
Fine-Grained Complexity of Coloring Unit Disks
and Balls∗

Csaba Biró1, Édouard Bonnet2, Dániel Marx3, Tillmann Miltzow4,
and Paweł Rzążewski5

1 Department of Mathematics, University of Louisville, Louisville, KY, USA
csaba.biro@louisville.edu

2 Institute for Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI), Budapest, Hungary
edouard.bonnet@dauphine.fr

3 Institute for Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI), Budapest, Hungary
dmarx@cs.bme.hu

4 Institute for Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI), Budapest, Hungary
t.miltzow@gmail.com

5 Institute for Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI), Budapest, Hungary; and
Faculty of Mathematics and Information Science, Warsaw University of
Technology, Warsaw, Poland
p.rzazewski@mini.pw.edu.pl

Abstract
On planar graphs, many classic algorithmic problems enjoy a certain “square root phenomenon”
and can be solved significantly faster than what is known to be possible on general graphs: for
example, Independent Set, 3-Coloring, Hamiltonian Cycle, Dominating Set can be
solved in time 2O(

√
n) on an n-vertex planar graph, while no 2o(n) algorithms exist for general

graphs, assuming the Exponential Time Hypothesis (ETH). The square root in the exponent
seems to be best possible for planar graphs: assuming the ETH, the running time for these
problems cannot be improved to 2o(

√
n). In some cases, a similar speedup can be obtained

for 2-dimensional geometric problems, for example, there are 2O(
√
n logn) time algorithms for

Independent Set on unit disk graphs or for TSP on 2-dimensional point sets.
In this paper, we explore whether such a speedup is possible for geometric coloring problems.

On the one hand, geometric objects can behave similarly to planar graphs: 3-Coloring can be
solved in time 2O(

√
n) on the intersection graph of n unit disks in the plane and, assuming the

ETH, there is no such algorithm with running time 2o(
√
n). On the other hand, if the number `

of colors is part of the input, then no such speedup is possible: Coloring the intersection graph
of n unit disks with ` colors cannot be solved in time 2o(n), assuming the ETH. More precisely,
we exhibit a smooth increase of complexity as the number ` of colors increases: If we restrict the
number of colors to ` = Θ(nα) for some 0 6 α 6 1, then the problem of coloring the intersection
graph of n unit disks with ` colors

can be solved in time exp
(
O(n 1+α

2 logn)
)

= exp
(
O(
√
n` logn)

)
, and

cannot be solved in time exp
(
o(n 1+α

2)
)

= exp
(
o(
√
n`)

)
, unless the ETH fails.

∗ Supported by the ERC grant PARAMTIGHT: “Parameterized complexity and the search for tight
complexity results”, no. 280152.

© Csaba Biró, Édouard Bonnet, Dániel Marx, Tillmann Miltzow, and Paweł Rzążewski;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 18; pp. 18:1–18:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/145192867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 Fine-Grained Complexity of Coloring Unit Disks and Balls

More generally, we consider the problem of coloring d-dimensional unit balls in the Euclidean
space and obtain analogous results showing that the problem

can be solved in time exp
(
O(n d−1+α

d logn)
)

= exp
(
O(n1−1/d`1/d logn)

)
, and

cannot be solved in time exp
(
n
d−1+α
d −ε

)
= exp

(
O(n1−1/d−ε`1/d)

)
for any ε > 0, unless the

ETH fails.

1998 ACM Subject Classification G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases unit disk graphs, unit ball graphs, coloring, exact algorithm

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.18

1 Introduction

There are many examples of 2-dimensional geometric problems that are NP-hard, but can
be solved significantly faster than the general case of the problem: for example, there
are 2O(

√
n logn) time algorithms for TSP on 2-dimensional point sets or for Independent

Set on the intersection graph of unit disks in the plane [27, 21, 1], while only 2O(n) time
algorithms are known for these problems on general metrics or on arbitrary graphs. There is
evidence that these running times are essentially best possible: under the Exponential Time
Hypothesis (ETH) of Impagliazzo, Paturi, and Zane [16], the 2O(

√
n logn) time algorithms

for these 2-dimensional problems cannot be improved to 2o(
√
n), and the 2O(n) algorithms

for the general case cannot be improved to 2o(n). Thus running times with a square root in
the exponent seems to be the natural complexity behavior of many 2-dimensional geometric
problems. There is a similar “square root phenomenon” for planar graphs, where running
times of the form 2O(

√
n), 2O(

√
k) · nO(1), or nO(

√
k) are known for a number of problems

[4, 6, 5, 15, 11, 12, 7, 9, 8, 28, 14, 10, 17, 18, 2, 24, 25, 21]. More generally, for d-dimensional
geometric problems, running times of the from 2O(n1−1/d) or nO(k1−1/d) appear naturally, and
Marx and Sidiropoulos [22] showed that, assuming the ETH, this form of running time is
essentially best possible for some problems.

In this paper, we explore whether such a speedup is possible for geometric coloring
problems. Deciding whether an n-vertex graph has an `-coloring can be done in time `O(n)

by brute force, or in time 2O(n) using dynamic programming. On planar graphs, we can
decide 3-colorability significantly faster in time 2O(

√
n), for example, by observing that planar

graphs have treewidth O(
√
n). Let us consider now the problem of coloring the intersection

graph of a set of unit disks in the 2-dimensional plane, that is, assigning a color to each disk
such that if two disks intersect, then they receive different colors. For a constant number of
colors, geometric objects can behave similarly to planar graphs: 3-Coloring can be solved
in time 2O(

√
n) on the intersection graph of n unit disks in the plane and, assuming the ETH,

there is no such algorithm with running time 2o(
√
n). However, while every planar graph is

4-colorable, unit disks graphs can contain arbitrary large cliques, and hence the `-colorability
is a meaningful question for larger, non-constant, values of ` as well. We show that if the
number ` of colors is part of the input and can be up to Θ(n), then, surprisingly, no speedup
is possible: Coloring the intersection graph of n unit disks with ` colors cannot be solved
in time 2o(n), assuming the ETH. What happens between these two extremes of constant
number of colors and Θ(n) colors? Our main 2-dimensional result exhibits a smooth increase
of complexity as the number ` of colors increases.

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.18

Cs. Biró, É. Bonnet, D. Marx, T. Miltzow, and P. Rzążewski 18:3

I Theorem 1. For any fixed 0 6 α 6 1, the problem of coloring the intersection graph of n
unit disks with ` = Θ(nα) colors

can be solved in time 2O(n
1+α

2 logn) = 2O(
√
n` logn), and

cannot be solved in time 2o(n
1+α

2) = 2o(
√
n`), unless the ETH fails.

Let us remark that when we express the running time as a function of two parameters
(number n of disks and number ` of colors) it is not obvious what we mean by claiming that
a running time is “best possible.” In the statement of Theorem 1, we follow Fomin et al. [13],
who studied the complexity of a two-parameter clustering problem in a similar way: We
restrict the parameter ` to be Θ(nα) for some fixed α, and determine the complexity under
this restriction as a univariate function of n.

The proof is not very specific to disks and can be easily adapted to, say, axis-parallel unit
squares or other fat objects. However, it seems that the requirement of fatness is essential
for this type of complexity behavior as, for example, the coloring of the intersection graphs
of line segments (of arbitrary lengths) does not admit any speedup compared to the 2O(n)

algorithm, even for a constant number of colors.

I Theorem 2. There is no 2o(n) time algorithm for 6-Coloring the intersection graph of
line segments in the plane, unless the ETH fails.

How does the complexity change if we look at the generalization of the coloring problem
into higher dimensions? It is known for some problems that if we generalize the problem
from two dimensions to d dimensions, then the square root in the exponent of the running
time changes to a 1 − 1/d power, which makes the running time closer and closer to the
running time of the brute force as d increases [22]. This may suggest that the d-dimensional
generalization of Theorem 1 should have (n`)1−1/d in the exponent instead of

√
n`. Actually,

this is not exactly what happens:1 the correct exponent seems to be n1−1/d times `1/d. That
is, as d increases, the running time becomes less and less sensitive to the number of colors
and approaches 2O(n), even for constant number of colors.

I Theorem 3. For any fixed 0 6 α 6 1 and dimension d > 2, the problem of coloring the
intersection graph of n unit balls in the d-dimensional Euclidean space with ` = Θ(nα) colors

can be solved in time 2
O

(
n
d−1+α
d logn

)
= 2O(n1−1/d`1/d logn), and

cannot be solved in time 2n
d−1+α
d

−ε
for any ε > 0, unless the ETH fails.

Techniques. The upper bounds of Theorems 1 and 3 follow fairly easily using standard
techniques. Clearly, the problem of coloring unit disks with ` colors makes sense only if
every point of the plane is contained in at most ` disks: otherwise the intersection graph
would contain a clique of size larger than ` and we would immediately know that there is no
`-coloring. On the other hand, if every point is contained in at most ` of the n unit disks,
then it is known that there is a balanced separator of size O(

√
n`) [23, 27, 26]. By finding

such a separator and trying every possible coloring on the disks of the separator, we can
branch into `O(

√
n`) smaller instances (here it is convenient to generalize the problem into

the list coloring problem, where certain colors are forbidden on certain disks). This recursive

1 The astute reader can quickly realize that 2O((n`)1−1/d) is certainly not the correct answer when, say,
` = Θ(n) and d = 3: then 2O((n`)1−1/d) = 2O(n4/3) is worse than the running time 2O(n) possible even
for general graphs!

SoCG 2017

18:4 Fine-Grained Complexity of Coloring Unit Disks and Balls

procedure has the running time claimed in Theorem 1. We can use higher-dimensional
separation theorems and a similar approach to prove the upper bound of Theorem 3.

For the lower bound, the first observation is that instances with the following structure
seem to be the hardest: the set of disks consists of g2 groups forming a g × g-grid and each
group consists of ` pairwise intersecting disks such that disks in group (i, j) can intersect disks
only from those other groups that are adjacent to (i, j) in the g×g-grid. Note that this instance
has n = g2` disks. As a sanity check, let us observe that the g` disks in any given row have
`g` possible different colorings, hence we can solve the problem by a dynamic programming
algorithm that sweeps the instance row by row in time in 2O(g` log `) = 2O(

√
n` log `), which is

consistent with the upper bound of Theorem 1. We introduce the Partial d-grid Coloring
problem as a slight generalization of such grid-like instances where some of the g × g groups
can be missing.

To prove that instances of this form cannot be solved significantly faster, we reduce
from a restricted version of satisfiability where g2k variables are partitioned into g2 groups
forming a g × g-grid and there are two types of constraints: clauses of size at most 3 where
each variable comes from the same group and equality constraints forcing two variables from
two adjacent groups to be equal. It is not very difficult to show that any 3-SAT instance
with O(gk) variables and O(gk) clauses can be embedded into such a problem, hence the
ETH implies that the problem cannot be solved in time 2o(gk). We reduce such instances
of 3-SAT to the coloring problem by representing each group of k variables with a group
of ` = O(k) disks and make the following correspondence between truth assignments and
colorings: if the i-th variable of the group is true, then we represent it by giving color 2i− 1
to the (2i − 1)-st disk and color 2i to the 2i-th disk, and we represent false by swapping
these two colors. Then we implement gadgets that enforce the meaning of the clauses and
the equality constraints. This way, we create an equivalent instance with O(g2) groups of
` = O(k) disks in each group, hence an algorithm with running time 2o(g`) = 2o(gk) would
violate ETH, which is what we wanted to show.

The d-dimensional lower bound of Theorem 3 goes along the same lines, but we first
prove a lower bound for a d-dimensional version of 3-SAT, where there are gd groups of
variables of size k each, arranged into a g × · · · × g-grid. Based on earlier results by Marx
and Sidiropoulos [22], we prove an almost tight lower bound for this d-dimensional 3-SAT by
embedding a 3-SAT instance with roughly gd−1k variables and clauses into the d-dimensional
g× · · ·× g-grid. Then the reduction from this problem to coloring unit balls in d-dimensional
space is very similar to the 2-dimensional case.

2 Intermediate problems

In this section, we introduce two technical problems, which will serve as an intermediate
step in our hardness reductions. Let us start with some notation and definitions. For an
integer n, we denote by [n] the set {1, 2, . . . , n}. For a set S, we denote by 2S the family
of all subsets of S. For a fixed dimension d and i ∈ [d], we denote by ei the d-dimensional
vector, whose i-th coordinate is equal to 1 and all remaining coordinates are equal to 0. For
two positive integers g, d, we denote by R[g, d] the d-dimensional grid, i.e., a graph whose
vertices are all vectors from [g]d, and two vertices are adjacent if they differ on exactly one
coordinate, and exactly by one (on that coordinate). In other words, a and a′ are adjacent if
a = a′ ± ei for some i ∈ [d]. We will often refer to vertices of a grid as cells.

Cs. Biró, É. Bonnet, D. Marx, T. Miltzow, and P. Rzążewski 18:5

Problem: d-grid 3-Sat
Input: A d-dimensional grid G = R[g, d], a positive integer k, a function ζ : v ∈ V (G) 7→
{v1, v2, . . . , vk} mapping each cell v to k fresh boolean variables, and a set C of constraints
of two kinds:
clause constraints: for a cell v, a set C(v) of pairwise variable-disjoint disjunctions of

at most 3 literals on ζ(v);
equality constraints: for adjacent cells v and w, a set C(v, w) of pairwise variable-disjoint

constraints of the form vi = wj (with i, j ∈ [k]).
Question: Is there an assignment of the variables such that all constraints are satisfied?

Not all variables need to appear in some constraint. The size of the instance I = (G, k, ζ, C)
of d-grid 3-Sat is the total number of variables, i.e., gdk.

Problem: Partial d-grid Coloring
Input: An induced subgraph G of the d-dimensional grid R[g, d], a positive integer `,
and a function ρ : v ∈ V (G) 7→ {pv1, pv2, . . . , pv`} ∈ ([`]d)` mapping each cell v to a set of
` points in [`]d.
Question: Is there an `-coloring of all the points such that:

two points in the same cell get different colors;
if v and w are adjacent in G, say, w = v + ei (for some i ∈ [d]), and p ∈ ρ(v) and
q ∈ ρ(w) receive the same color, then p[i] 6 q[i] where a[i] := a · ei is the i-th
coordinate of a?

Here the size of the instance is the total number of points, i.e., |V (G)|` 6 gd`.

3 Two-Dimensional Lower Bounds

In this section, we discuss how to obtain a lower bound for the complexity of coloring unit
disk graphs. We do it using a three-step reduction and the intermediate problems introduced
in the previous section. Thanks to introducing these two intermediate steps, our construction
is easy to generalize to higher dimensions (see Section 4).

First we reduce 3-Sat to 2-grid 3-Sat.

I Theorem 4. For any 0 6 α 6 1 there is no algorithm solving 2-grid 3-Sat with total size
n and k = Θ(nα) variables per cell in time 2o(

√
nk) = 2o(n

1+α
2), unless the ETH fails.

The next step is reducing 2-grid 3-Sat to Partial 2-grid Coloring. This step is the
most important part of the proof.

I Theorem 5. For any 0 6 α 6 1, there is no 2o(
√
n`) algorithm solving Partial 2-grid

Coloring on a total of n points and ` = Θ(nα) points in each cell (that is n/` cells), unless
the ETH fails.

Proof. We present a reduction from 2-grid 3-Sat to Partial 2-grid Coloring. Let
I = (G, k, ζ, C) be an instance of 2-grid 3-Sat, where G = R[g, 2] and each cell contains
k variables. We think of G as embedded in the plane in a natural way, with edges being
horizontal or vertical segments. We construct an equivalent instance J = (F, `, ρ) of Partial

SoCG 2017

18:6 Fine-Grained Complexity of Coloring Unit Disks and Balls

A1
2
4
3

5
6
7
8

x1

x2

bottom of
reference
coloring

B

y1

y2

top of
reference
coloring

1
2
3
4

6
5

7
8

Figure 1 Cells of even parity contain the bottom half of the reference coloring as in cell A and
cells of odd parity contain the top part of the reference coloring, as in cell B.

2-grid Coloring with |V (F)| = Θ(|V (G)|) = Θ(g2) and ` := 4k points per cell, where F is
an induced subgraph of R[g′, 2] with g′ = Θ(g).

First, we will explain the most basic building blocks of our construction, i.e., standard
cells, reference cell, variable-assignment cells, local reference cells, and wires. Then we are
ready to give an overview of the whole reduction. We finish with an elaborate explanation of
more complicated gadgets and proof of their correctness.

Standard cells. A standard cell is a cell where the points p1, . . . , p` are on the main diagonal,
that is pi = (i, i) for every i ∈ [`] (see cells A and B of Figure 2a). When we talk about the
ordering of the points in a standard cell, we always mean the left-to-right (or equivalently,
top-to-bottom) ordering. Standard cells will be used for the basic pieces of the construction,
i.e., variable-assignment cells, local reference cells, and wires (see below).

Reference coloring. Later in the construction we will choose one standard cell R̄, which
will be given a special function. We will refer to the coloring of R̄ as the reference coloring.
For each i ∈ [`], we define the color i to be the color used for the point pi in R̄. Now, saying
that a point somewhere else has color i, has an absolute meaning; it means using the same
color as used for point pi in R̄.

Variable-assignment cells. For each cell v = (i, j) ∈ V (G), we introduce in F a standard
cell A(v) = (δi, δj), where δ is a large constant. The cells A(v) for v ∈ V (G) are responsible
for encoding the truth assignment of variables in ζ(v). Therefore we call them variable-
assignment cells. We will partition variable-assignment cells into two types. The cell A(v)
for v = (i, j) of I is called even if i+ j is even. Otherwise A(v) is odd. Note that if v and w
are adjacent cells in I, then A(v) and A(w) have different parity.

As each variable-assignment cell contains ` = 4k points, there are `! = 2O(` log `) ways
to color these points with ` colors. We will only make use of 2`/4 colorings among those.
In our construction, we will make sure that each variable-assignment cell receives one
of the standard colorings. If the cell A(v) is even, the coloring ϕ of A(v) is standard
if {ϕ(p2i−1), ϕ(p2i)} = {2i − 1, 2i} for i ∈ [k] and ϕ(pi) = i for i ∈ [4k] \ [2k]. If the
cell A(v) is odd, its standard colorings ϕ are the ones with ϕ(pi) = i for i ∈ [2k] and
{ϕ(p2i−1), ϕ(p2i)} = {2i − 1, 2i} for i ∈ [2k] \ [k]. The choice of the particular standard
coloring for the points in A(v) defines the actual assignment of variables in ζ(v). If A(v) is
even, then for each i ∈ [k], we interpret the coloring in the following way:

p2i−1 7→ 2i− 1 , p2i 7→ 2i as setting the variablevi to true;
p2i−1 7→ 2i , p2i 7→ 2i− 1 as setting the variablevi to false.

Cs. Biró, É. Bonnet, D. Marx, T. Miltzow, and P. Rzążewski 18:7

p1
p2

A

p3
p4

q1
q2

B

q3
q4

(a) If two standard cells are adjacent, they
must have the same coloring.

(b) Wires can be used to create many copies
of the same cell.

Figure 2 Construction and usage of wires.

If A(v) is odd, for each i ∈ [k], we interpret it in that way:

p2k+2i−1 7→ 2i− 1 , p2k+2i 7→ 2ias setting the variablevito true;
p2k+2i−1 7→ 2i , p2k+2i 7→ 2i− 1as setting the variablevito false.

Observe that in even (odd, respectively) cells A(v) the assignment of variables is only
encoded by the coloring of the first (last, respectively) 2k points in A(v). The colors of the
remaining points are exactly the same as in the reference coloring, so each cell contains
exactly one half of the reference coloring.

Local reference cells. For all i, j ∈ [g − 1], we introduce a new standard cell R(i, j) =
(δi + δ/2, δj + δ/2), called a local reference cell. Moreover, we set the reference R̄ to be
R(1, 1). In the construction, we will ensure that the coloring of each local reference cell is
exactly the same, i.e., is exactly the reference coloring.

Consider the variable-assignment cell A(v) for v = (i, j). We say that a local reference
cell R(i′, j′) is associated with A(v), if j − j′ ∈ {0, 1} and i − i′ ∈ {0, 1}. Note that each
variable-assignment cell has one, two, or four associated local reference cells. Moreover, if
v, w are adjacent cells of I, then A(v) and A(w) share at least one associated local reference
cell.

Wires. If two standard cells are adjacent, then they must be colored in the same way; thus
having a path of standard cells, allows us to transport the information from one cell to
another. Let us prove that claim. Let A and B be two adjacent standard cells, such that A
is left of B (see Figure 2a; the argument is similar if the cells are vertically adjacent).

Let p1, . . . , p` be the points of the cell A and q1, . . . , q` be the points of the cell B. Note
that the color of q1 is necessarily equal to the color of p1, because the x-coordinates of points
p2, p3, . . . , p` exceed the x-coordinate of q1. Inductively, we can show that for every i > 2, the
color of qi is the same as the color of pi. Indeed, the colors used for pi+1, pi+2, . . . , p` are not
available for qi, because these points are too close to qi. On the other hand, by the inductive
assumption, all colors used on p1, p2, . . . , pi−1 are already used for points q1, q2, . . . , qi−1.
Thus the only possible choice for the color of qi is the color of pi.

Observe that the use of wires allows us to create many copies of the same cell (see Fig. 2b).
We say two cells are the same, if the point configuration and their coloring must be necessarily
the same.

SoCG 2017

18:8 Fine-Grained Complexity of Coloring Unit Disks and Balls

clause checking gadget

local reference cell

consistency checking
gadget

wires

even variable assignment cell

odd variable assignment cell

Figure 3 Illustration of the instance J . Each blue square represents a cell A(v) corresponding
to the cell v of I (light blue cells represent even cells and dark blue ones represent odd cells). The
orange squares are local reference cells, which contain the reference coloring. Gray and brown
squares represent, respectively, clause-checking and consistency gadgets.

Overview of the construction. Before we move on to describe more complicated gadgets,
we explain the overview of the construction. Figure 3 presents the arrangement of the cells
in F . For each variable-assignment cell A(v), we introduce a clause-checking gadget, which is
responsible for ensuring that all clauses in C(v) are satisfied. This gadget requires an access
to the reference coloring, which can attain from the local reference cells (we can choose any
of the local reference cells associated with A(v)). For each edge vw of G, we introduce a
consistency gadget. In fact, for inner edges of G (i.e., the ones not incident with the outer
face) we introduce two consistency gadgets, one for each face incident with vw. This gadget
is responsible for ensuring the consistency on three different levels:

to force all equality constraints C(v, w) to be satisfied,
to ensure that each of A(v) and A(w) receives one of the standard colorings,
to ensure that the local reference cell contains exactly the reference coloring.

This gadget also requires access to the reference coloring, so we join it with the appropriate
local reference cell (see Fig. 3).

To join the variable-assignment cells and local reference cells with appropriate gadgets,
we will use wires. Notice that each cell A can interact with at most four other cells, which
may not be enough, if we want to attach several gadgets to A. However, since wires allow us
to create an exact copy of A, we can attach any constant number of gadgets to A, adding
only a constant number of additional cells. Moreover, we can do it in a way that ensures
that no two gadgets interact with each other (anywhere but on A). Thus, when we say that
we attach some gadget to a cell, we will not discuss how exactly we do this.

Every gadget uses only a constant number of cells. Thus, making the constant δ large
enough and using wires, we can make sure that different gadgets do not interact with each
other (except for the shared cells). The total size of the construction is clearly increased only
by a constant factor.

Permuting points and colors. Recall that when describing wires, we have not used the
second coordinate of the points p1, . . . , p` and q1, . . . , q`. In fact, those coordinates can be
chosen at our convenience, and the argument supporting the claim in the paragraphs on the
wires would still work. Combining this observation horizontally and vertically, we can force
any permutation of the colors (see Figure 4a). The gadget is realized as follows. Let σ be

Cs. Biró, É. Bonnet, D. Marx, T. Miltzow, and P. Rzążewski 18:9

a

b

c

d

a

b

c

d

d

c

a

b

A B

C

(a) The coloring of C is the coloring of A
with the permutation σ = (3, 4, 1, 2) applied.

a

b

c

d

a|b

c

d

d

c

a|b

a|b
a|b

A B

C

(b) In the cell C, colors a and b are now
interchangeable.

Figure 4 Permutation gadget (left) and forgetting gadget (right), attached to cells A and C.

our target permutation. To the right of a standard cell A, we put a cell B. We place the
points in B at the positions of 1’s in the permutation matrix of σ. Below the cell B, we put
a standard cell C. Is is straightforward to verify that in any feasible coloring of those three
cells, for every i ∈ [`], the points pi and qσ(i) have the same color, where pi (resp. qi) is the
point in (i, i) in the cell A (resp. cell C).

Forgetting color assignment. Besides permuting points and colors, it is also possible to
forget the color assignment of some points. Figure 4b shows a forgetting gadget attached
to standard cells A and C. In the cell A we have the coloring from left to right a, b, c, d. In
the cell C, the first two points can be colored either a, b or b, a. In particular, if A is an
even variable-assignment cell, then by looking at C we cannot distinguish anymore whether
the variable was set to true or to false. Thus, using a forgetting gadget attached to two
standard cells, we may force equality of colors of some corresponding points, while giving
some freedom of choosing the others. This concept will be used in the next paragraph.

Parallelism. As we may have hinted in the previous paragraph, subparts of a given cell
can act independently. In particular, this means that we can choose to forget any subset
of information but preserve the rest. It is important to note that this is a more general
phenomenon. Let `1, . . . , `t be positive integers summing up to `. Consider an arrangement
of cells where the points of each cell are all contained in the same square boxes of side lengths
respectively `1, . . . , `t, along the diagonal as shown in Figure 5a. For each h ∈ [t], the h-th
box (of side length `h) contains exactly `h points.

One may observe that a slight generalization of the argument given in the paragraph on
wires shows that if A and B are adjacent cells with the same box-structure, i.e., each has
points grouped in t boxes of sizes `1, . . . , `t, then for each h ∈ [t], the set of colors used on
points in h-th box in A is exactly the same as the set of colors used in h-th box in B (see
Figure 5a).

We point out that the combination of this observation and the forgetting gadget attached
to a local reference cell and a variable-assignment cell A can be used to ensure that A
receives one of the standard colorings (see Fig. 5b). The construction of the forgetting gadget
varies depending on the parity of A. In general the gadget preserves the colors of 2k points
containing the copy of one half of the reference coloring, and allows any permutation of
colors within two-element boxes representing the variables. We will use a similar approach
to check several clauses in parallel within the same group of a constant number of cells.

SoCG 2017

18:10 Fine-Grained Complexity of Coloring Unit Disks and Balls

`1

`2

`3

`4

`5

`1

`2

`3

`4

`5

A B

(a) The sets of colors used within corresponding
boxes of A and B are equal.

R

A

(b) If R contains the reference coloring, then A
receives one of standard colorings (for an even
cell).

Figure 5 Boxes in adjacent cells with the same box-structure act independently from each other.

Clause gadget. We detail how a disjunction of three literals is encoded (see the left part of
Figure 6). Clauses with fewer literals are just a simplification of what comes next. First,
we will explain how to express a clause C, whose variables x1, x2, x3 are contained in a
(6× 6)-box of a variable-assignment cell A. In the next paragraph we will show how to check
several variable-disjoint clauses in one constant-size gadget. In general, in what follows, one
should think of the coordinates that we will specify as coordinates within a box part of the
cell, rather than as coordinates in the cell. The same applies to the colors, we should always
look at the set of colors appearing in the particular box. Obviously, the clause-checking
gadget needs to interact with variable-assignment encoding the values of x1, x2, x3. For
simplicity of notation assume that x1 is encoded by coloring points p1, p2 with colors 1, 2; x2
is encoded by coloring points p3, p4 with colors 3, 4 and; x3 is encoded by coloring points
p5, p6 with colors 5, 6. Our clause-checking gadget needs also an access to the reference
coloring contained in the cell R. This is necessary to be able to distinguish between colors
e.g. 1 and 2, and thus between setting x1 to true or to false.

First consider cells S, T , and U . The cell R contains the reference coloring and we force
the order of the colors in cell T to be from top to bottom 1, 3, 5, 2, 4, 6, using the permutation
gadget. Consider now cell U . It has one point at position (3, 3) and 5 points superimposed
at position (6, 6). Now, because of cell T , the point p can only have a color c ∈ {1, 3, 5}. All
the other colors should be given to the 5 superimposed points. Then, consider cells A and B.

The cell A contains the variable assignment. Recall that for each variable we use two
points. If a variable occupying rows 2i−1 and 2i in the cell A occurs positively in C, then we
place in cell B a point in row 2i− 1 to the left of the box (say, the third column) and a point
in the row 2i to the right of the box (the sixth column); if the variable appears negatively,
we do the opposite: we place in cell B a point in the row 2i− 1 to the right of the box (sixth
column) and a point in row 2i to the left of the box (third column). By construction, the
colors to the right are not available to the point p. Therefore, the point p (and henceforth
the whole set of cells) can be colored if and only if at least one literal is set to true by the
truth assignment.

Checking clauses in parallel. Consider the cell v of 2-grid 3-Sat. Let C1, . . . , Cf be
the clauses of C(v) and recall that these clauses are pairwise variable-disjoint. Let σ be a
permutation of points in A(v), such that the 2|C1| points encoding the variables of C1 appear
on positions 1, 2, . . . , 2|C1|, the 2|C1| points encoding the variables of C2 appear on positions

Cs. Biró, É. Bonnet, D. Marx, T. Miltzow, and P. Rzążewski 18:11

re
fe
re
n
ce

co
lo
ri
n
g 1

2
3
4
5
6

1

2

3

4
6

5

1

2

3

4
6

5

p

x1

x2

x3

[6] \ c

va
ria

b
le

assig
n
m
en
t

R S

T

UB

Aa
b

a
b

re
fe
re
n
ce

co
lo
ri
n
g

va
ria

b
le

assig
n
m
en
t

R S

T

UB

AC1

C2

Figure 6 Illustration of the clause-checking gadget. To the left, one clause x1 ∨ ¬x2 ∨ x3 is
represented. To the right, two clauses are checked in parallel.

2|C1|+ 1, 2|C1|+ 2, . . . , 2|C1|+ 2|C2| and so on. The points encoding variables which do not
appear in any clause from C(v) and the points which do not encode any variable (i.e., the
points carrying a half of the reference coloring) appear on the last position, in any order.

We introduce a new standard cell A, and using a permutation gadget we ensure that it
contains the copies of points of A(v) in the permutation σ. In the same way we introduce
a standard cell R, which contains the reference coloring with the permutation σ applied.
An illustration on how two clauses can be checked simultaneously is shown on the right
part of Figure 6. Observe that since the clauses in C(v) are pairwise variable-disjoint, one
clause-checking gadget is enough to ensure the satisfiability of all clauses in C(v).

Thus, for each cell A(v) and its associated local reference cell R, we introduce a clause-
checking gadget corresponding to the clauses in C(v), and join it with A(v) and R.

Equality check. Let A be a cell of J and let the points p2i−1, p2i (p2j−1, p2j for 2i < 2j− 1)
in the cell A encode the variable x (y, respectively). Suppose we want to make sure
that always x = y. This is equivalent to saying that in any proper coloring ϕ, we have
ϕ(p2i−1) + 1 = ϕ(p2i) whenever ϕ(p2j−1) + 1 = ϕ(p2j).

Such an equivalence of two variables can be expressed by two clauses C1 = x ∨ ¬y and
C2 = ¬x ∨ y. Thus, if we have an access to the reference coloring, we can ensure the
equivalence using the clause-checking gadget. Observe that C1 and C2 are not variable-
disjoint, so in fact we need to use two clause-checking gadgets. However, two clause-checking
gadgets are enough to ensure the equivalence of any set of pairwise-disjoint pairs of variables
represented in the single cell. Observe that A does not have to be a variable-assignment cell
(i.e., does not have to carry a half of the reference coloring). In fact, we will use the equality
checks for cells where each pair of points p2i−1, p2i corresponds to some variable, encoded in
an analogous way as in variable-assignment cells.

SoCG 2017

18:12 Fine-Grained Complexity of Coloring Unit Disks and Balls

S

A(v)

A(w)

clause

wires

forget

local reference cell

combined
assignment

even variable
assignment cell

odd variable
assignment cell

variable
assignments

top of reference
coloring

bottom of
reference coloring

Figure 7 Overview of the consistency gadget. The clause gadgets serve to realize the equality
constraints C(v, w).

Consistency gadget. The last gadget, called the consistency gadget, will join every three
cells A(v), A(w), R, where A(v) and A(w) are variable-assignment cells corresponding to
adjacent cells v and w of I, and a R is a local reference cell associated with both A(v) and
A(w). This gadget is responsible for ensuring that colorings of these three cells are consistent,
that is:

each cell A(v), A(w) is colored with a standard coloring,
the equality constraints C(v, w) in the 2-grid 3-Sat instance I are satisfied,
R has exactly the reference coloring.

Suppose that A(v) is even, A(w) is odd, and v is above w in I (all other cases are
symmetric). We denote the points of A(v) by p1, p2, . . . , p`, the points of A(w) by q1, q2, . . . , q`,
and the points by R by r1, r2, . . . , r` (going from top-left to bottom-right). First, we introduce
two forgetting gadgets and attach one of them to R and A(v), and the other one to R and
A(w). The first gadget ensures that in every coloring ϕ we have
{ϕ(p2i−1), ϕ(p2i)} = {ϕ(r2i−1), ϕ(r2i)} for i ∈ [k],
ϕ(p2i−1) = ϕ(r2i−1) and ϕ(p2i) = ϕ(r2i) for i ∈ [2k] \ [k].

The second one ensures that in every coloring ϕ we have
ϕ(q2i−1) = ϕ(r2i−1) and ϕ(q2i) = ϕ(r2i) for i ∈ [k],
{ϕ(q2i−1), ϕ(q2i)} = {ϕ(r2i−1), ϕ(r2i)} for i ∈ [2k] \ [k].

We also introduce a new standard cell S. Let s1, s2, . . . , s` be the points in S. With two
additional forgetting gadgets, one attached to S and A(v), and the other one attached to S
and A(w), we ensure that in every coloring ϕ we have:

ϕ(s2i−1) = ϕ(p2i−1) and ϕ(s2i) = ϕ(p2i) for i ∈ [k],
ϕ(s2i−1) = ϕ(q2i−1) and ϕ(s2i) = ϕ(q2i) for i ∈ [2k] \ [k].

Note that the cell S contains the information about the values of all variables in ζ(v) (first
2k points) and in ζ(w) (second 2k points). Now consider the set of equality constraints
C(v, w), recall that each of them is of the form vi = wj . Thus we want to ensure that in
every coloring ϕ, we have ϕ(s2i−1) + 1 = ϕ(s2i) if and only if ϕ(s2k+2j−1) + 1 = ϕ(s2k+2j).
We can easily do it by performing the equality check on S, using two clause gadgets and R
as a reference coloring. The whole consistency gadget is displayed schematically in Figure 7.

Is is straightforward to observe that if I is satisfiable, then J can be colored with ` colors,
in a way described above. The opposite implication follows from the claims below.

Cs. Biró, É. Bonnet, D. Marx, T. Miltzow, and P. Rzążewski 18:13

I Claim 6. The coloring of each R(i, j) for i, j ∈ [g − 1] is exactly the same as the coloring
of R̄ = R(1, 1).

Proof. To show this, we will prove that the coloring of R(i, j) is the same as the coloring of
R(i− 1, j) for each 2 6 i 6 g − 1 and j ∈ [g − 1]. The case for R(i, j − 1) is analogous, and
the claim follows inductively.

Let v = (i, j) and w = (i, j + 1) be the cells of I. Note that v and w are adjacent and
A(v) and A(w) are associated with both R(i− 1, j) and R(i, j). Without loss of generality
assume that v is even and w is odd. For f ∈ [`], by pf , qf , rf , and r′f we denote, respectively,
the points of A(v), A(w), R(i− 1, j), and R(i, j). By the correctness of forget gadget, we
know that for every coloring ϕ, we have: ϕ(rf) = ϕ(qf) = ϕ(r′f) for all f ∈ [2k], and
ϕ(rf) = ϕ(pf) = ϕ(r′f) for all f ∈ [4k] \ [2k]. This proves the claim. J

I Claim 7.
1. The coloring of each A(v) is one of the standard colorings.
2. For each pair of adjacent cells v, w of I, all local constraints C(v, w) are satisfied.
3. For each cell v of I, all constraints C(v) are satisfied.

The claim follows directly from Claim 6 and the correctness of forget, clause-checking, and
consistency gadgets.

Now, observe that the total number of points in F is n = O(g2`) = O(n′), where n′ = g2k

is the total size of I. Thus, the existence of an algorithm solving J in time 2o(
√
n`) could be

used to solve I in time 2o(
√
n′k), which, by Theorem 4, contradicts the ETH. J

Now, to prove the lower bound in Theorem 1, we need to show a reduction from Partial
2-grid Coloring to the problem of coloring unit disk graphs. This reduction is fairly
standard and uses a well-known approach [20, Theorems 1 and 3].

4 Higher Dimensional Lower Bounds

The following result is a generalization of Theorem 4 to higher dimensions.

I Theorem 8. For any integer d > 3 and reals ε > 0 and 0 6 α 6 1, there is no
algorithm solving d-grid 3-Sat with total size n and k = Θ(nα) variables per cell in time
2n

d−1+α
d

−ε
= 2O(n1−1/d−εk1/d), unless the ETH fails.

After establishing the hardness of d-grid 3-Sat, we can proceed to showing the hardness
of Partial d-grid Coloring.

I Theorem 9. For any integer d > 3, and reals 0 6 α 6 1 and ε > 0, there is no 2n1−1/d−ε`1/d

algorithm solving Partial d-grid Coloring on a total of n points and ` = Θ(nα) points
in each cell, unless the ETH fails.

The final step in proving the lower bound in Theorem 3 is reducing Partial d-grid
Coloring to `-Coloring of intersection graph of d-dimensional unit balls. It is very similar
to the one in Theorem 1 (see also [22, Theorem 3.1.]).

SoCG 2017

18:14 Fine-Grained Complexity of Coloring Unit Disks and Balls

v1 v2

v3 v4

v5 v6

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

x6

y6

Figure 8 A graph G (left) and a high-level construction of G′ (right). Circles denote equality
gadgets and squares denote inequality gadgets.

5 Segments

In this section, we show that fatness is indeed necessary to obtain subexponential-time
algorithm for coloring. We prove that a subexponential algorithm for coloring intersection
graphs of segments (i.e., convex non-fat objects) with 6 colors would contradict the ETH.

Our construction works even if we use only horizontal or vertical segments. This class is
known as 2-Dir. Note that if all segments are parallel, the intersection graph is an interval
graph and, as such, can be colored in polynomial time. Moreover, we can even assume that
the representation of the input graph is given. This is an important assumption, since the
recognition of 2-Dir graphs is NP-complete (see Kratochvíl and Matoušek [19]).

Sketch of Proof of Theorem 2. We reduce from 3-coloring of graphs with maximum degree
at most 4. Let G be a graph with n vertices and m = Θ(n) edges. It is a folklore result that,
assuming the ETH, there is no algorithm solving this problem in time 2o(n) (see for instance
Lemma 1 in [3]). We construct a 2-Dir graph G′, such that G is 3-colorable if and only if
G′ is 6-colorable.

Let the vertex set of G be V = {v1, v2 . . . , vn}. For each vertex vi we introduce two
segments: a horizontal one, called xi, and a vertical one, called yi, so that they form a half
of a n× n grid (see Figure 8). Using appropriate gadgets we ensure that each xi can only
receive colors {1, 2, 3}, while each yi can only receive colors {4, 5, 6}.

Each color c ∈ {1, 2, 3} will be identified with the color c+ 3. Thus, we want to ensure
that in any feasible 6-coloring f of G′ we have:
1. f(xi) + 3 = f(yi) for all i ∈ [n],
2. f(xi) + 3 6= f(yj) for all i > j such that vivj is an edge of G.
This is achieved by using constant-size equality gadgets and inequality gadgets. At the crossing
point of xi and yi, we put an equality gadget (represented by a circle on Figure 8). Moreover,
for each edge vivj of G, we put an inequality gadget at the crossing point of xi and yj , i > j

(represented by a square on Figure 8).
The number of vertices of G′ is n′ = Θ(n), so the theorem follows. J

References

1 Jochen Alber and Jirí Fiala. Geometric separation and exact solutions for the parameterized
independent set problem on disk graphs. J. Algorithms, 52(2):134–151, 2004. doi:10.1016/
j.jalgor.2003.10.001.

http://dx.doi.org/10.1016/j.jalgor.2003.10.001
http://dx.doi.org/10.1016/j.jalgor.2003.10.001

Cs. Biró, É. Bonnet, D. Marx, T. Miltzow, and P. Rzążewski 18:15

2 Rajesh Hemant Chitnis, MohammadTaghi Hajiaghayi, and Dániel Marx. Tight bounds for
Planar Strongly Connected Steiner Subgraph with fixed number of terminals (and exten-
sions). In SODA 2014 Proc., pages 1782–1801, 2014. doi:10.1137/1.9781611973402.129.

3 Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin,
Jakub W. Pachocki, and Arkadiusz Socała. Tight lower bounds on graph embedding prob-
lems. CoRR, abs/1602.05016, 2016. URL: http://arxiv.org/abs/1602.05016.

4 Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M.
Thilikos. Bidimensional parameters and local treewidth. SIAM J. Discrete Math.,
18(3):501–511, 2004. doi:10.1137/S0895480103433410.

5 Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M.
Thilikos. Fixed-parameter algorithms for (k, r)-Center in planar graphs and map graphs.
ACM Transactions on Algorithms, 1(1):33–47, 2005. doi:10.1145/1077464.1077468.

6 Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M.
Thilikos. Subexponential parameterized algorithms on bounded-genus graphs and H-minor-
free graphs. J. ACM, 52(6):866–893, 2005. doi:10.1145/1101821.1101823.

7 Erik D. Demaine and Mohammad Taghi Hajiaghayi. Fast algorithms for hard graph prob-
lems: Bidimensionality, minors, and local treewidth. In GD 2014 Proc., pages 517–533,
2004. doi:10.1007/978-3-540-31843-9_57.

8 Erik D. Demaine and MohammadTaghi Hajiaghayi. The bidimensionality theory and its
algorithmic applications. Comput. J., 51(3):292–302, 2008. doi:10.1093/comjnl/bxm033.

9 Erik D. Demaine and MohammadTaghi Hajiaghayi. Linearity of grid minors in treewidth
with applications through bidimensionality. Combinatorica, 28(1):19–36, 2008. doi:10.
1007/s00493-008-2140-4.

10 Frederic Dorn, Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh.
Beyond bidimensionality: Parameterized subexponential algorithms on directed graphs. In
STACS 2010 Proc., pages 251–262, 2010. doi:10.4230/LIPIcs.STACS.2010.2459.

11 Frederic Dorn, Fedor V. Fomin, and Dimitrios M. Thilikos. Subexponential parameterized
algorithms. Computer Science Review, 2(1):29–39, 2008. doi:10.1016/j.cosrev.2008.
02.004.

12 Frederic Dorn, Eelko Penninkx, Hans L. Bodlaender, and Fedor V. Fomin. Efficient ex-
act algorithms on planar graphs: Exploiting sphere cut decompositions. Algorithmica,
58(3):790–810, 2010. doi:10.1007/s00453-009-9296-1.

13 Fedor V. Fomin, Stefan Kratsch, Marcin Pilipczuk, Michal Pilipczuk, and Yngve Villanger.
Tight bounds for parameterized complexity of cluster editing with a small number of
clusters. J. Comput. Syst. Sci., 80(7):1430–1447, 2014. doi:10.1016/j.jcss.2014.04.
015.

14 Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. Subexpo-
nential algorithms for partial cover problems. Inf. Process. Lett., 111(16):814–818, 2011.
doi:10.1016/j.ipl.2011.05.016.

15 Fedor V. Fomin and Dimitrios M. Thilikos. Dominating sets in planar graphs: Branch-
width and exponential speed-up. SIAM J. Comput., 36(2):281–309, 2006. doi:10.1137/
S0097539702419649.

16 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.
2001.1774.

17 Philip N. Klein and Dániel Marx. Solving Planar k-Terminal Cut in O(nc
√
k) time. In

ICALP 2012 Proc., pages 569–580, 2012. doi:10.1007/978-3-642-31594-7_48.
18 Philip N. Klein and Dániel Marx. A subexponential parameterized algorithm for Subset

TSP on planar graphs. In SODA 2014 Proc., pages 1812–1830, 2014. doi:10.1137/1.
9781611973402.131.

SoCG 2017

http://dx.doi.org/10.1137/1.9781611973402.129
http://arxiv.org/abs/1602.05016
http://dx.doi.org/10.1137/S0895480103433410
http://dx.doi.org/10.1145/1077464.1077468
http://dx.doi.org/10.1145/1101821.1101823
http://dx.doi.org/10.1007/978-3-540-31843-9_57
http://dx.doi.org/10.1093/comjnl/bxm033
http://dx.doi.org/10.1007/s00493-008-2140-4
http://dx.doi.org/10.1007/s00493-008-2140-4
http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2459
http://dx.doi.org/10.1016/j.cosrev.2008.02.004
http://dx.doi.org/10.1016/j.cosrev.2008.02.004
http://dx.doi.org/10.1007/s00453-009-9296-1
http://dx.doi.org/10.1016/j.jcss.2014.04.015
http://dx.doi.org/10.1016/j.jcss.2014.04.015
http://dx.doi.org/10.1016/j.ipl.2011.05.016
http://dx.doi.org/10.1137/S0097539702419649
http://dx.doi.org/10.1137/S0097539702419649
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1007/978-3-642-31594-7_48
http://dx.doi.org/10.1137/1.9781611973402.131
http://dx.doi.org/10.1137/1.9781611973402.131

18:16 Fine-Grained Complexity of Coloring Unit Disks and Balls

19 J. Kratochvíl and J. Matoušek. Intersection graphs of segments. Journal of Combinatorial
Theory, Series B, 62(2):289–315, 1994. doi:10.1006/jctb.1994.1071.

20 Dániel Marx. Efficient approximation schemes for geometric problems? In ESA 2005 Proc.,
pages 448–459, 2005. doi:10.1007/11561071_41.

21 Dániel Marx and Michal Pilipczuk. Optimal parameterized algorithms for planar facility
location problems using voronoi diagrams. In Nikhil Bansal and Irene Finocchi, editors,
ESA 2015 Proc., volume 9294 of LNCS, pages 865–877. Springer, 2015. doi:10.1007/
978-3-662-48350-3_72.

22 Dániel Marx and Anastasios Sidiropoulos. The Limited Blessing of Low Dimensional-
ity: When 1-1/D is the Best Possible Exponent for D-dimensional Geometric Problems.
In Proceedings of the Thirtieth Annual Symposium on Computational Geometry, SOCG
2014 Proc., pages 67:67–67:76, New York, NY, USA, 2014. ACM. doi:10.1145/2582112.
2582124.

23 Gary L. Miller, Shang-Hua Teng, William Thurston, and Stephen A. Vavasis. Separators
for sphere-packings and nearest neighbor graphs. J. ACM, 44(1):1–29, January 1997. doi:
10.1145/256292.256294.

24 Marcin Pilipczuk, Michał Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen.
Subexponential-time parameterized algorithm for Steiner Tree on planar graphs. In STACS
2013 Proc., pages 353–364, 2013. doi:10.4230/LIPIcs.STACS.2013.353.

25 Marcin Pilipczuk, Michal Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen. Network
sparsification for steiner problems on planar and bounded-genus graphs. In FOCS 2014
Proc., pages 276–285. IEEE Computer Society, 2014. doi:10.1109/FOCS.2014.37.

26 W.D. Smith and N.C. Wormald. Geometric separator theorems. available online at https:
//www.math.uwaterloo.ca/~nwormald/papers/focssep.ps.gz.

27 W.D. Smith and N.C. Wormald. Geometric separator theorems and applications. In
Proceedings of the 39th Annual Symposium on Foundations of Computer Science, FOCS
1998 Proc., pages 232–243, Washington, DC, USA, 1998. IEEE Computer Society. URL:
http://dl.acm.org/citation.cfm?id=795664.796397.

28 Dimitrios M. Thilikos. Fast sub-exponential algorithms and compactness in planar graphs.
In ESA 2011 Proc., pages 358–369, 2011. doi:10.1007/978-3-642-23719-5_31.

http://dx.doi.org/10.1006/jctb.1994.1071
http://dx.doi.org/10.1007/11561071_41
http://dx.doi.org/10.1007/978-3-662-48350-3_72
http://dx.doi.org/10.1007/978-3-662-48350-3_72
http://dx.doi.org/10.1145/2582112.2582124
http://dx.doi.org/10.1145/2582112.2582124
http://dx.doi.org/10.1145/256292.256294
http://dx.doi.org/10.1145/256292.256294
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.353
http://dx.doi.org/10.1109/FOCS.2014.37
https://www.math.uwaterloo.ca/~nwormald/papers/focssep.ps.gz
https://www.math.uwaterloo.ca/~nwormald/papers/focssep.ps.gz
http://dl.acm.org/citation.cfm?id=795664.796397
http://dx.doi.org/10.1007/978-3-642-23719-5_31

	Introduction
	Intermediate problems
	Two-Dimensional Lower Bounds
	Higher Dimensional Lower Bounds
	Segments

