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Abstract   In the business of industrial machines and plants, rapid and detailed 

estimates for planning installation or replacement of equipment, or maintenance 

work are key requirements for meeting the demands for greater reliability and 

lower costs, and for maintaining safe and secure operation. These engineering 

services should be supported by specific computer-aided methods. When replacing 

equipment at complex buildings or plants with high equipment density, the 

existing state of the installation locations and transportation routes for old and new 

equipment need to be properly measured. We have met this need by developing a 

specific object recognition technology based on 3D measurement, and by 

developing high-speed calculation technology of optimal routes for installation 

parts. This article provides an overview of these development projects with some 

real business application results. 

1 Introduction 

Satisfying the complex web of client requirements and site conditions when 

constructing a new or retrofitting and old facility such as an elevator system, 

power plant, chemical plant or oil refinery requires a wide variety of engineering 

activities. The set of tasks to be accomplished includes environmental assessment, 

civil engineering and construction, equipment design, equipment procurement, 

installation, as well as trial operation and handover. Maintenance also requires 

advanced and detailed engineering work to diagnose component equipment, 

machinery, and devices, and to repair or replace them as needed to maintain safe 

and stable operation. When providing engineering services to clients for new plant 

construction or maintenance, detailed and rapid estimates of costs and work 

schedules need to be created. To meet these needs, we have developed a portfolio 

of technologies aimed at supporting more advanced engineering work through use 

of latest information technology (IT). 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/145192914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2  

This chapter specifically handles retrofitting and replacement of industrial 

machines and plants. These being between 20 and 50 years old equipment 

sometimes only have original design drawings in two dimensions (2D), or have 

undergone so much change over the years that their cables, plumbing or 

equipment systems have become unrecognizable from the original drawings. 

Basing a project plan on the existing state is an important requirement in these 

cases. 

Retrofitting and replacement projects consist mainly of removing the items that 

need to be upgraded, and installing the new equipment. When planning each 

operation, a key requirement for any plants is to identify the actual state of the 

surrounding environment to answer questions such as whether there are any 

obstacles in the transportation routes for removal and installation, or whether 

reliable connections can be made to existing equipment items. Specifically, the 

site is surveyed to identify locations to be added or moved, locations that have 

been transformed by many years of operation, and other site-specific factors. The 

results of these studies are then used to create structural and process designs.  

To increase the efficiency of process ranging from design to installation, and to 

eliminate the need for skill in site studies, we have worked on using 3D 

measurement by long-distance contact-free laser scanners to enable rapid 

measurement of existing site conditions. 3D laser scanners have recently become 

widely used in fields such as civil engineering, construction, and surveillance. 

However, measured point clouds contain noise, and since point cloud data is 

massive, generating as-built models requires extensive manual labour. 

In addition, when retrofitting or replacing substation equipment, a large amount 

of plant-assembled and plant-inspected equipment items are successively installed 

at the site. The equipment is heavy, so they are lifted by crane for transport, 

positioning, and connection work. These processes require studying the 

installation sequence and creating work plans after taking into account difficulties 

in making equipment parts fit each other in three dimensions, and the temporary 

placement of equipment delivered to the site. That is, the process of planning the 

installation of substation equipment items requires a lot of experience and 

specialized knowledge. 

We met these requirements by developing an as-built modelling technology 

based on three-dimensional (3D) measurement and a technology for planning 

approaches to retrofit/replacement based on 3D models.  

Section 2 reviews related works and studies of the corresponding field. Section 

3 focuses on object recognition in existing plants, while Section 4 discusses 

replacement tasks in plants, during maintenance work. Section 3 uses examples 

form an elevator shaft repair commission, while illustrations of Section 4 are taken 

from a plant overhaul project. Section 5 concludes the chapter. 
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2 Related works and technology trends 

In industrial engineering (IE) there is a common understanding that the 

primary prerequisite of performing maintenance, repair and overhaul (MRO) 

activities is to have a reliable digital semantic model of the overall target object 

[10,12,26]. Such a model, which is referred to in the closely related field of 

architecture, engineering and construction (AEC) as building information model 

(BIM) represents the complex industrial facility in terms of its components, along 

with their geometric and any other relevant properties and relationships. Unlike a 

traditional computer-aided design (CAD) model it is a semantically rich 

representation that can be used by a number of different stakeholders of a facility 

with relatively long life-cycle, including MRO planners and operators, too [18,27]. 

However, just such industrial objects—like elevators, plants, thermal or nuclear 

power stations, manufacturing facilities to name a few—have in many cases only 

two dimensional blue print documentation (if any) [19], and it is rather the rule 

than the exception that there are mismatches between any kind of model and the 

reality [8]. Planners responsible for MRO activities have to face risks due to errors 

of unrecorded modifications, deformations, as well as missing records of 

incidental equipment such as suspending fixtures and cranes. Tailoring the model 

to reality time and again is also essential when monitoring the progress of 

construction projects and registering what has (or has not) been built according to 

plan or specifications [25]. Hence, it is not enough to create a semantically rich 

model of the industrial object, but this model should capture its actual as-is state 

[22].  

In the past decades, these double requirements opened broad and overlapping 

research fields both in IE and AEC. With the advancement of computer vision and 

especially 3D laser scanning technologies it became possible to scan the surface 

of even very large-scale objects and to create their as-built representation in terms 

of a set of points with 3D Cartesian coordinates—a so-called point cloud [1,4,11]. 

In parallel, methods for the efficient storage and retrieval of this often enormous 

amount of measurement data have been developed, too [23]. However, the reverse 

engineering problem of converting this raw representation into a concise, 

semantically rich model remained a research challenge till today [11,27,28].  

A detailed survey of methods supporting the (semi-) automated reconstruction 

of as-built building information models out of laser-scanned point clouds is 

provided in [27]. Accordingly, as components of a complex object have shape, 

identity and relationships, the overall problem involves three essential sub-

problems: geometric modelling, object recognition and object relationship 

modelling. While advance in all the above research areas have been achieved, and 

even some specialized commercial systems have appeared, so far there has been 

no integrated, generic solution for building up automatically a structural model of 

a complex industrial object departing from its point cloud data.  

The actual solutions vary with the domain; for instance, in AEC much effort 

was put into developing methods that can recognize indoor scenes [21] and the 
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most characteristic components of a building, such as floors, walls, cabinets, 

ceilings, and opening like doors and windows [27,28]. Recognition is typically 

concentrating on the surface of objects, via polygonal meshes and parametric 

surface models fitted to the point cloud. Hence, these methods generate models of 

complex objects in terms of structured surface meshes. A recent development aims 

at a reconstruction of buildings which maintains room topology and global wall 

connectivity [20]. Having a specific scope on construction sites, [30] tackles the 

recognition of heavy dynamic construction equipment like crawler cranes. In 

industrial engineering, the well-proven notion of features is applied almost 

unanimously, whose recognition can depart from a mesh-type input data that is 

fitted to the measurement point cloud [29]. A recent survey provides a 

comparative analysis and outlook of academic and state-of-the-art commercial 

methods capable of recognizing as-built 3D layout and in particular, pipeline 

systems in large-scale civil infrastructure facilities by making use of photo- and 

videogrammetry, as well as terrestrial laser scans [25]. Under practical conditions, 

due to complexity, noise level and incompleteness of data the methods are hardly 

applicable without extensive (and expensive) human assistance. Hence, more 

research is expected, especially in a direct collaboration of academy and industry 

[25]. 

Our earlier research aimed at adapting the existing CAD model of a complex 

industrial object to the point cloud measured on its actual surface was just an 

instance of such a joint study [8]. The workflow included the efficient storage of 

massive measurement data, segmentation of a triangulated, mesh-based CAD 

model into features, as well as matching and adapting the features to the data. The 

method was applied in a real-world setting, using the CAD model and point cloud 

data of an industrial plant that contained planar and cuboid objects, as well as 

complex and dense systems of pipes. Continuation of this research led to a method 

that was capable of reconstructing the structural model of as-built industrial 

facilities purely from on-site point cloud measurement data [9]. Focus was set on 

finding the internal structure of complex objects hidden behind the massive point 

cloud by exploiting connectivity information in the data and the linear 

characteristics of the typical components such as pipes, beams or other structural 

elements. This novel method, along with examples of its application in a specific 

domain will be presented in some detail in Section 3 below. 

The other main field of research related to our topic is automated disassembly 

and assembly planning which involves in the MRO domain two kinds of sub-

problems: (dis)assembly sequence planning, as well as (dis)assembly path 

planning. Sequence planning concerns the problem of finding a feasible sequence 

of operations that put (remove) components of a complex object to (from) their 

place. While the reconstruction of the object’s structure is such a prerequisite of 

sequence planning which can be resolved in specific cases (see above, or [1] in 

particular), so far there are only few and scattered attempts to derive the sequence 

of (dis)assembly operations from the model of the object at hand [13]. However, 

in the past two decades much effort was put into the solution of the problem of 

transporting components, equipment and other objects in a relatively densely 
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occupied industrial environment [6]. This latter so-called carry-in and carry-out 

problem (whose generic version is the classic piano movers’ problem) is 

essentially a task for path planning which centers around generating a collision-

free path from an initial picking point to a target point in an environment filled 

with obstacles. Further to accounting for part and obstacle geometries, as well as 

for physical forces such as gravity or friction, the path has to be optimal according 

to some criterion like energy, time, safety, etc. [19]. A recent review provides a 

comprehensive taxonomy and characterization of (dis)assembly path planning 

problems, together with a well-structured presentation of up-to-date solution 

approaches [13]. A generic, broadly applied method of path planning in 

constrained spaces is that of road mapping. Even though depending on its actual 

application domain like robotics, (dis)assembly, unmanned aerial vehicle (UAV) 

planning, MRO planning, etc., road mapping developed numerous variants, its 

core concept is based on a network of collision-free configurations where adjacent 

nodes can simply be reached from each other. Road maps can be pre-computed by 

probabilistically sampling the space [14] before searching for a solution (by using 

some classical shortest-path graph search or A* algorithm), or generated on the 

fly, as in the case of rapidly-exploring random trees. In any case, finding narrow 

passages between collision-free areas poses a serious challenge, especially for 

planners operating in a 3D cluttered environment. The key to that issue is the 

characterization of the space and adapting appropriately the sampling strategy 

which heavily relies on collision detection. For instance, so as to increase 

computational efficiency we applied an octree-based voxel representation of the 

free space, combined with its parallelized exploration [7,19] (for details, see 

Section 4 below).  

Finally, carry-in and carry-out operations are executed typically by cranes. 

While planning the path of such auxiliary equipment is in most of the cases out of 

the scope of investigations [13], the practically highly relevant problem of mobile 

crane walking and path planning is tackled in [16]. Here, crane configurations are 

considered together with typical site constraints and the geometry of lifted 

equipment. The proposed method determines the pick and (collision-free) 

operation areas, and then calculates the walking path of the crane. A related 

problem is crane lifting in a complex environment when a collision-free and cost-

optimal lifting path is to be generated by considering inputs such as the plant 

environment, crane mechanical data, crane position, as well as pick and end lifting 

configurations. An overview of state-of-the-art computer-aided crane lift planning 

methods is presented in [5], along with a specific genetic algorithm based 

technique that proved to be highly efficient thanks to its parallelized 

implementation.  
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3 Recognition and modelling technology 

3.1 The object recognition problem 

The object recognition and modelling technology is based on some generic 

assumptions that ensue from the application domain. First, even though 

measurement data may be acquired from a number of different positions of the 

scanner, all points are registered in the same reference coordinate system. The 

proprietary point cloud data format of the actual scanning system is also 

transformed to a uniform representation. Multiple scans can to some degree 

alleviate the difficulties caused by occlusion, but the measurement data remains 

intrinsically noisy and partial. As for the structure of the scanned object, one can 

assume that it is constructed out of typically linear extruded elementary 

components, such as pipes, beams, pillars, walls or cuboid objects. Some of these 

objects may be even of standard size (like various types of beams). However, we 

emphasize that the availability of the CAD model of the object is not required. 

Hence, the inputs of the recognition process are the following: 

• 3D point cloud of the measured complex object, 

• prior knowledge of the types of its elementary components, and optionally, 

• additional information on the exact geometries of the potential elements, 

such as catalogue of standard beams.   

The result of recognition process is a compact representation of the measured 

object consisting of its identified elementary components, together with their 

actual geometric parameters and their connectivity relations. Furthermore, each 

point of the cloud has to be indexed either with the components found or marked 

as unidentified.  

The strong engineering motivation of the application implies twofold 

performance criteria: minimizing overall processing time (including manual and 

computational), and achieving as high recognition accuracy as possible.  

3.2 Assumptions and representation 

The representation and method developed for transforming the large-scale 3D 

point cloud data into a structured model of a complex object is based on some 

fundamental engineering principles.  

• Aggregation is applied when collecting points of the cloud into a discrete, 

uniformly sized, 3D grid structure and working with these voxels instead 

of the points in some of the calculations. 

• Filtering is used to remove noise from the data.  

• Segmentation is applied to decompose a larger space investigated into 

regions of manageable size. The recognition process can run in each region 

simultaneously, while some overlap between the regions warrants that 

connectivity information is not lost.  
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• Connectivity of voxels is maintained and exploited so as to recognize 

topological relations between elementary components whose surface is 

represented—even partially—by the voxels.  

• Linearity of elementary components that build up a complex engineering 

object is assumed.  

Hence, the representation has altogether four layers. The basic representation is 

that of the registered measurement data points, given as coordinates in a common 

Cartesian system. Next, points are clustered into voxels that are signified by their 

centroid points. Then, neighboring voxels are captured in a voxel connectivity 

graph (VCG) where nodes denote voxels, while edges stand for any two voxels 

which are adjoining in space. A region under study is typically covered by a 

number of disjoint VCGs. Finally, each VCG has also a more refined model where 

the linearity of components is explicitly exploited. This is a so-called branch 

connectivity graph (BCG) where the nodes stand for typically linear branches 

composed of specific connected subsets of adjacent voxels of a VCG, while edges 

represent connections between the branches. The BCG provides a more articulated 

representation of the measurement data and hints at the presence of typical object 

types. 

3.3 Workflow of object recognition from point cloud data 

Specific illustrations for the stages are taken from a case study performed in an 

industrial domain, where recently the method has been applied routinely for 

elevator renewal.  

 
Figure 1 3D laser scanners in elevator shaft (vertical cross section). 

Figure 1 presents an image of aged elevator shaft scanning work in the renewal 

business. 3D laser scanners on the pit and on the cage obtain point cloud data of 

all the objects involved, such as shaft, rails, doors, cage, and so on, which are 

deformed and/or tilted by many years of operation. That is, the purpose of object 
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recognition is to detect objects such as shaft, rails, doors, cage, and quantify those 

deformation and tilting automatically. 

A workflow has been developed for solving the above problem that consists of 

the stages of preprocessing, point cloud filtering and connectivity graph 

construction, as well as elementary object and connectivity recognition. Figure 2 

presents this workflow, while the next subsections describe in short the major 

processing stages (for more details, see [9]). 

 

 
 

Figure 2 Workflow of the object recognition process. 

3.3.1 Preprocessing 

First, an affine transformation is performed to register points taken from various 

scanner locations in a common reference coordinate system. Next, the space is 

decomposed into 3D voxels of a given size. However, efficient storing and 

querying large datasets containing up to even billions of points requires 

appropriate indexing schemes and database management techniques. Since the 

most frequent operation is bounding box query, such a spatial indexing is used that 

stores data indexed by the basic voxels so that points located close to each other in 

the actual domain are stored also physically close to each other in the database. 

The indexing scheme applies an octree-based decomposition of the space [23].  

Figure 3 shows the raw point cloud data captured in the shaft of an elevator. 

This relatively small dataset contains ca. 40 million points. 
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Figure 3 Point cloud data of the elevator shaft. 

3.3.2 Point cloud filtering and connectivity graph construction 

In order to keep the size of the raw point data as well as the complexity of 

recognized connected object structures manageable, the space of the complete 

object is first segmented into disjoint spatial regions. Points belonging to the same 

region are processed together, while data of different regions are processed 

independently (and, optionally, in parallel). The size of a region depends on the 

number and granularity of the measured points. The generic rule is that data 

belonging to one region should fit into the memory of the actual computing 

facility. For instance, in the actual elevator case study there is no need to segment 

the space into regions.  

The point cloud is collected through a series of onsite measurements, hence due 

to occlusion, shadowing, and inaccessibility on the one hand, and reflections on 

the other hand, the data is incomplete and burdened by noise. Filtering and VCG 

composition remove the noise from the input data and select such connected 

subsets of voxels that are good candidates for object recognition. The procedure 

composes a VCG where both the number of points in each voxel and the number 

of voxels in each connected component are over some specific, pre-determined 

thresholds. Voxels (and included measurement points) not meeting any of these 

criteria are discarded in the course of an iterative filtering process. By interleaving 

filtering and VCG construction, both scattered and isolated points are removed 

from further processing. Figure  shows the VCGs generated for the elevator data: 

voxel size is 1x1x1 cm, minimum point density is 25 point/voxel, and at least 500 

voxels should be connected. This way one gets ~50 disjoint connected sets of ca. 

500.000 voxels.  
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Figure 4 VCGs of the elevator data. 

Subsequent steps of the workflow can focus on those areas of the space that are 

not only densely populated by points, but contain also candidates of large enough 

compound objects.  However, in a VCG some disjoint connected components can 

be too complex and unstructured for recognition. Hence, these are deconstructed 

into smaller connected subsets by exploiting the linearity assumption. The typical 

elementary components are extruded objects like pipes, beams (with various 

profiles), rails, etc., which can be represented by connected voxel branches 

stretching in some characteristic direction. Extruded beams are typical, planes are 

special types of such extruded linear objects. The BCG construction method 

applies projection and a specific region growing method to find both quasi-linear 

structures as well as their connections. First, in a given direction linear 

arrangements of connected voxels (so-called fibers) are sought with a length over 

a threshold. Fibers with adjacent voxels form a branch which is augmented with 

isolated voxels in its immediate proximity. Connectivity of branches that have 

adjacent voxel pairs is recorded. Finally, after removing voxels of the BCG found 

so far the procedure is iteratively repeated for other directions. Figure  provides 

two different looks of the BCGs generated for the elevator data (with minimal 

fibre length of 50 cm). Voxels of the same color belong to the same branch of the 

BCG.  
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Figure 5 BCGs of the elevator data depicted in two different views.   

3.3.3 Object and connectivity recognition 

Object recognition is aimed at identifying and characterizing the elementary 

components of the complex engineering object.  It processes the branches of the 

BCG one by one. Points belonging to the voxels of a branch are taken as evidence 

for the existence of some specific object type. Hence, in the next steps 

measurement points are again directly processed. For instance, Figure  presents 

the BCGs of the whole elevator dataset together with points of five selected linear 

branches.  

      

Figure 6 BCGs of the whole dataset and points of five selected branches (denoted by 
red nodes in the graph). 

First, the characteristic axis of a branch is found together with its start and end 

points. Next, the type of the elementary object is determined by means of 

bounding planes fitted to the point set. Plane fitting is executed iteratively until 
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new planes are found with support of a predefined, minimal number of points. 

Planes are then projected along the axis, resulting approximate linear contours of 

the cross section of the supposed object. In principle this should be sufficient for 

identifying the shape of an extruded object, but due to noise and occlusion, in real 

datasets these lines are typically multiple and inaccurate. However, essential 

information on the type of the object can be gained by investigating the 

intersection of these lines and identifying its shape pattern. Hence, quasi-parallel 

lines running close together are substituted by a single representative, and the 

resulting pattern of crossing lines is processed further. After distinguishing 

cylindrical objects, structural elements such as pillars and beams of various 

profiles are sought. Their main feature is that they are linearly extruded 3D 

versions of some 2D linear contour. For identifying the particular object types, a 

shape grammar was developed that labels intersections of contour lines as end or 

middle points, and suggests a classification. 

Having objects with recognized types, our earlier CAD model matching 

procedure is applied to determine the values of basic parameters, like center line 

and radius of pipes, or sizes of cuboids. Here, an iterative search maximizes the 

degree of match of the target object with the relevant set of points. A new method 

was developed for fitting various types of beams to standard elements of a 

catalogue. Finally, object recognition is completed with determining the local 

reference frames of the elementary objects. Figure  presents three recognized L-

beams in the elevator data set, along with two unidentified branches.  

 

    
 

Figure 7 Recognized L-beams by shape grammar. Objects behind the red and blue 
branches could not be recognized. 
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In the last step, connectivity relations between the recognized elementary 

components are taken from the BCG. If the object recognition process was 

unsuccessful, the respective branch is labelled as unidentified. Networks of 

connected pipes or beams can be obtained by inducing a subgraph of given type of 

nodes and by determining their connected subgraphs. The final representation is 

rich enough for making inferences on the connectivity of different types of 

objects; e.g., one can deduce which beam provides support for a pipe system. 

As for the performance of the overall recognition method, the four-layered 

representation using points, voxels, voxel connectivity and branch connectivity 

graphs was powerful for recognizing both elementary components and their 

topological relations. The objects could be recognized even from noisy and 

incomplete data. In contrast to earlier approaches, our method could identify 

generic extruded objects, i.e., not only pipes, but also various types of beams and 

pillars. Routine applications in the elevator domain have shown the practical 

applicability, while tests run on large plant datasets have proved the scalability of 

the method whose performance can be improved by parallel processing. 

4 Route planning technology for replacement 
task 

4.1 Impact of route planning on replacement task 

This section focuses on route planning technology for replacement task in 

renewal/retrofit business of plants. Insufficient route planning prevents 

competitive price setting that induces to lose business chance.  

The route is required to have no collision with plant structures and equipment. 

For the collision check, conventional 3D CAD systems have been utilized. 

Engineers have to develop paths manually and the collision check on the CAD 

system consumes a long time: typically it takes five hours or so for planning a 

single path for carrying in a boiler into a plant building.  

It often turns out that the paths are not feasible on site. In real situation, there 

are many uncertainties between a maintenance work plan and the real state of the 

facility, such as worker’s availability uncertainties, hoist’s availability 

uncertainties, situation uncertainties of placed materials, and so on. In the 

maintenance work planning phase, no one can quantify those uncertainties, and no 

one can make the best carry-out/carry-in path. Therefore, according to those strong 

requests of real business, the system must produce plural variant paths as 

candidates for multiple situations. 

Replacement objects are carried with overhead cranes because of their weight, 

which can be over a ton. Suspended components direction is changed by workers 

at each turning point. This means, fewer turning points are preferable from the 

view point of cost of the crane operations because the rotations of a suspended 

component require a long operational time and many travel rails for the overhead 
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crane. It is also important to have large workspace at turning points to rotate the 

replacement component avoiding collision. 

From these candidate routes, an on-site supervisor decides the optimal carry-

in/carry-out route. The decision is dependent on the state of maintenance situation. 

This means the automatic planning system have to calculate the paths in a very 

short time to establish an interactive operation between the system and the 

supervisor. 

4.2 Subjects of route planning technology 

4.2.1 Objective of route finding algorithm 

In general, route finding algorithms aim to optimize length of the route [7]. 

However, typically the shortest route is not sufficient in a plant building. There are 

two important aspects to find a suitable route for carrying a large component 

either inward or outward a building when performing a replacement task.  

The first one is the size of corner space for direction change of the carried 

component, carried out by maintenance workers. Each corner needs to be large 

enough to rotate the component without collision; the sizes of components are 

several meters. Therefore, volume of each corner space on the route is an 

important indicator to evaluate the route. The volume of corner space is called as 

space margin from now on. 

The second issue is the number of corners on the route. At each corner, 

workers rotate the carrying component and the posture of the carrying component 

is changed. Fewer corners are preferable from the view point of easiness and cost 

reduction of crane manipulation. 

Third indicator is the time of calculation, which has to be as short as possible, 

ensuring the interactive use of the system. 

4.2.2 Crane suspension posture 

Even if the optimal carry-in/out route is found with respect to space margin and 

number of corners, feasibility of crane operation can hardly be ensured, because 

collision may occur on the route. Detailed trajectory of position and posture on 

the route should be simulated in advance, before executing the operation, 

especially at corners. Corner orientations are crucial as unexpected collisions may 

occur so crane operations have to be reworked. 

4.2.3 Scale of route finding problem 

The most fundamental and stable algorithm for route finding is the Dijkstra 

method [24] which is applicable for many problems by designing the objective 

function. The fastest route finding algorithm ALT [14] is enhanced based on 

Dijkstra method. Lozano and Wesley introduced an idea of configuration space to 

route finding algorithm that enables to find posture and position sequence of the 

mechanism with several degree of freedom [17]. 
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Table 1 indicates the order of computational effort required for solving various 

characteristic route-planning problems. In every case, the route finding problem is 

represented on a graph network. Number of vertices in the graph network 

indicates the scale of the problem. 

 

Table 1 Scale of the route finding problem. 

No. Problem Vertices n 
Computation order ratio 

O(n2) 

1 San Francisco Bay Area map[7] 321,270 1 

2 Plant building (3D position) 973,210 9.2 

3 Full USA map[7] 23,947,347 5,600 

4 
Plant building (5D position and 
posture) 

249,141,760 600,000 

 
No.1 and No.3 is solved by ALT algorithm on road maps. Each vertex 

represents a junction of roads. No.2 is a problem for finding optimum route as 

position sequence in a plant building. The 3D model of the building is divided into 

small cuboids whose size is less than 0.125m3. Each cuboid is represented as a 

vertex in the graph network. No.4 expands the problem of No.2 on order to find 
posture sequence on the route. Configuration space of the crane is of 5 

dimensions, adding 2 degrees of freedom (DOF) rotating along 2 axes. The 

configuration space expands the number of vertices by the multiplication factors 

of the numbers of possible rotations along two exes. In case of No.4, 16x16 

samples for two axes rotation is timed to each cuboid that ends up 249,141,760 

vertices in No.4. 

No.4 problem is larger than 600,000 times than the problem of No.1. If 

computation time for one route finding of problem No.1 takes 0.1 sec/route, then 

the computation time of No.4 is assumed as about one day/route which is not 

feasible in any business sense.  

4.3 Break down of route planning problem 

Route finding algorithms working in the configuration space heavily consume 

computation time. To overcome the complexity of the problem, we also apply here 

the principle of decomposition and breaking down a big problem into smaller sized 

sub-problems. 

Some articles propose the breaking down approach to carry-in/out route 

planning [2,7,19]. The problem is broken down into 3 stages as below; 

• Stage 1: In 3D space of point, the optimal route is found maximizing the 

space margin and minimizing number of corners on the route.  These 

indicators of the objective function of the optimal search aim to ease and 

increase efficiency of crane manipulation with avoiding collision. 

• Stage 2: In each corner of the found route, posture and position trajectory 

is simulated based on the crane suspension dynamics. 
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• Stage 3: Collision between the carrying component and the building is 

evaluated along the route trajectory. If collision occurs, posture to avoid 

collision is searched in each point. 

The workflow of the route planning system is shown in Figure 8. In Stage 1 and 

Stage 2, the problem size becomes small enough to be computed in feasible time. 

However, for Stage 3, its problem size is still far too large. Hence, by exploiting 

the inherent parallelism of the problem, collision check in Stage 3 is performed by 

general-purpose multiprocessors, like graphic processing unit (GPU). 

 

 
 

Figure 8 Workflow of path finding. 

4.3.1 Route finding algorithm for carry in/out plant building 

Requirements are listed in Section 4.2.1. So as to satisfy the requirements the 

problem is decomposed into a multiple path finding problem. The decomposition 

is achieved by adopting Dijkstra’s algorithm for single path finding and 

constraining travelable path iteratively in descending order of performance 

indexes of paths finding. Evaluation criteria and their importance were decided 

through discussion with power plant engineers. Accordingly, the algorithm gives 

priority to the requirements in the following order: 

a) Number of turning points. More turning points imply that the operation 

becomes more complex and expensive, moreover the production cost is 

also increased because crane suspension has to travel more. 

b) Space margin. The larger space margin causes the operation cost to be 

lower, especially when making rotation in turning points. 
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c) Path length. Shorter path length leads to lower operation time, which in 

turn lowers the operation cost. 

 

According to this key idea, a path planning algorithm has been developed. 

Figure 9 presents the basic idea of the route finding algorithm for carrying 

component in /out of plant building. The steps of the algorithm are the following: 

1) The empty space around the plant’s 3D CAD model is divided into voxels. 

2) In every voxel, the space margin is calculated as the distance from the 

center of voxel to the nearest point of the building structure. Space margins 

are registered as main characteristics of the voxels. 

3) Voxels are divided if their size exceeds a predefined minimal size. Divided 

voxels inherit the space margin of their original voxel. 

4) The graph network is structured by the voxels. Here, a node indicates a 

voxel and an edge indicates adjacency between two voxels. However, it is 

not allowed to connect two voxels located in upper and lower oblique 

direction because crane cannot transfer suspended component up or down 

obliquely. Each node has its space margin registered in Step 3. 

5) The first path is generated by Dijkstra's algorithm from the given start 

point toward the given target point. 

6) So as to get dissimilar route variants, from among the voxels in which the 

recently found path goes through the voxel with the largest space margin is 

erased and the graph network is modified accordingly. 

7) Step 5 and 6 are repeated until all paths of required number are found. 

 

 
Figure 9 Route finding algorithm for replacement task. 

 

Figure 9 represents the flow of the algorithm with images. The small images 

show the following steps: 
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a) indicates an example of a 3D CAD model. 

b) indicates a result of Step 2 

c) left part is the result of Step 3, while right part shows the graph network of 

Step 4. 

d) is the result of Step 5. Green boxes denote start and target points. 

e) indicates result of Step 6. 

f) Shows the result of Step 7. 

4.3.2 Simulation of crane suspension posture 

A crane suspension is modeled as the kinematics shown in Figure 10. Two chain 

blocks are modeled as prismatic pairs which simultaneously expand the length of 

two wires when the posture of suspended component is changed. 

Suspended angles and wire tensions, which are important for safe manipulation, 

are shown in Figure 11. Operation sequence of the crane is planned by checking 

collision and safety via simulation. Position and posture trajectory is derived from 

integration of the acceleration solved dynamics model expressed as differential 

algebraic equations (for details, see [7]). 

 

     
 

Figure 10 Dynamic model of crane suspension. 
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Figure 11 Suspension angles and wire tensions. 

4.3.3. Concurrent collision check process with GPU 

Collision check is a time consuming geometric computation process. However, 

it is possible to handle collision check independently for each pose of the 

suspended component. Therefore, concurrent processing on GPU is an effective 

solution for this problem. Collision evaluation of each interpolated trajectory pose 

is concurrently computed on GPU [19]. 

In Figure 12, white circles indicate postures without collisions, and the black 

circles indicate postures with collision. Each sampling posture rotated around the x 

and z axis is evaluated as for collision occurrence by arithmetic processing units 

called CUDA core® on GPU. Collision checks are processed concurrently 

therefore the overall time of such tests decreases considerably.  

 
Figure 12 Collision check with CUDA core.  
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4.3.4 Solution examples of route planning 

Below, two plants and characteristics results of route planning are shown as 

examples. Specifically, Figure 13 presents the models of two plants together with 

a selected, executable path in each plant. 

 
(a) Plant A                                 (b) Plant B 

 

Figure 13 Acquired routes. 

 

Table 2 presents the corresponding total computation times  of the verified 

routes. The total time for generating a route includes route finding, position and 

posture trajectory generation and collision check. Voxelization and the way how 

the graph network was built up resulted in a search space which was drastically 

reduced. Hence, in both cases of industrial size and complexity, the planning 

methods proved to be efficient and practically applicable. 

 

Table 2 Total computation time. 

 

Plant Vertices in graph network  
Total  computation time 

(sec) 

A 262,144   13.7   

B 2,097,152   142.5   

 

4.3.5 Results 

The proposed planning approach greatly supports the maintenance work of 

technical equipment both of smaller (like elevators) and larger (like power plants) 

scale when carry-in/carry-out tasks have to be planned and performed. The 

method fulfils the following key engineering requirements: 

• The route planning algorithm computes one path in less than a minute. 

• The algorithm finds multiple, dissimilar paths, considering the space 

margins and the number of turning points. 

• The algorithm generates pose trajectories that avoid collisions around 

turning points. 
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5 Conclusions 

This chapter presented the latest object recognition and planning technologies 

we have developed for supporting the retrofitting and maintenance works of 

complex technical objects. These technologies are used for reverse engineering in 

conformance with site surveys, and for preliminary engineering in the service of 

construction works by means of plant models. The methods are now being 

routinely applied to elevator systems and thermal power plants, and trial use has 

started for substation replacement projects. 

As IT functions become more advanced, recognizing worker behaviours in 

addition to objects will become practical, and it will be important to manage the 

progress of complex retrofit/replacement projects in real-time with IT systems. 

These advances will enable higher utilization rates and longer equipment life, 

enabling highly efficient construction and maintenance of safe and reliable social 

infrastructure platform. We will continue to develop technologies to meet this 

objective. 
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