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INTRODUCTION

Much of the Arctic has been protected from major
exploitation by commercial fisheries because of the
climate and the extent of sea ice, which have also
likely contributed to the lack of movement and
behavioural studies on Arctic marine fish species.
The reduction in sea ice and the increase in temper-
ature in polar regions that have occurred over the
past 2 decades (Serreze et al. 2000, Rayner et al.
2003), along with global declines in temperate and

tropical commercial fish stocks (Botsford et al. 1997,
Christensen et al. 2003, Hilborn et al. 2003), have
resulted in a growing interest in Arctic resources and
an associated increase in commercial fishing pres-
sure on Arctic marine fishes in seasonally ice -
covered areas (Schrank 2007). Limited knowledge on
the movement of Arctic fishes is of concern given the
additional stressors that are now having an impact on
fish populations, namely changes in water tempera-
ture and ocean currents caused by climate change
and the potential effects on the movement patterns of
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ABSTRACT: Little is known about the movement of Arctic marine fish, particularly benthic spe-
cies, despite growing pressure from commercial fisheries and a changing climate. The Greenland
halibut Reinhardtius hippoglossoides lives in the deep, cold waters of the Arctic, North Atlantic
and Pacific Oceans where it represents an important commercial fish species and a significant
prey resource for whales and sharks. To investigate movement, depth and temperature prefer-
ences of Greenland halibut, 9 large (83 to 95 cm fork length) individuals were tagged with pop-off
archival transmitting tags in Cumberland Sound, Baffin Island in August 2010 to record data for
70, 100 and 300 d. While all tags reported back, 7 tags provided the bulk of the data, transmitting
(mean ± SD) 67 ± 7% of the data collected. Greenland halibut exhibited strong site fidelity to
localised deep areas (900 to 1400 m), but ranged between ~400 and 1400 m, with all tags popping-
off within 27 km of the tagging location. Mean depth was 1048 ± 112 m (n = 7) during the ice-free
season and 823 ± 121 m (n = 2) during the ice-covered season. Temperature occupied by Green-
land halibut from August until June ranged from 1.3 to 2.7°C (mean ± SD: 2.2 ± 0.01°C). A mixed-
effect model found preferred depth did not vary within a diel cycle, but did change among
months. Seasonal movements coincided with ice cover, but further work is needed to clarify
this relationship and determine the extent and timing of these movements within and beyond
Cumberland Sound.
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marine fishes, e.g. distribution and maturation of lar-
vae (Gibson 1997, Sohn et al. 2010). Understanding
how the characteristics of Arctic marine ecosystems
relate to fish movement patterns (i.e. linking environ-
mental parameters with the distribution and abun-
dance of fishing resources) is of critical importance
for the management and conservation of Arctic mar-
ine fish stocks (Schick et al. 2008).

Satellite telemetry has been used to study the
movement, behaviour and environmental prefer-
ences of a wide range of aquatic species, including
sharks (Sims et al. 2003, 2008, Teo et al. 2004,
Brunnschweiler et al. 2010) and many teleostei, such
as tuna (Block et al. 2001, Kitagawa et al. 2004,
Schaefer & Fuller 2004) and flatfishes (Seitz et al.
2003, Loher & Seitz 2006, Loher & Blood 2009). These
tags are attached externally to the fish, during which
time they record depth, temperature and light, and
release after a specified length of time, thus provid-
ing insight into horizontal and vertical movements
and habitat use over different spatial and temporal
scales (Block et al. 2001, Wearmouth & Sims 2009,
Humphries et al. 2010). There is no requirement to
recapture tagged individuals, making this techno -
logy particularly useful for studying fish in deep -
water habitats and extreme environments, such as
the  Arctic, where daily fieldwork or observations are
impractical. Despite the apparent advantages of this
technology, it has been little used in such environ-
ments to date. The Greenland halibut Reinhardtius
hippoglossoides has become an important com -
mercial fish species, particularly in the Northwest
Atlantic (Bowering & Brodie 1995, DFO 2008a). This
benthic flatfish inhabits deep (typically 400 to 1000 m
and as deep as 2200 m) (Vis et al. 1997, Bowering &
Nedreaas 2000) and cold (~0 to 6°C) (Bowering &
Nedreaas 2000) waters in northern latitudes (>45° N)
in the Arctic, Atlantic and Pacific Oceans (Bowering
1984, Dyck et al. 2007). Older fish usually move to
greater depths, where they spawn (Bristow 1992,
Gundersen et al. 2010). The Greenland halibut feeds
on a variety of species (Bowering & Lilly 1992, Peder-
sen & Riget 1993) and its diet changes with fish size,
water depth and latitude of occurrence (Orr & Bower-
ing 1997). Despite being a flatfish, the Greenland
halibut probably feeds on fast swimming pelagic
organisms, such as capelin Mallotus villosus (Den-
nard et al. 2009) and cephalopods (Pedersen & Riget
1993, Dawe et al.1998). The Greenland halibut is also
an important prey item for key predators in Arctic
food webs, including whales and the Greenland
shark Somniosus microcephalus (Crawford 1992,
Fisk et al. 2002, Laidre et al. 2004). Among flatfish

species, the Greenland halibut is considered to be an
exceptional swimmer (de Groot 1970, Anonymous
1993) and highly migratory; a recaptured T-bar
anchor-tagged Greenland halibut travelled a straight
line distance of 2500 km over 2 yr (Boje 2002).

Cumberland Sound is a large inlet located on the
southeastern side of Baffin Island, Canada with bot-
tom topography of shallow margins surrounding a
deep central basin that descends to ~1500 m (Den-
nard et al. 2010). Typically, seasonal land-fast ice
forms in the Sound, dividing the year into 2 major
periods: ice covered (winter), when the Sound is pre-
dominantly covered with land-fast or drifting pack
ice, and ice free (summer). These 2 periods have dic-
tated 2 fishing seasons for Greenland halibut, a tradi-
tional winter fishery through the sea ice and the
newly developed summer vessel-based fishery that
operates in open water. The winter fishery is depend-
ent on land-fast sea ice forming a stable platform on
which to base fishing camps (DFO 2008b). Nearshore
areas of Cumberland Sound that are typically cov-
ered by land-fast sea ice are characterized by having
uneven bottom habitats with shallow areas (<300 m)
that are interspersed with medium depth areas (350
to 700 m) (DFO 2008b). Greenland halibut seem to be
most abundant in a few of these medium depth areas
(Pike 1994). Efforts to locate commercial concentra-
tions of Greenland halibut in shallow locations (350
to 500 m) on the winter fishing grounds during the
summer open water period have not been successful.
However, fishing has been good in the summer in
deeper areas (>700 m) within the central portion of
Cumberland Sound (Young 2010). These observa-
tions have led to speculation that the distribution of
Greenland halibut within the Sound may vary across
seasons.

We hypothesize that Greenland halibut move from
the deep water area into shallower habitats with the
onset of colder temperatures and sea ice formation.
Given evidence of pelagic feeding (Dennard et al.
2009), the species is also hypothesized to show rapid
and regular vertical movements into the water col-
umn following the normal diel vertical migration of
zooplankton and potential pelagic prey species such
as capelin (Bailey et al. 1977, Davoren et al. 2006). To
quantify the vertical movement patterns and temper-
ature preferences of Greenland halibut in Cumber-
land Sound, Baffin Island, 9 large fish were tagged
with pop-off archival transmitting (PAT) tags (Mini-
PAT, Wildlife Computers) in August 2010. The distri-
bution of archival tag pop-off locations, the bathyme-
try of Cumberland Sound, and the timing of ice cover
were used to identify seasonal horizontal movement
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patterns and site fidelity of this species. The perform-
ance of MiniPAT tags attached to Greenland halibut
and exposed to unique depths (up to 1400 m) and
extreme environmental conditions is summarized.

MATERIALS AND METHODS

Study sites and tag attachment

Tagging of fish was carried out on 17 August
2010 in the deepwater region in central Cumberland
Sound, Baffin Island, Canada (65.659° N, 65.851° W;
Fig. 1). All fish were captured using bottom longlines
set at ~900 to 1100 m water depth. Each longline was
~1900 m in length, with 1500 to 2000 gangions of 1 m
with Mustad’s Duratin Tuna Circle (O. Mustad &
Son) and hook sizes 15 and 16, baited with frozen
squid and soaked for ~12 h. Longlines were pulled to
the surface and fish were gently unhooked and fork
length (FL) recorded. In order to successfully retain
the tag with minimal effect on the fish’s behaviour,
the largest individuals (over 80 cm FL) that had no
apparent injuries were chosen for tagging. Each tag-
ging procedure took ~3 to 4 min, following which
each tagged fish was kept onboard in a sea water
holding tank for 15 min to verify that the tagging was

successful and the animal was healthy prior to
release. Tags were attached externally to the eye-
side of Greenland halibut using a titanium dart and a
15 cm tether (300 lb test monofilament with stainless
steel Nicopress sleeves), following the methods of
Loher & Seitz (2006) and Loher (2008). The wire and
sleeves were covered with polyolefin shrink to min-
imise the irritation and abrasion of tissue. The dart
was inserted below the dorsal set of pterygiophores,
within the deepest section of muscle tissue (T. Loher
pers. comm.).

Tag model and set up

Wildlife Computers pop-off archival transmitting
(MiniPAT) tags were preset to record both depth and
ambient temperature at time intervals of 150, 300
and 600 s and were deployed for 70 (August 2010 to
October 2010), 100 (August 2010 to November 2010),
and 300 d (August 2010 to June 2011), respectively;
deployment times and data collection reflected the
memory capacity of the tags. Short deployment peri-
ods provided the highest resolution data on depth
and temperature profiles to provide insight into
detailed vertical behavioural patterns, whereas
longer deployments provided data on longer-term
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Fig. 1. Reinhardtius hippoglossoides. Tagging and pop-off locations (labelled in inset with fish numbers 01–09) for 70, 100 and
300 d at liberty (DAL) deployments for Greenland halibut (n = 7) tagged in August 2010 in Cumberland Sound, Baffin Island.
Deep water area (>1000 m) corresponds to summer fishery grounds. Contour lines (500, 1000 m) are shown. Hatched area rep-
resents winter fishing grounds; bold dashed line: boundary between Cumberland Sound and Division 0B management areas
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behavioural patterns and movements. A total of 9
MiniPAT tags were placed on Greenland halibut
(mean FL ± SD: 88.8 ± 4.4 cm; Table 1); 3 tags were
designated for each of the deployment periods. Pre-
mature release of the tag at constant depth was dis-
abled because of the benthic nature of Greenland
halibut and the expectation that periods of poten-
tially minimal movement would occur.

Data analysis

All analyses were performed on time-series depth
and temperature data sets that were transmitted by
the tags via satellites. To summarise depth and tem-

perature preferences, all data were pooled (i.e. data
from all 70, 100, and 300 d deployments) into bins of
100 m (300 to 1500 m) for depth and by 0.5°C (0.0 to
6.0°C) for temperature to depict the main depth/tem-
perature trends over the course of the tag deploy-
ment (Fig. 2). The relationship between the raw
depth data, i.e. time-series depth data for each fish,
and 3 major covariates was analysed using a linear
mixed-effect model fit using restricted maximum
likelihood in the lme4 package in R (Bates & Maech-
ler 2010, R Core Development Team 2012). The 3
covariates were (1) day/night, representing the light/
dark period of the day, derived from Nautical
almanac at 66° N latitude (NavSoft 2010) and mod-
elled as a fixed effect; (2) month (August to Novem-

ber, which is the approximate dura-
tion of the fishing season); and
(3) individual fish (n = 5, i.e. individ-
uals within the deployment period of
August to November), modelled as a
crossed random effect. An examina-
tion of the probability plots of residu-
als from the model relating depth
to day/night indicated adequate
model fit, and quantile− quantile
plots showed data to be generally
described by normally distributed
errors.

To estimate a downward swim-
ming speed for Greenland halibut in
the pelagic water column, data for
the change in depth (as an approxi-
mation of distance) over time (the ini-
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Fish   Fork   Programmed     Actual    Sampling Days  Depth data Temp. data Pop-off                 Distance
ID     length       pop-off         pop-off     interval      at        No. of     %         No. of       %       latitude   longitude   travelled
          (cm)           date              date            (s)       liberty     days reported     days   reported     (°N)         (°W)           (km)

01         84       26 Oct 10     29 Oct 10       150        70       45.1     64.0        44.7     63.4       65.708      65.935          6.7
02         85       26 Oct 10     27 Oct 10       150        70       50.1     71.1        48.4     68.8       65.658      66.003          3.4
03a       85       26 Oct 10       7 Nov 10       150        84           0           –               0            –               –               –                 –
04         95       25 Nov 10     26 Nov 10       300        101       59.5     58.8        58.3     57.6       65.691      65.899          3.2
05         90       25 Nov 10     26 Nov 10       300        101       58.0     57.6        52.7     52.3       65.859      66.197          27.4
06         88       25 Nov 10     26 Nov 10       300        101       73.4     72.7        74.1     73.4       65.521      65.894          15.7
07b       93       13 Jun 11     24 Jun 11       600        310       27.7     74.4        26.3     75.7           –               –                 –
08         83       13 Jun 11     14 Jun 11       600        300       219.0     72.8        217.6     72.4       65.658      66.151          13.8
09         92       13 Jun 11     14 Jun 11       600        300       216.2     71.9        208.9     69.4       65.715      65.843          6.3
All                                                                                   748.9     67.9        731.1     66.6                                               
aTag reported constant depths starting on 18 August 2010, so the tag record was not included in analyses
bTag reported constant depth after 19 September 2010, so only data recorded between 17 August and 19 September 2010
were analysed

Table 1. Reinhardtius hippoglossoides. Biological and pop-off archival transmitting (MiniPAT) tag data for Greenland halibut
tagged in Cumberland Sound (65.659° N and 65.851° W) on 17 August 2010. Percent depth and temperature (temp.) data re -
ported were determined from actual count of readings divided by the maximum count of readings within the deployment period

Fig. 2. Reinhardtius hippoglossoides. Depth and temperature preferences for
Greenland halibut (n = 8), combined over all 70, 100 and 300 days at liberty 

(DAL) deployments
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tial 10 min descent of the fish after it was tagged)
were extracted. The initial descent was used because
it was a guaranteed movement in the pelagic water
column, thus an approximate estimate for the base-
line swimming speed that a Greenland halibut can
achieve in the pelagic water column. Swimming
speeds for upward and downward movements within
the natural depth range of Greenland halibut were
estimated from randomly selected 10 min periods
(30 periods movement−1) during which an individual
made clear ascent or descent movement with appar-
ent change in depth between each 2 consecutive
observations. These speeds were then compared to
the swimming speed of the initial descent in the
pelagic water column. Swimming speeds calculated
here captured distance as a 2-dimensional move-
ment based on change in depth, and did not account
for horizontal movements, e.g. when fish swam

above a flat plain or moved sideways at the
same depth level. Swimming was assumed
to be continuous if 2 consecutive depth
observations showed changes in depth
(i.e. fish were assumed not to rest for any
portion of the sampling interval between
2 consecutive depth observations). Given
that the above 2 described inaccuracies
are embedded in these estimates, the cal-
culated swimming speeds are considered
to be a method of evaluating pelagic be -
haviour and do not represent actual swim-
ming speeds.

RESULTS

Functionality of the tags

All of the tags deployed on Greenland
halibut reported to Argos satellites within
days of the programmed pop-off dates
(mean ± SD: 3.6 ± 4.6 d after, range = 1 to
12 d after) (Table 1). None of the tags were
physically retrieved. Two of the tags (those
on Fish 03, 07) reported constant depths for
70 out of 70 d and 278 out of 300 d (constant
depth after 19 September 2010), respec-
tively, (Fig. 3) prior to the pre programmed
pop-off date. Consequently, only a portion
of the archival data record collected from
Fish 07 was analysed (from 17 August to
19 September 2010), and the record from
Fish 03 was omitted from our analyses.
 Including the small portion of the record

from Fish 07, the remaining 8 tags transmitted be-
tween 57.6 and 74.4% (67.9 ± 6.8%) of their depth
and 52.3 and 75.7% (66.6 ± 8.2%) of their tempera -
ture records, yielding a total of 749 and 731 d of depth
and temperature data, respectively (Table 1). Tags did
not provide any light level data, which was consistent
with the depths occupied by Greenland halibut.

Pop-off positions

All of the tags popped off in Cumberland Sound
(Fig. 1) between 3.2 and 27.4 km ( 10 ± 8.7 km) from
the tagging location (Fig. 1). All fish (except for Fish
06, which moved south of the tagging location)
moved north, west or northwest from the tagging
location (Fig. 1). Fish that were tagged in the same
deployment period did not show any clear trends in
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Fig. 3. Reinhardtius hippoglossoides. Individual depth and temperature
profiles (n = 6) for 70 and 100 d deployments of tags attached to Greenland
halibut. Fish 07 reported a constant depth after 19 September 2010 possibly
due to premature tag detachment from the fish or death of this individual
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direction of movement. Two fish that spent 100 d at
liberty (DAL) (Fish 05, 06) moved the furthest dis-
tance from the tagging location, 27.4 and 15.7 km,
respectively. All 3 fish tags programmed for 300 DAL
(Fish 07, 08, 09) popped of within a 16 km radius of
the tagging location (Fig.1). Because its tag reported
constant depths after 19 September 2010, Fish 07 did
not provide data for the ice-cover season. Depth pro-
files recorded from Fish 09 showed that this fish
occupied shallower waters (<600 m) during the win-
ter (Fig. 4). If the fish moved to winter fishery areas
(assuming that these movements were tied to the
bathymetry of Cumberland Sound and were not a
result of the fish swimming in the pelagic water col-
umn), this would mean the fish travelled at least
50 km during its time at liberty. However, we cannot
exclude the possibility that the fish moved to the
shallower waters surrounding this area.

Depth and temperature preferences

Greenland halibut (n = 7) ranged between ~400
and 1400 m depth but spent 89% of the DAL below
900 m (Fig. 2). Depth preferences changed over the
course of the year; Greenland halibut occupied
deeper waters from August to December (1047 ±

112 m; n = 7) and then moved to shallower waters
between January and June (823 ± 121 m; Fig. 5),
although data for January to June included only 2
fish. Results of the model, used to describe the rela-
tionship between depth and day/night, were not sig-
nificant (t < −2; Table 2). The negligible difference
from the overall intercept (mean level of depth was
1076 m, Table 2) associated with the day/night vari-
able (−1.287; Table 2) and the weak correlation
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Fig. 4. Reinhardtius hippoglossoides. Individual Greenland halibut depth and temperature profiles (n = 2) for 300 d tag 
deployments

Fig. 5. Reinhardtius hippoglossoides. Monthly mean (+ SE)
depth and mean (± SE) temperature (temp.) preferences of
Greenland halibut relative to presence of ice cover for
August to October 2010 (n = 7), November 2010 (n = 5), and 

December 2010 to June 2011 (n = 2)
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between the 2 variables (−0.008; Table 2) indicated
that there was no relationship between depth and
day/night (Fig. 6), i.e. diel cycles were not important
variables in explaining depth preferences. The vari-
ance attributed to individual fish was lower than the
variance attributed to month (Table 2), indicating
that month had a greater effect on depth preference.
Residual variability was higher than both individual
fish and month (Table 2), indicating greater within
individual/month variation. A total of 5 out of 7 fish
showed an overall trend towards inhabiting deeper
waters from August to November, being at the deep-
est depth in November (Fig. 6). One fish that was
tagged for 300 d (Fish 09) moved into shallower
depths (ranging up to 361 m) in January, returning to
deeper waters in May (Table 3, Fig. 7A). A second
fish that was tagged for 300 d (Fish 08) remained at
greater depths throughout the tag deployment
period except for a single excursion up to 457 m in

January (Fig. 7B). Although Fish 08 did not inhabit
the same depths as Fish 09 over the 300 d period, it
did occupy shallower depths on average between
January and June (881 ± 41 m) compared to the
August to December period (1102 ± 108 m; Figs. 4B
& 7B).

Greenland halibut (n = 7) experienced tempera-
tures between 1.3 and 2.7°C but spent >85% of their
days at 2.0 to 2.5°C (Table 3, Fig. 2). The temperature
profiles from the tags varied over the course of the
year. Between September and November fish occu-
pied waters >2.3°C, whereas between February to
April the mean temperature was 1.8 to 1.9°C.

Vertical activity and swimming speeds

Detailed depth profiles revealed that Greenland
halibut displayed a continuum of activity levels (from
zero to moderate to high activity) that varied without
any clear cyclic or temporal patterns (Figs. 3 & 4).
The 2 ends of the activity continuum yielded 2 dis-
tinct behaviours, which were common to most of the
tagged fish. The first behavioural type was charac-
terised by long periods (>1 h) of zero or minimal
change in depth, i.e. minimal activity. This behaviour
was observed for all fish except one (Fish 07, Fig. 3F)
and was randomly scattered throughout the time-
series depth records. The other end of the spectrum
was defined by gradual upward and downward ver-
tical movements, with typical short breaks (~5 to
30 min) of no change in depth and an overall change
in depth of ~100 to 300 m h−1. This behaviour was
considered high activity and was observed over the
steepest depth changes throughout the time-series
depth profiles. This behaviour was typical for Fish 07

(Fig. 3F) and was observed throughout the dura-
tion of the time-series record (30 d). For the
remaining fish the duration of this behaviour
was anywhere from 1 h (e.g. Fish 02 and 08,
Figs. 3B & 4B, respectively) up to several days
(e.g. Fish 09, Fig. 4A), but occurred less fre-
quently. The majority of the time-series depth
records of all fish consisted of up and down ver-
tical movements with amplitudes ranging ran-
domly be tween ~10 and 100 m h−1 with frequent
short breaks (~5 to 30 min).

Swimming speeds calculated for the randomly
selected upward or downward movements
ranged between 0.02 and 0.18 m s−1 for upward
and 0.02 and 0.15 m s−1 for downward swimming
(mean ± SD: 0.08 ± 0.01 and 0.07 ± 0.01 m s−1 for
upward and downward swimming, respectively)

199

Random effects                     Variance                SD

Individual fish (intercept)       3115.4                55.816
Month (intercept)                    5194.6                72.073
Residual                                   7902.4                88.895
No. of observations: 78869, groups: Ind. fish 5, Month 4

Fixed effects                          Estimate         SE       t-value

(Intercept)                             1076.6243    43.8395    24.558
Day/Night                            −1.2868    0.6589    −1.953
Correlation of fixed effects: −0.008

Table 2. Results of the mixed-effect model to describe the
relationship between depth occupied by flatfish and 3 co -
variates. Individual fish and Month were treated as random
variables, while Day/Night was included as a fixed covariate

Fig. 6. Reinhardtius hippoglossoides. Mean depth (± SD) for indi-
vidual Greenland halibut during day and night for individual 

months (August to November)
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(Table 3). The maximum swimming speed
(which was thought to approximate pelagic
swimming speed) obtained by Greenland hali -
but during their initial decent after tagging was
0.40 m s−1 (0.29 ± 0.08 m s−1, n = 6, Table 3); how-
ever, these speeds might not reflect normal
behaviour due to the effects of the tagging pro-
cess and unnatural behaviour for Greenland
halibut (i.e. they do not normally swim in a
strictly vertical manner, Albert et al. 2012).
Swimming speeds estimated for the high activ-
ity periods were typically lower than that of
the initial descent, suggesting that rapid move-
ments into the pelagic water column were
scarce. Alternatively, Greenland halibut could
enter the pelagic water column at lower swim-
ming speeds than that of the initial descent.

DISCUSSION

Pop-off archival transmitting tag data found
that Greenland halibut from Cumberland Sound
showed a preference for deep (>900 m) and cold
(~2.3°C) waters, but also indicated movement
from the deep waters that were occupied during
the ice-free season to shallower (and relatively
colder) waters during the ice-covered season.
Tagged Greenland halibut showed strong site
fidelity for deepwater areas within the central
part of the Sound from August to November,
when most of the tags were programmed to
pop off. This site fidelity in the deepwater area
correlated with the preferred location of the
summer commercial Greenland halibut fishery.
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Fish       Months                          Depth (m)                                     Temp. (°C)                             Swimming speed (m s–1)
ID        deployed           Mean       Min.     Max.               Mean       Min.   Max.         Down. pel.         Peak up.   Peak down.

01         Aug−Oct         1007 (37)    743.0   1132.5          2.37 (0.07)     1.8      2.5               0.25               0.07 (0.01)   0.04 (0.01)
02         Aug−Oct         1033 (99)    727.0   1389.0          2.38 (0.11)     1.6      2.6               0.40               0.12 (0.04)   0.10 (0.04)
03         Aug−Oct               –               –           –                       –               –         –                    –                         –                   –
04        Aug−Nov        985 (77)    693.0   1131.5          2.30 (0.21)     1.6      2.5               0.33               0.05 (0.02)   0.06 (0.02)
05        Aug−Nov        1090 (92)    759.0   1380.0          2.41 (0.17)     1.8      2.7                   –                 0.08 (0.03)   0.06 (0.03)
06        Aug−Nov       1131 (118)   789.5   1386.0          2.40 (0.08)     2.0      2.6               0.36               0.08 (0.02)   0.10 (0.04)
07a          Aug−Sep       821 (137)   274.0   1106.5          2.14 (0.18)     1.4      2.6                   –                         –                   –
08        Aug−Jun       998 (163)   457.0   1383.5          2.21 (0.19)     1.3      2.6               0.18               0.07 (0.02)   0.05 (0.01)
09        Aug−Jun       942 (242)   361.0   1370.5          2.19 (0.36)     1.3      2.7               0.24               0.07 (0.02)   0.06 (0.02)
All                                                                                                                                       0.29(0.08)         0.08 (0.01)   0.07 (0.01)
aOnly data recorded between 17 August and 19 September 2010 were analysed

Table 3. Reinhardtius hippoglossoides. Mean, minimum and maximum depth and temperature data, as well as swimming
speed, for Greenland halibut monitored using pop-off archival transmitting (MiniPAT) tags in Cumberland Sound in 2010.
Downward pelagic (down. pel.) swimming speed was determined from return to naturally occupied depths after being tagged. 

All mean values include SD in parentheses; up.: upward; down.: downward

Fig. 7. Reinhardtius hippoglossoides. Monthly mean (± SD), min-
imum and maximum (A) depth (m) and (B) temperature (°C) pro-
files for Fish 08 and 09 relative to complete ice cover (shaded
area; Environment Canada archive; ice-glaces.ec.gc.ca) for
August 2010 to June 2011. Depth profile for Fish 09 indicated a
seasonal movement because the fish stayed in the deep water
pocket during the ice-free period and moved to shallower waters
for the ice covered season. The second fish (Fish 08) showed a less
pronounced change in depth occupied with season, but still 

inhabited deeper waters during the ice-free period 
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Depth data from 2 fish that were at liberty for 300 d,
which included the ice-cover season, indicated that
Greenland halibut were moving within the Sound
during ice-covered periods and inhabited shallower
depths. Although previous evidence has suggested
that Greenland halibut feed on pelagic prey (Den-
nard et al. 2009), tagged Greenland halibut did not
show any diel differences in depths, and rapid verti-
cal movements into the water column were scarce.

Tag performance

All of the MiniPAT tags performed well in the
extreme environmental conditions, experiencing
temperatures as low as −1.7°C and depths of 1400 m.
All 9 tags reported back (100% report rate), a report
rate that is 17% higher than the overall pop-off satel-
lite archival transmitting (PSAT) report rate regis-
tered by the tag manufacturer, Wildlife Computers
(Musyl et al. 2011). Seven tags remained attached
until the programmed pop-off date (77.8%) and
returned 67% of the data on average. We found no
difference in the rate of data return among tags that
were logging different numbers of total messages.
Tags that were deployed for the longest periods (i.e.
300 d) transmitted the largest portion of their total
record, despite the higher total record size (3150,
1680 and 2058 messages for 300, 100 and 70 d, re -
spectively). These data return rates may suggest that
Arctic weather plays an important role in transmis-
sion success, with more favourable transmission con-
ditions in late spring compared to early winter. Two
tags (from Fish 03 and 07) reported a constant depth
prior to release, but because these tags re leased at
the pre-programmed date, this constant depth was
likely not caused by tag malfunction. Rather, the tags
recorded constant depth because either the fish died,
remaining on the bottom, or the combined weight of
the anchoring device including the dart and leader
wire, coupled with the dense deep Arctic waters
might have held the tag at depth until the link cor-
roded (H. Baer pers. comm.). Given the high rate of
scavenging in the Arctic, for example by the amphi-
pod Anonyx nugax (Klages et al. 2002, Fisk et al.
2003), carcasses are unlikely to be missed; therefore
the latter explanation is more likely.

Depth preference

Pop-off archival transmitting data indicated that
large (>80 cm) Greenland halibut occupied any area

of the Sound where depths were greater than 375 m;
the greatest depth experienced by a Greenland hal-
ibut (~1400 m) matched the deepest depth known for
Cumberland Sound. However, all of the fish pre-
ferred depths that were below 900 m, which was
expected because Greenland halibut are known to
move to deeper waters as they mature (Atkinson &
Bowering 1987), preferring deepwater channels
 running between shallower banks (Bowering &
Nedreaas 2000). Multi-species fish surveys in Davis
Strait found that larger Greenland halibut occurred
at greater depths and population densities were
highest between 750 and 1250 m (Treble & Jør-
gensen 2002, Treble 2011). Although the sample size
in this study was small ( n = 2 from January to June),
the linear mixed-effect model found that depth pref-
erence varied between August and November, and
further variation in depth preference was coinciden-
tal with the development of land-fast ice (December
to June), with fish moving into shallower waters as
the ice formed.

Detailed depth records showed that Greenland
halibut exhibited 2 distinct types of vertical behav-
ioural movement patterns. The 2 behavioural types
were randomly interspersed in a continuum of mod-
erate activity levels, and vertical movements varied
in amplitude, frequency and slope, similar to the
behaviour observed in Pacific halibut Hippoglossus
stenolepis (Seitz et al. 2003). The first, low activity,
behaviour likely indicated resting. A second distinct
behaviour, high activity, consisted of longer vertical
movements often interspersed with periods of no
change in depth. This lack of change in depth could
have resulted from resting on the bottom, gliding mid
water, or the inaccuracy of the tag pressure sensor.
The former explanation would appear to be the most
plausible considering the diverse bottom topography
of Cumberland Sound. Observed changes in depth
(for the vast majority of cases) were therefore likely a
result of the fish following the uneven topography of
the bottom of the Sound. However, other movement
behaviours cannot be ruled out and more complex
biologging tags, for example accelerometer tags,
would be required to resolve this point.

The vertical movement by Greenland halibut was
not related to diel cycles, which is consistent with the
results of stratified random bottom and pelagic sur-
veys (Jørgensen 1997a). The estimated swimming
speeds (steep ascents and descents) throughout the
depth record were largely not indicative of rapid
 vertical movements into the pelagic water column
potentially to feed as has been reported for Green-
land halibut in the Northeast Atlantic (Vollen &
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Albert 2007, Albert et al. 2012). Studies have re -
ported fast swimming prey in Greenland halibut
diets, including demersal fishes; in particular, redfish
Sebastes sp., and capelin were identified as a major
diet component of Greenland halibut in Cumberland
Sound based on stable isotopes (Dennard et al. 2009).
The occurrence of pelagic fishes in the diet of Green-
land halibut might be explained by the flatfish feed-
ing on pelagic fishes and invertebrates when they
occupy shallower water (i.e. during the ice-covered
period) and habitat overlap (Allen & Smith 1988).
Flatfish often use an ambush foraging strategy to
capture prey (Gibson 2005); for example, Kawabe et
al. (2004) observed rapid ambush movements of ~40 s
into the pelagic water column by Japanese flounder
Paralichthys olivaceus to catch prey. Greenland hal-
ibut may undertake a similar strategy; however, the
shortest sampling period interval used in this study
(150 s) would likely not be able to identify such rapid
foraging movements. Alternatively, Greenland hal-
ibut could scavenge pelagic fishes, such as capelin
(also proposed in Bjelland et al. 2000), when mass
die-offs occur following spawning events (Vilhjálms-
son 2002), assuming that the dead biomass becomes
available at depths occupied by Greenland halibut.

Temperature preference

Greenland halibut occupied a narrow range of
temperatures, between 1.3 and 2.7°C, and spent the
majority of their time in water temperatures of 2.0
to 2.5°C. This temperature range was in agreement
with that where Greenland halibut are most abun-
dant in offshore waters (0 to 6°C) (Bowering &
Nedreaas 2000, Treble & Jørgensen 2002). Consid-
ering that peak spawning temperatures in Davis
Strait were estimated at 3.0 to 3.5°C (Jørgensen
1997b), the slightly cooler temperatures experienced
by Greenland halibut in Cumberland Sound (the
warmest bottom temperature measured by a satel-
lite tag there was 2.7°C, and CTD casts measured
temperatures just above 0°C at 850 m; Simonsen &
Treble 2003) suggest that the region is less suitable
for spawning.

Although Greenland halibut have been shown to
occupy waters below 2°C (Treble & Jørgensen 2002,
Treble 2011), only one of the fish (Fish 09) spent con-
tinual periods of time (30%; especially during the
winter) at temperatures ≤2°C. Low temperatures are
thought to affect the metabolic and growth rates of
adult Greenland halibut (Fonds et al. 1992, Patnaik et
al. 1994); thus, movements to shallower waters dur-

ing the winter might represent a strategy to reduce
metabolic rates when ice is present and primary pro-
ductivity decreases.

Seasonal movements

The vertical displacement of one fish (Fish 09) to
shallower water potentially indicates that some
Greenland halibut undertake seasonal movements
out of the deep waters in Cumberland Sound. This
movement could be driven by a factor associated
with ice cover, as the fish moved to shallower water
after ice had formed in January and moved back to
the deeper water area when the ice started to recede
and break-up in May. Considering that the second
fish (Fish 08) that was tagged for 300 d did not under-
take such a prominent movement to shallower water,
this type of seasonal movement may be either a rare
event or suggest that not all the Greenland halibut
move to the shallower water for the ice-covered
period. Because of the limited sample size, drawing
conclusions about whether this is a typical behaviour
is difficult.

The summer fishery is currently concentrated in
the deep water area in the center of the Sound, and
efforts to catch Greenland halibut in the shallow
areas of the winter fishing grounds were unsuccess-
ful during the summer (Young 2010). The fact that
one of the 300 DAL Greenland halibut remained in
deep water during the ice-covered period is also con-
sistent with historic catches of these fish in deeper
areas of the winter fishing grounds (DFO 2008b).
Greenland halibut therefore appear to use a variety
of residency-movement strategies with season. This
potential variation in season-related movement tac-
tics warrants further study as data will be critical for
developing effective management plans for Cumber-
land Sound.

Why would Greenland halibut remain in deeper
waters during the ice-free season and then move to
shallower waters during the ice-cover season? One
possibility could be to avoid predation by whales,
in particular the beluga whale Delphinapterus leucas
and narwhal Monodon monoceros, which are both
thought to feed on Greenland halibut (Laidre &
Heide-Jørgensen 2005, Bluhm & Gradinger 2008).
Reports from Greenlandic waters have noted that the
periodic disappearance of Greenland halibut often
coincided with increased sightings of beluga whales
(Anonymous 1993). A recent stable isotope study
suggested that beluga whales do not feed on Green-
land halibut during the spring and summer (M. Mar-
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coux unpubl.). This fits with our current understand-
ing of the distributions of beluga whales and Green-
land halibut within the Sound; they occupy separate
areas during spring and summer (May to October) as
Greenland halibut stay in deep water pockets in the
central part of Cumberland Sound and beluga
whales are mainly concentrated in Clearwater fiord
within the Cumberland Sound management zone
and along the west side of Cumberland Sound. How-
ever, their distributions may overlap during fall and
winter when beluga whales gather over deeper areas
around the margins of the growing land-fast ice,
where Greenland halibut may be present (Kilabuk
1998, DFO 2008c).

Other studies have suggested that observed sea-
sonal movements by Greenland halibut and other
flatfishes are related to spawning and feeding (Jør-
gensen 1997b, Loher 2008, Loher & Blood 2009).
Although spawning by Greenland halibut typically
occurs in water temperatures >3°C (Jørgensen
1997b), occasional spawning has been observed in
the fiords of northwestern Greenland, despite their
low bottom temperatures that likely inhibit the matu-
ration process (Templeman 1973). No evidence of
spawning by Greenland halibut in Cumberland
Sound has been reported (i.e. no ripe or spent males
or females were found between 1990 and 1992; Pike
1994); however, the size of individuals suggested that
adult females were present (Fadeev 1971, Pike 1994,
Morgan et al. 2003). A final explanation could relate
to seasonal movements of prey. Although data are
not available for Cumberland Sound, prey abun-
dance due to seasonal changes in primary production
is expected to vary (Rysgaard et al. 1999) and may
affect the movement patterns of predatory fishes.

CONCLUSIONS

Greenland halibut in Cumberland Sound appeared
to be a deep dwelling species that spent the majority
of their time near the sea bottom at depths greater
than 900 m during the ice-free period. Detailed depth
records found that individuals did not undertake diel
movements into the upper water column or rapid ver-
tical movements, which are expected behaviours if
fish were feeding on pelagic prey. One Greenland
halibut moved to shallower water following the
occurrence of seasonal land-fast ice, returning to
deep water for the ice-free period, while one individ-
ual remained in deep water throughout the same
period. This indicates that Greenland halibut under-
took different movement strategies across seasons

within Cumberland Sound. This is an important con-
sideration given that Cumberland Sound is currently
divided into 2 management areas that manage
Greenland halibut as 2 separate stocks. The mecha-
nisms driving movement and residency of Greenland
halibut are unknown but may be related to feeding
and predator avoidance.
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