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ABSTRACT
Recommender systems have to serve in online environments that
can be non-stationary. Traditional recommender algorithms may
periodically rebuild their models, but they cannot adjust to quick
changes in trends caused by timely information. In contrast, online
learning models can adopt to temporal effects, hence they may
overcome the effect of concept drift.

In our tutorial, we present open source systems capable of updat-
ing their models on the fly after each event: Apache Spark, Apache
Flink and Alpenglow, a C++ based Python recommender frame-
work. Participants of the tutorial will be able to experiment with
all the three systems by using interactive Jupyter and Zeppelin
Notebooks. Our final objective is to compare and then blend batch
and online methods to build models providing high quality top-k
recommendation in non-stationary environments.

KEYWORDS
open source recommender systems; temporal evaluation; ranking
prediction by online learning; streaming; concept drift

TARGET AUDIENCE
Recommender systems researchers and practitioners. Basic Python
and/or Scala programming skills are required.
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to the Apache Flink Machine Learning Library.
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INTRODUCTION
In a real recommender system, users request one or a few items at
a time, and may get exposed to new information that can change
their needs and taste before they return to the service the next
time. Therefore, top item recommendation by online learning is usu-
ally more relevant than the Netflix Prize style batch rating pre-
diction [3, 7]. In this tutorial, we consider top-k recommendation
in highly non-stationary environments. Our goal is to promptly
update recommender models after user interactions by online learn-
ing methods, and investigate whether performance gains in batch
experiments carry over to online environments. In addition, we
consider data sets with implicit feedback [3].

We set up environments, in which events and requests for rec-
ommendation arrive in a continuous data stream. The difficulty
of evaluating streaming recommenders was first mentioned in [5],
although they split the stream into a training and a testing part in-
stead of evaluating continuously online. Ideas for online evaluation
metrics appeared first in [6, 7, 11]. An important part of the tuto-
rial considers the framework for evaluating recommender systems
over streaming data. We rely on ideas of [1, 7] for the online DCG
measure.

The objectives of the tutorial are to

• provide evaluation measures suited to non-stationary environ-
ments that may also indicate which algorithm would work well
on a particular data set,
• present open source online learning recommender systems in
Jupyter and Zeppelin notebooks,
• compare the performance of simpler algorithms that can be up-
dated online—and hence use the most recent data as well—with
more complex algorithms that can be updated only periodically,
• experiment with combinations of batch and online training to
improve accuracy.

TEMPORAL EVALUATION
In a time-aware or online recommender that potentially re-trains
its model after each new item, we have to generate a new top-k
recommendation list for every single event in the evaluation period
[1]. In an online setting, as seen in Figure 1, whenever we see a new
user-item pair, we assume that the user becomes active and requests
a recommendation. We recommend items of potential interest for
the user, which then we match against the actual item consumed.
After this evaluation step, we may update the model. Following [2],
we propose DCG instead of precision and recall for measuring the
quality of top-k recommendation. Furthermore, in our time-aware
ranking evaluation setting DCG is computed individually for each
event and then averaged in time[6, 7].
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Figure 1: Temporal evaluation of the online ranking predic-
tion problem.

OPEN SOURCE RECOMMENDERS
The tutorial covers recommender algorithms both by batch and
by online learning. Participants have the opportunity to install
and evaluate the following systems and algorithms in Jupyter and
Zeppelin notebooks:
Alpenglow1 is a free and open source C++ based framework with

easy-to-use Python API especially suited for conjoint batch and
online learning. We experiment in Aplenglow with
• non-personalized temporal popularity and item-to-item rec-
ommender models,
• time-aware variants of nearest neighbor [9],
• SGD based batch and online matrix factorization [10],
• asymmetric matrix factorization [8].

Flink2 matrix factorization algorithms are available only as pull re-
quests. We experiment both with batch and online factorization
models,
• batch iALS3 [10],
• batch DSGD4 [4],
• parameter server based asynchronous online SGD5.
The first two methods use the Flink batch API while the third
uses the Flink streaming API.

SparkML6 provides batch iALS7 that we compare to the batch
models of Alpenglow and Flink.

TUTORIAL OUTLINE
All material (slides, readings, Jupyter and Zeppelin notebooks, code)
used in the tutorial will be publicly available after the conference.
The instructors aid the participants with the installation. Basic
knowledge of Python and Scala is assumed. The material includes
• slides explaining the online ranking prediction problem, the tem-
poral evaluation framework, and the models,
• installation guides for Alpenglow, Flink and SparkML,
• experiments in Jupyter and Zeppelin notebooks,
1https://github.com/rpalovics/Alpenglow
2https://flink.apache.org/
3https://github.com/apache/flink/pull/2542
4https://github.com/apache/flink/pull/2819
5https://github.com/gaborhermann/\flink-parameter-server
6https://spark.apache.org/docs/latest/ml-guide.html
7https://spark.apache.org/docs/latest/ml-guide.html

• public research data collections.
The tutorial consists of two independent sessions, with the first

one focusing on the main concepts and Alpenglow, and the the
second one focusing on Apache Spark and Flink recommenders. In
the first part, participants may
• install Alpenglow,
• experiment with various batch and online recommendation mod-
els and evaluate them in a temporal setting,
• compare and then combine batch and online matrix factorization
methods.

In the second session, we provide distributed recommendation
models that may learn from potentially large data sets and update
their models by online learning. The audience will
• install Flink and Spark, and compare their batch iALS implemen-
tations and the batch DSGD included in the Flink Batch API,
• compare the performance of the above batch models to the Pa-
rameter Server based asynchronous online SGD in Flink,
• combine batch and online matrix factorization using the Flink
Streaming API.
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