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Abstract: Model reduction of large scale systems is an actively researched area of modelling
and control. The problem is more involved if uncertainties are also present and a computational
tractable nominal model is needed for the design. Based on results of the Kolmogorov n-width
theory the paper provides useful bounds for the worst case approximation error – both H2 and
H∞ – in terms of the hyperbolic distance related to the sets of uncertain poles. A related model
reduction strategy that uses only this a priori pole information is also proposed. The method is
illustrated through numerical examples.
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1. INTRODUCTION AND MOTIVATION

Simulation and control design of complex and large scale
systems usually requires the derivation of a reduced order
model of the real system. If the model is obtained from
measurements, this process is called approximate model
identification, while starting from a complex high order
model obtained, e.g., from first principle analysis, the goal
is to get an approximation that is close to the original
model in some sort of system norm.

Approximate system identification was discussed in e Silva
(1996); Heuberger et al. (2005) in association with the
selection of an optimal orthogonal basis in an appropriate
H2-space. The optimality criterion was the Kolmogorov n-
width and associated hyperbolic distance of system poles.
Tóth (2008) proposed a fuzzy clustering procedure to find
the appropriate model order for identification.

Similar to the identification task is the model reduction
problem, which has gained a lot of interest in the context of
modelling of large scale systems with moderate complexity,
especially in the airspace industry. Standard approaches,
e.g., balanced model truncation, are formulated in terms of
the observability and controllability Grammians. For large
systems, however, these methods encounter serious numer-
ical difficulties in the solution of Lyapunov equations.

The recently developed iterative rational Krylov algorithm
proposes a systematic method for selecting interpola-
tion points for multipoint rational Krylov approximations
based on an H2-norm optimality criterion. This method
has been applied to reduction of large-scale linear time

invariant (LTI) systems, although its extension to param-
eter dependent LTI systems remains an open question,
Antoulas et al. (2001), Gugercin et al. (2008). A model-
constrained adaptive sampling methodology was proposed
in Bui-Thanh et al. (2007) for steady problems that are
linear in state, but have nonlinear dependence on a set of
parameters that describe geometry and PDE coefficients.

When uncertainty is present a method for model reduction
for parametric uncertainties was shown in Dolgin and
Zeheb (2005) while an approach for polytopic and affine
uncertainty sets was proposed in Goncalves et al. (2009).
This paper consider the case when the parametric uncer-
tainty information can be formulated in the term of the
poles, a case often encountered for aerospace applications.

Consider the set of stable linear time invariant (LTI)
systems given by their rational transfer function analytic
on the closed unit disc D := D∪T where the disc is denoted
by D := {z ∈ C : |z| < 1} and T = {z ∈ C : |z| = 1}
denotes its boundary on the complex plain C. Assume
that all the poles have multiplicity 1. Let us call the
reflection of the original system poles p′ as inverse poles,
i.e., p = p′/|p′|2, p ∈ D. On D let us introduce the first
order rational functions Rp(z) = 1/(1 − pz) which are
parameterized by |p| < 1.

For a given set P ⊂ D of inverse poles of the original
system let us consider the set RP = span{Rp : p ∈ P}
and introduce the normalized ball related to this set as

BqP = {f ∈ RP | ‖f‖q ≤ 1},
where ‖ · ‖q is the norm of the Hardy-space Hq. In this
paper we consider q = 2 and q =∞.
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For a fixed a ∈ D let us associate n-dimensional linear
subspace Xa

n = span{Rka : 0 ≤ k < n} of the Hardy-space
Hq. Concerning H2, it is known that the first n elements
of discrete Laguerre system form an orthogonal basis in
Xa
n. In this specific context model reduction in Hq norm

means to approximate the transfer function f ∈ BqP from
Xa
n such that n < |P |, where |P | denotes the number of

elements in P .

It is known that approximation of a plant in a system
space, like H∞, has to be done in this space norm. Ap-
proximation in space H∞ is, however, far more compli-
cated than in Hilbert spaces. Therefore we discuss first
the approximation in H2 and we show that the results can
be used in H∞-norm, too.

Examine first the approximation of f ∈ B2
P from Xa

n. It
is known that if X ∈ H2 is a closed subspace, then for all
f ∈ H2 there exists a unique go ∈ X such that

dist(f,X) := inf
g∈X
‖f − g‖ = ‖f − g0‖,

where g0 = PXf , i.e., the orthogonal projection of f
onto the subspace X. The best approximation will be
characterised by the quantity that is considered as a
Kolmogorov n-width:

wn(B2
P ) = inf

a∈D
sup
f∈B2

P

dist(f,Xa
n). (1)

It will be shown that one can obtain the following bound
on wn:

wn(B2
P ) ≤ C2r

n(aP ),

r(aP ) = min
a∈D

max
p∈P

ρ(a, p) (a ∈ D), (2)

where ρ is the so-called hyperbolic (pseudo-)distance on
the unit disc D:

ρ(z1, z2) =
|z1 − z2|
|1− z1 z2|

.

This bound can be interpreted geometrically: aP is the
centre of the hyperbolic circle covering the set of poles P
and rP := r(aP ) is its radius. The consequence is that the
approximation of the system with lower order dynamics
can be reduced to the determination of finding hyperbolic
circles that cover the pole-sets or clusters with minimum
radius. Then the approximate model will be defined in a
basis like Laguerre, Kautz, Malmquist-Takenaka, GOBF
parameterized by the circle centers.

This bound will also be given for using the H∞ norm. For
the quantity

wn(B∞P ) = inf
a∈D

sup
f∈B∞

P

inf
g∈Xa

n

‖f − g‖∞

the following bound will be obtained:

wn(B∞P ) ≤ C∞rnP .

To obtain good approximation to a high order system, it
is recommended to use of Malmquist-Takenaka basis {φak}
parameterized by a set of poles a = (an ∈ D, n ∈ N).
Setting ak = (a0, . . . , ak−1) ∈ Dk let us introduce the
family of subspaces Xak

n = span{φak : 0 ≤ k < n} (n ∈ N∗).
It will be shown that for the n-width criterion

wn(B∞P ) = inf
ak∈Dk

sup
f∈BP

dist(f,Xak
n ) (3)

the following bound can be derived

wn(B∞P ) ≤ C∞ min
ak∈Dk

r(ak, P ),

r(ak, P ) = max
p∈P

k−1∏
j=0

|Baj (p)|,

where Baj denotes the Blaschke function with parameter
aj .

Starting from these observations, this paper proposes a
model reduction algorithm based on a Kolmogorov n-
width criterion for uncertain plants, where the uncertainty
measure is formulated by using hyperbolic distances. The
necessary theoretical background is sketched in Section 2,
where the key result is formulated in Theorem 2. Section 3
formulates the model reduction problem and provides the
proposed model reduction algorithm based on Theorem 6.
The method is illustrated by some numerical examples in
Section 4.

2. N-WIDTHS AND THE HYPERBOLIC RADIUS

Denote by L2 the classical L2(T) Hilbert space endowed
with the inner-product

〈f, g〉 :=
1

2π

∫ π

−π
f(eit)g(eit) dt (4)

and with norm

‖f‖2 =
( 1

2π

∫ π

−π
|f(eit)|2dt

) 1
2

.

Let L∞ be the Banach space with the norm

‖f‖∞ = ess. sup
t∈T
|f(eit)|.

Accordingly H2 will be the Hardy space of square inte-
grable functions on T with analytic continuation on the
unit disc. Analogously we consider the space H∞. For a
classical introduction in Hq theory see Duren (1970) and
Garnett (1981).

The Blaschke functions defined on D as

Bb(z) = εBb(z), Bb(z) =
z − b
1− bz

, (5)

with b = (b, ε) ∈ B = D × T play an important role in
the sequel. b is called the parameter while b′ = 1/b is the
pole of of the Blaschke function Bb. Some features of the
Blaschke function are mentioned as follows:

• Bb : D 7→ D and Bb : T 7→ T are bijections.
• Bb(z) is an inner function in the space H2, i.e.,
|Bb(eit)| = 1 (t ∈ [−π, π]).

• The Blaschke functions Bb are isometries with respect
to the metric

ρ(z1, z2) =
|z1 − z2|
|1− z1 z2|

= |Bz1(z2)|, (Bz1 := B(z1,1)),

(6)

which is called – following Poincaré – a pseudo-
hyperbolic metric (see, e.g., Ahlfors (1973) for de-
tails), moreover,

ρ(Bb(z1), Bb(z2)) = ρ(z1, z2). (7)

The Blaschke functions form a group with the operation of
function-composition that is called Blaschke group. Using
the concept of the Blaschke function and Blaschke group
with the metric (6) a hyperbolic-type geometry can be
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built in the unit-disc that conforms with the Poincaré unit-
disc model of the hyperbolic geometry. Hence the Blaschke
group can also be referred as the hyperbolic group.

The Blaschke product associated to the sequence a =
(an, n ∈ N)is defined as Ba|n(z) =

∏n−1
j=0 Baj (z). The

corresponding orthonormal system of functions in H2 is

φa0(z) =

√
1− |a0|2
1− a0z

φan(z) =

√
1− |an|2
1− anz

Ba|n(z), (8)

which is called Malmquist-Takenaka (MT) system gen-
erated by a. Necessary and sufficient condition of the
completeness is

∑∞
n=0(1− |an|) =∞.

A useful class of MT systems is generated by periodic
sequences and it is termed as a generalized orthonormal
basis (GOBF) ofH2. In this case the sequence a is obtained
by the periodic repetition of a finite number of parameters
a0, a1, . . . , aN−1 ∈ D, i.e., an = ak if n = lN + k. The
system φn generated by the periodic sequence is of the
form

φn = φkB
l
(a|N) n = lN + k, k = 0, . . . , N − 1. (9)

For convenience we will also use B(a|N) = Ba. In the
particular case when N = 1, a0 = a the discrete Laguerre
system

Lan(z) = Φa(z)Bna (z), Φa(z) =
da

1− az
, (10)

with da =
√

1− |a|2, while if N = 2, a0 = a, a1 = a the
Kautz system is obtained, Schipp and Bokor (1998).

For a given MT system let us consider the n dimensional
subspace Xa

n = span{φak : 0 ≤ k < n}. For a fixed p ∈ D
we are interested in how well the function Rp(z) can be
approximated by the elements of Xa

n, i.e., to estimate the
quantity dist(Rp, X

a
n).

Let Sa
nf denote the partial sum Sa

nf =
∑n−1
k=0〈f, φak〉φak. In

what follows we only consider periodic parameter sets.

Lemma 1. Either on H2 or on H∞ we have the bound

‖Rp − Sa
NmRp‖ ≤ |Ba(p)|m‖Rp‖. (11)

Proof. Applying the Cauchy-formula we get

〈f,Rp〉 = f(p) (12)

and we have

Rp(z)− (Sa
NmRp)(z) =

=

N−1∑
k=0

φk(p)φk(z)

∞∑
l=m

B
l

a(p)Bla(z) =

=

N−1∑
k=0

φk(p)φk(z)
B
m

a (p)Bma (z)

1−Ba(p)Ba(z)
.

Recall now the Christoffel-Darboux formula, see Lorentz
et al. (1996):

N−1∑
k=0

φk(p)φk(z) =
1−Ba(p)Ba(z)

1− p̄z

to obtain the following identity:

Rp(z)− (Sa
NmRp)(z) = B

m

a (p)Bma (z)Rp(z). (13)

Thus the assertion follows.

Given a fλ ∈ RP from the identity (13) follows that

fλ(z)− (Sa
Nmfλ)(z) = Bma (z)f̃λ(z), (14)

with f̃λ(z) =
∑
p∈P B̄

m
a (p)rp(z).

Theorem 2. For any f ∈ BqP we have that

distq(f,X
a
Nm) = inf

g∈Xa
Nm

‖f − g‖q ≤ Cqρma , (15)

where ρa = maxp∈P |Ba(p)| and 1 ≤ q ≤ ∞.

Proof. Observe that by an application of (14) we have

‖fλ − Sa
Nmfλ‖q ≤ ρma ‖

∑
p∈P

νprp(z)‖q,

where νp = Ba(p)/ρa and thus |νp| ≤ 1. If we denote by

Cq = sup
|νp|≤1,‖f‖q≤1

‖
∑
p∈P

νprp(z)‖q

the constant that is independent of the choice of a, the
assertion follows.

Remark 3. We are mainly interested in the cases q = 2,∞,
If q = 2, then

‖
∑
p∈P

νprp(z)‖2 ≤
∑
p∈P
‖rp(z)‖2 ≤ (max

p∈P
dp)‖λ‖2,

with ‖λ‖2 = (
∑
p∈P |λp|2)1/2. Using condition ‖f‖q ≤ 1,

we have ‖λ‖2 ≤ CP , where CP is a constant that depends
only on P . Thus, Cq is a constant depending only on P .
Actually, for practical purposes one can consider the set

B2,P = {fλ ∈ RP , ‖λ‖2 ≤ 1}.
On this set we have the bound

dist2(f,Xa
Nm) ≤ (max

p∈P
dp)ρ

m
a . (16)

Analogously, for q =∞ it is convenient to consider the set

B∞,P = {fλ ∈ RP , ‖λ‖1 =
∑
p∈P
|λp| ≤ 1},

with the uniform bound

dist∞(f,Xa
Nm) ≤ ρma . (17)

Since we are interested in how well these functions can
be approximated by the elements of Xa

Nm the so-called
Kolmogorov-width is considered, i.e.,

wm(BqP ,XNm) = inf
X∈XNm

sup
f∈Bq

P

dist(f,X) =

= inf
a∈DN

sup
f∈Bq

P

dist(f,Xa
Nm). (18)

Applying Theorem 2 we have

Theorem 4. Let us denote by ρN = r(a, P ). Then

wm(BqP ,XNm) ≤ CρmN . (19)

Recall that ρN = infa∈DN ρa,

For N = 1 the infimum is explicitly known: ρ1 is the
radius of the hyperbolic circle covering the set P , and
a∗, the optimal choice for a, is the centre of this circle.
Moreover, one can construct efficient algorithms – also
based on hyperbolic geometrical ideas – to compute this
radius. The case N ≥ 1 is more involved and an iterative
search is needed to obtain a fair approximation of ρN and
the corresponding a∗, the optimal pole configuration.
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3. MODEL REDUCTION AND HYPERBOLIC DISKS

The optimal H2 model reduction problem gain a lot of
interest in the context of modelling of large scale systems
with moderate complexity. Due to the numerical difficul-
ties encountered in the solution of Lyapunov equations the
H∞ methods, or even the state space based H2 model
reduction approaches, are not competitive in this area.
Current solution proposals are based on an interpolation
framework, where the key step is the selection of the poles
of the reduced model, see, e.g., Antoulas et al. (2001), or,
for a recent adaptive approach Mi et al. (2012).

A basic fact concerning the optimality condition of the
reduced model is the following, see Gugercin et al. (2008):
for a fixed set of simple poles A with r = |A| let us
consider the set RA. Then Gr solves the optimal H2 model
reduction problem constrained to the subspace RA, i.e.,

‖G−Gr‖2 = min
g∈RA

‖G− g‖2

if and only if 〈G − Gr, g〉 = 0 for all g ∈ RA. However,
applying (12) and (14) we have that if r = Nm and
Gr = Sa

NmG then 〈G − Gr, g〉 = 0 for all g ∈ RA, as
expected.

Lemma 5. For all m ≥ 1 and r = |A|m we have

‖G− Sa
NmG‖2 = min

g∈RA

‖G− g‖2.

Thus, the entire problem of the optimal H2 model reduc-
tion problem revolves around the question how to select
optimal pole configuration A such that

‖G−Gr‖2 = inf
a
‖G− Sa

rG‖2.

The most widespread approach to provide a solution, i.e.,
the prototype of the interpolation-based model reduction
methods for LTI systems, is the iterative rational Krylov
algorithm (IRKA). For a given system G

ẋ(t) = Ax(t) +Bu(t), y(t) = CTx(t)

and with a prescribed reduced system order N , the goal
of the algorithm is to find a local minimizer Ĝ for the
H2 model reduction problem. For the class Rp the first
order necessary conditions for a local minimizer imply that
Ĝ(z) = ĈT (zI − Â)−1B is a Hermite interpolant of G(z)
at its reflected system poles, Meier and Luenberger (1967),
i.e.,

G(p) = Ĝ(p), G′(p) = Ĝ′(p), p ∈ P.
The IRKA algorithm iteratively updates the projection
subspaces until interpolation at the reflected reduced sys-
tem poles is ensured, see, e.g., Flagg et al. (2012):

(1) Make an initial selection of P which is closed under
conjugation and fix a convergence tolerance εtol.

(2) while d(P, P̂ ) > εtol repeat: choose V and W such
that WTV = I and

Ran(V ) = {(ζ1I −A)−1B, . . . , (ζNI −A)−1B},
Ran(W ) = {(ζ1I −AT )−1C, . . . , (ζNI −AT )−1C},

with ζi = 1
p̄i

and pi ∈ P .

(3) let

Â = WTAV, B̂ = WTB, Ĉ = CV,

and P̂ = {1/eigÂ}.

(4) let P = P̂ .

While there are no rigorous convergence proofs, numerous
experiments have shown that the algorithm often con-
verges rapidly.

Another approach, initiated in Mi et al. (2012). Consid-
ering the nth stage of the Malmquist-Takenaka expansion
generated by a, i.e.,

G = Gn(z) +Gn+1(z)Ba|n(z),

the next pole a in A is selected by using the criteria

max
a
|〈Gn+1(z), Ra(z)〉|.

All these approaches assume, however, that the transfer
function G is completely known. To relax this assumption
in this paper the following uncertainty model is considered:
let us suppose that the poles of the nominal model G
are partitioned in K different clusters. Each cluster Pi
is covered by a hyperbolic circle Hi with centre pi and
radius ρi (2Kc centres are symmetric to the real line while
Kr centres are on the real line, i.e., K = 2Kc + Kr). In
each cluster the number of poles is given, i.e., by an abuse
of the notation |Pi| = |Hi|. Notice that neither the centre,
nor the radius of Hi and that of the minimal covering
hyperbolic circle associated to the set Pi are supposed to
be identical.

Accordingly, the uncertain Gu(z) can be written as

Gu(z) =

K∑
i=1

Gu,i(z), Gu,i ∈ BHi .

Instead of BHi
one might consider B2,Hi

or B∞,Hi
as well.

Knowing the nominal G we would like to give a reduced
model which is also good by considering the uncertain one.

In view of Theorem 2 and Lemma 5 a reasonable choice is
to consider the Kolmogorov n-width approach, and to use
as a reduce order model

Gr(z) =

K∑
i=1

Ĝi(z), Ĝi = Spi

|pi|mi
Gi,

where r =
∑K
i=1 |pi|mi and pi = pi in the real case

(Laguerre) while pi = [pi, p̄i] in the complex one (Kautz).

Theorem 6. Having a nominal model G =
∑K
i=1Gi, the

reduced model as above, and under the assumptions made
on the uncertainty set we have the following bound:

‖Gu −Gr‖q ≤
K∑
i=1

Cq,iρ
mi
i . (20)

Proof. We can use (15) of Theorem 2. See also Remark
3.

We emphasize that this error bound reflects the worst-case
paradigm of the n-width concept. E.g., if P denotes the set
of reversed poles for G, one would be tempted to obtain a
configuration satisfying

a∗ = inf
a∈Dr

max
p∈P
|Ba(p)|.

Since the parameters of this a∗ does not coincide with the
centres of the covering hyperbolic circles, the correspond-
ing reduced model might produce bigger errors in the worst
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case than the choice of the theorem. Analogously, different
reduced order models might produce better bound on the
nominal model while failing on the uncertainty set.

Note that the bound of Theorem 6 is also valid for the
H∞ norm for the entire uncertainty set, while the reduced
models obtained by the classical approaches based on the
nominal model are tuned only for the H2 norm.

At the end of this section we summarize the main steps
of the proposed algorithm. The input data is the nominal
plant G = C(zI −A)−1B +D with its inverse pole set

P = {pi = 1/λ̄i, λi ∈ eigA}.
An uncertainty description provided by the partitioning
hyperbolic circles Hi and corresponding sets BHi

is also
given. As a first step of the algorithm we need a quasi
modal decomposition that fit to this partitioning. E.g., this
can be performed by using a block Schur decomposition
and a suitable permutation of the eigen-blocks. Note, that
the eigen-decomposition is numerically not reliable in the
context of large scale systems. Once we have the transfer
functions Gi we apply a Laguerre or a Kautz expansion
parameterized by pi, the centre of the circle Hi. The value
for the expansion length mi can be selected based on the
radius ρi of the hyperbolic circle, which determines the
worst case decay rate. If other information is available
there is a room for a weighted selection depending on the
role of the term Gi (e.g., value of its gain relative to the
norm of G). Finally the reduced model is given by

Gr(z) =

K∑
i=1

(Spi

|pi|mi
Gi)(z).

4. NUMERICAL EXAMPLES

The aim of this section is to illustrate the proposed
algorithm in the two basic configurations, i.e., when the
centre of the uncertainty ball is a real one and also the
case when this pole is complex (two clusters with conjugate
complex centres). In the first case we are dealing with a
Laguerre expansion, while in the second a Kautz series is
involved.

In both of the cases we consider a nominal transfer
function G with its poles that determines pole clusters
that corresponds to the two assumptions.

Thus in the first case we have the plant

G(z) = (21)

0.4071 10−3

z5 − 3.9567z4 + 6.2637z3 − 4.9593z2 + 1.9638z − 0.3112
,

having the nominal pole set

P = {0.8633, 0.8200± 0.0755i, 0.7267± 0.0591i}.
In the second case the nominal plant is

G(z) =
0.0890

n1(z)n2(z)
, (22)

n1(z) = z4 − 2.0134z3 + 2.2188z2 − 1.2171z + 0.3643,

n2(z) = z6 − 2.5732z5 + 3.6882z4 − 3.1812z3+

+ 1.8304z2 − 0.6331z + 0.1213,

having the nominal pole sets

P1 = {0.4800 + 0.6234i, 0.5267 + 0.5578i, 0.4033 + 0.6234i,

0.4833 + 0.5020i, 0.4000 + 0.5414i},
P2 = {0.4800− 0.6234i, 0.5267− 0.5578i, 0.4033− 0.6234i,

0.4833− 0.5020i, 0.4000− 0.5414i}.
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Fig. 1. One uncertainty circle with real centre (Laguerre
case)
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Fig. 2. Two uncertainty circles with conjugate complex
centres (Kautz case)

Figure 1 and 2, respectively, show the minimal covering
circles H̃i, with centres 0.8064 and 0.4592± 0.5764i, that
contains the nominal poles. In our problem setting the
definition of the uncertainty set, i.e., the hyperbolic circles
Hi is also needed. Since the covering circles associated to
the nominal poles are contained in these uncertainty sets,
the hyperbolical radius ρ̃i of H̃i, i.e., 0.2228 and 0.1593,
respectively, gives the lowest rates in the error bounds (20).
For simplicity, in this academic example we assume that
the centre of the hyperbolic circles Hi and H̃i, describing
the pole-uncertainty set, coincides.

On Figure 3 and 4 we show the Bode plot of the reduced
model corresponding to (21) and (22), respectively. To
illustrate the effect of the uncertainty, Bode plots of
the random plants with the poles in these sets are also
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Fig. 3. Laguerre approximation m = 3 vs. 5 original poles

depicted. Red line denotes the nominal model while green
line represents the reduced model.

Fig. 4. Kautz approximation m = 3 vs. 10 original poles

5. CONCLUSION

This paper considered the model reduction problem of
large scale systems formulated on the uncertainty set de-
fined by a predefined collection of pole clusters. These
clusters are specified as hyperbolic circles through their
centre and radius. For the sake of simplicity only systems
with simple poles are considered and the possible uncer-
tainty of the gains is quantified by a norm condition on
the residuals. The general case can be developed along the
same ideas leading only to more complicated formulae.

The proposed approach is based on a results of the
Kolmogorov n-width theory: useful bounds are given for

the worst case approximation error – both H2 and H∞ –
in terms of the hyperbolic distance related to the sets of
uncertain poles. The model reduction strategy uses only
this a priori information. Moreover, the reduced model is
computed as a combination of truncated Laguerre and
Kautz expansions parameterized by the centres of the
uncertainty sets.

REFERENCES

Ahlfors, L. (1973). Conformal invariants. McGraw-Hill,
New York.

Antoulas, A., Sorensen, D.C., and Gugercin, S. (2001).
A survey of model reduction methods for large scale
systems. In Contemporary Mathematics, volume 280,
193–219. AMS Publications.

Bui-Thanh, T., Willcox, K., and Ghattas, O. (2007).
Model reduction for large-scale systems with high-
dimensional parametric input space. SIAM J. Sci. Com-
put., 30(6), 3270–3288.

Dolgin, Y. and Zeheb, E. (2005). Model reduction of
uncertain systems retaining the uncertainty structure.
System & Control Letters, 54, 771–779.

Duren, P.L. (1970). Theory of Hp spaces. Academic Press.
e Silva, T.O. (1996). A n-width result for the generalized

orthonormal basis function model. In Preprints of the
13th IFAC World Congress, 375–380.

Flagg, G., Beattie, C., and Gugercin, S. (2012). Conver-
gence of the iterative rational krylov algorithm. Systems
& Control Letters, 61(6), 688–691.

Garnett, J. (1981). Bounded Analytic Functions. Aca-
demic Press.

Goncalves, E., Palhares, R., Takahashi, R., and Chasin,
A. (2009). Robust model reduction of uncertain sys-
tems maintaining uncertainty structure. International
Journal of Control, 82(11), 2158–2168.

Gugercin, S., Antoulas, A.C., and Beattie, C. (2008).
H2 model reduction for large-scale linear dynamical
systems. SIAM. J. Matrix Anal. & Appl., 30(2), 609–
638.

Heuberger, P.S.C., Van den Hof, P.M.J., and Wahlberg,
B. (2005). Modeling and Identification with Rational
Orthonormal Basis Functions. Springer-Verlag.

Lorentz, G., v. Golitschek, M., and Makovoz, Y. (1996).
Constructive Approximation. Springer–Berlin.

Meier, L. and Luenberger, D. (1967). Approximation
of linear constant systems. IEEE Transactions on
Automatic Control, 12(5), 585–588.

Mi, W., Qian, T., and Wan, F. (2012). A fast adaptive
model reduction method based on Takenaka–Malmquist
systems. Systems and Control Letters, 61(1), 223–230.

Schipp, F. and Bokor, J. (1998). Identification in Laguerre
and Kautz Bases. Automatica, 34, 463–468.
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