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Abstract

In this paper, we describe several deep learning ap-
proaches for Named Entity Recognition (NER) for
the case where only little annotated data is available.
We show that training a separate network per entity
greatly improves the precision of a network and trans-
fer learning on a different language or a partially anno-
tated corpus increases the F1-score by up to 7 points.
Our transfer learning system was evaluated in the CAp
2017 competition for Named Entity Recognition on
French tweets, where it achieved 5th place, obtaining
an F1-score of 50.05.

Keywords: Named Entity Recognition, Transfer
Learning, Partially Annotated Data, Conceptualisa-
tion

1 Introduction

Named Entity Recognition (NER) is an important
task in Natural Language Processing. Its goal is to
recognise entities such as names of people or loca-
tions. NER can be used in many different applica-
tions when new entities should be recognised with-
out relying on a rule based system. Today there are
state of the art F1-scores of around 92 points on En-
glish news texts [CN15]. For more complex domains
such as Twitter there is less information available,
and in the WNUT 2016 NER competition on En-
glish Twitter data the winners achieved an F1-score
of 52.41 [STR+16].

In this paper, we propose two different approaches
to improve Named Entity Recognition, both using the

same basic sequence labelling system described in Sec-
tion 2.1. The general idea is to use additional data
to improve the results. As recent research shows im-
provements when using transfer learning [YSC17], our
main approach is to use transfer learning in combina-
tion with the basic sequence labelling system. Further-
more we evaluate the use of automatically generated
partially annotated data. Finally, we also add an addi-
tional baseline, by training a separate model per entity
type as described in Section 2.3.

The performance of the different approaches is evalu-
ated using the French Twitter dataset of the CAp 2017
NER competition [LPB+17].

2 Model

2.1 Basic Sequence Labelling System

Network Our baseline system is a bidirectional Long
Short-Term Memory RNN [HS97] as previously used
in [CN15], which achieved state-of-the-art performance
for Named Entity Recognition on the English CoNLL
2003 [TKSDM03] corpus. Figure 1 shows an overview
of the system. For every word wi in a given sequence of
words w1:T , we first compute a feature vector, which is
the concatenation of all the features described in Sec-
tion 2.4. The resulting sequence of feature vectors v1:T
is then fed to a bidirectional LSTM. The output of both
the forward and backward LSTM are concatenated to
get o1:T , which get passed through a ReLU activation
function. We apply dropout [SHK+14] of 0.3 to o1:T .
To get the final tag probabilities, we pass o1:T through
a fully connected layer with softmax activation.
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Figure 1: BLSTM-CNN, baseline bidirectional LSTM model as in [CN15, CWB+11]

Training and Inference Since there are additional
restrictions on valid tag sequences (e.g. in BIO2 en-
coding an I-person tag cannot be followed by an I-
product tag), we employ the same strategy as described
in [CN15, CWB+11]. We use a matrix A, such that Ai,j
is the score of transitioning from tag i to tag j. The
Ai,j are initialized from a random uniform distribution
over the interval

[
− 1

2 ,
1
2

]
.

Let θ be the parameters of the network described
above. Let fθ,t,i (w1:T ) be the score the network
parametrized by θ outputs for tag i at time step
1 ≤ t ≤ T for the input sequence w1:T . The score
of a given sequence of tags i1:T is then computed as
the sum of the network and transitions scores:

S (i1:T ;w1:T , A, θ) =

T∑
t=1

(
Ait−1,it + fθ,it,t (w1:T )

)
We then compute the log-likelihood of the true label se-
quence y1:T by computing the softmax over all possible
label sequences:

logP (y1:T |w1:T , A, θ) =

S (y1:T ;w1:T , A, θ)− log
∑
∀j1:T

exp (S (j1:T ;w1:T , A, θ))

This can be computed efficiently using dynamic pro-
gramming. At inference time, we can use the

Viterbi algorithm to find the sequence with maximal
score [CWB+11, CN15].

We use the Adam [KB14] algorithm to optimize the
weights θ and A, with a learning rate of 0.003. The ex-
ponential decay rate for first moment estimates is set
to 0.9 and to 0.999 for second moment estimates. Ad-
ditionally, we perform gradient clipping [PMB12] with
norm constraint 10. For all experiments, we train the
systems for 10 epochs without early stopping.

2.2 Transfer Learning Architecture
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Figure 2: Overview of separated and shared network
weights of our transfer learning architecture.
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Our transfer learning approach is motivated by the
existence of a similar English corpus, WNUT 2016,
which is also based on Twitter data and has a large
overlap in entity types. Moreover, English and French
have a considerable amount of cognates, and we hope
to exploit this when transferring character level fea-
tures.

In order to augment the French data set with addi-
tional English training data, we use the cross-lingual
transfer model proposed in [YSC17]. We use separate
basic models, see Section 2.1, for both languages but
allow the weights for the character and character cap-
italization CNNs to be shared between them, see Fig-
ure 2. During training, we choose training samples i.i.d
from each language to update the language specific and
shared weights.

2.3 Separate Networks per Entity Type

As described in Section 3.1, we augment the data set
with partially annotated data. We want to study how
additional noisy data influences different entity types
separately, therefore we train a separate version of the
system in Section 2.1 for every entity type and aggre-
gate the results.

2.4 Features

Word Embeddings We use a word2vec model as
described in [MSC+13] to compute word embeddings.
For both French and English the skip-gram context
window length is 5 and the embedding dimension is
200. For each language, the word2vec model is trained
on a corpus of 200M Twitter messages. This results in
an embedding matrix Eword ∈ Rnl+1×200 where nl is
the number of tokens in the vocabulary for language
l. We add an additional vector, initialized from a zero
mean and unit variance Gaussian, for unknown words
and padding.

Word Capitalization Features Following [CN15,
CWB+11] we add explicit capitalization features, since
capitalization information is lost during the word em-
bedding lookup. The feature options are: all capital-
ized, uppercase initial, all lower cased, mixed capital-
ization, and other. An embedding matrix EwordCap ∈
R5×dwordCap is used to feed the features to the net-
work. EwordCap is initialized randomly from a Gaus-
sian distribution with mean zero and unit standard de-
viation and updated during training via backpropaga-
tion. dwordCap was set to 5 for all experiments.
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Figure 3: Architecture of the Neural Network used to
extract character level features.

Character Convolution Features A convolutional
neural network is used to extract additional character
level features. An overview is shown in Figure 3. First,
we add special padding tokens on both sides of the
character sequence w, to extend it to a target maxi-
mum length, lw,max. In the case where the number of
paddings is odd, the additional padding token is added
on the right. If w > lw,max only the first lw,max char-
acters are used. An embedding matrix Echar ∈ RNc×dc

maps characters to Rdc vectors, where Nc is the car-
dinality of the set of characters considered, including
the special padding token and a separate token for un-
known characters. The elements of Echar are initialized
from uniform distribution over the interval

[
− 1

2 ,
1
2

]
.

The value of dc is set to 15 for all experiments.
Using Echar we embed the whole sequence w and

obtain Cw ∈ Rlw,max×dc . A set of m convolution filters
∈ Rdc×h is then applied to Cw. No additional padding
is applied to Cw and therefore this operation results in
m feature maps Mi ∈ Rlw,max−h+1. The Mi are passed
through a ReLU activation. The final feature vector
F ∈ Rm is attained by max pooling, Fi = maxMi. In
our experiments we fixed m = 10 and h = 3.

Character Capitalization Convolution Features
Analogous to the word capitalization features, we use
additional character capitalization features. The fea-
ture options are: upper, lower, punctuation, numeric
and other. We then apply a neural network with the
same convolutional architecture as described above to
extract the final character capitalization features for a
given word. The parameters are initialized as above,
except the embedding dimension which is reduced to
5.

3



3 Experiments

3.1 Data

The training data provided by CAp 2017 [LPB+17]
consists of 3000 French tweets annotated with the
following 13 entities: person, geoloc, org, media,
event, movie, tvshow, transportline, product, musi-
cartist, sportsteam, facility and other. For Transfer
Learning from English, we used the annotated dataset
from WNUT16 [STR+16], as the entities were similar,
although not completely the same. The event, media,
and transportline entities were not part of the English
data set.

Partially Annotated Data To generate partially
annotated data we download lists of a few thousand
named entity instances from Wikidata1 for each en-
tity except transportline and other, since those were
not readily available in the Wikidata corpus. Using
these lists we search for around 900’000 tweets from
Twitter. To tag these tweets, we use a conceptual-
ization approach as described in [KWO13]. The ba-
sic idea is that a named entity can be associated with
different concepts. For example “apple” can have the
concept of “fruit” or “company” with different proba-
bilities. To determine the probabilities we use the Con-
cept Graph API which is based on the Probase Knowl-
edge Base [WW16, WWWX15, WZW+15, HWW+15,
WWH14, SWW+11]. To retrieve possible concepts we
randomly sample 500 named entity instances from each
retrieved list. Instances that did not return a concept
were not taken into account. If more than 5 instances
returned the same concept we additionally download
200 tweets per concept. Using the concept and the
entity tweets, applying a stop word filter and a Snow-
ball Stemmer, we train an LDA model with 50 top-
ics [BNJL03]. We then tag the entities in the instance
list tweets using the procedure visible in Figure 4.

Figure 4: Overview how additional tweets are tagged

For the likelihood of a concept we translate a found
entity to English and send it to the Microsoft Graph
API. To apply the concept to the French LDA we then
translate the concept to French. This allows us to find

1https://query.wikidata.org/

the probability of the concept given our LDA model.
We manually map the concepts to the entities which
we want to tag.

We use the approach proposed in [KWO13] to find
the most likely concept c given a word w in a sentence
s.

p (c|w, s) = αp (c|w)

k∑
t=1

p (t|c) p (t|s)

p (c|w) is given by the Microsoft Graph API, p (t|c) and
p (t|s) are given by the topic model and α is a scaling
factor. We chose α = 1

1000 and the number of topics
k = 50.

When looking at the tagged data we realized that
it had a weakness of often tagging too much. For ex-
ample for movies, there are instances such as “Je” or
“1984”. If a sentence is about another movie but also
contains those two words, all three instances are tagged
as a movie. All experiments using partially annotated
data were run on data which contain this weakness,
assuming that the large amount of data will level these
mistakes.

3.2 Evaluated Systems

In the experiments we compare the three different
architectures using annotated or partially annotated
data. We will refer to these as:

• BLSTM-CNN: The basic bidirectional LSTM
combined with CNN for character level features as
reference for the proposed systems (Section 2.1)

• BLSTM-CNN-PAD-M: BLSTM-CNN (Sec-
tion 2.1) with partially annotated data trained
in all epochs

• BLSTM-CNN-PAD-P: BLSTM-CNN (Section
2.1) using partially annotated data only for pre-
training

• S-BLSTM-CNN-PAD-P: Separate BLSTM-
CNN per entity (Section 2.3) using partially an-
notated data only for pre-training

• TL-BLSTM-CNN-EN: BLSTM-CNN with
shared Character embeddings (Section 2.2) using
the English WNUT 2016 dataset to train the
source system

• TL-BLSTM-CNN-PAD: BLSTM-CNN with
shared Character embeddings (Section 2.2) us-
ing the partially annotated data described in 3.1
to train the source system

We refer to pre-training as first training the system
on the partially annotated data for one Epoch before
moving on to the training with the annotated data.
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System Precision Recall F1 Accuracy
BLSTM-CNN 45.91% 34.39% 39.30 94.60%
BLSTM-CNN-PAD-M 27.95% 10.31% 15.12 92.54%
BLSTM-CNN-PAD-P 49.96% 31.59% 38.68 94.57%
S-BLSTM-CNN-PAD-P 80.94% 29.04% 44.58 95.40%
TL-BLSTM-CNN-EN 53.95% 39.34% 45.71 95.14%
TL-BLSTM-CNN-PAD 50.63% 39.22% 44.18 95.01%

Table 1: Experimental Results

3.3 Results

Table 1 shows the average results from 10 test runs
obtained by the systems on the CAp 2017 competi-
tion test dataset. The results show that using the par-
tially annotated data to fully train the system makes
it worse, and also simply pre-training it shows a slight
decrease of the F1-score. Training a separate network
per entity shows a significant increase in the precision
of the system and thus allows the system to achieve a
higher F1-score at the cost of some recall. We see that
transfer learning on a similar domain and language can
improve the F1-score by about 7 points. An interesting
aspect for further research is that partially annotated
data combined with transfer learning is almost as good
as transfer learning from a fully annotated corpus.

Based on these results we decided to submit the
transfer learning with English as source language for
the CAp 2017 competition and achieved 5th place with
an F1-score of 50.05. The score is 2 points behind the
second place score and 9 points behind the winner.

4 Conclusion

We described several deep learning approaches for
Named Entity Recognition on little annotated data.
Partially annotating data as additional input can im-
prove the results slightly, but does not provide as much
improvement as using it for transfer learning or even
transfer learning from another language. Training a
separate network for each entity increases the precision
of the system when used in combination with partially
annotated data. Our cross-language transfer learning
approach was evaluated on the CAp 2017 competition
for Named Entity Recognition and achieved an F1-
score of 50.05. For future work we will improve the
tagging of partially annotated data and combine the
different approaches. Additionally we plan to study
the influence of different hyperparameter settings for
all subsystems in more detail.
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