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Abstract

In this paper we study a parallel machine scheduling problem with non-renewable resource constraints. That is, besides
the jobs and machines, there is a common non-renewable resource consumed by the jobs, which has an initial stock and
some additional supplies over time. Unlike in most previous results, the number of machines is part of the input. We
describe a polynomial time approximation scheme for minimizing the makespan.
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1. Introduction

In this paper we study a parallel machine scheduling
problem and describe a polynomial time approximation
scheme (PTAS) for it. In our problem, the jobs have an
additional resource requirement: there is a non-renewable
resource (like raw material, energy, or money) consumed
by the jobs. The resource has an initial stock, which is
replenished at some a-priori known moments of time. As
usual, each job can be scheduled on any machine, the job
processing times do not depend on the machines assigned,
machines can perform only one job at a time, and preemp-
tion of jobs is not allowed. The objective is to minimize
the maximal job-completion time, or, in other words, the
makespan of the schedule.

More formally, there are m parallel machines, M =
{M1, . . . ,Mm}, a finite set of n jobs J = {J1, . . . , Jn}, and
a common resource consumed by some, or possibly all of
the jobs. Each job Jj has a processing time pj ∈ Z+ and a
resource requirement aj ∈ Z≥0 from the common resource,
noting that aj = 0 is possible. The resource is supplied
in q different time moments, 0 = u1 < u2 < . . . < uq;

the number b̃` ∈ Z+ represents the quantity supplied at
u`, ` = 1, 2, . . . , q. A schedule σ specifies a machine and
the starting time Sj for each job, and it is feasible if (i)
on every machine the jobs do not overlap in time, and if
(ii) at any time point t the total material supply from the
resource is at least the total request of those jobs starting
not later than t, i.e.,

∑
(` : u`≤t) b̃` ≥

∑
(j : Sj≤t) aj . The

objective is to minimize the makespan, i.e., the completion
time of the job finished last.

This problem is a sub-problem of a more general re-
source scheduling problem: in the general case there are r
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resources, the requirements aj and the supplies b` are r-
dimensional vectors. We denote our problem by P |rm =
1|Cmax, where rm = 1 indicates that there is only one
single non-renewable resource. Since the makespan mini-
mization problem with resource consuming jobs on a single
machine is NP-hard even if there are only two supply dates
[2], the studied problem is NP-hard.

The combination of scheduling and logistic, that is,
considering e.g., raw material supplies in the course of
scheduling, has a great practical potential, as this prob-
lem frequently occurs in real-world applications (e.g. [1],
[4]).

1.1. Main result and structure of the paper

Section 2 summarizes the previous results, while Sec-
tion 3 simplifies the resource scheduling problem with some
observations and gives an integer programming model of
the problem. In Section 4, we prove the following:

Theorem 1. There is a PTAS for P |rm = 1|Cmax.

There are several approximation schemes for simi-
lar scheduling problems with non-renewable resource con-
straints (see Section 2), however, to our best knowledge,
this is the first time, that an arbitrary number of paral-
lel machine is considered in an approximation algorithm
for scheduling with non-renewable resources. Note that
the latter problem is already APX-hard in case of two re-
sources ([11]), so limiting the number of resources to one
is necessary to have a PTAS unless P = NP. The prob-
lem P |rm = 1|Cmax was the only problem with unknown
approximabilty status in the class P |rm|Cmax ([11]).

Our PTAS reuses ideas from known PTAS-es designed
for P ||Cmax (e.g. [13],[12]). Actually, we invoke a variant
of the latter. However, there are no resource constraints in
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those PTAS-es, therefore the jobs differ only in their pro-
cessing times. Rounding techniques are useful in a PTAS
to simplify the instances (e.g. Lemmas 1 and 2), because
they introduce only small errors, but rounding the resource
supplies or resource requirements does not seem a viable
approach. Instead, we will sort the jobs into different cat-
egories, and use enumeration to find suboptimal schedules
for the problem with rounded processing times.

1.2. Terminology

An optimization problem Π consists of a set of in-
stances, where each instance has a set of feasible solutions,
and each solution has an (objective function) value. In
a minimization problem a feasible solution of minimum
value is sought, while in a maximization problem one of
maximum value. An ε-approximation algorithm for an op-
timization problem Π delivers in polynomial time for each
instance of Π a solution whose objective function value is
at most (1 + ε) times the optimum value in case of mini-
mization problems, and at least (1−ε) times the optimum
in case of maximization problems. For an optimization
problem Π, a family of approximation algorithms {Aε}ε>0,
where each Aε is an ε-approximation algorithm for Π is
called a Polynomial Time Approximation Scheme (PTAS)
for Π.

2. Previous work

Makespan minimization on parallel machines is one of
the oldest problem of scheduling theory. The problem is
strongly NP-hard ([6]), but there is a PTAS for it ([13]).

Scheduling problems with resource consuming jobs
were introduced by [2], [3], and [15]. In [2], the computa-
tional complexity of several variants with a single machine
was established, while in [3] activity networks requiring
only non-renewable resources were considered. In [15] a
parallel machine problem with preemptive jobs was stud-
ied with a single non-renewable resource. This resource
had an initial stock and some additional supplies, like in
the model presented above, and it was assumed that the
rate of consuming the non-renewable resource was con-
stant during the execution of the jobs. These assump-
tions led to a polynomial time algorithm for minimizing
the makespan, which is in a strong contrast to the NP-
hardness of the scheduling problem analyzed in this paper.
Further results can be found in e.g., [16], [17], [7], [5], [8],
[9], [10], [14], [11].

In [8], [9] and [10] there are several approximability
results for the single machine variant of the problem. [11]
provided PTAS-es for some parallel machine variant of the
problem and showed that the problem with two resources
and two supplies is APX-hard. See also [11] for further
previous results of the topic.

3. Preliminaries

Note that the following assumption holds without loss
of generality and it has two easy corollaries:

Assumption 1.
∑q
`=1 b̃` =

∑
j∈J aj.

Corollary 1. C∗max > uq and we have enough resource for
each job that starts after uq.

Observation 1. For a PTAS, it is sufficient to provide a
schedule with a makespan of (1 + cε) times the optimum
value, where c is a constant i.e. it does not depend on the
input. Hence, to reach a desired performance ratio δ, we
let ε := δ/c, and perform the computations with the choice
of ε.

The observation above shows the meaning of the next
lemmas.

Lemma 1. With 1 + ε loss, we can assume that all pro-
cessing times are integer powers of 1 + ε. (trivial)

Lemma 2. ([11]) In order to have a PTAS for
P |rm|Cmax, it suffices to provide a family of algorithms
{Aε}ε>0 such that Aε is an ε-approximation algorithm for
the restricted problem where the supply dates before uq are
from the set {`εuq : ` = 0, 1, 2, . . . , b1/εc}.

We can model P |rm = 1|Cmax with a mathematical
program with integer variables in a way similar to that of
[11]. We define the values b` :=

∑
ν : uν≤u` b̃ν , that is, b`

equals the total amount supplied from the resource up to
u` and let T := {u1, u2, . . . , uq}. We introduce q · |J ||M|
binary decision variables xj`k, (j ∈ J , ` = 1, . . . , q, k ∈
M) such that xj`k = 1 if and only if job j is assigned to
machine k and to the time point u`, which means that
the requirements of job j must be satisfied by the resource
supplies up to time point u`. The mathematical program
is

C∗max = min max
k∈M

max
u`∈T

u` +
∑
j∈J

q∑
ν=`

pjxjνk

 (1)

s.t.∑
k∈M

∑
j∈J

∑̀
ν=1

ajxjνk ≤ b`, u` ∈ T (2)

∑
k∈M

q∑
`=1

xj`k = 1, j ∈ J (3)

xj`k ∈ {0, 1}, j ∈ J , u` ∈ T , k ∈M. (4)

The objective function expresses the completion time
of the job finished last using the observation that for ev-
ery machine there is a time point from which the machine
processes the jobs without idle times. Constraints (2) en-
sure that the jobs assigned to time points u1 through u`
use only the resources supplied up to time u`. Equations
(3) ensure that all jobs are assigned to some machine and
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time point. Any feasible job assignment x̄ gives rise to a
set of schedules which differ only in the ordering of jobs
assigned to the same machine k, and time point u`.

x̄ is a partial assignment, if it satisfies (4) and∑
k∈M

∑q
`=1 xj`k ≤ 1, j ∈ J . If it satisfies also (2),

then it is a feasible partial assignment.
Subroutine Sch describes how we create a (partial)

schedule from a (partial) assignment.

Subroutine Sch ([11])
Input: J̄ ⊆ J and x̄ such that for each j ∈ J̄ there exists

a unique (`, k) with x̄j`k = 1, and x̄j`k = 0 otherwise.
Output: partial schedule Spart of the jobs in J̄ .

1. Spart is initially empty, then we schedule the jobs on each
machine in increasing u` order (first we schedule those
jobs assigned to u1, and then those assigned to u2, etc.):

2. When scheduling the next job with x̄j`k = 1, then it
is scheduled at time max{u`, Clast(k)}, where Clast(k) is
the completion time of the last job scheduled on machine
Mk, or 0 if no job has been scheduled yet on Mk.

Remark 1. Note that if x̄ is feasible partial assignment,
then Spart is a feasible partial schedule, since:

• the jobs on the same machine cannot overlap in time,

• Sj ≥ u` holds for each job assigned to u`, thus (2)
ensures that we have enough resource to schedule the
jobs.

Suppose we have a partial schedule Spart and consider
an idle period I on some machine Mk. Suppose j1 is not
scheduled in Spart, and we schedule j1 on Mk with start-
ing time t1 ∈ I. This transforms Spart as follows. For
each job j scheduled on Mk in Spart with Spartj > t1, let

Pk[t1, S
part
j ] denote the total processing time of those jobs

scheduled onMk in Spart between t1 and Spartj . We update

the start-time of j to max{Spartj , t1 + pj1 + Pk[t1, S
part
j ]}.

The start time of any other job does not change. Note
that the value of Pk[t1, S

part
j ] can be computed before the

transformation, thus the new starting times do not depend
on the order of updating. See Figure 1 for an illustration.

Claim 1. The jobs do not overlap in time in the resulting
schedule.

Proof. Follows from the definition of Pk[t1, S
part
j ].

4. A PTAS for the problem P |rm = 1|Cmax

In this section we prove Theorem 1. Let ε > 0 be fixed.
It is enough to deal with the case where q = d1/εe+ 1 and
the supply dates before uq are from the set {`εuq : ` =
0, 1, 2, . . . , b1/εc} (Lemma 2) and according to Lemma 1,
it is enough to provide a PTAS for the problem instances,
where each processing time is an integer power of 1 + ε.

For the PTAS it is useful to divide J into three subsets.
A job j is small (j ∈ S), if pj ≤ ε2uq, it is big (j ∈ B),

Mk t

Mk tI

t1

(a)

j1

(b)

Figure 1: Inserting job (j1) into a partial schedule with Sj1 = t1.
(a): the original partial schedule on Mk. (b): the new schedule on
Mk after inserting j1.

if ε2uq < pj < (1/ε)uq and it is huge (j ∈ H), if pj ≥
(1/ε)uq. We can assume that each huge job starts after uq
since in this case a delay of uq is at most an ε fraction of
the makespan (see Observation 1).

This partition has several advantages: we do not have
to deal with the resource requirements of the huge jobs
(cf. Corollary 1), there are a constant number of possible
values for the processing time of the big jobs (see the next
paragraph) and even O(1/ε) badly scheduled small jobs
cause only O(εuq) delay which is O(εC∗max) since C∗max >
uq.

Now we determine the number of the possible distinct
processing times of the big jobs: we have to count the
number of the different δ values such that δ ∈ Z and ε2uq <
(1+ε)δ < (1/ε)uq. Since ε2uq ·(1+ε)3 log1+ε(1/ε) = (1/ε)uq,
there are k1 := b3 log1+ε(1/ε)c possible values. Note that
k1 is a constant. Let δ1 denote the smallest number such
that (1 + ε)δ1 > ε2uq and B1 the set of big jobs with
processing time (1 + ε)δ1 . For p = 2, . . . , k1, let Bp denote
the set of big jobs with processing time (1 + ε)δ1+p−1.

Before going into details we would like to present the
main ideas of the PTAS. After uq we do not have to deal
with the resource constraints (Corollary 1) and this is a
great relief: we will use a modified version of an algorithm
devised for P ||Lmax to schedule the jobs that we have not
scheduled earlier. However, to determine the first part of
the schedule we need a more sophisticated method: the
main idea is a tricky enumeration method with a num-
ber of technical details. For each pair (Mk, u`), where
k ∈ {1, . . . ,m} and ` ∈ {1, . . . , q − 1}, we guess the num-
ber of the big jobs from each type Bp (p ∈ 1, . . . , k1) and
approximately the total processing time of the small jobs
that start in [u`, u`+1) on Mk. For this purpose we exam-
ine a lot of cases and finally we choose the best one. In
the next paragraphs we present the details of the method
and show that the number of the possible guesses is poly-
nomial.

A guess will describe an assignment A for each machine
and each assignment consists of (q−1)(k1+1) numbers: for
each ` < q it contains Γ` = (γ`,1, γ`,2, . . . , γ`,k1 , g`), where
each coordinate is from the set {0, 1, . . . , d1/εe + 1}. γ`,p
describes the number of the big jobs from Bp that start
in [u`, u`+1) and we guess the total processing time of the
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small jobs that start in [u`, u`+1) in the form of g` · (ε2uq).
From the definition of the assignment we get the num-

ber of the different assignments is at most k2 := (1/ε +
2)(q−1)·(k1+1). Note that k2 is a constant and for any ma-
chine scheduled using this assignment, the number of big
jobs that start in [u`, u`+1) (` ∈ {1, . . . , q − 1}) is at most
d1/εe (cf. the condition on u` in Lemma 2 and the def-
inition of the big jobs) and the total processing time of
the small jobs that start in [u`, u`+1) is at most (ε+ ε2)uq
(since u`+1 − u` ≤ εuq and the last job must finish before
u`+1 + ε2uq). Hence, the guesses describe each possible
big job layout and give an approximation to the total pro-
cessing time of the small jobs in [u`, u`+1).

A tuple T := (t1, t2, . . . , tk2) describes the num-
ber of the machines that uses the different assignments
A1, . . . , Ak2 . Note that the number of these tuples is at
most

(
m+k2
k2

)
, thus it is polynomial (details in Proposition

2). We examine all tuples and either create a schedule ac-
cording to the tuple or declare that the tuple is unfeasible.

Example 1. Suppose that we have 3 machines, q = 4
and k1 = 2. If T = (1, 2, 0, 0, . . .), Ai = (Γi1,Γ

i
2,Γ

i
3)

(i = 1, . . . , k2), and Γi` = (γi`,1, γ
i
`,2, g

i
`), then it means

the following: we have one machine that uses the assign-
ment A1 and two that use A2. Γi` describes that we want
to assign (i) γi`,p big jobs from Bp (p = 1, 2), (ii) small

jobs with a total processing time of roughly gi` · (ε2uq) to
u` on each machine with the assignment Ai.

We will use a greedy algorithm to define the assign-
ment of the small jobs according to the guess. We create a
(partial) schedule from the (partial) assignment and after
that, we invoke another algorithm to schedule the remain-
ing jobs. The main algorithm is as follows:

Algorithm A
Initialization: Sbest is a schedule where each job is scheduled
on M1 after uq.

1. For each tuple T = (t1, . . . , tk2), do Steps 2–5:

2. Invoke Algorithm Assign to create an assignment x̂ of the
jobs from T . If this assignment violates at least one of
the constraints in (2), then proceed with the next tuple.

3. Create a partial schedule Spart from x̂ with Subroutine
Sch. Let Cpart

max (k) be the time when Mk finishes Spart.

4. Invoke the algorithm of the Appendix with
max{Cpart

max (k), uq} amount of preassigned work on
Mk (k = 1, 2, . . . ,m) to schedule the remaining jobs.
Let Sact be the resulting schedule.

5. If Cmax(Sact) < Cmax(Sbest), then let Sbest := Sact.

6. After examining each feasible assignment before uq, out-
put Sbest.

The next algorithm assigns big and small jobs to pairs
(Mk, u`), where ` < q with respect to a tuple T =
(t1, . . . , tk2). Machines M1, . . . ,Mt1 will get jobs with re-
spect to assignment A1, Mt1+1, . . . , Mt1+t2 with respect
to A2, etc.

Algorithm Assign

Input: a tuple T . Output: a (partial) assignment x̂.

1. For each p = 1, . . . , k1, order the big jobs from Bp in
non-decreasing aj order (lists Lp) and let L be the list of
small jobs in non-increasing pj/aj order.

2. Assign big and small jobs to machine-supply date
pairs (Mk, u`) in the order (M1, u1), (M2, u1),
. . . , (Mm, u1), (M1, u2), . . . , (Mm, u2), (M1, u3), . . . ,
(Mm, uq−1). Suppose the next pair is (Mk, u`), and
the assignment of Mk is Ai = (Γ`)

q−1
`=1 , where Γ` =

(γ`,1, . . . , γ`,k1 , g`),

Assignment of big jobs: for each p = 1, . . . , k1, assign
γ`,p number of big jobs from the beginning of list Lp to
(Mk, u`), and remove these jobs from the list.

Assignment of small jobs: let h` be the smallest num-
ber of small jobs from the beginning of L with a total
processing time of at least g`(ε

2uq), and let k` be the
maximum number of small jobs from the beginning of L
that can be assigned to u` without violating the resource
constraint (big jobs are taken into consideration). Assign
min{h`, k`} jobs from the beginning of L to supply date
u` on Mk, and remove them from L.

Proposition 1. Each schedule Sact found by Algorithm
A is feasible.

Proof. Recall that a schedule is feasible if (i) on ev-
ery machine the jobs do not overlap in time, and if (ii)∑

(` : u`≤t) b̃` ≥
∑

(j : Sj≤t) aj for any t ≥ 0.

In step 2 each examined tuple (partial assignment)
must satisfy (2), thus Subroutine Sch guarantees (i) and
(ii) for Spart (see Remark 1). Since we invoke the algo-
rithm of the Appendix with at least Cpartmax (k) amount of
preassigned work on Mk (k = 1, 2, . . . ,m), Sact must sat-
isfy (i).

The jobs scheduled at step 4 start after uq, thus (ii)
follows form Corollary 1.

Proposition 2. The running time of Algorithm A is poly-
nomial in the size of the input.

Proof. As described before, the number of tuples T can
be bounded by

(
m+k2
k2

)
= O((m + k2)k2) = O((m +

(1/ε)1/ε·log1+ε(1/ε))(1/ε)
(1/ε·log1+ε(1/ε))

), which is polynomial
in m. Step 2 (Algorithm Assign) and step 3 require
O(n log n) time, while step 4 also requires polynomial time
([12] and [11] or the Appendix).

Let S∗ be an optimal schedule, such that if pj = pk
and aj < ak, then S∗j ≤ S∗k , ∀j, k ∈ J . Such a schedule
obviously exists. We construct an intermediate schedule
S̃ from S∗ to prove that our algorithm is a PTAS. This
intermediate schedule has a similar structure to S∗ and
it is not far from a schedule computed by Algorithm A:
(i) we use the big job arrangement of S∗ to determine a
tuple that we will use for S̃, (ii) the starting times of the
big/huge jobs in S̃ will be determined by their starting
times in S∗ and (iii) the total processing time of the small
jobs that start on Mk in [u`, u`+1) in S̃ is close to that in
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S∗. The next paragraphs give a precise definition for S̃,
along with an example.

To create S̃, first we perform steps 2 and 3 of Algorithm
A with a tuple T ∗ = (t∗1, . . . , t

∗
k2

) that we obtain from S∗

in the following way: for each machine Mk we determine
an assignment, which for each supply date (` = 1, . . . , q)
and big job type (p = 1, . . . , k1) describes the number of
big jobs from Bp that start in [u`, u`+1) and g∗`k, which
is the smallest integer such that (g∗`k − 1) · (ε2uq) is at
least the total processing time of small jobs starting in
[u`, u`+1) on Mk in S∗. After that, we simply count the
the number of the different assignments and determine T ∗:
there are t∗i number of machines with assignment Ai (i =
1, 2, . . . , k2). We can assume that machines M1, . . . ,Mt∗1
are with assignment A1, machines Mt∗1+1, . . . ,Mt∗1+t

∗
2

are
with A2, etc.

Note that we have to choose g∗`k in a special way for

technical reasons (cf. Observation 2). Let S̃part denote the
resulting partial schedule and C̃partmax its makespan.

Example 2. Let m = 2, q = 3 and k1 = 2 and suppose
that the schedule S∗ shown in Figure 2 (above) is optimal.
First we determine T ∗: the assignment of M1 is (Γi1 =
(2, 0, g∗11),Γi2 = (1, 2, g∗21)), while the assignment of M2 is
(Γi
′

1 = (0, 1, g∗12),Γi
′

2 = (0, 0, g∗22)), where for example the
first two coordinates of Γi1 shows that there are two jobs
from B1 on M1 that start in [u1, u2) (noted by a ’+’) and
there is no job from B2 that starts there. g∗11 describes
roughly the total amount of processing time of the small
jobs that start in [u1, u2) on M1: if this value is, say, 80
and ε2uq = 10, then g∗11 = 9, since this is the smallest
integer such that (g∗11 − 1) · (ε2uq) ≥ 80.

After we have created S̃part, let J̃a denote the set of
the unscheduled jobs. Schedule the remaining big and huge
jobs at S̃j := S∗j +4εuq on the same machine as in S∗. See

the third schedule (S̃′) in Figure 2 for an illustration.

Remark 2. Note that we have S∗j ≥ uq for these jobs.
For the huge jobs we have assumed this, while the for the
big jobs this follows from the assumption about S∗ (after
Proposition 2): for each p ∈ {1, 2, . . . , k1} the jobs in J̃a ∩
Bp are the jobs in Bp with S∗j ≥ uq, since these are the jobs
from Bp with the biggest aj value (cf. step 1 of Algorithm
Assign).

Finally schedule the remaining small jobs in arbitrary
order after max{uq, Cpartmax } at the earliest idle time on any

machine (see the paragraph before Claim 1). Let C̃max(k)
denote the completion time of the last job scheduled on
Mk in S̃ and C̃max := Cmax(S̃) = maxk∈M C̃max(k).

Now we start the main part of the proof: we will prove
that the makespan of S̃ is near to the makespan of Sbest

(Proposition 3) and to the makespan of S∗ (Proposition
4). To prove these propositions we need to introduce some
notations and prove a technical statement (Observation
2): let J̃`,k denote the set of small jobs that are assigned

M2 t

M1 t

S∗

u2u1 u3 = uq C∗max

+

M2 t

M1 t

S̃part

u2u1 u3 = uq C̃
part
max

M2 t

M1 t

S̃′

u2u1 u3 = uq C̃
part
max

M2 t

M1 t

S̃

u2u1 u3 = uq C̃max

Figure 2: Creating S̃ from S∗. The small jobs are red, the big jobs
are blue and we have a green huge job.

to u` and Mk in S̃ and J ∗`,k denote the set of small jobs

with u` ≤ S∗j < u`+1 on machine k. J̃` := ∪kJ̃`,k and
J ∗` := ∪kJ ∗`,k.

Example 3. Consider the schedules presented in Figure 2.
From schedule S∗, we have, say, p(J ∗1,1) = 80, p(J ∗1,2) =
45 (hence p(J ∗1 ) = 125) and p(J ∗2,1) = 65, p(J ∗2,2) = 195
(p(J ∗2 ) = 260). The small jobs of J ∗1,1 and J ∗2,1 are in two-
two contiguous parts. Suppose that ε2uq = 10. From the
definition of g∗, we can obtain g∗11 = 9, g∗12 = 6, g∗21 = 8
and g∗22 = 21.

From S̃part, we can determine J̃`,k and J̃`: for exam-

ple J̃1,1 is the set of the small jobs that start between the

second and the third big job on M1, while J̃2,2 is the set of

the small jobs that start after u2 on M2 in S̃part.

By the rules of Algorithm A, we have the following:

Observation 2. For each ` < q and Mk ∈ M,∑
j∈J̃`,k pj <

∑
j∈J ∗`,k

pj + 3ε2uq and
∑
j∈∪ν≤`J̃ν pj ≥∑

j∈∪ν≤`J ∗ν
pj − ε2uq.

Proof. The first part follows from∑
j∈J̃`,k

pj < (g∗`k + 1) · (ε2uq) <
∑
j∈J ∗`,k

pj + 3ε2uq,

where the first inequality follows from construction of S̃
(step 2 of Algorithm Assign), since we define h` so that
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∑
j∈J̃`,k pj cannot be greater than g∗`k ·(ε2uq)+ε2uq, where

the last ε2uq comes from the maximal processing time of
a small job. The second part follows from the choice of g∗.

For the second part, note that for each ν ≤ q the big
jobs assigned to a time point before uν in S̃ require at most
the same amount of resource as the big jobs which start
before uν in S∗ (cf. steps 1 and 2 of Algorithm Assign).
Thus, we have at least the same amount of resource for
the small jobs until each uν in S̃ as in S∗. In the course of
assigning the small jobs in S̃ there can be two reasons for
switching to the next supply date (cf. step 2): (i) there is
not enough resource to schedule the next small job from
the list, or (ii) we reach the total required processing time.
In the first case, we have

∑
j∈∪ν≤`J ∗ν

pj ≤
∑
j∈∪ν≤`J̃ν pj +

ε2uq, since the small jobs are in non-increasing pj/aj order
in L (step 1). Otherwise in case (ii), for each machine k,
the algorithm assigns at least g∗νk · (ε2uq) amount of work
from the small jobs to uν , thus

∑
j∈J̃ν pj ≥

∑
j∈J ∗ν

pj +

mε2uq, and the observation follows.

Let C∗q (k) denote the maximum of uq and the com-
pletion time of the last job scheduled before uq on Mk in
S∗.

Corollary 2. C̃partmax (k) ≤ C∗q (k) + 4εuq, ∀k ∈M.

Proof. Since the big job layouts are the same in S̃ and
in S∗, we have C̃partmax (k) − C∗q (k) ≤

∑q−1
`=1 (

∑
j∈J̃`,k pj −∑

j∈J ∗`,k
pj) < (q − 1) · (3ε2uq) ≤ 4εuq for each k ∈ M,

where the second inequality follows from the first part of
Observation 2.

Proposition 3. S̃ is feasible, and Cmax(Sbest) ≤ (1 +
ε)C̃max.

Proof. The feasibility of S̃part follows from Proposition 1,
while Remark 2 and Corollary 2 show that the jobs in
J̃a start after uq, thus S̃ satisfies the resource constraints.

Corollary 2 also guarantees that, the jobs in ∪`<qJ̃`,k must
end before a big or a huge job scheduled on Mk in the last
stage of the construction of S̃ would start, since for all
those big and huge jobs, S̃j = S∗j + 4εuq by definition.
Since the jobs cannot overlap in time after we insert a job
into a partial schedule (Claim 1), S̃ is feasible.

In some iteration, Algorithm A will consider the tuple
T ∗ that we used to define S̃. Hence, after step 3, S̃part and
Spart coincide. Therefore, the Proposition follows from a
result of [11], which is repeated in the Appendix for the
sake of completeness.

Proposition 4. C̃max ≤ C∗max + 5εuq.

Proof. Let j be such that C̃j = C̃max and let j be sched-

uled on Mk in S̃. If j /∈ J̃a, then the proposition follows
from the first part of Observation 2 and from the fact that
layouts of the big jobs (not in J̃a) on Mk are the same in
S∗ and in S̃.

If j ∈ J̃a and j is big or huge, then originally we have
S̃j = S∗j + 4εuq and we may push j to the right by at

most ε2uq, thus C̃j ≤ C∗max + 5εuq. If j is small, then

the finishing time of each machine is in [S̃j − ε2uq, S̃j ],
otherwise j would be scheduled on another machine. For
similar reasons, there is no idle time on any machine in
[max{C̃partmax (k)(k), uq}, S̃j − ε2uq] in S̃. Therefore,

C̃max ≤
∑m
k=1 C̃max(k)

m
+ ε2uq =

=

∑m
k=1 max{C̃partmax (k)(k), uq}+ p(J̃a)

m
+ ε2uq, (5)

where p(J̃a) :=
∑
j∈J̃a pj . To sum up, we have

C∗max ≥

∑m
k=1 C

∗
q (k) +

∑
j:S∗j≥uq

pj

m
≥

≥
∑m
k=1 max{C̃partmax (k)(k), uq} − 4mεuq + (p(J̃a)− ε2uq)

m
≥

≥ C̃max − 5εuq,

where the first inequality is trivial, the second follows from
Corollary 2 and from the second part of Observation 2
(if ` = q − 1) and the third from (5). The proposition
follows.

Proof of Theorem 1. We have seen that Algorithm A is
polynomial (Proposition 2) and creates a feasible sched-
ule (Proposition 1) with a makespan Cmax(Sbest) ≤ (1 +
ε)C̃max ≤ (1 + ε)(C∗max + 5εuq) ≤ (1 + 7ε)C∗max (Proposi-
tions 3 and 4), thus it is a PTAS.
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Appendix, A PTAS for P |preassign, rj|Lmax

In this section we sketch how to extend the PTAS of
Hall and Shmoys [12] for parallel machine scheduling with
release dates, due-dates and the maximum lateness objec-
tive (P |rj |Lmax) with pre-assigned works on the machines.
The jobs scheduled on a machine must succeed any pre-
assigned work.

Hall and Shmoys propose an (1 + ε)-optimal outline
scheme in which job sizes, release dates, and due-dates
are rounded such that the schedules can be labeled with
concise outlines, and there is an algorithm which given
any outline ω for an instance I of the scheduling problem,
delivers a feasible solution to I of value at most (1 + ε)
times the value of any feasible solutions to I labeled with
ω.

All we have to do to take pre-assigned work into ac-
count is that we extend the outline scheme of Hall and
Shmoys with machine ready times, which are time points
when the machines finish the pre-assigned work. Suppose
the largest of these time points is wmax. We divide wmax

by ε/2 and round each of the pre-assigned work sizes of the
machines down to the nearest multiple of 2wmax/ε. Thus
the number of distinct pre-assigned work sizes is 2/ε, a
constant independent of the number of jobs and machines.
Then, we amend the machine configurations (from which
outlines are built) with the possible rounded pre-assigned

work sizes. Finally, the algorithm which determines a fea-
sible solution from an outline must be modified such that it
disregards all the outlines in which any job is scheduled on
a machine before the corresponding rounded pre-assigned
work size in the outline, and if the rounded pre-assigned
work sizes of the outline do not match the real pre-assigned
works of the machines.
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