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SUMMARY

The publication of the first Erwinia amylovora genome 
has greatly accelerated and advanced our understanding of 
the fire blight organism. With the availability of multiple 
genomes, it quickly became clear that chromosomal diver-
sity is relatively small, and that most of the pan-genome 
variance is attributable to plasmids. In addition to gaining 
a more detailed view of the known virulence factors, ge-
nomics has enabled new breakthrough studies of virulence 
regulation mechanisms. Furthermore, several niche adap-
tation and ecological fitness factors, though not directly 
influencing virulence, have been studied in greater detail, 
providing novel insights into the physiology and ecology 
of the bacterium. Additionally, application of genome data 
has yielded improved diagnostics and enabled population 
studies at different geographic scales.

Keywords: intraspecies diversity, niche adaptation, type 
III secretion system, diagnostics.

INTRODUCTION

Fire blight, the first plant disease to be described to be 
caused by a bacterium, is able to kill complete pome fruit 
orchards within a single growing season (Vanneste, 2000). 
After being detected first in North America, the disease 
has subsequently spread to New Zealand, Europe, North 
Africa, the Middle East, Russia, Central Asia and South 
Korea (Bonn and van der Zwet, 2000; Djaimurzina et al., 
2014; Myung et al., 2016). This rapid and seemingly un-
controllable spread may reflect the relative weakness of its 

hosts to the disease, but also the strengths of the pathogen 
(Malnoy et al., 2012).

The yearly economic losses to commercial pome fruit 
orchards caused by fire blight infections are enormous 
(Duffy et al., 2005). A major line of research has thus been 
to start studying the genetics of its causative agent, Erwinia 
amylovora, with the aim to understand why the organism 
is this effective as a pathogen. Whereas in the past indi-
vidual virulence factors were identified that largely or part-
ly explained the pathogenicity (Oh and Beer, 2005), the 
era of genomics after the introduction of next generation 
sequencing devices has given us the chance of expand-
ing this research to the genome scale. In contrast, efforts 
made to study the effect of the pathogen on the apple tree 
(Baldo et al., 2010; Kamber et al., 2016; Sarowar et al., 2011; 
Vrancken et al., 2013) are still in its early phase of under-
standing, mainly due to the complexity of the apple tree 
as a system.

Although another E. amylovora genome was sequenced 
as well, the first genome of E. amylovora to be published 
was the genome of the French isolate CFBP 1430 (Smits 
et al., 2010b). Though of most economical importance, E. 
amylovora was not the first species in the genus to be fully 
sequenced, as the genomes of Erwinia tasmaniensis Et1/99 
(Kube et al., 2008) and Erwinia pyrifoliae DSM 12163T 
(Smits et al., 2010a) were published before. This review 
intends to update current knowledge of the biology of E. 
amylovora that has been obtained since its genome was 
published in 2010. We will particularly discuss genomic 
insight of this pathogen in the larger context of its ecology, 
evolution and population genetics.

INTRA- AND INTERSPECIES DIVERSITY OF 
E. AMYLOVORA AT THE GENOMIC LEVEL

E. amylovora genomics. Currently, fifteen genome se-
quences of E. amylovora strains are publically available, of 
which three isolates are reported to specifically be patho-
genic on Rubus spp. (Mann et al., 2013; McManus and 
Jones, 1995; Smits et al., 2014b; Starr et al., 1951). Many 
further genome sequences are still unpublished, including 
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additional Rubus isolates. Though largely biased to Spi-
raeoideae strains belonging to the economically and more 
worldwide spread CRISPR group I (Rezzonico et al., 2011), 
this collection of genomic data allows the conclusion that 
there is only a limited diversity within this cosmopolitan 
CRISPR group, with sequence identities between two 
strains exceeding 99.99% (Smits et al., 2010b) as dem-
onstrated by the presence of less than 2000 SNPs in the 
complete dataset of CRISPR I strains (T.H.M. Smits, un-
published information). On the other hand, the diversity 
among the genomes of Rubus-infecting strains is substan-
tially higher (Mann et al., 2013), while also more diverse 
sequences of Spiraeoideae isolates have been obtained 
(T.H.M. Smits, unpublished information).

A major factor contributing to genomic diversity in 
Spiraeoideae-infecting isolates of E. amylovora is the pres-
ence of different plasmids in individual strains (Ismail et 
al., 2014; Llop et al., 2012). This has an influence on the 
total pan-genome of E. amylovora, leading to the impres-
sion that the pan-genome of the species is open. On the 
other hand, comparing only the chromosomal sequences, 
the pan-genome of Spiraeoideae-infecting isolates appears 
nearly closed (Mann et al., 2013).

Intraspecies diversity of E. amylovora. Many studies 
have already observed that it is relatively easy to separate 
Rubus-infecting isolates, currently reported only from USA 
and Canada (Braun and Hildebrand, 2005; Heimann and 
Worf, 1985; Ries and Otterbacher, 1977; Starr et al., 1951), 
from Spiraeoideae-infecting isolates, constituting the only, 
most certain differentiation at the subspecies level for E. 
amylovora. Initial studies have unequivocally shown that 
Rubus-infecting isolates are unable to infect Spiraeoideae 

hosts and vice versa (Braun and Hildebrand, 2005; Hei-
mann and Worf, 1985; Ries and Otterbacher, 1977; Starr 
et al., 1951). Molecular studies based on housekeeping 
genes (Rezzonico et al., 2012b), rep-PCR, ribotyping (Mc-
Manus and Jones, 1995), ITS (McGhee et al., 2002b) and 
CRISPR analysis (Rezzonico et al., 2011) allowed a fast 
assay to identify new strains. However, despite the long 
history of E. amylovora isolation, only few Rubus-infecting 
isolates are currently described and available (Rezzonico 
et al., 2012b).

Using the genome sequences, first efforts were under-
taken to resolve the genetic base of the differential host 
range of Rubus-infecting isolates. Rezzonico et al. (2012b) 
have observed three major groups of Rubus-infecting 
isolates, each of them currently supported by a genome 
sequence (Mann et al., 2013). When comparing the ge-
nomes to those of Spiraeoideae-infecting isolates, several 
small-scale differences were observed. The gene cluster 
encoding lipopolysaccharide biosynthesis genes in Rubus-
infecting isolates is substantially different from that of 
Spiraeoideae-infecting isolates (Rezzonico et al., 2012b). 
Furthermore, Rubus-infecting isolates contain a larger IT 
region (Mann et al., 2012). Analysis of the Hrp pathoge-
nicity cluster showed that there are differences in single 
genes that exceed the average genome variation. Especially 
the eop1 gene, which shares 99% sequence identity within 
the Rubus-infecting isolates, has only 67% sequence iden-
tity to that of Spiraeoideae isolates. Deletion of eop1 from 
both Spiraeoideae-infecting and Rubus-infecting strains 
does not affect virulence. However, the addition of the 
Rubus eop1 to Spiraeoideae-infecting strains reduced their 
virulence on apple shoots, indicating that eop1 can func-
tion as a host specificity determinant (Asselin et al., 2011). 

Fig. 1. Mauve alignment of the (draft) genomes of E. amylovora CFBP 1430, E. pyrifoliae DSM 12163T, E. tasmaniensis Et1/99T, 
E. piriflorinigrans CFBP 5888T, E. persicina CFBP 3622T and E. billingiae Eb661T. All strains have plasmids of different sizes.
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The Rubus-infecting isolates contain a 20 kb NRPS/PKS 
gene cluster close to the CRISPR regions (Rezzonico et al., 
2011), which has eroded in the genome of Spiraeoideae-
infecting isolates (Mann et al., 2013).

Interspecies comparisons. When comparing the 
genomes of E. amylovora to those of the closely related 
pathoadapted Erwinia spp. (E. pyrifoliae, E. tasmaniensis 
and Erwinia piriflorinigrans) (Kamber et al., 2012; Smits et 
al., 2013), it was observed that E. amylovora has the small-
est genome size (3.8 Mb; Fig. 1) (Smits et al., 2010b). This 
is even more evident when comparing to the genome of 
the epiphyte Erwinia billingiae Eb661 (Kube et al., 2010). 
Although members of the closely related genus Pantoea 
may also have chromosomes as small as 4 Mb (Kamber et 
al., 2012), they appear not to have undergone a pathoadap-
tation process. On the other hand, the inclusion of several 
large gene clusters encoding proven and putative pathoge-
nicity factors (Table 1), like diverse secretion systems and 
a second flagellum in the genomes of the pathoadapted 
species (Kamber et al., 2012; Smits et al., 2010b; Zhao and 
Qi, 2011), clearly shows that significant genome reduction 
must have taken place during the pathoadaptation process, 
as the size of the additional gene clusters sums up to more 
than 1 Mb, while the overall size of the genomes did not 
increase. Based on the comparison of the core genomes 
of Pantoea spp. and E. billingiae Eb661 (Kamber et al., 
2012), it was hypothesized that the latter species has not 
undergone pathoadaptation, supporting the conclusion of 
a more generalist behavior for this species (Mergaert et 
al., 1999). With the addition of more genomes of this ge-
nus including the recently described novel species Erwinia 
gerundensis (Rezzonico et al., 2016), it was observed that 
pathoadaptation might have been induced several times 
during the shaping of the genus, as other species like Er-
winia tracheiphila also show a pathoadaptation pattern 
(Shapiro et al., 2016).

Plasmids. In recent years, the sequencing of multiple 
genomes has led to the discovery of many new plasmids 
(Table 2). Whereas the plasmid pEA29 is almost ubiquitous 

(Bühlmann et al., 2014; Mann et al., 2013), other plasmids 
appear to be accessory material. Up to now, none of the 
plasmids has been shown to have an influence on the viru-
lence of E. amylovora strains (Ismail et al., 2014; Llop et 
al., 2011). The novel plasmids are most probably derived 
from the general environmental plasmid pool, which has 
also been used as base for plasmids conferring multidrug 
antibiotic resistance to clinical isolates (Mann et al., 2013; 
Zhang et al., 2016; Zhu et al., 2009).

Plasmid pEA29 only shows diversity at few loci. It con-
tains the short sequence repeat that was used for early 
strain typing (Table 1) (Kim and Geider, 1999; Schnabel 
and Jones, 1998), but also a second repeat, which allows 
the separation of larger populations (Bühlmann et al., 
2014). Within the genome dataset, one isolate was included 
to have the streptomycin (Sm) resistance cassette in the 
transposon Tn5393 on pEA29 (Chiou and Jones, 1993). 
Additional diversity is present in the pEA29 plasmids from 
Rubus-infecting strains (McGhee et al., 2002a).

New plasmids have been identified within the frame 
of the genome sequencing, like pEA30 and several small 
plasmids from Rubus-infecting isolates (Mann et al., 2013) 
(Table 2). The plasmid pEI70, currently only detected in 
Europe, contains a non-integrative ICE-element (Llop et 
al., 2011). Plasmid pEA68, isolated from Poland and Bel-
gium (Ismail et al., 2014), is member of a plasmid family 
that includes the large plasmid pEA72 from strain ATCC 
49946 (Sebaihia et al., 2010), but also a 78 kb plasmid 
found in a Mexican and a Californian strain (Ismail et al., 
2014; Smits et al., 2014a, 2014b). Within the set of unpub-
lished sequences, many other plasmids were found, that 
will be described in the near future (T.H.M. Smits, un-
published information).

NICHE ADAPTATION FACTORS

Bacteria are able to adapt to environmental conditions 
at a certain location. This niche specialization process 
can be supported by the loss of functionalities involved 
in global survival in the environment (Moran, 2002), and 

Table 1. Selected factors analyzed by comparative genomic approaches in a variety of genome-sequenced Erwinia spp. Only a sin-
gle genome sequence is reported for each species. A “+” indicates the presence of the factor, a “−” indicates absence. The exopoly-
saccharides (EPS) are differentiated as amylovoran-like (AMS) or stewartan-like (CPS), while CRISPR systems are differentiated 
as Escherichia coli-type cas genes (Ecoli) or Yersinia pestis-type cas genes (Ypest).

Species and strain Hrp T3SS Inv/Spa 
T3SS

EPS-type Desferri-
oxamine

CRISPR pEA29-like 
plasmid

References

E. amylovora CFBP 1430 + + AMS + Ecoli + (Smits et al., 2010b)
E. pyrifoliae DSM 12163T + + AMS + Ecoli, Ypest + (Smits et al., 2010a)
E. tasmaniensis Et1/99T + + CPS + Ypest − (Kube et al., 2008)
E. piriflorinigrans CFBP 5888T + + AMS + Ypest + (Smits et al., 2013)
E. persicina CFBP 3622T − − CPS − − + Smits et al., unpublished
E. billingiae Eb661T − − CPS + − − (Kube et al., 2010)
E toletana DAPP-PG735 − − CPS − − − (Passos da Silva et al., 2013)
E. tracheiphila PSU1 + + CPS − − − (Shapiro et al., 2016)
E. gerundensis EM595T − − CPS − − (+) (Rezzonico et al., 2016)
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may also include the acquisition of novel genetic material 
(Casadevall, 2008). Niche adaptation factors may include 
virulence factors (i.e. factors that are involved in the gain 
of access to and survival in host systems, factors that dam-
age the host or factors that cause dysregulation of the host 
cellular function) and environmental fitness factors (Hill, 
2012). The latter group includes products and strategies 
involved in attachment, macro and micronutrient acquisi-
tion, colonization and microbe-host communication strate-
gies. The available genome sequences of E. amylovora have 
allowed the examination of individual niche adaptation 
factors, involved in virulence, regulation and adaptation. 
Below, we summarize recent findings.

The Hrp Type III Secretion System (T3SS). Most 
Gram-negative bacterial pathogens rely on type III se-
cretion systems (T3SS) for the interaction with their 
host (Tampakaki et al., 2010). The T3SS forms a needle 
structure that is able to penetrate the host cell wall and 
to deliver effector proteins directly into the cytosol of the 
eukaryotic host cell. The T3SSs in Yersinia, Escherichia, 
Salmonella and Shigella have been extensively studied as 
they have potentially devastating health effects on human 
life (Naum et al., 2011). In non-host plants, the T3SSs of 
plant pathogens cause a hypersensitive response, a collapse 
of plant tissue several hours after inoculation followed by 
tissue necrosis as a result of programmed cell death, as 
a reaction to incompatible pathogens (Tampakaki et al., 
2010).

In E. amylovora, the Hrp T3SS is one of the most im-
portant virulence factors and is absolutely required for 
pathogenicity (Malnoy et al., 2012; Oh and Beer, 2005). 
Comparable systems are also present in the other patho-
adapted Erwinia spp. (Table 1) (Kamber et al., 2012) and 
the plant pathogen Pantoea stewartii subsp. stewartii 
DC283 (Roper, 2011), that might have a common origin 
(Kirzinger et al., 2015). In contrast to previous reports (Oh 
and Beer, 2005), novel insights from genomics have shown 

that the Hrp T3SS was independently introduced from 
the so-called IT region (Mann et al., 2012). This latter re-
gion constitutes a remnant of an Integrative Conjugative 
Element (ICE), for which both border regions could be 
identified outside the Hrp T3SS region in the genome of 
E. piriflorinigrans CFBP 5888T (Smits et al., 2013).

Many plant pathogens have a whole suite of T3SS effec-
tors, that are selected based on the individual host range 
of the organism (Grant et al., 2006; Hajri et al., 2009). E. 
amylovora has, in contrast, only eight effectors. The genes 
of four effectors are located within the Hrp T3SS gene 
cluster (Smits et al., 2010b): harpins HrpN and HrpW, the 
host-range limiting factor Eop1 and the essential effector 
DspA/E (Asselin et al., 2011; Malnoy et al., 2012; Oh and 
Beer, 2005; Smits et al., 2010b). The four remaining effec-
tors are spread over the genome, and are, in contrast to the 
previous set, only present in E. amylovora while not in the 
other pathoadapted Erwinia species (Malnoy et al., 2012; 
Smits et al., 2011a). One of the latter proteins, the effec-
tor AvrRpt2, is a cysteine protease with most similarity to 
the Pseudomonas syringae AvrRpt2 (Zhao et al., 2006). It 
was shown that a single nucleotide polymorphism in the 
E. amylovora avrRpt2 gene is responsible to overcome the 
Malus × robusta 5 resistance to fire blight (Vogt et al., 2013), 
yet it does only affect but not break the resistance of Malus 
fusca (Emeriewen et al., 2015). Genomic sequencing has 
shown that this mutation is present in a few natural isolates 
from the USA and Mexico (Smits et al., 2014a, 2014b; Vogt 
et al., 2013).

Exopolysaccharides – Amylovoran. Bacterial polysac-
charides include lipopolysaccharide (LPS), lipooligosac-
charide (LOS) and extracellular polysaccharide (EPS). 
The EPS is described to play a role in the plant-pathogen 
interactions, but also in maintaining convenient conditions 
for pathogen growth (de Pinto et al., 2003). The produc-
tion of the EPS amylovoran is the another most impor-
tant virulence factor for E. amylovora involved in biofilm 

Table 2. Plasmids described in E. amylovora strains.

Plasmid 
name

Original strain(s) Size 
(kb)

Description Replicon 
type

Mobilization 
type

Reference(s)

pEA29 Nearly all strains 28 Standard plasmid, thiOSGF IncF None (McGhee and Jones 2000; Smits et al., 2010b)
pEA34 NW1/1 35 pEA29 with Tn5393, strAB IncF None (Chiou and Jones 1993; Smits et al., unpublished)
pEA68 692 68 mobAB, pil, tra IncFIIA P13 (Ismail et al., 2014)
pEA72 ATCC 49496 71 mobAB, pil, tra IncFIIA P13 (Sebaihia et al., 2010)
pEA78 LA637 78 mobAB, pil, tra IncFIIA P13 (Ismail et al., 2014; Smits et al., 2014b)
pEL60 LebB66 60 mobAB, tra IncL/M P13 (Foster et al., 2004)
pEI70 ACW56400 65 ICE-like plasmid IncF C1 (Llop et al., 2011)
pEU30 UTRJ2 30 virB IncL/M P6 (Foster et al., 2004)
pEA30 Ea495 30 virB IncU P4 (Mann et al., 2013)
pEA8.7 CA3R 8.7 Identical to RSF1010, strAB, 

sul2
IncQ Q1 (Palmer et al., 1997)

pEAR5.3 ATCC BAA-2158 5.3 ColE1 P5 (Mann et al., 2013)
pEAR4.2 ATCC BAA-2158 4.2 ColE1 P5 (Mann et al., 2013)
pEA1.7 IH-3 1.7 Unknown None (McGhee et al., 2002b)
pEA2.8 IL-5 2.8 Cryptic plasmid, not found 

with resequencing the strain
ColE1 None (Mann et al., 2013; McGhee et al., 2002b)
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formation (Koczan et al., 2009) and defense against an-
timicrobial compounds (Ordax et al., 2010). Deletion of 
the biosynthetic ams genes or the regulatory rcs genes in 
E. amylovora leads to a loss of virulence (Bernhard et al., 
1996; Koczan et al., 2009; Wang et al., 2009). The mono-
mer structures of amylovoran and the related EPS stew-
artan of P. stewartii subsp. stewartii show some significant 
differences (Schollmeyer et al., 2012), that are also reflected 
in the genetic complement of these two strains and their 
sequenced relatives (Table 1) (Kamber et al., 2012). Recent 
studies have shown that two additional gene clusters are 
present in E. amylovora that are required for the export 
of alternative monomers to the periplasm (Langlotz et al., 
2011; Wang et al., 2012c). Based on a complementation 
study, the additional genes were shown to be reduced ac-
tive in E. amylovora, whereas these genes are required for 
the major structure of stewartan (Wang et al., 2012c).

Regulation of virulence factors. A regulatory cascade 
is responsible for the regulation of the Hrp cluster of E. 
amylovora (Khan et al., 2012; Zhao, 2014). Molecular ge-
netic studies of E. amylovora pathogenesis demonstrated 
that expression of the hrp-T3SS genes is activated by the 
master regulator HrpL, a member of the exocytoplasmic 
functions (ECF) subfamily of sigma factors (Wei and Beer, 
1995). Subsequently, HrpL binds to the hrp box in the pro-
moter regions of structural genes and effectors of the T3SS 
and allows transcription of these genes (Oh and Beer, 
2005; Wei et al., 2000). The regulon of HrpL includes all 
hrp and hrc genes and five putative T3SS effectors. As eight 
genes displayed apparent indirect HrpL regulation, it was 
suggested that the HrpL regulon of E. amylovora encom-
passes more than just T3SS regulation and that HrpL may 
communicate with other signaling networks to coordinate 
gene expression during pathogenesis (McNally et al., 2012). 
In E. amylovora, hrpL transcription is in turn controlled by 
sigma factor 54 (RpoN), which along with its modulation 
protein YhbH and an integration host factor (IHF), inter-
acts with enhancer binding protein (EBP) HrpS to trig-
ger the onset of T3SS (Ancona et al., 2014; Lee and Zhao, 
2016; Lee et al., 2016). Furthermore, it has been recently 
reported that the linear nucleotide second messengers, 
guanosine tetraphosphate (ppGpp) and guanosine penta-
phosphate (pppGpp), are also essential for the expression 
of the T3SS and virulence by activating the RpoN-HrpL 
alternative sigma factor cascade (Ancona et al., 2015; Zhao 
and Sundin, 2017).

Two-component signal transduction systems (TCSTs), 
consisting of a histidine kinase (HK) and a response 
regulator (RR), represent a major paradigm for signal 
transduction in prokaryotes. TCSTs play critical roles in 
sensing and responding to environmental conditions, and 
in bacterial pathogenesis. Genome-wide screening of two-
component system identified four groups of mutants which 
exhibited varying levels of amylovoran production in vitro 
(Zhao et al., 2009b). Among them, the Rcs phosphorelay 

system is an essential regulatory system for pathogenicity 
and gene expression of virulence factors, especially of amy-
lovoran (Wang et al., 2009, 2011). Microarray studies iden-
tified a large set of genes that are regulated by this system. 
While RcsB acts as a positive regulator, the sensor kinase 
RcsC positively controls ams cluster expression in planta 
but negatively in vitro (Wang et al., 2012b). In addition, the 
EnvZ/OmpR and GrrS/GrrA (GacS/GacA) systems, two 
widely distributed TCSTs in gammaproteobacteria, nega-
tively co-regulate amylovoran biosynthesis and T3SS in E. 
amylovora (Li et al., 2014). It has recently been demonstrat-
ed in E. amylovora that negative regulation of virulence by 
GrrS/GrrA acts through the non-coding small regulatory 
RNA csrB/rsmB sRNA, which binds to the RNA-binding 
protein CsrA/RsmA and neutralizes its positive effect on 
T3SS gene expression and amylovoran production (An-
cona et al., 2016). Thus, CsrA plays a central role in E. 
amylovora virulence and in positive regulation of T3SS and 
amylovoran (Ancona et al., 2016).

Genetic screening also identified other global regula-
tory genes for amylovoran biosynthesis, including AmyR, 
Lon protease, and H-NS (Eastgate et al., 1995; Hildebrand 
et al., 2006; Wang et al., 2012a). The novel regulator AmyR 
(EAMY_1304) plays a role of a negative regulator in the 
regulation of virulence factors including amylovoran bio-
synthesis (Wang et al., 2012a). Mutation of the amyR gene 
leads to a mucoid phenotype. In a background of amy-
lovoran-overproducing mutants in other two-component 
signal transduction genes, overexpression of amyR leads to 
a strong reduction of amylovoran production (Wang et al., 
2012a), showing that this regulator acts at a different level.

Two other global pathways controlling virulence regula-
tion in E. amylovora have recently been discovered. The 
second messenger compound cyclic di-GMP (c-di-GMP) 
also extensively regulates the major pathogenesis systems 
in E. amylovora including the T3SS, amylovoran biosyn-
thesis, biofilm formation, and motility (Edmunds et al., 
2013). Cyclic di-GMP impacts transcriptional regulation 
of target genes through binding to protein regulators or 
to riboswitches; in addition, binding to c-di-GMP can 
functionally activate proteins (Römling et al., 2013). Intra-
cellular levels of c-di-GMP in E. amylovora are controlled 
through the actions of five diguanylate cyclase enzymes 
that synthesize c-di-GMP and three phosphodiesterase en-
zymes that degrade the molecule (Edmunds et al., 2013). 
High intracellular levels of c-di-GMP in E. amylovora pro-
mote amylovoran synthesis and biofilm formation while 
simultaneously inhibiting the T3SS.

The second global regulatory pathway involves non-
coding regulatory small RNAs (sRNAs) that require the 
RNA chaperone Hfq for stability and functional activa-
tion. An E. amylovora hfq mutant exhibits severely-reduced 
virulence, most likely due to a reduction in translocation 
of DspA/E into host cells and other impacts on proteins 
secreted by the T3SS (Zeng et al., 2013). In addition, amy-
lovoran production is significantly reduced in the hfq 
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mutant, and cells exhibit a hyper-attaching phenotype 
(Zeng et al., 2013). E. amylovora encodes at least 40 Hfq-
dependent sRNAs, and deletion of at least three of these 
(arcZ [ryhA], hrs21, rprA) results in significant reductions 
in virulence in an immature pear model (Zeng et al., 2013). 
Additional Hfq-dependent sRNAs including hrs6 and om-
rAB significantly affect motility and amylovoran produc-
tion (Zeng and Sundin, 2014).

It is clear that the regulatory networks for E. amylovora 
virulence factors are highly complex and may be far more 
complex than currently known. Understanding how all of 
the varied regulatory pathways of E. amylovora intersect 
and respond to environmental signals is the next challenge 
in the development of a complete model of pathogenesis 
in this organism.

Inv-Spa-type T3SSs. Additionally to the Hrp T3SS, E. 
amylovora also contains two Inv/Spa-type T3SSs (Smits et 
al., 2010b), a situation also observed in E. piriflorinigrans 
CFBP 5888T (Table 1) (Smits et al., 2013). Only one of these 
is present in E. pyrifoliae, while the second is also partially 
present in E. tasmaniensis Et1/99 (Kamber et al., 2012). 
As these T3SS were proven to not play a role in host plant 
pathogenicity (Zhao et al., 2009a) and resembled the Inv/
Spa T3SS of the insect symbiont Sodalis glossinidius str. 
morsitans (Dale et al., 2001; Kirzinger et al., 2015), they 
were hypothesized to play a potential role in the inter-
action with insects (Smits et al., 2010b). This hypothesis 
is supported by a recent study describing that the Inv/
Spa-type T3SS in P. stewartii subsp. stewartii DC283 is 
required for persistence in its flee beetle vector Chaetocne-
ma pulicaria (Correa et al., 2012). Although a close vector 
relationship is not recognized with E. amylovora, it would 
be worth examining the potential roles for Inv/Spa T3SSs 
in the E. amylovora life cycle.

Autoinduction and quorum-sensing. In Gram-negative 
bacteria, two major quorum-sensing systems are known, 
that are defined by the chemical structure of the autoin-
ducer (AI) signal molecule (Miller and Bassler, 2001). For 
both systems, a conclusive support of their presence is 
lacking for E. amylovora. Previous reports on the presence 
of the gene pair expRI, encoding the enzyme responsible 
for the production of the AI-1 signal N-acylhomoserine 
lactone (AHL) and its cognate receptor in E. amylovora 
(Molina et al., 2005; Venturi et al., 2004), were not con-
firmed by the annotation of multiple genomes within the 
species (Mann et al., 2013; Smits et al., 2010b).

Whereas the genomes of E. tasmaniensis Et1/99 and 
E. piriflorinigrans CFBP 5888T encode orthologs of the 
Pectobacterium carotovorum expRI genes (Sabag-Daigle 
and Ahmer, 2012; Smits et al., 2011a, 2013), the absence of 
the expRI genes in E. amylovora can be explained by the 
replacement of the region between the smpB and tsx genes, 
which contains the quorum-sensing genes in E. tasmani-
ensis Et1/99 and E. piriflorinigrans CFBP 5888T, through 

a flagellar gene cluster in E. amylovora CFBP 1430 and E. 
pyrifoliae DSM 12163 (Smits et al., 2011a, 2010b). Indeed, a 
BlastN search with a previously sequenced DNA fragment 
(GenBank Accession No. AJ841286) purportedly spanning 
the expRI genes in E. amylovora (Venturi et al., 2004) re-
sulted in high sequence identity within the genomes of 
Pectobacterium spp., but no hits to E. amylovora. Further-
more, in silico analysis on all the sequenced E. amylovora 
genomes did not yield any viable annealing site neither 
for the EAM1/EAM2 primer pair described in the latter 
work nor for the AHLea-fw/-rev primer pair designed by 
(Molina et al. (2005), yet both primer sets showed a perfect 
match with the complete genome sequence of Pectobac-
terium carotovorum SCC3193 (GenBank Accession No. 
CP003415). This suggests that in both studies, the posi-
tive amplification may have been the outcome of a con-
tamination with Pectobacterium spp. DNA in the template 
used for the PCR. In addition to these inconsistencies on 
a genomic basis, phenotypic tests gave rise to contradic-
tory results. The purported AHL signal was identified to 
be either N-(3-oxo-hexanoyl)-homoserine lactone (3-oxo-
C6-HSL) or N-(3-hydroxy-hexanoyl)-homoserine lactone 
(3-OH-C6-HSL) in the earlier paper using thin layer chro-
matography and reporter strain E. coli JM109 (pSB401) 
(Venturi et al., 2004). Yet neither aforementioned HSLs 
could be detected by reporter strain Chromobacterium 
violaceum CV026 (Burton et al., 2005), which yielded a 
positive signal in the experiments performed by Molina 
et al. (2005). To add to the confusion, the above results 
could not be confirmed by a subsequent work that failed 
to detect any endogenous AHL production either using C. 
violaceum CV026 or by in trans expression of green fluo-
rescent protein after transformation of E. amylovora with 
reporter plasmid pJBA132 (Jakovljevic et al., 2008).

Despite the confusion about the nature of the AHL 
produced, a gene encoding a LuxR-type transcriptional 
activator with sequence identity to the cell division con-
trol protein SdiA of E. coli and Salmonella typhimurium 
(Wang et al., 1991) could be confirmed in the genome of 
E. amylovora CFBP 1430 (Smits et al., 2010b). Directly 
downstream of sdiA, a luxI homolog encoding a putative 
AI-1 synthesis protein that is related to the AHL synthase 
PhzI of Pseudomonas chlororaphis was found (Smits et al., 
2010b). Phylogenetic analysis suggests that PhzI may be the 
long-lost cognate signal synthase for SdiA. The sdiA/phzI 
gene pair is present in all sequenced Erwinia and Pantoea 
spp., whereas a deletion event has apparently removed the 
luxI homolog from the remaining members of the Entero-
bacteriaceae analyzed so far (Sabag-Daigle and Ahmer, 
2012). Deletion of both sdiA and phzI in E. amylovora 
showed that these genes are not involved in virulence, am-
ylovoran production and motility (Zhao et al., 2009b). The 
identity between E. amylovora PhzI and Pantoea ananatis 
RhlI (KKW51348) is 65% at protein level. In the latter 
species, both C6-HSL and 3-oxo-C6-HSL were shown 
to be produced and detected by the parallel EanI/EanR 
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system (Morohoshi et al., 2007), which is not present in E. 
amylovora, and mutation of RhlI was found not to affect 
the ability of P. ananatis to produce short-chain (C4 to C8) 
HSLs (Sibanda et al., 2016). Altogether, these results may 
point to the fact that the autoinducer produced by RhlI in 
E. amylovora is not 3-oxo-C6-HSL, but a not yet identi-
fied long-chain HSL. In any case, the question remains 
unsettled given the contradictory results obtained so far.

In several Vibrio spp., the LuxS protein was shown to 
catalyze the production of the AI-2 autoinducer molecule 
controlling a second quorum sensing system (Schauder et 
al., 2001). Since the luxS gene was found to be widespread 
among vast subgroups of the bacterial kingdom, it was hy-
pothesized that AI-2 may constitute the basis of a univer-
sal microbial chemical language among different species. 
However, LuxS has also a primary metabolic role in the 
activated methyl cycle (AMC), which is involved the gener-
ation of S-adenosyl-L-methionine (SAM), the major methyl 
donor in the cell, and the recycling of methionine by de-
toxification of S-adenosyl-L-homocysteine (SAH) (Winzer 
et al., 2003). The direct AI-2 precursor 4,5-dihydroxy-2,3-
pentadione (DPD) is formed as a by-product of the AMC 
and in Vibrionales, this signal is detected by the two-com-
ponent sensor kinase LuxPQ. In some species belonging 
to the families of Enterobacteriaceae, Pasteurellaceae 
and Bacillaceae (Rezzonico and Duffy, 2008; Xavier and 
Bassler, 2005), the task of detecting the AI-2 signal is car-
ried out by an ABC-transporter, the Lsr-receptor complex. 
Most of the species carrying the latter are either pathogens 
or endosymbionts of animals, or live in closed ecosystems 
in tight association with plants or fungi (Rezzonico et al., 
2012a). A thorough approach based on bioinformatics was 
not able to detect any ortholog of known AI-2 receptors 
in the genomes of currently sequenced Erwinia spp. (Rez-
zonico and Duffy, 2008; Rezzonico et al., 2012a). This re-
inforced the results of a previous work (Rezzonico and 
Duffy, 2007), where no significant AI-2 production was 
detected in wild-type strains of E. amylovora and where 
mutational analysis could not identify any quorum-sensing 
related effects in co-culture experiments of wild-type and 
luxS negative strains. The phenotype of the luxS-mutant 
strain showed rather that the primary role of LuxS is lim-
ited to the AMC and the methionine metabolism (Rez-
zonico and Duffy, 2007; Smits et al., 2010b). Additionally, 
after deletion of the luxPQ genes in E. amylovora, the de-
letion mutant was not showing a different phenotype for 
virulence, amylovoran biosynthesis and motility than the 
wild-type strain (Zhao et al., 2009b).

Type VI secretion systems. Unlike first reports (Hood 
et al., 2010; Schell et al., 2007), the type VI secretion sys-
tems (T6SS) are now regarded as interaction factors rather 
than virulence factors (Jani and Cotter, 2010; Schwarz et 
al., 2010). E. amylovora contains a complete (T6SS-1) and 
a partial (T6SS-2) T6SS gene cluster (Smits et al., 2010b), a 
situation also found in other genome-sequenced Erwinia 

and Pantoea spp. (De Maayer et al., 2011). E. amylovora 
contains a third T6SS gene cluster (T6SS-3), which only has 
counterparts in E. billingiae Eb661 and several individual 
strains of Pantoea species, including Pantoea agglomerans 
E325 (De Maayer et al., 2011; Sarris et al., 2012). In dif-
ferent liquid media, all three T6SS of E. amylovora CFBP 
1430 were shown to be transcribed (Kamber et al., 2011).

When deleting the serine kinase (EAMY_3011) in the 
T6SS-1 of E. amylovora Ea1189, there was no influence on 
virulence, but in contrast to the wild-type strain, motil-
ity was irregular (Zhao et al., 2009b). Similar results were 
obtained when deleting two of the T6SS core genes in E. 
amylovora CFBP 1430, independent if the deletion is in 
T6SS-1 or T6SS-3 (Kamber et al., 2017). Transcriptome 
analysis showed differential expression of membrane-
related functions, including the T3SSs, iron acquisition, 
chemotaxis, flagellar, and fimbrial genes, but the deletion 
of either or both T6SS clusters had only a minor effect on 
the virulence in planta (Kamber et al., 2017).

Pathogen self-defense. There is a dynamic interaction 
between pathogenic microorganism and their competitors 
(Duffy et al., 2003). Phytopathogens are able to defend 
themselves against influences by other bacteria and to the 
reaction of the plant to their presence. Although largely 
unexploited, self-defense is a common mechanism for phy-
topathogens. Especially the reaction of the phytopathogen 
to biological control organisms has received little attention.

On apple flowers, the main entry site for E. amylovora, 
many bacterial species can be found, several of which are 
close relatives to the pathogen (Pusey et al., 2009). The 
members of the genus Pantoea are known to be effective 
agents of biocontrol, which is exerted through several 
mechanisms: competition for space and nutrients (Smits 
et al., 2011b; Wilson and Lindow, 1994), acidification of the 
habitat (Pusey et al., 2008, 2011) or antibiotic production 
(Stockwell et al., 2002; Vanneste et al., 1992). It is not ex-
actly known how E. amylovora reacts to these mechanisms.

Coexistence on flowers is possible when the available 
nutrient sources are shared. Organisms living in a similar 
niche also will have a similar nutrient utilization pattern. 
Competition for nutrient sources by biocontrol strains as a 
mechanism has been hypothesized to depend upon a high 
niche overlap index (NOI) (Wilson and Lindow, 1994). 
There is a large overlap in substrate utilization patterns 
between E. amylovora and biocontrol strain Pantoea vagans 
C9-1, with a NOI of 0.96 (Smits et al., 2011b). Compared 
to the Pseudomonas fluorescens A506, the NOI was only 
0.71 (Stockwell et al., 2010). In fact, E. amylovora is able 
to compete efficiently with some Pantoea strains when it 
is present on the flower before the biocontrol strain is ap-
plied (Giddens et al., 2003).

Multidrug resistance transporters. Bacterial mul-
tidrug efflux pumps, primarily mediated by secondary 
transporters that typically utilize the proton motive force, 
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are common protection tools as a reaction to foreign com-
pounds (Nikaido and Pagès, 2012). In E. amylovora, sev-
eral multidrug efflux transporters have been characterized 
up to now. The AcrAB transport system (EAMY_1008 – 
EAMY_1009) is a protein complex that protects the patho-
gen from naturally occurring phytoalexins (Burse et al., 
2004a). Mutation of acrB in E. amylovora dramatically re-
duced tolerance to apple phytoalexins as well as virulence 
on apple plants. AcrAB confers ecological benefits dur-
ing colonization of the host plant and, thus, influences the 
virulence of E. amylovora on apple. The transporter NorM 
(EAMY_1684) confers resistance to several hydrophobic 
cationic antibiotics (Burse et al., 2004b). Mutation of norM 
in E. amylovora significantly reduced tolerance to toxins 
produced by epiphytic P. agglomerans strains isolated from 
apple and quince blossoms. Therefore, NorM is involved 
in the counteraction of biocontrol mechanisms on the host 
plant. The RND family efflux pump AcrD (EAMY_2508) 
displays only a limited range of amphiphilic compounds 
that are exported, and there is no effect on virulence 
(Pletzer and Weingart, 2014a). Two three-component RND 
transporters, MdtABC (EAMY_2262 – EAMY2264) and 
MdtUVW (EAMY_0683 – EAMY_0685), are involved in 
resistance to plant antimicrobials like tannin or flavonoids 
(Pletzer and Weingart, 2014b). Mutants are impaired in 
their virulence, as their ability to multiply in apple root 
stocks was reduced. The different multidrug resistance 
genes are under the regulation of different sets of global 
stress regulators, including BaeR and CpxR (Pletzer et al., 
2014, 2015), indicating that the ecological role is coupled 
to environmental signals.

Streptomycin resistance. The use of the aminoglyco-
side streptomycin has long been the only alternative to ef-
fectively reduce fire blight (Stockwell and Duffy, 2012). 
E. amylovora wild type strains are highly sensitive to this 
antibiotic, and are unable to grow on media amended with 
concentrations of streptomycin as low as 8 μg ml−1 (Chiou 
and Jones, 1995). Nevertheless, two different mechanisms 
of resistance have developed in areas that allowed a rela-
tively uncontrolled use of the antibiotic (McManus and 
Jones, 1994).

Chromosomal resistance is acquired due to spontane-
ous single nucleotide mutations in the rpsL gene, which 
encodes the S12 protein included in the 30S small ribo-
somal subunit, and result in bacteria that are capable to 
grow at very high streptomycin concentration exceeding 
16,000 μg ml−1 (M. Escursell, unpublished information). 
These mutations cause a substitution of the existing ly-
sine either at position 43 or 88 of the protein that prevents 
inhibitory binding of streptomycin while preserving the 
functionality of the ribosome (Chiou and Jones, 1995). In 
vitro competition assays have demonstrated that among 
all the possible mutations examined, only the substitu-
tion of lysine by arginine at position 43 (K43R) results 
in a resistant variant with fitness comparable to that of 

the wild-type under conditions mimicking the flower en-
vironment when the selective pressure is relieved, which 
explains its prevalence in the field (M. Escursell, unpub-
lished information).

The other resistance mechanism consists in the trans-
posable element Tn5393 containing the gene cluster strA-
strB, which encodes a phosphotransferase that enzymati-
cally inactivates streptomycin. This transposon is common 
to several Gram-negative bacteria and in E. amylovora 
was found to be incorporated either in plasmid pEa29 or 
pEa34 (Chiou and Jones, 1993). These strains display a 
lower resistance to streptomycin (approximately 1000 μg 
ml−1) with respect to the one carrying the chromosomal 
mutation and are thus termed medium resistant (Chiou 
and Jones, 1995). Tn5393-mediated streptomycin resistance 
has now been reported in three geographically distinct lo-
cations in the United States (Förster et al., 2015; McGhee 
et al., 2011; Tancos and Cox, 2016; Tancos et al., 2016). 
Concerns that this type of resistance may be horizontally 
transferred to the target bacteria via formulations con-
taminated by the resistance genes of the antibiotic pro-
ducer organism used to prepare them have been cleared by 
showing their absence in a range of commercial products 
(Rezzonico et al., 2008).

Biosynthesis of sulfur-containing compounds. In re-
cent years, several reports on the biosynthesis of sulfur-
containing compounds have been published. Whereas 
the function of glutathione is well-known as a redox com-
pound, the newly identified compound ovothiol A could 
very well have a similar function in E. amylovora (Seebeck, 
2013). The compound has a very acidic thiol group that can 
serve as a one-electron donor and has a redox potential in 
the range of that of protein disulfide isomerases. Therefore, 
it might be an efficient scavenger for radicals and peroxides 
(Braunshausen and Seebeck, 2011), which are the result 
of the primary defense of apple after challenge with the 
pathogen. The gene encoding the first step in ovothiol A 
biosynthesis has been identified as ovoA (EAMY_0003), 
and encodes an iron(II)- and oxygen-dependent sulfoxide 
synthase (Mashabela and Seebeck, 2013).

The biosynthesis of the cytotoxic compound 6-thio-
guanine has been reported already long ago for E. amy-
lovora (Feistner and Staub, 1986), but it is only recently 
that the biosynthetic cluster (EAMY_1020 – EAMY_1024) 
has been characterized (Coyne et al., 2013; Wensing et al., 
2014). Its role in virulence is contradictory: Coyne et al. 
have defined a key role for 6-thioguanine in pathogenicity 
(Coyne et al., 2013), whereas Wensing et al. reported that 
the compound was not affecting virulence (Wensing et al., 
2014). The exact biochemical pathway of 6-thioguanine 
biosynthesis still remains to be elucidated.

Siderophores. Although an essential nutrient for liv-
ing organisms, iron is only limited available in plants. To 
obtain sufficient iron for microbial growth, many bacteria 
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have the ability to produce low-molecular compounds that 
are able to chelate iron at high affinity (Expert et al., 1996), 
while other bacteria have the ability to capture these iron 
siderophores for their own iron metabolism (Deiss et al., 
1998). As competition for iron influences the virulence 
both in human and plant pathogens, siderophores are re-
garded as a virulence factor (Franza and Expert, 2013).

E. amylovora produces the siderophore desferrioxamine 
E (Feistner et al., 1993) as a reaction to low-iron conditions. 
Initially also interpreted as a virulence factor (Expert et 
al., 1996), it soon showed out that desferrioxamine uptake 
does not affect virulence towards apple, but that desferri-
oxamine uptake mutants are less able to colonize floral tis-
sues and to cause necrosis (Dellagi et al., 1998). This indi-
cates that desferrioxamine biosynthesis and uptake rather 
play a general role in colonization, and are as such rather 
to be regarded as niche adaptation factors in E. amylovora.

With the description of the E. amylovora genome, the 
biosynthetic pathway for desferrioxamine E could be fully 
elucidated (Smits et al., 2010b). Comparative genomic stud-
ies have shown that several genome-sequenced species of 
Erwinia and Pantoea have the dfoJAC gene cluster for bio-
synthesis of desferrioxamine E (Smits and Duffy, 2011). As 
the iron ferrioxamine uptake is also present in these organ-
isms, they would be able to compete for iron-ferrioxamine 
with E. amylovora. With the sequencing of more genomes, 
it has become evident that not all Erwinia species have this 
potential (Table 1).

CRISPR and phage defense. The CRISPR system con-
fers acquired heritable immunity against mobile nucleic 
acid elements in prokaryotes, limiting phage infection and 
horizontal gene transfer of plasmids (van der Oost et al., 
2009). CRISPR regions are composed by highly conserved 
direct DNA repeats that are interspersed by unique, simi-
larly sized spacers acquired when the cell is challenged 
with foreign nucleic acids. Together with the associated 
Cas proteins, the system confers immunity against in-
fection by foreign DNA or RNA by a mechanism based 
on the strict identity between the incorporated CRISPR 
spacer and the nucleic acid target (Brouns et al., 2008). 
Several spacers sequences pointing to known plasmids or 
phages of Enterobacteriaceae were found in the CRISPR 
regions of a series of worldwide isolates of E. amylovora 
(McGhee and Sundin, 2012; Rezzonico et al., 2011). Nev-
ertheless, several novel phages isolated from fruit produc-
tion environments in Switzerland displayed variable host 
ranges with respect to the different E. amylovora strains 
analyzed (Born et al., 2011), even if the latter carried identi-
cal CRISPR profiles (Rezzonico et al., 2011). This suggests 
that there is at least an additional mechanism that regu-
lates phages resistance in E. amylovora. Given the high ge-
netic homogeneity of the isolates analyzed, this mechanism 
could reside more in the regulation of certain genes rather 
than in a specific interaction with the phages, as demon-
strated by the preference of certain viruses for either high 

or low exopolysaccharide producing bacterial hosts (Roach 
et al., 2013), which can be mediated for example through 
the production of a phage depolymerase that enables enzy-
matic bacterial capsule removal (Born et al., 2014).

APPLIED GENOMICS FOR PHYTOSANITARY 
CONTROL STRATEGIES

Detection and diagnostics. The current standard for 
detection of E. amylovora in Europe is described in the 
EPPO protocol, a collection of established and validated 
protocols (European and Mediterranean Plant Protection 
Organization – EPPO, 2004). Since then, a large variety 
of methods improving the detection was developed. A 
lateral-flow immunostrip assay was developed for specific 
detection of the fire blight bacterium in symptomatic plant 
material that can be applied directly on the field (Braun-
Kiewnick et al., 2011). Other methods use molecular tech-
niques. Optimization of standard PCR protocols [reviewed 
in Powney et al. (2011)] and use of quantitative PCR 
methods [reviewed in Dreo et al. (2012) and Pirc et al. 
(2009)] are now available and validated. A recent addition 
to this is the use of loop-mediated isothermal amplifica-
tion (LAMP), for which three different primer sets based 
on different targets are developed (Bühlmann et al., 2013; 
Moradi et al., 2012; Temple and Johnson, 2011).

An important factor is the design of primers for such 
method. With the availability of genome sequences of a 
broader range of Erwinia spp. and other genera, it is now 
possible to design assays that are highly specific for E. amy-
lovora (Bühlmann et al., 2013). This avoids the detection of 
closely related species yielding false positive reactions. A 
good example is the widely used primer set for detection 
of the SSR on plasmid pEA29 of E. amylovora (Llop et 
al., 2000), the target of which is also present in the plas-
mid pEP36 of E. pyrifoliae (Jock et al., 2003). Even the 
highly specific LAMP primer set designed by Moradi et 
al. (2012) using six primers is able to detect E. pyrifoliae 
(Bühlmann et al., 2013); a fact that could easily be avoided 
by checking the primer set against the genome of the latter 
species (Smits et al., 2010a). It is thus important to use the 
maximum of information contained in a genome and to 
combine it with the maximum number of closely related 
species to validate the specificity of a primer set.

Monitoring and epidemiology. Efficient phytosanitary 
and control measures must be built upon epidemiological 
understanding of the fire blight disease cycle. Measures 
aimed at the protection of commercial pome fruit objects 
entail identification and containment of inoculum reser-
voirs, both from existing orchards as well as from alternate 
host plants from the environment. Recently, new genom-
ics-insights have presented an opportunity to confirm iden-
tity of otherwise indistinguishable pathogen isolates (Smits 
et al., 2010b). The development of this knowledge into 
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source-tracking methods (Bühlmann et al., 2013; Rezzo-
nico et al., 2011) has the potential to improve the successful 
implementation of phytosanitary strategies by focusing on 
removal of only true inoculum sources, while preventing 
unneeded clearing of old-growth landscape trees, native 
forest species or unrelated orchards (Gusberti et al., 2015).

Fire blight infection during the blossoming period is 
a main driver of epidemic development and spread. Ap-
plication of control products to flowers reduces infection, 
limits pathogen inoculum build-up, and reduces available 
inoculum for vector dissemination (Johnson and Stock-
well, 1998). Correct timing is critical for efficacy and can 
be implemented by performing the applications in accor-
dance with established fire blight forecasting models such 
as Maryblyt or Cougarblight (Smith and Pusey, 2010; van 
der Zwet et al., 1994). Through the input of weather and 
phenological variables, it is possible to predict pathogen 
population growth and inform when potential infection 
days are likely to occur. However, in current models the 
presence of the pathogen in a given location is only pre-
sumed, so that the use of detection methods for routine 
flower monitoring to quantify the actual level of inoculum 
has the potential to reduce unneeded treatments thereby 
improving the efficacy of control applications (V. Stock-
well, unpublished information).

Closely related pathogens that cause symptoms similar 
to fire blight but are not included in current phytosanitary 
regulations have recently been described from East Asia 
(E. pyrifoliae and Erwinia uzenensis) (Kim et al., 1999; Mat-
suura et al., 2012) and Spain (E. piriflorinigrans) (Palacio-
Bielsa et al., 2012). Whether these occur more widely in 
Europe or pose an emerging phytosanitary threat is largely 
unstudied, a lack due to of efficient methods for detecting 
these bacteria in plant samples.

Source-tracking and regulatory strategies. E. amylovo-
ra is a relatively genetically homogenous bacterial species: 
only limited genotype groupings could be obtained across 
large geographic areas using the most currently available 
molecular methods like AFLP (Rico et al., 2004), rep-PCR 
(Rico et al., 2008), PFGE (Jock et al., 2002) or ribotyp-
ing (Donat et al., 2007; McManus and Jones, 1995). These 
methods are thus inadequate for discrimination among 
isolates within local populations or for source-tracking of 
inoculum reservoirs and outbreak origins. Recent diversity 
studies based on the genome sequence of E. amylovora 
CFBP 1430 (Smits et al., 2010b) have exploited the local di-
versity in clustered regularly interspaced short palindromic 
repeats (CRISPR). Sequence analysis of CRISPR repeat 
regions (CRR) showed that there is a larger diversity in 
Rubus-infecting isolates, but that also diversity exists (in 
the form of three major CRISPR groups) among Spirae-
oideae-infecting isolates from North America (McGhee 
and Sundin, 2012; Rezzonico et al., 2011), which is the 
geographic center of origin of the disease. However, there 
are hardly differences within European or Mediterranean 

isolates, leading to the conclusion that there was an evolu-
tionary bottleneck in the spreading of E. amylovora from 
North America, with only strains belonging to CRISPR 
group I (typical of the U.S. East coast) having spread to 
Europe and New Zealand in the 20th century (Rezzonico 
et al., 2011). A major disadvantage of this technique is the 
extensive amount of labor needed for sequencing the com-
plete CRRs, which can individually be as long as 6 kb and 
that may not contain any related repeat, thus requiring the 
design of ever-new primers to carry out a time-consuming 
spacer crawling strategy.

A possible alternative to CRISPR is the use of variable 
number tandem repeats (VNTRs), which are locations in 
the genome that are composed from short sequences that 
show variations in length between individuals. In E. amy-
lovora, comparison between the genomes of strains CFBP 
1430 and ATCC 49946 (Ea273) (Dreo et al., 2011; Smits et 
al., 2010b) revealed six suitable VNTRs that potentially 
show enough variability to be employed to analyze the di-
versity within local isolates of E. amylovora. With respect 
to CRISPRs, automation of multiple locus VNTR analysis 
(MLVA) is quite straightforward, e.g. in form of labeled 
fragment analysis, and can be applied to larger sets of iso-
lates providing insights into diversity, biogeography and 
phylogeny of the pathogen (Bühlmann et al., 2014).

Single nucleotide polymorphisms (SNPs) have the 
potential to offer the most detailed fingerprint for each 
strain and are thus the most promising features that can 
be used as unequivocal phylogenetic markers to pinpoint 
diversity in genetically monomorphic bacteria (Achtman, 
2008; Comas et al., 2009; Holt et al., 2010). As the costs of 
whole-genome sequencing and re-sequencing techniques 
is constantly decreasing (Logares et al., 2012), it is foresee-
able that the complete variome of hundreds of bacterial 
isolates will become readily accessible soon, thus making 
the mapping of SNPs the method of choice to study di-
versity within a species. In E. amylovora, a point mutation 
in the galE gene was able to distinguish isolates of North 
American origin from those of European/Mediterranean 
origin, but the analysis was based on a single SNP posi-
tion and the number of strains considered was very limited 
(Sauer et al., 2008). The first data available from sequenc-
ing 140 isolates of E. amylovora are promising, and will 
be published in due time (T.H.M. Smits, unpublished in-
formation), setting the stage for diversity studies through 
extensive SNP analysis.

CHALLENGES GOING FORWARD

The entry into the genomics era has facilitated major 
advancement on the knowledge of E. amylovora and re-
lated Erwinia spp. This has not only led to an improved 
understanding of the virulence factors (Kamber et al., 
2012; Smits et al., 2011a), but also now allows for com-
plete genome-wide regulation and proteomic studies 
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(Holtappels et al., 2016; McNally et al., 2012; Sarowar et 
al., 2011; Wang et al., 2012b; Wu et al., 2013). The devel-
opment of highly specific assays to detect E. amylovora 
in field samples (Bühlmann et al., 2013) and of source 
tracking assays (Bühlmann et al., 2014; McGhee and Sun-
din, 2012; Rezzonico et al., 2011) was only possible due 
to the knowledge gathered from the first fully sequenced 
genomes. Still, there is a lack of information on the epide-
miology of E. amylovora, for which the newly developed 
methods may deliver the molecular fundamentals. This 
increased knowledge will, together with improved under-
standing of the pathogen’s Achilles heel, ultimately lead to 
novel control strategies.
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