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Abstract: Youla parametrization of stabilizing controllers is a fundamental result of control
theory: starting from a special, double coprime, factorization of the plant provides a formula for
the stabilizing controllers as a function of the elements of the set of stable systems. In this case
the set of parameters is universal, i.e., does not depend on the plant but only the dimension
of the signal spaces. Based on the geometric techniques introduced in our previous work this
paper provides an alternative, geometry based parametrization. In contrast to the Youla case,
this parametrization is coordinate free: it is based only on the knowledge of the plant and a
single stabilizing controller. While the parameter set itself is not universal, its elements can be
generated by a universal algorithm. Moreover, it is shown that on the parameters of the strongly
stabilizing controllers a simple group structure can be defined. Besides its theoretical and
educative value the presentation also provides a possible tool for the algorithmic development.
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1. INTRODUCTION AND MOTIVATION

The branches of mathematics that are useful in dealing
with engineering problems are analysis, algebra, and geom-
etry. Although engineers favour graphic representations,
geometry seems to have been applied to a limited extent
and elementary geometrical treatment is often considered
difficult to understand. Thus, in order to put geometry
and geometrical thought in a position to become a reli-
able engineering tool, a certain mechanism is needed that
translates geometrical facts into a more accessible form for
everyday algorithms.

Klein proposed group theory as a mean of formulating
and understanding geometrical constructions. In Szabó
et al. [2014] the authors emphasise Klein’s approach to
geometry and demonstrate that a natural framework to
formulate various control problems is the world that con-
tains as points equivalence classes determined by stabi-
lizable plants and whose natural motions are the Möbius
transforms. The observation that any geometric property
of a configuration, which is invariant under an euclidean
or hyperbolic motion, may be reliably investigated after
the data has been moved into a convenient position in the
model, facilitates considerably the solution of the prob-
lems.

The link between algebra and geometry goes back to the
introduction of real coordinates in the Euclidean plane by
Descartes. Coordinates, in general, are the most essential
tools for the applied disciplines that deal with geometry.
The axiomatic approach to the Euclidean plane is seldom
used because a truly rigorous development is very demand-
ing while the Cartesian product of the reals provides an

easy-to-use model. Descartes has managed to solve a lot
of ancient problems by algebrizing geometry, and thus by
finding a way to express geometrical facts in terms of other
entities, in this case, numbers. Note that being a one-to-
one mapping, this ”naming” preserves information, so that
we can study the corresponding group operations simply
by looking at these operations’ effect on the coordinates
(”names”), even though the group elements themselves
might be any kind of weird creatures. Descartes justifies
algebra by interpreting it in geometry, but this is not the
only choice: Hilbert will go the other way, using algebra
to produce models of his geometric axioms. Actually this
interplay between geometry, its group theoretical manifes-
tation, algebra and control theory is what we are interested
in our investigations.

In contrast to traditional geometric control theory, see,
e.g., Wonham [1985], Basile and Marro [1992] for the
linear and Isidori [1989], Jurdjevic [1997], Agrachev and
Sachkov [2004] for the nonlinear theory, which is centered
on a local view, this approach provides a global view.
While the former uses tools from differential geometry, Lie
algebra, algebraic geometry, and treats system concepts
like controllability, as geometric properties of the state
space or its subspaces the latter focuses on an input-
output – coordinate free – framework where different
transformation groups which leave a given global property
invariant play a fundamental role.

In the first case the invariants are the so-called invariant or
controlled invariant subspaces, and the suitable change of
coordinates and system transforms (diffeomorphisms), see,
e.g., the Kalman decomposition, reveal these properties. In
contrast, our interest is in the transformation groups that
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leave a given global property, e.g., stability or H∞ norm,
invariant. One of the most important consequences of the
approach is that through the analogous of the classical
geometric constructions it not only might give hints for
efficient algorithms but the underlaying algebraic struc-
ture, i.e., the given group operation, also provides tools
for controller manipulations that preserves the property
at hand, called controller blending.

Control theory should study also stability of feedback
systems in which the open-loop operator is unstable or
at least oscillatory. Such maps are clearly not contained
in Banach spaces and some mathematical description is
necessary if feedback stability is to be interpreted from
open loop system descriptions. This is achieved by ruling
out from the model class those unbounded operators that
might ”explode” and establishing the stability problem in
an extended space which contains well-behaved as well as
asymptotically unbounded functions, see Feintuch [1998].
The generalized extended space contains all functions
which are integrable or summable over finite intervals. A
disadvantage of the method is that the resulting space is a
Banach space while we would prefer to work in a Hilbert
space context for signals, and the set of stable operators
for plants.

Since unbounded operators on a given space do not form
an algebra – nor even a linear space, because each one
is defined on its own domain – the association of the
operator with a linear space, its graph subspace, turns to
be fruitful. This leads us to the study of the generalized
projective geometries that copy the constructions of the
projective plane into a more complex mathematical setting
while maintaining the original relations between the main
entities and the original ideas. In doing this our main tools
are algebraic: group theory, see Szabó and Bokor [2015],
and the framework of the so called Jordan pairs will help
us to obtain the proper interpretations and to achieve new
results, see Szabó and Bokor [2016].

The main concern of this work is to highlight the deep
relation that exists between the seemingly different fields
of geometry, algebra and control. While the Kleinian
view make the link between geometry and group theory,
through different representations and homomorphism the
abstract group theoretical facts obtain an algebraic (linear
algebraic) formulation that opens the way to engineering
applications. We would like to stress that it is a very
fruitful strategy to try to formulate a control problem in
an abstract setting, then translate it into an elementary
geometric fact or construction; finally the solution of
the original control problem can be formulated in an
algorithmic way by transposing the geometric ideas into
the proper algebraic terms.

The main contribution of this paper relative to the pre-
vious efforts is the following: it is shown that, in contrast
to the classical Youla approach, there is a parametrisation
of the entire controller set which can be described entirely
in a coordinate free way, i.e., just by using the knowledge
of the plant P and of the given stabilizing controller K0.
The corresponding parameter set is given in geometric
terms, i.e., by providing an associated algebraic (semi-
group, group) structure. It turns out that the geometry
of stable controllers is surprisingly simple.

Section 2 gives the basic notions related to feedback sta-
bility and recalls the fundamental result of the Youla
parametrization. Section 3 recalls some previous results
of the authors: a natural blending method is introduced
that acts directly on the controllers and keeps stability of
the loop. The formulae on the corresponding operations
in the parameter space are new results. Section 4 provides
a geometric based parametrization of the stabilizing con-
trollers by showing how the geometric view can be applied
to reveal the coordinate free nature of the parametrization.
In Section 5 we conclude the paper by illustrating how the
abstract geometric framework interferes with the practical
problems. Finally some conclusions and further research
topics are formulated.

2. BASIC SETTINGS

A central concept of control theory is that of the feedback
and the stability of the feedback loop. For practical reasons
our basic objects, the systems, i.e., plants and controllers,
are causal. Stability is actually a continuity property of
a certain map, more precisely a property of boundedness
and causality of the corresponding map. Boundedness here
involves some topology. In what follows we consider linear
systems, i.e., the signals are elements of some normed
linear spaces and an operator means a linear map that
acts between signals. Thus, boundedness of the systems is
regarded as boundedness in the induced operator norm.
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Fig. 1. Feedback connection

To fix the ideas let us consider the feedback-connection
depicted on Figure 1. It is convenient to consider the
signals

w =

(
d
n

)
, p =

(
u
yP

)
, k =

(
uK

y

)
, z =

(
u
y

)
∈ H,

where H = H1⊕H2 and we suppose that the signals are el-
ements of the Hilbert space H1,H2 (e.g., Hi = Lni [0,∞))
endowed by a resolution structure which determines the
causality concept on these spaces. In this model the plant
P and the controller K are linear causal maps. For more
details on this general setting, see Feintuch [1998].

The feedback connection is called well-posed if for every
w ∈ H there is a unique p and k such that w = p + k
(causal invertibility) and the pair (P,K) is called stable
if the map w → z is a bounded causal map, i.e., the pair
(P,K) is called well-posed if the inverse(

I K
P I

)�1

=

(
Su Sc

Sp Sy

)
=

(
(I −KP )�1 −K(I − PK)�1

−P (I −KP )�1 (I − PK)�1

)
(1)

exists (causal invertibility), and it is called stable if all
the block elements are stable.
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2.1 Youla parametrization

A fundamental result concerning feedback stabilization is
the description of the set of the stabilizing controllers.
A standard assumption is that among the stable factor-
izations there exists a special one, called double coprime
factorization, i.e., P = NM−1 = M̃−1Ñ and there are
causal bounded systems U, V, Ũ and Ṽ , with invertible V
and Ṽ , such that(

Ṽ −Ũ

−Ñ M̃

)(
M U
N V

)
= Σ̃PΣP =

(
I 0
0 I

)
, (2)

an assumption which is often made when setting the
stabilization problem, Vidyasagar [1985], Feintuch [1998].
The existence of a double coprime factorization implies
feedback stabilizability, actually K0 = UV −1 = Ṽ −1Ũ is
a stabilizing controller. In most of the usual model classes
actually there is an equivalence.

For a fixed plant P let us denote by WP the set of well-
posed controllers, while GP ⊂ WP denotes the set of
stabilizing controllers.

Given a double coprime factorization the set of the sta-
bilizing controllers is provided through the well-known
Youla parametrization, Kucera [1975], Youla, Jabr and
Bongiorno [1976]:

GP = {K = MΣP
(Q) | Q ∈ Q, (V +NQ)−1 exists},

where Q = {Q |Q stable } and

MΣP
(Q) = (U +MQ)(V +NQ)−1. (3)

Here MT (Z) is the Möbius transformation corresponding
to the symbol T defined by

MT (Z) = (B +AZ)(D + CZ)−1, with T =

(
A B
C D

)
,

on the domain domMT
= {Z | (D + CZ)−1 exists}. Note

that

QK = MΣ̃P
(K) = (Ṽ K − Ũ)(M̃ − ÑK)−1, (4)

and thus Q = 0K corresponds to K0 = UV −1.

Since the dimensions of the controller and plant are
different, it is convenient to distinguish the zero controller
and zero plant by an index, i.e., 0K and 0P , respectively.

Observe that the domain of (4) is exactly WP ; thus we
can introduce the corresponding extended parameter set
Qwp

P = {QK = MΣ̃P
(K) |K ∈ WP }. Note, that Q0, i.e.,

MΣ̃P
(0K) = −ŨM̃−1 = −M−1U , is not in Q, in general.

The content of the Youla parametrization is that K is
stabilizing exactly when QK ∈ Q.

3. GROUP OF CONTROLLERS

In order to design efficient algorithms that operate on
the set of controllers that fulfil a given property, e.g.,
stability or a prescribed norm bound, it is important to
have an operation that preserves that property, i.e., a
suitable blending method. Available approaches use the
Youla parameters in order to define this operation for
stability in a trivial way. As these approaches ignore the
well-posedness problem by assuming strictly proper plants,
they do not provide a general answer to the problem.

In the particular case when P = 0P we have GP = Q,
i.e., mere addition preserves well-posedness and stability.
Moreover, the set of these controllers forms the usual
additive group (Q,+) with neutral element 0K and inverse
element Q → −Q. In the general case, however, addition
of controllers neither ensure well-posedness nor stability.

3.1 Indirect blending

The most straightforward approach to obtain a stability
preserving operation is to find a suitable parametrization
of the stabilizing controllers, where the parameter space
possesses a blending operation. As an example for this
indirect ( Youla based) blending is provided by the Youla
parametrization. However, this mere addition on the Youla
parameter level does not lead, in general, to a ”simple”
operation on the level of controllers:

K = MΣP
((MΣ̃P

(K1) +MΣ̃P
(K2))). (5)

The unit element of this operation is the controller K0

which defines ΣP , see Figure 2. Its implementation involves
three nontrivial transformations.

Note that an obstruction might appear if the sum of the
Youla parameters are not in the domain of MΣP

, e.g., for
non strictly proper plants where some of the non strictly
proper parameters are out-ruled.

We can formulate this process as a group homomorphism
between the usual addition of parameters Q and the group
of automorphisms Q 7→ τQ associated tpspace formed by
simple translations, i.e.,

τQ =

(
I Q
0 I

)
, τQ1

τQ2
= τQ1+Q2

.

(P,K0) (P,K)

(0P, 0K) (0,Q)

MΣ̃P
(K)

τQ

MΣP
(Q)

MΣP
((MΣ̃P

(K0) +MΣ̃P
(K )))

Fig. 2. Youla based blending

3.2 Direct blending

The observation that(
I K
P I

)
=

(
I 0
P I

)(
I K1

0 I − PK1

)(
I K2

0 I − PK2

)
. (6)

leads to operation

K = K1(I − PK2) +K2 = K1 �P K2, (7)

under which well-posed controllers form a group (WP ,�P ).
The unit of this group is the zero controller K = 0K and
the corresponding inverse elements are given by

K�P = −K(I − PK)−1. (8)

Note that

I − PK�P = (I − PK)−1. (9)

Clearly not all elements of WP are stabilizing, e.g., 0K is
not stabilizing for an unstable plant.
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Theorem 3.1. (GP ,�P ) with the operation (blending) de-
fined in (7) is a semigroup.

Note, that

(I − PK)−1 = (I − PK2)
−1(I − PK1)

−1. (10)

By using the notation(
I K
P I

)
=

(
I 0
P I

)(
I K
0 I − PK

)
= RPT

(P )
K

we have the group homomorphism T
(P )
K1

T
(P )
K2

= T
(P )
K1�PK2

and K = M
RPT

(P )

K
R�1

P

(0K).

On the level of Youla parameters the corresponding oper-
ation is more complex:

QK2
�P QK1

= Ṽ U + Ṽ MQK1
+QK2

M̃V +QK2
ÑMQK1

=

= (QK2
−Q0)M̃(V +NQK1

) +QK1
=

= QK2
+ (Ṽ +QK2

Ñ)M(QK1
−Q0), (11)

Q
K�P

= Q0 −M�1KM̃�1 =

=Q0 − (QK −Q0)(I + V �1NQK)�1V �1M̃�1. (12)

Note that (GP ,�P ) and (Q,�P ) are related by only a
semigroup homomorphism, while (WP ,�P ) and (Qwp

P ,�P )
are related, however, through a group homomorphism.

3.3 Strong stability

The semigroup (GP ,�P ) does not have a unit, in general.
However, if there is a stabilizing controller K0 such that

K�P
0 = −K0(I − PK0)

−1

is also a stabilizing controller, i.e., K0 is stable, then
(GP ,�P ) with

K1 �P K2 = K1 �P K�P
0 �P K2

is a semigroup with a unit (K0). This may happen only if
the plant is strongly stabilizable.

If we denote by SP the set of strongly stabilising con-
trollers, then if this set is not empty, then

Theorem 3.2. (SP ,�P ) with the operation (blending) de-
fined as

K = K1 �P K2 = K1 �P K�P
0 �P K2 =

= K2 + (K1 −K0)(I − PK0)
−1(I − PK2) (13)

is the group of strongly stable controllers, where K0 ∈ SP
is arbitrary. The corresponding inverse is given by

K��1
P = K0 − (K −K0)(I − PK)−1(I − PK0). (14)

Opposed to the possible expectations, we not only have
simple expressions for these operations in the Youla pa-
rameter space, but the formulae also resemble (7) and (8):

QK = QK2
⊗QK1

= QK2
+QK1

+QK2
V −1NQK1

, (15)

Q⊗�1

K = −Q(I + V −1NQ)−1. (16)

It is important to note that while (15) keeps the strong sta-
bilizability, as a property, invariant it does not guarantee
that the property is fulfilled. This means that the formula
also makes sense for parameters that does not correspond
to stable controllers.

4. A GEOMETRY BASED CONTROLLER
PARAMETRIZATION

In what follows we fix a stabilizing controller, say K0,
and in the formulae we associate, according to (1), the
corresponding sensitivities to this controller. Considering

Σ̂P,K0
=

(
UV −1 M − UV −1N
V −1 −V −1N

)
we obtain the lower LFT representation of the Youla
parametrization, i.e.,

K = MΣP,K0
(Q) = Fl(Σ̂P,K0 , Q), (17)

see, e.g., Zhou and Doyle [1999]. Rearranging the terms
one has

K = Fl(ΨK0,P , R), with ΨK0,P =

(
K0 I
I Sp

)
(18)

and

R ∈ RY
K0

= { Ṽ −1QV −1 |Q ∈ Q }. (19)

This fact was already observed for a while, e.g., Mirkin
[2016] or Bendtsen et al. [2005], where it was used as
a starting point for a Youla parametrization based gain
scheduling scheme of rational LTI systems. We have re-
called this result with the intention to demonstrate how
our previous ideas on the geometry of stabilizing con-
trollers can be applied in order to find significantly new
information on an already known configuration.

4.1 A coordinate free parametrization

In order to relate a Möbius transform to an LFT we prefer
to use the formalism presented in Szabó et al. [2014]. Thus,

recall that Σ̂P is the Potapov-Ginsburg transform of ΣP

and formulae like (18) can be easily obtained by using the
group property of the Möbius transform. Accordingly, we
have that

K = MΓP,K0
(R) = Fl(ΨP,K0

, R), (20)

R = MΓ�1
P,K0

(K) = Fl(ΦP,K0
,K), (21)

where

ΓP,K0
=

(
Su K0

−Sp I

)
, ΨP,K0

= Γ̂P,K0
, (22)

Γ−1
P,K0

=

(
I −K0

Sp Sy

)
, ΦP,K0

=

(
−K0S

−1
y S−1

u

S−1
y P

)
. (23)

Observe that (21) is defined exactly on WP and let the
restriction on the stabilizing controllers be denoted by
RK0 = {Fl(ΦP,K0 ,K) |K ∈ GP }. Apparently, apart the
structure of the set RY

K0
these formulae do not depend

on any special factorization. Moreover, they can be also
obtained directly, i.e., without any reference to some
factorization of the plant or of the controller, starting from(

I K
P I

)
=

(
I K0

P I

)
+

(
I
0

)
(K −K0) (0 I)

and applying two times the matrix inversion lemma to
obtain first(

I K
P I

)−1

=

(
I K0

P I

)−1

−
(
Su

Sp

)
R (Sp Sy) ,

with R = (K −K0)(I + Sp(K −K0))
−1 and then(

I K
P I

)
=

(
I K0

P I

)
+

(
I
0

)
R(I − SpR)−1 (0 I) . (24)
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Thus, it would be desirable to provide, if it exists, a
coordinate free description of RK0 . Exactly this is the point
where the geometric view and the coordinate free results
of Section 3 can be applied.

As a starting point observe that(
I K
P I

)
=

(
Su K
−Sp I

)(
S−1
u 0
0 I

)
= (25)

=

(
Su K0

−Sp I

)(
I R
0 I

)(
I 0
0 (I − SpR)−1

)
. (26)

Analogous to (6) we have the factorization(
Su K
−Sp I

)
=

(
Su 0
−Sp I

)(
I S−1

u K
0 I − PK

)
. (27)

By using the notations

R(P,K0) =

(
Su 0
−Sp I

)(
S−1
u 0
0 I

)
T

(P,K0)
K =

(
Su 0
0 I

)(
I S−1

u K
0 I − PK

)(
S−1
u 0
0 I

)
we have (

I K
P I

)
= R(P,K0)T

(P,K0)
K

and

T
(P,K0)
K1

T
(P,K0)
K2

= T
(P,K0)
K1�PK2

,

moreover

K = M
R(P,K0)T

(P,K0)

K
R�1

(P,K0)

(0K) = MΓP,K0
(R),

see (26) for the last equality. Thus, it is immediate that the
operation (7) is a natural choice for this new configuration,
too.

4.2 Geometric description of the parameters

Considering (11) and keeping in mind that R = Ṽ −1QV −1

we have the blending rule on RY
K0

:

R2 �P,K0
R1 = K0 + SuR1 +R2Sy −R2SySpR1. (28)

For the stable controllers the parameter blending is more
simple:

R2 ⊗P,K0 R1 = R2 +R1 −R2SpR1, (29)

R
⊗�1

P,K0 = −R(I − SpR)−1, (30)

see (15) and (16).

Observe that K0 = Ṽ −1Ṽ UV −1 ∈ RY
K0

and that the
corresponding controller is K = K0 �P K0 = [2K0]�P

.
Based on (28) it is easy to show that to the controller
K = [nK0]�P

corresponds the parameter R = (I +
· · · + Sn−1

u )K0 ∈ RY
K0

. Thus, if K0 is stable, then all
these parameters are stable. However, the corresponding
controllers are not necessarily stable.

Theorem 4.1. The algebraic structures defined by (28) and
(29) holds also on RK0

, i.e., they can be introduced in a
complete coordinate free way.

Due to lack of space, we do not continue to deduce all
the formulae, e.g., inverse, shifted blending, etc., for the
parameters. Instead we show, in what follows, that the
operation (28) can be obtained directly, without the Youla
parametrization. To do so, observe that

I − PK = (I − PK0)(I − SpR1)
−1,

thus(
I S�1

u K
0 I − PK

)
=

(
I S�1

u (K0 + SuR)

0 S�1
o

)(
I 0

0 (I − SpR)�1

)
.

Then, according to (26) we have(
Su K
−Sp I

)
=

(
Su K0

−Sp I

)(
I R1

0 I

)(
I 0
0 (I − SpR1)

−1

)
(
I S−1

u (K0 + SuR2)
0 S−1

o

)(
I 0
0 (I − SpR2)

−1

)
. (31)

Now, keeping in mind that

R = M
Γ�1
P,K0

(K) = M
Γ�1
P,K0

(
I K
P I

)(0K) = M
Γ�1
P,K0

(
Su K
−Sp I

)(0K),

the assertion follows after evaluating (31).

We have already seen that {0,K0} ⊂ RK0
. Moreover, we

have seen that Q ⊂ RY
K0

by an identification of Q → Ṽ QV ,
i.e., R → Q. It turns out that this inclusion is also a
coordinate free property, i.e., the inclusion holds regardless
the existence of any coprime factorization:

Theorem 4.2. The inclusion Q ⊂ RK0
holds.

Indeed, by taking a controller K ∈ KK0
, where

KK0 = {K = Fl(ΨK0,P , Q) = K0 +Q(I − SpQ)�1 |Q ∈ Q}, (32)

after some standard computations, that are left out for
brevity, we obtain

(I − PK)�1 = (I − SpQ)(I − PK0)
�1 (33)

(I −KP )�1 = (I −K0P )�1(I −QSp) (34)

(I − PK)P�1 = −(I − SpQ)Sp (35)

K(I − PK)�1 = −Sc + (I −K0P )�1Q(I −K0P )�1−
− (I −K0P )�1Q+Q. (36)

Thus KK0
⊂ GP , as desired.

From a mathematical point of view, there is a small
missing here. When a double coprime factorization exists,
we should also prove that the set defined by (19), and the
set defined by (24) are equal, i.e., RY

K0
= RK0 . But this

is equivalent to the fact that the Youla characterization
of stabilizing controllers is exhaustive. This is a highly
nontrivial issue and it is beyond the scope of this paper to
address this topic in general. We should mention, however,
that this property holds for discrete time systems, see, e.g.,
Feintuch [1998].

5. FROM GEOMETRY TO CONTROL

As it was already pointed out in the introduction of this
paper we have fund very useful to formulate a control
problem in an abstract setting, then translate it into an
elementary geometric fact or construction. In the previous
sections some examples were presented to illustrate this
point. Now, it is time to demonstrate the way that starts
from the abstract level and ends into a directly control
relevant result.

The reader customised with system classes, like LTI,
LPV (linear parameter varying), nonlinear, switching, etc.
might find our presentation of the geometric ideas quite
informal. We stress that this is a ”feature” of the method.
Recall that geometry – and also group theory – does not
deal with the existence and the actual nature of the objects
that are the primitives of the given geometry but rather
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captures the ”rules” they obeys to. It gives the abstract
structures that can be, for a given application, associated
with actual objects, i.e., responds to the question ”what
can be done with these objects” rather than ”how to syn-
thesise the object having a given property (e.g., stability)”.

We illustrate this fact by the example of the Youla
parametrization. A basic knowledge is to place the topic in
the context of finite rank LTI systems, i.e., those associated
with rational transfer functions R, and to interpret the
result only in this context. However, we should not confine
ourselves to this class: it is clear that an LTI plant can be
also stabilized by more ”complex” controllers, e.g., nonlin-
ear ones, see, e.g., the IQC approach of Szabó et al. [2013].
This is also clear from the geometry: nothing prevents
the Youla parameter to be any stable plant (not necessar-
ily linear) in order to generate the stabilizing controller.
Moreover, the nature of the parameter (e.g., nonlinear) is
inherited by the controller through the Möbius transform.

We stress that the geometric picture behind the Youla
parametrization has been applied under the hood even in
the cases when the classes at hand do not have a sound
input-output description, e.g., the class of switching sys-
tems or even the LPV systems. For the difficulties around
these systems when we want to cast them exclusively
into in input-output framework see, e.g., Blanchini et al.
[2009]. These difficulties does not prevent engineers to
reduce the design of the switching controllers to switch-
ing between the corresponding values of the parameters,
see, e.g., Niemann and Stoustrup [1999], Bendtsen et al.
[2005], Trangbaek et al. [2008]. Moreover, the idea can be
extended also for plants that are switching systems them-
selves, Hespanha and Morse [2002], Blanchini et al. [2009],
or LPV plants, Xie and Eisaka [2004]. Observe that in all
these examples the authors spend a considerable amount
of effort to solve the existential problem, i.e., how to obtain
K0. In all these cases this problem is cast in a state space
framework and the taxonomy of the methods revolves
around the type of the Lyapunov function (quadratic vs.
polyhedral norm, constant Lyapunov matrix vs. parameter
varying) involved that is used as stability certifier.

The motivation behind the increased complexity of the
controller is that some additional performance demand is
imposed either for the closed loop or for the controller,
which cannot be fulfilled in the LTI setting. Concerning
closed loop performances, the advantage of the Youla
based approaches is that the performance transfer function
is affine in the design parameter.

As an example consider the strong stabilizability problem.
It is a standard knowledge that in R the problem does not
always have a solution. However, it is less known that if
one considers time variant (LTV) controllers, the problem
is always solvable, see Khargonekar et al. [1988]. Moreover,
for the discrete time case the problem is solvable in the disc
algebra A or even in H∞, see Quadrat [2003, 2004].

To conclude this section we point out some additional
properties of the parametrization presented in Section 4.
As a consequence of (18) and (32), for every controller
K0 there is a stable perturbation ball ∆, contained in
the image of the ball with radius 1

‖Sp‖ under the map

x(1 − x)−1, such that the pair (P,K0 + δ) is stable

for all δ ∈ ∆. In particular, if the controller K0 is
strongly stabilizing, then all the controllers from K0 + ∆
are strongly stabilizing. This fact reveals the role of the
sensitivity Sp in relation to the robustness of the stabilizing
property of K0. Due to the symmetry, analogous role is
played by Sc for P .

This knowledge, together with (28) can be exploited to
generate a hole branch of strongly stabilizing controllers
starting from an initial one, K0, with this property. E.g.,
one has to choose arbitrarily a stable R with a sufficiently
small norm (less than 1

‖Sp‖ ) and then apply (28) itera-

tively.

6. CONCLUSIONS

In this paper we have shown that based on the direct
blending operation the set RK0

can be defined and char-
acterized in a completely coordinate free way, without any
reference to a coprime factorization. For practical purposes
it is also interesting to know that K0 ∈ RK0

, moreover
Q ⊂ RK0

holds as a coordinate free property, too. We
emphasize, that a fairly large set of stabilizing controllers
can be constructed (parametrized) just starting from the
knowledge of a single stabilizing controller, without any
additional knowledge (e.g., factorization). This underlines
an important property of the geometric (and also input-
output) view: describes the structure of the given set – in
our case those of the stabilizing controllers – but does not
provide a direct method to find any of the actual objects at
hand. To do so, we need to ensure (e.g., by a construction
algorithm) the existence at least of a single element with
the given property.

Up to this point only projective geometric structures
were considered. In order to qualify a given controller K
as a stabilizing one (validation problem) metric aspects
should be also considered, i.e., euclidean, hyperbolic, etc.
geometries. E.g., concerning the Youla parametrization
QK ∈ Q, or in the geometric parametrization RK ∈ RK0

,
should be decided. It is subject of further research how
these geometries find their way to control theory and vice
versa.
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