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FUZZY COGNITIVE MAPPING AS A TOOL TO DEFINE MANAGEMENT
OBJECTIVES FOR COMPLEX ECOSYSTEMS
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Abstract. Defining objectives for ecological rehabilitation requires consideration of
how an ecosystem responds to management. Validated quantitative models of physical,
chemical, and biological processes are the best way to project such impacts; however, time,
data, and model limitations often make these approaches impractical. An alternative is to
encode expert knowledge about interactions among ecosystem components in a fuzzy cog-
nitive map (FCM), which then translates that subjective, qualitative information into pre-
dictions of the effects of management on an ecosystem. Herein, we present the steps involved
in constructing an FCM of an ecosystem, interpreting FCM output using multivariate sta-
tistics, and portraying the information in an easily communicated fashion. To illustrate these
ideas, we rely on a complex (.160 variables) ecosystem model built for the Lake Erie
watershed under the auspices of the Lake Erie Lakewide Management Plan (LaMP). Based
on our experiences in building this model, we also offer recommendations for increasing
the efficiency of the model-development and interpretation process. Use of the FCM method
in this case promoted constructive interaction among dozens of scientists, managers, and
the public, as well as providing insights concerning the potential effects of broad classes
of management actions upon the Lake Erie ecosystem. The analysis focused the attention
of participants on four broad alternatives for the Lake. One represents present conditions,
and another results from a decrease in nutrient inputs but an increase in stresses from land
use and human disturbance. The two others involve reduced stress from nutrients and land
use, with one having relatively more nutrients and less human disturbance and fishing. The
latter ecosystem alternative was tentatively endorsed by LaMP management, and all four
alternatives will be reviewed by the public.

Key words: cluster analysis; ecosystem management; ecosystem modeling; fisheries management;
fuzzy cognitive maps; fuzzy sets; Lake Erie watershed; principal components analysis.

INTRODUCTION

An ecosystem objective can be defined as a desired
future state of an ecosystem that can be used to guide
management. Development of ecosystem objectives re-
quires consideration of public priorities as well as an
understanding of how the ecosystem responds to man-
agement actions (Bertram and Reynoldson 1992). Mod-
els play a crucial role in contributing to that under-
standing.

The most useful models for supporting the devel-
opment of ecosystem objectives are ones that address
all significant stakeholder concerns, capture key pro-
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cesses and components, respond plausibly to manage-
ment actions, and are easy to explain and understand
(e.g., Tester et al. 1997). The Grand Canyon (Walters
et al. 2000), south Florida (Redfield 2000), and the
Chesapeake Bay (Thomann 1998) are just some of the
better known examples of ecosystems that have been
the subject of comprehensive modeling efforts to guide
management. However, a common difficulty in eco-
system management is that available process-based
models rarely address the full range of ecological, so-
cial, and economic impacts of concern. For example,
in the Neuse River basin, North Carolina, USA, man-
agers are concerned about the gap between model ca-
pabilities and stakeholder concerns. Quantitative eu-
trophication models available for the basin focus on
lower trophic-level dynamics (e.g., chlorophyll a). In
contrast, stakeholders worry most about upper trophic-
level impacts, human health, and the fiscal cost of wa-
ter-quality improvements (Borsuk et al. 2001).
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Hence, scientific judgments by experts are often re-
quired to project how management will affect valued
ecosystem and societal components. The purpose of
this paper is to describe how fuzzy cognitive maps
(FCMs) can be used to systematically elicit and doc-
ument expert judgment about components and their in-
teractions, and to identify effective management strat-
egies based on those judgments. We also summarize
some lessons learned from an application of the FCM
method to the definition of ecosystem objectives.

The FCM application we discuss was created by the
Ecosystem Objectives Subcommittee (EOS) of the
Lake Erie Lakewide Management Plan (LaMP; Lake
Erie Lakewide Management Plan 2000). The LaMP is
a binational effort to restore the ecological integrity of
the Lake Erie ecosystem under the auspices of the Great
Lakes Water Quality Agreement (GLWQA; Canada and
United States of America 1987). In adopting a gener-
alized ecosystem approach to planning, the LaMP rec-
ognizes that all components of the ecosystem are in-
terdependent, including the water, biota, surrounding
watershed, and atmosphere. Activities and aspirations
of humans are viewed as integral parts of the ecosys-
tem.

The need to recognize this interdependence is evi-
dent from the recent history of Lake Erie. Like many
ecosystems, including the other Laurentian Great Lakes
(Mills et al. 1993, Johnson et al. 1999), Lake Erie has
experienced a variety of anthropogenic perturbations
that have influenced all components of the ecosystem.
The eutrophic conditions of the 1950s through the
1970s were caused by anthropogenic inputs of phos-
phorus (Hartman 1972). This eutrophication, as well
as overfishing, caused the fish communities of Lake
Erie to become highly degraded. Since then, phospho-
rus loads have declined, which together with improved
fisheries management have allowed many once impor-
tant fisheries to begin to recover (Ludsin et al. 2001).
Another stress on the Lake Erie ecosystem has been
invasion by exotic species (Mills et al. 1993). For ex-
ample, zebra and quaff mussels (Dreissena sp.) have
colonized the lake beginning in the late 1980s. This is
argued to have led to biological oligotrophication of
the lake (Holland et al. 1995), which may have caused
reductions in fisheries (Ryan et al. 1999, but see Locci
and Koonce 1999).

The GLWQA calls for the development of ecosystem
objectives for each of the Great Lakes to guide their
restoration. Ideally, objectives would be consistent
with a return towards a pristine (resettlement) condition
in the lake and watershed. This is not possible for Lake
Erie, as the changes in the ecosystem have been ex-
tensive and, in many ways, appear irreversible (e.g.,
Burns 1985, but see Ludsin et al. 2001). As a result,
‘‘restoration’’ is not merely a scientific undertaking; it
becomes a matter of social values, as choices need to
be made among different possible mixes of resource
quality and availability. For instance, further reduction

of nutrient inputs towards presettlement levels may im-
prove water quality, but may also lower the productiv-
ity of the Lake’s fisheries (Ney 1996, Anderson et al.
2001). Because societal value judgments are required,
LaMP objectives are being developed with input from
an advisory Public Forum and the public at large.

The LaMP’s approach to identifying ecosystem ob-
jectives has been to describe how management actions,
such as changes in land use, control of phosphorus
loads, and human exploitation and disturbance of fish
and wildlife, can influence the Lake Erie ecosystem.
Theoretically, different management strategies should
yield different ecosystem configurations, or what the
LaMP terms ‘‘ecosystem alternatives.’’ Once these al-
ternatives are defined, management agencies and the
public will be asked to select an alternative to serve
as the general objective.

Projecting how management actions can influence
an ecosystem requires simulation modeling, a classic
use of ecosystem models (Minns 1992). Because of the
strength of connections among different parts of the
Lake Erie ecosystem, LaMP participants felt strongly
that a comprehensive model was needed that would
allow exploration of the effects of management changes
on the full range of aquatic and terrestrial ecosystem
components and valued resource uses in the lake.

Numerous models previously have been developed
to simulate processes and dynamics in the Great Lakes
(see Colavecchia et al. 2000 for a review). Physical
processes are emphasized in mass-balance models of
phosphorus and silica, hydrodynamic models of cur-
rents and lake stratification, and watershed-runoff and
sedimentation models. For instance, the Spatially In-
tegrated Model for Phosphorus Loading and Erosion
(SIMPLE) is a tool for assessing effects of land use
activities upon phosphorus inputs (Matlock et al.
1994). As other examples, models have been developed
to describe relationships among phosphorus loading,
chlorophyll a, and hypolimnetic oxygen concentrations
(e.g., DiToro and Connolly 1980). Often, a systems
model will be a combination of several submodels. For
example, Simons (1976) developed a hydrodynamic
model for Lake Erie, and outputs from this model were
then incorporated into chemical models (Lam and Si-
mons 1976). Because of the importance of sports and
commercial fisheries in Lake Erie, there also has been
an emphasis on numerical models of fish populations
and how they are regulated (e.g., Locci and Koonce
1999). Such models have often been used to examine
interactions among growth, mortality, recruitment, and
population abundance, as well as to identify exploi-
tation limits. They also have been used to predict fish
population size and structure changes.

Yet despite the abundance of quantitative models,
none exist for many important components of the Lake
Erie ecosystem (Colavecchia et al. 2000). Population
models are available only for a handful of the .100
fish species resident in the Lake. Further, nearly all
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extant models focus on a small subset of the processes
within the lake; physical and chemical processes in the
lake and watershed have never been comprehensively
linked with population models. For instance, there is
no capability to project impacts of land use changes
upon terrestrial and avian species, e.g., habitat is not
represented explicitly in the most comprehensive fish-
eries model available (the Lake Erie Ecological Model:
Locci and Koonce 1999). In addition, a severe time
constraint imposed by LaMP management made it im-
possible to conduct original research to quantify the
numerous missing cause–effect links. The lack of time
and applicable process models meant that any com-
prehensive model for Lake Erie would have to rely
heavily on expert judgment.

Fuzzy set theory has been previously proposed as a
potentially useful means of capturing qualitative expert
knowledge and using it to bridge gaps in ecological
knowledge, and for characterizing uncertainty and im-
precision in that knowledge (Bosserman and Ragade
1982, Salski et al. 1996, McGlade 1999, Mackinson
2001). As Salski (1992: 104) argues,

Sometimes the relations between the components of
an ecosystem are not exactly known; sometimes we
do not have any analytical model for these relations,
or we have insufficient data for statistical analysis.
In such a case, the idea is to build a model based on
expert knowledge, knowledge which is also often not
sharp, not precise.

A fuzzy representation of relationships may be par-
ticularly valuable for large, heterogeneous ecosystems,
as their relationships are especially difficult to measure
(Bosserman and Ragade 1982). Thus, to include rele-
vant variables and relationships that are absent in more
narrowly focused process-based models, the LaMP
EOS explored the use of fuzzy set-based models. Ul-
timately, one such modeling approach, the FCM, was
used to develop ecosystem objectives for Lake Erie.
Owing to the subjective nature of the FCM inputs, the
EOS inherently sacrificed precision in an attempt to
achieve greater generality and realism (Levins 1966,
Radomski and Goeman 1996).

In the next section, we provide a brief overview of
the range of fuzzy set applications in applied ecology,
including a summary of the LaMP Ecosystem Objec-
tives Subcommittee’s experience with fuzzy rule-based
systems. The FCM modeling approach is subsequently
introduced, including its formulation and parameteri-
zation. We then describe how multivariate statistics can
be used to analyze FCM results and create a qualitative
description of alternative ecosystem objectives. We
conclude by summarizing the advantages and disad-
vantages of the FCM approach to ecosystem modeling,
as well as offering advice for potential users of FCM
based upon lessons learned from the Lake Erie LaMP
application. Detailed documentation of the application
itself can be found in Ludsin et al. (2002).

PREVIOUS FUZZY SET APPLICATIONS IN ECOLOGY

The most common ecological application of fuzzy
sets has been to encode expert knowledge concerning
how a habitat or population responds to ecological fac-
tors (e.g., soil substrate type, prey availability), espe-
cially when detailed process descriptions are unavail-
able (Salski 1992, Droesen 1996, Wu et al. 1996, Bock
and Salski 1998). In such instances, fuzzy set opera-
tions have been used to define rules that relate linguistic
statements of conditions (e.g., ‘‘forage availability is
good’’ and ‘‘moisture conditions are excellent’’) to sur-
rogates of population health (e.g., abundance). This is
done by translating statements such as ‘‘good’’ or ‘‘ex-
cellent’’ into so-called fuzzy set membership numbers
in the range [0, 1], which are then processed using
standard fuzzy set operations (Zadeh 1965, Pedrycz
1991b, Kosko 1992). The higher the membership num-
ber, the greater the degree to which the object of interest
belongs to a set.

As an example, expectations for the health of white
bass (Morone chrysops) in Lake Erie could be assessed
by asking if key requirements for the white-bass life
cycle are met by a particular system state. Are spawn-
ing grounds sufficient in area and quality? Is surplus
food available, for example, emerald shiners (Notropis
atherinoides)? If all answers are ‘‘yes,’’ then it is likely
that a healthy white-bass population could exist. How-
ever, a white-bass population can still exist under less
than optimal conditions. This idea can be represented
by allowing for a membership number , 1, or ‘‘partial
membership,’’ in sets that define the prerequisite con-
ditions for white bass, and then using fuzzy set oper-
ations to combine those membership functions into a
fuzzy number representing the membership of the
white-bass population in the set ‘‘healthy population.’’
For instance, if spawning grounds in a particular eco-
system were average, then they might be assigned a
partial membership of 0.5 in the fuzzy set called ‘‘high
quality spawning grounds.’’ Meanwhile, if emerald-
shiner abundance is low, a partial membership of 0.2
might be given for the ecosystem’s membership in the
fuzzy set ‘‘surplus food.’’ A fuzzy index of overall
white-bass population health could then be calculated
as the intersection of these fuzzy sets, defined by Zadeh
(1965) as 0.2 5 MIN (0.5, 0.2). This is the fuzzy an-
alogue of the classic set-intersection operation, in
which an object belongs to the intersection of the sets
only if it belongs to each of the constituent sets. Other
types of fuzzy set operations, such as unions (e.g.,
MAX(0.5, 0.2)) or weighted sums, can instead be used
if deemed appropriate. The resulting fuzzy set mem-
bership value for the population can then translated
back to a linguistic description (e.g., values in the range
[0.1, 0.25] might be defined as ‘‘low abundance’’).

This rule-based fuzzy set approach is analogous to
niche analysis in that the intersection of the fuzzy sets
for a population represent its realized niche (Hutch-
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inson 1978). The potential for a sustained population
(represented by a fuzzy-membership number) would
increase from zero at the boundary to a maximum value
within the bounded area. Consideration of more factors
results in fuller definition of the niche as an n-dimen-
sional hyper-volume.

Some instances of the use of fuzzy set operations to
represent ecological processes include a model of the
annual production of skylarks (Daunicht et al. 1996),
characterizations of uncertainty in habitat suitability
indices (Burgman et al. 2001), an assessment of finfish
mariculture effects upon water quality (Silvert 2000),
and a fuzzy representation of how nutrient and sedi-
ment inputs affect coral cover and diversity (Meesters
et al. 1998). To describe just one example, Mackinson
(2001) elicited fuzzy rules from managers, scientists,
fishermen, and First Nations representatives, and then
built those rules into a fuzzy logic expert system for
predicting the structure and distribution of shoals of
migratory adult herring. It is possible to involve hun-
dreds and even thousands of experts in various fields
when creating such systems, such as was done for the
SimCoast model of impacts of human activities on
coastal processes (Novello-Hogarth and McGlade
1997).

Fuzzy set methods can also be used to rank envi-
ronmental management alternatives, as well as to quan-
tify aggregate indices of environmental impact (Munda
1995, van der Werf and Zimmer 1998, Ducey and Lar-
son 1999, Smith 1999, Stansbury et al. 1999, Freyer
et al. 2000, Enea and Salemi 2001). In these applica-
tions, fuzzy set operations are used to combine qual-
itative statements about the attributes of management
alternatives into a fuzzy index of overall desirability
or impact. For instance, contaminant sources have been
ranked by fuzzy logic in terms of the ecological risks
they pose to Green Bay, Lake Michigan (Harris et al.
1994).

Classification is another use of fuzzy sets in ecology.
Examples include classification of wetlands, assign-
ment of species to compartments in a model of a marsh
(Bosserman and Ragade 1982), recognition of forest
succession patterns (Roberts 1989), and fuzzy cluster
analysis of zooplankton community structure (Nicholls
and Tudorancea 2001).

Unfortunately, rule-based fuzzy set models of the
types just described do not readily simulate simulta-
neous interactions among multiple ecosystem compo-
nents. For example, we are unaware of ecological ap-
plications of fuzzy rule-based systems that have con-
sidered feedback such as simultaneous effects of pred-
ators upon prey populations and vice versa. Thus,
models based on fuzzy rules have limited usefulness
for defining objectives for such systems. This conclu-
sion has been borne out by the experience of the Lake
Erie LaMP, described next; as a result of that experi-
ence, an alternative approach (the FCM) was turned to.

Early in the Lake Erie LaMP process, the Ecosystem

Objectives Subcommittee (EOS) attempted to use a
verbal rule-based system to determine the extent to
which stakeholder objectives for Lake Erie could be
achieved by management. The first step was an October
1996 workshop attended by forty scientists. They were
asked to define the conditions that have to be met to
permit the existence of certain features, properties, or
species in Lake Erie that had previously been identified
as important by stakeholders. In other words, the sci-
entists provided rules such as ‘‘Beaches will be swim-
mable (a stakeholder objective) if fecal coliform counts
are low (a scientist-provided condition),’’ or ‘‘The po-
tential for healthy walleye (Stizostedion vitreum) pop-
ulations exists if the quantity and quality of spawning
habitat is high.’’ Over 4000 such rules were defined.
However, the rules themselves were insufficient to pro-
ject how management would affect the ecosystem be-
cause no algorithm was available to simultaneously
assess their interactions.

In an attempt to develop such an algorithm, the EOS
next tried to use a fuzzy set approach to process these
rules. Fuzzy set theory was adopted because of its abil-
ity to handle imprecise or fuzzy data such as expert
opinions. Fuzzy set membership functions and opera-
tions could have been derived from the workshop rules
in the manner of Salski (1992) and Bock and Salski
(1998).

Using fuzzy set theory in this manner, the LaMP EOS
sought to establish a set of conditions and actions (e.g.,
eutrophic lake, high level of fishing) and then consult,
or ‘‘query,’’ the rules from the expert workshop to see
what the implications of those conditions and actions
would be for the ecosystem. Unfortunately, such a que-
ry approach turned out to be awkward because indi-
vidual components, such as white bass, depend on mul-
tiple controlling factors. Further, simultaneous effects
(e.g., emerald-shiner availability upon white bass, and
white-bass predation upon emerald shiners) could not
be handled by the rules database. The query approach
was unable to project the subsequent reverberations
that occurred in the states of other ecosystem com-
ponents.

In 1997, the EOS considered alternative approaches
for simultaneous and comprehensive consideration of
all interactions among ecosystem components. How-
ever, they rejected the idea of simultaneously solving
the 4000 rules mentioned above. The simultaneous so-
lution of fuzzy rules is called the eigen fuzzy set prob-
lem (Pedrycz 1991a) because of its structure: x 5 R(x),
where x is a vector of fuzzy numbers, one per com-
ponent of the system, and R( ) is the set of rules ex-
pressed as fuzzy logic operators. Although algorithms
for solving for x for certain forms of R( ) have been
proposed in the literature (Pedrycz 1991a), there are
several reasons why the EOS deemed this approach
impractical: there are restrictions on the types of fuzzy
sets that can be processed (see Chung and Lee 1997);
there is no way to predict whether a unique solution x
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will exist for a general set of fuzzy rules; the task of
translating 4000 verbal statements into fuzzy logic is
huge; and it is difficult to find software that can process
such large numbers of simultaneous rules (indeed, we
could find no examples of very large problems with
feedback loops having been solved).

Instead, the EOS adopted the FCM methodology,
which involves simple algebraic operations and can
handle many fuzzy components simultaneously.

ECOSYSTEM MODELING USING FUZZY

COGNITIVE MAPS

An FCM consists of a set of numerical ‘‘causal con-
cepts’’ or variables, Sj, together with directed ‘‘edges’’
or arcs that connect pairs of variables. Associated with
each edge is a weight, Wji, representing how the var-
iable Sj at the originating end of the arc influences the
variable Si at the other end (Kosko 1992, McNeill and
Thro 1994). Variables can represent logical proposi-
tions (e.g., ‘‘habitat is insufficient to support this spe-
cies’’), state variables (e.g., the abundance of a spe-
cies), random events (e.g., an unusually cold winter),
or management decisions (e.g., harvest quotas). In most
FCMs, Wji ∈ [21, 1] are specified by experts based on
empirical data or scientific opinion, while the Sj ∈ [0,
1] are either endogenous variables solved for by the
model or are fixed boundary conditions. Depending on
how the edges are defined, FCMs can include feedback
loops, allowing complex system behavior to be mod-
eled. This is the major advantage of this approach rel-
ative to rule-based systems based on fuzzy sets.

The FCM methodology is derived from the notion
of a cognitive map (CM). A CM is a directed graph,
defined as a set of nodes connected by directed edges.
The nodes stand for problem variables (such as prop-
ositions or state variables), while the edges represent
causal dependence of a variable upon other, predeces-
sor variables. In traditional CMs, Si is either 0 (false
or absent) or 1 (true or present), depending on whether
any predecessor variable equals 1 (Axelrod 1976, Eden
1988, Marchant 1999). Some types of CMs set Si 5 1
if instead a weighted sum of predecessor variables Sj

WjiSj exceeds a threshold Ui. Wji can be negative or
positive (and, of course, is zero if j is assumed to have
no direct influence on i). Some users of CMs assume
Wii 5 0, while others allow a variable to influence itself,
as it would in a dynamic system with memory or lag
effects (Tsadiras and Margaritis 1999). Classic CM
analysis asks questions such as: What propositions are
reachable from other propositions? In other words, can
some specified propositions ever logically imply cer-
tain others?

Fuzzy cognitive maps differ from CMs by relaxing
the CM assumption that a variable has to be either 0
or 1 (Kosko 1992). Because FCM variables can take
on values between 0 and 1, the Si can be viewed as
classic fuzzy set membership numbers. (It is also pos-
sible to use a range of 21 to 11 in cases where negative

values are meaningful.) FCMs are closely related to
other system and knowledge representation approaches
(Marchant 1999) such as influence diagrams (Buede
and Ferrell 1993), artificial neural net models of cau-
sality and fuzzy evidential logic (Sun 1994), cross-
impact simulation (Parashar et al. 1997) and fuzzy re-
lational equations (Pedrycs 1991a, b). Each of these
approaches involves definition of causal concepts and
edges that designate direction, sign, and, in some cases,
magnitude of influence on state variables of interest.

FCMs have previously been used to describe dynam-
ic and steady-state behavior for a range of political,
social, and engineering systems (Kosko 1992). Our
search of the literature found only one ecological ap-
plication of FCM (Radomski and Goeman 1996); there,
a nine-variable FCM was used to model the effects of
creel limits and length-based regulations on walleye
populations and angler behavior in Minnesota. To our
knowledge, the Lake Erie LaMP process is the first use
of FCMs to model a large-scale ecological system. The
Lake Erie application also is unique in that it involved
dozens of scientists, managers, and members of the
public in creating and interpreting the model.

An ecological application of FCMs could include
variables Si for both biotic and abiotic ecosystem com-
ponents. In practical terms, the value of a biotic var-
iable in an ecosystem FCM can be viewed as a fuzzy
variable indicating the potential to have a viable pop-
ulation of that species. Such variables can also be cau-
tiously interpreted as an index of relative abundance;
for example, the effect of white bass on prey species
depends on the abundance of white bass. In contrast,
variables for abiotic system components (e.g., sus-
pended solids) could be interpreted as dimensionless
indices of relative amount that depend upon predeces-
sor variables (e.g., erosion) in a logical way.

Development of an FCM ecosystem model involves
three steps: mathematical statement, definition of var-
iables and edge weights, and testing and tuning. After
describing these steps, we present a multivariate sta-
tistical approach to defining ecosystem objectives.

Mathematical statement

The value of Si in a FCM depends on the weighted
sum of predecessor variables:

S 5 f W S (1)Oi i j i j1 2j

where fi( ) is a nondecreasing ‘‘actuation’’ function for
variable i. Several forms can be used for such functions,
including step functions, sigmoidal functions, or ramps
(McNeill and Thro 1994). A ramp function with the
following form was used for most variables in the
LaMP application:
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f W SOi j i j1 2j

0 if W S , LO j i j i
j

5 W S 2 L (U 2 L ) if L # W S # UO Oj i j i i i i j i j i1 2@j j1 if U , W SOi j i j j

(2)

where Li is the lower threshold for activation (below
which Si is zero), and Ui is the upper threshold (above
which Si becomes 1). In theory, the activation functions
could instead involve fuzzy set operations (as in Salski
1992) rather than a simple weighted sum, although
computational difficulties could result (Chung and Lee
1997). Activation functions also could include logical
relationships, in which some predecessor variables
have no substitutes and must be present (e.g., habitat),
while other variables could be substitutes (e.g., differ-
ent types of prey fish). In the LaMP application, how-
ever, the simpler weighted sum-based function was
used because of software limitations and, more im-
portantly, because weights were relatively easy to elicit
from the participating scientists.

In FCMs, it is convenient to separate variables into
endogenous variables , whose values are calculatedSEi

by the FCM, and exogenous variables , whose valuesSFk

are fixed by the user. These fixed variables represent
either boundary conditions, such as inputs from other
ecosystems, or deliberate management actions. The ac-
tivation functions can thus be written as follows:

S 5 f W S 1 W S (3)O OE i E E F Fi ji j ki k1 2j k

or, using vector notation,

s 5 f(w s 1 w s ). (4)E E E F F

This system involves I variables and I equations,SEi

and can usually be solved for a fixed point equilibrium
sE, which is a function sE(sF) of the fixed variables.
Because sE(sF) is an implicit function, numerical so-
lution is usually required. Solving in this manner for
the system response to fixed inputs allows exploration
of how management actions (or inaction) might affect
the system.

In practice, a fixed point equilibrium is commonly
obtained by first defining an initial set of state values
sE,0 and then iteratively calculating new values of the
variables using the following Gauss-Seidel scheme
(McNeil and Thro 1994):

s 5 l f (w s 1 w s ) 1 (1 2 l)s (5)E,t11 E E,t F F E,t

where l is a relaxation parameter whose purpose is to
accelerate convergence, and t is the iteration number.
The calculation is repeated for t 5 1, 2, 3, . . . until

convergence to a steady-state equilibrium is achieved.
If the calculations do not converge, other values of l
are tried. For our system, l 5 0.5 yielded quick con-
vergence.

It can be proven using Brouwer’s fixed point theorem
(Mas-Colell et al. 1995) that Eq. 4 has at least one
solution if the functions are of the form of Eq. 2. How-
ever, the solution may not be unique. If activation func-
tions (Eq. 1) are all piecewise linear, it is possible to
apply sufficiency tests for uniqueness based on linear
complementarity theory (Cottle et al. 1992). Unfortu-
nately, those tests are inapplicable here because we
used a mix of nonlinear and piecewise linear fi( ). In-
stead, we tested for multiple equilibria by using several
distinct starting points sE,0 for the algorithm of Eq. 5;
the same equilibrium always resulted. Because such
sampling cannot absolutely prove that only one equi-
librium exists, the user should always be aware of the
possibility of multiple solutions to Eq. 4.

Some fuzzy set applications in ecology are con-
cerned with system dynamics (e.g., Barros et al. 2000).
In other fields, FCM models are sometimes used to
simulate a dynamical system by setting l 5 1 in Eq.
5 and assuming that SE,t represents the system status at
time t. In such cases, the system can exhibit either
equilibrium, limit cycle, or chaotic behavior (McNeill
and Thro 1994, Tsadiras and Margaritis 1999). To gen-
erate meaningful transient FCM behavior, experts
should choose weights whose magnitudes appropriate-
ly reflect the amount of influence within the assumed
time step of the model. Yet in the Lake Erie exercise,
participants did not refer to a time step when choosing
weights, so their weights should be viewed as contain-
ing, at best, ordinal information about steady-state re-
lationships. Furthermore, . 0 in transient modelsWEii

and are usually close to 1 for small time steps. In con-
trast all 5 0 in the Lake Erie model. Thus, weWEii

caution that the Lake Erie weights should only be used
to obtain fixed point equilibria, and not transient so-
lutions.

Definition of FCM variables and edge weights

In general, variables and weights in cognitive maps
can be defined by face-to-face interaction among ex-
perts, questionnaires, and interpretation of documents
(Axelrod 1976, Ulengin and Topcu 1997). For instance,
Radomski and Goeman (1996) asked 29 fisheries bi-
ologists and managers to each qualitatively define the
weights among the nine variables in their FCM as ‘‘lit-
tle,’’ ‘‘somewhat,’’ and ‘‘a lot.’’ These responses were
then translated into a numerical scale ranging from 21
to 11, and the final weights were defined as the mean
of those values across the respondents.

An alternative approach is to convene a group meet-
ing and define variables and weights collectively. The
main advantage of such a face-to-face consensus ap-
proach is that participants can ask questions of each
other and of the interviewer, which can minimize mis-
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TABLE 1. Categories and examples of Lake Erie fuzzy cognitive mapping variables.

Category and subcategory
No.

variables Examples

Management actions
Land use 10 residential, agricultural, shoreline development, industrial, natural

landforms, harbors
Land management 4 best management practices for: nutrients; toxics; erosion; and ground-

water recharge
Other pollution sources 3 sewage treatment plant effluent, combined sewer overflows, industrial

thermal loads
Harvest 7 hunting, trapping, commercial fishery, sports fishery, stocking
Other human disturbance 2 small boating, disturbance, shoreline hardening

Physical/chemical components
Nutrients and oxygen 6 total available P, dissolved Si, dissolved inorganic N, N:P ratio, anoxia
Sediment 4 shoreline erosion, stream bedload, total suspended inorganic solids
Transparency 2 nearshore transparency, offshore transparency
Contaminant loading 7 atmospheric deposition, contaminant inventory, pesticides

Biotic components
Environment/habitat 15 submergent aquatic vegetation marsh, diked wetlands, riparian corri-

dor, beach, scrub shrub
Specific vegetation 6 purple loosestrife (Lythrum salicaria), reed grass (Phragmites commu-

nis), wild celery (Vallisneria americana)
Micro-organisms and invertebrates 21 bacteria, diatoms, edible phytoplankton, filamentous algae (Cladophora

spp.), large zooplankton, crayfish (primarily Orconectes propinquus
and Cambarus robustus), zebra mussels (Dreissena spp.)

Fish 23 yellow perch (Perca flavescens), smelt (Osmerus mordax), walleye
(Stizostedion vitreum), sea lamprey (Petromyzon marinus)

Reptiles and amphibians 9 Fowler’s toad (Bufo fowleri), snapping turtle (Chelydra serpentina)
Birds 42 Scaup (Aythya spp.), Mergansers (Mergus spp.), Double-crested Cor-

morant (Phalacrocorax auritus), Osprey (Pandion haliaeetus)
Mammals 10 muskrat (Ondatra zibethicus), river otter (Lutra canadensis), coyote

(Canis latrans), whitetail deer (Odocoileus virginianus)

understanding and facilitate knowledge exchange. An-
other advantage is that the exercise can be completed
more quickly if the participants are gathered for a single
meeting than if they are sent a questionnaire.

For these reasons, the LaMP EOS adopted the face-
to-face approach to define the variables and initial val-
ues of the weights. They approached construction of
the FCM in a ‘‘top-down’’ manner by first developing
six general modules: (1) phyto- and zooplankton and
benthos; (2) fish community; (3) amphibians and rep-
tiles; (4) birds; (5) mammals; and (6) human activities
and interventions (Colavecchia et al. 2000, Ludsin et
al. 2002). EOS members then developed a list of var-
iables that should be included in the FCM. This was
done systematically by starting with one variable, and
then listing all of the other variables that affect that
variable. After repeating this for each variable, a fi-
nalized list of ;160 variables was generated, which
could be grouped into three general categories: man-
agement actions, physical/chemical ecosystem vari-
ables, and biotic ecosystem variables. Table 1 further
subdivides these categories and gives examples of each.

The next step was to determine the general nature
of the links between variables. The group members
considered each edge between variables Sj, and deter-
mined whether the net effect was positive or negative.
For instance, walleye were concluded to be positively
affected in the model by eight prey species, stream

habitat, and trophic status, and were negatively influ-
enced by two fishing actions, suspended solids, and
cormorants (Phalacrocorax auritus). The group then
categorized each link as strong, intermediate, or weak.
Finally, they assigned to each link a numerical weight
within the range of 2100 to 1100. These values were
divided by 100 to yield the final weights.

One of the weaknesses of the FCM approach is that
it assumes that causality is either positive or negative,
but not both. In the case of walleye, suspended solids
can be beneficial up to a point because walleye prefer
somewhat murky and low light conditions; beyond that
point, however, suspended solids are harmful. In the-
ory, Eq. 1 could be generalized to accommodate such
nonmonotonic relationships (Bosserman and Ragade
1982). However, this is rarely done in practice. In the
case of the Lake Erie model, we did not anticipate that
suspended solids would reach levels that would be in-
imical to walleye.

As an example of FCM weights, consider Fig. 1,
which represents alewife populations. Positive factors
affecting alewife include five food groups and a habitat
variable. Negative factors include commercial fishing
and eight categories of predators. The weights portray
the strength and sign of the effects.

The next step in the Lake Erie FCM parameterization
was to choose values of Li and Ui in Eq. 2 for each
endogenous variable. For biotic variables, the rationale
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FIG. 1. Example of predecessor variables and associated edge weights (in parentheses).

used was as follows. If the weighted sum of predecessor
variables falls below zero, this suggests that there is
no potential for that variable; thus, Li 5 0. On the other
hand, if conditions are favorable (positive weighted
sum for predecessor variables), then it is assumed that
the variable would reach its maximum potential (i.e.,

5 1) if Sj 1 Sk attains 75% of itsS W S W SE E E F Fi ji j ki k

maximum possible value. As an example, the maximum
value of this sum for alewife is 3.65 (Fig. 1), the sum
of the positive weights on its predecessor variables;
hence, Ui 5 2.74. The rationale for the 75% threshold
is that not all food sources have to be present for a
variable to reach its maximum potential.

FCM model testing and tuning

Once weights are assigned to all two-way interac-
tions, the FCM model (Eq. 4) is then solved for a fixed-
point equilibrium using Eq. 5. This solution incorpo-
rates both the direct and indirect effects, which may
result in end points that would not be anticipated on
the basis of just the direct relationships. During the
parameterization process, we ground truthed the model
by ensuring that model behavior was qualitatively con-
sistent with empirically established relationships.
When we found inconsistencies, we reexamined and
adjusted the parameters of the fi( ). In FCM models,
such adjustments are usually not automated (e.g., by
least-squares methods). Instead, the modeler considers
a range of weights and other parameters of the fi( ) that
are plausibly consistent with the stated expert judg-
ments, and tunes those parameters so that the system
behavior and empirical data are more consistent. This
is necessarily a subjective process, which reinforces
our point that an FCM model is fundamentally a qual-
itative capturing of expert judgment that can be used
to explore the implications of those judgments for eco-
system management.

In the case of the LaMP FCM model, a small number
of interactions were tested for consistency with known
relationships. After a preliminary set of runs, coeffi-
cients for a few (,10%) of the model’s variables were
adjusted to conform to well-established effects of bot-
tom-up (nutrient limitation) and top-down (predator
structuring) forces (e.g., Hartman 1972, McQueen et
al. 1986, Makarewicz and Bertram 1991, Ryan et al.
1999). Examples of these effects included dependence
of algae on phosphorus levels and grazing by zoo-
plankton, relationships of abundances of top predators
and their prey, and the response of suspended solids
to land use.

Tuning of the model was done by examining outputs
after the model was exercised with a variety of values
for the fixed variables , such as sewage treatmentSFk

plant loadings of phosphorus. A sample of 129 values
of the vector of sF was run through the model; three-
quarters of the vectors were randomly generated using
a uniform [0, 1] distribution, assuming independence
of the variables . The remainder of the sample con-SFk

sisted of predetermined values of the actions (0, 0.05,
0.10, . . . , 1) to stimulate a range of response from the
model.

As an example of model testing, Fig. 2 portrays val-
ues of for three components (blue-green algae, Cla-SEi

dophora, and near-shore transparency) plotted against
a fourth variable, total phosphorus. The qualitative re-
lationships agree with previously documented empir-
ical relationships, and no model adjustments were nec-
essary. (Note that plots such as Fig. 2 should be in-
terpreted only in qualitative terms; what is important
are changes in the variables, and not their absolute level
on the relative 0–1 scale. Thus, for example, the fact
that algae variables do not equal zero when the phos-
phorus variable is zero matters less than that they are
positively related.) Where a counterintuitive relation-
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FIG. 2. Example of FCM model relationships used in tuning exercise (values of Si for blue-green algae, Cladophora, and
nearshore transparency vs. values of Si for phosphorus loadings).

ship occurred, the structure of the model was examined
to determine its cause. In most cases, the reasons were
weights that, upon examination, were unreasonable or
incorrectly entered; these weights were then adjusted
to yield more reasonable outcomes. This was common
in situations where links were established between
components of modules that had been developed in-
dependently and then were linked. When the initial set
of adjustments was completed, the results were re-
viewed by the Ecosystem Objectives Subcommittee,
the LaMP managers, and a consultant. This resulted in
the identification of some additional errors in inputs,
and, eventually, a final FCM model.

A danger with such a process is that overtuning of
a model could result in circular logic wherein model
parameters are adjusted until anticipated values of all
outputs are obtained, in which case nothing can be
learned from the model. To guard against this circu-
larity, a FCM model’s outputs should only be checked
against well-established relationships, as was done for
the LaMP model. The model should not be tuned to
produce agreement with preconceived notions that have
little or no empirical basis. Our tuning of the Lake Erie
FCM model attempted to strike this balance; adjust-
ments were made only to ensure that obvious, well-
documented results were reproduced.

STATISTICAL ANALYSIS AND INTERPRETATION

OF FCM RESULTS

An FCM model can help define ecosystem objectives
by indicating what ecosystem responses are potentially
feasible given a set of possible management actions.
One approach to doing this would be to define several
different values of the fixed-variable vector sF that rep-
resent different management actions and then explore
how sF influences sE, the response variables.

In this section, we describe an alternative, more sys-
tematic, approach to analyzing the effect of manage-

ment. In this approach, a large number of values of sE

calculated from a sample of inputs sF are statistically
analyzed to determine general relationships between
actions and ecosystem response. Multivariate statistical
techniques, such as principal components analysis
(PCA; Gauch 1982) and cluster analysis (Anderberg
1973), are useful for this purpose. PCA can be used to
reduce the dimensions over which the results differ by
collecting together suites of variables whose values are
consistently correlated across the set of sE. For the Lake
Erie FCM, the behavior of .30 exogenous variables
was reduced to four principal components that ex-
plained most of the variation in the results. Correlations
of variables with the components were used to interpret
the components’ meaning. Cluster analysis can then be
employed to group sets of similar sE alternatives to-
gether. This reduces the large number of sE alternatives
to a much smaller number of broad options, or ‘‘eco-
system alternatives,’’ representing values of sE that
have broadly similar effects. Differences among those
clusters can be interpreted using the principal com-
ponents. The clusters represent a set of consolidated
themes that can be used to present the tradeoffs inherent
in ecosystem management to the public.

Below, we summarize the PCA and cluster analysis
approaches. For each type of analysis, a general pro-
cedure is first introduced, after which we illustrate the
interpretation of results using conclusions from the
Lake Erie FCM model.

Principal component analysis and its interpretation

Let be defined as the standardized value ofS9 SE Eih i

in model run h 5 1, 2, . . . , H (i.e., the deviation of
from its mean, divided by its standard deviation),SEih

and let be the hth sample vector of standardizeds9Eh

variables. (Use of standardized variables means that all
variables are equally weighted in the analysis; however,
unequal weights can also be used in a PCA.) The first



October 2002 1557ECOSYSTEM MODELING BY FUZZY COGNITIVE MAP

FIG. 3. PCA ordination diagram (2 units 5 1 SD) of model results (n 5 129) from the PCA of fish community variables.
Each point represents the final configuration of one of the 129 runs of the model. Axis labels represent the exogenous variables
whose values correlated most highly with the first two principal components (Table 2). Names of fishes represent endogenous
variables whose values correlated most highly (positively or negatively) with the first two principal components (Table 3).

principal component or ‘‘axis’’ p1 is defined as a vector
of unit length projected from the origin that minimizes
the following residual variance:

T(s9 2 d p ) (s9 2 d p ) (6)O E 1 1 E 1 1h h h h
h

where is the projection of on an axis passingd p s91 1 Eh h

through the origin and point p1, d1h is the distance from
the origin to that projection, and xT is the transpose of
vector x. Thus, the first component explains more of
the variance than any other possible axis. The ith el-
ement of the component expresses the strength and
direction of relationship (in the form of a correlation)
between the axis and . The second component is aSEi

vector, p2, that explains most of the residual variance
while being orthogonal to axis p1 (i.e., p2 5 0). UpTp1

to a total of N components can be defined analogously,
where N is the dimension of (Gauch 1982). Usually,sEh

however, only the first few components are interpret-
able and explain the bulk of the variance.

By correlating the individual variables Si with the
principal component axes scores, the user can interpret
the meaning of those axes. In particular, the correlations
of the fixed variables can indicate which actionsSFk

(exogenous variables) most influence the system, while

the correlations of the endogenous variables indicateSEi

which ecosystem variables tend to covary with the ac-
tions. Of course, this interpretation is limited by the
linearity of the PCA method; as a result, relationships
among variables that are nonlinear and, especially, non-
monotonic (changing signs of slopes) may be distorted
or missed altogether. There exist nonlinear multivariate
statistical techniques that can be applied instead of
PCA if a model’s results are suspected to be highly
nonlinear (e.g., detrended correspondence analysis,
Jongman et al. 1995). However, since the fi( ) are non-
decreasing functions of weighted sums of variables, we
would not anticipate nonmonotonicities or other severe
nonlinearities in FCM outputs.

To illustrate the types of insight that can be gained
from an FCM model, we interpreted the results of a
PCA of only the Lake Erie FCM fish community var-
iables. In so doing, we sought to identify which man-
agement actions most influenced fish-community var-
iables in the Lake Erie FCM. The FCM runs analyzed
were the 129 runs described in the section Ecosystem
modeling using fuzzy cognitive maps: FCM model test-
ing and tuning, above. Fig. 3 plots these runs on two
axes representing the first two PCA components.

The first PCA component axis explains .40% of the
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TABLE 2. Pearson r correlation coefficients between PCA axis scores and values of manage-
ment actions in the PCA analysis of fish-community variables.

Variable PCA axis 1 PCA axis 2

Commercial fish harvesting
Natural land
Phosphorus release from sewage treatment plants
Agricultural land
Residential land
Industrialized land

0.56†
20.55†
20.04

0.24
0.26
0.26

20.03
0.18
0.81†
0.67†
0.60†
0.53†

Notes: Only variables that were highly correlated with either PCA axis (i.e., zr z $ 0.5; all
Bonferroni corrected P , 0.00001) are included in this table. Daggers (†) denote these values.
Positive r values indicate variables that increase from left to right along PCA axis 1, whereas
negative ones indicate variables that decrease from left to right along this axis. Positive r values
indicate variables that increase from bottom to top along PCA axis 2, whereas negative ones
indicate variables that decrease from bottom to top along this axis.

TABLE 3. Pearson correlation coefficients (r ) between PCA axis scores and fish variables in
PCA analysis of fish-community variables.

Fish variable
PCA

axis 1
PCA

axis 2

Alewife
Lake sturgeon (Acipenser fulvescens)
Yellow perch (Perca flavescens)
Smallmouth bass (Micropterus dolomieui)
Walleye (Stizostedium vitreum vitreum)
Family Esocidae (e.g., northern pike, Esox lucius)
Burbot (Lota lota)
White perch (Morone americana)
Freshwater drum (Aplodinotus grunniens)/suckers (family Catostomidae)
Family Centrarchidae (e.g., large mouth bass, Micropterus salmoides)

0.88†
20.92†
20.91†
20.89†
20.88†
20.80†
20.80†
20.74†
20.74†
20.70†

0.23
20.04
20.05

0.26
0.27

20.33
20.34

0.06
0.52†

20.16
Common carp (Cyprinus carpio)
Round goby (Neogobius melanostomus)
Gizzard shad (Dorosoma cepedianum)
Shiner species (e.g., emerald shiner; family Cyprinidae)
White bass (Morone chrysops)
Rainbow smelt (Osmerus mordax)
Lake trout (Salvelinus namaycush)
Rainbow trout (Oncorhynchus mykiss)
Lake whitefish (Coregonus clupeaformis)

20.29
20.38

0.28
0.46

20.59†
0.03

20.14
20.52†
20.20

0.91†
0.82†
0.80†
0.73†
0.67†
0.57†

20.68†
20.58†
20.50†

Notes: Daggers (†) denote fish taxa whose values are highly correlated to that PCA axis
(i.e., zr z $ 0.5; all P , 0.00001). Positive r values indicate variables that increase from left
to right along PCA axis 1, whereas negative ones indicate variables that decrease from left to
right along this axis. Positive r values indicate variables that increase from bottom to top along
PCA axis 2, whereas negative ones indicate variables that decrease from bottom to top along
this axis.

standardized variance of the fish community variables,
and is strongly correlated with two management vari-
ables, commercial harvesting (r 5 0.56) and natural
land availability (r 5 20.55; Table 2). Thus, species
listed on the left side of PCA axis 1 are ones that fare
well under conditions that include low commercial har-
vesting and high natural land protection (Fig. 3). In
general, these species tend to be of both commercial
and sport value, including lake sturgeon, yellow perch,
smallmouth bass, and walleye (Table 3, Fig. 3). The
condition of these fish taxa declines from left to right
along PCA axis 1, as the value of the commercial har-
vest variable increases and natural land availability var-
iable declines. Only the alewife variable correlates pos-
itively with high commercial harvesting and low nat-
ural land protection. These results suggest that man-
agers of highly valued commercial and sport fisheries

should be concerned with commercial fishery harvest,
as well as land-use practices.

An additional 28% of the variation in the fish vari-
ables is explained by PCA axis 2. This axis summarizes
nutrient loadings, since phosphorus from sewage treat-
ment plants (i.e., point sources) was strongly and pos-
itively correlated with PCA axis 2 scores (Table 2; Fig.
3). Values of variables associated with agricultural, res-
idential, and industrial land development also were
positively correlated with PCA axis 2 (Table 2), sug-
gesting that nonpoint sources of phosphorus into Lake
Erie also may drive variation in fish community struc-
ture. By examining the correlations of fish variables
with PCA axis 2, we found that the condition of a
variety of forage species tended to be positively as-
sociated conditions of high phosphorus loading (i.e.,
near the top of PCA axis 2; Table 3, Fig. 3). Lower
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phosphorus values are associated with reduced health
of these species. In contrast, the values for economi-
cally important salmonids (e.g., lake trout and rainbow
trout) were negatively associated with phosphorus val-
ues. Supporting previous investigations of aquatic sys-
tems undergoing eutrophication (Hartman 1972, Leach
and Nepszy 1976), as well as oligotrophication (Ney
1996, Ludsin et al. 2001), our model suggests that man-
agement-driven changes in phosphorus inputs can in-
deed lead to fish-species turnover, which ultimately can
cause tradeoffs in fisheries resources to occur.

In a similar manner, PCA was used to analyze which
management actions sF in Table 1 most influenced the
full suite of endogenous ecosystem variables sE in the
Lake Erie FCM model. As outlined in Ludsin et al.
(2002), four management actions, in decreasing order
of importance, were most useful for understanding eco-
system structure: regulations on land use (i.e., agri-
cultural, urban, industrial), point-source loading of
phosphorus (i.e., sewage treatment plants), passive hu-
man disturbance (e.g., hiking, camping, boating), and
commercial fish harvest. The first PCA axis (land use)
explained ;70% of the variance in the standardized sE.
Ultimately, these interpretations will be used to identify
ecosystem objectives for Lake Erie.

Two issues that may diminish confidence in the in-
terpretation of PCA results are sample error and
weighting of variables. The effect of sample error can
be gauged formally by resampling methods such as the
bootstrap or, as in the case of the Lake Erie FCM, by
generating and analyzing additional independent sam-
ples of runs. Inspection of factor loadings, the variation
explained by each principal component, and the clus-
ters indicated that sample error does not materially af-
fect conclusions concerning which Lake Erie variables
were most influenced by which management actions.
In general, users should strive to use large sample sizes
if a multivariate technique is to be used to analyze FCM
results.

The issue of weighting of variables is important for
two reasons. First, use of standardized scores for the
variables in PCA means that all variables in sE have
equal influence on the PCA results, whether or not they
vary significantly in absolute terms. This impact of this
assumption should be gauged by sensitivity analyses
in which variables are instead weighted. This was done
in the Lake Erie analysis by examining the results of
a PCA upon the unstandardized variables; as in the case
of sample error, the broad conclusions of the analysis
were not significantly altered.

Weighting is important also because PCA results can
be greatly influenced by decisions to include (or ex-
clude) highly correlated variables in the analysis (Ram-
sey 1986). Indeed, we expected that the PCA of the
Lake Erie FCM results would be sensitive in this man-
ner. For instance, it is implicitly assumed in our PCA
of the full set of variables that all elements in sE are
equally important in making interpretations of ecosys-

tem health. Hence, because our model included three
times as many reptile, amphibian, mammal, and bird
variables (;60) as fish variables (;20; Table 1), it
should not be surprising that the most important PCA
axis is related to land use (which directly affects the
former species) rather than axes that represent direct
stresses on the aquatic ecosystem (such as fishing and
nutrient inputs).

In general, the effect of including or excluding cor-
related variables should be assessed by conducting two
or more PCAs with different sets of variables. This was
done in the Lake Erie analysis by comparing the PCA
of the full set of variables with the PCA of just the fish
community. We anticipated that an FCM with fewer
terrestrial and avian species variables or more aquatic
variables might result in more of the overall variance
being explained by the direct aquatic stresses. This was
indeed the case. The PCA of the fish community var-
iables indicate that land use is still important to the
aquatic ecosystem, but its principal components reflect
increased influence by aquatic stresses compared to the
PCA of all system variables.

Cluster analysis and its interpretation

A PCA of FCM model results for a large sample of
values for exogenous variables sF can indicate what
ecosystem variables covary most strongly with man-
agement-associated variables. Cluster analysis of the
final configurations of those model runs can give ad-
ditional insight, namely, the definition of a few broad
alternatives for ecosystem management and a descrip-
tion of their ecological implications (in terms of the
PCA axes). Cluster analysis attempts to assign indi-
vidual points to a given number of subsets in such a
way that the within-subset variance is minimized. In
the Lake Erie case, within-cluster variance was defined
as the sum of the squared deviations of the standardized
scores of the Euclidean distances of the endogenous
variables from their mean within the cluster to whichs9Eh

they were assigned. This assignment problem is there-
fore a large-scale integer programming problem with
a quadratic objective function in which the decision
variables are zhc, indicating whether (zhc 5 1) or not
(zhc 5 0) sample is assigned to cluster c.s9Eh

In general, solving for the minimal variance assign-
ment is difficult; practical clustering algorithms use a
variety of heuristic rules to identify relatively good
groupings of n observations. There are two basic class-
es of such heuristics (Anderberg 1973): agglomerative
methods (which start with n clusters and then system-
atically combine them into smaller numbers of clusters)
and divisive methods (which start with one cluster with
all n observations and then iteratively divide it into
larger numbers of clusters). In the case of the Lake Erie
FCM analysis, the 129 runs were organized into seven
clusters with dendrograms generated by Ward’s method
(Ward 1973, McCune and Mefford 1995). Ward’s meth-
od is an agglomerative approach to minimizing within-
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cluster variance; however, like nearly all clustering
methods, it cannot guarantee truly optimal clusters.

As explained in Ludsin et al. (2002), the endogenous
state variable values from the 129 model runs of the
Lake Erie FCM model were clustered to identify broad
alternative futures for the Lake. There was some ex-
pectation by the EOS that the multiple runs of the FCM
model would fall into a few natural clusterings, each
cluster representing a distinctly different type of end
state for the Lake Erie ecosystem. But fixed-point so-
lutions of the FCM model (Eq. 4) are unlikely to show
such behavior, given that the activation functions (Eq.
1) are linear or ramped. Indeed, if Eq. 1 is strictly linear
(no upper or lower bounds), matrix manipulations of
(Eq. 2) can be used to obtain sE as a linear function of
the fixed actions sF:

21s 5 [R 2 w ] [w s 2 L]E E F F (7)

where []21 is the matrix inversion operator, R is a di-
agonal matrix with diagonal elements (Ui 2 Li), and L
is a diagonal matrix with diagonal elements Li. This
linearity implies that if the actions sF are uniformly
distributed (as they were for the Lake Erie analysis),
then the outputs should also be uniformly distributed
over some range determined by the weights, Ui, and
Li. Indeed, Fig. 3 exhibits a fairly uniform distribution.
Thus, for the Lake Erie FCM model there should not
be distinct clusters of model outcomes separated by
zones with no points, unless this occurs randomly be-
cause of sample error in the inputs sF. Hence, clustering
will be a somewhat arbitrary endeavor that can be help-
ful for identifying different regions of the output space,
but not obviously distinct groups.

The cluster analysis of the Lake Erie FCM defined
seven clusters that were compared to each other and
to an individual FCM model run whose exogenous var-
iables sF were set to values that the EOS judged were
characteristic of the 1960s. A challenge facing the EOS
was to interpret these results so that the managers and
the public could comprehend differences among the
broad alternatives represented by the clusters. This task
was difficult because of the high dimensionality of the
FCM output. In particular, the clusters (called ‘‘eco-
system alternatives,’’ or EAs) differ in terms of the
mean values of .160 fuzzy numbers representing the
status of management actions and ecosystem compo-
nents. An additional challenge was the ordinal nature
of the fuzzy variables. Even though only the relative
position of fuzzy numbers on a dimensionless [0, 1] or
[21, 11] scale is meaningful, we have found that users
try to assign more meaning to absolute levels than can
be justified. Therefore, the subcommittee decided to
reduce the complexity of the results for presentation
to the public by aggregating variables into approximate
categories whose magnitude would be indicated by a
four-level ordinal scale. (For details, see Ludsin et al.
2002.) Further, three of the seven clusters were judged
to be unacceptable ecosystem alternatives and were dis-

carded because they represent further degradation com-
pared to present conditions and would therefore be in-
compatible with the goals of the Great Lakes Water
Quality Agreement. Table 4 shows the results of this
interpretation process for the remaining four clusters.
In addition, pictorial interpretations, such as photo-
graphs showing varying levels of Cladophora preva-
lence on beaches, will be used to portray different lev-
els of the actions and variables.

The first step of the interpretation simplification pro-
cess was to define broad categories of ecosystem var-
iables and actions that characterized the grouped out-
puts. The endogenous variables were sorted into 10
‘‘ecosystem health’’ categories listed in Table 4, each
containing up to 42 variables. The management actions
were grouped into five categories. Means within these
categories were computed to provide an initial basis
for characterization of the clusters. The initial char-
acterizations were then modified as follows to empha-
size variables that significantly differentiated the re-
sults. First, exogenous variables with correlations
,20.2 or .0.2 with any of the first four principal
components of the PCA were highlighted. Second, ad-
ditional emphasis was placed on variables for which
two or more of the clusters in Table 4 differed by .0.1
from the mean value of that variable.

We also differentiated the clusters according to how
they influence certain specific ‘‘beneficial uses’’ (eco-
system services) of the Lake. The Great Lakes Water
Quality Agreement defines 14 specific beneficial uses
(Canada and United States of America 1987). From the
perspective of the GLWQA, successful management of
the Lake Erie ecosystem will realize the restoration of
beneficial uses that are impaired when compared
against their potential within the ecosystem. The EOS
identified linkages between variables of the FCM and
beneficial uses. Because not all beneficial uses were
represented in the model, only seven of the 14 bene-
ficial uses are listed in Table 4.

To facilitate comparison of the clusters, they were
mapped onto the first two axes of the ordination dia-
gram (analogous to Fig. 3) from the PCA of the full
set of variables. Interpreting those axes using the factor
loadings, the EOS concluded that the fourth of the sev-
en clusters is closest to present conditions in the Lake
ecosystem, while three of the other clusters represent
improvements relative to present conditions. The other
three clusters represent a deterioration, and, as men-
tioned above, were not considered further by the LaMP.

The four remaining clusters represent broadly dif-
ferent directions of change for the ecosystem (Table
4). EA3 is characteristic of conditions involving a de-
crease in nutrient inputs but a slight worsening of land
use and human disturbance, while EA1 and EA2 both
are associated with less nutrient input and improved
land use relative to present conditions. Examination of
where the clusters lie on PCA axes 3 and 4 indicate
that EA1 end points involved more disturbance and
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TABLE 4. Management actions and response of various Lake Erie ecosystem components under the four ecosystem alternatives
(EAs) relative to the 1960s.

Notes: For ‘‘Management actions,’’ each person symbol represents a qualitative beneficial change and levels of effort and
commitment required to achieve the desired change. A greater number of symbols signifies more effort, but an action that
results in less environmental stress and potentially better overall ecosystem health. For ‘‘Ecosystem health’’ and ‘‘Beneficial
uses,’’ a ‘‘Consumer Reports’’ format is used to show differences in responses. A filled circle reflects the highest potential
for improving ecosystem health or human use, an open circle the least, and the other symbols intermediate levels of potential.

commercial fishing than EA2 end points. On the other
hand, nutrient inputs and land use stresses are greater
in EA2. The net effect is that EA1 appears better in
terms of water quality indices (the ‘‘beneficial uses’’
of Table 4), while fish, bird, and reptile populations are
healthier in EA2. However, these characterizations
should be interpreted cautiously because there remains
significant within-cluster variance; therefore there are
many possible variations within a cluster representing
different combinations of particular management ac-
tions.

DISCUSSION

The LaMP process for defining ecosystem objectives
is not yet complete. In the summer of 2001, the LaMP
managers expressed their preference for ecosystem al-

ternative 2. In selecting EA2, the managers recognized
that the actions most likely to achieve EA1 and EA2
are not mutually exclusive. As such, EA2 may become
an interim goal towards achieving EA1, which many
committee members considered to be the optimum. The
process of reviewing and possibly revising the pre-
ferred alternative will be deferred until management
actions thought to promote EA2 are demonstrated as
being successful.

Ahead lies the public review process, followed by
definition of the implied objectives for the Lake Erie
ecosystem. The agencies and citizen groups partici-
pating in the LaMP are now preparing to present the
process and rationale for selecting EA2 to the Lake
Erie community at large. This consultation will afford
an opportunity for stakeholder input, in particular a
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confirmation of which elements in EA2 are most valued
by the community. Work is now starting on translating
EA2 into specific indicators for defining requisite ac-
tions and measuring progress.

Although the process for defining objectives is un-
finished, it is not too early to identify some of the
benefits gained from using an FCM approach to rep-
resent a complex ecological system, along with some
difficulties that might be avoided in future applications.

Benefits of the FCM approach

There are two types of benefits to using the FCM
methodology for developing ecosystem objectives, one
relating to communication and the other to insights
concerning the response of the ecosystem. First, the
FCM approach provides a framework for experts and
stakeholders to express and debate judgments con-
cerning linkages among ecosystem components. In the
case of the Lake Erie FCM, judgments were obtained
from representatives of 35 different organizations, in-
cluding universities, government agencies, and non-
governmental organizations. Our observations of the
process led us to conclude that the participants gen-
erally found it convenient to construct general rules for
defining ecological relationships, as well as specifying
the direction and magnitude of the interactions. Con-
sensus was obtained in a reasonable amount of time
(three one-day sessions) for a complex system (.160
social, physical, chemical, and biotic components).
Further, most of these experts had never interacted be-
fore on a modeling exercise, and without use of the
FCM framework, such interaction probably would not
have been successful. Because the opportunity existed
to debate each interaction, the LaMP Ecosystem Ob-
jectives Subcommittee was confident in the model.
Therefore, we recommend the FCM method as a frame-
work for large groups to share knowledge about large
ecosystems. As with the Adaptive Environmental As-
sessment Process (Holling 1978), this information in-
terchange can be the most valuable product of the pro-
cess.

The second major benefit of the FCM approach is
insight gained concerning potential states of a complex
ecosystem and which management actions appear to be
most influential. An advantage of the FCM method-
ology is that such system-level conclusions could be
derived from a model that is built using only judgments
about cause–effect linkages between individual eco-
system variables (i.e., two-way interactions). The FCM
approach allows feedback loops, handles complexity,
and can produce surprises. For instance, prior to the
exercise, the EOS had little idea which of the 30 man-
agement actions would most influence the Lake Erie
system. The FCM provided a way to hypothesize which
ones actually might be most important. And, despite
some tuning that was necessary early on, some unex-
pected results emerged. Most notable was the idea that

land use appears to be as important as commercial har-
vest levels in influencing fish community structure.

One can argue that many of these conclusions could
have been made without undertaking a multiyear mod-
eling exercise. However, because of the breadth of in-
terests involved in the LaMP (e.g., fishery scientists,
anglers, water-quality managers, landowners), it was
important to proceed deliberately so that the maximum
number of participants would have confidence in the
results. This is illustrated by the conclusion concerning
additional phosphorus reductions. After scrutinizing
the results of the FCM multivariate analysis, the EOS
reached a consensus that deliberate phosphorus en-
richment is undesirable, even though it has previously
been argued that such enrichment is desirable for main-
taining the productivity of Lake Erie (Stockner et al.
2000). Such a consensus would have been much less
likely before the FCM exercise.

Of course, as in any modeling exercise, conclusions
of any FCM analysis must be carefully qualified for
several reasons. First, they are ultimately based on
qualitative expressions of expert opinions about a large
number of ecological processes for which there may
be little empirical data. Second, FCM is based on a
restrictive specification of cause–effect relationships in
which the value of one variable is function of the sum
of weighted influences by other variables. Third, con-
clusions about the relative importance of different man-
agement actions are derived from linear multivariate
statistical analyses whose results depend on which var-
iables are included and how they are weighted. Thus,
predictions from a FCM should be viewed as being a
set of possible logical implications of the experts’ judg-
ments whose robustness should be evaluated with ex-
tensive sensitivity analysis, and which should be tested
(as hypotheses) whenever possible using empirical data
and predictions from more realistic process-based mod-
els.

Improving the efficiency and value of FCM analysis

Our experience with the Lake Erie FCM leads to
several recommendations for improving the utility of
this approach in future applications. First, model cre-
ation should start with identification of variables. While
the EOS’s creation of a database and query system for
the 4000 niche rules allowed for an integration of el-
ements of the Lake Erie ecosystem and cross fertiliza-
tion of expertise, the query system itself would not
permit us to realistically assess system interactions.
The query system also included many variables that
were omitted in the ultimate FCM. Instead of stating
rules first, it would have been more efficient to first
identify the variables of the FCM, articulate rules just
for those variables, and then specify causal weights for
those rules. Such an approach would have reduced de-
livery time for the suite of possible ecosystem objec-
tives.

Second, time should not be spent on attempts to in-
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terpret transient behavior of the model. Considerable
effort was invested in resolving limit-cycle behavior
observed during the first attempts to solve the FCM
using l 5 1 in Eq. 5. The limit cycles involved extreme
swings in the values of the Si. After both the EOS and
the LaMP management spent much time trying to in-
terpret the cycles, it was ultimately concluded that this
dynamic behavior was a numerical artifact with no sig-
nificance for Lake Erie. The relaxation parameter l was
then varied, and the result was a set of interpretable
fixed-point solutions.

Third, users should not expect that cluster analysis
of the FCM results will identify unambiguously distinct
groupings. In our study, this expectation led to some
preliminary interpretations of the clusters as repre-
senting either/or alternatives, rather than a spectrum of
possibilities. However, plots such as Fig. 3 show that
the boundaries of clusters are somewhat arbitrary; there
are no obvious concentrations of points. Cluster anal-
ysis of our model data served to break a more-or-less
continuous pattern into separate groups as an aid to
interpretation. If more or fewer than seven clusters had
been created in the Lake Erie analysis, different con-
clusions might have resulted. Hence, results such as
Table 4 must be viewed as points on a continuum, since
compromises among those ecosystem alternatives are
possible.

Fourth, users should avoid reading too much into the
results of the multivariate analysis, and should subject
those results to sensitivity analysis. For instance, a pos-
sible overinterpretation of the Lake Erie results would
be a conclusion that because the land-use PCA axis
explains three times as much variation in the full set
of FCM variables as the phosphorus axis, land use
should therefore receive, say, three times as much at-
tention or funding as nutrient management. One reason
why this would be an overinterpretation is that the
fuzzy results should be viewed as being very approx-
imate and ordinal in nature. A second reason is that
the PCA results depend on which variables are included
and whether they are standardized or otherwise weight-
ed. Because the Lake Erie FCM has many more ter-
restrial and avian vertebrate variables than fish vari-
ables, the statistical results should therefore be more
influenced by the former than the latter. As the two
PCAs we have described show, this increases the ap-
parent importance of land-use actions relative to fish-
eries and nutrient management. The list of terrestrial
and avian variables could likely have been aggregated
and shortened considerably (such as combining Piping
Plover [Charadrius melodus] and ‘‘beach birds’’) with-
out appreciably influencing the overall behavior of the
system. A consequence of the proposed aggregation
might be that the nutrient component (axis 2), along
with the commercial fishing component (axis 4), would
explain more of the variation of the results than pre-
viously.

Our final observation is that value of an FCM-based

approach to developing ecosystem objectives may be
most limited by the effectiveness of public involvement
efforts. There are several challenges to obtaining man-
agement and public ‘‘buy in’’ to the results. One chal-
lenge will be to communicate the analysis procedure
in a way that educates the public and managers and
allows for informed recommendations. This will not
be easy, as the Lake Erie Public Forum has pointed out
that in order for the public consultation process to be
effective, the information presented in Table 4 will
need to be made more intuitively understandable. Ed-
ucation concerning the nature and importance of the
management actions, ecosystem components, and ben-
eficial uses listed therein must therefore be a focus of
public outreach. Another challenge is that stakeholders
are concerned with the costs to different economic sec-
tors of the identified management actions, and will be
reluctant to endorse one ecosystem objective over an-
other without an understanding of those costs. Thus, a
FCM analysis by itself provides insufficient informa-
tion to choose a single ecosystem objective and must
be complemented by other studies. Such studies are
now underway for Lake Erie.

CONCLUSION

Building and analyzing a fuzzy cognitive map model
of a complex ecosystem can promote valuable com-
munication among diverse experts, along with public
understanding of ecosystem processes and the limits
and possibilities of management. The model framework
can span scientific disciplines, supporting development
of ecosystem management and linking with traditional
hard science models. Thus, FCM models can have a
complementary relationship to traditional scientific in-
vestigation and process-based models: an FCM model
can use expert judgment to bridge gaps in process-
based models, allowing available scientific knowledge
to be more effectively used in management; and an
FCM model can suggest modes of system behavior and
relative magnitudes of influence that can be treated as
hypotheses for testing by better models and data. As a
FCM model’s relationships are substantiated or revised
based on comparisons with process-based models, the
usefulness of a FCM model as a tool for exploring
future scenarios will improve. The model outputs could
then be an input to a more formal and quantitative
analysis of decision risks and tradeoffs (e.g., Anderson
et al. 2001).
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