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Abstract: Different aspects of the relation between hyperbolic geometry and linear system
theory are discussed in this paper. The underlying connection is presented by an intuitive
example that points out the basic motivations. It is shown that the convergence factor
of Laguerre series expansion is equal to the hyperbolic distance, under certain conditions.
Preliminary results are also reported, connecting the H∞ norm and ν-gap metric with the
hyperbolic distance. Furthermore, the equivalence of (i) the H∞ norm of the difference of two
first order LTI system, (ii) the ν-gap of these systems and (iii) the hyperbolic distance is also
proved, under specified assumptions.
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1. INTRODUCTION

Hyperbolic geometry view on dynamical systems can offer
a unique insight and reveal connections between certain
properties of linear systems (Beardon and Minda, 2000;
Anderson, 2005). This paper elaborates certain aspects of
this connection. The main motivation is the successful uti-
lization of the hyperbolic geometry in system identification
and analysis. However, the underlying correspondence is
rarely discussed from the engineering point of view.

The most successful application area of the hyperbolic
approach is system identification, where various method-
ologies are developed in the literature. The main advantage
is the appropriate model structure, offered by the hy-
perbolic approach. In these frameworks, the identification
problem is generally translated as a search for a set of basis
functions that provides series expansion of the model with
fast convergence. The use of orthogonal basis functions
for identification of stable systems in Hardy space H2

has a great advantage that if the basis is properly chosen
then the speed of convergence of the series expansion can
be substantially increased (see Heuberger et al. (2006)).
Therefore, only a few coefficients have to be estimated.
The speed of convergence is characterized by the decay
ratio that is the reciprocal of the convergence factor. So
the quality of the chosen basis can be represented quantita-
tively by the convergence factor. In the early works, Linear
Time Invariant (LTI) systems are considered Heuberger
et al. (1995), while later extensions for Linear Parameter
Varying (LPV) models have appeared Tóth et al. (2009).

The problem of Linear Time Invariant (LTI) system iden-
tification is discussed in Soumelidis et al. (2009) from

? Sponsor and financial support acknowledgment goes here. Paper
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a hyperbolic geometric point of view. The identification
method is based on a hyperbolic wavelet construction that
parametrizes the location of poles by operations similar
to translation and dilatation. These are the basic mother
wavelet transformations in wavelet theory. Furthermore,
a hyperbolic wavelet transformation is proposed on the
conceptual base of the Blaschke function, operating as a
translation operator.

Another identification method, based on the intersection
of hyperbolic circles is proposed in Soumelidis et al. (2012).
The system is represented in Laguerre basis and the con-
vergence of the Laguerre series expansion is connected to
the hyperbolic radius of a hyperbolic circle. The iden-
tification method is developed in the Hardy space H2

⊥,
which is the set of all functions that is analytic inside
the open unit disk D and has a finite norm. However, the
control engineering convention is that a stable discrete LTI
systems belong to the Hardy space H2, with poles inside
the unit circle.

The 2-dimensional Poincaré disc model is utilized in Tóth
(2010) in order to aid system identification of Linear Pa-
rameter Varying (LPV) systems. The work connects Kol-
mogorov n-width optimal orthogonal basis (see Oliveira e
Silva (1996)) functions with objects in hyperbolic geome-
try. This approach is an important application of hyper-
bolic geometry.

The main contribution of the paper is the establishment
of the connection between ν-gap metric, H∞ norm and
hyperbolic distance, under specific conditions. The result
can give an opportunity for new methods for calculating
bounds on H∞ norm or ν-gap metric with low numerical
complexity. This is especially important in the case of
large-scale systems, known to be ill-conditioned.
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The remainder of this paper is organized as follows. Section
2 shortly introduces the most important features of hyper-
bolic geometry. An example presented in Section 3 which
intuitively point out the correspondence between hyper-
bolic geometry and system behavior. Section 4 presents a
detailed derivation of the convergence factor of Laguerre
series expansion as hyperbolic distance. As a new result
relation between ν−gap metric, H∞ norm and hyperbolic
distance is identified and presented in Section 5 followed
by concluding remarks in Section 6.

2. THE HYPERBOLIC DISTANCE

In the followings, a short summary is presented about
the most important features of the hyperbolic geometry
(for further information see Beardon and Minda (2000);
Anderson (2005)). The main motivation is that stable LTI
systems can be naturally represented in the hyperbolic
setting over the unit disc.
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Fig. 1. Basic geometric objects on Poincaré disk model of
hyperbolic geometry

In order to do so, Euclid’s parallel postulate is substituted
by the axiom that states for every line h, and a point P
not on h, there are infinitely many lines through P which
do not cross h (see Figure 1). Among the many models
with this property, the 2-dimensional Poincaré disk model
is widely used in the control engineering community Tóth
(2010). Lines are represented by Euclidean circles that are
orthogonal to the unit circle, while the hyperbolic line is
the part of a circle which lies strictly inside the unit circle
(see Fig. 1). The line a is parallel to line b and line c and it
is easy to see that an infinite number of lines can be drawn
that is parallel to line a and goes through the intersection
of lines b and c.

The 2-dimensional Poincaré disk model is defined on the
complex unit disk with the following distance metric:

dh(γ1, γ2) = 2 tanh−1 |γ1 − γ2|
|1− γ2γ1|

, (1)

where γ1, γ2 ∈ D := {z ∈ C : |z| < 1} and γ is the complex
conjugate of γ. It is obvious that:

lim
γ1→∂ D

dh(γ1, γ2)→∞, (2)

i.e. the distance approaches infinity as one of the points
approaches the unit circle ∂ D := {z ∈ C : |z| = 1}.
In other words: the complex unit disk D represents the
infinite hyperbolic 2-dimensional space in this model.
Hyperbolic circles are the set of all points that are at a
given hyperbolic distance from a given center point (see
Fig. 1). In Poincaré disk model the hyperbolic circles can
be represented by Euclidean circles that means there is an
Euclidean circle for every hyperbolic circle so that each
circle has the same set of points.

It is also important to note that one can define a so called
pseudo-hyperbolic distance as:

dhp(γ1, γ2) =
|γ1 − γ2|
|1− γ1γ2|

, (3)

The Poincaré disk model equipped with the pseudo-
hyperbolic distance has the same geometric properties
except the the pseudo-hyperbolic distance is never additive
along geodesics (i.e. hyperbolic lines).

3. INTUITIVE INTRODUCTION

The advantage of this metric is demonstrated by a sim-
ple example. Consider a nominal second order, strictly
proper SISO discrete transfer function GN (z) with the
complex eigenvalue pair 0.9e±i

π
8 inside the unit disk. Take

the perturbed systems G1(z) and G2(z) with the poles
0.99e±i

π
8 and 0.81e±i

π
8 respectively. Set the static gain

of each system equal to 1 and compare the time-domain
behaviors.The result is plotted in Fig. 2. In this example
the euclidean distance between the corresponding poles of
the nominal and G1(z), G2(z) is equal it is 0.09. The time
domain behavior is greatly differs from each other so it is
clear that the euclidean distance does not captures the dy-
namic behavior of these systems. The hyperbolic distance
of the corresponding poles respect to GN (z) and G1(z)
is 2.3489 and respect to GN (z) and G2(z) is 0.6904. The
hyperbolic distances between the poles suggests that the
hyperbolic metric is more suitable for comparing dynamic
behavior based only on pole locations.

The hyperbolic distance has another important feature
that is the distance is not defined i.e meaningless if
one compares stable poles with unstable poles which is
coherent with the expectations. This feature does not
hold for euclidean distance. On the other way measuring
the hyperbolic distance between unstable poles is possible
since one can transform them with the transformation
p̂ = 1/p where p̂ is the transformed pole and bar means
complex conjugate.

The presented simple example shows that the hyperbolic
distance can be better in comparing LTI systems based
on their pole location then Euclidean distance but does
not point out any suggestion why one should use hyper-
bolic distance from the bunch of other possible distances.
The following two theorems (Anderson (2005)) show the
motivation of using hyperbolic distance.

Theorem 1. Any holomorphic homeomorphism f : D→ D
is an isometry of the hyperbolic metric.

Theorem 2. Any holomorphic homeomorphism f of D to
itself is a Möbius transformation
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Fig. 2. Impulse responses of G1(z), G2(z) and GN (z)
systems

f(z) =
az + b

cz + d
ad− bc 6= 0 (4)

Where D is the open unit disc.

Möbius transformation itself is a transfer function of
a first order LTI system. This intrinsic relation gives
the motivation of the analysis of hyperbolic geometry in
correlation with system and control theory. The problem
is that the mentioned theorems do not give useful results
from system and control point of view, so this require
further investigation, some aspects of this problem is
discussed in this paper. In the sequel the derivation of
the convergence factor of Laguerre series expansion as
hyperbolic distance, and the relation of H∞ norm and
ν − gap metric with hyperbolic distance is shown.

4. CONVERGENCE FACTOR OF LAGUERRE
SERIES EXPANSION AS HYPERBOLIC DISTANCE

This section shows that the convergence factor of the
Laguerre series expansion of a first order discrete LTI
system is exactly the pseudo-hyperbolic distance between
the Laguerre parameter and the corresponding pole of the
first order system. Similar derivations can be found in the
literature: in Soumelidis et al. (2012) equivalence in the
Hardy space H2

⊥ is proven, while in Heuberger et al. (2006)
only real poles are considered. The present derivation
is carried out in the H2 Hardy space, important from
engineering point of view. Furthermore it is not limited
to real poles.

First the formal definition of the H2 Hardy space is
discussed.

4.1 H2 Hardy space

Let H2(D) be the set of all functions that is analytic
outside the unit circle plate D and has a finite norm with
respect to the following norm definition.

Let f ∈ H2(D) and let M2(f, r) be a following function:

M2(f, r) =

{
1

2π

∫ π

−π

∣∣f (reiω
)∣∣2 dω} 1

2

, (5)

where r and ω are the magnitude and argument of the
complex number with i being the imaginary unit. For any
f ∈ H2(D) the 2-norm is defined as:

‖f‖2 = lim
r→1

M2(f, r). (6)

The L2(∂ D) space is the space of functions g on the unit
circle ∂ D for which the following norm

‖g‖ =

{
1

2π

∫ π

−π

∣∣g (eiω
)∣∣2 dω} 1

2

is bounded.

In the followings useful theorems are summarized regard-
ing H2(D) (see Rudin (1987)).

• If f ∈ H2(D) then f has radial limits f∗(eiω) at
almost all points of ∂ D.

• f∗ ∈ L2(∂ D).
• The mapping f → f∗ is an isometry of H2(D) onto

the subspace of L2(∂ D).
• Let f, g ∈ H2(D) and the inner product in H2(D) is

defined by

〈f, g〉 =
1

2π

∫ π

−π
f∗
(
eiω
)
g∗ (eiω)dω, (7)

then the H2(D) space is a Hilbert space equipped
with the above described inner product.

In this paper every F (z) ∈ H2(D) under investigation is a
strictly proper rational transfer function that do not have
zeros on the unit circle. In this case the followings are true
(see Heuberger et al. (2006)):

• The radial limits f∗(eiω) of f ∈ H2(D) are equal to
f(eiω).

• The inner product among these functions can be
expressed as:

〈f, g〉 =
1

2π

∫ π

−π
f
(
eiω
)
g (eiω)dω and

〈f, g〉 =
1

2π i

∮
T
f(z)g

(
1

z̄

)
dz

z
(8)

Note that the there is an orthogonal complement of H2

in L2 and it is denoted by H2
⊥. In short H2

⊥ is the set of
all functions that is analytic inside the unit circle plate D
and has a finite norm. From engineering point of view the
H2 space is more important since the convention is that
a discrete stable LTI systems have their poles inside the
unit circle.

4.2 Convergence factor

The unit pulse response g(t) of a stable casual LTI system
can be expressed in an orthonormal series expansion as:

g(t) =

∞∑
k=1

ckfk(t), (9)

where fk(t) is the k-th element of an orthonormal basis
and ck is the k-th coefficient. In practical applications all
the element of the series expansion can not be used so
g(t) is approximated by the first n elements of the series
expansion. Let g(t;n) be the the approximation of g(t) of
order n. The error of this approximation is
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εg(t;n) = g(t;n)− g(t). (10)

The convergence factor describes the rate of convergence
for the series expansion. Under exponential approximation
error one can write,

‖εg(t;n+ k)‖ ≈ ρk ‖εg(t;n)‖ (11)

where ρ is the convergence factor (0 ≤ ρ < 1).

4.3 Derivation of the convergence factor of the Laguerre
series expansion

The Laguerre basis on H2(D) is defined by the following
basis functions:

Φn(z) =

√
1− |a|2

z − a

(
1− āz
z − a

)n
n = 0, 1, 2 . . .

a ∈ D; a 6= 0 (12)

Let F (z) ∈ H2(D) a strictly proper rational function that
is analytic outside the unit circle and has no pole on the
unit circle. Then compute the n-th Laguerre coefficient ln
of F (z) as:

ln = 〈Φn(z), F (z)〉 =
1

2π i

∮
T

Φn(z)F

(
1

z̄

)
dz

z
=

=

√
1− |a|2

2π i

∮
|z−a|=ε

(1− āz)n F
(

1
z̄

)
1
z

(z − a)
n+1 dz+

+
1

2π i

∮
|z|=ε

(1−āz)n

(z−a)n+1F
(

1
z̄

)
z

dz (13)

where 0 < ε < |a|.
Applying the Cauchy integral formulas to (13) the La-
guerre coefficients are rewritten as:

ln =


√

1− |a|2

n!

dn

dzn

(
1

z
(1− āz)n F

(
1

z̄

))
z=a

+

+

[√
1− |a|2 (1− āz)n

(z − a)
n+1F

(
1

z̄

)]
z=0

(14)

At this point we restrict ourselves for stable, first-order
transfer functions, in the following form:

F (z) =
A

z − b
(15)

F

(
1

z̄

)
=

Az

1− b̄z
(16)

where b ∈ D. Substituting (15) and (16) into (14) the La-
guerre coefficients for the given form of F (z) is computed
through :

ln =

A
√

1− |a|2

n!

dn

dzn

(
(1− āz)n

1− b̄z

)
z=a

+

+

[√
1− |a|2 (1− āz)n

(z − a)
n+1

Az

1− b̄z

]
z=0

(17)

It is obvious that the second therm of (17) is zero, therefore
the Laguerre coefficients of (15) are:

ln =

A
√

1− |a|2

n!

dn

dzn

(
(1− āz)n

1− b̄z

)
z=a

. (18)

In order to calculate ln the n-th derivative of

(1− āz)n

1− b̄z
= (1− āz)n

(
1− b̄z

)−1
(19)

has to be computed, for which the generalized Leibniz rule
can be applied. Let u and v be two n-times differentiable
functions, then:

(uv)
(n)

=

n∑
k=0

(
n

k

)
u(n−k)v(k) (20)

Applying (20) for (19), we get:

u(n−k) = ((1− āz)n)
(n−k)

=

= (−1)
n−k

(n− k)!

(
n

n− k

)
(1− āz)k (ā)

n−k

v(k) =
((

1− b̄z
)−1
)(k)

= k!
(
1− b̄z

)−1−k (
b
)k

(21)

Notice that:

(n− k)!

(
n

n− k

)
=
n!

k!
,

so equation (20) takes the following form:

(uv)
(n)

=
n∑
k=0

(
n

k

)
(−1)

n−k n!

k!
(1− āz)k (ā)

n−k
k!
(
1− b̄z

)−1−k (
b
)k

(22)

After some algebraic manipulation the binomial theorem
can be applied to get:

(uv)
(n)

=
n!(

1− b̄z
)n+1K(z) (23)

where

K(z)=

n∑
k=0

(
n

k

)
(−1)

n−k
(ā)

n−k (
1−b̄z

)n−k (
b
)k

(1−āz)k=

=
(
b̄ (1− āz)− ā

(
1− b̄z

))n
=
(
b̄− ā

)n
. (24)

Therefore, we arrive to the following formula:

(uv)
(n)

=
n!
(
b̄− ā

)n(
1− b̄z

)n+1 (25)

Consequently, the Laguerre coefficients (18) are:

ln =

A
√

1− |a|2

n!

n!
(
b̄− ā

)n(
1− b̄z

)n+1


z=a

=

=
A

√
1− |a|2

1− b̄a

(
b̄− ā

)n(
1− b̄a

)n . (26)

From (26) it is obvious that the convergence factor ρ of
F (z) is

ρ =

∣∣b̄− ā∣∣∣∣1− b̄a∣∣ =
|b− a|∣∣1− b̄a∣∣ (27)

which is equal to the pseudo-hyperbolic distance between b
and a in (3). It is worth to mention that this result is true
in a more general cases. If F (z) has a partial fractional
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representation and every pole is distinct and stable then
the contribution of each partial fraction to the series
expansion has the form of (26). For large n the convergence
factor of F (z) is obviously equal to the convergence factor
of the therm in partial fractional representation whose
convergence factor is the largest.

5. RELATION OF H∞ NORM AND ν −GAP
METRIC WITH HYPERBOLIC DISTANCE

In this section two preliminary results are presented on
the correspondence of H∞ norm and ν-gap metric with
hyperbolic distance.

Theorem 3. Let P1(s) and P2(s) are two first order contin-
uous time LTI SISO systems and let G1(z) and G2(z) are
the discrete zero-order hold equivalent of P1(s), P2(s) with
an appropriate sampling time. Then, if the static gains are
equal to one and the sampling time is approaching zero:

• the ν-gap metric of continuous systems and the
pseudo-hyperbolic distance of the poles of the discrete
systems are equivalent metrics
• the H∞ norm of the difference of the continuous

systems and the pseudo-hyperbolic distance of the
poles of the discrete systems are equivalent

Proof. Let the system be a first order LTI system in the
form:

P (s) =
A

s+ b
. (28)

The normalized right graph symbol of P (s) is

Gr =

[
N(s)
D(s)

]
=


−A

s+
√
A2 + b2

−s− b
s+
√
A2 + b2

 . (29)

In order to see that N(s) and D(s) in (29) are the co-prime
factorization of (28) we write:

P (s) = ND−1 =
−A

s+
√
A2 + b2

s+
√
A2 + b2

−s− b
=

A

s+ b
,

(30)
Furthermore, to see that (29) is normalized it has to satisfy
the following Bezout identity:

N∗N +D∗D = I (31)

where N(s)∗ = N(−s)T and D(s)∗ = D(−s)T . Substitute
(29) in (31):

−A
−s+

√
A2 + b2

−A
s+
√
A2 + b2

+

+
s− b

−s+
√
A2 + b2

−s− b
s+
√
A2 + b2

=

=
A2

A2 + b2 − s2
+

b2 − s2

A2 + b2 − s2
=
A2 + b2 − s2

A2 + b2 − s2
= 1

so one can conclude that (29) is the normalized right graph
symbol of P (s). The same argument can be applied to the
left normalized graph symbol, that is:

Gl = [−D(s) N(s)] =

[
s+ b

s+
√
A2 + b2

−A
s+
√
A2 + b2

]
.

(32)
Now we are at the position to compute the ν-gap between
two stable systems P1(s) and P2(s), by using the corre-

sponding co-prime factorizations. The definition of ν-gap
metric (see Vinnicombe (1993)) is

δν(P1, P2) =



‖Gl2Gr1‖∞ if det(G∗r2Gr1)(jω) 6= 0

∀ω ∈ (−∞,∞)

and winding number of

det(G∗r2Gr1) = 0

1 otherwise
(33)

Now, substitute the first order dynamics of P1(s) and P2(s)
into (33) using (29) and (32)

δν(P1, P2) =∥∥∥∥∥∥∥∥
[

s+ b2

s+
√
A2

2 + b22

−A2

s+
√
A2

2 + b22

]
−A1

s+
√
A2

1 + b21
−s− b1

s+
√
A2

1 + b21


∥∥∥∥∥∥∥∥
∞

=

∥∥∥∥ (A2 −A1)s+ (A2b1 −A1b2)

s2 + (c1 + c2)s+ c1c2

∥∥∥∥
∞

(34)

where c1 =
√
A2

1 + b21 and c2 =
√
A2

2 + b22.

Let A1 = b1 = d1 and A2 = b2 = d2 in order to set the
static gain to one and substitute in (34):

δν(P1, P2) =

∥∥∥∥ (A2 −A1)s+ (A2b1 −A1b2)

s2 + (c1 + c2)s+ c1c2

∥∥∥∥
∞

=∥∥∥∥ (d2 − d1)s

s2 +
√

2(d1 + d2)s+ 2d1d2

∥∥∥∥
∞

(35)

From the definition of H∞ norm it follows that:∥∥∥∥ (d2 − d1)s

s2 +
√

2(d1 + d2)s+ 2d1d2

∥∥∥∥
∞

=

max
ω

∣∣∣∣ (d2 − d1)iω

−ω2 +
√

2(d1 + d2)iω + 2d1d2

∣∣∣∣ (36)

In (36) the transfer function has two real poles, which
can be shown by simply solving the quadratic formula to
obtain:

p1,2 =
−
√

2(d1 + d2)±
√

2(d1 + d2)2 − 8d1d2

2
=

−
√

2(d1 + d2)±
√

2(d1 − d2)2

2
=

−
√

2(d1 + d2)±
√

2(d1 − d2)

2
=

{
−
√

2d1

−
√

2d2

I.e. the Bode magnitude plot has exactly one global
maximum for positive ω and there is no local minimum
or inflection point.

The calculation of the maximum in (36) is a long and
standard process, therefore only the basic steps are out-
lined here. Let the frequency function of (36) denoted by
M(ω).

(1) Calculate the absolute value of M(ω).
(a) Expanding M(ω) by the complex conjugate of its

denominator.
(b) Separate real and imaginary part.

(c) Calculate
√
Re(M(ω))2 + Im(M(ω))2

(2) Since the square root is monotonic, H(ω) = |M(ω)|2
can be used, without loss of generality.

(3) Calculate the ω derivative of H(ω).
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(4) Since the transfer function of equation (36) has two
real poles, it is sufficient to involve the equation
dH(ω)
dω = 0 for the correct result.

The final result is

δν(P1, P2) =
1√
2

∣∣∣∣d2 − d1

d1 + d2

∣∣∣∣ =

∣∣∣∣ 1√
2

b2 − b1
b1 + b2

∣∣∣∣ (37)

where we applied d1 = b1 and d2 = b2.

To see the correlation of (37) with the hyperbolic distance
metric, we substitute the discrete poles of the system in
the formula of the pseudo-hyperbolic distance in eq. (3).
In addition, in order to connect the discrete representation
with the continuous one, we investigate the limit of the
distance, with sampling time T approaching zero. Hence:∣∣∣∣ limT→0

eb1T − eb2T

1− eb1T eb2T

∣∣∣∣ =

∣∣∣∣ limT→0

b1e
b1T − b2eb2T

−(b1 + b2)e(b1+b2)T

∣∣∣∣ =

∣∣∣∣b2 − b1b1 + b2

∣∣∣∣
(38)

By comparing (37) and (38) it can be depicted that
the only difference between the ν-gap metric and the
pseudo hyperbolic distance is the scalar coefficient 1√

2
.

This concludes the first part of the proof.

Similar argument can be applied to the correspondence of
the H∞ norm and pseudo hyperbolic distance. In order
to see, we compute the H∞ norm of the difference of the
stable systems P1(s) and P2(s) as:∥∥∥∥ A1

s+ b1
− A2

s+ b2

∥∥∥∥
∞

=

∥∥∥∥ (A2 −A1)s+ (A2b1 −A1b2)

s2 + (b1 + b2)s+ b1b2

∥∥∥∥
∞

(39)
Again, let A1 = b1 = d1 and A2 = b2 = d2 then we get:∥∥∥∥ A1

s+ b1
− A2

s+ b2

∥∥∥∥
∞

=

∥∥∥∥ (d2 − d1)s

s2 + (d1 + d2)s+ d1d2

∥∥∥∥
∞

(40)

Note that, the obtained formula has the same structure as
in equation (35), hence the same train of thought can be
followed. The final result shows:∥∥∥∥ A1

s+ b1
− A2

s+ b2

∥∥∥∥
∞

=

∣∣∣∣b2 − b1b1 + b2

∣∣∣∣ (41)

Therefore, it can be concluded from (41) and (38) that the
H∞ norm of the difference of P1(s), P2(s) is equivalent
with the pseudo hyperbolic distance as the sample time
approaches zero.

6. CONCLUSIONS AND FUTURE WORK

Detailed derivation of the convergence factor of Laguerre
series expansion is carried out in the Hardy space H2,
important from the engineering point of view. It has
been shown that the convergence factor of Laguerre series
expansion is equal to the hyperbolic distance.

The connection between H∞ norm and ν-gap metric with
hyperbolic distance is discussed. The generalization of
this theorem may give an opportunity for potential new
methods of calculation of bounds on H∞ norm or ν-gap
metric based on hyperbolic geometry. Since the calculation
of hyperbolic distance is computationally not expensive
the applicability of this methods can be extended to a
larger dimensional system.
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Tóth, R., Heuberger, P.S.C., and Van den Hof, P.M.J.
(2009). Asymptotically optimal orthonormal basis func-
tions for lpv system identification. Automatica, 45(6),
1359–1370. doi:10.1016/j.automatica.2009.01.010.

Vinnicombe, G. (1993). Measuring Robustness of Feedback
Systems. Ph.D. thesis, Department of Engineering,
University of Cambridge.

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

9700


