, only. But it
is not sufficient for problem solving, when the coordination problem has cyclic
dependencies.

Decentralized planning for decentralized execution This approach addresses
situations in which the plans are generated by a number of planning systems and
are executed also in a distributed manner. Thus, it might be even not necessary
to form a global plan. Nevertheless, avoiding unwanted plan interactions raises
the need for coordination among the plans. There exist a number of approaches
for doing so:

• Pre-planning coordination: To avoid conflicting results an idea might be
to eliminate the possibility of interference of partial plans at all. The inter-
ference of plans are a consequence of the dependencies that exist between
the tasks/actions that have to be performed. Witteveen and a number of
researchers from his group have taken up this approach. The main idea is to
add a number of constraints into the original problem formulation to avoid
interfering plans. The existing potentials for parallel execution should be
exploited and possible interference (caused by a too high degree of distri-
bution) can be avoided. Unfortunately, the problem of adding additional
constraints is a very hard one, for details see Steenhuisen and Witteveen
[SW07] and Witteveen et al. [WHR09].)9

• Plan merging: The idea of plan merging origins from classical AI planning,
especially STRIPS planning (see Section 2.2.1). Each action has additional
information about what conditions have to be satisfied while the action is
executed. For each intersection between two plans, it has to be checked if the
different plans interfere with each other. The intersection of two plans are
all their possible interference points. If a negative interference is detected
they have to be removed, either by synchronizing the plans, or revising them,
if synchronization is not possible. An introduction into plan merging can

78 3. State of the art

be found in Durfee [Dur99, p. 141] and more elaborated work has been
presented by de Weerdt [Wee03].

Plan merging requires a central entity that is capable to reason about the
interdependencies of the plans and means to resolve those interdependencies.
This is hard to achieve for domains where the necessary knowledge cannot
be formalized easily.

• Mediator-based approaches: Another way, also using a central entity is
based on the idea of using a mediator. A mediator can observe the over-
all systems behavior and can temporally limit the autonomy of the agents
and thus order them to perform certain policies or it can solve subprob-
lems in a centralized manner more efficiently. Examples for such mediated
approaches have been presented by Schumann, Lattner and Timm in the re-
search concerning regulated autonomy [SLT08c, SLT08b]. Another approach
for mediation in the field of distributed constraint satisfaction (see below)
has been presented by Mailer [Mai04].

• Iterative plan formation: The idea of this approach is based on the
assumption that conflicts between agents have to be removed. By iteratively
remove conflicts the plans become more and more coherent. A detailed
description of these techniques is provided by Durfee [Dur99, p. 144–148].
The idea of iteratively generate plans that leads to more and more coherent
plans is appealing. For plans that depend on each other, the output of one
planning system determines the inputs for another planner, a corresponding
method for iterative plan formation would be a fix point iteration. This idea
has been investigated by Meier and Schumann in [MS07]. It could be shown,
as it was expected, that due to the chaotic behavior of planning systems10,
no such fix point could be computed and that no narrowing pattern could
be identified after multiple iterations.

• Negotiations: As already mentioned, negotiations are used for conflict res-
olution as well. They are a common technique to harmonize distributed
generated plans. Negotiations in general have already been discussed above.
So here two applications of negotiation designed in the context of the Ger-
man priority research program “Intelligent Agents and Realistic Commercial
Application Scenarios” [KHLS06] are presented. Paulussen et al. [PJDH03]
present a negotiation scheme in the domain of hospital patient scheduling.
Agents representing patients negotiate with resource agents representing hos-
pital units which offers services. An artificial currency is introduced to model

10see Section 2.2.3

3.1. Coordination 79

a single-item negotiation among rational agents. An approach in the domain
of supply chain management is presented by Frey et al. [FSWZ03]. In their
approach they coordinate different agent-based planning systems. Each of
those planning systems hosts a coordination agent that can inspect the local
plan and use these data to negotiate efficiently.

Coordination as distributed constraint satisfaction Problem A set of tasks
and dependencies can also be formulated as a distributed constraint satisfaction
problem (DCSP) [LS96]. A constraint satisfaction problem [GNT04, p. 168]
is defined by a finite set of variables X = {x1, ..., xn}; a finite set of domains
D = {D1, ..., Dn} for the variables with xi ∈ Di; and a finite set of constraints
C = {c1, ..., cm}. Each constraint ci involves a subset of variables and specifies
allowed combination of values for that subset of variables. A constraint is defined
by a predicate [Yok01, p. 2].

A solution for a (distributed) constraint satisfaction problem is an assignment
v = {v1, ..., vn} to the variables X such that vi ∈ Di and all constraints are
satisfied.

In a DCSP the variables are distributed among different agents. A constraint
ci is known to all agents that are assigned to variables that are effected by the
constraint.

Liu and Sycara [LS96] model the coordination problem in a job shop scheduling
sequence (see Section 2.2.1) in form of a DCSP. They do so by defining a variable
for the start time of each operation that has to be performed. The precedence re-
lations between operations are encoded in the constraint set as well as the capacity
restrictions. Another approach for the coordination of distributed schedules has
been presented by Kawamura et al. [KKAO00]. In their approach they try to find
a solution via negotiation among agents representing different planning systems.
These agents have to ensure that local constraints (e.g., capacity constraints) and
global constraints (e.g., sequence of activities) are satisfied.

The field of efficiently solving those kinds of problems is not in the focus of this
research and thus not explained here. A detailed introduction into DCSP and
algorithms to solve those problems is given by Yokoo [Yok01].

Coordination from the perspective of distributed computing

Coordination was investigated in the field of distributed computing, too. This
research has also influenced the AI research. Here, a short overview about research
in distributed systems is given and shown how this interrelated to multiagent
systems research. A work that tried to bridge both research fields was presented
by Schumacher [Sch01].

80 3. State of the art

Coordination in distributed computing is motivated by the need of data ex-
change of threads/processes among each other and their synchronization. Ac-
cording to Schumacher [Sch01, p. 15] the coordination approaches, presented so
far, suffering from their agent-centric perspective. Therefore, Schumacher termed
these approaches subjective coordination. He argues that the environment of the
agents, as the coordination media, has to be respected at design time as well. In
contrast to the subjective coordination approaches Schumacher termed the coor-
dination with a more system-wide perspective the objective coordination [Sch01,
p. 17].

Coordination from the perspective of distributed computing can be described
in form of a coordination model . A coordination model comprises [Sch01, p. 34]:

• the coordinable entities, which are the concurrently running activities,

• a coordination medium, which enables the coordination and can be described
as the place where the coordination took place, and

• the coordination laws, which specify the semantics of the model.

Such models can be expressed in form of coordination languages. Thereby, coor-
dination languages are defined as follows: “A coordination language is the mate-
rialization of the linguistic embodiment of a coordination model” [Sch01, p. 35].
Coordination models can be either data-driven, process-oriented or hybrid. A
well-known data-driven model is LINDA. An introduction into LINDA can be
found, e.g., in [Sch01, Chap 3.3]. In the LINDA model processes communicate
via a shared data space. The items that are communicated are tuples, whereby a
tuple can contain a number of data entries each a simple data type. These tuples
are referred to as passive tuples. A special type of tuple is an active tuple. An
active tuple is a process in the tuple space that computes a result, if it terminates
the result becomes available as a passive tuple in the tuple space. Information is
retrieved from the tuple space using a template matching mechanism. In such a
template fields can either by filled with a constant value or with a placeholder for
a value. Information is retrieved from tuples in the tuple space that satisfy the
characteristics described in the template. Linda defines a number of primitives
for interacting with the tuple space like read, write or create active tuples.

LINDA had major influence on the field of coordination in distributed com-
puting and its ideas, among others, have taken up into mainstream programming
languages, like the Java Spaces that have been developed in the efforts developing
Jini11.

The second class of coordination modes are process-oriented models. They
describe the state of the computation. These models enables to distinct between
11see http://java.sun.com/docs/books/jini/javaspaces/, Accessed: 02/13/2010

http://java.sun.com/docs/books/jini/javaspaces/

3.1. Coordination 81

the computation and the required coordination. Different types of channels can
be defined and thus different types of interaction among processes, like blocking
communication and non-blocking. A well-known example for a process-oriented
coordination language is Manifold, described, e.g., by Schumacher [Sch01, pp.
42,43].

In his work Schumacher [Sch01] present the ECM coordination model, that
can serves as a meta model for a number of concrete coordination languages.
One of these languages is the SLT++ language. In the SLT++ languages the
communication is realized via connections that can connect an input and an output
port of a process/agent. An agent that sends a message on a channel does not know
which agents will listen to this channel, or if an listener exists at all. Note that
consequently all communication is anonym, which contrast the typical assumptions
in multiagent communication presented in Section 2.3.4.

Objective and subjective coordination

The idea of objective coordination has influenced research of coordination in DAI
and lead to a number of results especially dealing with the ideas of an agent
environment that could facilitate coordination between agents.

Combination of objective and subjective coordination approaches A similar
concepts to the aforementioned distinction between objective and subjective coor-
dination is the distinction between the micro-level (agent-centric) and the macro-
level (MAS-centric) that is favored by Omicini and Ossowski [OO03]. Both con-
cepts have been compared, e.g., by Bergenti and Ricci [BR02] and by Omicini
and Ossowski in [OO03], for instance. In the following research approaches to
integrate those two perspectives that have been proposed, e.g., by Omicini et al.
[ORVR04].

As pointed out by Ricci et al. [RVO06] not all entities in a system have to
be represented as agents. Therefore, Ricci et al. propose the use of artifacts
as an additional concept for modeling multiagent systems. Artifacts are part of
the environment of agents and can be used by them. A special type of these
artifacts are coordination artifacts , discussed, e.g., by Omicini et al. and Ricci
et al. [ORV+04, RVO06]. A coordination artifact corresponds to a coordination
medium, mentioned above. A coordination artifact is an element of the agents
environment. Agent can use the artifacts to coordinate their behavior. Thus,
these artifacts encapsulate a coordination service that can be reused and can be a
building block during the design of a MAS. Consequently, it is argued by Ricci et al.
[RVO06] that coordination artifacts are an engineered approach to coordination.
A coordination artifact, like any coordination media, should exhibit the following

82 3. State of the art

properties [ORV+04]:

• Specialization: agent should coordinate their activities effectively and effi-
ciently.

• Encapsulation: the coordination mechanism is encapsulated and thus can
be reused.

• Malleability: the coordination behavior can be adapted at runtime.

• Inspectability: the behavior should be inspectable and observable to enable
maintenance and debugging.

• Predictability: the coordination should be performed predictable, i.e., prov-
able, exactly confirming to the coordination laws.

It goes without saying, that these properties are typically not satisfied by intelli-
gent agents (see Section 2.3.1). Thus, these artifacts are objects in the multiagent
environment. The idea to enriching the agents environment with artifacts is used
in recent research creating embodied organizations, described, e.g., by Piunit et
al. [PRBH09], too.

An extension of this idea has been presented by Vilencia et al. [VSL+10].
Thereby, an agent framework should be enriched by an extra coordination layer
[SR08], that handles the coordination explicitly. Thereby, coordination spaces
similar to coordination artifacts are used within this layer. Embedding these
coordination spaces in the environment should free the agents from reasoning
which coordination artifact they should use [VSL+10]. Therefore, coordination
spaces have listeners that can intercepts events that occur inside the agent. Results
of the coordination can be send via events, to the agent. The agents perceive those
events as an perception from their environment.

The scope of application for coordination artifacts has been described by Ricci
et al. as follows: “coordination artifacts ... basically works when it is possible
and useful to design a priori the solution to the coordination problem” [RVO06, p.
211]. Examples of coordination mechanisms embedded in coordination artifacts
discussed in the literature are for instance, the follow-me artifact, where on agent
imitates another one, presented by Omicini et al. [ORV+04]; or synchronization
demonstrated by the dining philosophers problem used by Ricci et al. [RVO06].
Moreover pheromones, used in, e.g., in ant algorithms, have been represented as
coordination artifacts/spaces proposed by Vilencia et al. [VSL+10].

Omicini et al. [OOR04, pp. 284–286] points out that the integration of objective
and subjective coordination has been inspired by the activity theory. Activity
theory origins from social psychology. According to the activity theory three
different layer of cooperative activities can be identified:

3.1. Coordination 83

• Co-ordinated: thereby participants follow their fixed roles aiming to success-
fully performing the activity.

• Co-operative: actors focussing on a common objective, thereby the roles of
the participants are not fixed. The actors have to balance their activities
regarding possible interdependencies.

• Co-constructive: actors focus on re-conceptualisation of their organization
and their interaction, like the roles used in co-ordinated actions.

In the transfer to MAS the authors argue that co-constructive actions are done
by agents that reason about the objectives of the MAS and thus define social
objectives and task that have to be performed. In co-operative activities agents
design coordination artifacts, either embodied (coordination media) or disembod-
ied (plans, interaction protocols), in order to achieve the tasks and coordinate
their action. Consequently, within the co-ordinated activities agents can use the
coordination artifacts to coordinate their behavior.

Omicini et al. [OOR04] advocate that in contrast to existing agent platforms
should offer a richer feature set. Currently agent platforms enables agents based
on these platforms to communicate. Additional features Omicini et al. propose
are techniques for coordination as build-in features of the platform. This would
offer a higher level of abstraction for building multiagent systems. It would also
increase the reuse of these basic coordination mechanisms, as they are part of
the platform the agents are hosted in. The authors [OOR04, Chap. 6] mention
the TuCSoN platform12 as an example for such an extended platform. TuCSoN
provides coordination services that base on a tuple centered coordination model,
which has been outlined above.

Those models enable agents to reason about an appropriate coordination
medium/artifact to coordinate their behavior among each other. An example
how such reasoning can be performed has been presented by Excelente-Toledo
and Jennings [ETJ04].

Recent joint research effort Recently, the research concerning coordination in
multiagent systems has been facilitated by a joint international research effort.
This is in the COST Action ICO801 “Agreement Technologies”13. The COST
action has been established in 2008 and will continue to 2012. In this actions five
work groups have been defined that concentrate on current research topics. The
issues are:

• semantics,
12for details see http://apice.unibo.it/xwiki/bin/view/TuCSoN/, Accessed: 02/13/2010
13http://www.agreement-technologies.eu/, accessible at 02/13/2010

http://apice.unibo.it/xwiki/bin/view/TuCSoN/
http://www.agreement-technologies.eu/

84 3. State of the art

• norms,

• organization,

• argumentation/negotiation, and

• trust.

In the following the goals of these working groups are presented. A more detailed
presentation of this project is given by Ossowski [Oss08].

Semantics As a prerequisite for agreements is successfull communication. There-
fore, it is on the one hand necessary to transfer messages correctly, and on the
other hand enables correct interpretation of the content of the message. Conse-
quently, semantics is a central research topic enabling to come to agreements. To
achieve mutual understanding between agents techniques like ontology alignment
and the detection and solution of semantic mismatches have to be addressed.

Norms Norms, as well as social laws, regulates agent’s behavior. Note that agent
can break norms if it is rational for them to do so. These norms can be either
given by the systems designer or can emerge and evolve from the system’s behavior
[Woo09, p. 173]. Both aspects require systematic approaches to achieve desired
behavior. An approach for norm evolution has been proposed, e.g., by Timm,
Lattner and Schumann [TLS09].

Organization As already mentioned, in Section 3.1.1 an organizational structur-
ing of agents can reduce the coordination complexity. Consequently, the use of
organizations as a technique to coordinate agent’s behavior has to be explored as
well. An organization in a MAS is composed out of a set of roles that agents can
fulfill and a set of rules, often referred to as social laws or norms, that regulate
the interaction among roles [Jen96, p. 204]. The design of organizations has been
subject of research for a long time (see [CG99]). Research concerning organization
in MAS address on the one hand the formation of organization, like team forma-
tion or coalition formation, and on the other hand the evolution of organizational
structures. Beside the pure methodologies tools support is necessary as well, to
ensure that these concepts and principles become useful in practical applications.
Thus, it is essential that tool support is given.

Argumentation and Negotiation A key theme in negotiations is the exchange
of agent’s positions and making concessions to each other. As already mentioned,
this process is termed negotiation. Within an argumentation an agent tries to

3.1. Coordination 85

convince its opponent to change its position [PSJ98]. This is typically realized
using logics, i.e., agents try to manipulate the belief set14 of the agent, so that
the position of the other agent changes. Argumentation is already an issue for
research. An integration of argumentation techniques into negotiation approaches
seem reasonable to enrich negotiation techniques. This integration has to respect
the fact that for practical applications these negotiation techniques have to be
realized regarding limited resources and limited time.

Trust As trust is a prerequisite for finding agreements between actors, it is an
issue for the research concerning agreement/coordination. Trust between agents
establishes by positive experience with another agent, i.e., the other agent behave
as expected. To establish trust agents have to identify similar situations, to decide
if they can trust another agent or not in a new situation. While norms have a
rather static nature, they evolve over time slowly; trust can be used to offer more
flexibility for the agents. Consequently, norms and trust mechanisms have to be
balanced. Additionally, semantics support for trust is required.

3.1.3. Coordination concepts in game theory and mechanism design

Research concerning coordination, especially in DAI, has been heavily influenced
by game theory. Papers concerning game theoretical issues, like mechanism design,
can be found with a significant proportion in major DAI conferences, like the
AAMAS15.

According to Holler and Illing [HI06, p. 1] the focus of game theory is the analy-
sis of strategy decision making. Thereby, it is assumed that different autonomous
rational decision takers participate in the decision making process and the final
outcome depends on the interdependence between the different decision chosen
by the participants. Thereby, conflicts of interests or coordination problems can
occur. In game theory these decision problems are modeled as games. Beside the
rationality assumption it is typically assumed that all players have full informa-
tion about the possible outcomes of a game, even though these assumptions can
be partially relaxed, e.g., by applying mixed strategies. The field of game theory
can be distinct into game theory and mechanism design. In the subfield of game
theory the strategy rational agents apply in a game is in the focus of investigation.
In the field of mechanism design the perspective is different. Given the assumption
of rational agents, the question is, how mechanisms/games should be designed to

14Belief sets are discussed in Section 3.2.1.
15See, for instance, for program of AAMAS 2008 (http://gaips.inesc-id.pt/aamas2008/tech_

programme.html Accessed: 02-09-2010) or the list of accepted papers of AAMAS 2009 (http:

//www.conferences.hu/AAMAS2009/accepted_papers.html Accessed: 02-09-2010)

http://gaips.inesc-id.pt/aamas2008/tech_programme.html
http://gaips.inesc-id.pt/aamas2008/tech_programme.html
http://www.conferences.hu/AAMAS2009/accepted_papers.html
http://www.conferences.hu/AAMAS2009/accepted_papers.html

86 3. State of the art

guarantee certain properties. Both branches are presented in the following.
A rather short introductions into game theory in AI and in particular in multia-

gent systems is given by Russell and Norvig [RN03, Chap. 17.6], Sandholm [San99]
and Wooldridge [Woo09, Chap. 11-15]. A more detailed introduction from the
perspective of DAI into game theory is provided by Shoham and Leyton-Brown
[SLB09]. Another elaborated introduction from an algorithmic perspective has
been edited by Nisan et al. [NRTV07].

Game theory

The field of game theory can be further subdivided into the research concerning
non-cooperative and cooperative games .

In non-cooperative games a detailed investigation about what actions are chosen
in each round of the game is done. It is not possible for the agents to commit
themselves to a strategy before the game starts. Thus, the agents cannot make
deals and form coalitions. The goal of non-cooperative games is to investigate the
best possible, i.e., utility maximizing, strategies for the players.

Cooperative games have a more abstract perspective on games. The actions of
each players are not model in detail. Instead the agent knew only its payoff. Agents
are allowed to commit to a strategy and therefore can form coalitions to maximize
their expected profit. Consequently, cooperative games lay the fundament for a
formal approach to investigate coalition forming among self interested, rational
agents. In the focus of this study is the coordination of agents and not the process
how they come to a coalition. A game in game theory is given by:

• a set of players,

• a set actions the players can perform, and

• a payoff matrix, that gives the utility for each player for each combination
of actions.

The probably most widely known game is the prisoner’s dilemma. Two criminals
A and B have been caught by the police. They are interrogated separately and
have no means of communication. They can either confess or stay silent during
their interrogation. If both confess the crime they will be arrested for 5 years,
each. If both stay silent the can only be arrested for 1 year, each. If only one
confesses the other will be send to jail for 10 years while the other one goes free.
The payoff matrix of this game is shown in Table 3.2

In the analysis of games a number of criteria are focused that are introduced here
briefly, a more elaborated discussion of these criterions is presented by Sandholm
[San99].

3.1. Coordination 87

A confess A stay silent
B confess A = −5, B = −5 A = −10, B = 0

B stay silent A = 0, B = −10 A = −1, B = −1

Table 3.2.: Payoff matrix of the prisoner’s dilemma, [RN03, p. 633]

• Social welfare: Is defined as the sum of all agent’s payoffs/ utility in a given
solution.

• Pareto efficiency: A solution x is Pareto efficient if there exists no solution
x′ such that at least one agent can do better and no other agent is worse off.

• Individual rationality: The agents payoff is higher when he participate in
the negotiation, than if he would not participate.

• stability: The agents should not be rewarded for manipulating a game.

• Computational efficiency: The computational effort should not be high when
participating in a game.

• Distribution and communication efficiency: Games should not have a single
point of failure or require a lot of communication effort, typically measured
in number of messages.

Each player has to choose a strategy . A strategy is a complete definition how
the player wants to play its game, i.e., it specifies which action has to be taken at
what situation. A strategy is called a pure strategy, if the action selection is not
influenced by random; otherwise the strategy is called mixed strategy. A strategy
profile (s = (s1, . . . sn)) is an assignment that assigns a strategy to each player. A
strategy is rational for an agent, if it is rational for the agent to apply the strategy
for its decision making. Thus the strategy maximize the utility of the agent. A
strategy profile is a solution if for each player the assigned strategy is rational.

A strategy si of a player i is called dominant strategy if whatever strategy sj
an other agent j choose, the outcome of i will be at least as good as if he would
have played another strategy. Thus, the strategy si specifies the best response to
all possible strategies of agent j. The dominant strategy for both players in the
aforementioned prisoner’s dilemma is to confess. It is dominant for both players
because the payoff matrix is symmetric. Which will lead in the outcome A = −5,
B = −5 which is obvious not a solution maximizing the social welfare, and is not
Pareto optimal/efficient.

Another concept leading to stable strategy is a Nash equilibria. A strategy
profile (s = (s1, . . . sn)) is a Nash equilibria if for all agents i, si is the best

88 3. State of the art

i head i tail
j head i = 1, j = −1 i = −1, j = 1
j tail i = −1, j = 1 i = 1, j = −1

Table 3.3.: Payoff matrix of the penny matching game, [SLB09, p. 58]

left right
left 1,1 0,0

right 0,0 1,1

Table 3.4.: Payoff matrix of the road side choosing game, [SLB09, p. 57]

response to all other strategies in s [SLB09, p. 62]. Obviously, the dominate
strategy of the prisoner’s dilemma is a Nash Equilibrium, because each agent
can only get worse by unilateral deviating from the dominant strategy. But the
prisoner’s dilemma also shows another property of the Nash equilibrium, it is not
unique. The strategy where both prisoners stay silent is a Nash equilibrium, too.
In fact the outcome A = −1, B = −1 would be better, i.e., the Pareto efficient
solution, maximizing the social welfare. It is possible that no equilibrium exists,
at all, for instance, for the penny matching game16. Two players i and j choose
simultaneously the face of a coin, either head or tail. If they had chosen the same
side player i wins, otherwise j wins the game. The resulting payoff matrix is
shown in Table 3.3. The observation that a number of games exists, where no
unique Nash equilibrium exists motivates the class of coordination games, also
called common-payoff games.

Coordination games A coordination problem arises when a game has multiple
equilibria [MSW02, p. 399]. In such games the agents have no conflicting interests;
their sole challenge is to coordinate on an action that is maximally beneficial to all
[SLB09, pp. 56,57]. An example of a coordination game is the decision on which
side of a road, drivers should drive [SLB09, p. 57]. They can either choose both
the right or left lain and no crashes will occur. As opposed to if both decide to
choose divergent side of the road and will crash if they come ahead on a road. The
payoff matrix of such a game is shown in Table 3.4. A well-known coordination
game is the Battle of Sexes (see [SLB09, pp. 58–59]). A couple has to decide
which movie they want to see at the cinema. While he prefers an action movie,
she prefers a romantic movie. They both do not want to go to one of the films
16The penny matching game is taken from Wooldridge [Woo09, p. 231]. It is equivalent to the

two finger Morra game, presented by Russell and Norvig [Woo09, p. 632].

3.1. Coordination 89

action movie romantic movie
action movie 2,1 0,0

romantic movie 0,0 1,2

Table 3.5.: Payoff matrix of the battle of sexes, [SLB09, p. 59]

M: DVD M: CD
P: DVD M = 9, P = 9 M = −4, P = −1
P: CD M = −3, P = −1 M = 5, P = 5

Table 3.6.: Payoff matrix of the video technology decision, [RN03, p. 634]

alone. The payoff matrix of this game can look like shown in Table 3.5. Beside
the two pure Nash equilibria there exist also mixed Nash equilibria. That is, the
actions are chosen with a probability. This, of course, implies that the game is
repeated, theoretically over an infinite number of iterations. In such cases the
application of mixed strategies can solve the coordination game, in a rather fair
way for both players.

But there might be games that cannot be repeated over and over again. For
instance, decisions concerning technical development like standards. Russell and
Norvig [RN03, pp. 634–635] detail an example where a video game hardware
manufacturer (M) has to decide if its next machine will be equipped with a CD or
DVD drive. While the video game software provider (P) has to decide on which
medium it next game will be released. The resulting payoff matrix is given in Table
3.6. Note that only one of the both existing Nash equilibria is Pareto efficient.

Other example of coordination problems that have been investigated by game
theory are discussed in [MSW02, p. 401]. They mention different studies where
different standards competing against each other have been investigated, for ex-
ample the QWERTY keyboards or the VHS vs. Betamax formats for video tapes.
In both coordination scenarios two different standards exists and people have to
coordinate themselves to a single standard.

In contrast to the coordination games there exist also the so called anti-
coordination games [SLB09, p. 198]. Where each player has to choose another
option than the other did. An example of such a game is routing in networks,
where two packages should be routed different way, instead of interfering. The
following Table 3.7 illustrates the payoff matrix of an anti-coordination game.

More elaborated discussions concerning equilibria of games and coordination
games can be found in Shoham and Leyton-Brown [SLB09] and Nisan et al.
[NRTV07].

90 3. State of the art

left right
left 0,0 1,1

right 1,1 0,0

Table 3.7.: Payoff matrix of an anti-coordination game, [SLB09, p. 198]

Mechanism design

The subject of mechanism design focuses on the design and analysis of economic
mechanisms. Such a mechanism is called a protocol. But it has another semantic
in contrast to the interaction protocols mentioned earlier in Section 2.3.4. A pro-
tocol in game theoretical sense is not a description of the syntactical sequence of
messages, here offers. It raises requirements concerning the subject of the offers.
These mechanisms can be used to design coordination mechanisms for a num-
ber of problems, for instance, allocation problems, among self-interested agents.
Consequently, the field of mechanism design has influenced research in DAI, sig-
nificantly. Another reason might be that due to its engineering approach and
its solid mathematical foundation it might be appealing for computer scientist to
use. Prominent types of mechanisms that are typically investigated in mechanism
design are:

• voting,

• markets,

• auctions, and

• government policy.

As this thesis is concerned with the coordination of autonomous planning entities,
we address here different types of auctions and markets. For a general introduction
into mechanism design we refer to Nisan et al. [NRTV07, Part II].

Auctions Auctions are a well-known economic mechanism in computer science.
Auctions are typically easy to explain, i.e., the protocols are not complex, and are
distribution and communication efficient. Auctions are typically used to allocate
scare resources. In such cases it is desired that the resource is allocated in the
most efficient way. That is, the resource is allocated to the bidder that evaluates
this resource most, i.e., typically it is assumed, that this bidder can gain the
highest profit with the resource, or in case of task distribution can handle this
task most efficiently. A key idea of auctions is that the object being auctioned has
a value. This value can be either a common value, i.e., it is known and equal for

3.1. Coordination 91

all bidders, or private, i.e., it can differ for each bidder. Of course, it can happen
that the evaluation of the good of an agent depends also on external factors, like
the reselling price it can achieve for the good. The resulting value is then called
correlated. Based on these values a price is fixed the successful bidder has to pay.
Auctions form a sub-class of structured negotiations [SLB09, p. 317].

Auctions can be divided into single-item auctions and multi-item auctions.
These types vary drastically in their complexity. Single-item auctions can be suit-
able for simpler coordination problems. Well-known types of single-item auctions
are the English auction, the Dutch Auction, or the Vickrey auction, for instance.
A detailed introduction into the field of auctions, and in particular single-item
auctions, from the DAI perspective is given by Sandholm [San99, pp. 211–219],
Wooldridge [Woo09, Chap. 14], Shoham and Leyton-Brown [SLB09, Chap. 11],
and Nisan et al. [NRTV07].

The single-item auctions are not appropriate if the items that are auctions can
exhibit substitutability or complementarity effects in the valuation of a bidder.

Substitutability can be formalized as follows. Let G be the set of all goods
and v the evaluation function of a bidder. Then the subsets G1, G2 ⊆ G with
G1 ∩G2 6= ∅ then G1 and G2 are substitutability iff

v(G1 ∪G2) < v(G1) + v(G2).

In contrast the opposite relationship, when the sum of its subparts is higher eval-
uated than the overall set of goods is called complementarity. Let us assume that
the subsets G1, G2 ⊆ G with G1∩G2 6= ∅ then G1 and G2 are complementarity iff

v(G1 ∪G2) > v(G1) + v(G2).

If such relationships exist between the items to be allocated single-item auctions
are not sufficient. They would lead to inefficient allocations. A well known ap-
proach to tackle such situations are combinatorial auctions. The main idea of
combinatorial auctions is that the goods are grouped into bundles. A bundle is
a non-empty element of the powerset of the set of all goods. Each bidder has to
bid for each bundle. For example, if the task is to assign three different goods
1, 2 and 3 then there exist seven different bundles. If there exist three different
bidders (A,B,C) for these goods the resulting matrix of bids contains 21 entries.
A corresponding example is shown in Table 3.8, which is taken from Ruß and
Vierke [RV99]. In this type of auction an issue arises, that has not been a seri-
ous problem in single-item auctions, the winner determination problem. For the
auction presented in Table 3.8 the winning bids are shown in bold letters. In the
auction presented so far, the winner could be determined simply by sorting the
bids according to their price. This could be done rather easily with n log(n) time

92 3. State of the art

Agent Bundles
{1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

A 80 60 50 90 110 100 150
B 30 90 20 120 50 100 160
C 80 40 40 110 80 90 180

Table 3.8.: Bid matrix for a combinatorial auction [RV99]

complexity, where n corresponds to the number of bids. In a combinatorial auc-
tion more than one winner can exist. The winners of a combinatorial auction are
identified by a set of bids B that must fulfill the following conditions. Each good g
(g ∈ G) must be contained by exactly one bid b ∈ B. Thus, each good is assigned.
Second, only one bid can be assigned to each bidder, otherwise the substitutability
and complementarity relationships would not be regarded. Suppose we want to
distribute m tasks (m = |G|) to a number of agents that have published their bids.
Let v(S) be the cost for executing bundle S. The winner determination problem
can then be formalized as an integer programming problem in the following form:

minimize
∑
i∈N

∑
S⊂G

vi(S)xS,i

subject to
∑
S3j

∑
i∈N

xS,i ≤ 1∀j ∈ G

∑
S⊂G

xS,i ≤ 1∀i ∈ N

xS, i = {0, 1}∀S ⊂ G, i ∈ N

Thereby, xS,i is a boolean variable that encodes if the bid of bidder i for the
bundle S is part of the optimal allocation.

As the winner determination problem can be formulated as an integer program-
ming problem, which is known to be NP-hard, it is NP-hard, too. It has also been
shown that the winner determination problem is a set packing problem, which is in
fact NP-hard, see Ruß and Vierke [RV99] or Shoham and Leyton-Brown [SLB09,
p. 350].

To extend combinatorial auctions against strategic bidding extensions based on
the idea of second price auctions, as already mentioned, in the description of the
Vickrey auction have been discussed. This mechanism is named the Vickrey-
Clarke-Groves mechanism, which is detailed out, for instance, in Wooldridge
[Woo09, pp. 308–310], and Shoham and Leyton-Brown [SLB09, p. 346].

The idea of combinatorial auction has although applied to other problems, like
scheduling. In scheduling, as already outlined in Section 2.2, the question of who

3.1. Coordination 93

performs the task is not the only question. Moreover, the question when the action
is performed has to be dealt with. An idea to handle this challenge is, for example
the usage of price vector that specifies the prices for different points in time, see
Stockheim et al. [SSWG02]. Another approach by Elendner [Ele04] reformulates
the problem to apply combinatorial auctions to scheduling tasks. Not the tasks
are auctioned, but rather the time slots of the resources are objects in auctions.

The idea of combinatorial auction has attracted a number of economic re-
searchers that use this concept in a number of different task allocation problems
among autonomous entities. An example that has been mentioned by a number
of researchers are supply chains, e.g., the work by Schmidt [Sch99] or Schwind
[Sch07]. Combinatorial auctions have also been adapted by researchers from AI,
e.g., Wellman et al. [WWWMM01].

Having in mind the goal of this thesis, the coordination of planning entities, at
a first glance the idea of combinatorial auctions is appealing. Autonomy of the
bidders is not effected in combinatorial auctions, only the necessary information
is published to one entity, and the outcome is maximizing the social welfare. Nev-
ertheless, there are some fundamental criticism against the usage of combinatorial
auctions. The main argument is the complexity of combinatorial auctions. As al-
ready mentioned, the winner determination problem is NP-hard. But even worse,
to generate the bids an agent has to evaluate the consequence of adding the items
in the bundle to its current local plan. That is, a bidder has to generate |℘(G)|
of bids. For a set of n goods the bidder has to compute 2n − 1 bids17. This in
consequence means that the bidder has to run its planning system 2n− 1 times to
generate the potential plans that are required to derive its bid. As we have seen
in Section 2.2 these planning problems are typically NP-hard, or worse, as well.
Consequently, conducting a combinatorial auction for the coordination of planning
entities for n goods and m bidders would result in solving (2n − 1) ∗m + 1 NP-
hard problems. Thus, combinatorial auction are for the coordination of planning
entities not computational efficient.
Current investigations by Gujo et al. [GSVW07] investigate how efficient com-
binatorial auctions work without the presence of all bids. That is, the resulting
matrix of bids would not contain an entry in every cell. But as far as they author
is aware, no final results of this research are available up to now.18.

An introduction into the filed of auctions from a DAI perspective is given by
Wooldridge [Woo09, Chap. 14] and Shoham and Leyton-Brown [SLB09, Chap.
11.2].

17As the empty set is not regarded as a bundle it is 2n − 1 instead of 2n bundles resulting from

n goods.
18According to Michael Schwind co-author of the aforementioned article (e-mail communication

02/10/2010).

94 3. State of the art

Bargaining In this section we deal with bargaining, which can be described as
the game theoretical analysis of formally described negotiations. According to
Wooldridge [Woo09, p. 315] a bargaining situation can be described by:

• a negotiation set, representing the possible proposals an agent can make,

• a protocol, in game theoretical sense presented above, which defines the legal
proposals in a given situation,

• a strategy profile, whereby the strategy of an agent is a private information,
and

• a rule that determines the termination of the bargaining process.

Based on this formal description of a negotiation different bargaining situations
have been investigated. Typically, the goal is to investigate what properties a
mechanism have, and what strategies are implied by a given mechanism. While
some of these settings are kind of artificial or simplified, other approaches have
found a number of applications in the field of DAI. Here some of these analyses
are discussed, see Wooldridge [Woo09, Chap. 15] or Sandholm [San99, Chap 5.5]
for more details.

Bargaining for resource division If the task is to divide a resource among agent
it is assumed that there exist two rational players how want to divide the resource.
If they cannot come to an agreement they will end up in a conflict deal, which
is the worst outcome of the bargaining for both of them. If the negotiation has
only one round this game is termed an ultimate game. The first player offers a
deal and the second one has to accept it, or take the conflict deal, which is the
worst outcome. Consequently, the first player can choose an offer that maximize
its profit, which results in taking the resource exclusively. This characteristic still
exist if the number of rounds of the game is increased but finite. This can be
shown by induction, for a proof, see Wooldridge [Woo09, p. 318]. Consequently,
the bargaining process can be cut short in a one round bargaining process. The
first agents offer to take the entire resource, and the second one has to accept.
Of course, this result relies on the assumption that the players are aware of their
counterpart’s strategy. The game can be changed, if a time discount factor is taken
into consideration. This will lead to the Rubinstein bargaining result, described,
for instance, in more detail by Sandholm [San99, p. 222].

Bargaining for a price Of course, the assumption that each agent knew the
strategy of each other, and thus, can shortcut the negotiation outcome is a strict

3.1. Coordination 95

-

Figure 3.7.: Classic seller strategies, according to [Woo09, p. 322]

assumption. Another idea is that each agent has its negotiation decision func-
tion that describes how the agent makes concessions while the bargaining goes
on. Thus, it is not necessary for the agent to know or take care of the strategy
of the other players. Its strategy is encoded in this function. Wooldridge presents
two typical negotiation decision functions the conceder and the boulware strategy.
Both strategies describe different approaches how the willingness to make con-
cession evolves over time. Examples are shown in Figure 3.7. These bargaining
models are used to predict the outcome of a bargaining strategy. In experiments
presented by Fatima et al. [FWJ05] particular these strategies have been inves-
tigated. Especially how their outcomes is effected by the agents apply and how
much information they can use.

Bargaining about actions Another well-known investigation concerning the de-
sign of mechanisms that can be used to coordinate the activities of agents has
been presented by Rosenschein and Zlotkin [RZ98b]. These authors define three
different problem domains, these are:

• Task Oriented Domains: In a task oriented encounter a number of agents
have to perform a set of tasks. Each agent has its own subset of tasks to
perform. Each agent is capable of executing each task. By execution of each
task costs are generated. These costs can depend on the agent performing the
task and the other tasks this agent has to perform. Tasks can be exchanged
among agents. The goal is to find an efficient task allocation among the
agents.

• Goal Oriented Domains: In a goal oriented encounter each agent has a set
of goals that he want to achieve. A goal is a state of its environment.
Performing an activity requires limited resources and may influence the state

96 3. State of the art

of the world towards other goals of other agents. Thus, dependencies and
conflicts can arise between agents. It is also possible that the agents try to
satisfy most of their goals, in case an existing conflict hinders them form
fulfill all their goals.

• Worth Oriented Domains: In a worth oriented encounter the agents are
guided by an utility function that they try to maximize. Thus, it is possible
that a goal can be fulfilled to a certain degree. The usage of an utility enables
the designer to model the fact that goals can be partially achieved, instead
of binary modeling in goal-oriented domains.

Rosenschein and Zlotkin provide a well-known protocol that can be used to bargain
in such domains, the monotonic concession protocol [RZ98b, pp. 40,41]. According
to this protocol the negotiation goes on for a number of rounds. In each round the
agents propose a deal simultaneously. If an agents accept a deal the negotiation
end. It accepts, if the utility of the received offer exceeds or is equal to the utility
of its last proposal. If no agreement could be achieved in a round the next round
starts. Thereby, no agent is allowed to offer a deal that has a lower utility for the
other agent, as it has already offered before. If in a round (that is not the initial
round) both agents make no concessions the negotiation ends with the conflict
deal. For this protocol Rosenschein and Zlotkin present an appropriate strategy
that is designed to be efficient, stable, and simple. They name of this strategy is
Zeuthen strategy [RZ98b, pp. 43,44]. According to this strategy an agent should
start with his local best deal. The concessions he made depends on the risk the
agent wants to take ending in the conflicting deal. Risk is influenced by the
distance from the current offered deal to the conflicting deal (in terms of utility).
If this distance is low an agent is more risky then otherwise. The risk of an agent
i for step t can be computed as follow:

Riskt1 =
utility agent i loses by conceding and accepting j’s offer

utility i loses by not conceding and causing conflict

In each step an agent computes its risk and the risk of the other agent. If its
own risk is smaller or equal to its opponent’s risk he should make a confession.
Thereby, he should make a minimally concession, i.e., a concession that is just big
enough that his risk becomes greater than the risk of its opponent.

In their work Rosenschein and Zlotkin extend the bargaining mechanism to
handle conflicting situation and mixed deals, i.e., deals with a random influence,
which leads to the Unified Negotiation Protocol [RZ98b, pp. 119–121]. Further-
more, these authors investigate different option how agent could behave strate-
gically to gain an advantage and how this can be avoided to a larger extend by
modifying the bargaining mechanism. Their work is a first and important step

3.1. Coordination 97

into the research for re-use of coordination mechanisms. They define characteris-
tics of coordination problems that define a sub-set of coordination problems and
present efficient coordination mechanisms for those sub-sets.

The contract net protocol, already been introduced in Section 3.1.2, has been ex-
tended for more elaborated, non-cooperative scenarios, as well. Sandholm [San96]
defines a semantic of the protocol that makes it possible to apply this protocol
for self-interested agents, as well. Note originally the contract net protocol was
defined for cooperative agents, only. Thereby, the main idea while generating a
bid is to compute the marginal costs of an additional task. Thereby, the marginal
costs are the costs that occur additionally, by adding the offered task to the cur-
rent set of tasks. Moreover, agents can suggest a re-allocation of tasks/resources.
They can suggest four different types of contracts:

• original-contracts: describing one allocation to another agent,

• cluster-contract: specifying a set of allocations atomically to another agent,

• swap contracts: a pair of agents swaps a pair of tasks, and

• multiagent contracts: more than two agents exchange allocations atomically.

If all other participating agents accept, the change of a contract is adapted to the
overall system. These types of contracts and corresponding negotiation schemes
enables the agents to improve their situation constantly. An arbitrary sequence
of such contracting operation can improve the overall system’s performance, i.e.,
it can stuck in local optima. In fact Sandholm showed that with more complex
contracts it is possible to come to a global optimal outcome with a finite sequence
of individual rational re-allocations. This is possible with the OSCM-contracts
that allow to suggest a complete reallocation of jobs plus the specification of
side-payments from one agent to another. But it has to mentioned that the com-
putational effort to compute such contract suggestions can become very complex.
A more elaborated discussion about Sandholm’s findings can be found at [San96]
or [San99, pp. 236,237].

Based on the idea of commitments Sandholm and Lesser [SL02] discussed in their
article the advantages of non-binding commitments. Announcing to break up a
given commitment is called decommitment . In case an agent decide to decommit
from a given commitment he has to pay a predefined penalty. These penalties
enables to gradually adjusting the binding character of a commitment. Thus, these
types of commitments are called leveled-commitments. Sandholm and Lesser show
that using leveled commitments enables multiagent systems to find more efficient
deals, in comparison to approaches where only binding commitments exist.

98 3. State of the art

3.2. Agent-oriented Software Engineering

Agent-oriented software engineering (AOSE) is a research field connecting DAI
and software engineering. Although one has to state that most contributions in
this field are made by researchers from AI. Like in conventional software engineer-
ing, AOSE investigates issues concerning the different process steps of software
engineering, see Sommerville [Som06, Chap. 4]. These are the specification of
system’s behavior, modeling systems, and supporting implementation of systems
by methodologies, frameworks, and tools; and finally verification and validation of
implemented systems. In the following the field of AOSE is surveyed and thereafter
efforts and ideas for reusing components in particular coordination mechanisms
are discussed.

3.2.1. Surveying agent-oriented software engineering

In the following we discuss results in the field of specification and design of multi-
agent systems. An important result, probably the most mature results of AOSE
are frameworks to build multiagent systems. Finally, techniques for verifying and
validating multiagent systems are discussed. A very detailed introduction into
this field is given by Gómez-Sanz et al. [GSGW04].

Designing multiagent systems

In the specification of a system the expected behavior of the system is formalized.
The elicitation of these specifications is typically done during the requirement
elicitation phase. The field of requirement engineering is a subfield of software
engineering. The metaphor of agents has been used in conventional requirements
engineering, too. An agent in requirements engineering is “an active system com-
ponent playing a role in goal satisfaction” [Lam09, p. 396]. With an agent-based
modeling approach the responsibilities of the systems can be modeled. These
models can answers the question “who is doing what and why” [Lam09, p. 395].
Nevertheless, van Lamsweerde argue that for most projects a goal orientation
is more fruitful, as it aims at the questions what goal the entire system should
achieve. A more detailed discussion is provided by van Lamswerde [Lam09, Chap.
7].

The integration of agents into requirements engineering has been surveyed by
Gómez-Sanz et al. [GSGW04, pp. 36,37]. More recently Fuentes-Fernández et
al. [FFGSP06] have presented a specialized approach or requirement elicitation in
AOSE. It enables to acquiring the required information based on an agent-based
model, based on ideas of activity theory. In their paper Fuentes-Fernández et al.
transfer the idea of activity checklist to develop guidelines for the requirements

3.2. Agent-oriented Software Engineering 99

elicitation process. Therefore, structured interviews are used, and an UML profile
describing activity theory concepts has been developed by the authors. Based
on that means a process for the requirement elicitation is proposed. Thus, this
approach enables formal and informal, i.e., textual modeling of requirements.

Another way to specify the desired behavior of agents bases on formal specifi-
cations. The logic formulation might not be well suited for an elicitation process
but rather for experts who want to assure that the system satisfy some behavior.
An example for such a specification language is the situation calculus that is, e.g.,
the foundation of the ConGOLOG programming language for agents, presented
by Giacomo et al. [GLL00].

Another example is the formal languages presented by Dastani et al. [DJT01].
These authors have presented a hierarchy of languages for specifying the dynamics
of multiagent systems. In contrast to conventional systems the systems behav-
ior is specified from different perspectives. Dastani et al. [DJT01] present the
specification from a global, an agent’s, and an environmental perspective.

A number of design methodologies have been proposed. Those methods aim-
ing to structure the specification and design process of MAS. Examples for such
methods are Gaia, Tropos, MASSIVE, Zeus, MaSE, and Aalaadin. In the follow-
ing only some key concepts of these modeling methods are presented. A detailed
introduction and comparison of these methods can be found in Weiss and Jakob
[WJ05] and Bergenti et al. [BGZ04]. Central concepts for the design of multiagent
systems are roles, interactions and organizations.

• Roles A role is an abstraction of a component of the system, see Caire et al.
[CCG+04, p. 179]. Roles have the notion of social rules, or job descriptions.
According to Wooldridge et al. [WJK00] it can be described by sets of
permissions, responsibilities, activities, and interactions. An agent can have
one or more roles at the same time.

• Interactions Define the allowed interactions between roles. An interaction
definition has to specify the interaction protocols the roles apply (see Section
2.3.4). Moreover, the goals of the interaction and required input are spec-
ified. Interactions define the communicative behavior among the different
components/agents in the system.

• Organization The relations between roles can also be defined using orga-
nizational patterns. Roles are arranged in an organization. This enables
grouping of competence and structuring the agent system.

Applying and extending UML diagrams The use of UML diagrams or extension
of them has attracted a number of researchers, e.g., Depke et al. and Odell et al.

100 3. State of the art

Figure 3.8.: AUML diagram of the contract net protocol [FIP02f, p. 2]

[DHK02, OPB01]. In particular we present here the probably most prominent
approach that has been used in the FIPA specifications as well, the Agent UML
(AUML) [OPB01]. Within AUML class diagrams and sequence charts from stan-
dard UML has been identified as valuable tool for designing agent-based systems.
AUML extends UML1.4[OMG01]. UML 1.4 was the standard UML specification
about the time AUML was designed [OPB01]. Especially sequence charts have
been investigated as a mean to specify and design agents interactions [OPB01]. An
example for such an extended sequence chart is shown in Figure 3.8. Currently,
the development of AUML has been slowed down, as a consequence of the release
of UML 2.1 specification [OMG07], that incorporate aspects of AUML [Com07].
For that reason, standard sequence diagrams in UML 2.x can be used instead of
AUML sequence charts, today. The entire efforts among AUML are summarized
by Huget et al. [HOB04].

3.2. Agent-oriented Software Engineering 101

Languages and frameworks for agent-based systems implementation

For the implementation of agent-based systems a number of programming lan-
guages from different programming paradigms have been considered. Among oth-
ers declarative and functional languages like Mozart, Lisp, Prolog and Concurrent-
METATEM are mentioned by Gomez et al.[GSGW04, pp. 55,56].

Moreover, specialized programming languages for agent-based systems have
been designed, like Agent0, AgentSpeak, which is the foundation of the Jason
framework by Bordini et al. [BHW07]; or ConGOLOG by Giacomo et al. [GLL00].

Agent-oriented development frameworks A lot of effort of research in the field
of AOSE has been devoted to the development of agent-oriented development
frameworks. In fact there exists a huge variety of frameworks ranging from frame-
works based on logic-based agent programming, like Jason or Jadex, to frameworks
extending object-orient paradigms concepts on top of object oriented languages,
like JADE19. An overview about some of these frameworks can be found in Weiß
and Jakob [WJ05] and Bergenti et al. [BGZ04]. Those frameworks offer the infras-
tructure in which each single agent can operate in. For instance, those frameworks
provide means for communication between agents. Some of these frameworks are
compliant to the aforementioned FIPA standard, which ensures a certain level
of interoperability. As agents from different authors can communicate and coop-
erate within those environments. Most of these platforms, even if they are not
completely FIPA compliant, take advantage of the FIPA abstract architecture
standard [FIP02a]. These frameworks provide the agent environment discussed in
Section 2.3.4.

Omicini et al. [OOR04] characterize those infrastructures for agents into two
groups: the enabling infrastructures and the governing infrastructures. The en-
abling infrastructures provide infrastructure mainly for communication between
agents. These infrastructures enable agents to exist in a MAS. According to
Omicini et al. most of the existing infrastructure fall in this category. In con-
trast Omicini et al. argue that a governing infrastructure would offer additional
services, like coordination (see Section 3.1.2). Thus, these infrastructures would
govern the interaction space of the agents and offer a higher level of abstraction
for the developer.

From model to implementation A current trend in software engineering is the
model-driven development (MDD). The idea of this approach is to model the
system and then automatically transform the model into executable code. In the

19http://jade.tilab.com/, Accessed: 03/15/2010

http://jade.tilab.com/

102 3. State of the art

following research taking advantages of model transformation and automatic code
generation for agent-based systems is presented.

Some agent-specific modeling tools offer code generation, e.g., the Zeus-Tool,
offers a number of templates that could be configured by the developer to generate
code. Other tools, e.g., agentTool, can generate method bodies that have to be
implemented by the developer.

Another line of research wants to take advantage of the generation of agent code
applying principles of model-driven development (MDD). An introduction into
the field of MDD is given, e.g., by Stahl and Völter [SV06, Chap. 2]. Multiagent
systems are specified on a meta model level. This meta model can be mapped to
different agent platforms, like JADE for instance. This enables the designer to
develop models on a high level of abstraction, and then automatically transforms
the model into executable code. Modeling languages have been proposed, for
instance, by Hahn [Hah08], who presents a domain specific modeling language for
MAS. The developer has to specify its system in this domain specific language,
which is a platform independent model (PIM). Code generators can transform
such a PIM with additional templates into a platform specific model, e.g., a JADE
representation of the system. For more details see Hahn [Hah08] or Hahn et al.
[HZWF10].

Verification, Validation and Visualization

If a MAS has been implemented in a formal way, like an implementation using the
ConGOLOG language, or the system has been generated automatically based on
formal model, e.g., by MDA techniques presented above, it is possible to verify the
MAS. By verification a formal prove is given, that the system will behave within
its specifications. An interesting approach towards the verification of MAS is pre-
sented by Brazier et al. [BCG+98] using the idea of hierarchical decomposition of
systems for verification. Thus, to proof the specification for the entire systems it
is decomposed into its subsystems. For each subsystem specifications are defined
that, assumed they are true, would contribute to the proof of correctness of the
overall system. This process is iteratively repeated for all subsystems until the
considered subsystems have reasonable size to use conventional verification tech-
niques. An introductory into these verification techniques is, e.g., presented by
Apt and Olderog [AO94].

Other approaches assuming a complete specification of the MAS to be present,
e.g., Bulling and Hindriks [BH09] or Hilarie et al. [HSKF05]. If a specification
of the systems behavior, or at least subparts like its communication behavior are
provided agents modeled e.g in logics can be verified. An example with more
practical value is, for instance, implemented in the agent development toolkit

3.2. Agent-oriented Software Engineering 103

Figure 3.9.: Components of a simulation tool for validating MAS, [TS09]

agentTool. In agentTool conversations can be checked for problems, like deadlocks
using the model checker Spin, see Weiß and Jakob [WJ05, p. 251]. Verification on
the model level can be very useful during the design of the system, as design flaws
can be identified upfront the implementation. If the system’s implementation has
not been automatically derived by verified translators, than it is not sufficient
only to verify the model to gain any statement about the implemented system. In
those cases the verification lacks a computational grounding.

Thus, it is hard to verify a MAS, either because of the lack of computational
grounding of the formal model or because of the lack of a formal model. Thus what
remains possible is validating the system. By validation we refer to a systematic
testing the system and thereby increase confidence in the system.

Validation techniques often rely on testing and simulation as methodology. A
comparison between conventional validation approaches known from software en-
gineering and special needs and approaches from the agent-oriented software en-
gineering have been compared by Fuentes et al. [FGSP04]. Systematic software
testing has not been adopted widely in agent-oriented software engineering. Even
though extension for conventional testing techniques, like unit-testing, have been
proposed already, e.g., by Hormann [Hor06]. A systematic testing approach for
the overall system has been discussed, e.g., by Fortino et al. [FGR05] and Timm
and Schumann [TS09]. The idea is to test the behavior of the MAS in a synthetic
environment that can be controlled by the tester. Thereby, the tester can change
the environment in a controlled way, and observe the reaction of the MAS. An ar-
chitecture for such a test environment has been proposed by Timm and Schumann
and is shown in Figure 3.9.

104 3. State of the art

The visualization of interaction of in a MAS can enable an easier understand
of an existing agent system. It can also be used for debugging or testing issues.
Visualizing communication can be realized by dynamically draw sequence charts,
which is offered, e.g., by the Sniffer Agent of the JADE platform. More elabo-
rated techniques for visualization, like Dooley graphs, have been proposed by van
Parunak [Par96] or Singh [Sin98].

3.2.2. Reuse of existing methodology in AOSE

Research done in the field of AOSE has created a variety of methods. So, it is
desirable to gain the entire benefit out of this large body of work by using existing
mechanisms. This will lead to increased development speed and higher reliable
software. For that reason existing work has been surveyed according to what
concepts of reuse exist in AOSE. Therefore, the proceedings of previous workshops
on agent-oriented software engineering have been surveyed: [CW01, WWC02,
GOW03, GMO03, OGM04, MZ06, PZ07, LP08, LGS09]. This workshop series is
an annual workshop co-located with the AAMAS conference20. The series started
in the year 2000. So the results of this section base on a survey of the last ten
workshops21. Moreover, additional literature was surveyed, like the proceedings of
the International Conference of Software Reuse22 and the International Journal of
Agent-Oriented Software Engineering23. In the specific field of reuse in software
engineering the field of agent-oriented software engineering has not been recognized
at all, at least there exists no single paper concerning agent technology. The
research concerning reuse in software engineering primarily focus on the selection
process for commercial off-the-shelf (COTS) software. The international journal
of agent-oriented software engineering started in 2007 and appears quarterly. The
impression from the survey of the AOSE-proceedings, that reuse has not been
identified as a specific topic of itself in the field of AOSE, get’s supported by the
survey of this journal. Up to now24 the issue of reuse of methodology has not
drawn much attention by researchers.

Before we go into further detail, two types of reuse have to be distinguished.
Reuse of code and reuse of concepts. The first type of reuse can be found in
agent-based frameworks/infrastructure, where a code base is common to a num-

20The AAMAS conference is one of the major annual conferences in DAI, organized by the

International Foundation for Autonomous Agents and Multiagent Systems, for more details

see http://www.ifaamas.org/, Accessed: 02/15/2010.
21At the time of writing, the papers for the 2010 workshop are under review.
22For an overview of the proceedings see http://www.isase.us/pastconferences.htm, Ac-

cessed: 03/08/2010.
23http://www.inderscience.com/browse/index.php?journalID=174, Accessed: 03/08/2010
24Current issue is 2010 (Vol 4., No.1), date 03/08/2010

http://www.ifaamas.org/
http://www.isase.us/pastconferences.htm
http://www.inderscience.com/browse/index.php?journalID=174

3.2. Agent-oriented Software Engineering 105

ber of applications. The second type of reuse addresses concepts and mechanisms
that can be reused, as well. An example might be interaction protocols, like the
contract net protocol. Consequently, one can argue that reuse has been facil-
itated by the development of efficient frameworks for agent-based systems. In
fact we focus here on the second type of reuse, the reuse of concepts and meth-
ods. Existing modeling approaches, presented above, might offer reuse of artifacts
that have been created in previous designs or are pre-defined within a toolkit or
framework. Although, various frameworks for building agent-based systems have
been proposed and are in use. Within these frameworks concepts like agents, and
messages and infrastructure aspects like message exchange is supported, but no
specific means for coordination of agents in general or their plans in particular,
are supported within those frameworks, typically.

An established way to reuse concepts in software engineering has been the defini-
tion of patterns, e.g., the well-known design patterns by Gamma et al. [GHJV94].
For the field of agent-oriented software engineering Lind [Lin03] suggested a for-
mat for agents oriented pattern and present an architectural and an interaction
protocol, for example. Architectural patterns, like Broker, Moderator, and Wrap-
per have also been presented by Heyden et al. [HCY99]. Interaction patterns,
like patterns for Subscription, Call for proposals, Broker, and Wrapper have been
discussed by Kolp et al. [KDF05], as well. Those authors termed those patterns
social patterns. The authors present a framework for describing those patterns
in a unified way, that has been specialized for agent-based development. Those
architectural and interaction patterns have been standardized by the FIPA. The
FIPA standards have been presented in Section 2.3.4.

A wider scope of patterns in AOSE has been proposed by Sauvage [Sau04].
Sauvage distinct in his article between MetaPatterns, that describe abstract
constructs for the design of agent-based systems. He introduces organizational
schemes, like organizations and roles, and protocols as two meta-patterns. The sec-
ond group of patterns identified by the author are so-called metaphoric patterns.
Sauvage mentioned marks, like pheromones, and influences as two metaphoric pat-
terns. The third class of patterns are according to Sauvage architectural patterns,
addressing the architecture of agents, like layered architecture or BDI architec-
tures, already presented in Section 2.3.2.

Design patterns for the design of self-organizing systems have been summarized
by Gardelli et al. [GVO07]. The patterns presented by those authors are col-
lected from the design of nature-inspired design of self-organizing systems, like
ant-based systems, for instance, patterns addressing the evaporation, aggregation,
and diffusion are presented.

The identification of particular design patterns for the coordination in self-

106 3. State of the art

organizing systems is addressed in the article by de Wolf and Holvoet [WH06].
The authors present two design patterns for coordination. These techniques are
gradient fields and market-based control. The idea of the gradient field pattern
is to model a artificial environment for the agent and to model the coordinated
behavior by the movement within this artificial environment. Market-based con-
trol coordination techniques uses the concepts of prices to bring together producer
and consumers of services or information, as a coordination mechanism. The au-
thors aim in their pattern description on the problem of efficient allocation of task
among agents.

An idea for reusing proofs within the validation of multiagent systems base on
the idea of the component-based verification proposed by Brazier et al. [BCG+98].
Thus, only the proofs for components that have changed have to be updated. If
it is possible to proof that these subsystems stay within their previously defined
specification, the proof of the overall systems specification remains valid.

Hilarie et al. [HSKF05] argue that to facilitate reuse of agents or components
of agents, it is necessary to formally specify these components and then proof
the compliance of components to their specification. This can foster reuse, as
those components can become the building blocks for future systems. For that
reason the authors present a formal notation combined out of Objective-Z and
statecharts. The authors present a case study for components of a robotic system.
The focus of the authors is on the design of the formal notation and on prove of
compliance. To the best of the author no common catalog of components exists
that specifies existing components. And even such a catalog exist this is not
sufficient. The availability of a number of specified components does not enable
reuse, as no process how to select components exists, see also the discussion in the
next section.

A quite similar approach for the reuse of organizations has been proposed by
Jonker et al. [JTY05]. In their paper the authors present a formalism to describe
organizations and they assign properties to these organizations. They propose
to build a library of organization forms. An organizational designer then should
be able to place queries to the library and retrieve possible organization forms
that might suit his requirements. Of course, the indexing of those organizations
becomes critical. The authors propose different aspects for indexing, e.g., by
group functionality, environment assumptions or realization constraints [JTY05].
The retrieved organization descriptions might be adapted to the given situation
at hand.

Bartolini et al. [BPJ03] argue that the current representation of interaction
protocols is not sufficient, for protocols like the English auction, as by current

3.2. Agent-oriented Software Engineering 107

specifications (e.g., FIPA standard [FIP01c]) only the sequence of messages is
fixed. But more information is required, e.g., to generate a valid bid in an En-
glish auction. A new bid has to be higher than the currently highest bid. This
kind of information has to be implicitly encoded by the agent designer. Thus, for
achieving a better and machine-readable format the authors present a framework
for specifying negotiations, based on rules for encoding the negotiation protocol.
Agent should be able, i.e., by rule-based systems, to reason about those protocols
and apply them autonomously. The reuse is thereby on emphasizing a more pre-
cise and complete form of specification for negotiations. The authors argue that
by more precise description the reuse is facilitated as the agents can choose an
interaction protocol automatically from a given knowledge-base.

Reuse of coordination mechanisms

As previously mentioned in this study we are interested in the coordination of
autonomous planning entities. As outlined in Section 3.1.2 research in coordina-
tion of agents has generated a large body of work, containing a lot of different
coordination mechanisms.

An idea, already discussed, for the reuse of coordination mechanisms is the
coordination artifact (see Section 3.1.2 or [ORV+04]). To briefly re-iterate the
concept, in a coordination artifact a coordination mechanism is embedded that
can be used by the agents. The problem in defining those coordination artifacts
is to find the right level of granularity. So, if an artifact is too general it cannot
be applied by the agents, as it does not fit their purpose. On the other hand a
too specialized coordination mechanism in the artifact cannot be reused as the
coordination between two specific planning entities might be a unique situation.
Finding an adequate trade-off between generalization and specialization is hard to
find, if at all. Moreover, the resulting governing infrastructures (already discussed
above) have not been established in the developer community and it is not clear
today, if they ever will. The only operational agent infrastructure mentioned in
the literature, is the TuSCoN infrastructure. Applications of this platform are
published only by the developers of this particular platform25. So it looks like if
there is no active community around that infrastructure.

The need for an easier retrieval for reusing interaction protocols has been iden-
tified by Bussmann et al. [BJW03]. Therefore, the authors focus on the selection
process of interaction protocols. To be applicable an interaction protocol has to
respect the existing dependencies of the current situation. Therefore, the au-
thors suggest to classify interaction protocols according to a number of criteria.

25for details see http://apice.unibo.it/xwiki/bin/view/TuCSoN/PublicationsWithTuCSoN,

Accessed: 02/15/2010

http://apice.unibo.it/xwiki/bin/view/TuCSoN/PublicationsWithTuCSoN

108 3. State of the art

These authors suggest to use the number of agents involved, the computability of
constraints and preferences, the number of agent roles, the role assignment, the
number of joint commitments, and the size of joint commitment as criteria. An
agent designer should specify its requirements according to these criteria and then
identify an interaction protocol that might be suitable for the given situation.

3.3. Identification of research gap and goals of this thesis

We have outlined the field of coordination in DAI. The presented coordination
mechanisms have been designed for a variety of applications and base on different
theoretical assumptions. In the literature [SSWG02, Sch01, BCGZ01] different
schemes for classification of existing coordination approaches have been proposed.
For instance Stockheim et al. [SSWG02] characterize different coordination ap-
proaches according to the solution methodology they use. In particular they clus-
ter existing approaches into:

• combinatorial auctions,

• bargaining processes,

• random search,

• knowledge-based systems, and

• learning systems.

As already pointed out, Schumacher [Sch01] presented a classification that uses
the perspective of the coordination mechanism as criteria, leading to subjective
and objective coordination approaches.

Moreover, Busi et al. [BCGZ01] presents a framework for models and languages
for coordination. They point out that key issues for the classification of coordina-
tion mechanisms are:

• coordinatables,

• coordination medium, and

• coordination rules.

All these classification schemes reflect the fact that different techniques, perspec-
tives and theories have influenced the research concerning coordination in DAI.
But non of these classifications either point out any application oriented criteria,
neither indicate what motivations, i.e., use cases, have influenced the coordina-
tion mechanism. So the current state of the art of the field of coordination in DAI

3.3. Identification of research gap and goals of this thesis 109

contains a huge variety of techniques and existing classifications indicate more the
origins and roots of these approaches instead of their fields of applications, their
strength, and weaknesses.

Researchers like Durfee [Dur99] and Sandholm [San99] have surveyed principles
and techniques that can be used for coordinating multiple agents. But they do
not give indications when to use such techniques. Consequently, the value for re-
use of coordination techniques is limited. Rosenschein and Zlotkin [RZ98b] have
proposed specific characteristics for coordination problems and means that allow
for an efficient coordination in those specific problem settings. The state-, goal-,
and worth oriented domains, discussed in Section 3.1.3 are an example for such
a classification. If a given coordination problem falls into one of those domains
the coordination mechanisms identified by Rosenschein and Zlotkin can be used.
In contrast to the focus of this work the presented domains are a limiting factor.
Moreover, their classification is still abstract, and additional requirements cannot
be integrated. Although no indications for an implementing process are given.

Another field that has been surveyed in this chapter, was the agent-oriented
software engineering. After we had given a broad introduction into this field we
have discussed research concerning re-use and mechanism idenfification/selection
in the field of AOSE.

A result of this survey is that the idea of reusing existing concepts is not very
wide-spread in AOSE, which is underlined by the relatively rare rate of articles
published addressing this issue. Most of the research described in the literature
investigates techniques or tools concerning the development of new multiagent
systems from scratch. The integration of an agent-based solution into an exist-
ing software ecosystem seems to be an open research fields. Similar conclusions
have to be drawb for the rest of the life-cycle of an application, aspects like the
maintenance and evolution of existing agent-based systems are not sufficiently
covered.

The identification/selection process for a coordination problem has been tack-
led on the one hand by researchers who argue that the selection of a coordination
mechanism should be done at runtime by the agent itself, e.g., by Excelente and
Jennings, and Omicini et al. [ETJ04, ORV+04]. But in their work only toy-world-
examples are presented, where the reasoning of the agent concerning existing de-
pendencies is uncomplex. These approaches cannot scale to complex coordination
problems, like the coordination of autonomous planners.

On the other hand the work from Bussmann et al. [BMR+02] suggest to classify
interaction protocols and build a catalog of interaction protocols, similar to the
approach presented for organizations by Jonker et al. [JTY05]. But the classifica-
tion suggested by Bussmann et al. is not sufficient for coordination mechanisms

110 3. State of the art

because they remain too vague. The approach might be appropriate for the pure
identification of interaction protocols, but coordination mechanisms are on the
one hand only a subset of interaction protocols and on the other hand comprise
more than simple rules concerning message exchange, which has also pointed out
by Bordini et al. [BHW07] and Ossowski [Oss08].

From an engineer’s point of view, who wants to find an appropriate coordina-
tion mechanism for a coordination problem consisting of inherently distributed
planning entities, the current state of the art in the research of coordination and
agent-oriented software engineering is unsatisfactory. The identification/selection
problem of a coordination mechanism, in general and especially for the coordi-
nation of autonomous planning entities, is an open question in agent-oriented
research. There exists neither tooling nor process for the identification/selection
and implementation of coordination mechanisms that could be used for the coor-
dination of planning entities.

This constitutes the issue addressed in this thesis, the effective identifica-
tion/selection of appropriate coordination mechanisms for the coordination of ex-
isting planning systems embedded in autonomous planning entities. Or to rephrase
it as the research question of this thesis:

How can existing coordination mechanisms be efficiently identified,
that are suitable for the concrete coordination problem of existing
planning systems, in inherent distributed planning environments?

To answer this question it is necessary to define a process. Gaitanides defines a
process as the “structure for actions” [Gai04, p. 1212]. The process has to struc-
ture the necessary actions that are needed to identify the suitable coordination
mechanisms, that are applicable to the given problem. Moreover, it is necessary to
detail out the process to provide means for a selection among those mechanisms.
To establish a process three steps are necessary:

• process definition

• process validation

• process evaluation

In the first step the process has to be defined and detailed to be executable. In
the second step the process has to be validated. This is to ensure the feasibility
of the process. In the final step the process has to be empirically evaluated on a
sociologically sound base. In this thesis we focus on the first two steps, the process
definition and validation. In the next chapter we define and detail out the ECo
process that is suggested for the efficient selection of a coordination mechanism.

3.3. Identification of research gap and goals of this thesis 111

In chapters 5 and 6 we present the validation of the ECo process applying it to
two cases studies. Within these case studies we show the feasibility, flexibility,
and power of the process that is proposed in this thesis.

112 3. State of the art

4. The ECo-CoPs approach

As pointed out in the last chapter, the goal of this thesis is to define a process
that enables the identification of a coordination mechanism for existing inherently
distributed planning entities. For this reason we introduce the ECo process in this
chapter. The ECo process consists of the following five steps.

1. modeling the scenario,

2. defining coordination requirements,

3. identifying suitable coordination mechanisms,

4. implementing coordination mechanisms, and

5. evaluating coordination mechanisms.

We detail out the ECo process and required process steps in Section 4.2. The
ECo process is supported by the CoPS process and the CoPS framework, both
presented in Section 4.3.

But at first we propose a set of six characteristics of coordination problems that
could be identified in a number of coordination problems and that are outlined
in the examples used in this study. Moreover, the presented coordination mech-
anisms are classified according to these characteristics. This enables a designer
to identify suitable coordination mechanisms by matching required and provided
characteristics.

Using this first classification scheme for coordination techniques enables a first
and fast reduction to a subset of coordination techniques, presented in the previous
section. But this is not sufficient for the selection of an appropriate coordination
mechanism. The goal of coordination is to ensure that the different plans of the
planning entities can be executed in a feasible way. Moreover, the coordination
mechanism should be applicable in the given context. This is defined more pre-
cisely in this chapter. The evaluation of the results of the coordination process
remain domain specific. Thus, we are not interested here in defining a specialized
coordination mechanism or a family of those, that lead to efficient coordination
mechanisms for a specific number of scenarios, e.g., by removing all redundancy

113

114 4. The ECo-CoPs approach

in a joint plan. Moreover, we are interested in identifying suitable existing co-
ordination mechanisms for a given situation and to enable a fast prototypical
implementation to evaluate the coordination mechanisms in the given situation.

To address this issue, a set of activities has to be performed in a structured
way. By suggesting the ECo process as a mean to do so, we offer a solution for the
identification process for coordination mechanisms. One step of the ECo process
is the implementation of the coordination mechanisms, to perform a quantitative
evaluation. To support this step and to address the issue of implementing coor-
dination mechanisms in an existing software environment, we present the CoPS
process and the CoPS framework. In the CoPS process, an optional sub-process
of the ECo process, the activities for implementing coordination mechanisms are
discussed and structured. For an easier and faster implementation, the CoPS
framework has been designed to support the CoPS process. The CoPS framework
enables the designer to use pre-defined software agents that can be adapted ac-
cording to the selected coordination mechanisms and to the local policies of the
planning entities. While designing the ECo and the CoPS process, we aim to allow
the designer an independent usage of these processes and the CoPS framework,
as far as possible. It is possible to apply the ECo process for the identifica-
tion/selection and to use other implementation mechanisms. It is also possible
to use the CoPS process implementing a coordination mechanism, that has been
selected in a way, that may not conform with the ECo process. Especially, the
CoPS process has been designed in a way that no unnecessary restrictions for
the agents, their architecture or abilities are implied. For that reason we discuss
modeling aspects with formal and informal means. A formal specification enables
agents with reasonable inference capacities to reason about appropriate actions
by themselves. But this reasoning within agents should not be mandatory to
build agents to coordinate the planning processes, as this task is orthogonal to the
agent’s architecture. Thus, providing an informal description for agent developers,
who encode these policies implicitly into the agents, can foster the development
of these agents. Moreover, it is possible to replace the implementation framework
or design an agent for coordination, even without any framework. This modular
approach facilitates independent use and independent development of all parts of
the ECo-CoPS approach.

The ECo process, as well as the CoPS process and framework is presented here
in detail. A validation of this process and the CoPS process and framework as
supporting means is presented in the next chapters.

4.1. Characteristics of coordination problems and techniques 115

4.1. Characteristics of coordination problems and

techniques

In this section we point out some characteristics of coordination problems arising
between planning systems, that can be identified in the examples used in this
study. We define these characteristics in a way that a simple, binary answer could
be given to point out important characteristics of a coordination problem. These
characteristics guide the identification/selection process for a coordination mech-
anism to efficiently coordinate the autonomous planning entities. The questions
to identify the six characteristics are presented in the following. Possible answers
are shown in brackets.

• Is an allocation problem part of the coordination, i.e., have tasks top be
allocated to planning entities? (Yes/No)

• Are the local objective functions comparable, i.e., is the same measurement
used by different planning systems? (Yes/No)

• Are the planning systems involved homogenous or heterogeneous, i.e., are
the planning problems of the same type or are they different? (Homoge-
nous/Heterogeneous)

• Does a common objective function exist that can be used to measure the
success of the overall system? (Yes/No)

• Is information hiding necessary among the planning entities? (Yes/No)

• Do cyclic dependencies exist? (Yes/No)

Characterization of the examples

In the following we discuss the characteristics of the exemplified coordination
problems used in this study. The result of this discussion is summarized in Table
4.1. Again, the example of production scheduling and distribution of goods (intro-
duced in Section 2.1.1) is referred to as SPT. SCM is the common abbreviation for
supply chain management, and CTM is the abbreviation for container terminal
management. Obviously, within the SPT problem there exists no task allocation
problem among the different planning entities. Each product has to pass the three
areas in the same linear sequence, like in a flow shop scheduling problem. Even
though the packing and the transportation planning try to reduce costs, this is not
true for the scheduling system, which tries to optimize the utilization of resources.
Consequently, the objective functions of the planning systems are not comparable.
The planning problems are heterogeneous. All these three subsystems are part of

116 4. The ECo-CoPs approach

Characteristics SPT SCM CTM

Allocation No Yes No
Comparable objective No both possible No

Homogenous/Heterogeneous heterogeneous both possible heterogeneous
Overall objective Yes Yes No

Information hiding No Yes No
Cyclic dependencies No No Yes

Table 4.1.: Characteristics of the SPT, SCM and CTM problem

the production and delivery process of one company; consequently, there exists
an overall objective function, i.e., the costs incurred for the company. With a
similar explanation it can be argued that no information hiding is necessary. And
as discussed above in the simple linear case of the SPT, no cyclic dependencies
exist.

The SCM (supply chain management) problem has been presented in Section
2.1.2. An allocation becomes necessary if companies have overlapping compe-
tencies, which is, according to Corsten and Gössing [CG01], rather frequently.
Consequently, there exist more than one entity, here company, that could perform
a task. It can be assumed that all companies want to maximize their profit. On a
more detailed level it can be challenging to compare all local plans with a common
metric. Thus, it depends on the concrete scenario and its modeling if the objec-
tive functions are comparable. The same is true for the type of planning problem.
From an abstract point of view all planning systems can be abstracted as schedul-
ing problems. Some abstract activities have to be performed and each requires
an amount of time. Of course, the concrete planning problems of a shipping com-
pany deviate from the planning processes in a ware house or plant. It is reasonable
to assume that the overall objective of the supply chain can be measured by an
overall objective function. For instance, final goods produced by the supply chain
that are sold to customers and the production and transport of these goods have
induced costs. The difference between revenue and costs can be defined as profit
of the supply chain, not regarding how this profit is split among the companies
in the supply chain. This is typically a question of market power or more ana-
lytically the outcome of a cooperative game. As already mentioned, companies
within a supply chain have overlapping competencies. Thus, a confidential level is
requested by the companies and information hiding becomes an issue. Typically,
it is assumed that supply chains have no cyclic dependencies, the flow of material
is assumed to be linear. This is, of course, an assumption that does not necessarily
have to be true, for instance, for supply webs the flow of material is not linear

4.1. Characteristics of coordination problems and techniques 117

anymore and cycles could occur.

Finally, the characterization of the CTM (container terminal management)
problem is discussed. As in the SPT there exists no allocation problem. All
problems have to be solved to serve a ship. The used objective functions are not
comparable. For instance, the solver for the berth allocation problem wants to
achieve a high utilization of the berth and low waiting time for the ships. The
crane scheduling solver aims to reduce the process times of ships and maximize
the utilization of its resources. The planning problems are heterogeneous. Even
if the direct monetary effects of all planning decisions could be estimated for the
container terminal, this is not sufficient for achieving an overall objective func-
tion, because the service time for ships is a competitive factor that can hardly
be estimated in monetary terms. Therefore, a trade-off has to be made between
offered service time to ships and induced costs. Consequently, no overall objective
function could be defined easily. All planning problems occur within one company,
thus no information hiding is required. As shown above in Figure 2.11 (on page
35), there exist a number of cycles among the planning problems.

Categorization of presented coordination mechanisms

In Section 3.1.2 a number of different techniques for coordination among agents
plans have been presented. Thereby, we gave a broad overview of existing tech-
niques developed in the field of DAI. This overview is not exhaustive in the sense
that all existing variants of all mechanisms have been presented. But it was in-
tended to cover the wide field of coordination in DAI. In this section the suitability
of these concepts for the coordination of planning systems is discussed. There-
fore, we use the characteristics discussed in the last section. The findings of this
discussion have been summarized in Table 4.2.

In this table we have listed all groups of coordination mechanisms presented in
the previous discussion (see Section 3.1.2). Thereby in each row an entry represents
a type of coordination mechanisms, and there could exists a number of mechanisms
that can be classified as a member of a particular group. For instance, the type
negotiations covers various different mechanisms that have been presented in the
literature.

We have investigated the necessary characteristics for each of these mechanism
groups, i.e., what characteristics are necessary to apply the coordination mech-
anism. If the mechanism is robust against the different types of a characteristic
this is indicated by an asterisk (*). Rows that are stroke out indicate that this
mechanism is classified as not suitable. This table is, of course, not sufficient to
pick a specific coordination mechanism, but it can guide the search for appropriate
mechanisms by narrowing down the list of possible candidates.

118 4. The ECo-CoPs approach

M
ech

an
ism

allo
cation

com
p

.
ob

j.
h

om
o./h

etero.
overall

ob
j.

in
f.

h
id

in
g

cy
clic

d
ep

.

task
Sharing

Y
*

*
*

*
*

contract
net

Y
*

*
*

*
*

auctions
Y

Y
*

*
*

*
result

Sharing
N

*
*

*
N

N
G

P
G

P
*

*
*

Y
*

?
negotiations

*
*

*
*

*
*

centralized
planning

*
Y

hom
ogenous

Y
N

*
dpcp

*
*

*
*

*
N

dpde,
preplanning

N
*

hom
ogenous

*
*

*
dpde,

plan
m

erging
*

*
*

Y
N

*
dpde,

m
ediator

*
*

*
Y

(N
)

*
dpde,

iterative
D

C
SP

coordination
artifacts

T
ab

le
4.2.:

S
u

itab
ility

of
m

ech
an

ism
s

accord
in

g
to

ch
aracteristics;

d
ecen

tralized
p

lan
n

in
g

an
d

execu
tion

(d
p

d
e),

d
ecen

tralized

p
lan

n
in

g
for

a
cen

tral
p

lan
(d

p
cp

)

4.1. Characteristics of coordination problems and techniques 119

Task sharing, as the name suggests, is an approach to distribute tasks among
a number of agents. Thus, it is primary suited for coordination problems involv-
ing a number of tasks to distribute among agents. For all other criteria it does
not depend on particular characteristics of the coordination problem. The same
characterization can be made for the contract net protocol. Auctions are another
approach to distribute work among a number of agents. But to use them, it is
required that agents have a comparable objective functions. This is necessary to
generate comparable bids.

The idea of result sharing is a priori not well suited to distribute tasks among
agents. Protecting private information is generally not coherent with the result
sharing approach. As discussed above, the existence of cyclic dependencies can
be a contraindication for applying result sharing approaches, as they may lead to
problems with the termination of the process. Additionally, it has to be mentioned
that through the possible chaotic behavior of planning systems result sharing has
to be used carefully.

In coordination mechanisms like GPGP an overall objective is required, that
all agents try to optimize. This is typically expressed in terms of quality that
the agents want to maximize while executing methods of the task structure. In-
formation hiding can partially be realized by defining a strategy for the result
sharing that can be used to formulate strict rules for publishing information and
to give commitments towards other agents. Concerning the characteristic cyclic
dependencies, up to now, no clear indications can be made from the case studies
in the literature, to what degree cyclic dependencies can be handled by the GPGP
coordination mechanism.

Negotiations are a general concept that can be adapted to a number of charac-
teristics. Therefore, no restrictions could be identified that limit the application
of this concept. Note that there exists a huge number of different negotiations
that might have special requirements towards these characteristics.

The centralized planning for the coordination of different agents can lead to very
complex planning problems. Therefore, we think this might only be reasonable
for homogenous problems. We are aware that there exist approaches for integra-
tion different planning problems into larger models, e.g., by Meisel and Bierwirth
[MB06] and Park and Kim [PK03] who have presented approaches for integrating
the BAP and CSP problems in the CTM domain. But those integrated models
are specific for a certain situation and cannot be extended easily. For instance, it
could be desirable to integrate the interdependent storage space allocation prob-
lem, too. Thus, the integration of models does not scale from the design point
of view, i.e., the efforts for integrating an additional partial model grow faster
than linear. Moreover, the computational complexity of the resulting integrated
problem growth and computation complexity also does not scale well for the in-

120 4. The ECo-CoPs approach

tegration approach. To guide the overall planning process, comparable objective
functions and an overall objective function are required to estimate and compare
different alternatives and select the most suitable one. As all data required for
plan generation has to be collected in the centralized planner, information hiding
aspects cannot be respected.

The decentralized planning for a centralized plan can handle most of the afore-
mentioned characteristics. Nevertheless, as the typical process is a sequential plan
refinement process this mechanism can hardly handle cyclic dependencies. As
already discussed they could lead to a non-terminating coordination process.

For decentralized planning with decentralized execution different techniques
have been presented and are discussed. Among others, negotiations have been
proposed. As negotiations have been discussed already above, they are omitted
here.

The generation of constraints in the pre-planning coordination approach as-
sumes that the initial task assignment has been made already [SW07]. Thus, it
cannot be used for task allocation. As already mentioned, the problem is com-
plex so we do not think it is useful to increase complexity further by coping with
different kinds of planning problems. Therefore, we argue it might be suitable for
homogenous planning problems.

The idea of plan merging requires a lot of information about the existing depen-
dencies among plans and about transformation of local plans that can result in
executable local plans. Thus, information hiding requirements cannot be satisfied.
Moreover, a global objective function is a prerequisite to have means to be able
to choose among alternatives solving a conflict.

Mediated-based approaches require a global objective function to decide among
alternatives in conflicting situations. In contrast to merging, the mediator does not
necessarily need all details of the local planning problems and policies, which can
make information hiding realizable. It is necessary to have comparable objective
functions among agents, to generate a meaningful representation of the system’s
state and the current system’s overall performance.

As already discussed, the coordination of planning systems cannot be achieved
by any type of fix-point iterations. Moreover, the communication of partial results
is not advantageous because of the chaotic behavior of planning systems. Thus,
ideas of iterative plan formations seem not suitable for the coordination of planning
systems.

The re-formulation of the coordination problem as a type of distributed con-
straints satisfaction problem is appealing, but it does not offer us to use existing
planning systems and all problems have to be formulated as a constraint satisfac-
tion problem and interdependencies have to be added as additional constraints.
Techniques for distributed constraint optimization (DCOP) could also be used to

4.2. The ECo Process 121

find optimally coordinated plans. Nevertheless, if each sub problem is not given
as a constraint satisfaction problem, which is the common situation, distributed
constraint satisfaction seems not an appropriate approach. But the formulation
as a DCSP or DCOP enables more detailed analysis of effects of different problem
decomposition techniques. Thus, for a more strategic perspective the formulation
of coordination problems as DCSPs can be an interesting research issue to inves-
tigate effects of different distributions of sub problems among problem solvers on
achievable solution’s quality.

The usage of coordination artifacts aims at externalizing the coordination knowl-
edge and engineering out of the agent into the environment of the agents, or into
the infrastructure the agent is executed in. This externalization might be advan-
tageous for an easier design of agents, but it requires that all knowledge about the
coordination mechanism and required information has to be given to the artifact.
In the context of coordination of planning systems this would mean to externalize
all possible plans of the agents, or to access to the local planning system to the
artifact. Therefore, we are convinced that this approach is not suitable for the
coordination of planning systems.

4.2. The ECo Process

In this section we present the ECo process. ECo is an abbreviation for Engineering
Coordination. This process comprises an identification process of appropriate
coordination mechanisms. It also covers the implementation and evaluation phase.

The aim of the ECo process is to guide the designer during the process of imple-
menting automated coordination mechanisms for autonomous planning entities.
Therefore, especially two steps are necessary: Selecting appropriate coordination
mechanisms and implementing them in the given context.

Most research performed in software selection addresses the selection of commer-
cial software, like ERP systems which is discussed, e.g., by Wei et al. [WCW05].
Another process model has been presented by Krcmar [Krc10, pp. 167–190] , as
part of the management of information systems. Similar process descriptions can
be found by various consulting companies, who have defined their process models,
as well. But the resulting process descriptions are not applicable as neither re-
quest for information can be handed to a provider nor does it make sense to make
cost comparisons or request presentations by vendors, as coordination between
planning systems has no market, yet.

In the field of business informatics there exists a subfield of systems theory, e.g.,
presented by Krallmann et al. [KST07]. One subfield of this systems theory is
system analysis. Within system analysis Frank et al. [FBH07, p. 135] present a
standard process model for software selection processes that can be tailored for

122 4. The ECo-CoPs approach

the selection of an appropriate coordination mechanism. In the standard process
model the following steps are defined:

• project definition1,

• model the current situation2,

• define the goal situation3,

• selection of appropriate mechanisms to transfer the current situation into
the goal situation4, and

• implementation of the selected solutions5.

In the first step the goals of the project are defined. This phase is in general
necessary in system analysis, but does not need to be transferred into the ECo
process. The goal of the ECo process has been outlined clearly up to this point.

The next two steps are subject of the field of requirements engineering. A de-
tailed introduction into the field of requirements engineering is provided by van
Lamsweerde [Lam09]. The goal of these two phases is to achieve an understanding
of the required characteristics and features of a solution. The third step concern-
ing the selection of the appropriate concepts. In conventional system analysis the
decision to make or to buy a solution to achieve the goal state is typically made
in this process step. Due to the large number of possible approaches to achieve
a coordination process, we propose that the selection process has to be divided
into different steps. First, approaches that are applicable have to be identified.
These approaches have to satisfy a number of strict coordination requirements.
Then, a more detailed review of the remaining coordination mechanisms is possi-
ble. Stantechev points out that a final evaluation of the usefulness of a solution,
here the coordination mechanisms, can only be drawn if the solution is imple-
mented at least in parts of its addressed system [Sta07, pp. 290,291]. This can
be an expensive task, and therefore we suggest in the ECo process the usage of
prototyping for the generation of prototypically implemented systems [Som06, p.
410], to ensure a fast, but not necessarily computational most efficient version of a
coordination mechanism. The coordination mechanisms in the prototypes might
be inefficient, e.g., in terms of required time, send messages. Thus, the mecha-
nisms cannot be implemented efficiently. The results of the coordination process
do not have to be effected by the fact we are using a prototype. This prototypical

1German original term “Projektbegründung”
2German original term “Istanalyse”
3German original term “Sollkonzept”
4German original term “Realisierung”
5German original term “Implementierung”

4.2. The ECo Process 123

implementation can then be quantitative evaluated. In this last step the quality
of the coordinated plans is measured. Other aspects of the implementation, like
the adaptation and/or the specification of conversation policies should only be
done once in a proper way, as they provide the infrastructure for the coordination
mechanisms. Within the implementation step the selected solution is realized.
These process steps have to be detailed for the ECo process. Moreover, we think
that it is not sufficient to end the process with the implementation phase. A con-
trol phase is necessary to evaluate if the goals have been achieved and to assess
the solutions quality. This is necessary to evaluate if the expected results from
the selection process can be really gained in the concrete environment, which is a
recommended step in systems analysis of Frank et al. [FBH07, p. 185], too. In
consequence, the ECo process model comprises five steps. These steps are:

1. modeling the scenario,

2. defining coordination requirements,

3. identifying suitable coordination mechanisms,

4. implementing coordination mechanisms, and

5. evaluating coordination mechanisms.

For the application of these process steps we propose an iterative execution
model, similar to the well-known iterative software development process, like the
spiral model or the iterative-waterfall model. For details of these software devel-
opment processes we refer to the introduction by Sommerville [Som06, p. 65–74].
It enables to go to previous process steps and refine results of process steps if this
becomes necessary. This is consistent with the perspective of system analysis that
defines their process as iterative heuristic process with feedback [FBH07, p. 136].
The process model is depicted in Figure 4.1.

Note that it is worth of discussion if the realization of the prototypical im-
plementation can be seen as part of the implementation phase. The results of
the following evaluation of the implemented mechanisms can be negative. The
prototype should not be used in productive environments. We suggest classify-
ing this as part of the implementation, because prototyping is recommended just
for a part of the overall system, namely the coordination mechanisms, itself. As-
pects like the adaptation of the planning system or the definition of conversational
policies and behaviors should only be implemented ones. Moreover, by suggest-
ing an iterative process execution model, an unsuccessfully evaluated one of the
coordination mechanisms leads to a jump back to an earlier phase of the ECo
process, namely the selection phase, and then another implementation and evalu-
ation phase is going to be performed. After appropriate coordination mechanisms

124 4. The ECo-CoPs approach

Figure 4.1.: ECo process model

have been identified, also positively evaluated in the quantitative evaluation, it
becomes necessary to replace the prototypical implementation in favor for a more
efficient implementation of the selected coordination mechanism. In the following
each process step is detailed.

4.2.1. Modeling the scenario

Modeling is a necessary step towards the requirement elicitation. A major task
while building a model of the scenario is to develop a domain understanding and
to identify existing dependencies within the model and to model them explicit,
e.g., by means of a dependency graph. Among others the model has to fulfill a
number of goals:

• During the modeling of the domain the dependencies between the planning
systems are located more precisely. Moreover, the data and data sources
that are available/required for the coordination have to be identified.

• The description of the requirements base on the terms and concepts intro-
duced in the model. Thus, the model defines the vocabulary for the following
steps of the ECo process.

• Based on the model the evaluation criteria have to be defined, as well. There-
fore, the model provides the terminology. During the modeling process suit-
able scenario specific evaluation criteria can also be identified.

Based on these goals a formal modeling of the environment is reasonable. A
formal model of the scenario enables the definition of coordination requirements

4.2. The ECo Process 125

and evaluation criteria in a formal way, avoiding ambiguousness and even enables
a formal validation of these criteria.

For formal modeling of domains and especially requirements von Lamsweerde
[Lam09, Chap. 4.4] discuss the following techniques:

• specifications based on temporal logics,

• state-based specifications, using Z for instance,

• event-based specifications, e.g., by using Petri-Nets or statemate, and

• algebraic specification.

We have already presented a common formalization of planning problems in Sec-
tion 2.2.1 and the modeling of dependencies in the TÆMS modeling framework in
Section 3.1.2. Both approaches use algebraic descriptions of their problem space.
Note that TÆMS can be visualized as a graph but is based on an algebraic def-
inition (see [Dec95, Chap. 3] for details). Most planning problems are modeled
based on an algebraic specification. This indicates that this form of modeling is
well suited for modeling planning problems and therefore might be well suited for
the modeling of coordination problems among multiple planning systems, too.

At this point we do not suggest a specific modeling language as the field of
potential application is broad and the design of an appropriate general modeling
language is not intended in this study.

Independent of the chosen modeling approach, it is important to keep in mind
that the purpose of the modeling is to define the terms required to define the
coordination requirements and evaluation criteria that are used to validate the
selected mechanisms. Thus, a formally grounded model is favored.

Example

To give a more concrete impression of modeling a coordination scenario we present
it by an example. Therefore, we use the example of the production and distribution
of goods, introduced in Section 2.1.1. In this model we do not deal with the internal
modeling of each of those sub problems but more on the input/output behavior
of the planning system and the overall flow of goods.

As already mentioned, the task of scheduling is to assign operations to resources.
An operation o is defined o = 〈r, d〉 with

• r, an identifier for the resource this operation has to be performed on

• d, the duration the operation takes on the resource.

126 4. The ECo-CoPs approach

Let O be the set of all operations. Based on the definition of operations we can
define a product p as follows: p = 〈we, h,w, d, o1, . . . , on〉 with

• we, the weight of a product,

• h,w, d, the geometrical information of this product, as a box with height,
width and depth.

• o1, . . . , on, with oi ∈ O a finite sequence of operations that have to be per-
formed to produce the product.

An order d can be modeled as a quintuple d = 〈p, q, c, d, e〉. Thereby, the
elements of this tuple are defined as follows:

• p, is a product key, specifying the product that has to be produced.

• q, the quantity of the product that has to be produced

• c, is the customer, which encodes the location of a customer by its x and y

coordinates.

• d, the due date, at that point in time the order should be finished.

• e, the penalty that has to be paid to the customer per time unit of lateness.

Based on a set of orders D the production schedule can be generated. The
generated schedule consists of a set of assignments. One assignment for each op-
eration that has to be performed. In the subsequent process we are not interested
in details how the schedule is formed. What in fact becomes important is the
finish time of a good. We refer to a good as an instance of a product that is
produced for a specific order. A good (g) is finished if all its operations have been
performed. A finished good f can therefore be defined as f = 〈t, g〉. That is at
time t the good g is finished. The set of all finished goods F can be extracted
from the local production schedule.

For the packing planning system for the finished goods the set F is planning
relevant information. Moreover, information about the bins, the loading devices,
is necessary. A loading device type has information about its volume and the costs
induced per used instance. Additionally, there exist constraints for the packing
problem, like the maximal number of loading devices that can be loaded in parallel.
The packing, however, has to load the daily production on loading devices to pass
them to the transportation unit. As we have now outlined the inputs describing
the packing problem, we have to define the output, the packing plan. The result
of a packing planning is a list of assignments that assigns each product to exactly
one loading device. Again one can abstract the details of the plan only to the

4.2. The ECo Process 127

relevant information, required for the transportation planning. A ready to ship
loading device rl is defined as rl = 〈rt,Drl〉. Thereby, rt is the time of availability
of the loading device and Drl is the set of orders, for which goods are loaded on
the device. From this point onwards the loading device can be shipped by a truck.
A packed loading device has at least one item for an order of this list loaded.

As pointed out above, the locations of customers are given as coordinates in a
Cartesian coordinate system and distances can be computed accordingly. For all
trucks it is assumed that they have the same speed. Thus, distance and traveling
time have a linear relation. All trucks have the same capacity of loading devices.
For each daily production the trucks have to deliver the goods to the customers.
The result of the transportation planning is a sequence of customers that are
served. For each stop the time of arrival can be computed. If a truck arrives at a
customer’s side, the loaded amount of goods is removed from the loading device.
A customer’s order is satisfied if the number of products specified in the order has
been delivered to the customer.

4.2.2. Coordination requirements

In the second step of the ECo process coordination requirements are introduced.
They define requirements a coordination mechanism has to satisfied in order to
be applicable for the given problem. The term coordination requirement has been
used in the scientific literature, already. But in existing work different notions of
this term has been used. For instance, Cataldo et al. [CWHC06] use the term
to indicate that software developers should communicate and coordinate their
activities in the development of a software product. Thereby, their research focus
merely on the organization theory and collaborative working environments in the
field of software development processes. A similar usage of this term can be found
in Zelewski and Siedentopf [ZS99]. Within the research of DAI the term has also
been used by Singh [Sin98]. Thereby, the notion is different in the sense that a
coordination requirement is a requirement of a coordination mechanism towards
the behavior of its participating agents.

Here, another notion of coordination requirements is used. Coordination re-
quirements are requirements that characterize properties of a coordination prob-
lem that have to be satisfied to apply a coordination mechanism in the given
problem/context. Thus, coordination requirements specify the requirements to-
wards the coordination mechanisms and consequently guide the selection process
of a mechanism. Following the notion of requirements engineering, requirements
can be classified as either functional requirements or non-functional requirements
[Lam09, pp. 23,24]. Defining functional requirements in the context of the coor-
dination of autonomous planning entities might seem straight forward; the plans

128 4. The ECo-CoPs approach

have to be coordinated. But this has to be defined more precisely. To do so we
have to distinct different cases of dependent plans, i.e., different ways how the
partial plans can be composed and interleaved:

• parallel execution: Different entities plan their activities independently and
execute them according to their local reasoning. This situation can be found,
for instance, in classical AI planning, where different action planners formu-
late a plan that has to be coordinated, e.g., by plan merging techniques (see
Section 3.1.2). Two plans are executable if no conflicts occur in all possible
interleaving points of the plans. Details have been discussed in previous
sections.

• concurrent execution: In contrast to parallel execution each planning system
computes a schedule. The execution of each action in each plan starts at a
given point in time. These schedules are executed concurrently. Such a situ-
ation could be found, for instance, in the supply chain management scenario
(Section 2.1.2). Here primarily precedence constraints and, if applicable,
constraints concerning shared resources are of particular interest during the
coordination. Consequently, two plans are concurrently executable if they
do not require the same resource at each point in time and all precedence
constraints between the objects that are scheduled, e.g., operations to fulfill
an order, are satisfied.

• sequential execution: Here the execution of the partial plans is not done
at the same time. Consider the production and distribution of goods case
study (introduced in Section 2.1.1), for example. All goods have to be pro-
duced before they can be packed and shipped. The material flow is strictly
sequential. Thus, the planing step for dealing with a specific good is sequen-
tial as well. Coordination has to ensure that this sequential relationship is
guaranteed in the different plans. Consequently, two plans are sequentially
executable if all precedence constraints are satisfied between the objects of
the plan and all plans are complete, i.e., providing all necessary actions for
all goods.

• compositional execution: If different planning entities generate parts of an
overall schedule that can only be executed if all parts work together in a
coordinated manner, i.e., no plan base on incorrect assumptions concerning
the other plans. An example of such a coordination problem is the container
terminal management problem introduced in Section 1.2. One example in
this scenario is that the berth allocation solver assumes a processing time
of the ships that depends on the number of assigned quay cranes that is
determined by another planning system.

4.2. The ECo Process 129

The definition for dependency among plans depends on their characteristic joined
execution.

Beside this functional requirements a number of non-functional requirements
might have to be defined in different scenarios that constraint the coordination
mechanism in the way how it achieves coordinated plans [Lam09, p. 24]. These
non-functional requirements are specific for each scenario, and are essential for the
identification/selection of a coordination mechanism, as they encode characteris-
tics that the coordination mechanism has to have, to be applicable in the scenario.
Therefore, it is essential that these coordination requirements are identified prop-
erly. This is done applying an elicitation process. This process is motivated by
the requirements engineering process. The elicitation process suggested by von
Lamsweerde [Lam09, p. 34] has four phases that are executed iteratively in a
spiral model. The phases are:

• domain understanding and elicitation,

• evaluation and negotiation of the requirements with the stakeholder,

• specification and documentation of the requirements, and

• quality assurance.

The domain understanding phase corresponds to the modeling discussed in the
previous section. The elicitation of the requirements depends strongly on the
domain a coordination requirement is required for. If a coordination scenario is
designed, it is important to discuss these issues with the stakeholders, i.e., the
entities that have to coordinate their plans.

The evaluation and negotiation of requirements is an important aspect, as some
requirements are show-stoppers, i.e., they have to be satisfied totally to ensure
applicability, e.g., to ensure privacy in form of information hiding in the coordi-
nation of the plans of different companies in a supply chain. Other requirements
might be optional or should be optimized up to a degree that is economically
reasonable, e.g., needed computation time. For those weaker requirements it may
make sense to define acceptable thresholds that should be met to make them strict
requirements, as well, e.g., it might be unacceptable to wait for a coordination of
next week production for longer than two days.

As already mentioned, in the section concerning modeling, it is important to
specify the coordination requirements in a formal way that enables a strict distinc-
tion between satisfied and non-satisfied requirements of a coordination mechanism.

The specified requirements should be checked if they are consistent and should
be validated with the stakeholders, to ensure that the coordination requirements
are specified correctly and adequate specifying the needs of the stakeholders.

130 4. The ECo-CoPs approach

These activities are summarized as quality assurance. This underlines the notion
of coordination requirements that should guide the selection process according to
the needs of the current situation at hand.

Example

Again, we want to clarify the definition of coordination requirements using an ex-
ample. Suppose we want to define the coordination requirements for the produc-
tion and distribution of goods case study, that has been modeled in the previous
section. As pointed out above, in this scenario the plans are executed sequentially,
at least from the point of a planning object, i.e., a good that has to be scheduled
first, then packed and finally transported. It is necessary that the plans are con-
sistent, i.e., feasible if all precedence constraints are satisfied. The precedence
constraint in this scenario is defined in a way that a good cannot be packed before
it has been produced. Therefore, the input for the packaging planning is the set
of finished goods F . This set has to be consistent and complete. F is complete if
all goods necessary to fulfill the orders in D are contained (see Equation 4.1).

∀f ∈ F : good(f) ∈ G (4.1)

F is consistent if for each f ∈ F the last production activity has been finished be-
fore it can be packed. This aspect is covered by the definition of f as it guarantees
that the condition referred to in Equation 4.2.

ttime(f) = max
∀a∈Ag

end(a) (4.2)

For more details we refer to the evaluation section of this case study (Section 5).

4.2.3. Selection of appropriate coordination mechanisms

After the domain has been described and requirements have been defined the next
step of the ECo process is the selection of appropriate coordination mechanisms.
This is done applying a qualitative evaluation. The goal of the qualitative evalua-
tion is to prove, or at least give strong indications what coordination mechanisms
are well suited for the given situation, to fulfill the coordination requirements.
There are at least three ways the conformance of a coordination mechanism can
be validated:

• by reuse, i.e., for standard requirements, the result is known and can be
looked-up in a repository. This is clearly the most convenient way. But it has
two drawbacks: First, such repositories do not exist so far in an appropriate
way. Within this thesis the foundations for building such a repository are

4.2. The ECo Process 131

laid out. Second, this approach should only be used for requirements that
are not specific for a scenario. A fairly simple example of such an repository
is shown in Table 4.2 (page 118).

• by design, i.e., some mechanisms satisfy some requirements by their design,
either intentionally or unintentionally. An example are auctions that do
only provide information about a monetary validation of a certain good,
but no motivations for the value, the true local value, or how each partic-
ipant can fulfill the task he is bidding for. By that design auctions are,
for instance, a possible option if information hiding becomes an issue as a
coordination requirement. Another example is the usage of an interface of
an existing planning system. If the coordination mechanism can interact
only through an interface with the planning systems that specify a simple
set of interactions, like defining the planning task and reading the results,
the coordination mechanism gets no insides of the planning system. Thus,
the planning system is seen as a black box to the coordination mechanism,
which can be a coordination requirement if existing planning systems have
to stay in use or a modular system architecture is desired.

• by proof, i.e., this is typically the hardest form of validating the compliance
of a coordination mechanism with a coordination requirement. A formal
proof has to be designed that shows that a formalized requirement is satis-
fied during the coordination process. This can be done, e.g., for the amount
of information published during a negotiation. If a metric exists for the
amount of information that is allowed to be published, it can be verified
or falsified that the coordination mechanism can hold the information hid-
ing requirement. Another example might be the avoidance of inconsistent
states at different planning agents, e.g., by model checking techniques. These
proofs, of course, are only possible if the agent’s local state can be accessed
centrally. But as this step is done before the roll-out for analysis this can be
assumed to be given.

Example

We take an abstract point of view here and make a selection on the base of the more
general characteristics presented in Section 4.1 and the classification summarized
in Table 4.1 (page 116) in particular.

For the scheduling and distribution of goods case study, the problem was char-
acterized as no allocation problem, no comparable objectives, heterogeneous plan-
ning problems, the existence of an overall objective, no need for information hiding

132 4. The ECo-CoPs approach

and no cyclic dependencies. Consequently, the following mechanisms can be fil-
tered for a more detailed consideration:

• plan merging,

• decentralized planning for a centralized plan,

• result sharing, and

• negotiation.

The supply chain management case study was characterized by an allocation
problem, possible comparable objectives (money), possible heterogeneous planning
systems, an overall objective function (serving the customer on time), the need for
information hiding among the partners of the supply chain and no cyclic depen-
dencies. According to this classification the following coordination mechanisms
can be investigated in more detail:

• mediator-based coordination,

• auctions, and

• negotiation.

The container terminal management problem is characterized by no allocation
problem, no comparable objective functions, heterogeneous planning problems,
no overall objective function, no need for information hiding and the existence of
cyclic dependencies. Therefore, only negotiations seem a reasonable approach.

4.2.4. Implementation of coordination mechanisms

After appropriate coordination mechanisms have been identified they have to be
implemented. To ensure an efficient implementation of the coordination mecha-
nisms, we propose the CoPS (Coordination of Planning Systems) process that of-
fers support for a number of necessary steps that have to be done. Complementing
the CoPS framework offers a software framework that facilitates the implemen-
tation of coordination mechanisms more quickly, by providing an infrastructure.
Note that the CoPS framework complements the CoPS process and is not manda-
tory, if the CoPS process is used. Therefore, the framework has more flexibility
to evolve or can be replaced entirely for a more customized solution for a given
situation. The CoPS process and framework are described in detail in the next
section. Therefore, we give only a brief overview here over the necessary steps of
the CoPS process which are necessary to perform. The activities are on the level
of the entire network of planning entities that want to coordinate their activities,

4.2. The ECo Process 133

as well as, activities that have to be performed within each of those planning en-
tities. The first will be referred to as the global layer, while the latter ones will be
referred to as the local level.

CoPS process on the global level

The entire selection process of coordination mechanisms is performed on the global
level, as the coordination mechanisms have to be defined for the entire network
of planning entities, and all these entities have to act accordingly to the selected
coordination mechanisms. During the modeling of the domain the effects that
cause the need for coordination should have been identified. Thus, it is clear in
which situations coordination becomes necessary. For these situations coordina-
tion mechanisms have been selected in the previous step, according to the defined
coordination requirements. Note that for different situations the need for coor-
dination occurs, possibly different coordination mechanisms have been identified,
or assumed to be beneficial. We are focussing here only on coordination based on
direct communication. So the coordination mechanisms are guided by an inter-
action protocol. Consequently, these interaction protocols have to be defined for
the selected coordination mechanisms. Thereby, it is strongly advocated to use, if
possible, existing interaction protocols, as they have proven useful. But this is, of
course, not mandatory. Thus, for the implementation phase of the coordination
mechanisms appropriate interaction protocols have to be defined that implement
each coordination mechanism on the global level.

Moreover, some infrastructure, like a centralized coordination agent, has to be
set up, if necessary. The CoPS process is detailed in Section 4.3.

CoPS process on the local level

On the local level, i.e., within each planning entity, a number of adaptation steps
have to be performed. First of all, the local planning/scheduling systems have to
be made accessible for the coordination mechanisms. As pointed out before, each
planning entity is represented by an agent, called planning authority agent. Such
an agent implementation is provided within the CoPS framework. This agent
must have means to access the local planning systems in a way that it is possible
for the agent to specify a planning problem and to get a solution for this problem.

The next task is to define local strategies how the agent should behave during
the coordination process. The basis for this strategy definition are the defined
interaction protocols given by the global level and the selected coordination mech-
anism that is currently implemented. If this coordination mechanism implies a
dominating strategy (see Section 3.1.3) for the planning entities, this strategy can
also be given by the global layer, otherwise a local strategy has to be defined. This

134 4. The ECo-CoPs approach

strategy has to be defined by human managers, and has to be implemented in a
way that the agent can decide how to behave within a certain conversation with
other agents coordinating its activities. Therefore, the strategy has to be broken
into conversation behaviors that specify for each point in the conversation pro-
cess; guided by the interaction protocol, what answer should be sent, if any. These
behaviors depend on a number of information that is specific for each planning
entity and has to be defined in an appropriate way for the planning entity.

It is also necessary to encode domain knowledge, e.g., how to react efficiently
in case of dynamic changes or during the search for local plan improvements.
Procedures to achieve those effects are often known by local experts and can
improve the system’s performance and efficient use of the local planning system.

As mentioned above, the CoPS framework is designed to facilitate a fast proto-
typically implementation of a coordination mechanism and is therefore primarily
designed to be easily adoptable and not necessarily towards an efficient realiza-
tion of a special coordination mechanism. Therefore, it is advocated to use the
CoPS framework for the evaluation of possible candidate mechanisms and for the
usage in a pilot. Before a roll-out in a production environment it may be therefore
useful to adapt the framework or use a special implementation facilitating the
selected coordination mechanisms. More details concerning the CoPS process and
the CoPS framework are given in the next Section 4.3.

4.2.5. Evaluation of coordination mechanisms

The task of the evaluation is to investigate if the desired performance criteria
are met by the implemented coordination mechanisms and to identify the most
suitable mechanism. This evaluation is named here quantitative evaluation of co-
ordination mechanisms. Thereby, it strongly depends on the given situation which
performance measurements are useful. Measures can range from an overall social
welfare metric to more subjective criteria. Additional performance measurements,
like the needed time for reaching a coordinated solution, can be measured and can
be relevant for the practical usage of a coordination mechanism, as well. Even
though most of the evaluation criteria are scenario specific and should have been
defined in the domain modeling phase of the ECo process some concerns regarding
the quantitative evaluation can be discussed here. Suppose we are interested in
measuring the quality of the coordinated plans, i.e., the result of the coordination
mechanism. Assume that this result can be expressed as real value. In the follow-
ing three different types of analysis are discussed that can be applied in different
scenarios, to investigate the quality of a coordination mechanism in quantitative
terms. These evaluations are:

• baseline comparison,

4.2. The ECo Process 135

• comparison with other approaches, and

• c-competitive analysis.

The first type is a comparison to a baseline. It is probably the most simplistic
kind of comparison. It is mainly characterized by comparing the situation before
the coordination with the result after the coordination. Thus, the leverage of the
coordination mechanisms can be measured. Thereby, problems concerning the
evaluation occur if the plans before coordination are not feasible, i.e., they could
not be executed without generating conflicts. If the plan is infeasible after the
coordination as well, one could measure the violation of such hard constraints,
but for sure this will not be a desired outcome and the quality of a coordination
mechanisms is not evident if the plans are not coordinated in at least a feasible
way after the coordination. If the coordinated plans are feasible and before were
not feasible how can the improvement be quantified? If infeasible situations are
penalized in the objective function, the improvement could be measured and will
be significantly high, even though the feasible solution might have a low perfor-
mance in contrast to a potentially optimal set of coordinated plans. If this is not
possible, one could use a sorted set of quality metrics. So, one quality metric
is feasibility, and a feasible plan, of whatever quality, dominates a non-feasible
plan, if it is rated high by an objective function. In a situation where a set of
uncoordinated infeasible plans can be transformed into a coordinated feasible set
of plans the improvement cannot be quantified. Instead it can be measured that
the plans are on a higher quality level. The advantage is that no continuum of
good infeasible plans and bad performing feasible plans exists that can be mixed
up.

If different coordination mechanisms have been implemented, a comparison to
other approaches can be achieved. In contrast to the comparison to a baseline,
this approach gives an impression of the gained quality that has been achieved.
Nevertheless, it requires different coordination mechanisms to be implemented for
the given situation. This is supported by frameworks, like the proposed CoPS
framework, but in any case it results in an extra effort for designing and imple-
menting different coordination mechanisms. There exist two special cases of this
comparison. The first one is the usage of testbeds. A testbed is a standardized
platform for experiments. Testbeds are widely accepted in the field of DAI, see
Decker [Dec96] for an early survey. Testbeds offer the functionality to represent
different instances of a fixed application problem and facilitate to implement dif-
ferent solution mechanisms for these problems. In contrast to most frameworks,
testbeds are designed specifically for one type of problem. They typically offer
an interface for the decision making process, to evaluate different problem solving

136 4. The ECo-CoPs approach

strategies for the specific problem class. Often testbeds come along with fixed
scenarios for benchmarking or generator for problem instances. Testbeds have
been proposed for different fields of application, like distributed vehicle monitor-
ing, presented by Decker [Dec96], manufacturing control, presented by Cavalieri
et al. and Verstraete et al. [CBM+99, VVB+06], or market-based negotiation sys-
tems6 presented by Collins et al. [CTMG98]. If testbeds for the given problem at
hand exist, this is an ideal way to gather information about existing mechanisms
or to compare a generated solution with existing ones. Of course, therefore the
local problem has to be transformed into a format that can be represented in the
testbed if applicable. As testbeds aim at a general class of problem types, special
instances might not be covered entirely.

Another way to evaluate an implemented solution is to compare it with the
optimal solution. Typically, the computational effort to find the optimal solutions
is very high, and can only be done for small instances. A similar form of com-
parison is to use a centralized computed solution, which typically outperforms the
coordinated plans, if the centralized planner has all required information that is
available, and no time limits for the centralized planner exist. Such a benchmark
is presented, e.g., by Wörner and Wörn [WW06b]. Note that results of such a
benchmark are not useful in the selection process of a coordination mechanism. If
a comparison should be used in a selection process, a “fair” comparison is required.
The notion of fairness is discussed below.

The c-competitive analysis stems from the field of online algorithms. An in-
sightful introduction into this field is given by Borodin and El-Yaniv [BEY98]. Its
goal is to evaluate the quality of an online algorithm. This analysis is well-suited
to evaluate the capability of mechanisms that have to deal with dynamics. In
a c-competitive analysis the maximal factor is computed that expresses to what
degree the online algorithm is worse in comparison to the optimal solution. Thus,
the performance of both solutions is computed. And the different performance
values are analyzed to identify the largest performance gap. This gap is used to
compute the c-factor that expresses to what degree the online algorithm is worse
off in comparison to the optimal solution.

Of course, this technique requires that the optimal solution is known. If this is
not true, or the computation of the optimal solution becomes intractable, a mod-
ified comparison technique is necessary. In the following, we call the comparison
with a known optimal solution a strong c-competitive analysis. In contrast to a
weak c-competitive analysis, where the result of the online algorithm is compared
to the best-known solution by an offline mechanism. An instance of such a weak
c-competitive analysis has been performed, e.g., by Timmermann and Schumann

6http://magnet.cs.umn.edu/index.php accessible 03/05/2010

http://magnet.cs.umn.edu/index.php

4.2. The ECo Process 137

[TS08].

If results of different mechanisms are compared, the fairness of this comparison
becomes an issue. Fairness thereby has at least two aspects that are discussed
here. First of all, the functionalities of the mechanisms have to be comparable. A
typical example of an unfair comparison that violates this aspect is, for instance,
the benchmark/comparison of a MAS that is capable of reacting to dynamics and
a centralized planning system, e.g., based on operations research techniques or
classical planning and scheduling techniques, without capabilities of reacting to
changes and adapting its plan. If those two systems are compared in a dynamic
environment, the MAS outperforms the centralized planning system easily. Such
a comparison does not allow to make a statement concerning the abilities of multi-
agent systems or centralized planning systems, except that one system can handle
dynamics and the other one cannot. This does not allow any judgments concerning
centralized planning and scheduling systems in general, because those approaches
can also be equipped with techniques for handling dynamics, as already discussed
in Section 2.2.3.

Another type of “unfair” comparison can be found if two mechanisms are com-
pared that have to respect different sets of restrictions. For example, two ap-
proaches satisfy different sets of coordination requirements, or other constraints
are opposed to the systems. Typically, less restricted systems can find solutions of
higher quality. By opposing more restrictions, the change of finding high-quality
solutions is decreased. Consequently, the comparison with a mechanism that does
not obey to the same constraints will result in an unfair comparison, like the one
sketched in Figure 4.2.

Figure 4.2.: Example of an unfair comparison

138 4. The ECo-CoPs approach

Figure 4.3.: Example of an fair comparison

A fair comparison would instead compare the results of the mechanism under
investigation with the results of the best possible results of a mechanism that
respects all coordination requirements. This is sketched in Figure 4.3. A fair
comparison gives a more realistic impression of the capabilities of the mechanism
under investigation.

Nevertheless, an unfair comparison can offer additional information, of course.
For instance, comparing the result of coordination mechanisms that respects all
defined coordination requirements with a solution computing the global optimal
solution and thereby violating a number of coordination requirements enable, the
estimation of the costs for solving this problem in a distributed way, and the costs
of the coordination requirements, which can be the starting point of a discussion
concerning the coordination requirements, i.e., is it rational to keep these require-
ments, or can they weakened, to ensure a better overall performance. This issue
concerns the tactical and strategic decision making, and the field of how problems
should be distributed, and therefore is not in the scope of this study, but remaining
an important issue for future work.

4.3. CoPS process and framework

The CoPS process and the CoPS framework have been developed to support the
implementation of coordination mechanisms as part of the ECo process. The CoPS
process and framework support the ECo process, as they detail out one specific
step of the ECo process. Nevertheless, it is possible to use the ECo process and the

4.3. CoPS process and framework 139

CoPS process and framework independently. The ECo process does not demand
the usage of the CoPS process or CoPS framework, and vice versa. Each planning
entity is represented by its agent. This agent is called the planning authority
agent (PAA), because it represents the planning authority, which is a synonym
for planning entity.

Coordination mechanisms among agents are used to coordinate the local plans.
To implement these mechanisms, every agent has to respect two aspects that
guides its local behavior. First, the agents have to behave accordingly to the pro-
tocols defined on the network layer. Second, they also have to behave accordingly
to the specifications of the local planning entity that they represent.

The idea of the CoPS framework is that not every planning entity has to design
and implement its own agent, but rather instantiate an agent derived from the
CoPS framework, that have been adapted to the local situation at hand. This
emphasizes the re-use, and more important for the planning entity, a shorter
development phase and less development costs. To facilitate the reuse of the
CoPS framework, it is important to ensure that the (PAA) behaves strictly as
specified by the planning entity and that they can be adapted easily. Within the
CoPS process it is described how such agents can be customized for a planning
entity. But even if the CoPS framework is not applied to coordinate the behavior
of planning entities the CoPS process can offer valuable guidelines, as it addresses
issues like adapting agents to existing planning systems, specifying conversation
protocols and conversation behaviors, which are topics that are not exclusive for
the CoPS framework, and in case of the specification of conversation protocols
and behaviors even not specific for the coordination of planning systems, at all.

4.3.1. Concept of the coordination process in the CoPS approach

We use agents to represent the planning entities that have to coordinate their
activities. Moreover, a coordination agent (CA) is assumed to be in place that
enables some centralized book-keeping and offers services like indirect communi-
cation to the network, if necessary, e.g., for information hiding issues. But more
important this coordination agent represents the network as a whole. A CoPS
network is setup by specifying a coordination agent. Other PAAs can register
themselves at the CA to become part of the network. In this thesis only the oper-
ational coordination of activities is addressed. Thus, it is not in the scope why and
when an agent enters a network. We assume that the agent is ordered to enter a
specific network by its planning entity. Therefore, it is reasonable to assume that it
has been prepared to do so, e.g., by equipping the agent with the shared ontology
of the specific network and conversation policies and behaviors for that network.
To foster a faster implementation of coordination mechanisms, the CoPS frame-

140 4. The ECo-CoPs approach

Prepare PAA

Setup CA

PAA register
at CA

PAA gets
interaction
protocols

PAA customizes
conversation

 protocols

PAA can coordinate its
activities in the network

Specifying
conversation

protocol

Figure 4.4.: Process of setting up a network, according to the CoPS process

work offers a way to reuse the implementation of conversation protocols. These
protocols have to be specified on the global network level. Code implementing
these protocols is generated and is distributed among agents, when they register
to participate in the network. Thus, it is not necessary that every planning entity
has to implement the conversation protocol. It can focus on the aspects that are
specific for its own local context. These protocols can be enriched by conversation
behaviors locally defined. After this has been done the agent acts according to the
conversation protocols defined for this network. Therefore, the CA functions as an
embodiment of the organization, i.e., the network, it represents. The embodiment
of organization is also favored by Piunti et al. [PRBH09]. The process described
above is depicted in Figure 4.4 using an UML activity diagram notation. For an
introduction into UML we refer to Oestereich [Oes09, Chap. 4.6]. More technical
details of the CoPS framework are discussed in Section 4.3.3.

4.3.2. CoPS process

The CoPS process can be used to take the necessary steps to implement a coordi-
nation mechanism. It is assumed that the selection process of the ECo process has
been performed and one or more mechanisms have been selected for implementa-
tion. The CoPS process supports the implementation of coordination mechanisms.
While the ECo process is executed on a network wide level, i.e., the decisions are
made for the entire network. The CoPS process is executed on both levels, the
global network wide level and in large parts it comprises process steps that have to
be executed on the local layer, within each and every planning entity. Primary it
describes how to adapt a PAA of a planning authority to the coordination mech-
anism that has been agreed upon on the global level. An overview of the CoPS
process is given in Figure 4.5.

The CoPS process defines five steps. The specification of conversation proto-
cols is given on the one hand in form of an interaction protocol but also offers
additional information about the expected behavior of the agents. This is nec-
essary as interaction protocols are not sufficient for specifying agent interactions
(see Bartolini et al. [BPJ03]). This process step is done on the network wide

4.3. CoPS process and framework 141

Figure 4.5.: Overview of the CoPS process

global layer. In contrast to the previous steps on the global layer, it is a purely
technical step. The required conversation processes for the selected coordination
mechanisms have to be modeled.

If the conversation protocol has been defined, each planning entity has to define
its conversation policy. This policy compromises guidelines like its willingness to
make concession and to whom it is willing to do so, or its willingness to publish
which information to whom. This conversation policy is fundamental for the next
step, the definition of the conversation behaviors. A conversation behavior fixes
for each and every step during a conversation, which action, i.e., what kind of
answer, the PAA should provide.

Doing so the PAA probably requires additional information, and to coordinate
the plan of its planning entity, it has to have access to the local planning system.
Therefore, the planning system has to be adapted to be accessible/usable for the
PAA. Finally, it is necessary for the PAA to guide the search for a coordinated local
plan to explore the consequences of modifications of the inputs of the planning
system. Therefore, the PAA has to have means to modify the inputs in an informed
way and not only by uninformed search. The search process can be shortened, if
knowledge of the local search space is incorporated within the process. Therefore,
it is useful to encapsulate this knowledge in a separate module that agents can
use. Thus, the domain knowledge can be separated in a module that is not part
of the CoPS framework. Therefore, the core implementation of the agent, taken
from the CoPS framework does not have any domain knowledge. The agent can
make use of it by the localized module.

142 4. The ECo-CoPs approach

Specification of conversations

A conversation is characterized by an interaction among two or more entities,
acting on two roles. Even if the number of participants is larger the interaction
can be described by the behavior of two roles. This concept is, for instance, used
in the definition of the contract net protocol or auctions protocols, as well.

Conversations are specified in three parts. An overall interaction protocol, a
conversation policy, and conversation behaviors. An interaction protocol specifies
correct sequences of messages exchanged in a conversation. A conversation policy
encodes behavioral guidelines for all conversation behaviors. It encodes additional
information that is not covered in the interaction protocol. Conversation behav-
iors specify the behavior an agent performs after it has received a message as part
of a conversation. We assume that conversation behaviors are defined by humans.
Therefore, it is not necessary that conversation policies have to be machine pro-
cessable. However, it would facilitate the construction of more advanced agents,
that can interpret these rules and behave accordingly. Moreover, a formal notation
disambiguates the notation of conversations.

Specifying interaction protocols First, we discuss the specification of interaction
protocols. These protocols have to be readable by humans: during the design
process and the subsequent steps of the CoPS process. As outlined before, it is
also advantageous to specify interaction protocols in a machine readable format
to enable an automated generation of state-based implementations for both roles
of the conversation.

Therefore, we suggest using a textual notation to describe these protocols.
Based on this representation it is possible to generate a sequence diagram, al-
lowing easy human readability. Moreover, the textual representation is parsable
to generate the necessary automata for both roles. Using a textual representation
for the description of agents interaction specification has been proposed by Kon-
ing and Romero-Hernandez [KRH03], as well. In their paper they use a textual
representation of AUML diagrams to generate Promela code that can be verified
by the model checker Spin to verify certain aspects of the specification of the in-
teraction. The authors do not use the textual representation as a mean to foster
implementation and communication towards the developer.

We have surveyed textual notions for sequence diagrams that can be used to gen-
erate graphical representations. Tools like the WebSequenceDiagrams7 or Quick
Sequence Diagram Editor8 offer to specify UML sequence diagrams in a textual
form. Keywords, e.g., for defining alternatives have been defined in the UML stan-

7http://www.websequencediagrams.com/, Accessed: 03/09/2010
8http://sdedit.sourceforge.net/, Accessed: 03/09/2010

http://www.websequencediagrams.com/
http://sdedit.sourceforge.net/

4.3. CoPS process and framework 143

dard. Those keywords have been summarized, for instance, by Oestereich [Oes09,
p. 364]. Unfortunately, the syntax of the representation these tools use, is not
identical and standardized. For instance, drawing a line from object Alice to
object Bob is encoded as Alice->Bob:Label of the arc for WebSequenceDia-
grams and as Alice:Bob.Label of arc for the Quick Sequence Diagram Editor.
We choose the notation of the WebSequenceDiagrams tool, because it facilitate
the construction of compilers that can parse the description and generate behav-
ior automata. A behavior automaton describes the correct sequences of messages
from the perspective of one role of the conversation. An example of a textual
representation is shown in Listing 4.1.

Listing 4.1 Textual description of the contract net protocol
1 participant Initiator

2 participant Participant

3 note left of Initiator: onetomany

4 note right of Participant: bilateral

5
6 Initiator -> Participant : cfp

7 alt

8 Participant -> Initiator : propose

9 note left of Initiator: sync

10 alt

11 Initiator -> Participant : accept-proposal

12 alt

13 Participant -> Initiator : failure

14 else

15 Participant -> Initiator : inform

16 end

17 else

18 Initiator -> Participant : reject-proposal

19 end

20 else

21 Participant -> Initiator: refuse

22 end

In the lines one and two the participating roles are defined. Thereby,
participant is a defined keyword of the WebSequenceDiagrams syntax. The
declaration is optional for the generation of the diagram, but assumed to be
mandatory for the generation of automata, because it eases the parsing of the
text. In lines three and four, two comments (indicated by the WebSequenceDia-

144 4. The ECo-CoPs approach

grams keyword note) are used, to indicate the number of roles that are acting on
these roles. The cardinalities of common interaction protocols have been presented
in Section 2.3.4 (in particular in Table 2.6 on page 52). We identified two possible
situations that can be encountered from the perspective of each role. These are the
one-to-many (onetomany) perspective, and the bilateral (bilateral) perspective.
In a one-to-many perspective an agent, acting on a role, has a conversation with a
number of agents, while from a bilateral perspective an agent has a conversation
with only one other agent. In the example of the contract net, the conversation
is a one-to-many conversation from the perspective of the manager role, while the
same conversation is a bilateral for all other participants. By the keyword alt a
conditional branch is declared, that can have alternatives, which are indicated by
the keyword else. It is also necessary to synchronize a conversation at certain
points in time. For example, in the contract net, the initiator (manager) has to
wait for proposals and is not allowed to proceed after the first proposal has arrived.
This is indicated by the keyword sync in line nine. It is used in the comment syn-
tax of the WebSequenceDiagrams tool, the effected role is mentioned, that has to
synchronize its behavior, here, wait for responses. The resulting sequence diagram
is shown in Figure 4.69.

The code shown in Listing 4.1 can be compiled into behavioral automata. This
can be done in a single pass parsing. A compiler has been developed for the im-
plementation of this thesis. It takes an input in form of a text file and generates
the representation of two behavior automata, one for each role in the conversa-
tion. The automata are non-finite variants of a Mealy machine, e.g., presented by
Hopcroft and Ullman [HU79, p. 43] with ε-moves. The output of the automata
can be computed by its current state and its input. Arcs are labeled with input
and output. This is done in the following notation input/output. An ε-move in-
dicates that no input is necessary to trigger a transition. Even though, it might be
possible to transform this state machine into a non-finite automata (NFA) without
ε-moves in a second parsing step, this is not necessary, as it has been stated that
NFA with and without ε-moves are equivalent, see Hopcroft and Ullman [HU79,
p. 26]. Graphical representations of the generated automata from Listing 4.1 are
shown in Figures 4.7 and 4.8.

To enable the specification of all kinds of interaction specified by the FIPA, an
additional construct for loops is necessary, e.g., to represent the iterated contract
net protocol. This notation discussed above has been extended to model those
protocols, as well. This extension is discussed in Appendix A using the example
of the iterated contract net protocol [FIP02g].

9The resulting AUML diagram of the contract net protocol has been shown in Figure 3.8 on

page 102.

4.3. CoPS process and framework 145

Initiator

Initiator

Participant

Participant

onetomany

bilateral

cfp

propose

sync

accept-proposal

failure

alt

inform

alt

reject-proposal

alt

refuse

Figure 4.6.: Generated sequence diagram of the contract net protocol

Specification of the conversation policy

A conversation policy is defined by a planning entity to specify general rules that
should be obeyed by the PAA in conversations. As pointed out by Kagal and
Finin, a conversation policies are “restrictions on communication based on the
content of the communicative act” [KF04, p. 121]. This can strive regulations
what information is revealed and to whom or what services and service conditions
are offered in a specific network, for instance.

Conversation policies have to be described on the one hand in natural language
or other concepts, e.g., graphical notations. This kind of notation serves as a tool
for communicating the conversation policy to developers or technical staff. These

146 4. The ECo-CoPs approach

Figure 4.7.: Behavior automaton for the initiator role

Figure 4.8.: Behavior automaton for the participant role

are the people who are going to implement the conversation behaviors accordingly
to the defined coordination policy. On the other hand, the specification should be
formal to enable inferring agents to reason about their behavior and validate if it
is correct according to their conversation policies. The automated validation can
gain confidence in the agent as a representative of the planning entity, because
the conversation policy has to be defined in close cooperation with the responsible
management. In contrast, the implementation of the conversation behavior is
typically done by technical people, who do not have responsibilities concerning
strategic decisions, which is encoded in the conversation policy.

Kagal and Finin [KF04] suggested that a conversation policy can be described
as a set of positive and negative permissions and obligations. Thereby, the authors
define four different notions of policies that could be defined: permission, prohi-
bition, obligation and dispensation. These four aspects are encoded as deontic
logic expressions, which determine allowed or forbidden actions for the agent. To
resolve conflicts that can arise during the reasoning of the agent, the authors sug-
gest the usage of priority rules. By using such a rule-set it is possible to express
what information is revealed and to whom, for instance. The authors mention
that the interaction protocols themselves can be expressed with such rules, as

4.3. CoPS process and framework 147

well. This is an interesting approach for reasoning agents. But for the design
of interaction protocols the usage of rule sets is not well suited for developers.
The usage of graphical notations, like the sequence charts, discussed above, are
widely accepted and developers are familiar using them. Kagal and Finin use an
OWL10 description to enable automated reasoning about a conversation policy.
The usage of this notion of conversation policy enables description and reasoning
about aspects of a conversation in more detail, e.g., it is well suited to define what
information can be revealed and to whom.

The expression of what actions are allowed and forbidden is a useful step in
constraining the actions of an agent. But they are not sufficient for specifying
consideration about more value-based concerns, like guidelines how to generate
a counteroffer. Therefore, trade-offs are useful to cover this aspect. A trade-off
quantifies different valuations between two or more attributes of a conversation
object. In the following we discuss the additional value of trade-offs, assuming a
conversation to be a negotiation process. Trade-offs enable the detailed specifi-
cation of the content of messages during a conversation, like a counteroffer or a
concession in a negotiation.

Trade-offs have been discussed in the context for multi-attribute negotiations
among software agents, e.g., by Huhns and Stephens [HS99, p. 104] or Lou et al.
[LJS06].

For the application of trade-offs in automated negotiations it is crucial to acquire
the correct trade-off information from the humans, who are kept responsible for the
economic consequence of the agent’s activities. We have developed a technique
to acquire those information, using trade-offs as part of a conversation policy.
Therefore, we need a human readable way to specify those trade-offs.

As already mentioned, a trade-off defines how much one attribute can be wors-
ened, in favor for improving another. This can be encoded within a trade-off
function. According to Luo et al. [LJS06] this function can be defined as shown
in Definition 4.3.1.

10OWL is the abbreviation for web ontology language see http://www.w3.org/TR/

owl2-overview/ Accessed: 03/11/2010.

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/

148 4. The ECo-CoPs approach

Definition 4.3.1

Let the domain of the attribute of the negotiation subject x be defined with
X = [lx, rx], and let the domain of y be Y = [ly, ry]. Thereby, we assume,
that the domains are sorted in a way that the first value is evaluated at least,
and the last value is evaluated highest. Then the function is called trade-
off function between X and Y if it is continuous, monotonic and meets the
boundary condition. The boundary condition assures, that if one attribute is
assigned to the best value, the other attribute has to be made worse [LJS06].
The pair (x, y) is called a trade-off pair.

For each trade-off pair a preference function is defined, specifying the preference
over the trade-off alternatives. Trade-off alternatives are value combinations of
the relevant trade-off pair [LJS06]. Independent attributes are not in a trade-off
relation with other attributes. To each of them a preference function is associated.

A trade-off strategy represents a directed forest, this is formalized in Definition
4.3.2.

Definition 4.3.2

Given are the negotiation attributes as nodes and the trade-off pairs as di-
rected edges. The direction of an edge is defined by the trade-off function (see
Definition 4.3.1). If this function has the form τ : X → Y , there exists an edge
from node X to Y . Then a trade-off strategy represents a directed forest :

• Let a be a negotiation attribute. All values of a’s value set A are in
a preference ordering relation �⊆ A × A: the preference direction is
descending if smaller values are allowed, ascending otherwise.

• To each trade-off pair (a, b) with A and B as domains for a and b, the
following is associated:

– A trade-off function τ : A→ B in terms of Definition 4.3.1.

– A trade-off preference function p : A×B → [0, 1], which assigns to
each trade-off alternative a preference value. It reflects a trapezoid
formula of three segments (analogue to the preference function in
[LJS06]) to describe the increasing, steady and decreasing prefer-
ence over trade-off alternatives.

• Independent negotiation attributes are trees with only one node. For
each such negotiation attribute a a preference function is associated p :
A→ [0, 1], with A: ∀a, b ∈ A : a � b⇔ p(a) ≤ p(b).

A resulting set of trees is shown in Figure 4.9. In fact, it is ensured that all trade-

4.3. CoPS process and framework 149

Figure 4.9.: Directed forest representation of a trade-off strategy, [SKT09]

off strategies can be represented as a forest. This ensures formal and informal
benefits. A trade-off strategy can be visualized in a clear and accustomed way
to the users. Due to the acyclic structure, the strategy remains consistent. This
reduces the complexity specifying and validating those strategies.

We used the Ecore meta model of the Eclipse Modeling Framework11 (EMF).
Details of this framework are provided by Steinberg et al. [SBPM09, Chap. 5],
for instance. We use the EMF to define a model for trade-off strategies that can
be used to define concrete negotiation strategies. Using the EMF meta model as
foundation allows us to define a graphical notation of the model.

A graphical notation of a negotiation strategy is shown in Figure 3.6 (page 74).
Another negotiation strategy is visualized in Figure 4.10 that is used here to elab-
orate on the graphical notation in more detail. In the trapezoid shape the name of
the negotiation object is mentioned. Thus, for different items that can be object
of a negotiation, different trade-off strategies can be defined. This node serves
as an artificial root of the trade-off strategy. Attributes that are negotiable are
shown in boxes, labeled with their name. In the lower level of the box the domain
for this attribute is shown, in curly brackets for an enumeration and in square
brackets for interval values. The outgoing edges from the trapezoid are labeled
with the priority of the sub-tree to which it connects. Edges between attributes
represent trade-off pairs, these edges are labeled with the optimal trade-off-pair.
Using such a graphical notion makes it reasonable for non-software developers to
specify trade-offs for a conversation policy. Additionally, we can transform the
trade-off model automatically into data-objects representing the strategy using
MDD techniques. A detailed introduction in MDD is given by Steinberg et al.
[SBPM09] and Stahl and Völter [SV06]. A detailed presentation of the idea of
acquiring and representing trade-off strategies and case studies can be found in
the work by Kurtanovic [Kur08] and Schumann et al. [SKT09].

11http://www.eclipse.org/modeling/emf/: Accessed 06/30/2010

http://www.eclipse.org/modeling/emf/

150 4. The ECo-CoPs approach

Figure 4.10.: Graphical of trade-off strategy, [SKT09].

Consequently, we can formally define trade-off policies and are able to express
them in an intuitive way to humans. Thereby, their definition is based on a sound
formal background.

Specification of conversation behavior

In the next process step conversation behaviors have to be specified. A conver-
sation behavior is the behavior that defines how the agent behaves in reaction
to a message that is part of a conversation. As pointed out before, the correct
sequences of messages in a conversation is modeled by an automaton for each role.
A conversation behavior defines the behavior in a state of such a conversation
automata. For each state, a behavior has to be defined. Thereby, a conversation
behavior can be used in different states. For example, the behavior in a final state
of a conversation automaton implementing the roll-back if a negotiation is can-
celed. Typically, there exists a number of states in an automaton that represent
an unsuccessful negotiation. And in each state the behavior can be the same.
Each conversation state has incoming and outgoing edges. Exceptions are the
initial state, that does not have any incoming edges and the final states that do
not have any outgoing edges. Edges are labeled with an performative of an incom-
ing/outgoing message or an ε-move. If a state is entered with an incoming message,
like the state labeled with 2 in the contract net initiator conversation automaton
shown in Figure 4.7 (on page 146), the conversation behavior has to handle the
incoming message. Otherwise the state can be activated without an incoming
message by an ε-move. If the outgoing edge of a state i is labeled with a message
a, the conversation behavior has to determine the content of this message. If the
current state of the conversation automaton has more than one outgoing edge, the
conversation behavior has to determine which edge/action has to be taken. While

4.3. CoPS process and framework 151

computing the content of an outgoing message the conversation behavior has to
respect the guidelines specified in the conversation policy. If the outgoing edge is
an ε-move, the next conversation state is activated after the conversation behavior
of the current state has been performed.

Conversation behaviors can be realized by an inference mechanism that uses the
specification of the interaction protocol and the conversation policy. Goal-oriented
or utility-based agents are capable of reasoning of the correct behavior. It is also
possible that the conversation behaviors are designed and implemented by human
developers. If the behaviors are manually developed, we recommend the usage of
decision trees as implementations patterns.

A conversation behavior that is designed for a state with multiple outgoing edges
can be designed in form of a decision tree. A decision tree takes a description of
a situation as an input, given as a set of attributes, and computes a decision, a
value that has been computed based on the input values (see Russell and Norvig
[RN03, p. 653]). According to Witten and Eibe [WF05, pp. 62–65] a decision tree
is defined as a tree with the following specific characteristics :

• inner nodes are labeled with attributes or conditions with the input at-
tributes as terms.

• the outgoing edges of a node a are labeled with different possible outcomes
of the conditions stated in a. In each state the condition is evaluated and
the outcome should match to the value labeled at one outgoing edge. This
transition is used to move to the next state, evaluating the decision tree.

• the leafs are marked with one element of the set of possible outputs.

Thereby, the decision tree is defined here in a way that the leafs of the tree
specify the performative of the answering message, i.e., the outgoing edge of the
conversation state. We illustrate this pattern by giving an example of a decision
tree for the conversation behavior that can be applied in the state labeled with 2
in the contract net initiator conversation automaton shown in Figure 4.7 (on page
146). The conversation behavior has to determine if the agent should accept or
reject the offer. A possible decision tree is shown in Figure 4.11.

Adaptation of existing planning systems

In this section we discuss different techniques that can be used to adapt existing
planning system to enable the PAA to get access to the functionality of the local
planning system. The reuse of existing planning systems is a critical issue for
the coordination of planning systems in the industrial context. As pointed out
in Section 2.2, those systems have been designed for a number of practical, i.e.,

152 4. The ECo-CoPs approach

Figure 4.11.: Example of a decision tree, representing a conversation behavior. Con

is the abbreviation for Condition

industrial, application fields. Those systems have been developed either as custom
software or customized commercial software, see Stantchev [Sta07]. According to
Hansen and Neumann [HN09, pp. 259,260] these software systems require signif-
icant investments and contains knowledge of the processes of the company have
been embedded into those custom software systems. To gain more efficiency, it
is desired to reuse those systems and not re-implement their entire functional-
ity. Another aspect that emphasizes the adaptation of existing planning systems
originate from the fact that a planning entity has to coordinate its activities in a
number of networks. If each network would specify the planning methodology or
the planning system that is interoperable within this particular network a plan-
ning entity would have to run a number of planning systems in parallel. These
systems do not have to be interoperable with one another, and even if they are
this would be inefficient, because of required redundancy of data and resources
and the efforts for keeping all data current and synchronized. Although techniques
have to be implemented to resolve conflicts resulting from different planning deci-
sions. Consequently, the adaptation of existing planning systems seems to be the
most realistic, and economic alternative. In the following we discuss how planning
systems could be accessed by agent technology.

FIPA has proposed a draft for a standard for the agent software integration
[FIP01a]. In this draft an explicit wrapper agent is defined that adapts existing
software systems and offers their functionalities to other agents. They are capable
to dynamically connect to existing resources, based on a description of the software
system. Therefore, and for communication purposes FIPA has presented a special
Agent Resource Broker Ontology and a Wrapper Ontology [FIP01a, pp. 9–16].

4.3. CoPS process and framework 153

Figure 4.12.: General agent software integration scenario [FIP01a, p. 2]

Wrapper agents have to be able to communicate with this ontology to other agents.
Client agents query for wrapper agents using an agent resource broker (ARB). This
is sketched in Figure 4.12.

The wrapper agent maps a number of integration techniques like CORBA,
DCom or Web Service to the ACL used for the communication between agents
[FIP01a, p. 3]. The internal structure of the wrapper agent and used techniques
for adapting existing software are not in the scope of the FIPA standard.

For summary, the FIPA draft specifies how agents access functionality of existing
software by using a wrapper agent, but does not indicate how the wrapping of the
software is done precisely.

Typically, it is not intended to allow all PAAs to access all planning systems.
The access should be strictly limited to software controlled by the planning entity,
as the local plans, planning knowledge and the planning process itself are typically
private information of a company. Thus, the FIPA wrapper agent cannot provide
its full potential, but it is still useful offering a unified interface to the PAA or in
situations where no information hiding aspects are needed.

As the wrapping of legacy systems by the wrapper agent is not addressed by
the FIPA draft, we are going to detail out conventional techniques for wrapping
legacy systems. Mecella and Pernic [MP01] distinct between two different types
of wrappers:

• Access wrappers: which provide a new interface that corresponds exactly to
the one of the existing system, and

• Integration wrappers: which provide new interfaces that do not necessarily,
are a direct mapping to existing software systems. An integration wrapper

154 4. The ECo-CoPs approach

uses different access wrappers and additional logic to provide those new
interfaces. Its goal is to present an integrated view of the underlying services.

As pointed out before, the interface to the framework has to be unified for different
planning systems. Thus, the development of an integration wrapper is advocated,
that also functions as the wrapping agent.

For realizing the access to the current planning systems we advocate to use web
services. Web services have been identified a favorable technology for encapsulate
existing functionality of software systems, see Sneed et al. [SWH10, p. 263]. The
idea of using web services to implement an enterprise service bus to allow a broader
application integration is widely accepted, see Papazoglou et al. [PTDL07]. A
detailed introduction for web services and their implementation is given, e.g., by
Zimmermann et al. [ZTP05, p. 2]. The encapsulation of functionality using web
services is described in more detail by Sneed et al. [SWH10, pp. 272–279]. Web
services can be integrated into agents, widely used agent-based frameworks like
JADE offer add-ons like the Web Service Integration Gateway add-on12, which
enables calling web services easily within a JADE agent.

To do so, web services have to be developed that can be made accessible via
the internet, or more realistically in the case of a planning entity to the local
area network. Nevertheless, a web service only offers the interface to external
applications. The logic of the wrapper has to be implemented, independent of
the integration technology. For the implementation of wrappers different design
patterns have been proposed. We present some basic design pattern here, all
introduced by Gamma et al. [GHJV94]. Even those patterns have been discussed
by the authors for object-oriented programming, they can be used similarly for
the wrapping of existing systems. In the following description of the patterns we
therefore refer to systems instead of objects, as this is more adequate for the scope
of this study.

The first pattern discussed here is the adapter pattern, which is also known
as wrapper pattern. The goal of an adapter is to change the interface of an
existing system into another interface that is expected by its clients. If required
the adaptor adds additional features. So it is more than a pure interface conversion
but contains additional logic that is required to provide all functionality the client
expects. For a detailed discussion with an exemplary implementation see Gamma
et al. [GHJV94, pp. 137–150].

Another pattern that is referred to as wrapper is the decorator pattern, pre-
sented by Gamma et al. [GHJV94, pp. 175–184]. In contrast to an adapter
pattern the decorator does not change the interface of a system, but adds addi-

12The add-on is available for the JADE platform at the web site http://jade.tilab.com/

community-addons.php, Accessed: 03/15/2010.

http://jade.tilab.com/community-addons.php
http://jade.tilab.com/community-addons.php

4.3. CoPS process and framework 155

tional functionality, that is needed.
The design of a wrapping web service can either be done top-down defining the

interface, e.g., via the WSDL description, and then implementing the logic of the
wrapper afterwards, or bottom-up designing the logic first and generating the web
service description and the web service specific implementation.

Other middleware, as a technology for enterprise application integration, is not
discussed here. A detailed introduction is provided by Ruh et al. [RMB01].

These design patterns and EAI technologies can be used to implement the adap-
tor for the wrapping agent, that offers the services of existing software systems to
other agents.

4.3.3. CoPS framework

According to Sommerville [Som06, p. 427] a framework “is a sub-system design
made up of a collection of abstract and concrete classes and interfaces between
them.” Its main purpose is to facilitate reuse of components that offers functional-
ities that can be reused for the development of systems. According to Sommerville
[Som06, p. 427] frameworks can be classified into

• system infrastructure framework,

• middleware integration framework, and

• enterprise application framework.

As the CoPS framework is designed for a specific application domain, namely the
coordination of planning entities, it can be classified as an enterprise application
framework, which is based on some middleware integration framework, e.g., JADE
in particular.

A framework offers either a set of interfaces and components, like abstract
classes, that have to be implemented or instantiated to get use of the framework,
or it can offer a set of components that have to be configured and can be used
in the application to be designed. According to Gurp and Bosch [GB01] the first
type of framework is referred to as white box framework, the later one as black box
framework. The idea of a white box framework is to allow to adapt or to extend the
framework at specific extension points, where the framework remains abstract, as
the concrete implementation depends on the application at hand. Abstract classes
are typically used to implement these extension points. According to Pree [Pre95,
p. 253] these parts of the framework are called hot spots. By using hot spots the
framework designer can specify which parts of the framework have to be detailed
out for usage. In contrast to hotspots are the fixed parts of the framework. These

156 4. The ECo-CoPs approach

parts of the framework cannot be changed, and are typically even not visible for
the user of the framework. These parts of the framework are called frozen spots
[Pre95, p. 253]. The idea of defining hot spots has been presented as a pattern
for designing frameworks that is applied here, as well. By defining concrete hot
spots we can allow to customize the agents to the given coordination task and
the interest of each planning entity. The implementation of these hot spots is
supported by the CoPS process that has been discussed above. On the other hand
the usage of frozen spots that cannot be changed by the users of the framework
can be used to implement some stable and expectable behavior of the agents.
This design approach allows users of the framework the needed freedom to define
domain specific parameters and policies on the one hand, and on the other hand
restricts the agent’s capabilities to a common core. Thus, the CoPS framework is
a domain specialized agent-based framework.

The CoPS framework should ease the implementation of coordination mecha-
nisms for the coordination of planning systems. Therefore, the CoPS framework
offers an abstract implementation of the coordination agent and the planning au-
thority agent and their interactions. As a consequence of the development process
of the CoPS framework as part of this thesis, the framework is young. Moreover,
it is not mandatory to use the CoPS framework if the ECo or CoPS process is
applied. Therefore, the framework is not the foundation of the CoPS process, even
though the CoPS process concerns specific aspects that have to be dealt with if
the CoPS framework is used. Nevertheless, similar or the same steps have to be
taken into consideration if the agents are implemented without the CoPS frame-
work. Therefore, we see the CoPS framework as a supplement of the ECo and
CoPS processes. In the following the CoPS framework is described in detail.

Overview of the CoPS framework

As pointed out above, the CoPS framework is a white box framework. The con-
crete agents have to be derived from the abstract classes of the framework. The
CoPS framework is composed out of two major sub packages, namely the package
for the coordination agent (CA package) and the planning authority agent (PAA
package). Some, more general, concerns are dealt with in the overall framework
package and some additional helper functionality is combined in an util package.
The overall package structure is shown in Figure 4.13. As pointed out before,
the CoPS framework is based on broader frameworks, in particular the JADE
framework, for developing MAS in the Java programming language.

The packages concerning the coordination agent and the planning authority
agent are presented in more detail in the following.

4.3. CoPS process and framework 157

Cops Framwork

PAA
CA

protocol

util

Figure 4.13.: Package diagram of the CoPS framework

The coordination agent

The specification of the coordination agent in the CoPS framework is discussed
here. An extended class diagram of the current implementation of the CA package
is shown in Figure 4.14. Note that this is an extended class diagram, as it contains
a number of classes that are not part of the CA package. They are included to ease
the understanding how the CoPS framework has to be used, and how it is based
on the JADE framework.

The abstract class Coordination Agent inherits from the Agent class of the
JADE framework (not shown in the diagram). As a key functionality of a coor-
dination agent is to offer registration services for the PAA joining the network,
we use the FIPA Subscribe Interaction Protocol [FIP02o], which has been imple-
mented by the JADE framework. The interaction protocol is shown in Figure 4.15
to give the reader a quick overview of the specification of this interaction protocol.

Therefore, the classes SubscriptionResonder, Subscription and the inter-
face SubscriptionManager from the jade.proto package have been added to
the diagram, to visualize how the classes in the CA package are connected and
how they are based on the JADE framework. The CoordinationAgent has
an instance of a CASubsciptionManager as an attribute that implements the
SubscriptionManager interface and therefore specifies what bookkeeping activi-
ties have to be performed if a PAA enters the network. This bookkeeping is done
via the classes MemberList and NetworkMember in which information, like the of-
fered capabilities of each network member are managed. Thus, while registering
to a network the PAA sends a set of capabilities that he can perform as content
of the subscription message for the network to the coordination agent.

158 4. The ECo-CoPs approach

Figure 4.14.: Class diagram of the framework.CA package

Figure 4.15.: FIPA Subscribe Interaction Protocol [FIP02o, p. 1]

4.3. CoPS process and framework 159

The class MyCA is also not part of the framework. It demonstrates the usage
of the CoPS framework for the design of a coordination agent. The MyCA class
inherits from the abstract class CoordinationAgent. Moreover, it generates an
instance of the CASubscriptionResponder class with specific parameters of the
current network, like the network specific conversation protocol specifications, for
instance. The corresponding class is defined in the framework and has to be initial-
ized with custom parameters. In its constructor the conversation protocol speci-
fication is loaded and the conversation automata, discussed above, are generated.
Therefore, the classes from the CA.protocol package, SequenceChartParser and
StackItem are used. If an agent registers to an instance of the MyCA agent, the
CASubscriptionResponder is activated and handles the subscription message.
It generates an answer to the subscription with an AGREE performative. In the
content of the answer, instances of the conversation automata are sent to the
subscribing PAA.

The CA can be extended to enable anonymous communication between the
network members, if we use alias names for the network members and all messages
are send to the CA and then are forwarded to the agent that the message was
intended to send to. The CA is designed to provide such features, but currently
they are not implemented. This feature would be necessary for industrial use, but
for the pure evaluation of the ECo-CoPS approach this feature does not add any
value.

The planning authority agent

In this section, we present the design and the architecture of the PAA agent. In
the design of the PAA we point out different extensions that can be applied to the
PAA framework, and the extension points that have been build in. The design
of the PAA is depicted in Figure 4.16. The agent design is based on a layered
architecture, aspects like communication, internal reasoning, and interaction with
external software systems are separated. This is motivated by the idea of the
separation of concerns in software engineering. This separation also enables the
control layer to operate on abstraction concerning the concrete implementation.
The agent is designed in three layers. A communication layer, a control layer
and an execution/wrapper layer for the integration of existing systems. This
structuring of an agent can be found in the literature, e.g., Timm [Tim04, pp.
67–70], as well. Even though this is not a well-established agent architecture, like
BDI, for instance, the layered approach should facilitate easier implementation for
the separate sub-systems.

The task of the communication layer is to handle the ACL messages from and to
other agents, to coordinate the activities. Therefore, it has to manage the network

160 4. The ECo-CoPs approach

Figure 4.16.: Design of the PAA

specific protocols to use the correct interaction patterns in a given network. It is
also responsible for adapting protocols with the customized conversation behaviors
that have been specified and implemented by the planning entity.

The controller determines the activities of the agent. The reactive part of the
agent’s activities is triggered by communication, as request to evaluate the effects
of a change or a request for scheduling some activity. A more pro-active part of
the PAA is the search for local improvements. This search requires local knowl-
edge, of course. As discussed above this knowledge should be embedded in an
optional model of the wrapping service of the planning system. The controller
can activate the search for local improvements. If such an improvement has been
identified, the controller can try to initiate a negotiation with other agents, using
the communication layer. The controller is the sub-system that updates the local
state, which represents the environment and the current local plan. Thus, deci-
sions concerning the local plan are triggered by the control flow in the controller,
which uses additional information provided by the wrapping layer.

In the execution and wrapping layer different existing software systems that
exist have to be addressed. Two aspects have to be mentioned in this layer. First,
this layer has to adapt the local planning system. Thus, an execution service
has to be defined that enables usage of the functionality of the existing planning

4.3. CoPS process and framework 161

system. Moreover, additional features that should be provided are the evaluation
of a current plan or the search for modifications in the input of the planning
system. The search for modifications could, for instance, relax a deadline that
would allow generating a better plan according to the local evaluation function.
The wrapping layer has to deal with the information integration of the PAA agent
into the information flow within existing systems, as well. For instance, events
that change the environment have to be identified and the controlling sub system
of the agents has to be triggered. Therefore, interface to information collecting
systems should be provided. Examples for these information collecting systems
are production data acquisition (PDA) systems, manufacturing execution systems
and enterprise resource planning systems. According to Kurbel [Kur05, Chap.
7] these systems can be sources for planning relevant information. Problems and
possible techniques to identify planning relevant events in those systems have been
discussed, e.g., by Schumann and Sauer [SS09]. Moreover, the current plan of the
planning entity has to be communicated to the other information systems within
the organization. One technique for realizing this, is to use the local planning
system that has an additional representation of the local plan. But this approach
has some disadvantages and makes it harder to evaluate potential plans, and
options for future decisions, as one has to ensure that the current plan is not
invalidated by these hypothetical computations. Another way doing so is to allow
the PAA to ensure that the current plan is either send to other systems or stored
in a joint database, that can be accessed by other systems, like the MES as well.

An extended class diagram of the current implementation of the PAA package is
shown in Figure 4.17. Note that this is an extended class diagram, as it contains
classes that are not part of the PAA package to ease the understanding how the
CoPS framework.

A key element is the abstract class PlanningAuthorityAgent which is the base
class for all implementations of localized PAAs. The class MyPAA is such an imple-
mentation of the PAA that inherits from the PlanningAuthorityAgent class. The
MyPAA is not part of the framework, but an agent built on top of this framework.

The PlanningAuthorityAgent uses an instance of the ListenerBehavior

which is derived from the CyclicBehaviour behavior of the JADE framework.
As the name indicates this behavior is responsible for receiving all messages that
have been sent to the agent. It passes these messages to an instance of the
CommunicationManager class. In this class the different ongoing conversations
of the PAA are managed, using the conversation automata and their customized
conversation behaviors.

During the setup of the PlanningAuthorityAgent it executes the Subscripe-

ToNetworkBehaviour inherited from the JADE SubscriptionInitiator class

162 4. The ECo-CoPs approach

Figure 4.17.: Class diagram of the framework.PAA package

implementing the initiator role of the subscription protocol discussed above (see
Figure 4.15). In this behavior the agent registers to an initial set of coordination
agents. Of course, it can register later on to additional networks, or can de-register
itself, if necessary. The agent manages network information in an instance of the
NetworkManager class, which contains some instances of the Network class.

The capabilities of the planning entity, at least their representation in the coor-
dination system, are managed by the CapabilityManager. As for each network
the set of offered capabilities can be differed, for each network a filter has to be
defined that maps the available capabilities of the planning entity to the subset
that is offered to the specific network. This can be customized by implementing
the interface CapFilter. This interface has been implemented by the MyFilter

class, which is not part of the CoPS framework.

The customization of a PAA is a central issue for the usability of the frame-
work. This customization information can be provided to the framework via the
LocalalizationReader interface, which has to be implemented by each planning
entity to provide the required local adaption. This interface provides information
to the PAA like capabilities of the planning entity, networks it is participating
in, and the adaptation strategies for the conversation automata provided by the
coordination agents of these networks.

4.3. CoPS process and framework 163

The information concerning the necessary adaption is given by a set of
AdaptationStrategy objects. An AdaptationStrategy specifies for a number
of networks the required adaptations. The adaption for a single network is de-
scribed by an object of the ConversationStrategy class. Within such a strategy
for each state of a conversation automaton, which is known at the design time,
a conversation behavior can be specified. This conversation behavior has to be
executed in that state of the automaton. Thereby, the designer can specify the
local behavior within the conversation. The protocols that have been received
after the registration are adapted according to the given strategy for the network
and then are stored in a ProtocolManager object. If the agent wants to start a
conversation with another agent, an appropriate protocol for the network can be
retrieved from this object. More precisely, a new instance of an adapted conver-
sation automaton for the specific role in the appropriate conversation protocol is
provided by the ProtocolManager object.

The PAA framework is, up to now, not implemented completely. For exam-
ple, the connectors to PDA systems are not realized. The core elements of the
framework have been implemented.

164 4. The ECo-CoPs approach

5. Engineering coordination: The SPT

case study

So far, we have presented the ECo process and the supporting CoPS process and
the CoPS framework. In this and the following chapter the ECo-CoPS approach
is validated. In this chapter we discuss the coordination problem of the first case
study, the production of goods and their distribution. This scenario has been
introduced in Section 2.1.1.

5.1. The SPT case study

Before we are going to execute the ECo process, we briefly describe the case
study. For a more detailed description see Section 2.1.1. In the production process
within a company goods have to be produced, packed on loading devices and then
transported to the customers. Each of these steps defines a complex planning
problem. The overall flow of material and workflow for each good is shown in
Figure 5.11.

Figure 5.1.: Workflow of a the production and distribution example

We use existing planning systems that have been developed by students of the
Goethe University Frankfurt am Main. The planning systems have been designed
and implemented in the practical course “Praktikum Wirtschaftsinformatik und
Simulation”2 in the winter term 2009/2010, held by René Schumann and Prof. Dr.
Ingo J. Timm. The task description that was provided to the students is presented
in Appendix B.1. The planning systems have been implemented in Java and can

1This figure is the same as Figure 2.2. It is presented here again, to increase readability.
2Practical course “Business Informatics and Simulation”

165

166 5. Engineering coordination: The SPT case study

be used as Web Services, based on the Tomcat3 (version 6.0) and Axis24 (version
1.4.1) technology stack. As these systems have been developed by students, as
part of their exercises in a one term course, the quality of the resulting plans
should not be overrated.

We select and implement the needed coordination mechanisms using the ECo-
CoPS approach. Therefore, we describe each step of the ECo process in a separate
section.

5.2. Modeling the scenario

In this section we describe the first step of the ECo process, the modeling of the
coordination problem. The context of this process step in the ECo process is
shown in Figure 5.2.

As already mentioned the case

Figure 5.2.: Context of the modeling step in

the ECo process

study has been presented in Section
2.1.1. Moreover, parts of the for-
malization have been presented in
examples during the presentation of
the ECo process (Section 4.2).

During the modeling of the co-
ordination problem in this and the
following chapter, a number of con-
cepts, sets and functions are de-
fined that are required to explain the
problem space. To ease the reading
we use some conventions for nota-

tion. For concepts, sets, and function we use different definition blocks to point
out more clearly the subject of definition. Concepts are referred to in normal
mathematical text, like c and a, for instance. Sets of concepts were encoded with
calligraphic capitals like C and A. Powersets are indicated by the notation ℘(A).
For the sets of numbers we use the notation N and R to refer to the sets of integer
and real numbers. Numbers themselves were highlighted by encoding them sans
serif, like x. Functions are identified by typing them in italic, like f (x). All con-
cepts, sets and functions introduced in this chapter are summarized in Appendix
B.2.

As we here describe a dynamic system, the state of the system can changes over
time. Time is represented as a discrete increasing integer value. Let t be a point
in time (pit) with t ∈ N. So sets that can change over time can be described for
every pit t. In this case study we assume that each time slot has a length of 15

3http://tomcat.apache.org/, Accessed: 03/19/2010
4http://ws.apache.org/axis2/, Accessed: 03/19/2010

http://tomcat.apache.org/
http://ws.apache.org/axis2/

5.2. Modeling the scenario 167

minutes. Thus, a day can be described as 96 time intervals.

The task is to fulfill a number of orders, each requiring a certain good. Each
good has to be produced, packaged and transported to the customer. An order is
satisfied, if all goods have been delivered to the customer that belong to the order.

We now define a set of exclusive resources R.
Set Definition 5.2.1

R is a formal language of labels for resources over an alphabet Σ.

A resource is reduced to a unique identifier. Resources are assumed to be non-
shareable, and are required exclusively to execute an action. A single resource is
specified with r ∈ R. Resources are used by operations.
Concept Definition 5.2.1

An operation o is defined as o = 〈r, d〉 with

• r ∈ R, an identifier of the resource this operation requires

• d ∈ N, the duration the operation needs to be processed.

Based on the definition of an operation, we define the set of all available operations.
Set Definition 5.2.2

Let O be the set of all operations.

Based on this definition we can define a product p.
Concept Definition 5.2.2

A product p is defined as p = 〈we, h,w, d, o1, . . . , on, <o〉 with

• we ∈ N, the weight of one unit of this product

• h ∈ N,w ∈ N, d ∈ N the geometrical information of this product, as a
box with height, width and depth.

• o1, . . . , on, with oi ∈ O a finite sequence of operations that have to be
performed to produce the product.

• <o a precedence relation defined for the operations.

Set Definition 5.2.3

The set of all products is referred to as P.

Attributes of a product can be retrieved by projective functions, described in the
following.

168 5. Engineering coordination: The SPT case study

Function Defintion 5.2.1

For the product p = 〈we, h,w, d, o1, . . . , on, <o〉 we define the following func-
tions.

The function weight : P → N it is defined as weight(p) = we.

The function ops : P → ℘(O) it is defined as ops(p) = {o1, . . . , on}.

Another fundamental concept is the customer. A customer places orders and
goods have to be delivered to the customers. Thus, her location is the relevant
part for the modeling.
Concept Definition 5.2.3

A customer c is defined as c = 〈x, y〉 with x, y ∈ N. The location of the
customer is encoded by her x and y coordinates.

Set Definition 5.2.4

The set of customers is defined as C.

Based on these concepts we can define an order.
Concept Definition 5.2.4

An order d is defined as d = 〈p, q, c, d, e〉 The elements of this tuple are defined
as follows:

• p ∈ P, the product that has to be produced,

• q ∈ N, the quantity of the product that has to be produced,

• c ∈ C, a customer,

• d ∈ N, due date, at that point in time the order should be finished, and

• e ∈ R, penalty that has to be paid to the customer per time unit of late
delivery.

Set Definition 5.2.5

Let D be the set of all orders.

Attributes of an order can be accessed by projection functions.
Function Defintion 5.2.2

For the order d = 〈p, q, c, d, e〉 we define the following function.

The function quan : D → N is defined as quan(d) = q

The function customer : D → C is defined as customer(d) = c.

5.2. Modeling the scenario 169

Figure 5.3.: Dependency graph for the SPT case study

The function due : D → N is defined as due(d) = d.

The function pen : D → N is defined as pen(d) = e.

The overall problem can be described by a scheduling, a packaging and a trans-
portation problem. Each of these problems is described in this case study in detail.
For each of these problems a planning system, that can be accessed via a web ser-
vice exists. In the following, we discuss the modeling of the different planning
problems in more detail. After all planning problems have been discussed, some
overall modeling issues are discussed.

The dependency graph, which is a linear one, is presented in Figure 5.35 .

Production scheduling

The production scenario has also been detailed in Section 2.1.1. There exist dif-
ferent operations, and for each operation two alternative resources are available.
Transportation during the production process between these resources is neglected.
This assumption has been introduced by Cavalieri et al. [CBM+99] for simplicity
reasons, and is assumed here, as well. The shop floor layout has been presented
in Figure 2.1 (page 14). The data for each production has been provided in Table
2.1 (page 14). The schedule has to be computed on the current set of all orders
D.

For the fulfilment of an order, it is necessary to produce the correct quantity of
the specified product. These instances of products that have to be manufactured
for a specific order are referred to as goods.
Concept Definition 5.2.5

A good g is defined as g = 〈p, d〉 with p ∈ P and d ∈ D.

The production volume is determined by the number of goods that have to be
produced.
Set Definition 5.2.6

The set of goods is referred to as G .

5This graph has already been presented in Section 2.2.4.

170 5. Engineering coordination: The SPT case study

Again we can define a projection function for goods in the following way.
Function Defintion 5.2.3

For the good g = 〈p, d〉 the following functions are defined.

The function order : G → D is defined as order(g) = d

The function product : G → P is defined as product(g) = p

The set of all goods of an order d can be referred to as Gd.
Set Definition 5.2.7

The set of goods of an order d is defined as Gd ⊆ G, with

∀g ∈ G : g ∈ Gd ⇔ order(g) = d

.

As it is required that for each order the correct number of goods is produced, it is
necessary to identify the goods that belong to a specific order. This is done using
the function orderD , which is defined as follows:
Function Defintion 5.2.4

The function orderD : ℘(G)× D → N, is defined for the set Gd and the order
d as follows orderD(G, d) = |Gd|

The set of goods G is complete if the following equation is satisfied.

∀d ∈ D : quan(d) = orderD(G, d) (5.1)

Based on the current set of goods a schedule has to be generated. For each good’s
operation specified in the product the corresponding actions have to be performed.
An action is the planned execution of an operation.
Concept Definition 5.2.6

An action is defined as a = 〈o, g, r, s, e〉 with

• o ∈ O the operation that is performed,

• g ∈ G the good this actions belongs to,

• r ∈ R the resource the action is performed on,

• s ∈ N, e ∈ N the start and end time of the interval the action is performed
in.

The action is the smallest unit of a schedule. The set of all actions forms the
schedule.

5.2. Modeling the scenario 171

Set Definition 5.2.8

A schedule is the set of all actions it is referred to as A.

Attributes of actions can be accessed to by projective functions, as well.
Function Defintion 5.2.5

For the action a = 〈o, g, r, s, e〉 the following functions are defined.

The function good : A → G is defined as good(a) = g.

The function operation : A → O is defined as operation(a) = o.

The function start : A → N is defined as start(a) = s.

The function end : A → N is defined as end(a) = e.

The function resource : A → R is defined as resource(a) = r.

As we pointed out, we are interested in the coordination of plans and schedules.
Thereby, our goal is to ensure that these plans are feasible. Therefor it is necessary
to define criteria indicating if a schedule is feasible.

First of all, it is necessary that the schedule is generated on the base of a com-
plete set of goods, which has been encoded in Equation 5.1. To clarify additional
aspects, we define a partial schedule for a good g.
Set Definition 5.2.9

A partial schedule for g is defined as Ag, with:

∀a ∈ A : a ∈ Ag : good(a) = g

.

In a partial schedule Ag all planned actions, and therefore, all operations that
have to be scheduled to fulfill the order d are contained. For each good produced,
all operations have to be performed in the sequence specified by the precedence
relations. This is encoded in the following equations 5.2 and 5.3.

|ops(product(g))| = |Ag| ∧ ∀a1, a2 ∈ Ag, a1 6= a2 : operation(a1) 6= operation(a2).
(5.2)

∀a1, a2 ∈ Ag, a1 6= a2. Let w.l.o.g. a1 <o a2 ⇒ enda(a1) ≤ starta(a2) (5.3)

Another constraint, that has to be regarded is that resources are used exclusively,
i.e., only one action per time is allowed to utilize the same resource. This is
formalized as follows:

∀a1, a2 ∈ A 6= a1, a2 :

@t ∈ N : resource(a1) = resource(a2)∧
start(a1) ≤ t ≤ end(a1) ∧ start(a1) ≤ t ≤ end(a1)

(5.4)

172 5. Engineering coordination: The SPT case study

A partial schedule Ag for an order g is feasible, if the equations 5.2, 5.3 and 5.4
are satisfied. If all partial schedules are feasible and the resource usage constraint,
described in Equation 5.4 is satisfied by the entire schedule, the overall schedule
A is feasible.

To ease the following discussion we specify the concept of finished goods, which
is in particular of interest for the following planning steps.
Concept Definition 5.2.7

A finished good f is defined as f = 〈t, g〉, with

• t = max
∀a∈Ag

end(a) the time the good is finished

• g the good

Set Definition 5.2.10

The set of all finished goods is referred to as F .

The attributes of a finished product can be accessed by projective functions, as
well.
Function Defintion 5.2.6

For the finished product f = 〈t, g〉 the following function are defined.

The function good : F → G is defined as good(f) = g.

The function ttime : F → N is defined as ttime(f) = t.

For easier handling of the following formula we define the following functions as
abbreviations.
Function Defintion 5.2.7

The function order : F → D, for f = 〈t, g〉 is defined as order(f) =
order(good(f)).

In the production data, shown in Table 2.1 (on page 14), a bottleneck occurs
at resource three (see also Brennan and O [BO00]). Therefore, the group of stu-
dents who have implemented the scheduling system favored a shifting bottleneck
heuristic to solve the scheduling problem described in this section. A detailed
description of this heuristic is given by Pinedo [Pin05, pp. 87–93]. The realized
scheduler generates a valid schedule for a given set of orders and aims to maxi-
mize the usage of the given resources. The output of the scheduler is the set of
finished goods F . The production data described above is given to the scheduler.
Furthermore, it is assumed that the production data is valid and deterministic
and no resource breakdowns occur.

5.2. Modeling the scenario 173

Packaging planning

For the packing of the goods, the set of finished products F is a necessary input.
Moreover, information about the bins and the loading devices, is necessary. A
loading device is characterized by its volume and costs induced per used instance.
Concept Definition 5.2.8

A loading device l is defined as l = 〈m, h,w, d, c〉

• m maximal weight that can be loaded

• h ∈ N,w ∈ N, d ∈ N geometrical information defining the volume that
can be used per loading device

• c ∈ N costs per used loading device

Set Definition 5.2.11

The set of all types of loading devices is referred to as L.

We define projective function for loading devices for abbreviation issues.
Function Defintion 5.2.8

The function cost : L → N. For l = 〈m, h,w, d, c〉 it is defined as cost(l) = c.

There exist some general restrictions concerning the number of loading devices
that can be packed in parallel. The finished goods produced on one day have to be
packed on loading devices at once. For simplification reasons we assume that the
packing does not require any time. Thereby, a loaded device is defined as follows.
Concept Definition 5.2.9

A packed loading device pl is defined as pl = 〈l,Fpl〉, with

• l ∈ L the type of used loading device and

• Fpl ⊆ F the set of finished goods contained.

Set Definition 5.2.12

The set of loaded loading devices forms the package plan PL.

Function Defintion 5.2.9

For a packed loading device pl = 〈l,Fpl〉 the following functions are defined.

The function items : PL → ℘(F) is defined as: items(pl) = Fpl.

The function mweight : PL → N is defined as mweight(pl) = mweight(l).

174 5. Engineering coordination: The SPT case study

As it is assumed that the packing itself does not require any time, a packed
loading device becomes available for transport if all items have been produced
that should be placed in that particular loading device. This is, of course, a
simplification that has been made to ease the tasks for the students. The time of
availability of a packed loading device is computed by the function available.
Function Defintion 5.2.10

The function available : PL → N. For pl = 〈l,Fpl〉 it is defined as:
available(pl) = max

f∈Fpl
ttime(f).

In a loading device a subset of the finished goods can be placed. Thereby, some
restrictions have to be satisfied. The first restriction is that the total weight of
the finished goods must not exceed the maximal allowed payload of the loading
device.

∀pl ∈ PL :
∑

f∈items(pl)

weight(product(f)) ≤ mweight(pl) (5.5)

Moreover, it is important that all items are placed correctly within the loading
device. We enumerate these criteria and do not formalize them here, as it does
not contribute to the understanding of the case study presented here.

Each item within a loading device is assigned to an anchor point that is used to
identify the position of the item within the loading device. This anchor point is
used to determine if the item has been placed within the device correctly. Finished
goods within one device cannot be placed in a way that they would overlap.
Moreover, each finished good must be placed completely within the inner borders
of the loading device. Physical aspects have to be regarded, as well, like the fact
that no finished good can float in the air. It must be placed either on the ground
of the loading device or on top of another finished good. When stacking finished
goods it is necessary to place the heavier items on the bottom and not on top of
other finished goods.

If all these constraints are satisfied, a loading device is loaded correctly. More-
over, it is important that all finished goods are packed. The packaging plan is
complete if the equations 5.6 and 5.7 are satisfied.

∀f ∈ F : ∃pl ∈ PL : f ∈ items(pl) (5.6)

∀f ∈ F : @pl1, pl2 ∈ PL : pl1 6= pl2 : f ∈ items(pl1) ∧ f ∈ items(pl2) (5.7)

If all loading devices are loaded correctly and the packing plan PL is complete
the packing plan is feasible.

The planning problem that has to be described here is a 3-D bin packing problem
with additional constraints regarding the weight of the objects. The students
developed a heuristic that generates valid plans and tries minimize to number of

5.2. Modeling the scenario 175

loading devices required to pack all items. Thereby, the induced costs for loading
devices are minimized, as the costs are linear to the number of devices used.

To give the transportation problem solver only the necessary information, we
define the concept of ready for shipment loading devices rl. For each pl = 〈l,Fpl〉
in PL a ready for shipment loading device is defined.
Concept Definition 5.2.10

A ready for shipment loading device is defined as rl = 〈l, rt,Drl〉 with

• l ∈ L the loading device; equal to the corresponding pl.

• rt = max
f∈Fpl

ttime(f) the earliest time the shipping can start

• Drl =
⋃

f∈Fpl
order(f).

Set Definition 5.2.13

The set f all ready for shipment loading devices is defined as RL.

Function Defintion 5.2.11

For the ready for shipment loading devices rl = 〈l, rt,Drl〉 the following func-
tions are defined.

The function rtime : RL → N is defined as rtime(rl) = rt.

The function customer : RL → ℘(C) is defined as
customer(rl) =

⋃
d∈Drl

customer(d).

The function costLD :→ N is defined as costLD(rl) = cost(l).

The function orders : RL → ℘(D) is defined as orders(rl) = Drl.

Transportation planning

The task of the transportation problem is to distribute the ready for shipment
loading devices contained in RL to the customers they belong to. Therefore, a
fixed number of trucks is available (maxNoofTrucks). A truck has a capacity for
a number of loading devices. It starts from a depot and after it has served all
customers it returns to the depot. Thus, the basic problem can be described
as a vehicle routing problem. As pointed out above, the locations of customers
are given as coordinates in a two dimensional Cartesian coordinate system, and
the depot is located at the origin (0, 0). Distances between two points can be
computed using the Euclidean distance. A truck can be described as follows.

176 5. Engineering coordination: The SPT case study

Concept Definition 5.2.11

A truck t is defined as t = 〈ca, s, co〉, with

• ca ∈ N, the capacity of loading devices

• s ∈ N, the speed per time unit

• co ∈ N, the costs per distance unit

Trucks are assumed to have a constant traveling speed. Therefore, the needed
time for traveling is linear to the distance between two points. If a truck arrives
at a customer site, it has to stay there for a specified service time st.
Set Definition 5.2.14

The set of all available trucks is defined as T .

Note that |T | = maxNoofTrucks holds.

Function Defintion 5.2.12

For the truck t = 〈ca, s, co〉 the following functions are defined.

The function capa : T → N is defined as capa(t) = ca.

The function speed : T → N is defined as speed(t) = s.

The function costspU : T → N is defined as costspU (t) = co.

As part of the vehicle routing planning, loading devices have to be clustered
together to be loaded on one truck and then the sequence of the customers within
each tour has to be determined. The solution of the first sub-problem is called
the truck load. A truck load is a set of ready for shipment loading devices.
Concept Definition 5.2.12

A truck load tl is defined as tl = 〈t,RT tl〉, with

• t ∈ N the earliest time this truck load can be shipped.

• RT tl ⊂ RT the loading devices loaded on the truck.

Note that the earliest time for the shipment of a truck load is determined by the
time determined in the Equation 5.8.

t = max
rl∈RLtl

rtime(rl) (5.8)

Set Definition 5.2.15

The set of all truckloads is defined as T L.

5.2. Modeling the scenario 177

For a truck load the number of loading devices contained in this truckload can be
retrieved by the function noelements.

Function Defintion 5.2.13

For the truckload tl = 〈t,RT tl〉 the following functions are defined.

The function noelements : T L → N is defined as noelements(tl) = |RT tl|.

The function elements : T L → ℘(RT) is defined as elements(tl) = RT tl.

The function rtime : T L → N is defined as rtime(tl) = t.
The function customers : T L → ℘(C) is defined as customers(tl) =⋃
rt∈RT tl

customer(rt).

The function orders : T L → ℘(D) is defined as orders(tl) =
⋃

rt∈RT tl
orders(rt).

For each daily production, the trucks have to deliver the goods to the customers.
Therefore, truckloads are assigned to trucks. This assignment is defined as follows.

Concept Definition 5.2.13

A loading assignment is defined as la = 〈s, e, tl, t, tour〉, with

• s ∈ N, e ∈ N the start and end time of the tour that distributes the truck
load

• tl ∈ T L the truck loading that has to be distributed

• t ∈ T the truck that is assigned

• tour a sequence of locations to visit. The first and the last point in that
tour have to be the depot.

Set Definition 5.2.16

The set of all loading assignments is called LA.

Function Defintion 5.2.14

For the loading assignment la = 〈s, e, tl, t, tour〉 the following functions are
defined.

The function load : LA → T L is defined as load(la) = tl.

The function truck : LA → T is defined as truck(la) = t.

The function start : LA → N is defined as start(la) = s.

The function end : LA → N is defined as end(la) = e.

178 5. Engineering coordination: The SPT case study

The length of the tour with n elements in the sequence can be computed by the
following function.
Function Defintion 5.2.15

The function length : LA → N. For la = 〈s, e, tl, t, tour〉 it is defined as

length(la) =
i=n−1∑
i=1

: dist(ci, ci+1)

, with ci and ci+1 two subsequent elements of the tour.

The function dist(c1, c2) computes the Euclidian distance between the points spec-
ified by the two customers. Note that for each loading assignment the Equation
5.9 must hold.

end(la) > start(la) + length(la) (5.9)

It is a strict greater than and not a greater or equal relation here because at each
customer side a stop for at least the service time (st) has to be made. Consequently,
the duration for a tour can be computed by the function duration.
Function Defintion 5.2.16

The function duration : LA → N is defined for la = 〈s, e, tl, t, tour〉 as
duration(la) = noelements(tl) ∗ st + length(tour) ∗ speed(t).

Another, more complicated aspect, is to compute the time of service of a customer.
Function Defintion 5.2.17

The function serviceTime : C × LA → N is defined for la = 〈s, e, tl, t, tour〉 as
serviceTime(c, la) = s + duration ′(la)

The duration is computed for the sub-tour starting from the depot to the customer
c. If customer c is not part of the tour the function returns 0. All trucks have a
time window per day in which they are available. Thus, the start and end time for
each load assignment have to respect those boundaries earliest start and latest end,
as well.

An loading assignment is feasible if the following equations are satisfied.

∀la ∈ LA : noelements(load(la)) ≤ capa(truck(la)) (5.10)

∀la ∈ LA : start(la) ≥ rtime(load(la)) (5.11)

∀la ∈ LA : ∀c ∈ customers(load(la)) : c ∈ tour(la) (5.12)

∀la ∈ LA : end(la)− start(la) ≥ duration(la) (5.13)

∀la ∈ LAstart(la) ≥ earliest start (5.14)

∀la ∈ LAstart(la) + duration(la) ≤ latest end (5.15)

5.3. Coordination requirements 179

In Equation 5.10 it is stated that trucks are not allowed to be overloaded. In
Equation 5.11 it is declared that the start time of a tour has to be greater or equal
to the time the truck load is ready for transport. For each loading assignment all
customers contained have to be served by the truck (Equation 5.12). In Equation
5.13 it is declared that within the time window of a tour all customers have to be
served. Finally, in the Equations 5.14 and 5.15 it is pointed out that the time the
truck is available are respected.

A truck can be assigned to a number of loading assignments. The assignments
for one truck are the plan of the truck.
Set Definition 5.2.17

The plan of a truck t is defined as LAt ⊂ LA : ∀la ∈ LA : la ∈ LAt ⇔
truck(la) = t

A plan of a truck is feasible iff ∀la ∈ LAt are feasible and additional Equation
5.16 is satisfied, that ensures that the assignments are not overlapping.

∀la1, la2 ∈ LAt : @t : start(la1) ≤ t ≤ end(la1)∧ start(la2) ≤ t ≤ end(la2) (5.16)

The set of all loading assignments LA is feasible if all truck plans are feasible
and all ready for shipment loading devices are assigned to exactly one (∃!) loading
assignment. This is encoded in Equation 5.17.

∀rl ∈ RL : ∃! la ∈ LA : rl ∈ elememts(load(la)) (5.17)

Another relevant partitioning of LA is the partitioning according to orders that
are served.
Set Definition 5.2.18

The set LAd ⊆ LA is defined as ∀la ∈ LA : la ∈ LAd ⇔ d ∈ orders(load(la))

The students developed a heuristic for generating a feasible tour plan thereby
trying to minimize the costs that occur during the delivery. These can be achieved
by

• avoidance of penalty costs, due to too late delivery

• minimization of traveling distance, to reduce traveling costs.

5.3. Coordination requirements

The second step of the ECo process is the definition of requirements. The context
of this process step in the ECo process is shown in Figure 5.4.

180 5. Engineering coordination: The SPT case study

The coordination requirements in this case study are rather simple. The main
objective is to ensure that the overall plan and all partial plans are feasible. The
criteria for feasibility for the partial

Figure 5.4.: Context of the requirement defi-

nition step in the ECo process

plans for scheduling (A), for pack-
aging (PL) and for transportation
(LA) have been discussed already.
But it is not sufficient that the par-
tial plans are feasible. The resulting
overall plan does not have to be con-
sistent, even if all partial plans are.
Aspects like the fact that all goods
have to be produced before they can
be packed cannot be covered by lo-
cal feasibility criteria. Therefore, we
have to detail here the specification
towards additional feasibility characteristics. To ensure feasibility of the overall
plan, two interfaces have to be considered. The interfaces from scheduling to pack-
aging planning and from packaging planning to transportation planning. In the
following we discuss these interfaces in detail.

At first, we discuss the interface between the scheduling and the packaging
planning. The input for the packaging planning is F . For achieving an overall
feasible plan, F has to be complete and consistent. By completeness we mean
that all goods that are necessary to fulfill the orders are contained. Assume G
is complete, according to the conditions stated in Equation 5.1. If G is complete
then F is complete if it satisfies Equation 5.18.

∀f ∈ F : good(f) ∈ G (5.18)

Moreover, F has to be consistent. F is consistent if all goods have been com-
pletely produced, i.e., all their actions have been performed. Note that in the
definition of f (Concept Definition 5.2.7) it has been defined in a way that its ear-
liest time for disposal is defined as the maximum of the end times of the activities
related to the good. Thereby, F is consistent by definition of f .

Consequently, if the planning system has to ensure that F is consistent and
complete. The packaging planning can generate a plan that can be executed
sequentially with the production scheduling plan. The planning system that has
been developed by the students creates complete and consistent plans. Its results
are in similar form as the definition of finished goods indicate. All data exchange
formats can be found in the Appendix B.1, as well.

The second interface that has to be investigated in more detail is the interface

5.3. Coordination requirements 181

between the packaging planning and the tour planning. The input for the trans-
portation planning is the set of ready for shipment loading devices RL. RL has to
be complete and consistent, to ensure feasibility of the overall plan. Completeness
characterize that all finished goods have been packed on a ready for shipment
loading device. As pointed out before, the transformation into rt is done for in-
terfacing the transportation planning. The internal packaging plan PL has been
defined concerning completeness in an appropriate manner (see equations 5.6 and
5.7). For each element of PL a ready for shipment loading device is defined.
Therefore, if it can be stated that if PL is complete and the projection is correct
then RL is complete, too.

The second aspect that has to be addressed is consistency. Consistency char-
acterize that no loading device can be transported before it is not packed. As
packaging is assumed to take no time, this is equivalent to the fact that each fin-
ished good has to be produced before it can be shipped. As pointed out before,
the time when rl can be shipped is defined as

rt = max
f∈Fpl

ttime(f).

Thus, consistency is guaranteed by the definition of rt (see Concept Definition
5.2.10). If information concerning F and RL is computed correctly, and this
information is processed correctly in the consuming planning system, the overall
plan is feasible.

So far, we have defined the criteria for the overall plan to be feasible. In the
reminder of this section we define the evaluation function for the quantitative
evaluation and other non-functional requirements.

First, we tackle the aspect of further requirements. In this simple scenario were
no information hiding or other special issues occur, only one aspect remains to
be mentioned. As there exist already planning systems that are able to generate
feasible local plans, these planning systems should stay in use. Ideally they should
be used in the form of black boxes by the coordinating agents. Moreover, as the
ECo-CoPS approach addresses the coordination of planning entities, it is the most
reasonable approach to keep the different autonomously acting planning systems
in place and do not replace them. This replacement is not trivial at all, because
Defining the problem in form of an optimization problem is not trivial, and a
sufficient model currently does not exists. Note that we not present one in this
study, as this is not in our scope.

The objective function for the entire production scenario is to minimize the
overall costs induced by producing and distributing the goods. No cost information
for the production system has been given. Thus, in this model, costs are caused
by packaging and distribution. A critical issue in determining the overall costs is

182 5. Engineering coordination: The SPT case study

the computation of the penalties that have to be paid for late delivery. To define
the penalty, we first have to define the fulfillment time of an order. As already
mentioned, an order is fulfilled if all goods have been delivered.
Function Defintion 5.3.1

The function ft : D × ℘(LA)→ N is defined for c, d and LAd as ft(d,LAd) =
max
la∈LAd

serviceTime(c, la).

Based on this definition we can define the penalty.
Function Defintion 5.3.2

The function penalty : D × ℘(LA)→ N is defined for d and LAd as

penalty(d,LAd) =

{
0 ft(d,LAd) ≤ due(d)

(ft(d,LAd)− due(d)) ∗ pen(d) otherwise

Thus, the objective function can be defined as shown in Equation 5.19. It
consists of three parts: the costs for packaging, the costs for transportation, and
the costs for penalties.

cost =
∑
rl∈RL

costLD(rl)+∑
la∈LA

costspU (truck(la)) ∗ length(la)+∑
o∈D

penalty(d,LAd)

(5.19)

5.4. Selection of appropriate coordination mechanisms

In the third step of the ECo process applicable mechanisms are identified.
The context of this process step in the ECo process is shown in Figure 5.5.

Figure 5.5.: Context of the selection step in

the ECo process

In the following, we discuss the co-
ordination methodologies identified
as applicable for this scenario in Sec-
tion 4.2.3 (on page 130). Then we
present the suitable approaches that
can be implemented and evaluated in
this study.

• plan merging,

• decentralized planning for a
centralized plan,

5.4. Selection of appropriate coordination mechanisms 183

• result sharing, and

• negotiation.

Plan merging

As pointed out in Section 3.1.2, the main idea of plan merging is that a centralized
entity collects the locally generated plans and ensures feasibility of the plan, if they
are executed together. For implementing the centralized entity it is necessary
that this entity is aware of dependencies between planning systems, and that it is
capable to resolve existing conflicts without introducing new conflicts. Therefore,
it is necessary to model detailed criteria for feasibility and planning knowledge into
this merging entity. Consequently, this approach will result in a system similar to
a centralized planner, which we argued, is not of interest in this study.

Decentralized planning for a centralized plan

The idea of different domain experts creating a shared plan, as presented in Section
3.1.2 and outlined by Durfee [Dur99, p. 141] seems to be adequate for the scenario
at hand. Different planners are responsible for different parts of the plan. Durfee
did not present any details how the overall plan should be kept consistent/feasible.
In the examples presented by Durfee, each planning expert defines its part of the
plan and then passes the results to the next planner. This corresponds to a
coordination of the partial plans using a result sharing mechanism. The sequence
of planners is thereby defined by the dependency graph that has been presented
in Figure 5.3. Result sharing as a coordination mechanism is discussed below.

Result sharing

The exchange of information concerning existing plans will be part of any rea-
sonable solution for this case study. As it has become clear during the modeling
process, the output data of one planning system is a mandatory input for the fol-
lowing system in the dependency structure. The most simple technique for result
sharing is, as pointed out previously, the sequential execution of each planning sys-
tem and then passing the results to the next planning systems in the dependency
graph. This strategy would result in first generating a plan for the production,
then for the packaging and finally for the transportation sub-problem. As no cyclic
dependency exists in this case study this seems to be a valid approach to achieve
a feasible overall plan. In fact the students in the practical course, who had to
deal with the problem described, have chosen this approach.

A criticism to this coordination mechanisms is that even if the resulting plans
are feasible, their quality in terms of the objective function, the costs induced while

184 5. Engineering coordination: The SPT case study

fulfilling the orders do not necessarily have to be low. The largest portion of the
costs are fixed during the transportation planning, even though they might not be
caused by poor transportation planning. This is caused by the fact that during the
scheduling and partly during the packaging planning no information about effects
of local decision making on the global evaluation function is available. Even if
this information would be available, the local planning systems have objectives
that would not take advantage of it, because it does not lead to optimal local
plans according to their own local objective function. So, pure result sharing in
sequential planning can lead to global solutions of lower quality.

Negotiation

Another idea to tackle the problems is to start the planning first with the part that
determines the most costs, i.e., the transportation planning. This corresponds to
the idea of backward planning (discussed already in Section 3.1.1). This approach
makes it more complex to ensure consistency/feasibility of the overall plan, as the
sequence of executing planning systems is inverted according to the dependency
graph, shown in Figure 5.3.

A solution to this problem can be a mechanism that facilitates the exchange of
requirements towards the local plans, and plan suggestions that tries to satisfy the
requirements and still ensuring feasible local plans. Such a coordination approach
would result in a sequence of exchanges of requirements to, and suggestions of
plans. This corresponds to a negotiation, trying to minimizing the total costs. By
starting with the parts of the planning process where most of the costs are fixed
requirements can be identified that lead to an overall solutions with lower costs.
Previous planning stages have to identify what requirements are possible to fulfill
and offer those to the subsequent planning entity.

In summary, we state that mechanisms using plan merging might not be possi-
ble. The overall problem of the SPT case study is a type of distributed planning
with a centralized governed execution. Both result sharing and negotiations can
lead to an overall feasible plan, but might with different outcomes, concerning the
overall quality of the generated plans.

Qualitative evaluation

In this qualitative evaluation the compliance of the discussed coordination mech-
anisms to the coordination requirements is addressed in detail. Plan merging has
been excluded already, because it would result in building a centralized planning
system, and violate the requirement that existing systems should stay in use. Co-
ordination by sequential planning with result sharing, and the approach of finding

5.4. Selection of appropriate coordination mechanisms 185

compromises about requirements from subsequent planning entities and feasible
solutions of preceding entities are discussed in the following.

For the discussion of the compliance to the coordination requirement, one as-
sumption has to be made. It is assumed that the planning systems in charge work
correctly in the sense that with a given input they generate a feasible local plan
that is represented correctly as the output of the planning system. The internal
mechanisms and functionalities of the planning systems are not part of this study,
they are pre-existing.

To ensure that the coordination requirements are satisfied the following aspects
have to be discussed.

• Are the local plans feasible?

• Do the overall plan stay feasible?

• Stay existing planning systems in use?

As already mentioned, both approaches aim at using existing planning systems,
and those systems generate only feasible local plans. Thus, two out of three
requirements can be assumed to be satisfied by both approaches. Thus, only one
aspect has to be discussed here in detail.

Before we discuss the approach of result sharing and sequential planning. The
results of the planning stages, namely the set of finished goods F and the packaging
planning RL, have to be complete and consistent to ensure an overall feasibility.
We assumed that both plans are the correctly computed by the planning systems.
Those sets are passed directly to the packaging and transportation planning, and
are used as inputs. The overall plan is feasible, if the planning systems work
correctly.

Before we discuss the consistency of the negotiation approach, we briefly de-
scribe the procedure of this approach. Most of the costs are generated in the
distribution and packaging planning. Moreover, planning relevant data for the
scheduling system cannot be changed, as there exists no earliest start time for
orders, for instance. So, what can be changed is the input data of the packaging
and transportation planning. In particular, the time when products are released
to be packed and transported can be shifted into the future without inside knowl-
edge of the planning systems. In this coordination process the set of combinable
orders has to be computed at first. Two orders are combinable if it is reasonable
for the packaging planning to load their finished goods on the same loading de-
vice. Therefore, a packaging plan is computed that assumes that all products are
available at the same time, to facilitate most efficient packaging planning. Orders
are packed together on one loading device are combinable orders for each other.
In the following we encode this set for order d as Dcd.

186 5. Engineering coordination: The SPT case study

Next for each order the costs of the round trip tour are computed. This can be
done with the existing planning system, by generating appropriate input data and
interpreting resulting outputs. Thus, we have to made this information available.
We do so in form of the following function.
Function Defintion 5.4.1

The function rtdistance is defined as rtdistance : D → R. For d it is defined
as rtdistance(d) = x whereby x is the distance computed by the transportation
planning.

With this additional information, the economic efficient combinable orders (Decd)
for an order d can be computed. An order d1 is economic efficient combinable
orders with order d iff both orders are combinable orders and the distance (and
thus the transportation costs) of a joint tour is smaller or equal to the sum of both
round trips tours. This is, of course, a heuristic, as a set of orders can become
an efficient combination, even if they are not, in a pairwise comparison. Then the
latest release time for each order is computed, that would allow to

• deliver time before the official due, and

• combine items of combinable orders within the packaging planning.

We compute the latest acceptable ready time for packaging for each order. There-
fore, the finished products are grouped by days. The latest acceptable ready time
is the latest time a product is finished before the due date of the order. An order
is delayed to either its own latest acceptable ready time or the latest acceptable
ready time of one of its economic efficient combinable orders with a ready time
before its due. Based on this idea, the latest point an order can be delayed to can
be computed by a fixed point iteration. We delay the finished products of an order
that are ready for packaging and shipping before that latest acceptable ready time.
Thereby, each product is deferred to the first time unit of the following day. This
is done for simplification reasons, as the entire production of one day is loaded on
loading devices (which is assumed to take no time) and then is distributed on the
following day.

For this reason the official ready time is smaller than within the delayed data
for each finished product. This guarantees that the interface between production
and packaging planning systems is kept consistent, because neither the number of
products nor their product-types are changed at all.

The final production schedule is generated by a run of the scheduling system.
Thereafter, the input data for the packaging planning is changed as described
above. Then packaging and transportation planning are done sequentially. Thus,
within the planning sequence the only aspect that we have to discuss is the manip-
ulation of the input data of the packaging planning, as this is the only aspect that

5.5. Implementation of coordination mechanisms 187

is changed in comparison to the planning sequence discussed in the first approach.

The interface between the packaging and transportation planning is not changed
for this planning approach, and therefore, the consistency and completeness as-
pects discussed above are valid her as well.

5.5. Implementation of coordination mechanisms

In this section we discuss the fourth step of the ECo process. In this step we discuss
implementation issues concerning both coordination approaches. The context of
this process step is given in Figure 5.6.

The result sharing approach is

Figure 5.6.: Context of the implementation

step in the ECo process

based on the idea of forwarding
planning results. This approach has
been implemented by the students of
the practical course. The input data
for the planning systems for packag-
ing and transportation have data re-
quirements, concerning the produc-
tion schedule and the packed load-
ing devices. This data is required in
addition to information that is pro-
vided to all planning systems, like
orders or products. The data ex-
change formats are presented in Appendix B.3. In our validation, we use the
implementation that has been designed by the students as a reference for the
second approach.

In the following the implementation of the negotiation-based approach is dis-
cussed. Therefore, we apply the CoPS process to describe the implementation.
First the specification of needed conversation protocols has to be detailed. For
specifying the conversation protocol the FIPA Request Interaction Protocol Spec-
ification [FIP02l] is used. The interaction protocol is shown in Figure 5.7.

As pointed out before, the agents try to achieve a common goal. They are
cooperative and truth telling, as they are part of one legal entity and an overall
objective function exists. The specification of the conversation protocol can be
described as follows. The requesting agent sends its requirements to the preceding
planning entity. If an agent receives a request, it has to accept the request and
has to try to fulfill the requested specification within its local plan. Therefore, it
has to find inputs, i.e., requirements, of its local plan, that satisfies the requested

188 5. Engineering coordination: The SPT case study

requirements. If it can achieve at least a partial fulfillment of the requirements
it sends an inform message, containing the new relevant information for the sub-
sequent planning entity. If it cannot achieve a fulfillment of the requirements it
sends a failure message. The conversation policies of the local planning entities are

Figure 5.7.: FIPA Request interaction protocol [FIP02l, p. 1]

simple here. There are no tactical considerations, as all planning entities belong
to the same legal entity. If a request comes to the entity, the entity tries to satisfy
it.

In our prototypical implementation we accessed the local planning systems via
prepared scripts that agents can execute, and web services executed by the agents
themselves. For an implementation for industrial application, we advocate for
the usage of dedicated wrapping agent for each planning system. A wrapper
agent offers the planning service to the corresponding coordination agent, which
is responsible for the coordination process. Therefore, the wrapping presented
here corresponds to the FIPA wrapping standard [FIP01a], also discussed above

5.6. Evaluation of coordination mechanisms 189

in Section 4.3.2.

5.6. Evaluation of coordination mechanisms

In the following section we describe the final step of the ECo process, the eval-
uation. The context of this process step in the ECo process is given in Figure
5.8.

Within the evaluation the re-

Figure 5.8.: Context of the evaluation step in

the ECo process

sults of a comparison between a se-
quential planning and the improved
planning procedure are presented.
Therefore, we have developed a gen-
erator that automatically creates
random problem instances. In the
study performed here, most of the
parameters describing a problem in-
stance are kept constant, only the
orders are subject of change.

The manufacturing scenario cor-
responds to the one presented in the
introduction of this case study in Section 2.1.1. All resources are available at all
the time, no breakdowns or stochastic production times are assumed. Addition-
ally, for each product the following dimensions are assumed as shown in Table 5.1.
For all products it is assumed that they can be rotated in all three dimensions.

There exists one type of loading device that can be used. The loading device
has the following dimensions: 20× 15× 15 (height, width, depth) and per loading
device costs of 25 units have to be paid. A loading device can store items up too
20 units of weight. For packaging there is place to use 5 different loading devices
in parallel.

job type weight height width depth
J1 2 10 10 10
J2 1 8 6 4
J3 3 20 15 6
J4 3 10 10 8
J5 1 5 6 8

Table 5.1.: Dimensions and weight for products

190 5. Engineering coordination: The SPT case study

For the transportation planning a two dimensional Cartesian coordinate system
is assumed with a space of 200× 200 coordinates, with coordinates ranging from
(−100,−100) to (100, 100). The depot is in the center at the point (0, 0). The
distance between two points is measured by the Euclidian distance.

Each truck has the capacity to transport only one loading device. Per time unit
it can travel a distance of 4 units. For each distance unit a cost of one unit is
incurred for traveling. For the unloading of goods at the customer site, one time
unit is necessary. In total there are three trucks available for distribution.

This information is kept constant in all experiments performed in this study.
We changed the number of orders and their content. An order has specifies the
required product, its quantity, the coordinates of the customer and its due date.
This data is generated randomly. The product is chosen randomly out of all five
products. The number of required products is chosen randomly from one up to
five products per order. The coordinates (x and y coordinate) of the customer
are also chosen randomly. The computation of the due date of an order is more
complex. A minimal duration x is computed as follows:

x = 3 ∗minimal production time + travel time + 96

The due date is chosen randomly from the interval [x, 2x]. If a due date is missed
for an order, costs of 25 units are incurred per time unit of delay. Of course, the
number of orders that have to be processed is another degree of freedom that is
varied during the experiments.

During the tests performed for this study the results of the local planning sys-
tems are not deterministic. To describe our experimental settings we use the
following terminology. A replication of a test is the repeated execution of a test,
based on identical input data. Replications are necessary because the used plan-
ning systems do not generate deterministic results. That is, the computed plans
can vary in different test runs with identical input data.

An instance describes a test instance, with a fixed number of orders. The degree
of freedom, and thus, different complexity for the production system results from
the product mix and the quantities that have to be produced for each order. Both
product mix and requested quantities per order can change per instance.

A scenario is characterized by a fixed number of orders. Consequently, there
different instances can be generated for one scenario.

We present a comparison between the two coordination mechanisms that have
been discussed before. First, we investigate the performance of both approaches
under different loads, i.e., different number of orders. Thereafter, we investigate
in more depth the performance concerning different instances for three different
scenarios.

5.6. Evaluation of coordination mechanisms 191

The results discussed in the following are based on 30 different scenarios. For
each scenario 10 different instances have been created, and one replication is done
for each instance. For each scenario, the mean costs have been computed based on
the results of the 10 different instances. To give a better overview of the results,
we present here the results split into three different figures, instead of one, as the
differences between the smaller instances cannot be identified in the overall figure.

Note that by simply increasing the number of orders, the stress of the system
is likely to increase, and therefore, the induced costs. This is not a necessity and
not in every time this is true. Therefore we have identified two reasons. First, the
complexity per order can change, as the products and the required quantity can
differ per order. This variety effects the performance of the production system. To
reduce these effects, different instances of the same scenario are tested. Second,
the underlying decision problems are planning and scheduling problems. These
problems do not have a have a strict linear increase in complexity.

For the first 10 scenarios (1 to 10 orders) the results of the sequential and the
improved coordination approaches are depicted in Figure 5.9.

2 4 6 8 10

0
50

0
15

00
25

00
35

00
45

00
55

00

 Costs Sequential vs. Improved

Number of orders

co
st

s

Costs of sequential solution
Costs of improved solution

Figure 5.9.: Performance comparison, part 1

192 5. Engineering coordination: The SPT case study

The second part of the scenarios (10–20) is shown in Figure 5.10. While in
the first part of this experiment penalties are rare and costs are caused mainly
by transportation, in the second part most of the costs are caused by missed
dues, which is a clear indication that the production system comes from a normal
operational state to an overload situation.

10 12 14 16 18 20

0
50

00
0

10
00

00
15

00
00

20
00

00
25

00
00

 Costs Sequential vs. Improved

Number of orders

co
st

s

Costs of sequential solution
Costs of improved solution

Figure 5.10.: Performance comparison, part 2

Finally, in the third part (scenarios with 20–30 orders) costs are tremendous.
The graph is shown in Figure 5.11. This clearly indicates that the load of the pro-
duction system is far too high. During all scenarios the mean costs of the improved
coordination mechanism are below the costs of the sequential coordination of the
planning systems. But due to the limited number of instances and replications,
this can only be stated as a first observation. This data is not reliable to draw
conclusions from.

We now investigate in more depth three different scenarios to compare the
coordination approach in contrast to each other. The first scenario is from the
first part, where typically the orders can be satisfied without penalties. Therefore,
we choose a load of 5 orders. The second scenario is one in the critical section,
where instances exist that do not cause penalties and others where large amounts

5.6. Evaluation of coordination mechanisms 193

20 22 24 26 28 30

1e
+

05
2e

+
05

3e
+

05
4e

+
05

5e
+

05
6e

+
05

7e
+

05

 Costs Sequential vs. Improved

Number of orders

co
st

s

Costs of sequential solution
Costs of improved solution

Figure 5.11.: Performance comparison, part 3

of penalties have to be paid. Therefore, we present the results of a scenario with
10 orders. Finally, we instigate a scenario with 15 orders, so a situation where a
clear overload of the system exists. For this more in depth investigation we use 10
instances per scenario and for each instance we compute 1000 replications. We use
an analysis per instance here, as it does not seem appropriate for a more detailed
analysis to compare the results of the performance for different sets of orders.
Consequently, we have performed 30 analysis different that lay the foundation for
this discussion. All results that could be obtained are summarized in the Appendix
B.4.

First, even though in most instances the results of the 1000 replications differs
(there was only one instance that leads to the same results in all 1000 replications
of the sequential and the improved results) it can be stated that in most instances
the number of different solutions is quite limited. For the instances (1–10), for
the first scenario with 5 orders, the mean number of different results is about 7.
The minimal number of solutions for one instance is 1 and the maximal number of
different solutions for the same input is 20. An exemplary distribution of solutions
is shown in Figure 5.12 where the histogram of the instance number nine is shown

194 5. Engineering coordination: The SPT case study

(a) sequential (b) improved

Figure 5.12.: Histogram for the sequential and improved approach for instance 9

that leads to three different solutions using the sequential planning approach and 6
different solutions using the improved planning approach. Note that the improved
approach does not always lead to a more diverse solutions space. For the first
scenario the mean number of solutions with the sequential solutions is 6.8 while
for the improved it is 7.9.

For the second and third scenarios (10 and 15 orders) the number of different
solutions increases to 19.1 and 39.1 for the in mean values. It can be assumed
that a higher load might lead to greater plan diversity, as more options have to
be regarded during the planning. In fact this is not true for all larger instances.
There exist instances like (instance 14 or instance 29) that have only a few different
solutions. The difference between the diversity between the sequential and the
improved planning approach seem not to be correlated to the problem size, even
though the data collection here is to weak to allow a final judgement. The mean
number of solutions for the sequential approach are 10.2 and 39 for the scenario
two and three. The diversity of the improved approach increases in scenario two
to 28 and is only slightly above the number of solutions of the sequential solution
for scenario three (from 39 to 39.2). Exemplified histograms can be seen in Figure
5.13 for the second and Figure 5.14 for the third scenario.

As it becomes clear from the analysis of the histograms, there are only relatively
few different solutions that are computed. Therefore, in addition to the mean value
the mode has been analyzed, too. The mode of a data set is the value that has
the largest number of occurrence in the data set. That is, it is the highest peak in
the histogram. Thus, the different mechanisms are compared according to their
resulting mean, their mode value, and their standard deviation.

5.6. Evaluation of coordination mechanisms 195

(a) sequential (b) improved

Figure 5.13.: Histogram for the sequential and improved approach for instance 17

(a) sequential (b) improved

Figure 5.14.: Histogram for the sequential and improved approach for instance 24

196 5. Engineering coordination: The SPT case study

(a) Instance 2 (b) Instance 5

Figure 5.15.: Box plots for instance 2 and 5 comparing sequential and improved

coordination approach

All results of this comparison are presented in the Appendix B.4. It could be
shown that in 29 out of 30 instances the improved mechanism could outperform
the sequential approach measured by the mean and the mode value. Only for the
instance 21, the mean and mode value of the improved approach are slightly worse
than the sequential approach. Thereby, it has to be noted that this scenario is the
only one where no statistically significant difference could be shown between both
approaches (p-value=0.9125). For all other instances the pairwise t-test shows
high significance results. For an confidence rate of 95% the p-values is always
below 10−e8.

Concerning the statical spread, the judgement is not that clear. In 18 out of 30
instances the spread could be reduced with the improved approach, but in 11 out
of 30 instances the spread is greater then the sequential one. In instance 6 the
spread is equal (0.0), as all results for the sequential and the improved approach do
not differ, even though the improved approach performs better then the sequential
one.

In the following we discuss some selected results taken out of all three scenarios.
All result of this experiments are summarized for all instances in Appendix B.4.
From the first scenario the instances 2 and 5 are discussed. Their corresponding
box plots based on the 1000 replications done for these instances are shown in
Figure 5.15. In these scenarios most orders are performed within their due date,
so resulting costs are caused by transportation and packing.

In both instances, as well as in all other instances of this scenario, the mean costs
of the improved approach are smaller than in comparison to the costs induced by
the sequential approach. Additionally, in instance 2 the spread could be reduced by
the improved coordination approach. This could be observed in 5 of 10 instances

5.6. Evaluation of coordination mechanisms 197

(a) Instance 13 (b) Instance 18

Figure 5.16.: Box plots for instance 13 and 18 comparing sequential and improved

coordination approach

of the first scenario. In one instance (instance 6) the spread is equal for both
approaches as there exists no spread, at all. In the remaining four instances the
spread of the improved coordination mechanism is greater than for the sequential
approach. This includes instance 5, which is shown in Figure 5.15 on the right
hand side. In this instance the statistical outlier of the improved coordination
approach with costs of 2284 units is quite close to the mode costs of the sequential
costs (2226 units).

The second scenario with 10 orders is of particular interest, as the production
systems is at the border between normal load to overload. For some instances
it is possible to satisfy most or all orders without penalties, while for other in-
stances penalties have to be paid. This is one reason why the costs for different
instances, but even within one instance, vary largely. The summarized results of
two instances are shown in Figure 5.16.

Instance 13 (on the left hand side of Figure 5.16) is of particular interest, as
it shows that even within the same instance, and therefore with identical input
data, the system can handle the task without heavy penalties but does not have to.
Especially the sequential coordination approach has a large spread. In fact, this
instance has the largest spread of all instances of this scenario. In this instance the
system is at the borderline from a load that could be handled to a clear overload
situation, as the costs depend on smaller deviations of sub-plans. In this, as well as
five other instances, the spread of the improved coordination approach is smaller
than for the sequential approach. In the remaining four instances the sequential
approach leads to a smaller spread of costs, even though for all instances the
mean costs are higher using the sequential coordination. The coordination with
the improved approach can avoid of the penalties in instance 13, its mean costs

198 5. Engineering coordination: The SPT case study

(a) Instance 23 (b) Instance 25

Figure 5.17.: Box plots for instance 23 and 25 comparing sequential and improved

coordination approach

are remarkably lower than the sequential ones.
A scenario where all 10 orders could be performed without any penalty is in-

stance 18, which is shown on the right hand side of Figure 5.16. In this scenario the
costs are (1437 and 1265) even lower than the results of instance 2 or 5 discussed
above. This deviations can be explained by the fact that even if the number of
orders are fixed the load of the system can vary because the number of required
products per order is not fixed and the location of customers are picked randomly
and thus result in different costs for distribution.

In the third scenario, the state of the production system is in a clear overload
situation. Most of the costs are due to penalties that have to be paid. This can
be clearly seen as we have tripled the number of orders in comparison to the first
scenario (from 5 to 15 orders) while the costs grows more the 25 times. Only
in instances 23 and 25 the improved coordination approach is able to generate
acceptable results. The results for these two instances are shown in Figure 5.17.

In both approaches, the improved coordination approach is capable of reducing
the amount of penalties drastically. Even though in instance 25 the spread is quite
large for both approaches the improved approach can generate the best results for
this instances. The best solution (with minimal costs) found by the improved
approach has only costs of 3938 units, while the mode, i.e., the solution found
most often has costs of 6456. In contrast to the sequential mechanism were the
best solution found during all replications has costs of 6304 units and the solution
found most often has costs of 34444.

In Figure 5.18 the results of the experiments for the instances 21 and 30 are
shown. Instance 21 (left hand side of Figure 5.18) is of particular interest, as it
is the only instance where the sequential coordination approach performs better

5.7. Criticisms of the ECo-CoPS approach 199

(a) Instance 21 (b) Instance 30

Figure 5.18.: Box plots for instance 21 and 30 comparing sequential and improved

coordination approach

than the improved one. The possible reasons for the poor performance of the
improved approach are outlined in the following. In the improved approach, the
time a products is released for packing is delayed to facilitate synergies between
different orders during packing and transportation. Thereby, the time needed
for transporting the goods is actually not regarded. Thus, we assume that in
this scenario the time for transporting the goods becomes critical, as this extra
time leads to the fact that some orders generate higher penalties in contrast to
the sequential solution. Even though it has to be mentioned that the difference
between both approaches is quite small. In fact, for this instance, the results are
quite similar, which is also indicated by the not significant difference between both
results in the pairwise t-test. As pointed out above this is the only instance where
the t-test could not show significant differences between both approaches, with a
very high p-value (p-value=0.9125).

Instances 30, in contrast, is a rather typical instance of this scenario. The im-
proved coordination approach offers a drastic reduction of penalties (mean costs for
sequential plans are 53174.97, while mean costs for improved plans are 16875.16).
In 9 out of 10 instances, the improved coordination approach results in plans with
lower costs. Additionally, the statistical spread is lower for the plans generated
by the improved approach in instances 30. This effect can be observed in 7 out of
10 instances of this scenario in favor for the improved coordination approach.

5.7. Criticisms of the ECo-CoPS approach

In this chapter we have applied the ECo-CoPS approach on the SPT case study.
For that reason we have presented the modeling of the approach in Section 5.2.
The formal model turned out to be very useful as no suitable coordination mech-

200 5. Engineering coordination: The SPT case study

anism exists, because the model eases the process of designing and implementing
an appropriate coordination mechanism. For that reason, it might be useful to
investigate the potential of other modeling techniques that facilitate a formally
grounded description and allow usage during implementation. Such modeling
techniques can foster a potential implementation phase.

The variety of coordination requirements was not in the focus of this case study.
The coordination requirements are mostly functional, i.e., the plans from the differ-
ent planning systems have to be coordinated and their execution has to minimize
induced costs. For that reason we have identified two coordination approach that
do fulfill this requirement. These are a sequential coordination approach, and an
improved coordination scheme, which has been designed specifically for this situ-
ation, based on principles of coordination approaches from negotiation and result
sharing.

One point worth mentioning that was striking during the implementation phase,
is the adaptation of existing planning systems. The input and output of the
existing planning systems is favoring the sequential execution of planning steps,
starting with the production followed by packaging and transportation. Even if
these interfaces are adapted by web services, it was necessary to develop additional
decorators to adapt the planning systems for the coordination agents. Therefore,
the design of interfaces for planning systems is an issue that can limit the options
of adapting existing planning systems or can at least make this step harder.

In the evaluation it turned out that the improved coordination approach can
generate more efficient coordinated plans in contrast to the sequential planning
process which was initially proposed by the students.

6. Engineering Coordination: The SCM

case study

In this chapter we discuss the application of the ECo-CoPS approach in a pro-
duction network and the selection of an existing coordination mechanism for the
particular coordination requirements that exist in production networks. For the
validation done in this chapter we have reduced the complexity of the scenario,
primarily to reduce computational effort. In this case study we relate to previ-
ous work done by the author in the field of coordination within supply chains, in
particular we refer to [Sch04, SS05, SLT08a].

6.1. The SCM case study

This chapter is based on the case study presented in Section 2.1.2. We apply
the ECo-CoPS approach here. Therefore, we investigate a scenario that has been
designed to allow an analytical evaluation. For that reason we have introduced
a scenario with two companies and two products offered by the network. This
information is summarized in Table 6.1 and Table 6.21.

Product Variant Operations

1 11 111, 112, 113, 114
2 21 211, 212, 213, 214

Table 6.1.: Product descriptions of the production network

company offered operations

A 111, 114, 211, 212, 213, 214
B 112, 113, 211, 212, 213, 214

Table 6.2.: Capabilities of production network members

1These tables restate the scenario described in Section 2.1.2.

201

202 6. Engineering Coordination: The SCM case study

While the production of A requires a purely collaborative behavior. The re-
quired capabilities for the second product are distributed among both companies,
that they have overlapping competences. This adds competitive elements to the
relation between both companies. Within this case study we point out different
non-functional requirements that are specific for production networks in which
members have to cooperate but have overlapping competences. In the following
we describe the five steps of the ECo process in detail for this case study.

6.2. Modeling the scenario

At first, we describe the modeling step of the ECo process. The context of this
process step with the overall ECo process is shown in Figure 6.1.

The modeling of the entire plan-

Figure 6.1.: Context of the modeling step in

the ECo process

ning process within a supply chain
can become a complex and elabo-
rated task. We assume some simpli-
fication here, for instance, it is as-
sumed that each entity within the
supply chain has to solve a schedul-
ing problem, internally. Transporta-
tion tasks are not dealt with explic-
itly. It is assumed that transporta-
tion tasks are planned by the sup-
plying entity. As we have already
presented a model for a scheduling

problem in the previous chapter, we omit this part of the model in this section
and focus on the network wide aspects. Note that we discuss a generalization of
supply chain here. We use in this case study the concept of production network,
which is a generalization of supply chains in the production domain, see Corsten
and Gössinger [CG01]. Other forms of production networks that have been dis-
cussed in the literature are virtual enterprises, see Corsten and Gössinger [CG01]
and Goranson [Gor99, pp. 65–68].

Before we are going into details of modeling, we give an overview of the sce-
nario that is modeled here. The resulting two tier scheduling problem is sketched
in Figure 6.2. It is modeled in form of an AND/OR tree. The model is inspired
by the production scheduling model presented by Sauer [Sau93], that has been ex-
tended towards a two tier concept in subsequent work of this author [Sau02]. The
model presented here is extended in the way that is does not address primarily
the planning problem but focus more on the representation of planning author-

6.2. Modeling the scenario 203

Figure 6.2.: AND/OR tree representing the planning problem

ities by agents and the means that are necessary for modeling the coordination
requirements.

As introduced in the previous chapter, we use the same conventions for the
formal presentation. Moreover, all concepts, sets and functions defined in this
section have been summarized in the Appendix C.1.

We describe a dynamic system here, i.e., the state of the system can changes
over time. Time is represented as a discrete increasing integer value. Let t be a
point in time (pit) with t ∈ N.

A planning entity is represented by a PAA a that act on the behalf of its planning
entity. Additionally, a CA c is used to represent a centralized data collection point,
that offers services to the agents belonging to the network. To refer to all PAAs
and CAs we introduce the following sets.

Set Definition 6.2.1

The set of all CAs is referred to as C.

The set of all PAAs is referred to as A.

204 6. Engineering Coordination: The SCM case study

Each PAA may be part of more than one network at the same time. Therefore,
we have to distinct between the networks. Note that the coordination is done
on the network level. We do not intended to establish a coordination mechanism
that aims at a coordination over different networks. Even if agents participate
in different networks, they have to coordinate their activities within all of their
networks separately.

Concept Definition 6.2.1

A network ν is defined as ν = 〈Aν,t, c〉 with

• Aν,t ⊂ A, the members of the network

• c a coordination agent

As we model a dynamic system the number of members and the composition of the
network can change over time. Therefore, the set of members has to be specified
for a pit t. To refer to all networks we use the set N .

Set Definition 6.2.2

The set of networks is labeled with N .

The attributes of a network can be referred to by projection functions. An agent
a is member in a network ν at pit t, if it is part of a network. This is encoded
in the predicate is member .

Function Defintion 6.2.1

The predicate is defined as: is member : A × Nt → {true, false}. For a and
nu = 〈Aν,t, c〉 and the current pit t it is defined as:
is member(a, ν)⇔ a ∈ Aν,t.

The function n c : N → C for ν = 〈Aν,t, c〉 is defined as: n c(ν) = c.

As the composition of the network can change over time, the result of this function
depends on the state of the set of member at the time of execution.

For a network ν the CA is unique, i.e., for all networks ν and µ the following
condition holds:

∀ν, µ ∈ N , ν 6= µ⇒ n c(ν) 6= n c(µ)

A network ν = 〈Aν,t, c〉 is active, if it has at least one PAA and a CA. This is
encoded in the predicate is active.

Function Defintion 6.2.2

A network ν = 〈Aν,t, c〉 is active n active : N → {true, false} with
n active(ν)⇔ Aν,t 6= ∅ ∧ c 6= ∅

6.2. Modeling the scenario 205

For the rest of this document, we assume that all networks are active.

Each agent offers a set of capabilities to a network. Capabilities are modeled
only by their identifiers2 here.
Set Definition 6.2.3

Let B be a formal language over Σ used to label the capabilities.

Let B be mutually unambiguous towards the other presented sets of labels. Each
agent has a set of capabilities, the capabilities of the agent.
Set Definition 6.2.4

The capabilities of agent a are referred to as Ba ⊆ B.

At any pit t an agent a can use a subset of those capabilities, which are encoded
as Ba,t. The capabilities that an agent has at a given point of time are given by
the function b hasa .
Function Defintion 6.2.3

This function is defined as: b hasa : ℘(B) × N → ℘(B). For a at pit t it is
defined as b hasa(Ba, t) = Ba,t ⊂ Ba.

This function is defined by the planning authority of the agent and can be subject
of change. A subset of these capabilities is offered to each network the agents is
participating in.
Set Definition 6.2.5

The set of offered capabilities by the agent is referred to as Ba,t,ν .

This set is specified by the planning authority using the function b allowa .
Function Defintion 6.2.4

The function is defined as: b allowa : ℘(Ba)×N ×N→ ℘(Ba). For a at pit t

with Ba,t and ν it is defined as b allowa(Ba,t, ν, t) = Ba,t,ν .

Set Definition 6.2.6

The capabilities of a network ν = 〈Aν,t, c〉 at pit t can be derived as

Bν,t =
⋃

∀a∈Aν,t

Ba,t,ν :

The simplest executable steps on the network level are jobs. For the execution
of a job a set of capabilities is required.

2More sophisticated models for capabilities have been proposed by Lorenzen et al. [LWD+06]

or Timm et al. [TSH06], for instance.

206 6. Engineering Coordination: The SCM case study

Concept Definition 6.2.2

A job is defined as j = 〈Bj〉, with Bj ⊂ B

A job specifies a set of capabilities that are required to execute it. The set of jobs
known to a network are all jobs that have been defined within the network.

Set Definition 6.2.7

Let Jν be the set of jobs of network ν.

The required capabilities for job j can be retrieved by the function j b.

Function Defintion 6.2.5

The function j b is defined as j b : Jν → ℘(B). For j = 〈Bj〉 it is defined as
j b(j) = Bj .

A job can be performed by any agent within the network that offers all required
capabilities to this network. More formally, agent a a member of network ν can
execute job j, a job of network ν, iff j b(j) ⊆ Ba,t,ν .

From the perspective of each local planning entity those jobs are the orders that
have to be performed with their local resources. This typically forms a scheduling
problem for all activities that have to be performed on the local level. We do
not consider the local scheduling activities and do not model them here explicitly.
This can be done analogous to the modeling of the scheduling problem described in
Section 5.2. Of course, we have to assume that the local planning entities generate
only valid/feasible schedules and that its coordination activities are based on such
consistent plans.

To perform some meaningful services or products on the network layer a set of
jobs have to be performed in some sequence. This can be encoded in form of a
variant.

Concept Definition 6.2.3

A variant v is defined as v = 〈Jv, <v〉, with Jv ⊂ Jν a set of jobs and <v an
infix operator encoding a partial order among Jv.

With the partial order <v the sequencing of different jobs can be encoded. If two
jobs j1, j2 ∈ Jv with j1 <v j2 it implies that job j1 has to be finished before job
j2 can be started.

Set Definition 6.2.8

The set of all variants known to a network ν is referred to Vν .

A variant can be seen as a directed graph. Representing the jobs as the nodes and
the ordering relation <v defines the edges in the graph.

6.2. Modeling the scenario 207

Set Definition 6.2.9

The set of all predecessor of a job in a variant is defined as Jpre,v,j .

The set of all successors of a job in a variant is defined as Jsuc,v,j .

The set of all predecessor Jpre,v,j and successors Jsuc,v,j can be computed by graph
search algorithms, see Sedgewick [Sed98, pp. 537–541].

The functions j pre and j suc compute the set of all predecessors and successors
in the graph formed by v for job j.
Function Defintion 6.2.6

The function j pre is defined as j pre : Vν ×Jν → ℘(Jν). For v and j ∈ Jv it
is defined as j pre(v, j) = Jpre,v,j .

The function j suc is defined as j suc : Vν ×Jν → ℘(Jν). For v and j ∈ Jv it
is defined as j suc(v, j) = Jsuc,v,j .

The function v j is defined as v j : Vν → ℘(Jν). For v = 〈Jv, <v〉 it is defined
as v j (v) = Jv.

A variant specifies production knowledge that is available to the network. This
knowledge captures information how jobs can be combined to build products.
Concept Definition 6.2.4

A product is defined as p = 〈Vp〉, with Vp ⊂ Vν a set of variants.

It is possible that different variants are defined for a product. A similar assumption
is used by Sauer [Sau93, pp. 25,26].

The knowledge of how to produce a set of products is an asset of the network
that enables the network to offer those products to the market.
Set Definition 6.2.10

The set of products of a network ν is referred to as Pν .

The variants of a product can be referred to be the function p var .
Function Defintion 6.2.7

The function p var is defined as p var : Pν → ℘(V). For p = 〈Vp〉 it is defined
as p var(p) = Vp.

Based on the concept of products, we can define the orders of a network. An
order of a network o is a request, that the network has to fulfill.
Concept Definition 6.2.5

An order is defined as o = 〈ν, p, a, e, d〉.
The elements are defined as

208 6. Engineering Coordination: The SCM case study

• ν ∈ N the network

• p ∈ Pν the product

• a ∈ A, is member(a, n, t) the representative of this order

• e, d ∈ N, d > e time interval for the fulfillment

The idea of a representative for each order is inspired by concepts of virtual en-
terprises. Virtual enterprises are presented, e.g., by Arnoldt et al. [AFHS95] and
Goranson [Gor99]. The representative is the entity that is visible to the customer
and gets evaluated by him according to the fulfillment of the order. Therefore,
the representative is interested in the correct execution of the order on time. This
modeling approach contrasts to more conventional modeling approaches, where
orders and resources are both modeled as agents, like, for instance, in Schumann
and Sauer [SS07]. Hereby, we emphasize that an order is not a first class entity,
as it is processed and not active at all. It is a task agents have to fulfill.

Set Definition 6.2.11

The set of all orders is referred to as O.

We define a number of projective functions here that enable us to specify particular
elements of an order easily.

Function Defintion 6.2.8

For order o = 〈ν, p, a, e, d〉 we define the following functions.

The function o ν is defined as o ν : O → N it is defined as: o ν(o) = ν.

The function o rep is defined as o rep : O → A it is defined as o rep(o) = a.

The function o pro is defined as o pro : O → Pν it is defined as o pro(o) = p.

The function o start is defined as o start : O → N it is defined as o start(o) =
e.

The function o end is defined as o due : O → N. it is defined as o end(o) = d.

An order o is published at pit t, this is done by publishing it to the representative
of the order. When it has been published it is called active. This is encoded in
the predicate o active.

Function Defintion 6.2.9

The predicate o active is defined as: d active : D → {true, false}. For o =
〈n, a, p, e, d〉 it is defined as: o active(o)⇔ a 6= ∅

In the following we assume that for all orders are active.

6.2. Modeling the scenario 209

Orders belong to a network. Thus, we can define the orders of the network
ν.
Set Definition 6.2.12

For the network ν = 〈An,t, c〉 at pit t the orders of the network are referred to
as Oν,t. Formally this set is build as follows:

o ∈ Oν,t ⇔ o ∈ O ∧ o active(o) ∧ o ν(o) = ν

Each agent can be a representative for orders and can be a member in more
than on network at the same time. Therefore, it is worth to define the orders of
the agent a at pit t.
Set Definition 6.2.13

The set of orders of an agent are referred to as Oa,t. This set is defined as
follows:

o ∈ Oa,t ⇔ o ∈ O ∧ o active(o) ∧ o rep(o) = a

If an order has been given to a network it must be processed. The jobs that
have been specified in a variant of this product have to be executed. Therefore,
it is necessary to decide which variant of the product has to be executed. This is
encoded in the function o ref .
Function Defintion 6.2.10

The function o ref is defined as o ref : O → Vν . For o = 〈ν, p, a, e, d〉 it is
defined as o ref (o) = v,with v ∈ p var(o pro(o)).

We do not go into detail how the variant is chosen from the set of existing variants.

An instantiated job ji is a job j, that is part of the variant v = 〈Jv, <v〉.
that is necessary for the execution of order o. An initiated job is that fraction of
an order that is distributed among the agents of the network. Thus, instantiated
jobs are the local orders of the agents.
Concept Definition 6.2.6

An instantiated job is defined as: ji = 〈o,B,J1,J2e, d〉, with

• o the order that the instantiated job belongs to

• B = j b(j) the required capabilities

• J1 = j pre(v, j) the jobs ji depends on

• J2 = j suc(v, j) the jobs depend on ji

• e ≥ o start(o) start of the execution interval

210 6. Engineering Coordination: The SCM case study

• d < o end(o) suggested end of the execution interval

The instantiated job ji = 〈o,B,J1,J2e, d〉 depends on the jobs in J1. If J1 is
empty ji is called independent.
Set Definition 6.2.14

The set of all instantiated jobs of an agent a at pit t is referred to as J ia,t.

The set of all instantiated jobs of a network ν at pit t is referred to as
J iν,t.

A job j is transformed into an instantiated job ji by the instantiate job
function.
Function Defintion 6.2.11

This function is defined as j inst : Jν ×Oν,t → J iν,t. For o = 〈ν, p, a, e, d〉 and
j = 〈Bj〉 with j ∈ o ref (o) it is defined as:

j inst(j, o) = ji =

〈o, j b(j), j pre(o ref (o), j),

j suc(o ref (o), j), d start(d), d due(d)〉

For the instantiated job ji = 〈o,B,J1,J2e, d〉 we define the following functions.

The function j i o is defined as j i o : J iν,t → O it is defined as j i o(ji) = o.

The function j i ν is defined as j i ν : J iν,t → N it is defined as j i ν(ji) =
o ν(j i o(ji)).

The function j i rep is defined as: j i rep : J iν,t → A it is defined as j i rep(ji) =
o rep(j i o(ji)).

The function j i b is defined as: j i b : J iν,t → ℘(B) it is defined as j i b(ji) = B.

The function j i jd is defined as j i jd : J iν,t → ℘(Jν) it is defined as j i jd(ji) =
J1.

The function j i js is defined as j i js : J iν,t → ℘(Jν) it is defined as j i js(ji) =
J2.

The function j i start is defined as j i start : J iν,t → N it is defined as
j i start(ji) = e.

The function j i due is defined as j i due : J iν,t → N it is defined as j i due(ji) =
d.

6.2. Modeling the scenario 211

An instantiated job ji is allocatable at an agent a at pit t iff the predicate
j i t alc is true.
Function Defintion 6.2.12

This predicate j i t alc is defined as j i t alc : J iν,t ×A×N→ {true, false}. For
ji = 〈o,B,J1,J2e, d〉, a ∈ A and t the predicate is defined as:

j i t alc(ji, a, t)⇔ is member(a, j i ν(ji), t) ∧ ∀b ∈ j i b(ji)⇒ b ∈ Ba,t,ν

The set of agents, that are capable to execute an instantiated job ji at pit t are
called the set of candidates.
Set Definition 6.2.15

The set of candidates for an instantiated job ji at pit t is referred to as AC
ji,t.

Formally AC
ji,t is defined as follows:

a ∈ ACji,t ⇔ a ∈ A ∧ j i t alc(ji, a, t)

An agent that is a member of the set of candidates is called a candidate.

For the execution of an instantiated job ji a candidate a has to generate a
proposal.
Concept Definition 6.2.7

A proposal is defined as r = 〈ji, a, ν, e, d〉, with

• ji, the instantiated job the proposal addresses,

• a, the agent offering the execution,

• ν, the network the proposal belongs to, and

• [e, d], the time window for execution.

Set Definition 6.2.16

The set of all proposals for an instantiated job ji is referred to as Rji,t.

The proposals of an agent are referred to as Ra,t.

For proposals we define a number of projective functions, to ease the access to
elements of a proposal.
Function Defintion 6.2.13

For the proposal r = 〈ji, a, ν, e, d〉 we define the following functions.

212 6. Engineering Coordination: The SCM case study

This function is defined as r cand : Rji,t → A it is defined as r cand(p) = a.

The function r j i is defined as r j i : Rji,t → Jν it is defined as r j i(p) = ji.

The function r start is defined as r start : Rji,t → N it is defined as
r start(r) = e.

The function r due is defined as r due : Rji,t → N it is defined as r due(r) = d.

As pointed out above, we are not going into detail how each PAA generates its
local plan. Each agent generates a local schedule that has to be consistent and
is optimized towards a local objective function. To generate a proposal an agent
has to evaluate the effects an additional jobs would have on its local schedule.
Therefore, it has to compute and evaluate a potential schedule. If the potential
schedule seems to offer an increase in the agents local utility or at least is not
worsening it significantly, the agent is willing to generate a proposal. The degree
to which an agent is willing to accept quality decrease is defined by a specific
threshold. The offered interval for the execution of an instantiated job depends
on the one hand on the planned execution time in the potential plan but on the
other hand on more strategic aspects like adding offsets for redundancy and the
offered service level to the corresponding network the instantiated job belongs to.

If different proposals have been placed for an instantiated job one of them has
to be chosen. The selection of a proposal can either be done by the CA or the
representative of the corresponding order. The selection of a proposal r for an
instantiated job ji is described by the function r sel .
Function Defintion 6.2.14

The function r sel is defined as r sel : ℘(Rji,t)×Oν,t → Rji,t. It is defined as
r sel(Rji,t, o) = r ∈ Rji,t.

Thereby, different aspects of the proposal can be evaluated. If a proposal has been
selected a binding commitment has to be formed. Here a commitment m is an
obligation of an agent a1 ∈ A (the commitment-presenter) towards another agent
a2 ∈ A (the commitment-receiver) to execute an instantiated job ji within the
time interval [e, d].
Concept Definition 6.2.8

A commitment is defined as m = 〈ji, a1, a2, e, d〉. If c is granted at pit t the
following conditions have to be satisfied:

• ji ∈ J ia1,t

• is member(a1, j i n(ji)) ∧ is member(a2, j i n(ji)

• e, d ∈ N : e < d

6.2. Modeling the scenario 213

Set Definition 6.2.17

Let M be the set of all commitments.

We also define a number of projective functions for commitments, as well.
Function Defintion 6.2.15

For the commitment m = 〈ji, a1, a2, e, d〉 we define the following functions.

The function m pres is defined as m pres : M → A it is defined as
m pres(m) = a1.

The function m rec is defined as m rec :M→ A it is defined as m rec(m) =
a2.

The function m j i is defined as m j i :M→ J iν,t it is defined as m j i(m) = ji,
if ji ∈ J ia1,t.

The function m start is defined as m start : M → N it is defined as
m start(m) = e.

The function m due is defined as m due :M→ N it is defined as m due(m) =
d.

A commitment is active, if it was published by a commitment-presenter
towards a receiver. This is encoded in the function m active.
Function Defintion 6.2.16

The function m active is defined as m active : M → {true, false}. For m =
〈ji, a1, a2, e, d〉 it is defined as: m active(m)⇔ m pres(m) 6= ∅∧m rec(m) 6= ∅

The commitments of an agent a that have been presented by this agent at
pit t are gathered in the set of active commitments.
Set Definition 6.2.18

For the commitment m = 〈ji, a1, a2, e, d〉 the following sets are defined.
The set of the commitments of an agent a at pit t is labeled asMa,t. The
commitment m is in Ma,t if the presenter a1 is a. That is encoded as:

m ∈Ma,t ⇔ m ∈M∧m active(m) ∧m pres(m) = a

The commitments of a representative a at pit t are referred to asMRa,t. The
commitment m is in MRa,t if the receiver a2 is a. That is encoded as:

m ∈MRa,t ⇔ m ∈M∧m active(m) ∧m rec(m) = a

The commitments of an agent a towards network ν at pit t are combined
in the set Ma,ν,t. Formally this set can be described as:

∀m ∈Ma,ν,t ⇔ m ∈Ma,t ∧ j i ν(m j i(m)) = ν

214 6. Engineering Coordination: The SCM case study

The commitments of a network ν, indicated as Mν,t, at pit t contains
commitments for activities of the network. Formally this can be stated for the
network ν = 〈Aν,t, c〉 at pit t as :

Mν,t =
⋃

∀a∈Aν,t

Ma,ν,t

A commitment is given by the agent, that has presented the selected proposal.
It gives the commitment to the representing agent of the order for the execution of
the instantiated job specified in the proposal. Thus, a proposal can be transformed
into a commitment using the function m gen.

Function Defintion 6.2.17

The function m gen is defined as m gen : Rji,t →M. For r = 〈ji, a, ν, e, d〉 it
is defined as

m gen(r) = 〈r j i , r cand , j i rep(r j i(r)), r start(r), r due(r)〉 = m

.

To identify the commitment that belongs to a certain instantiated job ji the
function m find can be used. This function identifies the commitment for an
instantiated job ji.

Function Defintion 6.2.18

The function m find is defined as m find : J iν,t × ℘(Mν,t) → Mν,t. For ji =
〈ν,B, a,J1,J2, e, d〉 and Mν,t it is defined as: m find(ji,Mν,t) = m, with
m ∈Mν,t ∧m j i(m) = ji

Set Definition 6.2.19

The corresponding commitments of an order o at pit t are referred to as
Mo,t. This set is defined for the current pit t as

m ∈Mo,t ⇔ m ∈M∧ j i o(m j i(m)) = o

The set of commitmentsMo,t for the order o at pit t is complete if the predicate
m comp is true.

6.2. Modeling the scenario 215

Function Defintion 6.2.19

The predicate m comp is defined as m comp : ℘(M) × O → {true, false}. It
is defined as:

m comp(Mo,t, o)⇔
∀ji ∈ J iν,t : j i o = o∃m ∈Mo,t : m j i(m) = ji.

The set of all commitments of a network ν at pit t is complete iff∧
∀o∈Oν,t

m comp(Mo,t, o) (6.1)

The beginning and ending of an order o are defined as follows.
Function Defintion 6.2.20

The function o beg is defined as o beg : ℘(M) → N. For o and its complete
set of commitments Mo,t it is defined as

o beg(Mo,t) = min
∀m∈Mo,t

{m start(m)}

The function o end is defined as o end : ℘(M) → N. For o and its complete
set of commitments Mo,t it is defined as

o end(M o, t, d) = max
∀m∈Mo,t

{m due(m)}

The set of commitments M o, t for an order o at pit t is consistent if the
predicate m con is true.
Function Defintion 6.2.21

The predicate m con is defined as m con : ℘(M) × Oν,t → {true, false}. For
o and Mo,t it is defined as

m con(Mo,t, o)⇔
m comp(Mo,t)∧
o beg(Mo,t) ≥ o start(o)∧
∀mi,mj ∈Mo,t : m j i(mi) <v m j i(mj)⇒
m due(mi) < m start(mj)

The set of all commitments Mν,t of a network ν at pit t is consistent iff∧
∀o∈Oν,t

m con(Mo,t, o) (6.2)

216 6. Engineering Coordination: The SCM case study

If an order o has been scheduled in a consistent way, i.e., m con(Mo,t, o) is
true, the execution of the order can be evaluated regarding the adherence of
its due date. This is done using the function o eval . This function commonly
punish lateness of orders. An order is late if its completion time (computed by
o end(M o, t)) is greater than the due date of the corresponding order (computed
by o due(o)).

Function Defintion 6.2.22

The function o eval is defined as o eval : ℘(Mν,t) × Oν,t → R. For o and
M o, t the function is defined as o eval(M o, t, o) = x ∈ R.

IfMν,t is consistent, then the performance of the network can be computed,
as well. This done by the function ν eval .

Function Defintion 6.2.23

The function ν eval is defined as ν eval : ℘(M) × ℘(Oν,t) → R. For the
current, consistent set of commitmentsMν,t and the current set or orders Oν,t
the function is defined as:

ν eval(Mν,t,Oν,t) =
∑

∀o∈Oν,t andM o,t

o eval(M o, t, o)

The commitments of a representative MRa,t are complete at pit t iff∧
∀o∈Oa,t

m comp(Mo,t)

The commitments of a representative MRa,t are consistent at pit t iff∧
∀o∈Oa,t

m con(Mo,t, o)

6.3. Coordination requirements

After we have modeled the problem space we have to detail the coordination
requirements. This is the second step of the ECo process (the context of the ECo
process is shown in Figure 6.3.

The requirements of this case study have been derived from the literature of
production network like Corsten and Gössinger [CG01] for instance. Similar coor-
dination requirements have been discussed by a number of authors, for instance,
Frey et al. [FSWZ03], Dudeck [Dud04], Schut et al. [SKL+04], Jung and Jeong
[JJ05], and Schumann et al. [SLT08a].

6.3. Coordination requirements 217

Figure 6.3.: Context of the requirement defi-

nition step in the ECo process

In the following the coordination
requirements will be formalized that
have to be satisfied by a coordination
mechanism to be applicable for the
coordination of the different plan-
ning entities of the production net-
work.

Thereby, a first objective is, of
course, that the coordination has to
ensure that all local plans and the
overall set of commitments of a net-
work, which corresponds to the plan
of the network, are consistent as de-
fined above. Additional requirements are listed in the following.

1. Networks have to handle dynamics,

2. Autonomy has to be preserved,

3. Information hiding, and

4. Scheduling systems have to be black boxes.

Networks have to handle dynamics

Dynamics in the context of planning have been discussed in Section 2.2.3. As
pointed out before, dynamics are typically modeled as events, that occur and
change the environment. Therefore, it is necessary to specify which events can
occur and what consequences each type of event has. The dynamics that can
occur in this scenario are described by events, as well. In the following we outline
the notation of events and what types of events can occur. This defines the degree
of dynamics that a coordination mechanism must be able to handle. The events
that could happen are:

• an agent could decommit from a given commitment,

• an agent could request a change of its commitment,

• a new job has to be issued,

• a new order arrives,

• an existing order is withdrawn,

• an existing order is changed,

218 6. Engineering Coordination: The SCM case study

• a new agent enters the network, and

• an agent leaves the network.

Of course, it is arguable if the changes of orders or commitments have to be
modeled as separate events, as they could be modeled as a sequence of remove
and insert events. But this could lead to unnecessary plan nervousness, as the
current schedule or a slight modification of it could incorporate the event, while
removing and inserting would affect larger parts of the plan. Therefore, we think
that the additional effort in handling more types of events is justifiable. Other
possible events that could be modeled, like the changes concerning the available
products, or existing variants are not modeled here, as these are tactical decision,
that are not addressed here.

Event modeling

Not every event can occur at any time. For instance, the event that an agent
leaves a network is not possible if the agent is not a member of this network3.
Therefore, events are described with a precondition and its effects, similar to the
STRIPS notation of actions, outlined in Section 2.2.1. An event is described here
with its

• name (shown in fraktal characters),

• preconditions (pre),

• add effects (+eff), and

• delete effects (−eff).

Preconditions have to be fulfilled at pit t−1 to ensure the event can occur at pit t.
An event can occur at any pit when its precondition is satisfied. An event change
the environment. This changes are described by its effects. The effects are divided
into add and delete effects to ease readability. Such a distinction between effects is
proposed by Russell and Norvig[RN03, p. 378], as well. To avoid problems similar
to the frame problem of planning, we use the so-called STRIPS-assumption, that
everything not mentioned in the effects stays the same, see Section 2.2.1 or Russell
and Norvig [RN03, p. 378].

Decommitment

By decommiting the presenter or the receiver of a commitment resolves a commit-
ment. The presenter can decide to release the event, if it is reasonable to do so

3This could only happen if events, like messages in electronic networks, can overtake each other.

6.3. Coordination requirements 219

name decommit(m)

preconditions pre =
{
m ∈Ma1,t−1 ∧m ∈MRa2,t−1

}
add effects +eff = ∅

delete effects

−eff =
{
m 6∈ Ma1,t∧

m 6∈ MRa2,t∧

m j i(m) 6∈ J ia,t
}

Table 6.3.: Summarizing the event decommitment of the commitment m

for him, either if he cannot or will not satisfy the commitment. The commitment
receiver can decommit if, for instance, the corresponding instantiated job is not
needed anymore. When a decommitment is published, the corresponding instan-
tiated job is removed from the current local schedule. Decommitments have been
discussed in Section 3.1.3, too.

Let a1 = m pres(m) be the presented of commitment m and a2 = m rec(m) be
the receiver of commitment m. The event is characterized in Table 6.3.

Change request for a commitment

A change request for a commitment is sent by the commitment presenter to the
commitment receiver. Thereby, the agent requests to change aspects of the com-
mitment, for instance, the time interval for the execution. The commitment re-
ceiver can decide whether it accepts the change or decline it. This decision is
typically made based on the effects that the change would have on the local plan
and utility function of the receiver agent. If the request is accepted the corre-
sponding instantiated job and the corresponding assignments have to be updated.
Otherwise the commitment remains unchanged. In consequence of a declined
change request, the commitment presenter might consider to decommit from the
commitment. This, in fact, should be incorporated by the commitment receiver,
as well.

Let a1 = m pres(m) be the presented of commitment m and a2 = m rec(m)
be the receiver of commitment m. Let m′ be the commitment that is suggested
by a1 to a2 instead of the existing commitment m. Agent a2 has to answer to
this change request. It can either accept it, exchange the commitment m with
m′, or it can reject the change request, demanding the fulfilment of m. In the
following we assume w.l.o.g. that the instantiated job has been changed to j′i.
Depending on the requested change, it can become necessary to adapt the local

220 6. Engineering Coordination: The SCM case study

name change commitment(m,m′)

preconditions
pre =

{
m ∈Ma1,t−1 ∧m ∈MRa2,t−1∧

m′ 6∈ Ma1,t ∧m′ 6∈ MRa2,t
}

add effects +eff =



∅ reject

{
m′ ∈Ma1,t ∧m′ ∈MRa2,t∧

j′i ∈ J ia,t
} accept

delete effects −eff :=



∅ reject

{
m 6∈ Ma1,t ∧m 6∈ MRa2,t−1∧

ji 6∈ J ia,t
} accept

Table 6.4.: Summarizing the event change request of the commitment m

plan, because the instantiated job ji has been modified to j′i. Consequently, there
are two alternative effects of this event, depending on the decision of the receiver
agent. The event is characterized in Table 6.4.

Instantiated job is tendered

An instantiated job can be tendered, either because an existing commitment has
been broken and a new agent for executing the job has to be identified, or com-
mitments for a new order has to be arranged.

If agent a receives a call for proposals for the instantiated job ji. It evaluates
how this additional job would effect its local plan. On the base of this information
it might consider to publish a proposal for the instantiated job. All published
proposal are collected by the requesting agent and one proposal is selected. The
corresponding agent is then informed and is requested to commit to the proposal.
If he does so, the tender is successful, otherwise it has failed and is discard.

Assume the instantiated job ji is tendered. Let ν be the network that the
instantiated job origins from. Multiple agents are involved in this interaction,
even if communication is always modeled pairwise. Those allocation are typically
done in a one-to-many form of negotiation. Let A∗ be the set of agents that are

6.3. Coordination requirements 221

name task tender(ji)

preconditions pre =

{
ji ∈ J iν,t−1∧ 6∈ J ia,t−1∧

a ∈ ACji,t−1 ∧ r 6∈ Ra,t−1

}

add effects +eff =



{
∀a∗i ∈ A ∗ ∃r : r ∈ Rji,t∧

r ∈ Ra∗i,t ∧ ji ∈ J ia∗,t∧
∃m ∈Ma∗,t : m j i(m) = ji∧

m ∈Mν,t

} tender successful

∅ tender fails
delete effects −eff = ∅

Table 6.5.: Summarizing the event tender of instantiated job ji

requested for a proposal for the job ji. Each agent can answer to an offered job
with a proposal. The agent a will publish its proposal ra if it is advantageous for
him, i.e., increasing its utility function. Otherwise, it will not publish a proposal.
If the proposal is published, it is evaluated by the requesting agent ar. Therefore,
the agent ar collects all proposals (Rji,t) and selects an appropriate proposal r∗,
using its function r sel(Rji,t, o) = r∗. The corresponding agent a∗ is informed
and gives, if it wants to, its commitment to perform the job. Otherwise the tender
is failed. The event of a tender for an instantiated job is formalized in Table 6.5.

New order

Orders are part of the dynamic environment of a network. Dynamics concerning
an order are within the scope of the perception of the agent that represents the
order. An order o is specified for a specific network ν. Thus, the representing
agent a has to be member of the network. If a new order o arrives, this order has
to be decomposed into instantiated jobs. Formally, this event can be described as
shown in Table 6.6.

In subsequence of this event, the new instantiated jobs have to be scheduled.
Thus, a number of task tender(ji) events are triggered by this event.

222 6. Engineering Coordination: The SCM case study

name order new(o)

preconditions pre =
{

is member(a, ν, t− 1) = true
}

add effects +eff =

{
Oν,t = Oν,t−1 ∪ {o} ∧ Oa,t = Oa,t−1 ∪ {o}∧

J iν,t = J iν,t−1 ∪ {∀j ∈ v j (o ref (o)) : j inst(j, o, i)}
}

delete effects −eff = ∅

Table 6.6.: Summarizing the event new order o

name order rem(o)

preconditions pre =
{
o ∈ Oa,t−1

}
add effects +eff = ∅

delete effects −eff =

{
o 6∈ Oν,t ∧ o 6∈ Oa,t∧

6 ∃ji ∈ J iν,t : j i o(ji) = o

}
Table 6.7.: Summarizing the event withdraw of an order o

Order withdrawn

As well as orders can be added they can be removed, too. The representing agent
has to react to this event by removing the order and its corresponding instantiated
jobs and commitments from the network-wide plan. Let o be the order that has
to be removed and be a the representing agent. The formal definition of this event
is shown in Table 6.7.

This event triggers a set of (decommit(m)) events for the effected instantiated
jobs, that become unnecessary when the order o is withdrawn.

Order changes

The customer can change its order o to o′ before it is fulfilled. As a consequence,
the information about orders and instantiated jobs has to be updated. The event
is described in Table 6.8.

As a consequence of the change of an order the global (network-wide) schedule
is threaten to become inconsistent. The existing plan has to be evaluated and
possible inconsistencies have to be removed. It can become necessary that existing
commitments have to be changed, or if this is not possible resolved and new

6.3. Coordination requirements 223

name order change(d, d′)

preconditions pre =
{
o ∈ Oa,t−1 ∧ o′ 6∈ Oa,t−1

}

add effects +eff =

{
o′ ∈ Oν,t ∧ o′ ∈ Oa,t∧

∀ji ∈ {j inst(j, o′, i)(v j (o ref (o)))} ⊂ J iν,t
}

delete effects −eff =

{
o 6∈ Oν,t ∧ o 6∈ Oa,t∧

6 ∃ji ∈ J iν,t : j i o(ji) = o

}
Table 6.8.: Summarizing the event change of an order o

name agent enter(ν)

preconditions pre =

{
ν active(ν) = true∧

is member(a, ν, t) = false
}

add effects +eff =

{
is member(a, ν, t) = true∧

Bν,t = Bν,t−1 ∪ Ba,t,ν
}

delete effects −eff = ∅

Table 6.9.: Summarizing the event an agent a enters the network ν

commitments have to be established. Thus, in the following a set of events of the
types: decommit(m), change commitment(m,m′) and task tender(ji) can occur.

Agent enters network

If an agent a enters network ν, it has to register itself at the corresponding CA.
During the registration to the network the agent offers a set of capabilities to the
network. Furthermore, it adapts its communication abilities towards the com-
munication protocols used in this network. The event is described in Table 6.9.

224 6. Engineering Coordination: The SCM case study

name agent leave(a, ν)

preconditions pre =

{
is member(a, n, t− 1) = true∧

Ma,ν,t−1 = ∅∧
6 ∃m ∈MRa,t−1 : j i ν(m j i(m)) = ν∧

6 ∃jiJ ia,t−1 : j i ν(ji) = ν

}
add effects +eff = ∅

delete effects −eff =

{
is member(a, ν, t) = false∧

6 ∃b ∈ Bν,t : ∀a∈Aν,tb 6∈ Ba,t,ν
}

Table 6.10.: Summarizing the event an agent a leaves the network ν

Agent leaves network

If an agent a leaves the network ν it has to deregister itself from the corresponding
CA. This, of course, requires that the agent is already member of this network.
Moreover, the agent cannot be a representative of an order of the particular net-
work, and it is not allowed to receive or to given any commitment for instantiated
jobs of this network. So prerequisite for finally leaving the network is to disengage
the agent a from the network’s activities. This could be realized by rising other
events like decommit(m) or order rem(o). We model it in this way, because entering
and leaving a network are strategic decisions by the planning authority. As we are
addressing the operational level here, we do not model events of the tactical or
strategical level. As a consequence, the agent has to deregister its capabilities and
removes all instantiated jobs and the corresponding assignments and commitments
from its local knowledge-base. The event is described in Table 6.10.

Autonomy has to be preserved

In contrast to the rather broad discussion about the term autonomy in general in
the research of DAI, see, e.g., Bradshaw et al. [BFJ+04], Luck et al. [LDM03],
or Nickles et al. [NRW02], we give a more specialized definition of autonomy
here, that has to be preserved. Autonomy of a PAA is characterized by its ability
to determine its local schedule, or more precisely the instantiated jobs that are
realized with its schedule. An autonomous PAA is in control about which jobs it
accepts and how the corresponding proposals and commitments looks like. So in
short:

6.3. Coordination requirements 225

Autonomy is defined by the fact that the agent controls its jobs and
thereby its local schedule.

In consequence autonomy implies that

• the local plan is only determined by the local planning system,

• all modifications of the input data for the planning system are made by the
PAA according to its local utility function,

• all decisions the PAA made are documented by the commitments it gives to
other agents.

It can be summarized that there is no direct inference from other agents to the
local decision making. Of course, other agents can offer compensations, but the
final decision, if the agents accept those compensations or other offers are made
locally.

As a consequence of this autonomy, the overall system cannot be optimized on
the network level. Neither guaranties can be given that each order is processed.
For instance, if an agent exclusively offers a certain capability for a job to a network
that needs to be executed to fulfill an existing order, this order cannot be executed
if the agent is not willing to integrated the corresponding instantiated job into its
local schedule. Note that by definition of autonomy there exist no entity except
the agent itself that can enforce the agent to integrate that specific instantiated
job into its schedule.

A similar notion of autonomy has been used by other researchers investigating
the coordination among agents, e.g., von Martial stated:

“A coordination agent, . . . has to support coordination and cooper-
ation and is not allowed to enforce it.” [Mar92, p. 130]

Of course, there might be tactical or strategic considerations at that planning
authority, that if the agents lead the network to fail on a specific order that
this will have consequences for the reputation of the agent in the network. But
these consequences are not subject of this study, because only the operational
decision level is taken into consideration here. Those tactical decision influence the
negotiation strategy the agent has to follow during the operational coordination.

Information hiding

Information hiding can be seen as a different aspect of autonomy. It is not the
control over local decision making and local resources, but having control about
the externally available information about the entity itself. This is a special aspect

226 6. Engineering Coordination: The SCM case study

of privacy, that might be characterized as informational self-determination, which
origins in the German term “Informationelle Selbstbestimmung”. Information
hiding is characterized by Halpern and O’Neil [HO05] in a way that all observers
of an agent do not gain any new information while the agent is performing its
actions. This privacy concerns have special relevance, as typically the opponent
modeling is a typical aspect of the environment model an agent has to reason
about, while constructing its future plans. This is typically referred to as mutual
modeling [Woo09, pp. 170–173].

Halpern and O’Neil [HO05] point out three different aspects that are important
for the design or selection of a privacy enforcing mechanism. These aspects are
[HO05]:

• What information needs to be hidden?

• Who does it need to be hidden from?

• How well does it need to be hidden?

For instance, within a production network companies can have overlapping compe-
tencies. The relation between the participating entities is in between cooperation
and competition, see Corsten and Gössinger [CG01, p. 39]. In this situation par-
ticipating companies have typically concerns to lose knowledge concerning their
core competencies or that other companies can benefit from knowing their cur-
rent abilities. Examples for such sensitive information are production facilities,
production times or costs [CG01, p. 39].

Therefore, it can be reasonable to limit the amount of information exchanged
between the agents, even if this will lead to an overall plan with lower quality,
see D’Amours et al. [DMLS99]. Agents can exchange abstract plans or planning
goals if they are not interested in publishing their concrete detailed plans. This
approach is, e.g., presented by von Martial [Mar92]. Or they can exchange partial
plans, hiding certain aspects or parts of their plans, the planning knowledge, or
the complete set of intended goals, which is promoted in the approach of PGP,
presented by Durfee and Lesser [DL87], and its successor GPGP, presented by
Decker and Lesser [DL92], and Decker [Dec95]. The aspect of information hid-
ing during coordination is also discussed from a game theoretic perspective by
Rosenschein and Zlotkin [RZ98b].

Another relevant aspect of information hiding is anonymity, or more precise,
the knowledge about which agents participate in which network. In production
networks this is typically an aspect that is not intended to make public. There
can exist suppliers that are part of competing supply chains [CG01, p. 39]. Thus,
even the information in which networks an agent participates in can be a private

6.3. Coordination requirements 227

information. In the following we refer to this aspect as anonymity. In contrast to
the aspect of competence protection that was discussed previously.

Anonymity

As already pointed out, by anonymity we refer to the characteristic that an ob-
serving agent ag cannot infer from its observation that an agent a is member of
two networks ν1 and ν2. Thereby, we assume that the observer collects the mes-
sages send and received from/to agent a. Anonymity is guaranteed, if the agent
ag cannot verify or falsify the result of the following equation.

6 ∃t ∈ N : a ∈ Aν1,t ∧ a ∈ Aν2,t (6.3)

This definition assumes that the observer ag uses a boolean reasoning and does
not use probabilities for its reasoning. If ag does so, this definition of anonymity
might not be sufficient anymore. Because an observer can have a very high proba-
bility assigned to the fact that a is member of ν1 and ν2. In this case the definition
has to be changed in a way that the observer ag has no reasons to increase its
initial probabilities. So, its confidence that a is member of both networks does
not grow, while ag is observing the interactions within the network.

Research concerning privacy is not in the focus of this study. We do not refine
this definition to more elaborated models of privacy preservation. Instead we
refer to Halpern and O’Neil who give an interesting overview and introduction in
[HO05].

Competence protection

The aim of competence protection is to ensure that for a specific agent a in network
ν the other members of this network do not get a precise view of the competences
of agent a. Other agents within one network can, of course, see, what instantiated
jobs the agent a has committed itself to, if they are commitment receiver of this
agent.

In consequence, the information what jobs can be executed by agent a can be
collected by an agent receiving a number of commitments from a. This information
can be used to approximate the capabilities the agent a offers towards this network.
So, this information cannot be kept secret. Of course, by a stricter definition and
implementation of anonymity it can be possible to hide this information, too.

More critical information than what jobs an agent can execute is information
about the way the agent a executes these jobs. This information contains details
about required resources, required processing time, and required process steps.
This information is in fact subject of competence protection.

228 6. Engineering Coordination: The SCM case study

Information about production process can typically be hidden, at least from the
perspective of the coordination mechanism. This knowledge is often not modeled
explicitly for coordination purposes. Information about available resources should
be hidden, as well. For the processing time we have to state a conflicting situation.
It is necessary to exchange information about processing times to reach a feasible
plan on the network layer. But these published processing times do not have to
be equivalent with the processing times required in the internal schedule. Thus,
information about the processing time can be noisy, either because an instantiated
job could not scheduled within its minimal makespan. Another reason that adds
noise in the processing time is the usage of additional buffer to gain more local
flexibility, or to obfuscate the real processing time, as part of the negotiation
strategy and offered service-levels. Other agents can observe the processing times
specified in the commitments. So, if an agent receives a couple of commitments
for different instantiations of the same type of job it can approximate the real
processing time, with the minimal time offered in the received commitments. So,
ifM′j is the set of commitments for instantiated jobs of the type j, the processing
time can be approximated by

proc time = min
∀m∈M′j

{m due(m)−m start(m)}.

Although it can be possible to estimate processing times on the base of ad-
ditional expert knowledge given to the agents. Thus, the degree of competence
protection depends on the strategy the agent a applies in generating the proposals
and commitments, derived from its local plan. An offset can be added to the in-
ternal duration, to obfuscate the internal processing time. This could lead to less
competitive proposals. Therefore, it depends on the local strategy of the agent if,
and how much additional time is added. If an offset o is added an observer could,
at its best, identify a processing time of proc time + o. Thus, the degree of privacy
that can be achieved depends on the one hand on the willingness of the agent
to expose information about its processing times and on the other hand on the
economic necessity to expose information to generate competitive proposals. The
second aspect leads to the fact that current market average processing times are
commonly known. Even if an agent b wants to force agent a to reduce its offset,
e.g., if agent b compete for the same jobs, this does not change the information
balance. Because it is necessary for b to expose or at least publish values more
close to its real processing time, to generate more competing proposals, as well.
Thus, the situation between competitors is symmetric. Each agent does not know
the real processing times, and thus, cannot estimate the risk of exposing its real
processing time in competition with other agents with similar competencies.

6.3. Coordination requirements 229

Scheduling systems have to be black boxes

This requirement follows the design guideline to separate planning and coordina-
tion knowledge and mechanisms, which has been suggested by Decker and Lesser
[DL93, p. 197]. This guideline leads to a modular architecture containing a
scheduling and a coordination mechanism module.

This separation is not widely applied, yet. For instance Dudeck [Dud04] and
Frey et al. [FSWZ03] try to take advantage of the integration of local planning
systems and coordination mechanism, for the overall coordination between the
entities. A pretended disadvantage of the modularization is that no internal infor-
mation of planning system, like available free capacities in the future, can be used
to compute alternative solutions for requests from other agents. This can lead to
solutions that are less efficient than solutions generated by mechanisms without
modularization. But as we have stated that autonomy preservation and infor-
mation hiding are important coordination requirements, too. These disadvantage
is not significant. As the usage of such private information in the coordination
process would violate these requirements.

A possible disadvantage is that all computations concerning the effects of
changes to the local plan have to be evaluated by generating a new plan using the
planning systems. Thus, the planning system could run multiple times generating
plans that are not used in production. Depending on the needed computation
time this can become prohibitive.

In contrast the modularization has a number of advantages that enable the
usage of automated coordination mechanisms, at all.

First of all, the coordination mechanisms does not have to imply restrictions
on the method that is used to generate local plans. This happened, for instance,
in the mechanism proposed by Dudeck [Dud04], where all local planning systems
are assumed to be mathematical optimization problems. By using such an as-
sumption the pre-existence of planning systems in companies is neglected. As
already mentioned, we are addressing here coordination mechanisms for the oper-
ative coordination among planning entities. The decision which type of planning
systems, a customized 3rd party software systems or a custom software is used,
are tactical decision that should not be effected by systems that offer additional
capabilities for the operational level. Moreover, a modular approach facilitates to
exchange the subsystems independently. Thus, a coordination mechanism can be
exchanged, while the local planning system stay in use, and vice versa. According
to Gamma et al. [GHJV94, pp. 24,25], this is a consequence of loose coupling of
systems in software engineering. A planning authority can also use one planning
system with different coordination mechanisms, which could be in place for the
coordination in different networks.

230 6. Engineering Coordination: The SCM case study

As already indicated, planning systems are often pre-existing at the time it
becomes reasonable to integrate a coordination mechanism. Therefore, a modular
approach facilitates to use existing planning systems. These planning systems are
are solely designed to generate goods local plans for the situation in the particular
problem domain. An existing planning system is a single source of information for
the current control of the production of goods or services, that has been established
to achieve effective value creation, see Kurbel [Kur05, pp. 4–8]. The design of
such an infrastructure is a strategic and tactical goal of the IT-management, see
Hansen and Neumann [HN09, p. 240]. Using a modular approaches enables to
preserve this infrastructure and to not effect the decisions of the tactical and
strategic decision level.

In consequence the coordination mechanisms should only have the ability to
define input data for a planning system, start the planning system, and read and
interpret the resulting plans. Interactions between scheduling and coordination
modules have been detailed, for instance, in Decker [Dec95, Chap. 5.7] for the
GPGP coordination mechanism.

6.4. Selection of appropriate coordination mechanisms

After the coordination requirements have been defined the third step of the ECo
process is the selection step.

The overall context of this step in

Figure 6.4.: Context of the selection step in

the ECo process

the ECo process is given in Figure
6.4. In Section 4.2.3 (on page 130)
the following techniques have been
identified as applicable for this sce-
nario, according to the characteris-
tics of coordination problems iden-
tified in Section 4.1 (on page 117).
These mechanisms are listed below:

• mediator-based,

• auctions, and

• negotiation.

In the following we discuss these techniques in the context of the coordination
problem of this case study and then identify the most suitable approaches that can
be used in this case study. The field of coordination in production networks and
supply chains has been issued by a number of researchers, therefore, we cannot
claim a complete overview, even if we present a wide survey.

6.4. Selection of appropriate coordination mechanisms 231

Mediator-based approaches

Mediator-based approaches have been discussed in Section 3.1.2. A main idea of
these approaches is that inconsistencies or conflicts between two or more local
plans can be resolved by a centralized decision maker, called mediator. Therefore,
the concept is similar to the bottom-up planning approaches, discussed in the
context of coordination approaches from the field of business administration, see
Section 3.1.1.

To implement such an approach, it is necessary that the mediator has enough
knowledge about the local entities to either generate non-conflicting plans that
are feasible at the local level, or at least can provide restrictions to the local plans
that enforce global and local feasibility. Additionally, the mediator does not only
requires the knowledge to generate a solution, but also requires the authority to
enforce this mediated solution. That is, the local planning entities have to apply
the plans or constraints given by the mediator.

An approach where a technique similar to mediators is used has been presented
by Naso and Turchiano [NT04]. In their study a production process in analyzed.
Decision making is distributed among parts and workstations. Parts are repre-
sented by part agents that are responsible for routing the part through the pro-
duction process. Workstation that can perform actions in the production process
are represented by workstation agents. They can either accept or reject requests
from parts, or determine the sequence of parts that have been accepted for pro-
duction. Therefore, the modeling with part and workstation agents is similar to
work presented by Schumann and Sauer [SS07]. In their work Naso and Turchiano
allow that workstation agent can reason about conflicts and performance lacks due
to local decision making by the part agents that leads to inefficient routings. The
workstation agents can then build new routings for parts and communicate those
routings to the part agents, that have to follow their new route.

Auctions

Auctions, as a technique for coordination, have been discussed in Section 3.1.3.
Within a supply chain the coordination problem is similar to solving a scheduling
problem by assigning instantiated jobs to agents that executes these jobs. As it
is necessary to execute all instantiated jobs that belong to an order, it can be
stated that the assignments are complementarity and a multi-item auction has to
be performed. According to Schmidt [Sch99] combinatorial auctions, presented
in Section 3.1.3, are an adequate mean. Additonal complexity is added as a
correct sequence among the scheduled jobs has to be guaranteed. Sequencing
considerations are not part of standard techniques for combinatorial auctions. In
fact the usage of combinatorial auctions for scheduling problems is subject of

232 6. Engineering Coordination: The SCM case study

Figure 6.5.: Example of a bid structure with 7 time slots and 3 resource (r1,r2,r3)

research itself, e.g., Wellman et al. [WWWMM01] or Elendner [Ele04].
A technique for solving distributed scheduling problems that has been advocated

for in the literature [WWWMM01, Ele04] is based on the auctioneering of time slot
of the resources. In the following we describe the specifics for the model presented
above. Each bundle contain all time slots for the time horizon of the scheduling.
This horizon has to be bounded, which is in fact not a very restricting assumption,
as each schedule is bounded by a time horizon. Lets assume the planning horizon
contains t time units. Then each bundle would consists of t elements. Each slot in
a bundle can have an identifier of a resource or a no-op. Whereby a no-op indicate
that no resource is occupied by that bundle at the specific time slot. If there are
r possible resources, then for each slot in a bundle r + 1 values are possible. With
this notation it is indicated that at a specific time slot (the corresponding slot
within the bundle) this bundles offers the usage of the resource, that is specified
in the corresponding slot. According to the model we have described above, a
resource is characterized by the execution of a specific job at a specific planning
entity. Consequently, the execution of a job at agent a and b would have to be
modeled as two different resources. An example of 7 time slots and 3 resources a
bid is exemplified in Figure 6.5

The orders, or in our model, their representative have to bid for each bundle.
Therefore, they have to evaluate for each bundle if the order could be realized, and
if so, compute how efficient the order is processed by the corresponding assign-
ment. This could be realized by computing the price for a bundle as the difference
between the maximal end of the jobs required for an order o and its due date. If
it is not possible to execute an order with a given bundle then the bid should have
a maximal negative value.

If for each order bids have been collected the winner determination has to be
done. The winner determination problem is a selection among the bids whereby
for each order exactly one bid has to be assigned, while maximizing the value of
the selected bids. The winner determination problem becomes simpler in this type
of auction, because all feasibility checks have been performed during the bidding
process and are not part of the winner determination problem.

In this auction process it is assumed that all resources are available at each time
slot. Which can only taken for granted, if the resources are not used for other jobs
than those of the particular network. Or, in consequence, for the model presented
here, the planning entity cannot coordinate their activities within more than one

6.4. Selection of appropriate coordination mechanisms 233

network at time. But the main disadvantage of this procedure is the huge amount
of possible bids. With r resources for t time slots there exists (r + 1)t different
bundles. In consequence, this process can only be done for very cause grained time
intervals and even then becomes very fast prohibitive complex. Even though most
bundles do not lead to a feasible plan for an order they all have to be evaluated
during the bidding process (by each bidder) and during the winner determination.

Another way to model the coordination problem of the production network
using auctions is described in the following. Bundles are members of the powerset
of the instantiated jobs that have to be performed. For each bundle the bid is
not a simple scalar anymore but a set of price vector. A price vector is a vector
that contains for every time slot a price that has to be paid. An example of the
usage of price vectors is presented by Grolik et al. [GSW+01]. A bid has a set
of vector. One price vector for each element of the bundle. Bids are given by
the planning entities, encoding the fact that it can offer the service at a specified
time for a specified price. Thus, the PAA can distinct between times when its
resources are not available, or it is advantageous to behave opportunistic. This
enables the coordination within different networks, sequentially. Assuming we
want to generate a schedule for the next t time slots with n instantiated jobs that
have to be performed to execute all orders. The resulting number of bundles per
bidder is 2n − 1. And consequently, k ∗ (2n − 1) bids have to be evaluated by the
auctioneer. It becomes clear that except for very small number of time slots the
number of bundles will be smaller than in the second model. But this leads to
a more complicated winner determination. As the sequencing and durations of
the different jobs has to be regarded during the winner determination problem.
Moreover, it has to be taken care of the fact that, if possible, the dues for the
orders have to be satisfied.

So far, strategic bidding has not been addressed in this auctioning protocols, at
all. Wellman et al. [WWWMM01, p. 299] have investigated that the generalized
Vickrey auctions could be modified for distributed scheduling, as well. But this will
result in the fact that the winner determination problem, which is a hard problem,
has to be solved multiple times. Thus, this becomes typically prohibitive complex.

In summary for the multi-item auction scenarios the resulting complexity, for
a scenario like the one presented here, is enormous. The problems used in the
literature, e.g., by Wellman et al. and Elendner [WWWMM01, Ele04] typically
have a simpler structure. While auctions are efficient for single-item allocation
problems, this cannot be stated for multi-item allocation or scheduling problems.
This observation is supported by Wellman et al. [WWWMM01, p. 300], as well.
The repetitive usage of single-item auctions for solving a multi-item problem is
neither an option as no guarantees can be given concerning the solution quality,

234 6. Engineering Coordination: The SCM case study

see [WWWMM01], and therefore auctions are not superior to other approaches.

Negotiation

Negotiations in multiagent systems are a widely covered area in DAI research
and have been outlined in Section 3.1.2. Consequently, various negotiation-based
mechanisms for coordination for scheduling problems and for the coordination in
production networks, like supply chains, have been proposed.

Most of these approaches assume collaborative, or at least truth telling agents.
An exception is the work presented by Sandholm and Lesser [SL95]. The main idea
is to coordinate plans by information exchange that is regulated by conversation
protocols. This, of course, require that all agents are aware of these protocols and
that they share a common ontology to interpret the messages that are exchanged,
correctly. The mechanisms proposed for conflict resolution vary from hierarchies
to bargaining.

A simple forms of a negotiation protocol is the contract net protocol (see Sec-
tion 3.1.2). One of the first investigations concerning the usage of the contract
net protocol for the coordination in scheduling problems has been presented by
Parunak [Par87]. Within the YAMS system local scheduling entities negotiate to
generate a manufacturing plan within a volatile environment.

Sandholm and Lesser [SL95] argued, that the contract net protocol has been
developed for cooperate problem solving problems, and that it is not well suited
for production networks comprising of autonomous entities, like for instance vir-
tual enterprises or supply chains. They argue that for representing autonomous
entities self-interested agents are more suitable. Therefore, they have extended
the contract net protocol. In this context they have also introduced the concepts
of leveled commitments and decommitment penalties (see Section 3.1.3).

With the MAGNET system presented by Collins et al.[CTMG98], the inter-
action between the negotiating partners is realized by a market framework that
enables indirect negotiation. This could be used, e.g., to foster information hiding
aspects and ease the development of agents, as the MAGNET system offers some
services required for the negotiation.

A specific approach for negotiation-based coordination in the context of supply
chains has been presented by Barbuceanu et al. [BTF97]. Their approach base
on the specialized coordination language COOL, an extension of the KQML lan-
guage, see Section 2.3.4. An introduction into the COOL language is given by
Barbuceanu and Fox [BF95]. The planning process is organized as a sequence of
communication processes that pass a partial plan to an upstream entity. Each type
of conversation is regulated by a specific rule set. Thus, the plans of each local

6.4. Selection of appropriate coordination mechanisms 235

entity is communicated upstream the supply chain. In consequence, a distributed
planning is realized for a joint plan as introduced in Section 3.1.2.

Wagner et al. [WGP03] present an approach for the coordination within a
supply chain based on TÆMS (see Section 3.1.2). Therefore, the production
alternatives are build as TÆMS structures and existing interdependencies have
been added. The conventional GPGP coordination mechanism is extended by the
integration of commitments, decommitments and decommitment penalties as in-
troduced in Section 3.1.3. These penalties are computed using internal costs of the
planning authorities. The focus in their paper is on tactical planning, decisions
concerning the product mix are coordinated. Consequently, their approach does
not have to deal with the integration of pre-existing planning systems as they are
operating on more aggregated data.

The SPP “RealAgentS” has contributed significantly to the research concerning
the coordination of distributed planning systems. In particular in the Agent.En-
terprise, presented by Woelk et al. [WRZN06]. In this effort different planning
systems have been designed that have to coordinate their local plans. These
coordination mechanism has been described by Grolik et al. [GSW+01], and Frey
et al [FSWZ03], for instance.

Moreover, in a another project of this research effort the coordination within
medical units in a hospital has been investigated by Paulussen et al. [PJDH03],
which based on negotiation schemes, as well.

Qualitative evaluation

In this qualitative evaluation we discuss the different approaches sketched above.
In particular we discuss their abilities to satisfy the coordination requirements.
Due to the large number of approaches presented here, this is done in a less
formal way. We point out if an approaches violates a coordination requirements
and if so, why.

Mediator-based approaches

The fact that the mediator requires knowledge about local abilities to generate
solutions or constraints that lead to feasible plans on the local level is in conflict
with the coordination requirement concerning information hiding. Aspects like
processing times and current workloads have to be accessible for the mediator, at
least in an abstract way. This includes restrictions to the local plan imposed by
commitments given for contribution to other networks or for network unrelated
jobs. This is a serious restriction concerning the information hiding requirement.
Additionally, the mediator has to have the authority to implement the mediated

236 6. Engineering Coordination: The SCM case study

plans. This is in conflict with the coordination requirement concerning the local
autonomy of the planning entities. This requirement stated that the planning
entity has full control of the jobs it accepts.

In summary, we see that the mediator-based coordination conflicts with the
coordination requirements concerning information hiding and preserving local au-
tonomy. Therefore, we do not see that approaches based on this concept are
suitable for the coordination of production networks, addressed here.

Auctions

As already discussed in Section 3.1.3, the advantage of a combinatorial auction is
its ability to provide high-quality or even optimal solutions. But the computation
of bids for each bundle can be very time consuming and the winner determination
is a hard problem, as well.

Concerning the coordination requirements auctions do fulfill most aspects. De-
pending on the implementation of the auction the coordination within multiple
networks can become a problem. In a situation in which the time slots of the
resources are auctioned the local autonomy is lost, as the assignment is done by a
centralized winner determination entity and not by the planning entities anymore.
Other approaches do not necessarily violate this requirements, for instance, when
planning entities offer price vectors for services.

Concerning the aspect of information hiding a differentiated analysis has to be
done. If the auction is done based on time slots for resources, the bidding agents,
the representatives of order, requires knowledge about the processing times for
each job to compute if it is feasible. Using a price-vector based approach in
the design of bids knowledge about feasibility is required to solve the winner
determination problem. Consequently, both approaches require this information.
In the one case it has to be distributed among the representative agents, in the
other it has only made accessible to one centralized entity. In both cases the
requirement of information hiding cannot be satisfied completely.

The separation of coordination and planning systems cannot be implemented in
an auction based coordination scheme. The local plan can simply be derived from
the assignments made in the auctioning process. A planning system might be used
for the price calculation for the offered price vectors, but the final assignment is
made during the auctioning process.

Moreover, events that change the planning environment have to be infrequent.
Infrequent in relation to the time required to compute a solution for the combi-
natorial auction. If an event changes the planing situation of one bidder it has
to update its bid. All other bids are assumed to remain valid. After an update
a new winner determination has to be performed. It becomes more critical when

6.4. Selection of appropriate coordination mechanisms 237

an event changes the number of possible bundles, in this situation the entire auc-
tioning process has to be repeated. The aspect that handling dynamic requires a
lot of computational resources and can lead to a complete re-computation of the
entire overall plan is critical for the satisfaction of the coordination requirements
to handle dynamics.

As pointed out, the number of bundles growth enormous. For instance, for
the production scenario used in this case studies each order specifies one type of
product, and four operations have to be scheduled. Each operation is an element
of a bundle, as it can be allocated at one of the two companies, at least for product
2. So, if n is the number of goods, here operations, the number of bundles is 2n−1.

Up to now it was of no importance how the local planning process looks like.
Now, as we want to point out the complexity of generating one bid, this becomes
an issue. Therefore, we have to detail our case study. At this point in time we use
the simplifying assumption that both planning system have to solve very similar
scheduling problems. We relax this assumption later, and allow different compa-
nies to have different local scheduling problems. Another restriction we made for
the first part of our investigation is that the companies do not have overlapping
competences, i.e., they are not able to offer operations that are provided by an-
other company. Only for product A in our case study the required operations are
distributed without overlap. Thus, we limit orders only to the first product type.
This limiting assumption will also be relaxed in the following. We assume that
each operation can be achieved by scheduling two actions sequentially. Each action
requires processing time on a local resource. To keep the local scheduling problems
simple, we assume that each action can be performed only on one resource and
execution time is fixed. We assume that there exist five different resources at each
company. As we have outlined above, we currently limit the case study to orders
requiring product 1. Thus, we detail only the production planning problems for
this product. In the following we present more complex local planning problems.
The details of these simplified local planning problems are provided in Table 6.11.
We use the naming convention that resources of company A are enumerated from
1 . . . 5 and for company B we enumerate them from 6 . . . 10.

Both planning approaches can be implemented, e.g., by a constraint solver,
which has been done in the work the ABACO approach was originally presented
in, see Schumann [Sch04], and Schumann and Sauer [SS05].

If the computation for the generation of one bid takes three second, which is
according to our tests a reasonable amount of time, the total computation time
for all bids for one bidder can be approximated by multiplying the number of
bundles with the time needed to compute one bid, as it is necessary to compute a
bid for each bundle. The resulting needed computation time for bids for different

238 6. Engineering Coordination: The SCM case study

Company A
operation activity resource duration

111
1 1 3
2 3 2

114
1 3 2
2 5 3

Company B

112
1 6 5
2 7 5

113
1 6 5
2 8 5

Table 6.11.: Details of local production details for SC operations

orders number of bundles approx. computation time for bids
1 24 − 1 = 15 45 sec.
2 28 − 1 = 255 12,75 min
3 212 − 1 = 4095 3,4 h
4 216 − 1 = 65535 >2,2 days
5 220 − 1 = 1.048.575 36,4 days

.
10 240 − 1 = 1.099.511.627.775 >104.595 years

Table 6.12.: Growth of complexity for computing bids for a CA

problem sizes is shown in Table 6.12.
Consequently, the combinatorial auctions is only reasonable for a small number

of orders. Which is unreasonable, because for such small instances, plans can even
generated manually. So, we can summarize that for auctions only a number of
coordination requirements can be partially satisfied and the complexity of this
mechanism is a serious problem.

Negotiations

At a first glance negotiations seem to fit very well to the needs of coordination of
planning systems, which may be a reason for the large fraction of negotiation-based
approaches presented in this field of research. But a detailed analysis has to be
performed. As indicated in earlier work, published in Schumann et al. [SLT08a],
most of these approaches fail to match all coordination requirements.

6.4. Selection of appropriate coordination mechanisms 239

The concept of negotiation protocols is suited for coordination purposes, as they
are not in conflict with the coordination requirements in general. But a detailed
analysis is necessary, as aspects like which data is used and published, depends on
the concrete implementation.

The coordination approach presented by Barbucenau et al. [BTF97] is based
on the idea that local plans are distributed to come to an efficient global plan for
the entire supply chain. Thus, aspects like information hiding are not regarded.

Even if the mechanism of Wagner et al. [WGP03] was designed for a tactical
problem in the context of supply chains, it allows to clarify one aspect. The design
of penalties for decommitment can be particular critical in the sense that for the
computation of those penalties typically information is required that is private
for each planning entity. Thus, it has to be critically evaluated if the aspect
of information hiding is respected in the computation and in the publication of
decommitment penalties, as well.

The DISPOWEB approach presented by Frey et al. and Grolik et al.
[FSWZ03, GSW+01] applies negotiation among agents to coordinate local plan-
ning systems within a supply chain. To foster the performance of the approach
information from local scheduling systems is used. All local planning systems
are agent-based planning and scheduling systems that have been developed in the
“RealAgentS” research effort, as well. A special type of agent is inserted into each
planning systems and collects information of the local schedule. This information
is used within the negotiation protocol to compute the pricing. Consequently, the
coordination requirement that planning and coordination functionalities should
be separated, i.e., scheduling systems have to be black boxes, is not regard.

If existing mechanism fail requirements concerning the information hiding or
the modularity requirement that scheduling systems have to be black boxes, this
is often motivated by the fact that those approaches strive to achieve higher qual-
ity solutions from the overall perspective. A consequence of this has been the
development of the ABACO approach. It is a negotiation-based coordination ap-
proach that achieves these requirements, see Schumann and Sauer [SS05]. Within
the ABACO approach a network consists of a number of planning agents, each
representing a planning entity, and one coordination agent, as outlined above. For
an initial assignment of jobs to agents ABACO uses a negotiation-based approach
similar to the contract net protocol. To handle dynamics a number of additional
conversation protocols have been defined. In total the ABACO approach can
handle the following events, see Schumann [Sch04, p. 114]:

• Agents can change (add and remove) the capabilities they offer to the net-
work.

240 6. Engineering Coordination: The SCM case study

• Agents capabilities can be changed on the local level.

• Agents can enter and leave networks.

• Agents can change their conversation strategies at runtime.

• Planning entities can be in multiple networks at the same time. Although
they can have non-network related orders, that can be added, removed or
changed.

• Network orders can be added, withdrawn or changed.

• Variants can be added, removed or changed.

• Products can be added or removed.

Thus, the ABACO approach can handle all kinds of dynamics that have been
pointed out above. Moreover, the ABACO approach offers techniques for reacting
to more event that are either subject to local decision making or tactical decision
making, both not discussed here.

Each ABACO agent has its own utility function that determines for which jobs
a proposal is generated, or if a change commitment request is granted or not. The
planning entity has to specify guidelines concerning what services are offered to
which network, and to what degree concessions are made to whom. There exists
no entity that can enforce an agent to perform a job. Thus, the local autonomy,
as outlined in the coordination requirements, is satisfied.

The information that is published to each network comprises what kinds of jobs
each agent offers to the network. This information is not broadcasted, but only
send to the coordination agent of the network. Thus, if this entity can be realized
as a thrusted third party entity, this information can be kept confidential. But each
agent can be engaged in negotiation with an agent performing a direct preceding
or succeeding job for a given order. Thus, each agent can collect information
about capabilities. In an offer or a commitment an agent specifies a time window
for the earliest start and the latest due of a job. Within this interval the job will
be processed. Thus, the execution time can be estimated by the length of this
interval. As discussed above, it is possible for the planning entity to specify a
network specific offset that is added to the real execution time of the job, that
is added to the compute the length of the published interval. Advantages and
disadvantages of these information publication strategy have been discussed above.

The access to the local planning systems is realized using files for data ex-
changed. The PAA uses a wrapper that generates an input file for the planning
system. The agent starts the planning system using a script. The planning sys-
tem generates an output file that can be read and interpreted by the agent using

6.5. Implementation of coordination mechanisms 241

a wrapper again. Thus, the planning mechanism is encapsulated within the plan-
ning system, exclusive. The agent can only access the planning functionalities
using wrappers. Consequently, the modular approach is implemented within the
ABACO approach. Therefore, we can state that the ABACO approach satisfy all
coordination requirements.

6.5. Implementation of coordination mechanisms

In this section we discuss the fourth step of the ECo process. The context of this
process step in the ECO process is given in Figure 6.6.

In our previous discussion we have

Figure 6.6.: Context of the implementation

step in the ECo process

pointed out that negotiation mech-
anisms, especially the ABACO ap-
proach enables an efficient coordi-
nation, respecting all coordination
requirements. Consequently, we re-
use the existing implementation of
the ABACO approach to implement
the coordination process among ex-
isting planning systems. Thus, the
CoPS process and framework are
not applied in this case study.

For comparing the results of the
ABACO approach we use two different mechanisms, both rely on centralized prob-
lem solution. The first one computes the optimal solution using a linear program.
Linear programming has been outlined in Section 2.2.1. Linear programming en-
ables us to find the optimal solution, they required computation time limits this
approach only to smaller problem instances. Scalability of the coordination ap-
proach, in terms of problem size and required computational effort, are discussed
below. But for finding optimal solutions the problem size is a limiting factor.
For that reason we present another approach for evaluation, as well. The second
approach is an order-based heuristic.

The ABACO approach

As the ABACO has been already implemented we are using the existing imple-
mentation. Thus, the CoPS process and framework are not used here. But the
ABACO approach is a forerunner of the CoPS approach. Work on the ABACO
approach has influenced the CoPS process and framework. Similarities especially
to the CoPS process are discussed below.

242 6. Engineering Coordination: The SCM case study

The overall architecture of a network, which uses the ABACO approach for coor-
dination contains a set of PAAs and one coordination server. A PAA represents a
planning authority and adapts an existing planning system. A coordination server
is an entity, possibly an agent, that offers services for the coordination within the
network. The overall architecture is depicted in Figure 6.7.

Figure 6.7.: ABACO representation of a production network, [SS05]

Each PAA comprises out of five components. These components are sketched
in Figure 6.8. In this graph of the architecture it becomes also obvious that the
ABACO approach is a forerunner of the CoPS framework, as the design of a PAA
in the CoPS framework (Figure 4.16 on page 159) has similar components. The
communication facilities of an agents is externalized in a separate module. Data
for the initialization and results, i.e., the local plan, are stored in a database and
for reasoning a world model is provided.

In the localization modules aspects like the localization of conversation pro-
tocols and adaptation of planning systems, both important issues of the CoPS
process, are provided. In the ABACO approach conversation protocols have been

Figure 6.8.: Architecture of a ABACO PAA agent, [SS05]

6.5. Implementation of coordination mechanisms 243

implemented. The specification of a conversation policy is done by setting param-
eters to localize the agent to its planning entity. This is done by specifying what
jobs/capabilities are offered to which networks, what concessions can be made to
whom, and which offset has to be added for proposals that are computed for a
given network. These parameters are used in the conversation behaviors that are
implemented in the ABACO agents. As outlined above, the adaptation of plan-
ning systems is done based on file exchange and additional wrappers. Thereby,
the ABACO agents are only capable to adapt local scheduling systems. Addi-
tional planning knowledge can be incorporated to facilitate the search for local
plan improvements.

The ABACO approach offers three different coordination schemes for different
planning situations. It differentiate between:

• predictive scheduling,

• reactive scheduling, and

• iterative plan improvement.

The task of the predictive scheduling is the initial generation of a schedule. Thus,
the input of the predictive scheduling is a set of orders and its output is a schedule
that represents a feasible plan to fulfill the orders. Within the ABACO approach
the predictive planning is implemented in a simple way. Orders are scheduled in
a linear way. For each order, each variant is evaluated. The best variant is chosen
and commitments are collected from each PAA to whom an activity is assigned to.
Note that we have defined only one variant per product here, to keep the example
simple, even though the ABACO approach could handle more complex situations.

In contrast, for reactive scheduling it is assumes that there already exists a
schedule that has to be adapted to a change in the environment. Such changes
are described as events. Thus, reactive scheduling is one particular technique for
planning in dynamic environments, see Section 2.2.3. In the ABACO approach it
is assumed that reactive scheduling is the common/frequent case, while the initial
plan formation is a rather infrequent task. This assumption has been influenced
by Henseler [Hen98, p. 31]. Henseler even stated that predictive scheduling is
a special instance of the reactive scheduling problem. The ABACO strategy for
reactive scheduling is to look first for alternative resources that could perform an
activity that is effected by an event. If the event cannot be handled by picking
another resource all orders effected by the event are removed from the current
schedule and then are re-scheduled on the base of the updated world state.

The idea of iterative plan improvement is to dampen the effect that the plan
quality decreases with the number of reactive planning steps, which has been
stated by Henseler [Hen98, p. 42]. Therefore, the local system tries to improve

244 6. Engineering Coordination: The SCM case study

CA

CA

PAA_a

PAA_a

PAA_b

PAA_b

ask for permission

allow discussion

request to evaluate change proposal

evaluate change proposal

request to evaluate change proposal

evaluate change proposal

send evaluation result

send evaluation result

summarize evaluations

implement change

terminate with change

alt [change proposal accepted]

terminate without change

alt [no discussion running]

Figure 6.9.: Conversation protocol of an improvement discussion, according to [SS05]

its plan automatically. Thus, a part of the localization module is a sub-system for
finding for local plan improvements. If an agent PAA a has found an improvement
by changing a commitment it has given to an agents performing an activity preced-
ing or succeeding the activity of PAA a. In the ABACO context a conversation for
evaluating if a particular improvement can be implemented is called plan improve-
ment discussion, or for short discussion. A conversation flow of one discussion is
sketched in the sequence chart presented in Figure 6.9. At first, the agent PAA a

has to request the corresponding CA of the network for an allowance to start an
improvement discussion. This is necessary to avoid multiple discussions at the
same time, which could lead to a simultaneous discussion about all commitments,
which is not desirable for complexity reasons. If no other discussion is ongoing
the CA can grant the request, otherwise the conversation ends. Assume the CA has
given the allowance for a discussion. The agent PAA a then sent a change proposal
to the agents that are responsible for the preceding and succeeding activities. If
either does not exist, it sends its request to the CA, who is responsible for en-
suring start and due date of the overall corresponding order. Both entities that
have received the request have to evaluate the consequences on their local plan of
the change that has been proposed. Each agent has three options to answer to a
request:

6.5. Implementation of coordination mechanisms 245

• refuse,

• accept and contribute, or

• conditionally accept.

The agent PAA a collects all answers. If one agent has refused the request the dis-
cussion has to be terminated without the change is implemented. If a requested
agents favors the change, because it enables an improvement of its local plan, as
well, it can accept the change proposal. Moreover, it also can offer to contribute
to the implementation of the change with a fixed amount of utility. In contrast, if
an agent accepts conditionally it request some utility compensation for the imple-
mentation of the change. The agent PAA a has to evaluated if the requested utility
can be paid by offered and gained utility. If the requested utility for compensation
is larger than offered and gained utility, the discussion ends without a change, as
it is not possible to leverage the overall performance to a higher Pareto level. If
gained and offered utility of a change are greater than the requested compensation,
the change can be implemented. The agent PAA a informs the participating agents
and the CA that the change is implemented. All participating agents then update
their local plan. The CA updates the information concerning the global plan.
This message also informs the CA that the discussion has terminated successfully.

For more details concerning the ABACO approach we refer to Schumann
[Sch04], and Schumann and Sauer [SS05].

Optimal solutions by linear programming

Within linear programming a maximization or minimization problem is solved,
respecting a number of linear constraints. Thus, it is critical to define an objective
function. We use a modified version of the total tardiness of all orders presented
by Pinedo [Pin05, p. 29]. The tardiness of an order o depends on its completion
time co, i.e., the time when the order leaves the system, and the due date of the
order do. Conventionally the tardiness of order o is computed as follows:

to = max{co − do, 0}

. The total tardiness of all orders are consequently the sum of the tardiness of
each order:

n∑
j=1

tj

In contrast to the aforementioned definition of tardiness we use a slightly different
notation, that enable us to be more distinctive between different solutions/plans.

246 6. Engineering Coordination: The SCM case study

We use the following notion for the tardiness of an order o:

t′o = do − co

T′o is positive, if the job is finished before its due date and becomes negative
otherwise. If we want to evaluate all orders, so we sum our modified tardiness.

n∑
j=1

t′j

The higher the value of the modified tardiness is, the more compact is the schedule.
The constraints that have to be regarded ensure that all activities of an order

are performed sequentially and that all resource capacities are regarded, i.e., each
resource is used by maximal one activity per time unit.

For the formulation of the linear program(LP) we use the Mathematical Pro-
gramming Language (MPL) defined for the MPL Modeling System a tool from
Maximal Software 4. A simple notation of a LP for a scheduling problem is shown
in Listing 6.1 and discussed in the following.

In lines 2–5 three different indices are defined that are used in the model. For
each order one index is required (lines 3 and 4) plus an additional index enumer-
ating the number of orders. In the following lines (6–13) input data is provided.
In lines 6 and 7 the duration per activity and order is given. In line 9 the due
dates for the orders are specified. In lines 10–13 a binary 8 × 8 matrix is shown
that indicates if different activities require the same resource (indicated by 1). In
lines 15–18 the decision variables of the model are defined. In lines 15 and 16
a vector is defined, representing the vector of start times for the activities of an
order. In lines 17 and 18 two 8× 8 matrices are defined. They are used to ensure
the capacity constraints, encoding which activity precedes another. For each pair
of orders two matrices are required. In lines 20 and 21 the objective function,
discussed above, is defined that has to be maximized. In lines 23–27 the resource
capacity constraints are defined. In line 23 the precedence matrices are activated
or deactivated. They are relevant if both activities (referred to by their index) use
the same resource, which is given in the data block. If this is true, exactly one
of the cells in the precedence matrices has to be 1. Lines 24 and 25 encodes that
if the activity from two orders use the same resource and the activity of the first
order is executed before the second order, the start time of the second activity has
to be greater or equal than the end time of the first activity. The corresponding
cell value of the decision variable pre10 is used to encode the condition that the
activity of order 2 is not before the activity of order1. Note that the constant 712
is a huge value, that is always greater than the formulae on the other side of the

4http://www.maximalsoftware.com/, Accessed: 01/06/2010

http://www.maximalsoftware.com/

6.5. Implementation of coordination mechanisms 247

Listing 6.1 Linear program formalizing the scheduling problem for two orders
1 TITLE Schedulings11

2 INDEX

3 pr0 = 1..8;

4 pr1 = 1..8;

5 order = 1..2;

6 DATA

7 dur0[pr0] := (11,7,19,19,19,19,7,11);

8 dur1[pr1] := (11,7,19,19,19,19,7,11);

9 dueDates[order]:=(88,178);

10 uSR01[pr0,pr1]:=((1,0,0,0,0,0,0,0), (0,1,0,0,0,0,1,0),

11 (0,0,1,0,1,0,0,0), (0,0,0,1,0,0,0,0),

12 (0,0,1,0,1,0,0,0), (0,0,0,0,0,1,0,0),

13 (0,1,0,0,0,0,1,0), (0,0,0,0,0,0,0,1));

14 DECISION VARIABLES

15 start0[pr0]

16 start1[pr1]

17 pre01[pr0,pr1]

18 pre10[pr0,pr1]

19 MODEL

20 MAX due =(dueDates[order:=0]-start0[pr0:=8]+du0[pr0:=8])+

21 (dueDates[order:=1]-start1[pr1:=8]+dur1[pr1:=8]);

22 SUBJECT TO

23 h01[pr0,pr1]:pre01[pr0,pr1] + pre10[pr0,pr1] = uSR01[pr0,pr1];

24 res01[pr0,pr1]:uSR01[pr0,pr1]*(start0[pr0] + dur0[pr0]+1)<=

25 uSR01[pr0,pr1]*(start1[pr1] + 712(pre10[pr0,pr1]));

26 res10[pr0,pr1]:uSR01[pr0,pr1]*(start1[pr1] + dur1[pr1]+1)<=

27 uSR01[pr0,pr1]*(start0[pr0] + 712(pre01[pr0,pr1]));

28 seq0[pr0]:start0[pr0] >= start0[pr0-1] + dur0[pr0-1];

29 seq1[pr1]:start1[pr1] >= start1[pr1-1] + dur1[pr1-1];

30 INTEGER

31 start0[pr0]

32 start1[pr1]

33 BINARY

34 pre01[pr0,pr1]

35 pre10[pr0,pr1]

36 BOUNDS

37 start0 < 356;

38 start1 < 356;

39 END

248 6. Engineering Coordination: The SCM case study

equation. This enables the encoding of conditional constraints5. In lines 26 and 27
the opposite case, the activity of order 2 is executed before the activity of order 1
is described. These constraints have to be defined for each possible pair of orders
from the set of all orders. In lines 28 and 29 the sequence of activities within each
order are encoded. In the lines 31 and 32 it is pointed out that the start value
for each activity is an integer value. While in lines 34 and 35 the matrices pre01

and pre10 are defined as binary matrices. The start time of all operations, i.e.,
all entries in the vectors start0 and start1 are bounded below a fixed value.

The code in the listing has been generated by a program written for this study
that generates MPL files for arbitrary number of orders.

The MPL Modeling System can transform the notation of the LP into inputs
for existing solvers, like the CPLEX6 solver. Moreover, it is shipped with the open
source solver CoinMP7, that has been used in the experiments presented here.

The modeling technique described to solve scheduling problems is similar to
the modeling done by Liu and Sycara [LS96]. They model the start times of
sub-tasks as variables that have to be initialized to generate a feasible schedule.
In contrast to the model presented here, they use a constraint-based modeling
approach, formulating a distributed constraint satisfaction problem.

Heuristics for solving the allocation

The second approach for evaluating the ABACO predictive planning abilities is
an order-based scheduling heuristic. Order-based scheduling heuristics have been
described in general form by Sauer [Sau93, p. 50], which is shown in Algorithm
2. Of particular interest is the design of the section of the next order that has to

Algorithm 2 Order-based scheduling heuristic
while exists unscheduled order do

SELECT order
SCHEDULE all activities for selected order

end while

be scheduled. To maximize the objective function it is useful to ensure that each
order is finished before its due date. Thus, orders with due dates closer to the
current time should be finished earlier. For that reason we choose the order with
the minimal due date of all unscheduled orders. If an order has been selected all
its activities are scheduled sequentially. For each activity we compute the earliest

5http://www.maximalsoftware.com/support/mplfaq.html#faq4.1, Accessed: 01/06/2010
6http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/, Ac-

cessed: 01/06/2010
7http://www.maximalsoftware.com/solvers/coin.html, Accessed: 01/06/2010

http://www.maximalsoftware.com/support/mplfaq.html#faq4.1
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.maximalsoftware.com/solvers/coin.html

6.6. Evaluation of coordination mechanisms 249

start time, i.e., the start time of the order or the completion time of the preceding
activity. Starting from this time we use a first fit heuristic to find a time slot on
the required resource for the activity.

Note that in a distributed way, the ABACO heuristic for the initial planning can
be described by this algorithm, as well. Orders are scheduled sequentially. The
selection of the next order to schedule is not very sophisticated in the ABACO
algorithms. The orders are scheduled sequentially in the sequence the coordinator
agents reads the order from its database. This is reasonable for the ABACO
system, as it relies on the assumption, that the current schedule is the product
of a sequence of continuous schedule repair and schedule improvement steps. The
initial scheduling is a singular event in the operation of the ABACO system.
Nevertheless, we can take advantage of this fact, as we can modify the heuristic
to synthesize the outcomes of the ABACO approach using a modified version of
the heuristics. Of course, this is only valid for a comparison of the outcomes of
the initial predictive scheduling step.

6.6. Evaluation of coordination mechanisms

Finally the last step of the ECo process is the evaluation. The context of this
process step in the ECo process is given in Figure 6.10.

In the following evaluation we

Figure 6.10.: Context of the evaluation step

in the ECo process

compare the results of the ABACO
approach with other planning mech-
anisms, concerning their perfor-
mance for the predictive planning,
only. Aspects like planning under
dynamics are not subject of the eval-
uation here, as the mechanisms used
for comparison are not capable of
reactive planning. Note that the
ABACO approach is capable of reac-
tive planning/scheduling, as already
discussed above.

Model simplifications

As already pointed out, we have simplified the model of the supply chain. We
limit the number of participants to two. We have limited the number of possible
products offered by the entire supply chain to two final products. We have elimi-
nated variants for products. Moreover, we assume that all local planning problems

250 6. Engineering Coordination: The SCM case study

are of the same type and that no alternative resources exist to fulfill activities.
Thus, the resulting examples are oversimplified.

This limitations are necessary to apply conventional approaches, linear pro-
gramming in particular, to be applicable. The ABACO approach do not rely on
such restrictions to be applicable.

To perform comparisons between the different planning and coordination mech-
anisms we have designed an order generator. This order generator is used in our
experiments. For each order the following elements have to be defined:

• an ID for the order,

• the product code, so which product has to be produced,

• the required quantity of the product,

• an earliest start time for the order, and

• a due date.

IDs are given sequentially increasing. The product code is chosen randomly out
of the two different products. Note that for our first experiments, where we also
compute optimal solutions, we only use one type of product, because the linear
program presented above could not deal with alternative resource for operations,
at all. The quantity requested within one orders is an arbitrary number between
1 and 5. The earliest start time for all orders is set to 0, which corresponds to a
pure predictive planning. Additionally, this enables us to put extra stress to the
system, as a load peak is introduced. The due date for an order is computed by
the following formulae:

start time + (quantity ∗ 40) + rand

rand is a random number chosen between 0 and 500. As each order contains eight
steps and the longest step requires 5 time units, the quantity is multiplied with
40 which is a rough estimation of the pure execution time the order requires.

Scalability finding the optimal solution

It has already been pointed out that the scalability for computing optimal solu-
tions is the limiting factor for the wide usage of mechanisms that ensures to finding
guaranteed optimal solutions. In the following we quantify this in our experiments
concerning the scalability of the optimal approach, using the CoinMP solver. Note
that the scaling effects are not particular related to a specific solver, but are in-
herent in the problem size. For that reason, we present the average computation

6.6. Evaluation of coordination mechanisms 251

orders avg. comp. time min. #iter. max. #iter. variables constraints
1 0.00 0 0 8 8
2 0.05 2 67 144 104
3 0.54 185 3033 408 288
4 4.45 3095 66927 800 560
5 43.31 19302 501838 1320 920
6 833 970467 8893483 1968 1368
7 33790.2 23628064 318645933 2744 1904

Table 6.13.: Scalability for optimal solutions

time (in seconds) for different problem sizes. We support this measurement by the
minimal and maximal number of iterations required to find the optimal solution.
Moreover, the number of variables and constraints is given. All this data is sum-
marized in Table 6.13. This data has been computed on the base of five randomly
generated problem instances. Note that these results do not aim to be statistical
significant. In fact we want to point out the complexity that has to be handled
in finding the optimal solution. Note that we have already simplified the problem
and the problem size is small in comparison to real-world problems.

For one order the computation does, of course, requires time, but the amount of
time is below 0.01 seconds, which is the finest granularity the solver can measure.
It becomes clear that in particular for larger instances the computational effort
growth to unacceptable size.

As we are mention required computation time here for the first time, we have to
provide details about the hardware used for these tests. For all tests a Lenovo T61
notebook has been used. It has an Intel Core 2 Duo 2Ghz CPU and 3GB RAM.
The systems uses Windows Vista SP2 as operating system. The CoinMP solver
use per default only one core. Thus, all times presented here were computed with
only one core. This, of course, offers the potential to speed up computation in a
near linear way8 utilizing multicore computer architectures and solvers that can
take advantage of them. This will enable to computation of additional slightly
larger problems. But, as we have shown above, the complexity growth larger
than linear. Thus, even for more powerful hardware architectures and elaborated
solvers strict limitation exist, concerning their capability to solve larger instances,
which hinders their broad application.

For up to 5 or 6 orders the resulting complexity and thus required computation
time stays within acceptable boundaries in this experimental setting. For that

8Up to an upper limit, given by the divisibility of the overall task and the resulting interdepen-

dencies between the sub-tasks.

252 6. Engineering Coordination: The SCM case study

Instance optimal
ABACO due-date heuristic

quality deviance in % quality deviance in %
Inst 1 132 35 73.48% 22 83.33%
Inst 2 393 194 50.64% 224 43%
Inst 3 360 239 33.61% 179 50.28%
Inst 4 196 -40 120.41% 73 62.76%
Inst 5 183 142 22.40% 43 76.50%
Inst 6 174 30 82.76 1 99.43%
Inst 7 438 303 30.82% 318 27.40%
Inst 8 399 281 29.57% 176 55.89%
Inst 9 386 224 41.97% 213 44.82%
Inst 10 221 52 76.47% -45 120.36%

Mean 56.21% 66.38%

Table 6.14.: Comparison heuristics and optimal solution

reason, we use a problem size of 5 orders in the following to evaluate the perfor-
mance of the predictive scheduling heuristics, both modeled using the order-based
heuristic.

Assessment of order-based heuristics, and ABACO in contrast to the
optimal solution

We now point out the quality of the heuristics, used by ABACO and the reference
implementation presented above, in contrast to the optimal solution.

All data presented here base on 10 randomly generated test instances, each
specifying 5 orders. Note that the data presented is not suitable to compare
the quality of both heuristic approaches. This is done in following parts of this
evaluation, where the results are based on a larger number of instances. Here
we just want to point out the spread in quality between the results provided by
the ABACO approach and our centralized reference heuristics in contrast to the
optimal solution, found by the LP solver.

In Table 6.14 we present the results of this experiment. We compare the quality
of the results, according to the aforementioned objective function, of the optimal
solutions with the outcomes a predictive scheduling with the ABACO approach
and the earliest due-date first heuristic. For both heuristics we compute the per-
centage of deviation. Percentage values greater than hundred indicate that the
value of the objective function of the heuristic becomes negative, i.e., the comple-
tion time of orders is beyond their due date. What can be seen from this data

6.6. Evaluation of coordination mechanisms 253

Figure 6.11.: Comparison of ABACO, due-date heuristic, and optimal solution

is, that in the mean both heuristics are more than 50% away from the optimal
solution. The best case for each heuristic is highlighted in Table 6.14. For both
heuristic their best case is more than 20% away from the optimal solution. To
provide a more intuitive impression of these results they have been visualized in
Figure 6.11. Thus, in pure predictive planning performance of both heuristics is
far beyond optimal solutions. But, as pointed out in the previous section, the
computation of optimal solutions is practically limited to small instances. As we
are not interested in finding near optimal heuristics for this particular scheduling
problem here, we use both heuristic approaches for the following experiments, as
well. Keep in mind that this particular scheduling problem, even it turns out to
be challenging to solve with good quality, is a strict simplification of the problems
that were outlined above. Moreover, we are interested in the coordination of ex-
isting distributed planning and scheduling problems here, not in finding efficient
solutions for a centralized formulation of those problems.

Relaxing the constraints on the model

In the following experiments we relax some of the restrictions that were necessary
to build a linear program. In the following we allow orders to request product
of type two, which can be produced by either company A or B or by both of
them. Moreover, we allow to have divergent planning problems and potentially

254 6. Engineering Coordination: The SCM case study

planning systems at each planning entity. Therefore, we change the assumption
of how company A produces its good. We do so to introduce the characteristic
that different planning authorities have to handle different planning problems and
therefore use different planning systems. For that reason, we give in Table 6.15 an
update of the local planning problems, in contrast to the data presented in Table
6.11. In particular the planning problem of company A has changed in a form
that it is not necessary to schedule two activities at local resources but to select
one resource for the execution of one activity necessary to perform the operation.
Again, we use different names for resources of company A and B. This enables us
to specify the scheduling problem for the centralized order-based heuristic.

Scalability of the heuristics

In this experiment we investigate the performance of the heuristic approaches
under different workloads, i.e., orders to schedule. Therefore, we compute the
results for hundred randomly created instances for each scenario. Thereby, a
scenario specifies a certain number of orders that have to be scheduled. We created
scenarios ranging from 1 up to 30 orders. For a better analysis we present the
graph with our results in two parts. The first part contains the scenarios with 1
to 15 orders. The second graph shows the results with 15 and more orders. The
results of the first part of our analysis can be found in Figure 6.12. Note that
for one order both approaches end up with the same result, because for one order
their behavior is identical. It can be clearly seen that starting from the scenario
with five orders onwards the results of both heuristics diverge. Up to about a load
of 8 orders the resulting objectives increase. In the scenarios from one to eight
orders the addition of a new order leads to an increase of the objective function,
because all orders can be finished before their due and therefore extra utility is
added. From 8 to 12 orders the objective function nearly plateaus, expect an
outlier for 10 orders. In these cases the additional order does not increase the
objective values, because some orders are now satisfied just in time, and therefore
do not increase of decrease the value of the objective function. Starting from the
scenario with 13 orders the objective drops. From that point on, the addition of
an extra order leads to delays in the realization of orders.

The second part of our results, ranging from 15 to 30 orders is shown in Figure
6.13. It can be observed that the objective falls nearly linear with the number of
orders that have to be scheduled. In these scenarios the existing resources starts
to get over utilized. Orders tend to be later finished. Note that up to 18/19
orders the objective function is positive. That is, most of the orders are finished
on time and it is economically beneficial to add orders. For 20 or more orders the
objective function, the total tardiness becomes negative, which indicates that jobs

6.6. Evaluation of coordination mechanisms 255

Company A
operation activity resource duration

111
a 1 5
b 3 5

114
a 3 5
b 5 5

211
a 2 5
b 5 5

212
a 2 5
b 4 5

213
a 1 5
b 2 5

214
a 4 5
b 5 5

Company B

112
1 6 5
2 7 5

113
1 6 5
2 8 5

211
1 7 2
2 10 3

212
1 6 3
2 9 2

213
1 7 4
2 9 1

214
1 8 1
2 10 5

Table 6.15.: Updated details of local production details for SC operations

256 6. Engineering Coordination: The SCM case study

Figure 6.12.: Comparison of ABACO, due-date heuristic for 1–15 orders

Figure 6.13.: Comparison of ABACO, due-date heuristic for 15–30 orders

6.6. Evaluation of coordination mechanisms 257

#orders heuristic mean std.dev. min max

5
edd 370.62 192.58 -447 1006

ABACO 363.25 196.33 -588 1006

10
edd 483.80 332.88 -1199 1583

ABACO 442.92 342.70 -1438 1530

14
edd 380.08 463.17 -2122 1804

ABACO 298.14 483.78 -2284 1811

Table 6.16.: Comparison between heuristics

are not finished on time, anymore. This indicates an overload of the production
system. The performance of the system decrease independently of which planning
approach is used for the predictive scheduling.

Even if these results can already give an impression about the performance of
the heuristic used in the ABACO approach and the benchmark heuristic we do
not discuss there relative performance here, as the number of 100 instances does
not allows serious conclusions. This comparison is done in our last experiment,
described below.

Comparing the results for predictive scheduling of the ABACO
approach with the order-based centralized heuristic

As pointed out above, a first trend in the results of the ABACO approach and
the order-based heuristic could be seen in the previous section. In this section we
directly compare the results of both heuristics. We do so, using three different
scenarios with 5, 10 and 14 orders. We pick those scenarios on the base of the
analysis of the results presented in Figure 6.12. At the scenario with 5 orders
the spread between both approaches becomes clear. The second scenario with 10
orders it one out of the plateau, and in particular the one that differs from the
other scenarios of the plateau. Finally, we choose the scenario with 14 orders, as
the spread between both approaches is large between them. The results reported
here are based on 10.000 different instances of each scenario. The results of this
experiments are summarized in Table 6.16 and Figure 6.14. As one can see the
mean values in all scenarios are smaller for the earliest due date first (edd) heuris-
tic. But the statistical spread between both approach is very similar, in terms of
standard deviation, minimal and maximal values. This relativize the quality of the
edd heuristic in comparison with the heuristic used in the ABACO approach. This
conclusion is supported by the box blots of these scenarios, where both heuristic
approaches are compared with each other. The box plots are shown in Figure

258 6. Engineering Coordination: The SCM case study

6.14. As one can see in these box plots the outcome of both heuristics does not
differ significantly, which is also supported by the results of t–test, that indicate
no significant difference, as well.

In summary, two issues can be stated about the performance of the ABACO
heuristic. First, in comparison to the optimal solution the heuristic used within
the ABACO approach is outperformed by numbers. Second, in comparison to an
edd order-based heuristic no significant differences can be found. Even if the mean
performance is slightly worse, this cannot be verified for the entire data set, as the
statistical spread of both approaches is wide. Of course, one can argue that more
sophisticated centralized optimization strategies, like metaheuristics for instance,
could find better solutions and thus outperform the performance of the ABACO
approach. But the ABACO approach has two major advantages in favor to these
centralized scheduling algorithms. First, it satisfy the coordination requirements,
and thus can achieve these results respecting the existence of planning systems
in each company. Second, the ABACO approach has mechanisms for reactive
planning, which at least simple heuristics do not have, and thus need to perform
a complete replanning. These abilities include techniques for direct reaction to
events that invalidate the current global plan, and additionally enables the par-
ticipating companies to try to search for local improvements, which increase plan
quality over time. Plan improvement is an important supplementing technique,
as the overall plan quality tends to decrease by a sequence of plan repair steps,
performed by the reactive scheduling methodology.

6.7. Criticism of the ECo-CoPS approach

The modeling of the coordination problems, as a distributed planning problem,
containing local planning problems in itself, can become a complex task. Es-
pecially because it is not clear in the beginning which concepts are required to
formalized each and every coordination requirement. Thus, it might be useful
to iteratively refine the model while trying to formalize the coordination require-
ments. This procedure goes perfectly in line with the ECo process, which propose
an iterative process model, for its execution.

The formalization of necessary criteria for the applicability of a coordination
mechanism has not been discussed in research, so far. It facilitates pointing out
clearly the requirements of a given problem, and moreover, it is possible to use
coordination requirements for the explanation of design decisions of coordination
mechanisms. Note that these coordination requirements go far beyond purely tech-
nical aspects, especially the non-functional requirements, like information hiding,
maintaining local autonomy, and preserving existing planning systems, are re-

6.7. Criticism of the ECo-CoPS approach 259

(a) 5 orders

(b) 10 orders

(c) 14 orders

Figure 6.14.: Box plots for instances with 5, 10, and 14 orders

260 6. Engineering Coordination: The SCM case study

quirements that are motivated by real applications with economic constraints.
The capturing of non-functional coordination requirements has been discussed in
this case study. By applying the ECo process the selection of a coordination
mechanism can be guided by those constraints.

In this case study we identified an existing coordination mechanism for the
coordination, and consequently, an existing implementation. For that reason the
CoPS framework has not been used here. Moreover, a solver for linear programs
was used to find the optimal solution for a reduced problem and another centralized
heuristic planner has been used, as well.

In the quantitative evaluation we give strong indications that both heuristic ap-
proaches (the centralized one, and the ABACO predictive planning) are far away
from optimal solutions, but only require small fractions of computation time. In
a more detailed analysis, we found no statistical significant quality decrease using
the centralized heuristic and the ABACO approach for the initial planning. But,
in contrast to the centralized planning heuristic, the ABACO approach satisfies
all coordination requirements that have been formulated. Moreover, the ABACO
approach offers specific additional features for reactive planning and plan improve-
ment facilities.

For the selection of a coordination mechanism the ECo process has reconfirmed
the decision to construct a new coordination approach in our previous work. The
ABACO approach is identified as the only existing coordination mechanism, that
satisfy all coordination requirements. A re-implementation is not done here, as
the original implementation can be used in the study.

7. Conclusion and Perspectives

Complex planning and decision problems are often solved by decomposing the
overall problem into smaller, and therefore, often simpler sub-problems. These
sub-problems are solved, often independent from each other, and the resulting
partial solutions are synthesized to a global solution for the overall problem. This
strategy has been implemented in industry and academia, as well. Complex prob-
lems like the container terminal management problem are decomposed into simpler
problems like the berth allocation, crane scheduling, storage space allocation, and
the transportation problem, for instance. Often these sub-problems turn out to
be very complex, as well. In consequence, these isolated problems are addressed
by researchers as a topic of research by itself. It was pointed out in our discussion
about dependencies between planning systems (see Section 2.2.4), that the sub-
problems can have various interdependencies. Thus, the computed partial plans
cannot simply be combined to construct a feasible global plan. For that reason,
coordination mechanisms have to be put in place to ensure that the resulting par-
tial plans can be executed together and an acceptable, or ideally good to optimal,
overall performance is ensured.

We have addressed here the coordination on the operative level. The decompo-
sition of the overall problem, the methods for solving partial problems, and the
organizational formation of planning entities are assumed to be given. Therefore,
the coordination mechanisms should only effect decisions on the operative level.
In Section 3.1 we have outlined a number of existing coordination approaches that
have been proposed mainly by researchers from the field of DAI, addressing the
problem of coordination of planning entities on the operative level. The issue
of coordination is a centerpiece in DAI research. Consequently, a variety of dif-
ferent approaches have been presented. Each addressing a certain aspect of the
coordination problem, or designed for a specific coordination problem.

Findings of the study

We summarize the main findings of this work here. In this thesis

• a research gap for the selection of coordination mechanisms for existing au-
tonomous planning systems has been identified,

261

262 7. Conclusion and Perspectives

• the ECo process has been designed to bridge this gap,

• the feasibility of the ECo process has been proven by applying it in two case
studies,

• providing the CoPS process and implementing the CoPS framework, the
implementation step of the ECo process is detailed and supported,

• in the case studies the ECo-CoPS approach has proven to be advantageous
for coordination problems in the logistic domain.

To profit from existing research concerning the coordination of autonomous agents,
it is promising to re-use existing methodologies. A large body of research has been
documented in the literature, and numerous coordination techniques for agent-
based systems have been proposed. As there exists no suitable classification of
existing mechanisms, the identification of applicable mechanisms for a given situ-
ation is a complex and time consuming task. We have presented a survey in the
field of agent-oriented software engineering (see Section 3.2) to identify suitable
mechanisms for the identification and re-use of existing concepts, in particular co-
ordination mechanisms. A major result of our survey is that there is rarely work
done dealing with re-use of methodologies in AOSE. The selection of coordination
mechanisms is a field that is currently not covered. We pointed out this research
gap in Section 3.3 and the necessity for means to bridge this gap. Thereby, we
focus on the coordination of existing distributed planning systems, and emphasize
the importance of the applicability of the approach in the given context.

A first, but significant, step towards our goal is the identification of key char-
acteristics of coordination problems. We extracted those characteristics from the
examples used in our study. We pointed out six different characteristics of coor-
dination problems (see Section 4.1). These characteristics are:

• the existence of an allocation problem,

• the existence of comparable local objective functions,

• the diversification of existing planning systems,

• the existence of a common overall objective function,

• the necessity of information hiding, and

• the existence of cyclic dependencies.

We have classified the presented coordination mechanisms according to the char-
acteristics they require. In our case studies the classification turns out to be very

263

efficient in the selection process. It enabled us to focus the search on a reduced set
of candidate approaches. In the following detailed analysis, the qualitative evalu-
ation, the coordination mechanisms were analyzed according to their compliance
with the coordination requirements. This selection process is open in the sense
that the outcome can be either the identification of existing mechanisms, with or
without existing implementation, or the finding that no appropriate mechanism
exists.

To enable efficient identification

Figure 7.1.: The ECo process

of suitable coordination mechanisms
we presented the ECo process, that
guides the identification and selec-
tion process (see Section 4.2). The
ECo process contains five steps that
can be executed in an iterative pro-
cess model shown in Figure 7.1. The
steps of the ECo process are:

1. modeling the scenario,

2. defining coordination requirements,

3. identifying suitable coordination mechanisms,

4. implementing coordination mechanisms, and

5. evaluating coordination mechanisms.

The introduction of coordination requirements is a significant step towards a
more explicit formalization capturing what a coordination mechanism has to fulfill
to be applicable in a given situation. If coordination mechanisms are classified
according to requirements they fulfill, this will facilitate the reuse, and leverage the
advantages of requirements. The selection out of classified mechanisms becomes
simpler as detailed analyzing processes can be omitted. Coordination requirements
also facilitate the documentation of design decisions that were made during the
design and implementation phase.

A coordination mechanism is applicable if it satisfies all functional and non-
functional coordination requirements. The evaluation if these requirements are
satisfied is called qualitative evaluation. As the requirements are formalized on a
sound model, the qualitative evaluation can be done in a formal way. The result of
the qualitative evaluation is a set of mechanisms that are applicable in the given
situation, as they satisfy all coordination requirements. Note that this result set
can be empty, as well. Moreover, the qualitative evaluation does not provide any

264 7. Conclusion and Perspectives

indication of the quality of the coordinated plans, except the ones encoded in the
requirements, which is typically feasibility of the joint execution of the plans.

To support the implementation step, the CoPS process is proposed (see Section
4.3). The CoPS process structures decision making that has to be made dur-
ing the implementation of a coordination mechanism. It spawns from decisions
made on the layer of the overall network, like the selection of conversation pro-
tocols, to decisions that have to be made at each participating planning entity,
like the definition of conversation policies or the adaptation of existing planning
systems. To ease the implementation process, the CoPS framework has been in-
troduced. Within this framework an infrastructure is implemented. It facilitates
fast implementation/prototyping of coordination mechanisms. By enabling to pro-
totype coordination mechanisms the CoPS approach facilitates the evaluation of
mechanisms on a quantitative base. The CoPS framework can also speed up the
implementation of new coordination mechanisms.

The CoPS framework is currently not intended for commercial implementations.
It has deficits concerning aspects like failover abilities and adapters to standard
software systems that are necessary for operating in a productive environment.

In the final step of the ECo process a quantitative evaluation is suggested to
evaluate the performance of the selected coordination mechanisms, which enables
the final judgement which mechanism should be used. This evaluation uses im-
plemented systems. Thus, the evaluation can be done using real-world like data
in a real-world like environment.

The ECo-process supported by the CoPS process and the CoPS framework
form the ECo-CoPS approach that is introduced in this thesis. In Chapter 5
and Chapter 6 we applied the ECo-CoPS approach to two case studies from the
field of production and logistics. In these two case studies we have validated the
ECo process by pointing out its applicability, and found indications that this pro-
cess adds additional value to the selection process of coordination mechanisms.
Our experience with the ECo-CoPS approach have been discussed in the previous
chapters. We can summarize them as follows. The ECo and CoPS process facil-
itate a structured procedure in the identification, selection, and implementation
phase of suitable coordination mechanisms. To draw conclusions about the CoPS
framework more case studies are needed.

Aspects that have been identified during our case studies, and that might com-
plicate efficient usage of the ECo-CoPS approach are:

• The modeling of the coordination problems can become complex, and mul-
tiple iterations between modeling and formulation of coordination require-
ments can be necessary. Therefore, it might be useful to investigate different
types of modeling techniques. Also, a dedicated sub-process for the modeling

265

step might be valuable.

• The CoPS framework requires more evaluation, and thereby has to be
evolved.

It can be argued that the coordination mechanisms discussed in this thesis do not
favor optimal outcomes on the global level, which is, for instance, the goal of col-
laborative planning, presented in Section 3.1.1, or other optimization approaches.
This criticism is correct. As we have stated, we address the coordination of ex-
isting planning systems, and have even stated in the second case study that local
autonomy has to be preserved. This strictly limits the ability of the overall sys-
tem to come to an optimal global solution. This has been shown in particular
in the second case study, where a comparison with an optimal solution has been
performed. The loss of global optimality is a direct consequence of our approach
to restrict ourselves to the coordination of existing planning systems in existing
autonomous planning entities. We did so, because planning systems have been
used in real world applications for decades, and are often well established. These
software systems, and the organizational structures of companies are fixed from
the perspective of the operational level that is addressed in this research. Thus,
this limitation results from assumptions we have made, because we are convinced
that they will allow us to model real-world like scenarios more accurate.

What also has not been addressed in this study is the empirical evaluation of
the ECo process. The evaluation of a process is a social science task, as well. It
is necessary to apply the process a number of times, and each process execution
has to be observed, and criticism has to be recorded. An experimental setting
would be to have two equally skilled groups facing the same problem, and then
let one group use the ECo process while the other group does not. The second
group is the control group. Moreover, the context, like given deadlines or given
technology, has to be taken into account, as this can effect the quality of the
outcome of the process, as well. These experiments have to be replicated to draw
sound conclusions. Therefore, it is necessary that each participant of such a study
can participate in exactly one experiment. Replications are also required for every
application domain that is evaluated.

Perspectives for future research

The research gap identified in this thesis is covered by the proposed ECo-CoPS
approach. The results of this thesis can be an initial pre-requisite for a number of
subsequent research projects. We outline some aspects here, that should and will
be investigated in future research.

266 7. Conclusion and Perspectives

As already mentioned, the number of case studies applying the ECo-CoPS ap-
proach needs to be increased to allow for more reliable evaluation results, concern-
ing the additional value the ECo-CoPS approach offers in contrast to an unstruc-
tured process. Therefore, it is necessary to apply the ECo-CoPS approach, and
contrasting conversational approach, to various domains, and, ideally, the process
should be performed by different developers. A first candidate for the next case
study is the coordination of planning systems in container terminal management,
which has been used in this thesis as an example, e.g., planning systems for this
domain have already been provided by Leif Meier [Mei08]. The ECo-CoPS ap-
proach has been designed to be generally applicable. However, if a variety of case
studies exist, it could become useful to analyze if domains exist that are particu-
lar well suited for the application of the ECo-CoPS approach, and if application
areas exist that require more specialized or enhanced versions of the process or
additional guidance.

Another aspect that could be used in following case studies is the investigation of
different modeling techniques for the coordination problems. As already pointed
out, it can become necessary to iterate between modeling and formulation of
coordination requirements, and modeling can become a complex task. It might be
useful to investigate modeling techniques that facilitate on the one hand a formally
grounded description of the scenario, and, on the other hand, offer additional value
during the implementation, and can therefore foster an implementation phase.
Modeling with UML profiles and the object constraint language (OCL) might be
a first starting point for alternative techniques for modeling.

In the course of the design of conversation protocols, and in particular for the
definition of conversation policies it turned out that the existing work is often not
sufficient. This is especially true, if the agent’s behavior should be specified by
the humans they have to represent, and, thereby, adapt the negotiation strategies
of the humans. Specifying agent’s behavior is often strictly tied to programming
code the agent can use, or that defines the agent’s behavior. Thus, the modeling
of conversations, and conversation policies is still an open research issue. Even if
interaction protocols are nowadays widely accepted and standardized, there rarely
exist any techniques for modeling conversation policies or strategies for consistency
among parallel negotiations performed by an agent with multiple other agents at
the same time.

In the ECo process we emphasized the importance of coordination requirements.
They can be used to specify characteristics of the current context of the coordi-
nation problem, and formalize criteria that have to be regarded by coordination
mechanisms to be applicable. Moreover, they offer additional value. Existing co-
ordination mechanisms can be classified according to a fixed set of coordination

267

requirements, and, therefore, form a catalog of coordination mechanisms that can
be used to foster the identification of candidates for a new coordination problem.
Thus, coordination requirements build a new scheme for the classification of co-
ordination mechanisms that can offer practical value by encouraging and easing
re-use of existing mechanisms.

In this thesis, we have strictly limited our focus on the coordination of activi-
ties on the operational level. The tactical and strategy decision level have been
excluded from this study. An example of a tactical decision might be to decide if,
and when, to enter/leave a network. A decision on the strategic level is the decom-
position of the overall planning problem into sub-problems and planning entities.
This decomposition is an interesting topic of research, as well. Therefore, we in-
vestigate in a subsequent research project the effects of different decompositions
on the achievable overall quality of coordinated solutions.

We are going to model the overall problem as a distributed constraint optimiza-
tion problem with privacy issues. A constraint optimization problem (COP) is a
constraint satisfaction problem with an additional objective function for solutions
that has to be maximized. This optimization problem can be distributed. Differ-
ent solvers are responsible for distinct subsets of variables. Privacy issues can be
added if variables, domains, and constraints that are located at exactly one solver
are only known to this particular solver. If a constraint involving variables located
at two or more different solvers exists, these variables and the constraints are semi-
private, as are all participating solvers, and only those are aware of the existence of
the variables within this constraint. Distributed constraint optimization problems
with privacy issues can be used to model the coordination of planning systems.
Each local planning system can be modeled as a constraint optimization problem
in itself, and additional constraints can be introduced representing the interdepen-
dencies between different planning systems. Thus, it is possible to use constraint
optimization techniques to identify optimally coordinated solutions, which can be
used as benchmarks. This large COP would be hard to solve optimally. This
enable a comparison of results of a centralized problem with results of different
decompositions. Of particular interest is the identification of decomposition tech-
niques. This research could give valuable insight on the effects of distribution
techniques on achievable solution quality.

268 7. Conclusion and Perspectives

Bibliography

[ABTV04] Dietrich Adam, Klaus Backhaus, Ulrich W. Thonemann, and Mar-
kus Voeth. Allgemeine Betriebswirtschaftslehre - Koordination be-
trieblicher Entscheidungen. Springer, Berlin, 3rd edition, 2004.

[ACF+98] Rachid Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand.
An architecture for autonomy. International Journal of Robotics
Research, 17(4), 1998.

[AFHS95] Oksana Arnold, Wolfgang Faisst, Martina Härtling, and Pascal
Sieber. Virtuelle Unternehmen als Unternehmenstyp der Zukunft?
HMD, 185:8 – 23, 1995.

[AGO08] Marlene Arangú, Antonio Garrido, and Eva Onaindia. A gen-
eral technique for plan repair. In Proceedings of the 20th IEEE
International Conference on Tools with Artificial Intelligence, vol-
ume 1, pages 515–518, Dayton, Ohio,USA, 2008. IEEE Computer
Society.

[AM09] Karl Johan Aström and Richard M. Murray. Feedback Systems:
An Introduction for Scientists and Engineers. Princeton Univer-
sity Press, Princeton and Oxford, 2009.

[AO94] Krzysztof R. Apt and Ernst-Rüdiger Olderog. Programmverifika-
tion. Springer, Berlin, 1994.

[BCG+98] Frances M. T. Brazier, Frank Cornelissen, Rune Gustavsson, Ca-
tholijn M. Jonker, Olle Lindeberg, Bianca Polak, and Jan Treur.
Compositional design and verification of a multi-agent system for
one-to-many negotiation. In Proceedings of the Third International
Conference on Multi-Agent Systems, ICMAS’98, pages 49 – 56.
IEEE Computer Society Press, 1998.

[BCGZ01] Nadia Busi, Paolo Ciancarini, Roberto Gorrieri, and Gianluigi
Zavattaro. Models for coordinating agents: a guided tour. In
Andrea Omicini, Robert Tolksdorf, Gerhard Weiss, and Franco

269

270 Bibliography

Zambonelli, editors, Coordination for Internet Agents: Mod-
els,Technologies, and Applications, pages 6–24. Springer, 2001.

[BEY98] Allan Borodin and Ran El-Yaniv. Online computation and com-
petitive analysis. Cambride University Press, Cambridge, 1998.

[BF95] Mihai Barbuceanu and Mark S. Fox. Cool: A language for de-
scribing coordination in multi agent systems. In Proceedings of
the First International Conference on Multiagent Systems (IC-
MAS95), pages 17 – 24. AAAI Press, 1995.

[BFJ+04] Jeffrey M. Bradshaw, Paul J. Feltovich, Hyuckchul Jung, Shirni-
was Kuklarni, William Taysom, and Andrzej Uszok. Dimen-
sions of adjustable autonomy and mixed-initiative-interaction. In
Matthias Nickles, Michael Rovatsos, and Gerhard Weiss, editors,
AUTONOMY 2003 : International Workshop on computational
autonomy, volume 2969 of LNAI, pages 17 – 39, Melbourne, 2004.
Springer, Berlin.

[BGZ04] Federico Bergenti, Marie-Pierre Gleizes, and Franco Zambonelli,
editors. Methodologies and Software Engineering for agent sys-
tems: The Agent-oriented softwre Engineering Handbook. Mul-
tiagent systems, artificial societies, and simulated organizations.
Kluwer Academic Publishers, Bosten, 2004.

[BH09] Nils Bulling and Koen V. Hindriks. Towards a verification frame-
work for communicating rational agents. In Lars Braubach, Wiebe
van der Hoek, Paolo Petta, and Alexander Pokahr, editors, Mul-
tiagent System Technologies (MATES 2009), Lecture Notes in
Artificial Intelligence (LNAI), pages 177 – 182, Hamburg, 2009.
Springer.

[BHW07] Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge.
Programming Multi-Agent Systems in AgentSpeak using Jason.
Wiley Series in Agent Technology. John Wiley & Sons Ltd., 2007.

[BJW03] Stefan Bussmann, Nick R. Jennings, and Michael Wooldridge. Re-
use of interaction protocols for agent-based control applications.
In Fausto Giunchiglia, James Odell, and Gerhard Weiss, editors,
Agent-Oriented Software Engineering III Proc. of the Third Inter-
national Workshop, AOSE 2002, volume 2585 of Lecture Notes in
Computer Science, pages 73 – 87, Bologna, Italy, 2003. Springer.

Bibliography 271

[BM92] Stefan Bussmann and H. Jürgen Müller. A negotiation framework
for cooperating agents. In S.M.Deen, editor, Proc. of the CKBS-
SIG (CKBS’92), pages 1 –17, DAKE Centre, Univ. of Keele, 1992.

[BMR+02] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Som-
merlad, and Michael Stal. A System of Patterns: Pattern-Oriented
Software Architecture, volume 1 of Wiley Series in Sotware Design
Patterns. John Wiley & Sons Ldt., Chichester, 2002.

[BMRL03] Paolo Busetta, Mattia Merzi, Silvia Rossi, and Franc¸ois Legras.
Realtime role coordination for ambient intelligence. In Workshop
Representations and Approaches for TimeCritical Decentralized
Resource/Role/Task Allocation at AAMAS03, Melbourne, Aus-
tralia, 2003.

[BO00] Robert W. Brennan and William O. A simulation test-bed to
evaluate multi-agent control of manufacturing systems. In WSC
’00: Proceedings of the 32nd conference on Winter simulation,
pages 1747–1756, Orlando, Florida, 2000. Society for Computer
Simulation International.

[BPJ03] Claudio Bartolini, Chris Preist, and Nick R. Jennings. Architect-
ing for reuse: A software framework for automated negotiation.
In John Mylopoulos, Michael Winikoff, and Nick R. Jennings, ed-
itors, Agent-Oriented Software Engineering III Proc. of the Third
International Workshop, AOSE 2002, volume 2585, pages 88 –
100, Bologna, Italy, 2003. Springer.

[BR02] Federico Bergenti and Alessandro Ricci. Three approaches to the
coordination of multiagent systems. In SAC ’02: Proceedings of
the 2002 ACM symposium on Applied computing, pages 367–372,
Madrid, Spain, 2002. ACM Press.

[Bra87] Michael E. Bratman. Intention, plans, and practical reason. Har-
vard University Press, Cambridge, Mass, 1987.

[Bro86] R. Brooks. A robust layered control system for a mobile robot.
IEEE Journal of Robotics and Automation, 2(1):14 – 23, 1986.

[BTF97] Mihai Barbuceanu, Rune Teigen, and Mark S. Fox. Agent based
design and simulation of supply chain systems. In Proc. of the 6th
Workshop on Enabling Technologies Infrastructure for Collabora-
tive Enterprises (WET-ICE ’97), pages 36 – 42, 1997.

272 Bibliography

[CBM+99] Sergio Cavalieri, Luc Bongaerts, Marco Macchi, Marco Taisch,
and Jo Weyns. A benchmark framework for manufacturing con-
trol. In Second International Workshop on Intelligent Manufac-
turing Systems, pages 225 – 236, Leuven, Belgium, 1999.

[CCG+04] Giovanni Caire, Wim Coulier, Francisco Garijo, Jorge J. Gómez-
Sanz, Juan Pavón, Paul Kearney, and Philippe Massonet. The
message methodology. In Federico Bergenti, Marie-Pierre Gleizes,
and Franco Zambonelli, editors, Methodologies and Software Engi-
neering for agent systems: The Agent-oriented softwre Engineer-
ing Handbook, Multiagent systems, artificial societies, and simu-
lated organizations, pages 177 – 194. Kluwer Academic Publishers,
Bosten, 2004.

[CG99] Kathleen M. Carley and Les Gasser. Computational organization
theory. In Gerhard Weiss, editor, Multiagent Systems: a modern
approach to distributed artificial intelligence, pages 299 – 330. MIT
Press, 1999.

[CG01] Hans Corsten and Ralf Gössinger. Unternehmensnetzwerke:
Grundlagen - Ausgestaltungsformen - Instrumente. Schriften zum
Produktionsmanagement 38, Lehrstuhl für Produktionswirtschaft
Universität Kaiserslautern, Februar 2001 2001.

[CGMT00] Sergio Cavalieri, Marco Garetti, Marco Macchi, and Marco Taisch.
An experimental benchmarking of two multi-agent architectures
for production scheduling and control. Computers in Industry,
43:139 – 152, 2000.

[CJ96] David Cockburn and Nick R. Jennings. Archon: A distributed
artificial intelligence system for industrial applications. In G.M.P.
O’Hare and Nick R. Jennings, editors, Foundations of Distributed
Artificial Intelligence, Sixth-Generation Computer Technology Se-
ries, pages 319 – 344. John Wiley & Sons, New York, 1996.

[CK05] William Cushing and Subbarao Kambhampati. Replanning: a
new perspective. In Poster Program. In Proceedings of the
Fifteenth International Conference on Automated Planning and
Scheduling (ICAPS-05), Montery, 2005.

[CLM04] J.-F. Cordeau, G. Laporte, and A .Mercier. Improved tabu search
algorithm for the handling of route duration constraints in vehicle

Bibliography 273

routing problems with time windows. Journal of the Operational
Research Society, 55(5):542–546, 2004.

[Com07] FIPA Modeling Technical Committee. Auml web site, 2007. http:
//www.auml.org/; Accessed: 02/04/10.

[CTMG98] John Collins, Maxim Tsvetovat, Bamshad Mobasher, and Maria
Gini. Magnet: A multi-agent contracting system for plan exe-
cution. In Proc. of the Workshop on Artificial Intelligence and
Manufacturing (SIGMAN’98), pages 63–68, Albequerque, New
Mexico, 1998. AAAI Press.

[CW01] Paolo Ciancarini and Michael Wooldridge, editors. Agent-Oriented
Software Engineering, First International Workshop AOSE 2000,,
volume 1957 of Lecture Notes in Computer Science. Springer,
Berlin, 2001.

[CWDH00] Graham Coates, Robert Ian Whitfield, Alex H. B. Duffy, and Bill
Hills. Coordination approaches and systems - part ii: An oper-
ational perspective. Research in Engineering Design, 12:73 – 89,
2000.

[CWHC06] Marcelo Cataldo, Patrick A. Wagstrom, James D. Herbsleb, and
Kathleen M. Carley1. Identification of coordination requirements:
Implications for the design of collaboration and awareness tools.
In Proceedings of the 2006 20th anniversary conference on Com-
puter supported cooperative work, pages 353–362, Banff, Alberta,
Canada, 2006. ACM Press.

[Dec95] Keith S. Decker. Environment Centered Analysis and Design
of Coordination Mechanisms. Phd thesis, University of Mas-
sachusetts, 1995.

[Dec96] Keith S. Decker. Distributed artificial intelligence testbeds. In
G.M.P. O’Hare and Nick R. Jennings, editors, Foundations of Dis-
tributed Artificial Intelligence, Sixth-Generation Computer Tech-
nologies, pages 119 – 138. John Wiley & Sons, New York, 1996.

[DGSS96] Jürgen Dorn, Mario Girsch, Günther Skele, and Wolfgang Slany.
Comparison of iterative improvement techniques for schedule op-
timization. EJORS European Journal of Operational Research,
94(2):349–361, 1996.

http://www.auml.org/
http://www.auml.org/

274 Bibliography

[DHK02] Ralph Depke, Reiko Heckel, and Jochen Malte Küster. Formal
Agent-Oriented Modeling with UML and Graph Transformation.
Science of Computer Programming, 44(2):229–252, 2002.

[DJT01] Mehdi Dastani, Catholijn M. Jonker, and Jan Treur. A require-
ment specification language for configuration dynamics of multi-
agent systems. In Michael Wooldridge, Gerhard Weiss, and Paolo
Ciancarini, editors, Proceedings of Second International Workshop
on Agent-Oriented Software Engineering II (AOSE 2001), volume
2222 of Lecture Notes In Computer Science;, pages 169 – 187,
Montreal, Canada, 2001. Springer.

[DL87] Edmund H. Durfee and Victor Lesser. Planning coordinated ac-
tions in dynamic domains. Technical Report UM-CS-1987-130,
Computer Science Department University of Massachusetts, 1987.

[DL92] Keith S. Decker and Victor Lesser. Generalizing the partial global
planning algorithm. International Journal of Intelligent and Co-
operative Information Systems, 1:319–346, 1992.

[DL93] Keith S. Decker and Victor Lesser. Analyzing a quantitative coor-
dination relationship. Group Decision and Negotiation, 2(3):195–
217, 1993.

[DL00] Keith S. Decker and Jinjiang Li. Coordinating Mutually Exclu-
sive Resources using GPGP. Autonomous Agents and Multi-Agent
Systems, 3(2):133 – 157, 2000.

[DMLS99] Sophie D’Amours, Benoit Montreuil, Pierre Lafrancois, and Fan-
cois Soumis. Networked manufacturing: The impact of infor-
mation sharing. International Journal of Production Economics,
58:63 – 79, 1999.

[Dor04] Jürgen Dorn. Evaluating reactive scheduling systems. In
IAT ’04: Proceedings of the Intelligent Agent Technology,
IEEE/WIC/ACM International Conference on (IAT’04), pages
458–461. IEEE Computer Society, 2004.

[DS83] R. Davis and R. Smith. Negotiation as a metaphor for distributed
problem solving. Artificial Intelligence, 20:63 – 109, 1983.

[Dud04] Gregor Dudek. Collaborative Planning in Supply Chains: A ne-
gotiation-based approach. Lecture Notes in Economics and Math-
ematical Systems. Springer, Berlin, 2004.

Bibliography 275

[Dur99] Edmund H. Durfee. Distributed problem solving and planning. In
Gerhardt Weiß, editor, Multiagent Systems: a modern approach
to distributed artificial intelligence, pages 121 – 164. MIT Press,
1999.

[Dyc90] Harald Dyckhoff. A typology of cutting and packing problems.
European Journal of Operational Research (EJOR), 44:145 – 159,
1990.

[EHNO08] Thomas Epping, Winfried Hochstättler, Robert Nickel, and Pe-
ter Oertel. Order sequencing in the automobile industry. In
Lars Mönch and Giselher Pankratz, editors, Intelligente Systeme
zur Entscheidungsunterstützung,Teilkonferenz der Multikonferenz
Wirtschaftsinformatik, pages 49–64, München, 2008. SCS Publish-
ing House.

[Ele04] Thomas Elendner. Winner Determination in Combinatorial Auc-
tions: Market-based Scheduling. Logos Verlag, Berlin, 2004.

[ETJ04] Cora Beatriz Excelente-Toledo and Nick R. Jennings. The dy-
namic selection of coordination mechanisms. Autonomous Agents
and Multi-Agent Sytems, 9:55 – 85, 2004.

[FBH07] Helmut Frank, Annette Bobrik, and Nico Haarländer. Vorgehens-
modell. In Hermann Krallmann, Marten Schönherr, and Matthias
Trier, editors, Systemanalyse im Unternehmen: Prozessorientierte
Methoden der Wirtschaftsinformatik, pages 135–186. Oldenbourg,
München, 5th. edition, 2007.

[Fer99] Jacques Ferber. Multi-Agent Systems: An Introduction to Dis-
tributed Artifcial Intelligence. Pearson Edication Ltd., London,
1999.

[FFGSP06] Rubén Fuentes-Fernández, Jorge J. Gómez-Sanz, and Juan Pavón.
Requirements elicitation for agent-based applications. In Jörg P.
Müller and Franco Zambonelli, editors, Agent-Oriented Software
Engineering VI: Proc. of the 6th InternationalWorkshop, AOSE
2005, volume 3950 of Lecture Notes in Computer Science, pages
40 – 53, Utrecht, Netherlands, 2006. Springer.

[FFMM93] Tim Finin, Rich Fritzson, Don McKay, and Robin McEntire. Kqml
- a language and protocol for knowledge and information exchange.
In Int. Conf. on Building and Sharing of Very Large-Scale Knowl-
edge Bases, Tokyo, 1993.

276 Bibliography

[FGLS06] Maria Fox, Alfonso Gerevini, Derek Long, and Ivan Serina.
Plan stability: Replanning versus plan repair. In Derek Long,
Stephen F. Smith, Daniel Borrajo, and Lee McCluskey, editors,
Proceedings of the Sixteenth International Conference on Auto-
mated Planning and Scheduling (ICAPS 2006), pages 212–221,
Cumbria, UK, 2006. AAAI Press.

[FGR05] Giancarlo Fortino, Alfred Garro, and Wilma Russo. An integrated
approach for the development and validation of multi-agent sys-
tems. Computer Systems Science and Engineering, 4:259 – 271,
2005.

[FGSP04] Rubén Fuentes, Jorge J. Gómez-Sanz, and Juan Pavón. Verifica-
tion and validation techniques for multi-agent systems. Upgrade,
Council of European Informatics Societies, 5(4):15– 19, 2004.

[FHK+07] Truls Flatberg, Geir Hasle, Oddvar Kloster, Eivind J. Nilssen,
and Atle Riise. Dynamic and stochastic vehicle routing in prac-
tice. In Vasileios Zeimpekis, Christos D. Tarantilis, George M.
Giaglis, and Ioannis Minis, editors, Dynamic Fleet Manage-
ment: Concepts, Systems, Algorithms & Case Studies, Opera-
tions Research/Computer Science Interfaces Series, pages 41 – 63.
Springer, 2007.

[FIP01a] Foundations for Intelligent Physical Agents FIPA. Fipa agent
software integration specification, 2001. http://www.fipa.org/

specs/fipa00079/index.html; Accessed: 02/04/10.

[FIP01b] Foundations for Intelligent Physical Agents FIPA. Fipa dutch auc-
tion interaction protocol specification, 2001. http://www.fipa.

org/specs/fipa00032/index.html; Accessed: 02/04/10.

[FIP01c] Foundations for Intelligent Physical Agents FIPA. Fipa english
auction interaction protocol specification, 2001. http://www.

fipa.org/specs/fipa00031/index.html; Accessed: 02/04/10.

[FIP02a] Foundations for Intelligent Physical Agents FIPA. FIPA Abstract
Architecture Specification, 2002. http://www.fipa.org/specs/

fipa00001/index.html; Accessed: 02/04/10.

[FIP02b] Foundations for Intelligent Physical Agents FIPA. Fipa acl
message representation in bit-efficient specification, 2002.
http://www.fipa.org/specs/fipa00069/index.html; Ac-
cessed: 02/04/10.

http://www.fipa.org/specs/fipa00079/index.html
http://www.fipa.org/specs/fipa00079/index.html
http://www.fipa.org/specs/fipa00032/index.html
http://www.fipa.org/specs/fipa00032/index.html
http://www.fipa.org/specs/fipa00031/index.html
http://www.fipa.org/specs/fipa00031/index.html
http://www.fipa.org/specs/fipa00001/index.html
http://www.fipa.org/specs/fipa00001/index.html
http://www.fipa.org/specs/fipa00069/index.html

Bibliography 277

[FIP02c] Foundations for Intelligent Physical Agents FIPA. Fipa acl mes-
sage structure specification, 2002. http://www.fipa.org/specs/
fipa00061/index.html; Accessed: 02/04/10.

[FIP02d] Foundations for Intelligent Physical Agents FIPA. Fipa agent
message transport service specification, 2002. http://www.fipa.
org/specs/fipa00067/index.html; Accessed: 02/04/10.

[FIP02e] Foundations for Intelligent Physical Agents FIPA. Fipa brokering
interaction protocol specification, 2002. http://www.fipa.org/

specs/fipa00033/index.html; Accessed: 02/04/10.

[FIP02f] Foundations for Intelligent Physical Agents FIPA. Fipa contract
net interaction protocol specification, 2002. http://www.fipa.

org/specs/fipa00029/index.html; Accessed: 02/04/10.

[FIP02g] Foundations for Intelligent Physical Agents FIPA. Fipa iterated
contract net interaction protocol specification, 2002. http://www.
fipa.org/specs/fipa00030/index.html; Accessed: 02/04/10.

[FIP02h] Foundations for Intelligent Physical Agents FIPA. Fipa nomadic
application support specification, 2002. http://www.fipa.org/

specs/fipa00014/index.html; Accessed: 02/04/10.

[FIP02i] Foundations for Intelligent Physical Agents FIPA. Fipa propose
interaction protocol specification, 2002. http://www.fipa.org/

specs/fipa00036/index.html; Accessed: 02/04/10.

[FIP02j] Foundations for Intelligent Physical Agents FIPA. Fipa query
interaction protocol specification, 2002. http://www.fipa.org/

specs/fipa00027/index.html; Accessed: 02/04/10.

[FIP02k] Foundations for Intelligent Physical Agents FIPA. Fipa recruiting
interaction protocol specification, 2002. http://www.fipa.org/

specs/fipa00034/index.html; Accessed: 02/04/10.

[FIP02l] Foundations for Intelligent Physical Agents FIPA. Fipa request
interaction protocol specification, 2002. http://www.fipa.org/

specs/fipa00026/index.html; Accessed: 02/04/10.

[FIP02m] Foundations for Intelligent Physical Agents FIPA. Fipa request
when interaction protocol specification, 2002. http://www.fipa.
org/specs/fipa00028/index.html; Accessed: 02/04/10.

http://www.fipa.org/specs/fipa00061/index.html
http://www.fipa.org/specs/fipa00061/index.html
http://www.fipa.org/specs/fipa00067/index.html
http://www.fipa.org/specs/fipa00067/index.html
http://www.fipa.org/specs/fipa00033/index.html
http://www.fipa.org/specs/fipa00033/index.html
http://www.fipa.org/specs/fipa00029/index.html
http://www.fipa.org/specs/fipa00029/index.html
http://www.fipa.org/specs/fipa00030/index.html
http://www.fipa.org/specs/fipa00030/index.html
http://www.fipa.org/specs/fipa00014/index.html
http://www.fipa.org/specs/fipa00014/index.html
http://www.fipa.org/specs/fipa00036/index.html
http://www.fipa.org/specs/fipa00036/index.html
http://www.fipa.org/specs/fipa00027/index.html
http://www.fipa.org/specs/fipa00027/index.html
http://www.fipa.org/specs/fipa00034/index.html
http://www.fipa.org/specs/fipa00034/index.html
http://www.fipa.org/specs/fipa00026/index.html
http://www.fipa.org/specs/fipa00026/index.html
http://www.fipa.org/specs/fipa00028/index.html
http://www.fipa.org/specs/fipa00028/index.html

278 Bibliography

[FIP02n] Foundations for Intelligent Physical Agents FIPA. Fipa sl con-
tent language specification, 2002. http://www.fipa.org/specs/
fipa00008/index.html; Accessed: 02/04/10.

[FIP02o] Foundations for Intelligent Physical Agents FIPA. Fipa subscribe
interaction protocol specification, 2002. http://www.fipa.org/

specs/fipa00035/index.html; Accessed: 02/04/10.

[FIP10] Foundations for Intelligent Physical Agents FIPA. Fipa homepage,
2010. http://www.fipa.org/index.html; Accessed: 02/04/10.

[FMP96] Klaus Fischer, Jörg P. Müller, and Markus Pischel. Agenda – a
general testbed for distributed artificial intelligence applications.
In G.M.P. O’Hare and Nick R. Jennings, editors, Foundations of
Distributed Artificial Intelligence, pages 401 – 427. John Wiley &
Sons, New York, 1996.

[FMPS95] Klaus Fischer, Jorg P. Muller, Markus Pischel, and Darius Schier.
A model for cooperative transportation scheduling. In Victor R.
Lesser and Les Gasser, editors, Proceedings of the First Interna-
tional Conference on Multiagent Systems (ICMAS), pages 109–
116, San Francisco, California, USA, 1995. The MIT Press.

[FSWZ03] Daniel Frey, Tim Stockheim, Peer-Oliver Woelk, and Roland Zim-
mermann. Integrated multi-agent-based supply chain manage-
ment. In Proc. 5th. Int. Workshop on Enabling Technologies: In-
frastructure for Collaborative Enterprise (WET ICE’03), pages 24
– 29. IEEE Computer Society Press, 2003.

[FUP91] Roger Fisher, William Ury, and Bruce Patton. Getting to yes:
negotiating, agreement without giving in. Penguin Books, New
York, 2nd. edition, 1991.

[FWJ05] Shaheen S. Fatima, Michael Wooldridge, and Nick R. Jennings.
Bargaining with incomplete information. Annals of Mathematics
and Artificial Intelligence, 44:207 – 232, 2005.

[Gai04] Michael Gaitanides. Prozessorganisation. In Georg Schreyögg and
Axel von Werder, editors, Handwörterbuch Unternehmensführung
und Organisation, pages 1208–1218. Schäffer-Poeschel, Stuttgart,
4th edition, 2004.

http://www.fipa.org/specs/fipa00008/index.html
http://www.fipa.org/specs/fipa00008/index.html
http://www.fipa.org/specs/fipa00035/index.html
http://www.fipa.org/specs/fipa00035/index.html
http://www.fipa.org/index.html

Bibliography 279

[GB01] J. van Gurp and J. Bosch. Design, implementation and evolution
of object oriented frameworks: concepts and guidelines. Software
- Practive and Experience, 31:277–300, 2001.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of reusable object-oriented software.
Addison-Wesley Professional Computing Series. Addision Wesley
Longman Inc., Reading,, 1994.

[GLL00] Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque.
Congolog, a concurrent programming language based on the situ-
ation calculus. Artificial Intelligence, 121(1-2):109 – 169, 2000.

[GLLK79] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy
Kan. Optimizing and approximation in deterministic sequencing
and scheduling: A survey. Annals of Discrete Mathematics, 5:287
– 326, 1979.

[GMO03] Paolo Giorgini, Jörg P. Müller, and James Odell, editors. Agent-
Oriented Software Engineering IV, 4th International Workshop,
AOSE 2003. Lecture Notes in Computer Science. Springer, Berlin,
2003.

[GNT04] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated plan-
ning : theory and practice. Elsevier, Kaufmann, Amsterdam et
al., 2004.

[Gor99] H. T. Goranson. The agile virtual enterprise: cases, metrics, tools.
Quorum Books, Westport, London, 1999.

[GOW03] Fausto Giunchiglia, James Odell, and Gerhard Weiss, editors.
Agent-Oriented Software Engineering III, Third International
Workshop, AOSE 2002,, volume 2585 of Lecture Notes in Com-
puter Science. Springer, Berlin, 2003.

[GSGW04] Jorge J. Gómez-Sanz, Marie-Pierre Gervais, and Gerhard Weiss.
A survey on agent-oriented software engineering research. In
Federico Bergenti, Marie-Pierre Gleizes, and Franco Zambonelli,
editors, Methodologies and Software Engineering for agent sys-
tems: The Agent-oriented softwre Engineering Handbook, Mul-
tiagent systems, artificial societies, and simulated organizations,
pages 33–62. Kluwer Academic Publishers, Bosten, 2004.

280 Bibliography

[GSVW07] Oleg Gujo, Michael Schwind, Jens Vykoukal, and Oliver Wendt.
Mehrrundige Kombinatorische Auktionen beim innerbetrieblichen
Austausch von Logistikdienstleistungen. In Rainer Koschke, Ot-
thein Herzog, Karl-Heinz Rödiger, and Marc Ronthaler, editors,
Informatik 2007, volume P-109 of Lecture Notes in Informatics
(LNI), pages 70 – 74, Bremen, 2007. Gesellschaft für Informatik
e.V. (GI).

[GSW+01] Sven Grolik, Tim Stockheim, Oliver Wendt, Sahin Albayrak, and
Stefan Fricke. Dispositive Supply-Web-Koordination durch Mul-
tiagentensysteme. Wirtschaftsinformatik, 43(2):143 – 155, 2001.

[GVO07] Luca Gardelli, Mirko Viroli, and Andrea Omicini. Design patterns
for self-organising systems. In Hans-Dieter Burkhard, Gabriela
Lindemann, Rineke Verbrugge, and László Z. Varga, editors, Pro-
ceedings of the 5th International Central and Eastern European
Conference on Multi-Agent Systems, CEEMAS 2007, volume 4696
of Lecture Notes in Artificial Intelligence, pages 123 – 132, Leipzig,
2007. Springer.

[GW07] Martin Josef Geiger and Wolf Wenger. On the interactive res-
olution of multi-objective vehicle routing problems. In Shigeru
Obayashi, Kalyanmoy Deb, Carlo Poloni, Tomoyuki Hiroyasu,
and Tadahiko Murata, editors, Evolutionary Multi-Criterion Opti-
mization: 4th International Conference, EMO 2007, volume 4403
of Lecture Notes in Computer Science, pages 687 – 699. Springer
Verlag, Berlin, Heidelberg, New York, 2007.

[Hah08] Christian Hahn. A domain specific modeling language for mul-
tiagent systems. In Lin Padgham, David C. Parkes, Jörg P.
Müller, and Simon Parsons, editors, Proc. of 7th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2008), pages
233 – 240, Estoril, Portugal, 2008.

[HCY99] Sandra C. Hayden, Christina Carrick, and Qiang Yang. Archi-
tectural design patterns for multiagent coordination. In Proceed-
ings of the 3rd International Conference on Autonomous Agents,
AGENTS’99, 1999.

[HDP06] Lawrence Henesey, Paul Davidsson, and Jan A. Persson. Agent
based simulation architecture for evaluating operational policies in
transshipping containers. In Klaus Fischer, Ingo Timm, Elisabeth

Bibliography 281

André, and Ning Zhong, editors, Multiagent System Technologies
(MATES), LNAI, pages 73 – 85, Erfurt, 2006. Springer.

[Hee06] Menno Heeren. Swarm Intelligence als Strategie zur Lösung reak-
tiver Planungsprobleme in Wertschöpfungsketten. Dissertation,
Carl von Ossietzki Universität Oldenburg, 2006.

[Hei86] Edmund Heinen. Einführung in die Betriebswirtschaftslehre.
Gabler, Wiesbaden, 9., rev. ed. edition, 1986.

[Hel09] Malte Helmert. Pddl resources, 2009. http://ipc.informatik.

uni-freiburg.de/PddlResources; Accessed: 03/03/10.

[Hen98] Herwig Henseler. Aktive Ablaufplanung mit Multi-Agenten, vol-
ume 180 of DISKI. infix Verlag, 1998.

[HI06] Manfred J. Holler and Gerhard Illing. Einführung in die Spielthe-
orie. Springer, Berlin, 6., rev. ed. edition, 2006.

[HM73] Arnoldo C Hax and Harlan C. Meal. Hierarchical integration
of production planning and scheduling. Technical report, Mas-
sachusetts Institute of Technologie, Operations Research Center,
September 1973.

[HN09] Hans Robert Hansen and Gustaf Neumann. Wirtschaftsinfor-
matik 1: Grundlagen und Anwendungen. Grundwissen Ökonomik.
UTB/Lucius & Lucius, Stuttgart, 10th edition, 2009.

[HO05] Joseph Y. Halpern and Kevin R. O’Neill. Anonymity and informa-
tion hiding in multiagent systems. Journal of Computer Security,
13(3):483 –514, 2005.

[HOB04] Marc-Philippe Huget, James Odell, and Bernhard Bauer. The
auml approach. In Federico Bergenti, Marie-Pierre Gleizes, and
Franco Zambonelli, editors, Methodologies and Software Engi-
neering for Agent Systems, Multiagent Systems, Artificial Soci-
eties, and simulated organizations. Kleuwer Academic Publshers,
Bosten, 2004.

[Hor06] Arne Hormann. Testbasierte Spezifikation von Agenteninterak-
tionsverhalten. Diploma thesis, University Bremen,, 2006.

[HS96] Afsaneh Haddadi and Kurt Sundermeyer. Belief-desire-intention
agent architectures. In G.M.P. O’Hare and Nick R. Jennings,

http://ipc.informatik.uni-freiburg.de/PddlResources
http://ipc.informatik.uni-freiburg.de/PddlResources

282 Bibliography

editors, Foundations of Distributed Artificial Intelligence, Sixth-
Generation Computer Technology Series, pages 169 – 185. John
Wiley & Sons, New York, 1996.

[HS99] Michael N. Huhns and Larry M. Stephens. Multiagent systems and
societies of agents. In Gerhard Weiss, editor, Multiagent Systems:
a modern approach to distributed artificial intelligence, pages 79 –
120. MIT Press, 1999.

[HSKF05] Vincent Hilaire, Olivier Simonin, Abder Koukam, and Jacques
Ferber. A formal approach to design and reuse agent and multi-
agent models. In Michael Luck and James Odell, editors, Agent-
Oriented Software Engineering V; Proc. of the 5th International
Workshop, AOSE 2004, volume 3382, pages 142 – 157, New York,
NY, USA,, 2005. Springer.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to au-
tomata theory, languages, and computation. Addison-Wesley Se-
ries in Computer Science. Addison-Wesley Publishing Company,
Reading, 1979.

[HZWF10] Christian Hahn, Ingo Zinnikus, Stefan Warwas, and Klaus Fis-
cher. Automatic generation of executable behavior: A protocol-
driven approach. In Marie-Pierre Gleizes and Jorge J. Gómez-
Sanz, editors, Proc. of the 10th International Workshop on Agent-
oriented Software Engineering (AOSE’09) at AAMAS 2009, Bu-
dapest, 2010. Springer. to appear.

[Jen96] Nick R. Jennings. Coordination techniques for distributed ar-
tificial intelligence. In G.M.P. O’Hare and Nick R. Jennings,
editors, Foundations of Distributed Artificial Intelligence, Sixth-
Generation Computer Technology Series, pages 187 – 210. John
Wiley & Sons, New York, 1996.

[JJ05] Hosang Jung and Bongju Jeong. Decentralised production-
distribution planning system using collaborative agents in supply
chain network. International Journal of Manufacturing Technol-
ogy, 25:167– 173, 2005.

[JSW98] Nick R. Jennings, K. Sycara, and Michael Wooldridge. A roadmap
of agent research and development. Autonomous Agents and
Multi-Agent Systems, 1:7–38, 1998.

Bibliography 283

[JTY05] Catholijn M. Jonker, Jan Treur, and P?nar Yolum. A formal
reuse-based approach for interactively designing organizations. In
Michael Luck and James Odell, editors, Agent-Oriented Software
Engineering V; Proc. of the 5th International Workshop, AOSE
2004, volume 3382, pages 221 – 237, New York, NY, USA,, 2005.
Springer.

[KDF05] Manuel Kolp, T. Tung Do, and Stéphane Faulkner. Introspecting
agent-oriented design patterns. In S. K. Chang, editor, Handbook
of Software Engineering and Knowledge Engineering,, volume Vol.
3: Recent Advances, pages 151–176. World Scientific Publishing
Co, 2005.

[KF04] Lalana Kagal and Tim Finin. Modeling conversation policies using
permissions and obligations. In Rogier M. van Eijk, Marc-Philippe
Huget, and Frank Dignum, editors, AAMAS 2004 Workshop on
Agent Communication (AC2004), New York, 2004.

[KHLS06] Stefan Kirn, Otthein Herzog, Peter Lockemann, and Otto Span-
iol, editors. Multiagent Engineering. International Handbooks on
Information Systems. Springer, Berlin, 2006.

[Kir06] Stefan Kirn. Flexibility of multiagent systems. In Stefan Kirn, Ot-
thein Herzog, Peter Lockemann, and Otto Spaniol, editors, Mul-
tiagent Engineering, pages 53 – 69. Springer, Berlin, 2006.

[KKAO00] Takahiro Kawamura, Naoki Kase, Dai Araki, and Akihiko Osuga.
Delopment of a distributed cooperative scheduling system based
on negatioations between scheduling agents. Systems and Com-
puters in Japan, 31(1):92 – 101, 2000.

[Kou08] Anastasios Koutis. Erstellen von formalen Strukturen und E-
valuierung von Abhängigkeiten für gekoppelte Planungsprobleme.
Diploma thesi, Gothe University, 2008.

[Krc10] Helmut Krcmar. Informationsmanagement. Springer, Heidelberg,
5th. edition, 2010.

[KRH03] Jean-Luc Koning and Ivan Romero-Hernandez. Generating ma-
chine processable representations of textual representations of
auml. In Fausto Giunchiglia, James Odell, and Gerhard Weiss,
editors, Agent-Oriented Software Engineering III, Third Interna-
tional Workshop, AOSE 2002,, volume 2585 of Lecture Notes in
Computer Science, pages 126–137, Bologna, Italy, 2003. Springer.

284 Bibliography

[KST07] Hermann Krallmann, Marten Schönherr, and Matthias Trier, ed-
itors. Systemanalyse im Unternehmen: Prozessorientierte Meth-
oden der Wirtschaftsinformatik. Oldenbourg, München, 2007.

[Kur05] Karl Kurbel. Produktionsplanung und -steuerung im Enterprise
Resource Plannug und Supply Chain Management. Oldenbourg
Verlag, München, Wien, 6. edition, 2005.

[Kur08] Zijad Kurtanovic. Spezifikation von Verhandlungsstrategien.
Diploma thesis, Gothe University, 2008.

[KYR88] N. P. Keng, D.Y. Yun, and M. Rossi. Interaction sensitive plan-
ning system for jop-shop scheduling. In M. D. Oliff, editor, Expert
Systems and Intelligent Manufacturing. Elsevier, 1988.

[Lam09] Axel von Lamsweerde. Requirments Engineering: From System
Goals to UML Models to Software Specification. John Wiley &
Sons Ldt., Chichester, 2009.

[Lar01] Allan Larsen. The Dynamic Vehicle Routing Problem. PhD thesis,
Technical University of Denmark (DTU), 2001.

[LDM03] Michael Luck, Mark D’Inverno, and Steve Munroe. Autonomy:
Variable and generative. In Henry Hexmoor, Rino Falcone, and
Cristiano Castelfranchi, editors, Agent Autonomy, Multiagent
Systems, Artificial Societies, and Simulated Organizations, pages
9 – 22. Springer, 2003.

[LGS09] Michael Luck and Jorge J. Gómez-Sanz, editors. Agent-Oriented
Software Engineering IX, 9th International Workshop, AOSE
2008. Lecture Notes in Computer Science. Springer, Berlin, 2009.

[Lin03] Jürgen Lind. Patterns in agent-oriented software engineering.
In Fausto Giunchiglia, James Odell, and Gerhard Weiss, editors,
Agent-Oriented Software Engineering III Proc. of the Third Inter-
national Workshop, AOSE 2002, volume 2585 of Lecture Notes in
Computer Science, pages 47 – 58, Bologna, Italy, 2003. Springer.

[LJS06] Xudong Luo, Nicholas R. Jennings, and Nigel Shadbolt. Acquir-
ing user tradeoff strategies and preferences for negotiating agents:
A default-then-adjust method. International Journal of Human
Computer Studies, 64(4):304–321, 2006.

Bibliography 285

[LP08] Michael Luck and Lin Padgham, editors. Agent-Oriented Soft-
ware Engineering VIII, 8th International Workshop, AOSE 2007.
Lecture Notes in Computer Science. Springer, Berlin, 2008.

[LS96] Jyi-Shane Liu and Katia Sycara. Multiagent coordination in
tightly coupled task scheduling. In 1996 International Conference
on Multi-Agent Systems, 1996.

[LWD+06] Leif-Erik Lorenzen, Peer-Oliver Woelk, Berend Denkena,
Thorsten Scholz, Ingo J. Timm, and Otthein Herzog. Integrated
process planning and production control. In Stefan Kirn, Otthein
Herzog, Peter Lockemann, and Otto Spaniol, editors, Multiagent
Engineering: Theory and Applications in Enterprises, Interna-
tional Handbook on Information Systems, pages 91–113. Springer,
Heidelberg, 2006.

[Mai04] Roger T. Mailler. A mediaton-based approach to cooperative, dis-
tributed problem solving. PhD thesis, University of Massachusetts
Amherst, 2004.

[Mar92] Frank von Martial. Coordinating Plans of Autonomous Agents.
Lecture Notes in Artificial Intelligence. Springer, Berlin, 1992.

[MB06] Frank Meisel and Christian Bierwirth. Integration of berth allo-
cation and crane assignment to improve the resource utilization
at a seaport container terminal. In Hans-Dietrich Haasis, Her-
bert Kopfer, and Jörn Schönberger, editors, Operations Research
Proceedings 2005, volume Volume 2005 of Operations Research
Proceedings, pages 105–110, Bremen, 2006. Springer.

[MC94] Thomas W. Malone and Kevin Crowston. The interdisciplinary
study of coordination. ACM Computing Surveys, 26(1):87 – 119,
1994.

[Mei08] Leif Meier. Koordination interdependenter Planungssysteme in
der Logistk. Gabler, Wiesbaden, 2008.

[MGH+98] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock,
Ashwin Ram, Manuela Veloso, Daniel Weld, and David Wilkins.
Pddl – the planning domain definition language – version 1.2
(pdf). Technical report, Yale Center for Computational Vision
and Control, 1998.

286 Bibliography

[Mül96] H. Jürgen Müller. Negotiation principles. In G.M.P. O’Hare and
Nick R. Jennings, editors, Foundations of Distributed Artificial
Intelligence, Sixth-Generation Computer Technologies, pages 211
– 229. John Wiley & Sons, New York, 1996.

[MP01] Massimo Mecella and Barbara Pernici. Designing wrapper com-
ponents for e-services in integrating heterogeneous systems. The
VLDB Journal - The International Journal on Very Large Data
Bases, 10(1):2 – 15, 2001.

[MPT95] Jörg P. Müller, Markus Pischel, and Michael Thiel. Modeling
reactive behaviour in vertically layered agent architectures. In
Michael Wooldridge and Nick R. Jennings, editors, Intelligent
Agents I: Agent Theories, Architectures, and Languages, Lecture
Notes in Artificial Intelligence (LNAI), pages 261–276. Springer,
Berlin, 1995.

[MS07] Leif Meier and René Schumann. Coordination of interdependent
planning systems, a case study. In Rainer Koschke, Otthein Her-
zog, Karl-Heinz Rödiger, and Marc Ronthaler, editors, Informatik
2007, volume P-109 of Lecture Notes in Informatics (LNI), pages
389 – 396, Bremen, 2007. Gesellschaft für Informatik e.V. (GI).

[MSB+08] Rajiv T. Maheswaran, Pedro Szekely, M. Becker, S. Fitzpatrick,
G. Gati, J. Jin, R. Neches, N. Noori, C. Rogers, R. Sanchez,
K. Smyth, and C. Vanbuskirk. Predictability & criticality metrics
for coordination in complex environments. In Proceedings of the
7th international joint conference on Autonomous agents and mul-
tiagent systems - Volume 2: SESSION: Agent cooperation table of
contents, pages 647–654, Estoril, Portugal, 2008.

[MSW02] David P. Myatt, Hyun Song Shin, and Chris Wallace. The as-
sessment: Games and coordination. Oxford Review of Economic
Policy, 18(4):397 – 417, 2002.

[MZ06] Jörg P. Müller and Franco Zambonelli, editors. Agent-Oriented
Software Engineering VI, 6th International Workshop, AOSE
2005. Lecture Notes in Computer Science. Springer, Berlin, 2006.

[NK95] Bernhard Nebel and Jana Koehler. Plan reuses versus plan gener-
ation: A theoretical and empirical analysis. Artificial Intelligence,
75(1-2):427–454, 1995.

Bibliography 287

[NM01] Natalya F. Noy and Deborah L. McGuinness. Ontology develop-
ment 101: A guide to creating your first ontology. Technical Re-
port KSL-01-05, Stanford Knowledge Systems Laboratory, 2001.

[NM04] Klaus Neumann and Martin Morlock. Operations Research. Carl
Hanser Verlag, München, Wien, 2.nd edition, 2004.

[NRTV07] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazi-
rani, editors. Algorithmic Game Theory. Cambridge University
Press, New York, 2007.

[NRW02] Matthias Nickles, Michael Rovatsos, and Gerhard Weiss. A
schema for specifying computational autonomy. In Proceedings of
the Third International Workshop ”Engineering Societies in the
Agents World” (ESAW’2002), Madrid, Spain, 2002.

[NT04] David Naso and Biagio Turchiano. A coordination strategy for dis-
tributed multi-agent manufacturing systems. International Jour-
nal of Production Research, 42(12):2497– 2520, 2004.

[Nwa96] Hyacinth S. Nwana. Software agents: An overview. Knowledge
Engineering Review, 11(3):205–244, 1996.

[Oes09] Bernd Oestereich. Analyse und Design mit UML 2.3: Objektorien-
tierte Softwareentwicklung. Oldenbourg Verlag, München, Wien,
9th edition, 2009.

[OGM04] James Odell, Paolo Giorgini, and Jörg P. Müller, editors. Agent-
Oriented Software Engineering V, 5th International Workshop,
AOSE 2004. Lecture Notes in Computer Science. Springer, Berlin,
2004.

[OMG01] Object Management Group OMG. Omg unified modeling lan-
guage specification, version 1.4, 2001. http://www.omg.org/

cgi-bin/doc?formal/01-09-67; Accessed: 03/04/10.

[OMG07] Object Management Group OMG. Omg unified modeling lan-
guage (omg uml), superstructure, version 2.1.2, 2007. http:

//www.omg.org/spec/UML/2.1.2/; Accessed: 03/04/10.

[OO03] Andrea Omicini and Sascha Ossowski. Objective versus subjec-
tive coordination in the engineering of agent system. In Matthias
Klusch, Sonia Bergamaschi, Pete Edwards, and Paolo Petta, ed-
itors, Intelligent Information Agents, Lecture Notes in Artificial
Intelligence, pages 179 – 202. Springer, Berlin, 2003.

http://www.omg.org/cgi-bin/doc?formal/01-09-67
http://www.omg.org/cgi-bin/doc?formal/01-09-67
http://www.omg.org/spec/UML/2.1.2/
http://www.omg.org/spec/UML/2.1.2/

288 Bibliography

[OOR04] Andrea Omicini, Sascha Ossowski, and Alessandro Ricci. Coor-
dination infrastructures in the engineering of multiagent system-
stems. In Federico Bergenti, Marie-Pierre Gleizes, and Franco
Zambonelli, editors, Methodologies and Software Engineering for
agent systems: The Agent-oriented softwre Engineering Handbook,
Multiagent systems, artificial societies, and simulated organiza-
tions. Kluwer Academic Publishers, Bosten, 2004.

[OPB01] James Odell, H. van Dyke Parunak, and Bernhard Bauer. Repre-
senting agent interaction protocols in uml. In Paolo Ciancarini and
Michael Wooldridge, editors, Agent-Oriented Software Engineer-
ing, Lecture Notes in Computer Science, pages 121– 140. Springer,
2001.

[ORV+04] Andrea Omicini, Alessandro Ricci, Mirko Viroli, Cristiano
Castelfranchi, and Luca Tummolini. Coordination artifacts:
Environment-based coordination for intelligent agents. In AA-
MAS ’04: Proceedings of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems, volume Volume
1, pages 286–293, New York, New York, 2004. IEEE Computer
Society.

[ORVR04] Andrea Omicini, Alessandro Ricci, Mirko Viroli, and Giovanni
Rimassa. Integrating objective & subjective coordination in multi-
agent systems. In 2004 ACM Symposium on Applied Computing,
pages 449 – 455, Nicosia, Cyprus, 2004.

[Oss98] Sascha Ossowski. Co-ordination in Artifical Agent Societies. Lec-
ture Notes in Artifical Intelligence. Springer, Berlin et al., 1998.

[Oss08] Sascha Ossowski. Coordination in multi-agent systems: Towards
a technology of agreement. In Ralph Bergmann, Gabriela Linde-
mann, Stefan Kirn, and Michal Pechoucek, editors, Sixth German
Conference on Multiagent System Technologies (MATES 08), Lec-
ture Notes in Artificial Intelligence, pages 2–12, Kaiserslautern,
2008. Springer.

[Par87] H. van Dyke Parunak. Manufacturing experience with the con-
tract net. In Michael N. Huhns, editor, Distributed Artificial In-
telligence, pages 285–310. Pitman, London, 1987.

[Par96] H. van Dyke Parunak. Visualizing agent conversations: Using
enhanced dooley graphs for agent design and analysis. In Pro-

Bibliography 289

ceedings of the Second International Conference on Multi-Agent
Systems (ICMAS 96), 1996.

[Pin05] Michael Pinedo. Planning and Scheduling in Manufacturing and
Services. Springer Series in Operations Research. Springer, New
York, 2005.

[PJDH03] Thorsten O. Paulussen, Nick R. Jennings, Keith S. Decker, and
Armin Heinzle. Distributed patient scheduling in hospitals. In
18th Int. Joint Conf. on AI (IJCIA 03), Acapulco, Mexico, 2003.

[PK03] Young-Man Park and Kap Hwan Kim. A scheduling method for
berth and quay cranes. OR Spectrum, 25(1):1–23, 2003.

[PKM07] András Pfeiffer, Botond Kádár, and László Monostri. Stability-
oriented evaluation of rescheduling strategies, by using simulation.
Computers in Industry, 58:630–643, 2007.

[Pol96] Martha E. Pollack. Planning in dynamic environments: The di-
part system. In A. Tate, editor, Advanced Planning Technology:
Technology Achievements of the ARPA/Rome Laboratory Plan-
ning Initiative, pages 218–225. AAAI Press, 1996.

[PRBH09] Michele Piunti, Alessandro Ricci, Olivier Boissier, and Jomi F.
Hubner. Embodied organisations in mas environments. In Lars
Braubach, Wiebe van der Hoek, Paolo Petta, and Alexander
Pokahr, editors, Multiagent System Technologies (MATES 2009),
Lecture Notes in Artificial Intelligence (LNAI), pages 115 – 127,
Hamburg, 2009. Springer.

[Pre95] Wolfgang Pree. Design Patterns for Object-Oriented Software De-
velopment. ACM Press Book. Addison Wesley Longman, Reading,
2nd edition, 1995.

[Pri08] Christine Pries. Eine Ontologyie für intelligente Ablaufplanung.
Diploma thesis, Carl von Ossietzky Universität, 2008.

[PS10] Carolin Püttmann and Hartmut Stadtler. A collaborative plan-
ning approach for intermodel freight transportation. OR Spec-
trum, 32(3):809–830, 2010.

[PSJ98] Simon Parsons, Carles Sierra, and Nick R. Jennings. Agents that
reason and negotiate by arguing. Journal of Logic and Computa-
tion, 8(3):261 – 292, 1998.

290 Bibliography

[Püt07] Carolin Püttmann. Collaborative planning in intermodal freight
transportation. In Rainer Koschke, Otthein Herzog, Karl-Heinz
Rödiger, and Marc Ronthaler, editors, Informatik 2007, volume P-
109 of Lecture Notes in Informatics (LNI), pages 62 – 65, Bremen,
2007. Gesellschaft für Informatik e.V. (GI).

[PTDL07] Michael P. Papazoglou, Paolo Traverso, Schahram Dustda, and
Frank Leymann. Service-oriented computing: State of the art
and research challenges. IEEE Computer, 40(11):64 – 71, 2007.

[PZ07] Lin Padgham and Franco Zambonelli, editors. Agent-Oriented
Software Engineering VII, 7th International Workshop, AOSE
2006. Lecture Notes in Computer Science. Springer, Berlin, 2007.

[RG95] Anand S. Rao and Michael P. Georgeff. BDI Agents: From Theory
to Practice. Technical Node 56, Australian Artificial Intelligence
Institute, April 1995.

[RMB01] William A. Ruh, Francis X. Maginnis, and William J. Brown.
Enterprise application integration. A Wiley tech brief. John Wiley
& Sons Inc., New York, 2001.

[RN03] Stuart J. Russell and Peter Norvig. Artificial Intelligence A Mod-
ern approach. Prentice Hall Series in Artificial Intelligece. Peason
Education, Upper Sadle River, New Jersey, US, 2. edition, 2003.

[RRS03] Amritpal Singh Raheja, K. Rama Bhupal Reddy, and Velusamy
Subramaniam. A generic mechanism for repairing job shop
schedules. Innovation in Manufacturing Systems and Technology
(IMST), 2003.

[RV99] Christian Ruß and Gero Vierke. The matrix auction: A mech-
anism for the market-based coordination of enterprise networks.
Technical Report RR-99-04, German Research Center for Artifical
Intelligence (DFKI), 1999.

[RVO06] Alessandro Ricci, Mirko Viroli, and Andrea Omicini. Program-
ming mas with artifacts. In Rafael H. Bordini, Mehdi Dastani,
Jürgen Dix, and Amal El Fallah Seghrouchni, editors, Program-
ming Multi-Agent Systems: Proc. of the Third InternationalWork-
shop (ProMAS 2005), volume 3862 of Lecture Notes in Artificial
Intelligence, pages 206–221, Utrecht, Netherlands, 2006. Springer.

Bibliography 291

[RZ98a] Jeffrey S. Rosenschein and Gilad Zlotkin. Designing conventions
for automated negotiation. In Michael N. Huhns and Munindar P.
Singh, editors, Readings in Agents, pages 353 – 370. Morgan Kauf-
mann Publishers, 1998.

[RZ98b] Jeffrey S. Rosenschein and Gilad Zlotkin. Rules of Encounter:
Designing Conventions for Automated Negotiation among Com-
puters. MIT Press, Cambridge, London, 2.nd edition, 1998.

[San96] Tuomas Sandholm. Negotiation amomg self-interested computa-
tionally limited agents. PhD thesis, University of Massachusetts,
1996.

[San99] Tuomas Sandholm. Distributed rational decision making. In Ger-
hard Weiss, editor, Multiagent Systems: a modern approach to
distributed artificial intelligence, pages 201– 258. MIT Press, 1999.

[Sau93] Jürgen Sauer. Wissensbasiertes Lösen von Ablaufplanungsproble-
men durch explizite Heuristiken. DISKI 37. Infix Verlag, 1993.

[Sau02] Jürgen Sauer. Multi-Site Scheduling Hierarchisch koordinierte
Ablaufplanung auf mehreren Ebene. Habilitationsschrift, Carl von
Ossietzky Universität Oldenburg, 2002.

[Sau04] Sylvain Sauvage. Design patterns for multiagent systems design.
In Proceedings of the 3rd International Conference on Artificial
Intelligence, MICAI‘04, volume 2972 of Lecture Notes in Artificial
Intelligence (LNAI). Springer, 2004.

[SB97] Stephen F. Smith and Marcel A. Becker. An ontology for con-
structing scheduling systems. In Working Notes of 1997 AAAI
Symposium on Ontological Engineering. AAAI Press, 1997.

[SBPM09] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF:
Eclipse Modeling Framework. the eclipse series. Addison-Wesley
Longman, Amsterdam, 2nd edition, 2009.

[Sch99] Claudia Schmidt. Marktliche Koordination in der dezentalen Pro-
duktionsplanung Effizenz - Komplexität - Performance. Galber,
Wiesbaden, 1999.

[Sch01] Michael Schumacher. Objective Coordination in Multi-Agent Sys-
tem Engineering: Design and Implementation. Lecture Notes in
Artificial Intelligence (LNAI). Springer, Berlin, Heidelberg, 2001.

292 Bibliography

[Sch04] René Schumann. Ein agentenbasiertes Verfahren zur Koordina-
tion von Planungssystemen. Diploma thesis, Carl von Ossietzky
Universität Oldenburg, 2004.

[Sch07] Michael Schwind. Dynamic Pricing and Automated Resource Al-
location for Complex Information Services. Lecture Notes in Eco-
nomics and Mathematical Systems. Springer, Berlin, Heidelberg,
2007.

[Sch09] Jan Benedikt Scheckenbach. Collaborative Planning in Detailed
Scheduling. Phd thesis, Univeristy Hamburg, 2009.

[Sed98] Robert Sedgewick. Algorithmen, volume 2. ed. Addison Wesley,
1998.

[SGZ+06] Stephen F. Smith, Anthony Gallagher, Terry Zimmerman, Laura
Barbulescu, and Zachary Rubinstein. Multi-agent management of
joint schedules. In Edmund H. Durfee and David J. Musliner, ed-
itors, Proceedings of the AAAI Spring Symposium on Distributed
Plan and Schedule Management, pages 128–135. AAAI Press,
2006.

[She06] G. Richard Shell. Bargaining for advantage : negotiation strategies
for reasonable people. Penguin Books, New York, 2nd edition,
2006.

[Sin98] Munindar P. Singh. Developing formal specifications to coordinate
heterogeneous autonomous agents. In Proceedings of Third Inter-
national Conference on MultiAgent Systems (ICMAS’98, 1998.

[SK02] Hartmut Stadtler and Christoph Kilger, editors. Supply Chain
Management and Advanced Planning: concepts, models, software
and case studies, volume 2. Springer, Berlin, 2002.

[SKL+04] Martijn Schut, Michael Kentrop, Mark Leenaarts, Marco Melis,
and Ian Miller. Approach: Decentralised rotation planning for
container barges. In R. Lopez de Mataras and L. Saitta, editors,
Proceedings of the Sixteenth European Conference on Artificial In-
telligence, pages 755–759. IOS Press, 2004.

[SKT09] René Schumann, Zijad Kurtanovic, and Ingo J. Timm. Specifica-
tion of strategies for negotiating agents. In Workshop Agent-based
Technologies and applications for enterprise interOPerability at

Bibliography 293

the Eighth International Joint Conference on Autonomous Agents
& Multi-Agent Systems (AAMAS 2009), Budapest, 2009.

[SL95] Tuomas Sandholm and Victor R. Lesser. Issues in automated
negotiation and electronic commerce: Extending the contract net
framework. In Victor R. Lesser, editor, Proceedings of the First
International Conference on Multi-Agent Systems (ICMAS’95),
pages 328 – 335. The MIT Press: Cambridge, MA, USA, 1995.

[SL02] Tuomas Sandholm and Victor Lesser. Leveled-commitment con-
tracting: A backtracking instrument for multiagent systems. AI
Magazine, 23(3):89–100, 2002.

[SLB09] Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: al-
gorithmic, game-theoretic, and logic foundations. Cambridge Uni-
versity Press, New York, 2009.

[SLT08a] René Schumann, Andreas D. Lattner, and Ingo J. Timm. Chal-
lenges in coordinating networked enterprises. In Kulwant S.
Pawar, Chandra S. Lalwani, and Ruth Banomyong, editors, Pro-
ceedings of the 13. International Symposium on Logistics (ISL
2008), pages 133 – 142, Bangkok, 2008. Centre for Concurrent
Enterprise Nottingham University.

[SLT08b] René Schumann, Andreas D. Lattner, and Ingo J. Timm. Cost of
control for regulated autonomy. In Presented at the International
Workshop on Organised Adaptation in Multi-Agent Systems (OA-
MAS’08, Workshop at the AAMAS 2008), LNAI, Estoril, 2008.
Springer.

[SLT08c] René Schumann, Andreas D. Lattner, and Ingo J. Timm. Re-
gulated autonomy: A case study. In Lars Mönch and Gisel-
her Pankratz, editors, Intelligente Systeme zur Entscheidung-
sunterstützung,Teilkonferenz der Multikonferenz Wirtschaftsinfor-
matik, pages 83 –98, München, 2008. SCS Publishing House.

[Smi94] Stephen F. Smith. Opis: A methodology and architecture for re-
active scheduling. In Monte Zweben and Mark S. Fox, editors,
Intelligent Scheduling, pages 29 – 66. Morgan Kaufmann Publish-
ers, San Francisco, 1994.

[Som06] Ian Sommerville. Software Engineering. Addison-Wesley Long-
man, Amsterdam, 8. edition edition, 2006.

294 Bibliography

[SP99] John Sauter and H. van Dyke Parunak. Ants in the supply chain.
In Workshop on Agent based Decision Support for Managing the
Internet-Enabled Supply Chain, Agents 99,, Seattle, 1999.

[SPS10] René Schumann, Matthias Postina, and Jürgen Sauer. Bin packing
of potted plants for efficient transportation. Journal of Applied
Packaging Research, 4(1):27 – 52, 2010.

[SR08] Jan Sudeikat and Wolfgang Renz. On the encapsulation and reuse
of decentralized coordination mechanisms: A layered architecture
and design implications. Communications of SIWN, 4:140–146,
2008.

[SS95] M. W. P. Savelsbergh and M. Sol. The general pickup and delivery
problem. Transportation Science, 29(1):17 – 29, 1995.

[SS05] René Schumann and Jürgen Sauer. Abaco, coordination of au-
tonomous entities. In Torsten Eymann, Franziska Klügel, Win-
fred Lamersdorf, Matthias Klusch, and Michael N. Huhns, edi-
tors, Third German Conference on Multiagent System Technolo-
gies (MATES), LNAI, pages 222 – 228, Koblenz, 2005. Springer.

[SS07] René Schumann and Jürgen Sauer. Implications and consequences
of mass customization on manufacturing control. In Thorsten
Blecker, Kaspar Edwards, Gerhard Friedrich, and Fabrizio Sal-
vador, editors, Innovative Processes and Products for Mass Cus-
tomization. Proceedings of the Joint Conference of the Interna-
tional Mass Customization Meeting 2007 (IMCM07) and the In-
ternational Conference on Economic, Technical and Organisa-
tional Aspects of Product Configuration Systems (PETO07), vol-
ume 3 of Series on Business Informatics and Application Systems,
pages 365 – 378, Hamburg, 2007. GITO.

[SS09] René Schumann and Jürgen Sauer. Online planning: Challenges
and lessons learned. In Klaus-Dieter Althoff, Kerstin Bach, and
Meike Reichle, editors, Workshop Proceedings KI 2009 32. Annual
Conference on Artificial Intelligence: 23. PuK Workshop, pages
96 – 107, Paderborn, Germany, 2009.

[SSWG02] Tim Stockheim, Michael Schwind, Oliver Wendt, and Sven Grolik.
Coordination of supply webs based on dispositive protocols. In
10th European Conference on Information Systems (ECIS), pages
1039 – 1053, Gdansk, 2002.

Bibliography 295

[Sta07] Vladimir Stantechev. Bereitstellung von informationssystemen -
auswahl und eigenentwicklung. In Hermann Krallmann, Marten
Schönherr, and Matthias Trier, editors, Systemanalyse im Unter-
nehmen: Prozessorientierte Methoden der Wirtschaftsinformatik,
pages 281–326. Oldenbourg, München, 5th. edition, 2007.

[Sta09] Hartmut Stadtler. A framework for collaborative planning and
state-of-the-art. OR Spectrum, 31(1):5–30, 2009.

[STT09] René Schumann, Thomas Timmermann, and Ingo J. Timm.
Transportation planning in dynamic environments. In Bern-
hard Fleischmann, Karl-Heinz Borgwardt, Robert Klein, and Axel
Tuma, editors, Operations Research Proceedings 2008, Operations
Research Proceedings, pages 319 – 324, Augsburg, 2009. Springer.

[SV06] Thomas Stahl and Markus Völter. Model-Driven Software Devel-
opment: Technology, Engineering, Management. John Wiley &
Sons Ldt., Chichester, 2006.

[SW07] J. Reenze Steenhuisen and Cees Witteveen. Coordinating plan-
ning agents for moderately and tightly-coupled tasks. In Inter-
national workshop on Coordinating Agents’ Plans and Schedules
(CAPS), Workshop at AAMAS 07, Honolulu, Hawaii, 2007.

[SWH10] Harry M. Sneed, Ellen Wolf, and Heidi Heilmann. Software-
Migration in der Praxis. dpunkt Verlag GmbH, Heidelberg, 2010.

[Tal09] El-Ghazali Talbi. Metaheuristics: From Design to Implementa-
tion. Wiley Series on Parallel and Distributed Computing. John
Wiley & Sons Inc., Hoboken, 2009.

[Tim04] Ingo J. Timm. Dynamisches Konfliktmanagement als Verhaltenss-
teuerung Intelligenter Agenten. DISKI. Akademische Verlagsge-
sellschaft Aka, Berlin, 2004.

[TLS09] Ingo J. Timm, Andreas D. Lattner, and René Schumann. Reflec-
tion and norms: Towards a model for dynamic adaptation for mas.
In Guido Boella, Pablo Noriega, Gabriella Pigozzi, and Harko Ver-
hagen, editors, Normative Multi-Agent Systems, Dagstuhl Semi-
nar Proceedings, Dagstuhl, Germany, 2009. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany.

296 Bibliography

[TMD+06] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David
Stavens, Andrei Aron, James Diebel, Philip Fong, John Gale, Mor-
gan Halpenny, Gabriel Hoffmann, Kenny Lau, Celia Oakley, Mark
Palatucci, Vaughan Pratt, Pascal Stang, Sven Strohband, Cedric
Dupont, Lars-Erik Jendrossek, Christian Koelen, Charles Markey,
Carlo Rummel, Joe van Niekerk, Eric Jensen, Philippe Alessan-
drini, Gary Bradski, Bob Davies, Scott Ettinger, Adrian Kaehler,
Ara Nefian, and Pamela Mahoney. Stanley: The robot that won
the darpa grand challenge. Journal of Field Robotics, 23(9):661 –
692, 2006.

[TMD09] Richard N. Taylor, Nenad Medvidovic, and Eric Dashofy. Software
Architecture: Foundations, Theory, and Practice. John Wiley &
Sons, 2009.

[TS08] Thomas Timmermann and René Schumann. An approach to solve
the multi depot vehicle routing problem with time windows (md-
vrptw) in static and dynamic scenarios. In Proceedings of the
22. Workshop Planen, Scheduling und Konfigurieren, Entwerfen
(PuK 2008), Kaiserslautern, 2008.

[TS09] Ingo J. Timm and René Schumann. Performance measurement
of multiagent systems: Towards dependable mas. In Proc. of the
2009 Spring Simulation Multiconference ADS, BIS, MSE, MSEng,
volume 41 of Simulation Series, pages 177–184, San Diego, Cali-
fornia, USA, 2009. SCS.

[TSH06] Ingo J. Timm, Thorsten Scholz, and Otthein Herzog. Emerging
capabilities in intelligent agents for flexible production control.
Advanced Engineering Informatics Journal, 20(3):247–259, 2006.

[VHL03] Guilherme E. Vieira, Jeffrey W. Herrmann, and Edward Lin. Re-
scheduling manufacturing systems: A framework of strategies,
policies, and methods. Journal of Scheduling, 6(1):39–62, 2003.

[VM02] Julita Vassileva and Chhaya Mudgal. Negotiation with incom-
plete and uncertain information: Trading help in a distributed
peer help environment. In Simon Parsons, Piotr Gmytrasiewicz,
and Michael Wooldridge, editors, Game-Theoretic and Decision-
Theoretic Agents, Multiagent Systems, artificial societies, and sim-
ulated organizations, pages 337–354. Kluwer Academic Publishers,
Boston, 2002.

Bibliography 297

[VSL+10] Ante Vilenica, Jan Sudeikat, Winfried Lamersdorf, Wolfgang
Renz, Lars Braubach, and Alexander Pokahr. Coordination in
multi-agent systems: A declarative approach using coordination
spaces. In Jörg P. Müller and Paolo Petta, editors, In Proceedings
of International Workshop From Agent Theory to Agent Imple-
mentation (AT2AI-7), Vienna, Austria, 2010.

[VV06] Paul Verstraete and Paul Valckenaers. Towards cooperating plan-
ning and manufacturing execution systems. In INCOM, 2006.

[VVB+06] Paul Verstraete, Paul Valckenaers, Hendrik Van Brussel, Karuna
Hadeli, and Bart Saint Germain. Multi-agent coordination and
control testbed for planning and scheduling strategies. In Fifth
international joint conference on Autonomous agents and multia-
gent systems, pages 1451 – 1452, Hakodate, Japan, 2006.

[WCDH00] Robert Ian Whitfield, Graham Coats, Alex H. B. Duffy, and Bill
Hills. Coordination approaches and systems - part i: A strategic
perspective. Research in Engineering Design, 12:48 – 60, 2000.

[WCW05] Chun-Chin Wei, Chen-Fu Chien, and Mao-Jiun J. Wang. An ahp-
based approach to erp system selection. International Journal of
Production Economics, 96:47–62, 2005.

[Wee03] Mathijs de Weerdt. Plan Merging in Multi-Agent Systems. PhD
thesis, Delft University of Technology, 2003.

[Wei99] Gerhardt Weiß, editor. Multiagent systems: a modern approach
to distributed artificial intelligence. MIT Press, Cambridge, Mas-
sachusetts, 1999.

[WF05] Ian H. Witten and Eibe Frank. Data Mining. Practical Machine
Learning Tools and Techniques. Morgan Kaufmann Series in Data
Management Systems. Morgan Kaufmann, 2nd edition, 2005.

[WGP03] Tom Wagner, Valerie Guralnik, and John Phelps. Tæms agents:
Enabling dynamic distributed supply chain management. Journal
of Electronic Commerce Research and Applications, 2003.

[Wöh02] Günter Wöhe. Einführung in die Allgemeine Betriebswirtschaft-
slehre. Verlag Franz Vahlen, München, 21. edition, 2002.

[WH06] Tom De Wolf and Tom Holvoet. Design patterns for decentralised
coordination in self-organising emergent systems. In Sven A.

298 Bibliography

Brueckner, Salima Hassas, Márk Jelasity, and Daniel Yamins,
editors, Engineering Self-Organising Systems: Proceedings of the
4th InternationalWorkshop, ESOA 2006, volume 4335 of Lecture
Notes in Artificial Intelligence, pages 28 – 49, Hakodate, Japan,
2006. Springer.

[WHR09] Cees Witteveen, Wiebe van der Hoek, and Nico Roos. Con-
currently decomposable constraint systems. In Lars Braubach,
Wiebe van der Hoek, Paolo Petta, and Alexander Pokahr, editors,
Multiagent System Technologies (MATES 2009), Lecture Notes in
Artificial Intelligence (LNAI), pages 153 – 164, Hamburg, 2009.
Springer.

[WHS07] Gerhard Wäscher, Heike Haußner, and Holger Schumann. An
improved typology of cutting and packing problems. European
Journal of Operational Research (EJOR), 183:1109 – 1130, 2007.

[WJ95] Michael Wooldridge and Nick R. Jennings. Intelligent agents:
Theory and practice. Knowledge Engineering Review, 10:115–152,
1995.

[WJ05] Gerhardt Weiß and Ralf Jakob. Agentenorientierte Softwareen-
twicklung. Springer Verlag,, Berlin, Heidelberg, New York, 2005.

[WJK00] Michael Wooldridge, Nicholas R. Jennings, and David Kinny. The
gaia methodology for agent-oriented analysis and design. Au-
tonomous Agents and Multi-Agent Systems, 3(3):285–312, 2000.

[Woo99] Michael Wooldridge. Intelligent agents. In Gerhard Weiss, editor,
Multiagent Systems: a modern approach to distributed artificial
intelligence, pages 27 – 77. MIT Press, 1999.

[Woo09] Michael Wooldridge. An Introduction to Multi Agent Systems.
John Wiley & Sons Ltd, West Sussex, 2nd edition, 2009.

[WRZN06] Peer-Oliver Woelk, Holger Rudzio, Roland Zimmermann, and
Jens Nimis. Agent.enterprise in a nutshell. In Stefan Kirn, Otthein
Herzog, Peter Lockemann, and Otto Spaniol, editors, Multiagent
Engineering, International Handbooks on Information Systems,
pages 73–90. Springer, Berlin, 2006.

[WW06a] Cees Witteveen and Mathijs de Weerdt. Multi-agent planning
for non-cooperative agents. In Edmund H. Durfee and David J.
Musliner, editors, Proceedings of the AAAI Spring Symposium

Bibliography 299

on Distributed Plan and Schedule Management, pages 169 –170.
AAAI Press, 2006.

[WW06b] Jan Wörner and Heinz Wörn. Benchmarking of multiagent sys-
tems in a production planning and control environment. In Ste-
fan Kirn, Otthein Herzog, Peter Lockemann, and Otto Spaniol,
editors, Multiagent Engineering: Theory and Applications in En-
terprises, International Handbook on Information Systems, pages
115 –134. Springer, Berlin et al, 2006.

[WWC02] Michael Wooldridge, Gerhard Weiss, and Paolo Ciancarini, ed-
itors. Agent-Oriented Software Engineering II, Second Interna-
tional Workshop, AOSE 2001, volume 2222 of Lecture Notes in
Computer Science. Springer, Berlin, 2002.

[WWWMM01] Michael P. Wellman, William E. Walsh, Peter R. Wurman, and
Jefferey K. MacKie-Mason. Auction protocols for decentralized
scheduling. Games and Economic Behavior, 35:271–303, 2001.

[Yok01] Makoto Yokoo. Distributed Constraint Satisfaction: Foundations
of cooperation in muti-agent systems. Springer, Berlin, 2001.

[ZLW+03] Chuqian Zhang, Jiyin Liu, Yat-wah Wan, Katta G Murty, and
Richard J Linn. Storage space allocation in container terminals.
Transportation Research Part B, 37:883–903, 2003.

[ZS99] Stephan Zelewski and Jukka Siedentopf. Ontology-based coordi-
nation of planning activities in networks of autonomous produc-
tion facilities using multi-agent systems. In Stefan Kirn and Math-
ias Petsch, editors, Workshop Intelligente Softwareagenten und
betriebswirtschaftliche Anwendungsszenarien, volume 2006, pages
77–84, Ilmenau, 1999.

[ZTP05] Olaf Zimmermann, Mark Tomlinson, and Stefan Peuser. Perspec-
tives on Web Services. Springer, Berlin, 2nd. edition, 2005.

300 Bibliography

Curriculum Vitae of René Schumann

Name René Schumann

Address Mümlingstr. 1
60599 Frankfurt am Main, Germany

Born 21.07.1978, Delmenhorst Germany

Marital status married, two children

Education
2004 Diploma in Computer Science

(Diplom Informatiker)
Department of Informatics,
Carl von Ossietzky University Oldenburg, Germany

1998 Abitur
(equiv. A-Level General Certificate of Education)
Commercial High School Delmenhorst, Germany

1995 Realschulabschluss (equiv. GCSE)
Realschule an der Königsbergerstr,
Delmenhorst, Germany

Work Experience
2007 - 2010 Research scientist,

Information Systems and Simulation group
Institute for Informatics
Goethe University Frankfurt am Main, Germany

2004 - 2007 Research scientist
R&D Division Business Information Management
OFFIS Institute for Informatics e.V.,
Oldenburg, Germany

301

302 Curriculum Vitae

A. Representation of conversation

protocols

In this section’s appendix we present the representation and transformation of the
iterative contract net protocol. In Section 4.3.2 (on page 142) the specification and
transformation of the contract net protocol has been discussed. The additional
aspect of the iterative contract net is the usage of loops that are necessary to spec-
ify the conversation protocol. In the following we discuss how the expressiveness
of the specification mechanism can be extended to express those constructs. With
this additional construct all other FIPA interaction protocols can be specified, as
well.

A.1. Textual Representation of the iterative contract net

protocol

In Listing A.1 (on page 304) we present the code that serves as a base’s for
generating of the graphical notation of the interaction, as well as the generation of
the conversation automata. The loop keyword in line 7 is also an UML keyword.
UML keywords are summarized, e.g., by Oestereich [Oes09, p. 364]. The opt

keyword is an UML keyword, as well. It represents an block that is optional
executed. We use the opt with a specific semantic here. By adding a condition
to the description of an edge within the loop statement we define the block that
has to be executed if the loop has been left, sending a message with the specific
performative as a message. Otherwise this block will not be activated.

A.2. Graphical Representation of the iterative contract net

The Listing A.1 can be transformed into the sequence diagram shown in Figure A.1
(on page 305) using the WebSequeneDiagram tool, already used for the generation
of the other sequence diagrams.

303

304 Representation of conversation protocols

Listing A.1 Textual description of a iterated contract net interaction protocol
[FIP02g]

1 participant Initiator

2 participant Participant

3 note left of Initiator: onetomany

4 note right of Participant: bilateral

5
6 Initiator -> Participant : cfp

7 loop

8 alt

9 Participant -> Initiator : reject

10 else

11 Participant -> Initiator : propose

12 alt

13 Initiator -> Participant : cfp

14 else

15 Initiator -> Participant : reject-proposal

16 else

17 Initiator -> Participant : accept-proposal

18 end

19 end

20 end

21 opt accept-proposal

22 alt

23 Participant -> Initiator : failure

24 else

25 Participant -> Initiator : inform

26 end

27 end

Representation of conversation protocols 305

Initiator

Initiator

Participant

Participant

onetomany

bilateral

cfp

reject

alt

propose

cfp

alt

reject-proposal

accept-proposal

loop

failure

alt

inform

opt [accept-proposal]

Figure A.1.: Generated sequence diagram of the iterated contract net

306 Representation of conversation protocols

Figure A.2.: Conversation automata for the iterated contract net, initiator role

Figure A.3.: Conversation automata for the iterated contract net, participant role

A.3. Representation of the generated automata

As pointed out before, the specification of the conversation protocol is translated
within the CoPS framework into conversation automata. A graphical representa-
tion of these automata are shown in Figure A.2 and Figure A.3. They are, as they
encode a similar protocol, very similar to the automata shown in the Figures 4.7
and 4.8 (on pages 146 and 146).

The only difference is the edge from the node labeled with 3 to the node labeled
with 1. This edge leads to a direct circle in the conversation graph, that has been
expressed by the loop statement.

B. Evaluation Coordination: The SPT

case study

B.1. Task specification

In the following we present the task specification of the practical course “Prak-
tikum Wirtschaftsinformatik und Simulation” 1 at the Goethe University, in the
winter term 2009/2010, held by René Schumann and Prof. Dr. Ingo J. Timm.

As the teaching language of this course was German, the description is in Ger-
man, as well. We give a brief English summary here.

Goods for each order has to be produced, packed and transported. A set of
orders is released from the ERP system. For each order the following data is
known name/id, product, quantity, customer location, due date for delivery and
contract penalty per time unit.

For each product a sequence of steps have to be performed. Each step needs
time using a resource. For each product it’s volume is known, too. For the given
orders a schedule has to be computed. If a goods has been finished it has to be
loaded on loading device. A loading device can store a specific volume of goods.
Due to limited space only a limited number of loading devices can be packed in
parallel. The loading equipment is transported using trucks for the transport to
the customers. It is possible to spilt an order into partly deliveries. An order
is accomplished if all goods specified in the orders have been delivered to the
customer. Transportation costs and duraration are linear and known. Trucks
have a limited capacity. They start and end their tour in the depot.

These planning systems have to be accessible as web services. Using agent
technology to implement an integrated planning system.

1Practical course Business Informatics and Simulation

307

Handout

Szenario:
Aufträge werden abgearbeitet / produziert und die erstellten Güter anschließend distributiert, d.h.
die Waren werden

• Erstellte (Scheduling Problem)

• Verladen (Packproblem)

• Transportiert (TSP)

Eine Menge von Aufträgen wird vom ERP freigegeben. Ein Auftrag umfasst dabei folgende Daten

• Name / ID

• Produkt

• Quantität

• Ziel / Kundenadresse

• Spätester Lieferterim

• Konventionalstrafe per Zeiteinheit

Das ERP kann zu jedem Zeitpunkt weitere Aufträge freigeben. Für jedes Produkt ist die Reihenfolge
von Schritten, benötigte Ressourcen und Zeiten sowie dessen Größe als Produktionswissen gegeben.
Für die gegebenen Aufträge (Produkt, Quantität) ist ein Plan u erstellen. Ab dem Zeitpunkt der
Fertigstellung sind die Waren zu verladen, da keine Bufferfläche zur Verfügung steht. Die Waren
werden auf Transporthilfsmittel geladen, die in ausreichender Menge zur Verfügung stehen. Ein
Transporthilfsmittel kann zu bis einer fixen Obergrenze beladen werden. DA der Verladeplatz
beschränkt ist, können nur eine bestimmte Anzahl an Transporthilfsmitteln parallel beladen werden.
Für den Transport stehen eine endliche Zahl von LKWs zur Verfügung. Ist ein Transporthilfsmittel
fertig beladen wird es auf einen LKW geladen und der LKW fährt zu den Kunden, die diese Waren
geordert haben. Teillieferungen sind möglich. Ein Auftrag ist abgeschlossen, wenn die Waren
vollständig ausgeliefert wurden. Die Informationen über die Transportwege liegen als vollständiger
Graph vor. Nachdem ein Fahrzeug alle Kunden angefahren hat, kehrt es zum Distributionszentrum
zurück und steht für die Durchführung weiterer Transporte zur Verfügung.

Meilensteine
Termin Meilenstein
21.10. Vorstellung des Planungsproblem
28.10. Vorstellung der Konzeption für die Lösung des Planungsprobleme
11.11. Abnahmetest des Planungssystems
18.11. Plattformauswahl für WebServices & Dokumentation: Grundlagen WebServices
2.12. Abnahme: Web Service für das Planungssystems

Anschließend werden die WebServices allen Teilnehmern zur Verfügung gestellt. Dies entspricht
einem zweiten Projekt bei dem unterschiedliche Ansätze des Integrated Planning realsiert werden
sollen. Hierzu wurden unterschiedliche Beratungsfirmen beauftragt, Vorschläge für die Integration
der Planungssysteme zu machen und Prototypisch zu realisieren.

Termin Meilenstein
9.12. Vorstellung eines Prototyps eines JADE Agenten
16.12. Vorstellung eines Prototyps für die Nutzung eines Planungs‐ WebServices mittels eines

Agenten
13.1. Vorstellung eines Prototyps für die Agentenkommunikation auf Basis von Ontologien
20.1. Vorstellung der Konzeption des Integrated Planning
10.2. Abnahmetest der Implementierung des Integrated Planning Challange(!)

310 Evaluation Coordination: The SPT case study

B.2. Overview of symbols and formulae for the SPT case

study

In the following the concepts, sets and function definition used in the SPT case
study are summarized.

Table B.1.: Listing of labels

labels description

r a resource
o = 〈r, d〉 an operation
p = 〈we, h,w, o1, . . . , on, <o〉 a product
c = 〈x, y〉 a customer
d = 〈p, q, c, d, e〉 an order
g = 〈p, d〉 a good
a = 〈o, g, r, s, e〉 an action
f = 〈t, g〉 a finished good
l = 〈m, h,w, d, c〉 a loading device
pl = 〈l,Fpl〉, with l ∈ L packed loading device
rl = 〈rt,Drl〉 ready to ship loading devices
t = 〈ca, s, co〉 a truck
tl = 〈t,RT tl〉 a truck load
la = 〈s, e, tl, t, tour〉 a loading assignment

Table B.3.: Listing of functions of labels
functions description

weight(p) = we weight of an product
quan(d) = q quantity of an order
customer(d) = c customer of order d
due(d) = d. due of the order
pen(d) = e penalty of the order
order(g) = d order of a good
product(g) = p product of a good
orderD(G, d) = |Gd| number of goods for d

Evaluation Coordination: The SPT case study 311

good(a) = g. good of action a

operation(a) = o operation of action a

start(a) = s start of action a

end(a) = e end of action a

resource(a) = r resource used for a
good(f) = g good of a finished good
ttime(f) = t time of finishing
order(f) = order(good(f)). order of f
cost(l) = c costs of loading device
items(pl) = Fpl payload of l
mweight(pl) = mw(l) maximal weight of payload of pl
available(pl) = max f∈Fplttime(f) time of availability of pl
rtime(rl) = rt earliest shipping time of rl
customer(rl) =

⋃
d∈Drl

customer(d) customers contained in rl

costLD(rl) = cost(l) costs of the device
orders(rl) = Drl orders contained in rl

capa(t) = ca capacity of a truck
speed(t) = s speed of a truck
costspU (t) = co costs per distance of a truck
noelements(tl) = |RT tl| number of elements of tl
elements(tl) = RT tl elements of tl
rtime(tl) = t time when tl can shipped
customers(tl) =

⋃
rt∈RT tl

customer(rt) customers contained in tl

orders(tl) =
⋃

rt∈RT tl
orders(rt) orders contained by tl

load(la) = tl truck load of loading assignment
truck(la) = t truck assigned to la
start(la) = s start of the loading assignment
end(la) = e end of the loading assignment
length(la) =

∑i=n−1
i=1 : dist(ci, ci+1) length of tour

duration(la) = x duration of a tour
serviceTime(c, la) = s + duration ′(la) service time of a customer
ft(d,LAd) = max

la∈LAd
serviceTime(c, la) finish time of d

penalty(d,LAd) = x penalty of d
rtdistance = x distance of round trip for d

312 Evaluation Coordination: The SPT case study

Table B.2.: Listing of used sets

sets description

R set of resources
O set of all operations
P set of products
C set of customers
D set of order
G set of goods
Gd set of goods for order d
A set of actions
Ag partial schedule for g
F set of finished goods
L set of types of loading devices
PL package plan
RL ready for shipment devices
T set of trucks
T L set of truck loads
LA set of loading assignments
LAt plan for a truck
LAd lms concerning an element from d

B.3. Data exchange format for the SPT case study

Schnittstellenbeschreibung
Version 0.3
Stand: 04.11.09
Bearbeiter: RS

Datenstrukturen:
Codierung: <Name:Typ>

Auftragsdaten:

<Name:String>,<Produkt:String>,<Quantität:Int>,<Ziel-x:Int>,<ziel-
y:Int>,<due-date:Int>,<penalty:Int>

Produktdaten:

<Name:String>,<Gewicht:Int>,<Hoehe:Int>,<Breite:Int>,<Tiefe:Int>,<op
1:String>,<op2:String>,...<opn:String>

Operationsdaten:

<Operations-ID:String>,<Resource:String>,<Dauer:Int>

Resourcendaten:

Die Verfügbarkeit von Ressourcen ist für jeden Tag gleich. Booleans werden mit 1/0 codiert.

<resource-label: String>,<available ze0:Boolean>,<available
ze95:Boolean>

Ladehilfsmitteldaten

Ladehilfsmittel werden im Folgenden mit Lhm abgekürzt.

<Typ:String>,<maxLoad:Int>,<Hoehe:Int>,<Breite:Int>,<Tiefe:Int>,<Kos
ten:Int>

Packinformationen

Es gilt das Beladefläche (Fläche für parallel zu bepackende Lhms) + Lagerfläche (Fläche für Warten
auf Transport) = Platz für Lhm gesamt

<Platz für Lhm gesamt:Int>,<#beladefläche:Int>,<#lagerfläche:Int>,<kosten pro zwischengelagertem
Produkt und Zeiteinheit:Int>

Transporteinheiten (LKW)

In der Entfernungsmatrix ist die Entfernung im Raum angegeben. Die Geschwindigkeit ist notwendig
um auf die Zeiteinheiten zu rechnen, die ein Transport benötigt.

<id:String>,<kapazität:Int>,<geschwindigkeit:Int>,<costperkm:Int>

Transportinformationen(Logistik)

<ServiceZeit:Int>, <Anzahl LKW: Int>

Scheduling2Packen

<Zeit:Int>,<produkt1:String>,<Auftrag:String>

Packen2Tour

<Bereitstellungszeit:Int>,<Auftrag1:String>,…,<Auftragn:String>

Evaluation Coordination: The SPT case study 315

B.4. Empirical Evaluation

Inst mean std. dev. # sol. mode min max p-value
Inst.
1

seq. 595.71 32.27 10 573 560 660
2.2e-16

imp. 529.64 62.53 14 485 418 626
Inst.
2

seq. 3111.36 517.37 9 2736 2701 3913
2.2e-16

imp. 2124.65 196.68 10 1995 1808 2437
Inst.
3

seq. 1074.79 69.54 3 1118 963 1120
2.2e-16

imp. 966.93 41.60 2 955 955 1112
Inst.
4

seq. 1194.56 119.55 20 1123 986 1609
2.2e-16

imp. 863.09 57.96 8 805 805 1014
Inst.
5

seq. 2193.43 78.36 8 2226 1998 2409
2.2e-16

imp. 1530.56 188.31 17 1558 1249 2284
Inst.
6

seq. 684 0.0 1 684 684 684
0.0

imp. 630 0.0 1 630 630 630
Inst.
7

seq. 990.35 52.93 3 970 970 1156
2.2e-16

imp. 901.13 59.35 6 963 832 963
Inst.
8

seq. 1908.11 658.31 9 1522 1217 4126
2.2e-16

imp. 1356.15 148.31 13 1217 1217 1730
Inst.
9

seq. 1507.43 90.21 3 1603 1417 1603
2.2e-16

imp. 1367.54 128.66 6 1430 1146 1728
Inst.
10

seq. 1511.43 34.07 2 1534 1460 1534
2.2e-16

imp. 1115.44 6.14 2 1115 1115 1202
Inst.
11

seq. 6374.06 2765.46 19 3931 3929 17787
2.2e-16

imp. 3334.91 813.35 9 3698 2237 4356
Inst.
12

seq. 1917.79 49.60 3 1959 1834 1959
2.2e-16

imp. 1689.60 85.75 36 1746 1338 2046
Inst.
13

seq. 19121.31 19469.86 43 10547 3233 64567
2.2e-16

imp. 4827.66 4152.75 23 2304 2226 13774
Inst.
14

seq. 2246.76 80.14 5 2189 2133 2355
2.2e-16

imp. 1743.11 54.85 4 1722 1722 1903
Inst.
15

seq. 1808.48 66.38 4 1849 1696 1868
2.2e-16

imp. 1647.81 132.90 52 1767 1387 1951
Inst.
16

seq. 5042.80 1183.09 2 4167 4167 6641
2.2e-16

imp. 2213.45 1033.75 23 1751 1344 3951
Inst.
17

seq. 10682.27 2848.29 7 7371 7371 14066
2.2e-16

imp. 3325.09 1234.67 10 4618 2037 4618
Inst.
18

seq. 1437.20 10.53 10 1444 1355 1445
2.2e-16

imp. 1263.67 263.27 80 1101 840 1786

316 Evaluation Coordination: The SPT case study

Inst.
19

seq. 3471.85 464.77 6 3793 2654 3793
2.2e-16

imp. 2988.75 179.65 35 3041 2416 4336
Inst.
20

seq. 9087.10 88.70 3 9132 8883 9132
2.2e-16

imp. 3132.51 1579.83 8 2380 1923 6246
Inst.
21

seq. 21005.15 1808.57 21 20609 12567 28957
0.9269

imp. 21139.91 2305.67 20 21784 13467 22900
Inst.
22

seq. 13583.39 166.9354 5 13487 13318 13806 9.51e-
10imp. 12533.87 5469.62 67 10110 8810 27510

Inst.
23

seq. 16309.17 2360.76 4 17562 12491 18071
2.2e-16

imp. 9756.19 745.83 22 9946 4455 9955
Inst.
24

seq. 75086.25 6108.25 27 80489 58339 80489
2.2e-16

imp. 54978.08 4180,80 35 52699 43146 60747
Inst.
25

seq. 38316.81 22267.95 193 34444 6304 120510
2.2e-16

imp. 11607.09 9875.49 115 6456 3949 55403
Inst.
26

seq. 45653.55 6975.75 57 44860 20491 61682
2.2e-16

imp. 16626.26 5871,65 54 11117 9836 24139
Inst.
27

seq. 79522.44 6713.10 4 85396 63423 85415
2.2e-16

imp. 60376.96 10331,11 8 70452 48239 70452
Inst.
28

seq. 45937 4046.83 18 44504 36589 52698
2.2e-16

imp. 35449.65 2895.73 3 37209 24733 37209
Inst.
29

seq. 48467.67 4836.44 4 47945 29157 47945
2.2e-16

imp. 16272.82 2804.93 9 16153 10670 22258
Inst.
30

seq. 53174.97 9858.04 57 65760 15773 66480
2.2e-16

imp. 16875.16 945,01 59 17910 14692 18452

C. Evaluation Coordination: The SCM

case study

C.1. Overview of symbols and formule for the SCM case

study

Table C.1.: Listing of labels

labels description

t a point in time (pit)
a a PAA
c a CA
nu = 〈An,t, c〉 a network
b a capability
j = 〈Bj〉 a job
v = 〈Jv, <v〉 a variant
p = 〈Vp〉 a product
o = 〈ν, p, a, e, d〉 an order
ji = 〈o,B,J1,J2e, d〉 an instantiated job
r = 〈ji, a, ν, e, d〉 a proposal
m = 〈ji, a1, a2, e, d〉 a commitment

Table C.2.: Listing of used sets
set description

A set of PAA
C set of CA
N set of networks
B set of label for capabilities
Ba capabilities of agent a
Ba,t,ν capabilities offered by a to ν
Bν,t capabilites of ν

317

318 Evaluation Coordination: The SCM case study

Jν jobs of a network
Vν variants of a network
Jpre,v,j predecessor of j in v

Jsuc,v,j successors of j in v

Pν products of ν
O set of orders
Oν,t orders of network ν
Oa,t orders of agent a
J ia,t instantiated jobs of a
J iν,t instantiated jobs of ν
AC
ji,t candidates of ji

Rji,t proposals of ji

Ra,t proposals of a
M set of commitments
Ma,t commitments of a
MRa,t commitments of representative a
Ma,ν,t commitments of a towards ν
Mν,t commitments of ν
Mo,t commitments belonging to o

Table C.3.: Listing of functions
function description

is member(a, ν) = {true, false} is a member of ν
n c(ν) = c CA of ν
n active(ν) = {true, false} is ν active
b hasa(Ba, t) = Ba,t capabilities for a
b allowa(Ba,t, ν, t) = Ba,t,ν capabilities a offers to ν
j b(j) = Bj capabilities required for j
j pre(v, j) = Jpre,v,j predecessor of j
j suc(v, j) = Jsuc,v,j successors of j
v j (v) = Jv jobs of v
p var(p) = Vp variants of p
o ν(o) = ν network of o
o rep(o) = a representative of o
o pro(o) = p product of o
o start(o) = e earliest start of o
o end(o) = d due date of o

Evaluation Coordination: The SCM case study 319

o active(o) = {true, false} is order active
o ref (o) = v variant for o
j inst(j, o) = ji instantiated job
j i o(ji) = o order ji

j i ν(ji) = o ν(j i o(ji)) network of ji

j i rep(ji) = o rep(j i o(ji)) representative of ji

j i b(ji) = B capabilities for ji

j i jd(ji) = J1 jobs ji depends on
j i js(ji) = J2 jobs depend on ji

j i start(ji) = e start of ji

j i due(ji) = d due of ji

j i t alc(ji, a, t) = {true, false} can ji allocated at a
r cand(p) = a candidate of r
r j i(p) = ji instantiated job of r
r start(r) = e start of r
r due(r) = d due of r
r sel(Rji,t, o) = r proposal to realize o
m pres(m) = a1 commitment presenter of m
m rec(m) = a2 commitment receiver of m
m j i(m) = ji instantiated job of m
m start(m) = e start of m
m due(m) = d due of m
m active(m) = {true, false} is commitment active
m gen(r) = m generates proposal m
m find(ji,Mν,t) = m finds m for ji

m comp(Mo,t, o) = {true, false} are commitments for o complete
o beg(Mo,t) = x beginning of o
o end(M o, t, d) = x end of o
m con(Mo,t, o) is set of commitments consistent
o eval(M o, t, o) = x evaluates execution of o
ν eval(Mν,t,Oν,t) = x evaluates performance of ν

320 Evaluation Coordination: The SCM case study

Table C.4.: Listing of events

event comment

decommit(m) the commitment m is decommited
change commitment(m,m′) request to change m into m′

task tender(ji) : a commitment for ji is searched
order new(d) a new order d arrives
order rem(d) remove order d
order change(d, d′) order d is changed to d′.
agent enter(n) agent a enters network n
agent leave(n) agent a leaves network n

D. Implementation and evaluation data

The code and its input and resulting output data is included in this thesis in
form of a CD. The content of the CD is presented briefly here. On the top level
directory of the CD one can find two folders, Implementation and Evaluation.

D.1. Implementation

In the Implementation all code used in the implementation and the CoPS frame-
work is provided. All programs are written in Java. The agent-based development
framework JADE is used for the implementation of agents, expect the agents of
the ABACO approach, that are implemented as Java threads. The code is at-
tached as an Eclipse project. Eclipse is a widely-used IDE, which has been used
here as well. This allows an easier access and structuring of the attached code.

In the Implementation folder exist three sub-folders CoPS, Case-Study1, and
Case-Study2. In the CoPS folder the implementation of the CoPS framework and
an additional study for the handling of multiple conversations among agents (in
the folder agent folder) can be found.

In the folder Case-Study1 the implementation of the planning systems for
scheduling (SchedulingSource folder), packing (packing-source folder) and
transportation (Tourenplanung-Src-2 folder) can be found. Moreover, the sce-
nario generator (SPT-Scenario-Generator folder) and the implementation of the
different coordination approaches (newCoordination folder), are attached.

In the folder Case-Study2 the implementation of the ABACO approach (ABACO
folder) and the competing heuristics, the scenario generator, and the generator
for the MPL files (heuristic folder) can be found. The ABACO approach needs
an MySQL database and additional system libraries that can be found in the
ABACO project folder as well. Detailed instructions for the needed localization
of the ABACO approach can be found in the README file in the project folder.

D.2. Evaluation

In the Evaluation folder on the top-level of the CD the input data and resulting
outputs used in the evaluation are provided. All data is provided in form of

321

322 Evaluation Coordination: The SCM case study

text files. Included are also the R-scripts, diagrams, and Excel files used for the
statistical evaluation of the data. For the second case study the input and output
files of the MPL Modeling System are provided, additionally.

For each case study one sub-folder can be found. For the first case study,
presented in Section 5 the input and output data is provided in folder eval-part1.
Data for the second case study (Section 6) is organized in folder eval-part2.

	Acknowledgement
	Zusammenfassung
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivation and goal of this study
	Motivating example: Container terminal management
	Context, scope, and findings of this study
	Organization of this study

	Foundations and principles
	The case studies
	Production scheduling and distribution of goods
	Supply chain management

	Planning, Scheduling and Optimization
	Planning, scheduling and optimization: definitions and models
	Examples for other planning problems
	Dynamic environments
	Dependencies among planning problems

	Distributed Artificial Intelligence
	Agents: From reflex to intelligent agents
	Agent Architecture
	Internal state representation
	Multiagent system: foundation for emergence

	State of the art
	Coordination
	Coordination concepts in business administration
	Coordination in DAI
	Coordination concepts in game theory

	Agent-oriented Software Engineering
	Surveying agent-oriented software engineering
	Reuse of existing methodology in AOSE

	Identification of research gap and goals of this thesis

	The ECo-CoPs approach
	Characteristics of coordination problems and techniques
	The ECo Process
	Modeling the scenario
	Coordination requirements
	Selection of appropriate coordination mechanisms
	Implementation of coordination mechanisms
	Evaluation of coordination mechanisms

	CoPS process and framework
	Concept of the coordination process in the CoPS approach
	CoPS process
	CoPS framework

	Engineering coordination: The SPT case study
	The SPT case study
	Modeling the scenario
	Coordination requirements
	Selection of appropriate coordination mechanisms
	Implementation of coordination mechanisms
	Evaluation of coordination mechanisms
	Criticisms of the ECo-CoPS approach

	Engineering Coordination: The SCM case study
	The SCM case study
	Modeling the scenario
	Coordination requirements
	Selection of appropriate coordination mechanisms
	Implementation of coordination mechanisms
	Evaluation of coordination mechanisms
	Criticism of the ECo-CoPS approach

	Conclusion and Perspectives
	Bibliography
	Curriculum Vitae
	Representation of conversation protocols
	Textual Representation of the iterative contract net protocol
	Graphical Representation of the iterative contract net
	Representation of the generated automata

	Evaluation Coordination: The SPT case study
	Task specification
	Overview of symbols and formulae for the SPT case study
	Data exchange format for the SPT case study
	Empirical Evaluation

	Evaluation Coordination: The SCM case study
	Overview of symbols and formule for the SCM case study

	Implementation and evaluation data
	Implementation
	Evaluation

