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Péter sétány 1/C, Hungary

bInstitute for Computer Science and Control, H1111 Budapest, Kende str. 13–17, Hungary

Abstract

In this paper the approximability of parallel machine scheduling problems with

resource consuming jobs is studied. In these problems, in addition to a paral-

lel machine environment, there are non-renewable resources, like raw materials,

energy, or money, consumed by the jobs. Each resource has an initial stock,

and some additional supplies at a-priori known moments in time and in known

quantities. The schedules must respect the resource constraints as well. The

optimization objective is either the makespan, or the maximum lateness. Poly-

nomial time approximation schemes are provided under various assumptions,

and it is shown that the makespan minimization problem is APX-complete if

the number of machines is part of the input even if there are only two resources.

Keywords: Scheduling, parallel machines, non-renewable resources,

approximation schemes

1. Introduction

In Supply Chains, non-renwable resources like raw materials, or energy are

taken into account from the design through the operational levels. Advanced

planning systems explicitly model and optmize their usage at various planning

levels, see e.g., Chapters 4, 9 and 10 of Stadtler & Kilger (2008). In this paper,5
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we focus on short-term scheduling, where in addition to machines, there are

non-renewable resources consumed by the jobs. Each non-renewable resource

has an initial stock, which is replenished at a-priori known moments of time and

in known quantities.

More formally, there are m parallel machines, M = {M1, . . . ,Mm}, a finite10

set of n jobs J = {J1, . . . , Jn}, and a finite set of non-renewable resources R

consumed by the jobs. Each job Jj has a processing time pj ∈ Z+, a release date

rj , and resource requirements aij ∈ Z+ from the resources i ∈ R. Preemption of

jobs is not allowed and each machine can process at most one job at a time. The

resources are supplied in q different time moments, 0 = u1 < u2 < . . . < uq; the15

vector b̃` ∈ Z|R|+ represents the quantities supplied at u`. A schedule σ specifies

a machine and the starting time Sj of each job and it is feasible if (i) on every

machine the jobs do not overlap in time, (ii) Sj ≥ rj for each j ∈ J , and if (iii) at

any time point t the total supply from each resource is at least the total request

of those jobs starting not later than t, i.e.,
∑

(` : u`≤t) b̃`i ≥
∑

(j : Sj≤t) aij , ∀i ∈20

R. We will consider two types of objective functions: the minimization of the

maximum job completion time (makespan) defined by Cmax = maxj∈J Cj ; and

the minimization of the maximum lateness, i.e., each job has a due-date dj ,

j ∈ J , and Lmax := maxj∈J (Cj − dj). Clearly, Lmax is a generalization of

Cmax.25

Assumption 1.
∑q
`=1 b̃`i =

∑
j∈J aij , ∀i ∈ R, holds without loss of generality.

Since the makespan minimization problem with resource consuming jobs on

a single machine is NP-hard even if there are only two supply dates (Carlier,

1984), all problems studied in this paper are NP-hard.

Scheduling with non-renewable resources has a great practical interest. Chap-30

ter 4 of (Stadtler & Kilger, 2008) describes examples in consumer goods industry

and in computer assembly, where purchased items have to be taken into account

at several planning levels including short-term scheduling which is the topic of

the present paper. Herr & Goel (2016) study a scheduling problem arising in the

continuous casting stage of steel production. A continuous caster is fed with35
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ladles of liquid steel, where each ladle contains a certain steel grade and has

orders allocated to it that determine a due date. The liquid steel is produced

from hot iron supplied by a blast furnace with a constant rate. The sequence of

ladles, including setups between ladles of different setup families, is not allowed

to consume more hot metal than supplied by the blast furnace. Belkaid et al.40

(2012) study a problem of order picking in a platform with a distribution com-

pany that leads to the model considered in this paper. In Carrera et al. (2010),

a similar problem is investigated in a shoe-firm. Further applications can be

found in Section 2.

In this paper we take a theoretical viewpoint and analyze the approxima-45

bility of parallel machine scheduling problems augmented with non-renewable

resources. We believe that our study leads to a deeper understanding of the

problem, that may facilitate the development of efficient practical algorithms.

1.1. Terminology

An optimization problem Π consists of a set of instances, where each instance50

has a set of feasible solutions, and each solution has an (objective function) value.

In a minimization problem a feasible solution of minimum value is sought, while

in a maximization problem one of maximum value. An ε-approximation al-

gorithm for an optimization problem Π delivers in polynomial time for each

instance of Π a solution whose objective function value is at most (1 + ε) times55

the optimum value in case of minimization problems, and at least (1− ε) times

the optimum in case of maximization problems. For an optimization prob-

lem Π, a family of approximation algorithms {Aε}ε>0, where each Aε is an

ε-approximation algorithm for Π is called a Polynomial Time Approximation

Scheme (PTAS) for Π.60

Observation 1. For a PTAS for some problem Π, it is sufficient to provide a

family of algorithms {Aε}ε>0 where each Aε is an c · ε-approximation algorithm

for Π, where the constant factor c does not depend on the input or on ε. Then,

letting ε := δ/c, we get a PTAS {A(δ/c)}δ>0 for Π.
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We use the standard α|β|γ notation for scheduling problems (Graham et al.65

(1979)), where α denotes the processing environment, β the additional restric-

tions, and γ the objective function. In this paper, α = Pm, which indicates m

parallel machines for some fixed m. In the β field, ’rm’ means that there are

non-renewable resource constraints, rm = r indicates |R| = r. Further options

are q = const meaning that the number of supplies is a fixed constant, rj in-70

dicates job release dates, while the restriction #{rj : rj < uq} ≤ const bounds

the number of distinct job release dates before the last supply date uq by a

constant. For a set H, we define p(H) :=
∑
j∈H pj .

Throughout the paper we will consider monotone objective functions Fmax

that satisfy the following conditions:75

(i) Fmax is monotone increasing in the job completion times, i.e., Fmax(C1, . . . , Cn) ≤

Fmax(C ′1, . . . , C
′
n), for arbitrary 0 ≤ Cj ≤ C ′j , j = 1, . . . , n,

(ii) Its value does not grow faster than the value of any of its arguments, i.e.,

Fmax(C1 + δ, . . . , Cn + δ) ≤ Fmax(C1, . . . , Cn) + δ for any δ ≥ 0,

(iii) On any instance, and for any feasible schedule, Fmax is at least uq.80

Notice that e.g., the makespan, and the maximum lateness increased by some

(instance dependent) constant satisfy the above properties, but the total comple-

tion time does not. From now on Fmax denotes an arbitrary monotone objective

function.

1.2. Main results85

If the number of the machines is part of the input, then we have the following

non-approximability result:

Theorem 1. Deciding whether there is a schedule of makespan 2 with two non-

renewable resources, two supply dates and unit-time jobs on an arbitrary number

of machines (P |rm = 2, q = 2, pj = 1|Cmax ≤ 2) is NP-hard.90

Corollary 1. It is NP-hard to approximate problem P |rm = 2, q = 2, pj =

1|Cmax ≤ 2 better than 3/2− ε for any ε > 0.
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Obj. #Machines #Supplies #Resources Release PTAS FPTAS

m q rm dates rj

1 2 1 no yesb yesbc

1 2 1 yes yesd ?

1 2 const. ≥ 2 yes/no yescd noc

1 2 arbitrary yes/no nod noc

Cmax 1 const. ≥ 3 1 yes/no yesbd ?

1 const. ≥ 3 const. ≥ 2 yes/no yesd noc

1 arbitrary 1* yes/no yesd noa

const ≥ 2

+ddc. jobs**
arbitrary const. ≥ 2 yes/no

yes (Sect. 5)

yes (Sect. 6)
noa

arbitrary 2 2 yes/no no (Sect. 3) noe

arbitrary arbitrary 1 yes/no ? noe

L′max const arbitrary 1* no yes (Sect. 7) ?∑
wjCj 1 2 1 no yesf yesf

* under the condition aj = λpj
** even if only a J ′ ⊆ J subset of jobs is dedicated

a Grigoriev et al. (2005) b Györgyi & Kis (2014) c Györgyi & Kis (2015a)

d Györgyi & Kis (2015b) e Garey & Johnson (1979) f Kis (2015)

Table 1: Known approximability results for scheduling problems with resource consum-

ing jobs if P 6= NP. In the column of Release dates ”yes / no” means that the result

is valid in both cases. The question mark ”?” indicates that we are not aware of any

definitive answer.

By assumption 1, the optimum makespan is at least uq, therefore, a straight-

forward two-approximation algorithm would schedule all the jobs after uq. There-

fore, we have the following result.95

Corollary 2. P |rm = 2, q = 2, pj = 1|Cmax is APX-complete.

The following result helps to obtain polynomial time approximation schemes

for the general problem P [m]|rm, rj |Fmax, provided that we have a family of

approximation algorithms for restricted versions of the problem.
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Proposition 1. In order to have a PTAS for P [m]|rm, rj |Fmax, it suffices100

to provide a family of algorithms {Aε}ε>0 such that Aε is an ε-approximation

algorithm for the restricted problem where the supply dates and the job release

dates before uq are from the set {`εuq : ` = 0, 1, 2, . . . , b1/εc}.

Using Proposition 1, we can prove the following result:

Theorem 2. Pm|rm = const., rj |Cmax admits a PTAS.105

Notice that a PTAS has been known only for 1|rm = const, q = const,#{rj :

rj < uq} ≤ const|Cmax (Györgyi & Kis, 2015b). If the jobs are dedicated to

machines, we have an analogous statement:

Theorem 3. Pm|rm = const., rj , ddc|Cmax admits a PTAS.

Now we turn to the Lmax objective. Since the optimum lateness may be 0110

or negative, a standard trick is to increase the lateness of the jobs by a constant

that depends on the input. In our case, let L′max := maxj{Cj − dj +D}, where

D := maxj∈J {dj}+ uq. Note that this function satisfies the conditions (i)-(iii),

thus it is a monotone objective function. In order to provide a PTAS for the

lateness objective, we have to assume that the processing times are proportional115

to the resource consumptions. Such a model with the makespan objective has

already been studied in (Györgyi & Kis, 2015b).

Theorem 4. If L′max is defined as above, then Pm|rm = 1, pj = aj |L′max admits

a PTAS.

In Table 1 we summarize known and new approximability results for schedul-120

ing resource consuming jobs in single machine as well as in parallel machine

environments, when preemption of processing is not allowed, and the resources

are consumed right at starting the jobs. The table contains results for the

makespan, the maximum lateness, and the weighted completion time objec-

tives. These results complement the large body of approximation algorithms125

for NP-hard single and parallel machine scheduling problems (Williamson &

Shmoys, 2011).
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1.3. Structure of the paper

In Section 2 we summarize previous work on machine scheduling with non-

renewable resources. In Section 3 we prove our hardness result Theorem 1.130

Then in Section 4 we establish Proposition 1. In Sections 5, 6, and 7 we prove

Theorems 2, 3, and 4, respectively. Finally, we conclude the paper in Section 8.

2. Previous work

Scheduling problems with resource consuming jobs were introduced by Car-

lier (1984), Carlier & Rinnooy Kan (1982), and Slowinski (1984). In Carlier135

(1984), the computational complexity of several variants with a single machine

was established, while in Carlier & Rinnooy Kan (1982) activity networks re-

quiring only non-renewable resources were considered. In Slowinski (1984) a

parallel machine problem with preemptive jobs was studied, and the single non-

renewable resource had an initial stock and some additional supplies, like in140

the model presented above, and it was assumed that the rate of consuming the

non-renewable resource was constant during the execution of the jobs. These

assumptions led to a polynomial time algorithm for minimizing the makespan,

which is in strong contrast to the NP-hardness of all the scheduling problems an-

alyzed in this paper. Further results can be found in e.g., Toker et al. (1991), Xie145

(1997), Neumann & Schwindt (2003), Laborie (2003), Grigoriev et al. (2005),

Briskorn et al. (2010), Briskorn et al. (2013), Gafarov et al. (2011), Györgyi

& Kis (2014), Györgyi & Kis (2015a), Györgyi & Kis (2015b), Morsy & Pesch

(2015). In particular, Toker et al. (1991) proved that scheduling jobs requiring

one non-renewable resource on a single machine with the objective of minimizing150

the makespan reduces to the 2-machine flow shop problem provided that the sin-

gle non-renewable resource has a unit supply in every time period. Neumann &

Schwindt (2003) study general project scheduling problems with inventory con-

straints, and propose a branch-and-bound algorithm for minimizing the project

length. In a more general setting, jobs may consume as well as produce non-155

renewable resources. In Xie (1997), Grigoriev et al. (2005) and Gafarov et al.
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(2011) the complexity of several variants was studied and some constant ratio ap-

proximation algorithms were developed in Grigoriev et al. (2005). Briskorn et al.

(2010), Briskorn et al. (2013) and Morsy & Pesch (2015) examined scheduling

problems where there is an initial inventory, and no more supplies, but some of160

the jobs produce resources, while other jobs consume the resources. In Briskorn

et al. (2010) and Briskorn et al. (2013) scheduling problems with the objec-

tive of minimizing the inventory levels were studied. Morsy & Pesch (2015)

designed approximation algorithms to minimize the total weighted completion

time. In Györgyi & Kis (2014) a PTAS for scheduling resource consuming jobs165

with a single non-renewable resource and a constant number of supply dates

was developed, and also an FPTAS was devised for the special case with q = 2

supply dates and one non-renewable resource only. In Györgyi & Kis (2015a)

it was shown, among other results, that there is no FPTAS for the problem of

scheduling jobs on a single machine with two non-renewable resources and q = 2170

supply dates, unless P = NP , which is in strong contrast with the existence of

an FPTAS for the special case with one non-renewable resource only (Györgyi

& Kis, 2014). These results have been extended in Györgyi & Kis (2015b): it

contains a PTAS under various assumptions: (1) both the number of resources

and the number of supplies dates are constants, (2) there is only one resource,175

an arbitrary number of supply dates, but the resource requirements are propor-

tional to job processing times. It also proves the APX-hardness of the problem

when the number of resources is part of the input.

Since the parallel machine environment can be considered as a renewable

resource constraint (each job requires 1 unit during its proceeding, and there180

are m available units from this resource at each moment of time) our prob-

lem is a special case of the well-studied resource-constrained project scheduling

problem. This problem has several practical application, e.g. the Process Move

Programming Problem where, as in our problem, there are parallel machines and

non-renewable resource constraints (Sirdey et al. (2007)). In many papers the185

resources can reduce the processing times, e.g., Shabtay & Kaspi (2006) deals

with parallel machine problems with a non-renewable resource, while Janiak
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et al. (2007) provides a survey of that topic. Yeh et al. (2015) examined heuris-

tic algorithms for a uniform parallel machine problem with resource consump-

tion. Further theoretical and practical applications of the resource-constrained190

project scheduling can be found in Artigues et al. (2013).

3. APX-hardness of P |rm = 2, q = 2, pj = 1|Cmax

In this section we prove Theorem 1. We reduce the EVEN-PARTITION

problem to the problem P |rm = 2, q = 2, pj = 1|Cmax, and argue that deciding

whether a schedule of makespan two exists is as hard as finding a solution195

for EVEN-PARTITION. Recall that an instance of the EVEN-PARTITION

problem consists of 2t items, for some integer t, of sizes a1, . . . , a2t ∈ Z+. The

decision problem asks whether the set of items can be partitioned into two

subsets S and S̄ of cardinality t each, such that
∑
i∈S ai =

∑
i∈S̄ ai? This

problem is NP-hard in the ordinary sense, see Garey & Johnson (1979). Clearly,200

a necessary condition for the existence of set S is that the total size of all items

is an even integer, i.e.,
∑2t
i=1 ai = 2A, for some A ∈ Z+.

Proof of Theorem 1 We map an instance I of EVEN-PARTITION to the fol-

lowing instance of P |rm = 2, q = 2, pj = 1|Cmax. There are n := 2t jobs, and

m := t machines. All the jobs have unit processing time, i.e., pj = 1 for all j.205

The job corresponding to the jth item in I has resource requirements a1,j := aj

and a2,j := A − aj . The initial supply at u1 = 0 from the two resources is

b̃1,1 := A and b̃1,2 := (t − 1)A, and the second supply at time u2 = 1 has

b̃2,1 := A, and b̃2,2 := (t − 1)A. We have to decide whether a feasible schedule

of makespan two exists.210

First, suppose that I has a solution S. Then we schedule all the jobs cor-

responding to the items in S at time 0, each on a separate machine. Since

S contains t items, and the number of machines is t as well, this is feasible.

Moreover, the total resource requirement from the first resource is precisely A,

whereas that from the second one is
∑
j∈S a2,j =

∑
j∈S(A − aj) = (t − 1)A.215

The rest of the jobs are scheduled at time 1. Since their number is t, and since
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u2 = 1 is the second and last supply date, all the resources are supplied and the

jobs can start promptly at time 1.

Conversely, suppose there is a feasible schedule of makespan two. Then,

there are t jobs scheduled at time 0, and the remaining t jobs at time 1. Let220

S denote the set of the jobs scheduled at time 0. The resource requirements of

those jobs in S equal the supply at time u1 = 0, because
∑
j∈S aj = A follows

from the resource constraints: on the one hand
∑
j∈S aj =

∑
j∈S a1,j ≤ A, and

on the other hand
∑
j∈S a2,j =

∑
j∈S(A − aj) = tA −

∑
j∈S aj ≤ (t − 1)A,

thus A ≤
∑
j∈S aj . Hence S is a feasible solution of the EVEN-PARTITION225

problem instance.

4. Arbitrary number of supplies and arbitrary release dates

Proof of Proposition 1. The main idea of the proof is that for any instance I of

P [m]|rm, rj |Fmax, and for any ε > 0, we construct an instance I ′ of the restricted

problem, and show that after applying the ε-approximation algorithm Aε to I ′,

the resulting schedule S is feasible for I and satisfies the following condition:

FSmax ≤ (1 + ε)F ∗max(I ′) ≤ (1 + ε)(F ∗max(I) + εuq) ≤ (1 + 3ε)F ∗max(I).

Aε applied to I ′ implies the first inequality. The second one is the crux of the

derivation and will be shown below, the third follows from uq ≤ F ∗max(I). By Ob-

servation 1, the above derivation implies that we get a PTAS for P [m]|rm, rj |Fmax.230

Suppose that there are q supplies in instance I of P [m]|rm|Fmax: u1, u2, . . . , uq

with quantities b̃1, b̃2, . . . b̃q. We construct instance I ′ of the restricted problem:

the q′ := d1/εe + 1 (a constant for any fixed ε) supply dates are u′1 = 0,

u′` = (` − 1)εuq for ` = 2, . . . , q′ − 1, and u′q′ = uq. The amount of resource(s)

supplied at u′1 is b̃′1 := b̃1, and for u′` with ` ≥ 2 it is b̃′` =
∑
ν:uν≤u′`

b̃ν−
∑
k<` b̃

′
k235

(see Figure 1). Notice that for each u` there is an u′`′ with u` ≤ u′`′ < u` + εuq.

Further on, the release date of each job is increased to the nearest u′`. Analo-

gously to the supply dates, for each job release date rj before uq, there exists

an u′` such that rj ≤ u′` < rj + εuq. Besides, the two instances are the same.
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I ′

I

u1 = 0

b̃1

u2

b̃2

u3

b̃3

u4

b̃4

u5

b̃5

uq−1

b̃q−1

uq

b̃q

. . .

u′1 = 0

b̃′1 = b̃1

u′2

b̃′2 = b̃2

u′3

b̃′3 = b̃3 + b̃4 + b̃5

u′q′−1

b̃′q′−1 = . . .

u′q′ = uq

b̃′q′ = b̃q−1 + b̃q

. . .

Figure 1: Supplies in case of an instance with an arbitrary number of supplies (above) and

the corresponding instance with constant number of supplies (below).

Let S∗I be an optimal schedule for I. If we increase the starting time of each240

job by εuq, then the resulting schedule is a feasible solution of instance I ′, since

the supplies, and the job release dates are delayed by less than εuq. Hence, by

using the properties of Fmax, F ∗max(I ′) ≤ F ∗max(I) + εuq follows.

5. PTAS for Pm|rm = const, rj|Cmax

In this section first we provide a mathematical programming formulation of245

the problem, and then we prove Theorem 2.

5.1. A mathematical program for P |rm, rj |Cmax

We can model P |rm|Cmax with a mathematical program with integer vari-

ables. LetM denote the set of the machines and let T be the union of the set of

supply dates and job release dates, i.e., T := {u` | ` = 1, . . . , q} ∪ {rj | j ∈ J }.250

Suppose T has τ elements, denoted by v1 through vτ , with v1 = 0. We define

the values b`i :=
∑
ν : uν≤v` b̃νi for i ∈ R, that is, b`i equals the total amount

supplied from resource i up to time point v`.

We introduce τ ·|J ||M| binary decision variables xj`k, (j ∈ J , ` = 1, . . . , τ, k ∈

M) such that xj`k = 1 if and only if job j is assigned to machine k and to the

time point v`, which means that the requirements of job j must be satisfied by
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the resource supplies up to time point v`. The mathematical program is

C∗max = min max
k∈M

max
v`∈T

v` +
∑
j∈J

τ∑
ν=`

pjxjνk

 (1)

s.t.∑
k∈M

∑
j∈J

∑̀
ν=1

aijxjνk ≤ b`i, v` ∈ T , i ∈ R (2)

∑
k∈M

τ∑
`=1

xj`k = 1, j ∈ J (3)

xj`k = 0, j ∈ J , v` ∈ T such that rj > v`, k ∈M (4)

xj`k ∈ {0, 1}, j ∈ J , v` ∈ T , k ∈M. (5)

The objective function expresses the completion time of the job finished last

using the observation that for every machine there is a time point, either a255

release date of some job, or when some resource is supplied from which the

machine processes the jobs without idle times. Constraints (2) ensure that the

jobs assigned to time points v1 through v` use only the resources supplied up to

time v`. Equations (3) ensure that all jobs are assigned to some machine and

time point. Finally, no job may be assigned to a time point before its release260

date by (4). Any feasible job assignment x̄ gives rise to a set of schedules which

differ only in the ordering of jobs assigned to the same machine k, and time

point v`.

5.2. The PTAS

Let psum :=
∑
j∈J pj and note that psum ≤ mC∗max. Let ε > 0 be fixed. We265

can simplify the problem by applying Proposition 1, thus it is enough to deal

with the case where q = d1/εe + 1, and u` = (` − 1)εuq for 1 ≤ ` < q. Let

B := {j ∈ J | pj ≥ ε2psum} be the set of big jobs, and S := J \ B be the set

of small jobs. We divide further the set of small jobs according to their release

dates, that is, we define the sets Sb := {j ∈ S | rj < uq}, and Sa := S \ Sb.270

Let T b := {v` ∈ T | v` < uq} be the set of time points v` before uq, and

T a := T \ T b. Note that |T b| = d1/εe.
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The following observation reduces the number of solutions of (1)-(5) to be

examined.

Proposition 2. From any feasible solution x̂ of (1)-(5), we can obtain a solu-275

tion x̃ with Cmax(x̃) ≤ Cmax(x̂) such that each job Jj is assigned to some time

point v` (
∑
k∈M x̃j`k = 1), satisfying either v` < uq, or v` = max{uq, rj}.

The above statement is a generalization of the single machine case treated

in Györgyi & Kis (2015b), and its proof can be found in Appendix A.

An assignment of big jobs is given by a partial solution x̂big ∈ {0, 1}B×T ×M280

which assigns each big job to some machine k and time point v`. An assignment

x̂big of big jobs is feasible if the vector x̃ = (x̂big , 0) ∈ {0, 1}J×T ×M satisfies (2),

(4) and also (3) for the big jobs. For a fixed feasible assignment x̂big of big jobs,

the supply from any resource i is decreased by the requirements of those big jobs

assigned to time points v1 through v`. Hence, we define the residual resource285

supply up to time point v` as b̄`i := b`i−
∑
k∈M

∑
j∈B aij

(∑`
ν=1 x

big
jνk

)
. Further

on, let C̄B` (k) := maxω=1,...,`(vω +
∑`
ν=ω

∑
j∈B pjx

big
jνk) denote the earliest time

point when the big jobs assigned to v1 through v` may finish on machine k.

Notice that C̄B` (k) ≥ v` even if no big job is assigned to v`, or to any time

period before v`.290

In order to assign approximately the small jobs, we will solve a linear pro-

gram and round its solution. Our linear programming formulation relies on the

following result.

Proposition 3. There exists an optimal solution (x̂big , x̂small) of (1)-(5) such

that for each v` ∈ T b, k ∈M:∑
j∈Sb

pj x̂
small
jνk ≤ max{0, v`+1 − C̄B` (k)}+ ε2psum. (6)

The above statement is an easy generalization of the single machine case295

treated in Györgyi & Kis (2015b), see the proof there.

For every feasible big job assignment we will determine a complete solution

of (1)-(5). We search these solution in two steps: first we assign the small jobs
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to time moments and then to machines. Let xj` :=
∑
k∈M xj`k. Now, the linear

program is defined with respect to any feasible assignment x̂big of the big jobs:300

max
∑
v`∈T b

∑
j∈Sb

pjx
small
j` (7)

s.t.∑
j∈Sb

∑̀
ν=1

aijx
small
jν ≤ b̄`i, v` ∈ T b, i ∈ R (8)

∑
j∈Sb

pjx
small
j` ≤

m∑
k=1

max{0, v`+1 − C̄B` (k)}+mε2psum, v` ∈ T b (9)

∑
v`∈T b∪{uq}

xsmallj` = 1, j ∈ Sb (10)

xsmallj` = 0, j ∈ Sb, v` ∈ T such that v` < rj , or v` > uq (11)

xsmallj` ≥ 0, j ∈ Sb, v` ∈ T . (12)

The objective function (7) maximizes the total processing time of those small

jobs assigned to some time point v` before uq. Constraints (8) make sure that

no resource is overused taking into account the fixed assignment of big jobs as

well. Inequalities (9) ensure that the total processing time of those small jobs

assigned to v` ∈ T b does not exceed the total size of all the gaps on the m305

machines between v` and v`+1 by more than mε2psum. Due to (10), small jobs

are assigned to some time point in T b ∪ {uq}. The release dates of those jobs

in Sb, and Proposition 2 are taken care of by (11). Finally, we require that the

values xsmallj` be non-negative.

Notice that this linear program always has a finite optimum provided that310

xbig is a feasible assignment of the big jobs. Let x̄small be any feasible solution

of the linear program. Job j ∈ Sb is integral in x̄small if there exists v` ∈ T with

x̄small
j` = 1, otherwise it is fractional. Throughout the algorithm we maintain

the best schedule found so far, Sbest, and its makespan Cmax(Sbest).

The following notion is repeatedly used in the algorithms of this paper.315

Suppose we have a partial schedule S̃ and consider an idle period I on some
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machine Mk. Suppose j1 is not scheduled in S̃, and we schedule j1 on Mk with

starting time t1 ∈ I. This transforms S̃ as follows. For each job j scheduled on

Mk in S̃ with S̃j > t1, let Pk[t1, S̃j ] denote the total processing time of those

jobs scheduled on Mk in S̃ between t1 and S̃j . We update the start-time of j to320

max{S̃j , t1 + pj1 + Pk[t1, S̃j ]}. The start time of all other jobs do not change.

After all these preliminaries, the PTAS is as follows.

Algorithm A

Initialization: Sbest is a schedule where each job is scheduled on M1 after max{rmax, uq}.

1. Assign the big jobs to time points v1 through vτ and to machines 1 through |M|325

in all possible ways which satisfy Proposition 2, and for each feasible assignment

xbig do steps 2 - 7 :

2. Define and solve linear program (7)-(12), and let x̄small be an optimal basic

solution.

3. Round each fractional value in x̄small down to 0, and let xsmall := bx̄smallc be330

the resulting partial assignment of small jobs, and U ⊂ Sb the set of fractional

jobs in x̄small .

4. Invoke Subroutine Sch with J̄ := B to create a partial schedule Spart from the

big jobs.

5. The next procedure schedules all the small jobs assigned to a time point before335

uq. For each v` ∈ T b do:

i) Put the small jobs with x̄smallj` = 1 into a list in an arbitrary order.

ii) For k = 1, . . . ,m do the following steps:

a) Let t be such that the total processing time of the first t jobs from the

ordered list is in [max{0, v`+1−C̄B` (k)}+ε2psum,max{0, v`+1−C̄B` (k)}+340

2ε2psum]. If no such t exists (since there are not enough jobs left), then

let t be the current number of the small jobs in the ordered list.

b) Assign the first t jobs from the list to machine k, and schedule all of

them (as a single job) starting from the earliest idle time on Mk after

C̄B` (k). Finally, delete them from the ordered list.345

Let Cpart
max denote the makespan of Spart after this step.
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M3 t

M2

M1

v2 v4v1 v3 = uq Cpartmax

t

v2 v4v1 v3 = uq Cpartmax

Figure 2: A partial schedule after Step 5 on the left (big jobs are blue, small jobs are hatched)

and a complete schedule on the right. The jobs scheduled at Step 6 are white. Each job

scheduled after v4 has a release date v4, since M3 is idle before v4.

6. Schedule the remaining small jobs one by one in non-decreasing release date

order (J1, J2, . . .). Let Jj be the next job to be scheduled, and Mk a machine

with the earliest idle time after max{uq, rj} in the current schedule. Schedule Jj

on this machine at that time, and let xsmallj`k = 1, where max{uq, rj} = v` ∈ T .350

Let Sact be the resulting schedule.

7. If Cmax(Sact) < Cmax(Sbest), then let Sbest := Sact.

8. After examining each feasible assignment of the big jobs, output Sbest.

Subroutine Sch

Input: J̄ ⊆ J and x̄ such that for each j ∈ J̄ there exists a unique (`, k) with355

x̄j`k = 1.

Output: partial schedule Spart of the jobs in J̄ .

1. Spart is initially empty, then we schedule the jobs on each machine in increasing

v` order (first we schedule those jobs assigned to v1, and then those assigned to

v2, etc.):360

2. When scheduling the next job with x̄j`k = 1, then it is scheduled at time

max{v`, Clast(k)}, where Clast(k) is the completion time of the last job sched-

uled on machine Mk, or 0 if no job has been scheduled yet on Mk.

See Figure 2 for illustration. We will prove that the solution found by Al-

gorithm A is feasible for (1)-(5), its value is not far from the optimum, and the365

algorithm runs in polynomial time.
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Lemma 1. Every complete solution (xbig , xsmall) constructed by the algorithm

is feasible for (1)-(5).

Proof. At the end of the algorithm each job is scheduled exactly once sometime

after its release date, thus the solution satisfies (3), (4) and (5). The algorithm370

examines only feasible assignments of the big jobs, hence these jobs cannot

violate the resource constraints. Since x̄small is a feasible solution of (7) - (12)

and
∑
k∈M xj`k = xj`, (∀j ∈ J ), thus the assignment corresponds to Spart

satisfies (2). Finally, since uq is the last time point when some resource is

supplied, thus when the algorithm schedules the remaining jobs at Step 6, the375

constraints (2) remain feasible.

To prove that the makespan of the schedule found by the algorithm is near

to the optimum, we need Propositions 4 and 5. From these we conclude that

the fractionally assigned jobs and the ’errors’ in (9) do not cause big delays.

We utilize that the number of the release dates before uq is a constant. From380

Proposition 5 we can deduce that, in case of appropriate big job assignment,

Cpartmax is not much bigger than C∗max. If the makespan of the constructed schedule

is larger than Cpartmax , then the machines finish the jobs nearly at the same time,

thus we can prove that there are no big delays relative to an optimal schedule.

Proposition 4. In any basic solution of the linear program (7)-(12), there are385

at most (|R|+ 1) · |T b| fractional jobs.

Proof. Let x̄small be a basic solution of the linear program in which f jobs of

Sb are assign fractionally, and e = |Sb|−f jobs integrally. Clearly, each integral

job gives rise to precisely one positive value, and each fractionally assigned

job to at least two. This program has |Sb| · |T b| decision variables, and γ =

|Sb|+(|R|+1)·|T b| constraints. Therefore, in x̄small there are at most γ positive

values, as no variable may be nonbasic with a positive value. Hence,

e+ 2f ≤ |Sb|+ (|R|+ 1) · |T b| = e+ f + (|R|+ 1) · |T b|.

This implies

f ≤ (|R|+ 1) · |T b|
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as claimed.

Proposition 5. Consider a big job assignment after Step 1. Let Sbig denote

the partial schedule of this assignment and CBmax its makespan.

1. If a big job Jj is assigned to v` at Step 1, then Spartj ≤ Sbigj +2ε2(`−1)psum.390

2. Cpartmax ≤ max{uq, CBmax}+ 2ε2|T b|psum.

Proof. Recall that the jobs assigned to the same time point and machine are in

non-increasing processing time order.

1. The algorithm can push to the right the start time of big job assigned to

some v` at Step 5(ii)a, or in other words, when it schedules some small395

jobs before v`. However, this can happen only `− 1 times, thus the claim

follows.

2. Imagine a fictive big job starts at max{uq, CBmax}, and apply the first part

of the proposition.

400

Lemma 2. The algorithm constructs at least one feasible schedule of makespan

at most (1 +O(|T b|ε2)) times the optimum makespan C∗max.

Proof. By Lemma 1, the algorithm outputs a feasible schedule. Consider an

optimal schedule S∗ and the corresponding solution (x̂big, x̂small) of (1)-(5) that

satisfies Proposition 3. The algorithm will examine x̂big, since it is a feasible405

big job assignment. Let Cmax denote the makespan of the schedule S found by

the algorithm in this case. The observation below follows from Proposition 5:

Observation 2. Cpartmax ≤ C∗max + 2|T b|ε2psum.

If no small job scheduled at Step 6 starts after Cpartmax − ε2psum, then the

statement of the lemma follows from Observation 2 since psum ≤ mC∗max and410

Cmax ≤ Cpartmax + ε2psum, thus Cmax ≤ (1 + (2|T b|+ 1)mε2)C∗max.
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From now on, suppose that at least one small job scheduled at Step 6

starts after Cpartmax − ε2psum. For similar reasons, also suppose that Cmax >

max{Cpartmax , vτ} + ε2psum (this means that for every machine there is at least

one small job that starts after max{Cpartmax , vτ} and scheduled at Step 6).415

Observation 3. The difference between the finishing time of two arbitrary ma-

chines is at most ε2psum.

We prove the statement of the lemma with Claims 1, 2 and 3.

Claim 1. If there is no gap on any machine, then Cmax ≤ (1 +mε2)C∗max.

Proof. According to Observation 3 each machine is working between 0 and420

(Cmax − ε2psum). Therefore C∗max ≥ Cmax − ε2psum which implies Cmax ≤

(1 +mε2)C∗max.

Claim 2. If the last gap finishes after uq, then Cmax ≤ (1+(2|T b|+1)mε2)C∗max.

Proof. Note that this gap must finish at a release date rj0 . Notice that each

small job scheduled after rj0 has a release date at least rj0 or else we would have425

scheduled that job into the last gap, thus

Observation 4. The small jobs starting after rj0 in S are scheduled after rj0

in S∗.

Consider an arbitrary machine Mk and the last big job Jj that is starting

before rj0 on this machine in S∗. If Spartj < uq or there is no gap between uq430

and Spartj in Spart, then we have not scheduled any job on Mk before Jj at Step

6, thus the starting (and the completion) time of Jj is at most 2|T b|ε2psum later

in S than in S∗ (Proposition 5). Otherwise the starting time of Jj is the same

in Spart and in S∗ (Spartj = S∗j ), since we can suppose that the jobs assigned

to the same time point and machine are scheduled in the same non-increasing435

processing time order. If we push Sj at Step 6 once, then we cannot schedule

any more jobs before Sj in a later step, thus we can push Sj by at most ε2psum

in total, thus
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Observation 5. If Jj ∈ B, then Sj ≤ S∗j + 2|T b|ε2psum.

Suppose that a job Jj is scheduled from S′j to C ′j = S′j + pj in a schedule S′440

and S′j ≤ t ≤ C ′j . In this case we can divide Jj into two parts: to the part of Jj

that is scheduled before t (it has a processing time of t−S′j) and to the part that

is scheduled after t (it has a processing time of C ′j − t). Suppose that t is fixed

and we divided all the jobs such that S′j ≤ t ≤ C ′j into two parts. Let P
(t)
b (S′)

denote the total processing time of the jobs and job parts that are scheduled445

before t in S′ and P
(t)
a (S′) denote the same after t (P

(t)
b (S′) +P

(t)
a (S′) = psum).

Observation 6. P
(rj0+2|T b|ε2psum)
a (S) ≤ P (rj0 )

a (S∗) (follows from Observations

4 and 5).

Let P := P
(rj0+2|T b|ε2psum)
a (S). Since there is no gap after rj0 in S, Cmax ≤

rj0 + 2|T b|ε2psum + (P/m+ ε2psum) follows from Observation 3. Since C∗max ≥450

rj0 + P/m (from Observation 6), thus Cmax ≤ C∗max + (2|T b| + 1)ε2psum ≤

(1 + (2|T b|+ 1)mε2)C∗max, therefore we have proved Claim 2.

For a schedule S′, let S′B denote the schedule of the big jobs (where the big

jobs have the same starting times as in S′ and the small jobs are deleted from

S′) and S′S denote the schedule of the small jobs (similarly).455

Claim 3. If each gap finishes before uq, then Cmax ≤ (1+((2|T b|+1)m+(|R|+

1) · |T b|)ε2)C∗max.

Proof. See Appendix A.

The lemma follows from Claims 1, 2 and 3.

Lemma 3. For any fixed ε > 0, the running time of the algorithm is polynomial460

in the size of the input if |T b| is a constant.

Proof. Since the processing time of each big job is at least ε2psum, the number

of the big jobs is at most b1/ε2c, a constant, since ε is a constant by assumption.

Thus, the total number of assignments of big jobs to time point in T b and to

machine in M is also constant O((m/ε)1/ε2). For each feasible assignment, a465
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linear program of polynomial size in the input and in 1/ε must be solved. This

can be accomplished by the Ellipsoid method in polynomial time, see Gács &

Lovász (1981). The remaining steps (rounding the solution, machine assignment

and scheduling the small jobs) are obviously polynomial (O(n log n)).

Proof of Theorem 2. Since q = d1/εe + 1, we get that |T b| = q − 1 in the470

transformed instances. Therefore, by Lemma 2, the performance ratio of the

algorithm is (1+O(|T b|ε2)) = (1+O(ε)), where the constant factor c in O(·) does

not depend on the input or on 1/ε. However, by Observation 1 this is sufficient

to have a PTAS. Finally, the polynomial time complexity of the algorithm in

the size of the input was shown in Lemma 3.475

Remark 1. Note that if a job is assigned to a v`, then Sj ≥ v` at the end of the

algorithm and each schedule such that this is true cannot violate the resource

constraint. Suppose that we fixed a big job assignment and solved the LP. Then

• if j ∈ Sa, then let r̄j := rj.

• if j ∈ Sb ∪ B and ∃` : xj` = 1, then let r̄j := v`.480

• otherwise, let r̄j := uq.

After that, use the PTAS of Hall & Shmoys (1989) for the problem P |r̄j |Cmax.

It is easy to prove that the schedule obtained is feasible and its makespan is at

most (1 + ε) times the makespan of the schedule created by Algorithm A, thus

it is also a PTAS for our problem. The algorithm of Hall and Shmoys works485

for an arbitrary number of machines, however this number must be a constant

when applied to our problem, otherwise the error bound breaks down.

6. Pm|rm = const, rj, ddc|Cmax

Suppose that there is a dedicated machine for each job, or in other words,

the assignment of jobs to machines is given in the input. Let Mkj denote490

the machine on which we have to schedule Jj and Jk denote the set of jobs
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dedicated to Mk. We can model this problem with the IP (1)-(5) if we drop all

the variables xj`k where k 6= kj . Let us denote this new IP by (1’)-(5’). We

prove that there is a PTAS for this problem. The main idea of the algorithm

is the same as in the previous section, however there are important differences,495

since we cannot balance the finishing time of the machines with the small jobs

after uq (cf. Observation 3).

Let ε > 0 be fixed. According to Proposition 1, we can assume that q and

the number of distinct job release dates until uq are at most d1/εe+ 1. Divide

the set of jobs into big and small ones (B and S), and schedule them separately.500

These sets are the same as in Section 5. We assign the big jobs to time points

in all possible ways (cf. Proposition 2). Notice that since |B| ≤ 1/ε2, which is a

constant because ε > 0 is fixed, the number of big job assignments is polynomial

in the size of the input. We perform the remaining part of the algorithm for each

big job assignment. The first difference from the previous PTAS is the following:505

now we assign each small job in Sa to its release date and then we create the

schedule S1 from this partial assignment. Let C1
max denote the makespan of S1

and Ik the total idle time on machine k between uq and C1
max (if C1

max ≤ uq,

then Ik = 0 for all k ∈M).

We have to schedule the small jobs in Sb. We will schedule them in a510

suboptimal way and finally we choose the schedule with the lowest makespan.

We will prove that the best solution found by the algorithm has a makespan of

no more than (1 + ε)C∗max and the algorithm has a polynomial complexity.

For a fixed partial schedule we define the following linear program:

min P̄ (13)

s.t. ∑
j∈Sb,v`≥uq,kj=k

pjx
small
j`kj ≤ Ik + P̄ , k ∈M (14)

∑
j∈Sb

∑̀
ν=1

aijx
small
jνkj ≤ b̄`i, v` ∈ T b, i ∈ R (15)
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∑
j∈Sb,kj=k

pjx
small
j`kj ≤ max{0, v`+1 − C̄B` (k)}+ ε2psum, v` ∈ T b, k ∈M (16)

∑
v`∈T

xsmallj`kj = 1, j ∈ Sb (17)

xsmallj`kj = 0, j ∈ Sb, v` ∈ T such that v` < rj , or v` > uq (18)

P̄ ≥ 0 (19)

xsmallj`kj ≥ 0, j ∈ Sb, v` ∈ T . (20)

The notations are the same as before. Our objective (P̄ ) is to minimize the

increase of the makespan compared to C1
max. The PTAS is as follows:515

Algorithm B

Initialization: Sbest is a schedule where each job is scheduled after max{rmax, uq}

(in an arbitrary order without any idle time) on its dedicated machine.

1. Assign the big jobs to time points v1 through vτ which satisfies Proposition 2,

and for each feasible assignment xbig do steps 2 - 7 :520

2. Assign each small jobs in Sa to its release date, i.e., xaj`kj = 1 if and only

if j ∈ Sa and rj = v` ∈ T a. Invoke Subroutine Sch with J̄ = B ∪ Sa and

x̄ = (xbig, xa, 0). Let C1
max := Cmax(Spart).

3. Define and solve linear program (13)-(20), and let x̄small be an optimal basic

solution.525

4. Round each fractional value in x̄small down to 0, and let xsmall := bx̄smallc be

the resulting partial assignment of small jobs, and U ⊂ Sb the set of fractional

jobs in x̄small .

5. Using Subroutine Sch, create a new partial schedule Spart for the subset of

jobs J̄ = B ∪ Sa ∪ (Sb \ U), and assignment x̄ = (xbig, xa, xsmall). Let Cpartmax530

denote the makespan of this schedule (S1 is not used). The next step inserts

the remaining jobs into Spart.

6. Schedule the remaining small jobs one by one in non-decreasing release date

order (J1, J2, . . .). Let Jj be the next job to be scheduled. Schedule Jj on
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Mkj at the earliest idle time after max{uq, rj} in the current schedule and let535

xsmallj`kj
= 1, where max{uq, rj} = v` ∈ T . Let Sact be the resulting schedule.

7. If the makespan of the resulting schedule (Sact) is smaller than Cmax(Sbest),

then let Sbest := Sact.

8. After examining each feasible assignment of the big jobs, output Sbest.

Lemma 4. Every complete solution (xbig , xsmall) constructed by the algorithm540

is feasible for (1’)-(5’).

Proof. (2’) follows from (15) (the jobs scheduled after uq cannot violate this

constraint), while the other constraints are obviously met.

Proposition 6. In any basic solution of the linear program (7)-(12), there are

at most (|R|+ 1) · |T b| fractional jobs.545

Proof. Similar to Proposition 4.

Proposition 7. 1. If a job Jj is assigned to v` at Step 1 or 2, then Spartj ≤

S1
j + min{`− 1, |T b|}ε2psum.

2. Cpartmax ≤ max{uq, C1
max}+ P̄ + |T b|ε2psum.

Proof. Similar to Proposition 5.550

Lemma 5. The algorithm constructs at least one feasible schedule of makespan

at most (1 +O(|T b|ε2)) times the optimum makespan C∗max.

Proof. By Lemma 4, the algorithm outputs a feasible schedule. Consider an op-

timal schedule S∗ and the corresponding solution (x̂big, x̂small) of (1’)-(5’) that

satisfies Proposition 2. The algorithm will examine x̂big, since it is a feasible big555

job assignment. The partial assignment of the small jobs in Sb in S∗ determines

a feasible solution of (13)-(20), thus max{uq, C1
max}+ P̄ ≤ C∗max.

According to Proposition 7 Cpartmax ≤ max{uq, C1
max} + P̄ + |T b|ε2psum, and

Cmax ≤ Cpartmax + (|R| + 1) · |T b|ε2psum follows from Proposition 6. Therefore

Cmax ≤ (1 + ((|R|+ 2) · |T b|)mε2)C∗max.560
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Lemma 6. For any fixed ε > 0, the running time of the algorithm is polynomial

in the size of the input.

Proof. Similar to Lemma 3.

Proof of Theorem 3. Since |T b| = q − 1 (Proposition 1), the theorem follows

from Lemmas 5 and 6.565

Remark 2. Suppose that, there is a dedicated machine for each job in a given

set J ′ ⊂ J and we can schedule each job in J \ J ′ on any machine. We still

have a PTAS for this case: the main difference is that at Step 6 we first have

to schedule the jobs in J ′ and then the remaining jobs similarly to Step 6 in

Algorithm A.570

7. Pm|rm = 1, pj = aj|Lmax

In this section we prove Theorem 4. Throughout this section we assume that

ε > 0 is a small constant with 1/ε ∈ Z. Let S ′ := {j ∈ J |pj ≤ ε2uq} be the set

of tiny jobs, and B′ := J \ S ′ be the set of huge jobs. Note that this partition

is quite different from the one in Section 5. According to Proposition 1, we can575

assume that q = 1/ε + 1, and u` = (` − 1)εuq (` = 1, 2, . . . , q − 1). Note that

between two consecutive supply dates at most 1/ε huge jobs can start, thus

we can assume
∑
j∈B′ xj`k ≤ 1/ε, if ` < q and k ∈ M, therefore there are at

most (n + 1)(1/ε)qm different assignments of huge jobs to the supply dates u1

through uq−1. We can examine all of them, since m and ε are constants. The580

remaining huge jobs are assigned to uq, but we assign them to machines later.

For each huge job assignment we will guess approximately the total processing

time of those tiny jobs that start in the interval [u`, u`+1) on machine Mk,

` = 1, . . . , q− 1, and k = 1, . . . ,m. A guess is a number of the form gk,` · (ε2uq),

where 0 ≤ gk,` ≤ 1/ε + 1 is an integer. A guess for all the q − 1 supply dates585

and all the m machines can be represented by a m × (q − 1)-tuple g = (gk,`),

and let G denote the set of all possible guesses. The algorithm is as follows:

Algorithm C
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Initialization: Sbest is a schedule where each job is scheduled on M1 after uq.

1. For each feasible partial assignment x̂huge,b of huge jobs to machines and supply590

dates u1 through uq−1, perform the following steps.

2. For each tuple g ∈ G, do steps 3 - 6:

3. We create a feasible partial assignment x̂b by assigning also the tiny jobs to

machines and supply dates u1 through uq−1. Initially x̂b is the same as x̂huge,b .

Let L be the list of tiny jobs sorted in non-decreasing d′j order. Jobs from L are595

assigned to machines and to supply dates u1 through uq−1 until all jobs from L

get assigned or all the supply dates from u1 through uq−1 are processed. When

processing supply date u`, ` ∈ {1, . . . , q − 1}, we first assign jobs to M1, then

to M2, etc. Let Mk be the next machine to receive some jobs. Let hk,` be the

smallest number of tiny jobs from the beginning of L with a total processing600

time of at least gk,`(ε
2uq), and let zk,` be the maximum number of tiny jobs

from the beginning of L that can be assigned to u` without violating the resource

constraint. Assign min{hk,`, zk,`} jobs from the beginning of L to supply date

u` on Mk, and remove them from L. Then proceed with the next machine until

all machines are processed or L becomes empty.605

4. Create a partial schedule Spart from x̂b with the following modification of sub-

routine Sch (5): always schedule first the tiny jobs and then the huge jobs if

they are assigned to the same machine Mk and to the same supply date u`.

5. Let Cpartmax (k) be the time when Mk finishes Spart. Invoke the algorithm of

Appendix B with max{Cpartmax (k), uq} amount of preassigned work on Mk (k =610

1, 2, . . . ,m) to schedule the remaining jobs. Let Sact be the resulting schedule.

6. If L′max(Sact) < L′max(Sbest), then let Sbest := Sact.

7. After examining each feasible assignment of huge jobs before uq, output Sbest.

The final schedule Sbest is obviously feasible and the running time of the

algorithm is polynomial in the size of the input, since the number of possible615

huge job assignments before uq can be bounded by O((n+1)(1/ε)qm), the number

of the tuples is (1/ε+2)m(q−1), steps 3 and 4 require O(n log n) time, while step

5 also requires polynomial time (Hall & Shmoys (1989), Appendix B).
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For the sake of proving that Algorithm C is a PTAS, we construct an in-

termediate schedule S̃ which, on the one hand, has a similar structure to that620

of an optimal schedule, and on the other hand, not far from the schedule com-

puted by Algorithm C. S̃ is derived from an optimal schedule S∗ as follows. Let

g∗k,` (k ∈ {1, . . . ,m} and ` ∈ {1, . . . , q − 1}) be the smallest integer such that

(g∗k,`− 1) · (ε2uq) is at least the total processing time of the tiny jobs starting in

[u`, u`+1) on Mk in S∗ unless there is no such tiny job, in which case g∗k,` = 0.625

First perform Steps 3 and 4 of Algorithm C with the partial huge job assign-

ment (xhuge,b)∗ that corresponds to S∗, and the tuple g∗ just defined. After

that, schedule the remaining huge jobs at S̃j := S∗j + 5εuq on the same machine

as in S∗ and finally schedule the remaining tiny jobs in earliest-due-date (EDD)

order after max{Cpartmax , uq} at the earliest idle time on any machine.630

In order to compare S̃ with Sbest (Proposition 8), and with S∗ (Proposi-

tion 9), first we make two observations. Let J̃`,k denote the set of tiny jobs

that are assigned to u` and Mk in S̃ and J ∗`,k denote the set of tiny jobs with

u` ≤ S∗j < u`+1 on machine k. J̃` := ∪kJ̃`,k and J ∗` := ∪kJ ∗`,k. LetM∗` denote

the set of those machines with at least one tiny job that starts in [u`, u`+1) in635

S∗.

Observation 7. For each ` < q and Mk ∈ M, p(J̃`,k) < p(J ∗`,k) + 3ε2uq and

p(∪ν≤`J̃ν) ≥ p(∪ν≤`J ∗ν )− ε2uq.

Proof. See Appendix A.

Observation 8. After processing supply date u` in Step 3 of Algorithm C, then640

at least one of the following conditions holds: (i) there is not enough resource

to assign the next tiny job, (ii) p(∪ν≤`J̃ν) ≥ p(∪ν≤`J ∗ν ) or (iii) M∗` = ∅.

Proof. If (i) and (iii) are not true, then we have p(J ∗` ) ≤
∑
k∈M∗`

(g∗k,` − 1) ·

(ε2uq) ≤ p(J̃`)−ε2uq, where the first inequality follows from the definition of g∗,

the second from the rule of Algorithm C (step 3). Consequently, the observation645

follows from the second part of Observation 7 (using it for `− 1).

Proposition 8. S̃ is feasible, and L′max(Sbest) ≤ (1 + ε)L′max(S̃).
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Proof. S̃ cannot violate the resource constraints by the rules of Algorithm C,

and due to Observation 7, the jobs scheduled on an arbitrary machine Mk must

end before a huge job scheduled in the last stage of the construction of S̃ would650

start, since for all those huge jobs, S̃j = S∗j + 5εuq by definition. In some

iteration, Algorithm C will consider the huge job assignment and the tuple that

we used to define S̃. Hence, after step 4, S̃ and Spart coincide. Therefore, the

Proposition follows from Hall & Shmoys (1989) and Appendix B.

Proposition 9. L′max(S̃) ≤ L′max(S∗) + 6εuq.655

Proof. Let j be such that L′j(S̃) = L′max(S̃). First suppose that j is huge. If j is

scheduled at step 4 (since it is assigned to a supply date u` and a machine Mk),

then the jobs assigned to Mk and to a u`′ with `′ < `, are completed at most

3(` − 1)ε2uq later in S̃ than the jobs with S∗j′ < u` on Mk in S∗ (Observation

7). The total processing time of the jobs that are assigned to u` and Mk and660

scheduled before j in S̃ is at most εuq + 3ε2uq, thus C̃j ≤ C∗j + 5εuq follows. If

it is scheduled at step 5, then originally we have S̃j = S∗j + 5εuq and we may

push j to the right by at most ε2uq, thus C̃j ≤ C∗j + 6εuq.

Now suppose that j is tiny.

Claim 4. min{dj′ : j′ ∈ ∪ν≥`J̃ν} ≥ min{dj′ : j′ ∈ ∪ν≥`J ∗ν }, for each ` ≤ q.665

Proof. See Appendix A.

If j is assigned to an u` with ` < q, then according to Claim 4, there exists

a job j∗ with dj∗ ≤ dj and S∗j∗ ≥ u`. Let Mk be the machine which processes j

in S̃. We have S̃j ≤ u` + (εuq + 3ε2uq) + 3(q− 2)ε2uq = u` + 4εuq, since, on the

one hand, the total processing time of the tiny jobs assigned to u` on Mk in S̃ is670

at most εuq + 3ε2uq, and, on the other hand, for each ν < ` the total processing

time of the tiny jobs assigned to uν and Mk in S̃ is greater by at most 3ε2uq

than the same amount in S∗ (Observation 7) and the huge job assignment is

the same in S̃ and S∗. Therefore L′j(S̃) = C̃j − dj +D ≤ u` + 5εuq − dj +D ≤

u` + 5εuq − dj∗ +D ≤ L′j∗(S∗) + 5εuq ≤ L′max(S∗) + 5εuq follows.675
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Now suppose that j is scheduled at step 5. We will show that there exists a

tiny job j∗ such that S∗j∗ ≥ S̃j − 5εuq with dj∗ ≤ dj . From this the proposition

follows, since 0 < pj , pj∗ ≤ ε2uq by definition. Let Ã(t) denote the set of tiny

jobs j′ that are scheduled at step 5 such that S̃j′ ≥ t, and B̃(t) := S ′ \ Ã(t).

Likewise, let A∗(t) denote the set of tiny jobs j′ with S∗j′ ≥ t, and B∗(t) :=680

S ′ \A∗(t).

Claim 5. If t ≥ uq, then p(Ã(t+ 5εuq)) ≤ p(A∗(t)).

Proof. See Appendix A.

From the claim we deduce p(B̃(S̃j)) ≥ p(B∗(S̃j − 5εuq)). It follows that

there exists j∗ ∈ {j} ∪ B̃(S̃j) such that j∗ ∈ A∗(S̃j − 5εuq). Since the tiny jobs685

are scheduled in EDD order in S̃, we have dj∗ ≤ dj , and we are done.

Proof of Theorem 4. If we put together the above results we get that Algorithm

C constructs a feasible schedule in polynomial time and the (modified) lateness

of this schedule is at most L′max(Sbest) ≤ (1 + ε)L′max(S̃) ≤ (1 + ε)(L′max(S∗) +

6εuq) ≤ (1 + 8ε)L′max(S∗) by Propositions 8 and 9.690

8. Conclusions, open questions

We have shown a nearly full picture of the approximability of P |rm|Cmax,

see Table 1. Two interesting questions are still open. Is there a PTAS for

P |rm = 1|Cmax or not? Is there an FPTAS for 1|rm = 1, q = const|Cmax for

any constant greater than 2?695

Conveying some of the ideas of this paper to solve scheduling problems with

resource-consuming jobs in practice is subject to future work, which may require

to study other objective functions as well.

Appendix A

Proof of Proposition 2. Let J a(x̂) be the subset of jobs with x̂j`k = 1 for some

v` > uq and k ∈ M. We define a new solution x̃ in which those jobs in J a(x̂)
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are reassigned to new time points (but to the same machine) and show that

Cmax(x̃) ≤ Cmax(x̂). Let x̃ ∈ {0, 1}J×T ×M be a binary vector which agrees

with x̂ for those jobs in J \ J a(x̂). For each j ∈ J a(x̂), let x̃j`k = 1 for

v` = max{uq, rj} and for a k such that ∃`′ : x̂j`′k = 1, and 0 otherwise. We

claim that x̃ is a feasible solution of (1)-(5), and that Cmax(x̃) ≤ Cmax(x̂).

Feasibility of x̃ follows from the fact that uq is the last time point when some

resource is supplied, and that no job is assigned to some time point before its

release date. As for the second claim, consider the objective function (1). We

will verify that for each k ∈M and ` = 1, . . . , τ ,

v` +
∑
j∈J

τ∑
ν=`

pj x̃jνk ≤ v` +
∑
j∈J

τ∑
ν=`

pj x̂jνk, (21)

from which the claim follows. If v` ≤ uq, the left and the right-hand sides in (21)700

are equal. Now consider any ` with v` > uq. Since no job in J a(x̂) is assigned

to a later time point in x̃ than in x̂, the inequality (21) is verified again.

Proof of Claim 3. Note that, each machine is working between uq and Cmax −

ε2psum. Since x̄small is an optimal solution of (7)-(12) and according to Propo-

sition 3 x̂small is a feasible solution, thus p({j ∈ S : S∗j ≤ uq}) ≤ p(K) + p(U),705

where K is the set of small jobs scheduled at Step 5(ii)b of algorithm A, there-

fore P
(uq)
b (S∗S) ≤ P

(uq+2|T b|ε2psum)
b (SS) + p(U) (Proposition 5). P

(uq)
b (S∗B) ≤

P
(uq+2|T b|ε2psum)
b (SB) follows also from Proposition 5, thus P

(uq)
b (S∗) ≤ P (uq+2|T b|ε2psum)

b (S)+

p(U), which implies P
(uq)
a (S∗) ≥ P

(uq+2|T b|ε2psum)
a (S) − p(U). Let PS∗ :=

P
(uq)
a (S∗) and PS := P

(uq+2|T b|ε2psum)
a (S).710

Note that Cmax ≤ uq+2|T b|ε2psum+PS/m+ε2psum (Observation 3), C∗max ≥

uq + PS∗/m and PS ≤ PS∗ + p(U). From these, Cmax ≤ C∗max + 2|T b|ε2psum +

p(U)/m + ε2psum follows. Since p(U) ≤ (|R| + 1) · |T b|ε2psum (Proposition 4),

thus Cmax ≤ (1 + ((2|T b| + 1)m + (|R| + 1) · |T b|)ε2)C∗max, therefore we have

proved Claim 3.715

Proof of Observation 7. The first part follows from p(J ∗`,k) + 3ε2uq > (g∗k,` −

2)(ε2uq) + 3ε2uq = (g∗k,` + 1)(ε2uq) > p(J̃`,k) (the first inequality follows from

the choice of g∗, while the second from the construction of S̃). For the second
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part, let `′ ≤ ` denote the last period where the algorithm had to proceed with

the next period, because there was not enough resource to schedule the next720

tiny job, but M∗`′ 6= ∅. The huge jobs that are assigned to a time period until

u`′ in S̃ are scheduled before u`′+1 in S∗, thus, since pj = aj and S∗ is feasible,

p(∪ν≤`′J̃ν) ≥ p(∪ν≤`′J ∗ν ) − ε2uq follows, because otherwise there would be

enough resource to assign at least one more tiny job to u`′ in S̃. According to

the definition of `′ and the rules of Algorithm C, we have p(J̃ν) ≥ p(J ∗ν ) for725

each ν = `′ + 1, . . . , `, thus the observation follows.

Proof of Claim 4. Assume for a contradiction that there exists an ` ≤ q and

j1 ∈ J̃` such that

dj1 = min{dj′ : j′ ∈ J̃`} = min{dj′ : j′ ∈ ∪ν≥`J̃ν} < min{dj′ : j′ ∈ ∪ν≥`J ∗ν },

(22)

where the second equation follows from the EDD scheduling of tiny jobs in S̃.

Let H := {j′ ∈ S ′ : dj′ ≤ dj1}. Let `′ < ` be the largest index such that

M∗`′ 6= ∅. If there is no such `′, then the claim follows, since we have
⋃
ν<` J̃ν =⋃

ν<` J ∗ν = ∅ from the definition of S̃. Otherwise, for each ν = `′ + 1, . . . , `− 1,

since M∗ν = ∅, we have J ∗ν = J̃ν = ∅. Furthermore, from (22), it follows that

all the jobs in H start before u`′+1 in S∗ by our indirect assumption. Therefore,

p(∪ν≤`′J̃ν) < p(H) ≤ p(∪ν≤`′J ∗ν ),

where the first inequality follows from the fact that H comprises all the tiny

jobs assigned to any time period uν < u` in S̃, and j1 as well, which is assigned

to u` by definition. Hence, case (i) of the Observation 8 must hold for `′. Thus,

there was not enough resource to schedule all the tiny jobs in H before u`′+1730

in S̃. On the other hand, all the jobs in H are scheduled before u`′+1 in S∗,

thus the resource consumption of the tiny jobs starting before u`′+1 in S∗ is not

smaller than that in S̃. Moreover, the huge job assignment of the two schedules

before uq is the same. Since S∗ is feasible, this is a contradiction.

Proof of Claim 5. Note that, if t ≥ uq then the total processing time of the huge735

jobs in [max{Cpartmax (k), uq}, t] on any Mk in S∗ is at least the total processing
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time of the huge jobs in [max{Cpartmax (k), uq}, t + 5εuq] on Mk in S̃, because

S̃j′ ≥ S∗j′ + 5εuq if j′ is huge and S∗j′ ≥ uq. Since p(Ã(uq)) ≤ p(A∗(uq)) + ε2uq

(apply Observation 7 to ` = q − 1), and there is no gap before any tiny job on

any machine Mk in S̃ after max{Cpartmax (k), uq}, the claim follows, because there740

is more time to schedule tiny jobs until t + 5εuq in S̃ on any machine for any

t ≥ uq than until t in S∗.

Appendix B, PTAS for P |preassign, rj|Lmax

In this section we sketch how to extend the PTAS of Hall & Shmoys (1989)

for parallel machine scheduling with release dates, due-dates and the maximum745

lateness objective (P |rj |Lmax) with pre-assigned works on the machines. The

jobs scheduled on a machine must succeed any pre-assigned work.

Hall and Shmoys propose an (1 + ε)-optimal outline scheme in which job

sizes, release dates, and due-dates are rounded such that the schedules can be

labeled with concise outlines, and there is an algorithm which given any outline750

ω for an instance I of the scheduling problem, delivers a feasible solution to I

of value at most (1 + ε) times the value of any feasible solutions to I labeled

with ω.

All we have to do to take pre-assigned work into account is that we ex-

tend the outline scheme of Hall and Shmoys with machine ready times, which755

are time points when the machines finish the pre-assigned work. Suppose the

largest of these time points is wmax. We divide wmax by ε/2 and round each

of the pre-assigned work sizes of the machines down to the nearest multiple of

2wmax/ε. Thus the number of distinct pre-assigned work sizes is ε/2, a constant

independent of the number of jobs and machines. Then, we amend the ma-760

chine configurations (from which outlines are built) with the possible rounded

pre-assigned work sizes. Finally, the algorithm which determines a feasible so-

lution from an outline must be modified such that it disregards all the outlines

in which any job is scheduled on a machine before the corresponding rounded

pre-assigned work size in the outline, and if the rounded pre-assigned work sizes765
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of the outline do not match the real pre-assigned works of the machines.
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