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Food web structure in oil sands reclaimed wetlands
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Abstract. Boreal wetlands play an important role in global carbon balance. However,
their ecosystem function is threatened by direct anthropogenic disturbance and climate
change. Oil sands surface mining in the boreal regions of Western Canada denudes tracts of
land of organic materials, leaves large areas in need of reclamation, and generates considerable
quantities of extraction process-affected materials. Knowledge and validation of reclamation
techniques that lead to self-sustaining wetlands has lagged behind development of protocols
for reclaiming terrestrial systems. It is important to know whether wetlands reclaimed with oil
sands process materials can be restored to levels equivalent to their original ecosystem
function. We approached this question by assessing carbon flows and food web structure in
naturally formed and oil sands-affected wetlands constructed in 1970–2004 in the postmining
landscape. We evaluated whether a prescribed reclamation strategy, involving organic matter
amendment, accelerated reclaimed wetland development, leading to wetlands that were more
similar to their natural marsh counterparts than wetlands that were not supplemented with
organic matter. We measured compartment standing stocks for bacterioplankton, microbial
biofilm, macrophytes, detritus, and zoobenthos; concentrations of dissolved organic carbon
and residual naphthenic acids; and microbial production, gas fluxes, and aquatic–terrestrial
exports (i.e., aquatic insect emergence). The total biomass of several biotic compartments
differed significantly between oil sands and reference wetlands. Submerged macrophyte
biomass, macroinvertebrate trophic diversity, and predator biomass and richness were lower
in oil sands-affected wetlands than in reference wetlands. There was insufficient evidence to
conclude that wetland age and wetland amendment with peat–mineral mix mitigate effects of
oil sands waste materials on the fully aquatic biota. Although high variability was observed
within most compartments, our data show that 20-year-old wetlands containing oil sands
material have not yet reached the same level of function as their reference counterparts.

Key words: carbon flows; ecosystem function; macroinvertebrates; naphthenic acids; oil sands; tar
sands; wetland reclamation.

INTRODUCTION

Boreal ecosystems store one-third of the world’s

terrestrial carbon (IPCC 2007). Boreal wetlands play a

particularly important role in providing several essential

ecosystem services, including carbon storage, flood

control, water filtering and purification, water retention,

and biodiversity (Bradshaw 2009, Schindler and Lee

2009, Wieder et al. 2009, Rooney et al. 2012). Yet this

ecosystem type is undergoing rapid change as a result of

anthropogenic activities resulting in deforestation, frag-

mentation, and altered disturbance regimes (Bradshaw

et al. 2009). In particular, several recent studies

expressed concern about the effects of current manage-

ment of boreal resources, including natural gas and oil

sands mining, on the capacity of boreal wetlands to

perform freshwater-related ecosystem services (Schindler

and Lee 2009, Foote 2012, Rooney et al. 2012).

Surface oil sands mining can be especially disruptive

to the provision of ecosystem services. The extraction of

bitumen from mined oil sands, and the direct distur-

bance caused by land clearing and subsurface hydrolog-

ical disruption, generate large quantities of process-

affected materials inherent to resource-intensive extrac-

tion. The Clark Hot Water Process is used to separate

bitumen from sand, whereby hot water, and occasion-

ally NaOH, is mixed with the oil sand ore, and floating

bitumen is skimmed from the slurry surface (Schramm et

al. 2000). The remaining tailings slurry contains residual

bitumen, sand, clay, polycyclic aromatic hydrocarbons

(PAHs) and oil sand process water enriched in
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naphthenic acids and salts. The residual oil sands

process materials (tailings and water; OSPM) are stored

in large tailing ponds, which in 2009 had a volume of

approximately one billion (109) cubic meters (Simieritsch

et al. 2009, Gosselin et al. 2010). The prospect of

continuing accumulation of OSPM led to trial develop-

ment and evaluation of reclamation strategies that

incorporate this material into wetland landscapes.

Most studies of the effects of anthropogenic stressors

tend to focus on population and community-level

metrics, likely because they are more easily manipulated

and presumed to be more sensitive than ecosystem-scale

processes (assumptions that are seldom tested). Such a

research focus has resulted in a limited understanding of

the development of functional characteristics of con-

structed wetlands in general (but see Cornell et al. 2007)

and oil sands wetlands in particular. The spatial extent

of oil sands mining calls for landscape reclamation on a

scale greatly exceeding most other reclamation projects.

It is thus essential to know whether reclaimed OSPM

wetlands are being restored to equivalent levels of

ecosystem function, e.g., supporting food web structure

and carbon flows similar to those observed in freshwater

constructed wetlands of equivalent age. Although it is

known that OSPM wetlands are colonized by some

aquatic invertebrate and aquatic plant species (Bendell-

Young 2000, Leonhardt 2003), little information is

available to judge whether the ecosystem processes of

OSPM wetlands are becoming more similar to wetlands

constructed with uncontaminated water. To address this

question, we compared OSPM wetlands, constructed

with oil sands process materials such as partially

consolidated tailings and/or tailings water, or created

by the upwelling of mine tailings water that leaked

through dikes and was captured in depressions adjacent

to mine waste-containing tailings ponds, with reference,

freshwater wetlands containing uncontaminated sedi-

ments and water derived from precipitation and surface

runoff.

Peatlands, bogs, and fens, which were the dominant

wetland classes in the predisturbance landscape, take

hundreds to thousands of years to accumulate the

thickness of organic material that defines them. There is

interest in determining whether amending reclaimed

wetlands with peat accelerates wetland development and

increases the similarity between OSPM and reference

wetlands. Several reclaimed wetlands were amended

with peat–mineral mixture, containing peat and the

underlying mineral soil layer salvaged from the land

originally cleared for mining and either temporarily

stockpiled or directly placed on the bottom of newly

constructed wetlands (usually 30% peat to 70% mineral

mixture [Erwin and Best 1985, Alberta Environment

2008]). To address the importance of peat in the

development of OSPM wetlands, we contrasted peat–

mineral amended OSPM wetlands and high organic-

matter (OM) reference wetlands with nonamended

OSPM wetlands and low-OM reference wetlands.

Overall, our goals were to (1) characterize effects of

OSPM on major food web compartments and carbon

flows, (2) examine wetland age-related differences in

trophic structure between OSPM and reference wetlands

of comparable age, (3) assess whether a commonly used

reclamation strategy, peat–mineral mixture amendment,

accelerated wetland development and increased similar-

ity of OSPM and reference wetlands, and finally, (4)

identify major gaps in our understanding of the viability

of reclamation with oil sands materials. We approached

these questions by evaluating major biotic compart-

ments, carbon stocks, and processes central to the

establishment of fully functioning aquatic ecosystems. In

particular, we sampled and compared over a four-year

period the biomass of major food web components in

multiple constructed and naturally formed wetlands

ranging in age from 2 to 20 years. In doing so, we aimed

to assess the effects of the presence of mine tailings

materials, and to understand which of these effects may

be mitigated with age and by the application of peat–

mineral substrate during the construction period.

MATERIALS AND METHODS

We synthesized results of multiple recent projects

conducted under the Carbon Dynamics, Food Web

Structure and Reclamation Strategies in Athabasca Oil

Sands Wetlands (CFRAW) collaborative research

framework (Ciborowski et al. 2006), the purpose of

which was to understand carbon dynamics in wetlands

constructed with and without the use of OSPM (Whelly

1999, Ganshorn 2002, Leonhardt 2003, Cooper 2004,

Daly 2007, Frederick 2008, Barr 2009, Gardner-Costa

2010, Slama 2010), with previously unpublished data on

macroinvertebrate community composition and food

web structure.

Study sites

Study wetlands (Appendix: Table A1) were located in

northeastern Alberta, Canada, on Syncrude Canada

Ltd. and Suncor Energy Inc. mine lease areas and in

areas that have not yet been mined (located between

538280 and 578100 N and 1118450 and 112.580 W).

Wetlands were typically marshes consisting of an open-

water area (mean ;7200 m2) with depth of ;0.5–0.7 m,

surrounded by zones of emergent and wet-meadow

vegetation. Wetlands were operationally classified as

newly formed (�7 years) vs. older (8þ years) at the time

of sampling based on the previous study, which

demonstrated leveling off of the invertebrate richness

accumulation curves in OSPM wetlands after 7–8 years

(Appendix: Fig. A1; Leonhardt 2003).

Reference wetlands were intentionally constructed or

formed opportunistically in the depressions in the

postmining landscape. These wetlands contained fresh-

water from precipitation and runoff and postmining

salvaged sand and clay materials not contaminated with

tar sand or its byproducts. Reference wetlands were

termed high OM if there was peat–mineral mix or
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muskeg soil supplementation during their construction.

Several of the reference wetlands were beaver-created

wetlands surrounded by mining infrastructure, or

wetlands that formed ‘‘naturally’’ in depressions created

by mining infrastructure but not directly disturbed

during the land-clearing process. Reference wetlands

had low levels of naturally occurring naphthenic acids

(Table 1). OSPM wetlands were constructed with clay or

a combination of clay, sand, and composite tailings as

their base and filled with process waters originating from

tailings ponds.

Macrophytes

Emergent and wet-meadow zone aquatic plants were

sampled during the period of peak standing crop (end of

August) in 2008. Plant biomass in the wet-meadow zone

was used as a surrogate for allochthonous organic

matter. In each of the 12 OSPM and 17 constructed

reference wetlands sampled, three transects radiating

from the pond center outward through each of the two

vegetation zones were randomly placed. A 1-m2 plot was

assessed at a randomly selected location in each of two

zones of each transect. One-quarter of the vegetation

found inside the 1-m2 plot in the emergent and wet-

meadow zones was clipped. Aboveground plant biomass

was measured after drying samples at 708C for 48 hours.

Submerged macrophyte biomass was sampled in 8

OSPM and 10 reference wetlands in August 2009 and

2010 (Slama 2010). In each wetland, vegetation was

sampled from five randomly selected open-water loca-

tions, where no emergent vegetation was present, at a

depth of ;40–60 cm. At each location, vegetation was

removed from a 1-m2 quadrat with a thatching rake and

frozen until later analysis. In the laboratory, macro-

phyte samples were thawed at room temperature over 24

hours, then dried in a drying oven at 1108C to a constant

mass.

Macroinvertebrates

Aquatic invertebrates were sampled in four OSPM

and three reference wetlands. Samples were collected

with a sweep net, with similar sampling effort across all

wetlands, at one-week intervals in July 2003 and

preserved in Kahle’s solution. Prior to sieving, flotation

techniques were employed to separate organic matter

from the inorganic fraction (Ciborowski 1991). The

organic matter was then poured through a nested series

of standard sieves (4000, 1000, 500 lm). Invertebrates

were removed and identified to genus or family (Clifford

1991, Merritt and Cummins 1996), photographed using

a SPOT Insight digital camera (Spot Imaging Solutions,

Sterling Heights, Michigan, USA), measured to the

nearest 0.1 mm using ImageTool 3.0 software (Univer-

sity of Texas Health Science Center at San Antonio),

and converted to biomass using published allometric

coefficients (Benke et al. 1999). Due to high time-series

variability and possible mass emergence, initial biomass

in several wetlands was greater than biomass in the later

sampling periods. Therefore, production could not be

calculated. More detailed analysis (predator richness,

total biomass, benthic and planktonic predator biomass)

was performed on the invertebrate compartment as it

represented the highest consistently available trophic

level in those wetlands, which was assumed capable of

integrating information from the lower trophic levels.

TABLE 1. Size of major carbon compartments in oil sands process material (OSPM) wetlands and their age-matched (‘‘young,’’
‘‘old’’) reference counterpart (mean 6 SD).

Carbon compartment OSPM young Ref. young
OSPM/
Ref. (%) OSPM old Ref. old

OSPM/
Ref. (%)

Submerged plant biomass (g dry
mass /m2)

1.7 6 1.7 34.2 6 24.1 5.0 11.5 6 10.4 52.0 6 19.3 22.2

Emergent macrophytes (g dry
mass/m2)

103.9 270.2 6 231.4 38.5 189.6 6 95.5 239.0 6 137.5 79.3

WMZ/allochthonous biomass (g
dry mass/m2)

35.0 116.4 6 67.7 30.1 131.5 6 138.9 183.4 6 153.5 71.7

Benthos biomass (mg dry mass/
sweep)

49.9 6 63.0 378.2 6 135.6 13.2 216.0 6 169.1 124.5 173.5

Planktonic pred. biomass (mg dry
mass/sweep)

0.2 6 0.3 14.4 6 20.3 1.7 1.7 6 1.4 1.6 106.4

Emergence of Chironomidae (lg
dry mass/trap)

4.6 6 6.2 1.9 248.8 6.5 6 3.9 1.4 6 0.3 475.6

Bacterial biomass (lg C/L) 2.5 6 0.5 2.8 6 2.8 87.1 5.3 6 0.4 2.0 6 0.6 272.1
Bacterial production

(lg C�L�1�h�1)
0.3 6 0.3 1.5 6 0.8 17.7 0.1 0.3 6 0.1 45.2

Organic matter in detritus (%) 11.1 6 8.8 9.9 6 7.2 111.8 13.9 6 0.4 12.7 6 4.1 109.4
NPP (g�m�3�d�1) 11.1 6 0.8 7.8 6 5.9 142.1 4.6 6 1.2 2.6 6 9.2 173.9
CH4 (lg�m�2�d�1) 1.9 6 1 55.6 6 51.4 3.5 35.9 6 44.9 54.4 6 50.2 66.0
CO2 (lg�m�2�d�1) 30.9 6 11.8 13.3 6 8.7 233.3 11.3 6 0.5 26.7 6 11.9 42.2
Naphthenic acids (mg/L) 26.0 1.3 6 0.1 2080.0 28.2 6 3.8 5.0 6 6.3 564.0
DOC (mg/L) 66.6 6 12.6 27.7 6 6.7 240.2 59.0 6 0.4 31.4 6 14.1 188.3

Notes: Key to abbreviations: WMZ, wet-meadow zone; NPP, net primary production; DOC, dissolved organic carbon.

K. E. KOVALENKO ET AL.1050 Ecological Applications
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Biomass of emerging aquatic insects was estimated

using floating hoop traps. The floating hoops were 30 cm

in diameter and made from 1.25 cm internal diameter

plastic polyvinyl chloride pipe and acetate sheets, which

were secured to the sediment with 45-cm long bamboo

stakes (Swisterski et al. 2005). Five floating hoops were

randomly deployed in June 2009 in the emergent

vegetation zone of nine wetlands: five reference and

four OSPM wetlands. The surface of the water was

cleared of any floating debris using a small aquarium net

and hoops were left in the wetlands for 24 hours.

Nymphal and pupal exuviae floating on the surface of

the water were removed from within the area circum-

scribed by the hoop using a fine-mesh aquarium net.

Exuviae were preserved in 70% ethanol, then counted,

digitally photographed, and the length was digitally

measured and converted to biomass using allometric

equations (Benke et al. 1999).

Microbial biomass and production

Microbial biomass and production were determined

in five reference and four OSPM wetlands. Bacterio-

plankton was filtered from 20-L water samples collected

10–15 cm below the surface. Secondary production was

determined from 3H leucine incorporation rates (mod-

ified from Kirchman and Ducklow 1993; see Daly 2007

for details on leucine saturation). Bacterial abundance

was determined by labeling with DAPI stain and

counting cells at 6703 magnification using epifluores-

cence microscopy (Daly 2007). Bacterial biomass was

estimated using a conversion factor of 20 fg C/cell (Lee

and Fuhrman 1987).

Biofilm biomass was estimated by measuring chloro-

phyll a (chl a) concentrations. Biofilm was collected

from acetate sheets immersed in two OSPM, two

constructed reference, and two natural reference wet-

lands for a period of six weeks (Frederick 2008). Primary

production was estimated from diel changes in dissolved

oxygen concentration measured using in situ Hach MS5

multiprobes (Hach Hydromet, Loveland, Colorado,

USA), which were deployed for 3–4 day intervals in 13

wetlands during late June until early September 2006.

Organic carbon content of detritus was estimated by loss

on ignition (details in Gardner-Costa 2010). Sediment

samples were air-dried for 48 hours, followed by oven

drying at 1058C for 24 hours. After measuring the dry

mass, samples were ground with a mortar and pestle,

incinerated at 5508C to constant mass, cooled in a

desiccation chamber, and reweighed. Water samples for

dissolved organic carbon analysis were collected in June,

July, and August 2006. Samples were filtered through a

0.45 lm 3 45 mm glass fiber filter and stored at 48C.

Analysis was conducted at the University of Ottawa

using high-temperature persulfate wet-oxidation (TIC-

TOC Analyzer Model 1010, OI Analytical, College

Station, Texas, USA; see Videla 2007 for further

details). Water chemistry data (routine parameters,

elemental chemistry, and naphthenic acid concentra-

tions) were provided by Syncrude Canada, Ltd. (Ed-

monton, Alberta, Canada; M. MacKinnon, personal

communication).

Data analyses

Normality and homoscedasticity of the data were

tested using Shapiro-Wilk and the F test for the equality

of variances, respectively. Emergent and wet-meadow

zone macrophyte biomass, CH4, and bacterial produc-

tion data satisfied these assumptions after log transfor-

mation, and were analyzed using two-way ANOVAs

based on age and organic matter amendment. Signifi-

cant departures from normality and homoscedasticity,

which could not be mitigated by data transformations,

were observed for naphthenic acid concentrations,

planktonic predator biomass, and emergent insect

biomass data. Therefore, these three data sets were

analyzed using nonparametric Mann-Whitney tests. The

distribution of remaining data sets (submerged plant

biomass, benthic invertebrate biomass, predator rich-

ness, bacterial biomass, OM in detritus, net primary

production [NPP], CO2, and dissolved organic carbon

[DOC]) did not depart from parametric assumptions;

these data sets were also analyzed using two-way

ANOVAs. Bonferroni corrections were used for within-

data-set P values (age and peat effect comparisons), but

not for P value adjustments across different data sets,

because they represented independent experiments. All

analyses were performed in PAST (Hammer et al. 2001)

and R (version 2.12.2; R Development Core Team

2011).

Schematic flow charts were constructed for comparing

OSPM and reference wetlands by expressing mean

values (biomass, production, or concentration means)

for each compartment and available flow in the OSPM

wetlands as a percentage of a corresponding compart-

ment of the reference wetlands of similar age and

nutrient (organic matter [OM]) status. The direction of

change across matched compartments between OSPM

and reference wetlands was compared using paired

sample t tests.

Stable isotopes

Additional measures of food web structure were

derived from stable isotope data (Elshayeb 2006).

Carbon isotope ratios stay relatively constant (experi-

ences minor fractionation within the food web) and can

be used to track basal resources, whereas the 15N/14N

ratios increase due to isotope fractionation and can thus

be used to deduce information about an organism’s

trophic level (Fry 1991). Since isotope samples were

collected as a part of a different study (Elshayeb 2006),

which did not include OSPM wetlands of varying age

and nutrient status, it was possible to compare OSPM

and reference wetlands, but not to consider the effects of

age class and peat amendment. Invertebrate samples

were collected in July and early September 2003 and

processed according to established protocols (see El-
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shayeb 2006 for details). Quantitative descriptions of

food web structure (e.g., the extent of trophic diversity)

can be derived by considering the total area occupied by

species in the d13C-d15N isotope niche space (Layman et

al. 2007a). Trophic diversity of invertebrate consumers

was estimated from the convex hull area in a d13C–d15N
biplot space using the PAST statistical package (Ham-

mer et al. 2001) and compared between the OSPM vs.

reference wetland classes using a t test. Due to

conspicuous differences in community structure between

July and September collections, isotopic niche width was

analyzed separately for summer (July) and fall (Septem-

ber). Stoichiometry (carbon-to-nitrogen ratio) of the

main basal sources and bacterial consumers was

analyzed to examine potential nutrient limitations (Elser

et al. 2000).

RESULTS

Most biotic compartments tended to be smaller in

OSPM wetlands when compared to reference wetlands,

in particular in young OSPM wetlands (Fig. 1a, one-

tailed paired comparison t test for direction of change

across compartments, P ¼ 0.035; Table 1); however,

only some of those differences were significant in

compartment-specific comparisons. Submerged and

emergent macrophyte biomass in young OSPM wet-

lands was only 4% and 39% of that in the reference

wetlands of equivalent age. OSPM had a significant

effect on submergent macrophytes (P , 0.001, see

Appendix: Table A2 for detailed ANOVA tables), but

not on the emergent macrophytes or wet-meadow zone

plants (P . 0.05). Planktonic microbial production was

similarly lower in OSPM wetlands than in reference

wetlands (P ¼ 0.046). Standing stocks of benthic

macroinvertebrates in younger OSPM wetlands were

only 13% of the biomass of those in similar-aged

wetlands constructed with uncontaminated water, and

overall OSPM wetland invertebrate biomass was only

one-third of that in the reference wetlands, although

this difference was not statistically significant due to

high variability (OSPM, P ¼ 0.104, OSPM 3 age

interaction, P ¼ 0.071; Fig. 2a).

Differences in compartment sizes between OSPM and

reference wetlands tended to decline with age; however,

this effect was not significant (OSPM 3 age interaction

and age effect, P . 0.05 for all compartments). Older

OSPM wetlands tended to be more similar to the

reference wetlands in biomass of benthic macroinverte-

brates, planktonic predators, wet-meadow zone and

emergent macrophytes, and microbial compartments,

although submerged macrophyte biomass and microbial

production values were still substantially lower than

their reference wetland counterpart. In particular,

submerged macrophytes in OSPM wetlands were only

22% of the biomass found in the reference wetlands. As

an overall trend, compartments in the older OSPM

wetlands were no longer consistently different from the

reference wetlands (Fig. 1b, one-tailed paired sample t

test, P . 0.05; Table 2).

Naphthenic acid concentrations in OSPM wetlands

were seven times greater than those in the reference

wetlands (Mann-Whitney test, P ¼ 0.014), and did not

significantly decline with age (P . 0.05). The water

concentration of dissolved organic carbon (DOC) was

consistently greater in OSPM wetlands (P¼ 0.0004, age

effect and age 3 OSPM interaction, P . 0.05). Organic

matter content in detritus and biofilm biomass were

similar between OSPM and reference wetlands regard-

less of age (P . 0.05). Methane fluxes were highly

variable and did not differ consistently with regard to

the presence of OSPM (Fig. 1, Table 1; P . 0.05 for

main effects and interactions: Appendix: Table A2).

Carbon dioxide release was affected by OSPM as a

function of age (OSPM 3 age interaction, P ¼ 0.039).

Net primary production measurements were unaffected

by any of the factors (P . 0.05), and may not have been

representative due to late-season decomposition and

chemical oxygen demand.

More detailed analysis of the invertebrate compart-

ment revealed that biomass of benthic invertebrate

predators was significantly lower in young OSPM

wetlands (only 2% of that of the reference wetlands;

OSPM 3 age, P ¼ 0.031, OSPM effect, P ¼ 0.042).

Furthermore, predator richness was also lower in young

wetlands constructed with OSPM (OSPM 3 age, P ¼
0.042, OSPM effect, P¼ 0.033, Fig. 2b). Mean biomass

of emerging Chironomidae was not significantly affected

by OSPM treatment (Fig. 2c; Mann-Whitney test, P .

0.05; Export in Fig. 1a, b), but tended to be greater and

more variable in OSPM wetlands.

Peat–mineral mix supplementation did not have

significant effects on any of the compartments (P .

0.05; Table 2; Appendix: Fig. A2, Table A2). In peat-

supplemented OSPM wetlands, microbial biomass was

three times greater than in high-OM reference wetlands,

but production was approximately four times lower.

Macroinvertebrate biomass in peat-supplemented

OSPM wetlands was 79% of that in high-OM reference

wetlands, whereas biomass in no-peat OSPM wetlands

was only 12% of that in low-OM reference wetlands.

Submerged macrophyte biomass was greatly reduced in

peat-supplemented OSPM wetlands (4% of submerged

plant biomass in high-OM reference wetlands), whereas

in no-peat OSPM wetlands submerged plant biomass

was 28% of that in its counterpart low-OM reference

wetlands; however, these effects were negligible in

comparison to the effect of OSPM per se (peat effect

and peat3OSPM interaction, P . 0.05, whereas OSPM

effect, P , 0.001).

Isotopic niche width of macroinvertebrate consumers

was 50% lower in OSPM wetlands than in reference

wetlands in the summer (one-tailed t test, P¼ 0.045; Fig.

2d), whereas differences were not significant in the fall (P

. 0.05). There were no OSPM-related differences in

trophic position of most common invertebrate groups (P
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. 0.05). Stoichiometric analysis indicated that epiphytic

bacteria in OSPM wetlands have ;30% greater C:N

ratios, i.e., N deficiency (P ¼ 0.004), whereas no

significant OSPM-related differences were observed in

C:N ratios of algae and seston (P . 0.05; Appendix: Fig.

A3). Peat–mineral supplementation significantly reduced

C:N ratios of algae and seston (P ¼ 0.04 and 0.03,

respectively), but had no effect on bacteria (P . 0.05).

FIG. 1. Major carbon compartments in (a) young, and (b) older age classes of oil sands process materials (OSPM) wetlands
expressed as a percentage of the corresponding compartments in reference wetlands of the similar age class. The size and shading of
each box corresponds to the relative difference in each OSPM compartment relative to its reference counterpart. Similar or larger is
represented by a white box of defined size; lower or smaller is represented by a gray-shaded box. For example, OSPM benthos
biomass compartment, which is 13% of the reference compartment, is represented by a gray-shaded box 13% of the size of a
reference box [100%, in the lower right corner of panel (a)]. Differences that were too large to display on the scale of the chart are
indicated by percentages in the corresponding boxes. Arrows represent hypothetical flows among compartments, based on
compartment size, with dashed arrows indicating decreased flows compared to reference. Key to abbreviations: B, biomass; DOC,
dissolved organic carbon; NPP, net primary production; P, production; OM, organic matter.

� OSPM-to-reference comparison only.
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DISCUSSION

OSPM wetlands have lower macrophyte biomass,

microbial biomass, trophic diversity, and invertebrate

richness, and higher concentrations of naphthenic acids

than wetlands constructed with uncontaminated water

and sediments from the local landscape. Older OSPM

wetlands tended to be more similar to the reference

wetlands of equivalent age in terms of biomass of major

biotic compartments (benthic and planktonic inverte-

brates, emergent macrophytes); however, the effect of

age was not statistically significant, and several impor-

tant differences remained. Initial discussion is directed at

the role of OSPM-specific stressors potentially respon-

sible for the observed differences in the biotic compart-

ments, followed by compartment-specific discussion.

Effects of oil sands stressors

Several chemical constituents could be responsible for

the observed toxicity of oil sands process water (OSPW),

including naphthenic acids, salts, PAHs, trace metals

and phenols (MacKinnon and Boerger 1986, Putta-

swamy et al. 2010). Concentrations of several inorganic

compounds, in particular, Al, As, Cd, Mo, and Se

exceed the Canadian Water Quality Guidelines8 for the

protection of aquatic life in freshwater and are of

concern in terms of future toxicity to wetlands flora and

fauna of the reclaimed sites (Whelly 1999). Initial

detoxification of OSPW in shallow aerated pits leads

to reduction in ammonia, oil, and cyanide (MacKinnon

and Boerger 1986). Survival of rainbow trout (Onco-

rhynchus mykiss) and Daphnia magna improved after

OSPW was stored in open pits for 12 months (96-hour

static bioassays [MacKinnon and Boerger 1986]),

although it took eight years to reduce subacute toxicity

to D. magna (Nix and Martin 1992). Similarly,

asymptotic levels of benthic invertebrate community

family richness in OSPM and reference were observed in

wetlands older than seven years (Leonhardt 2003).

Residual toxicity of OSPM is commonly attributed to

naphthenic acids (MacKinnon and Boerger 1991, Her-

FIG. 2. Comparison of wetlands constructed with oil sands process materials (OSPM) and wetlands constructed with
uncontaminated water and sediment (reference). (a) Total invertebrate biomass and benthic invertebrate predator biomass (n¼4–5,
P ¼ 0.105 for total invertebrate biomass and P ¼ 0.042 for predator biomass); (b) invertebrate predator richness (n ¼ 4–5, P ¼
0.033); (c) biomass of emergent insects in summer and fall (n¼4–5, P¼0.336); (d) trophic diversity in the summer and at the end of
the growing season in the fall (mean convex hull area of isotopic biplot space; n¼4, P¼0.045 for summer, P¼0.82 for fall). Values
are meansþ SE. Significant differences (P , 0.05) are indicated with an asterisk (*).

8 http://st-ts.ccme.ca/
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man et al. 1994, Lai et al. 1996, Toor et al. 2013).
However, despite common references to naphthenic acid

biodegradation, there was inconsistent evidence for

biodegradation in situ. In particular, naphthenic acid
profiles in older OSPM wetlands did not differ from

those in the active settling basins (Han et al. 2009

[characterized using FTIR and HPLC]), although some
dissipation has been noted in plant systems (Armstrong

et al. 2009) and microcosm experiments (Toor et al.

2013). Several studies have showed that some fractions
of oil sands-derived naphthenic acids are highly

recalcitrant in comparison to commercially available

naphthenic acids (Lai et al. 1996, Del Rio et al. 2006,

Videla et al. 2009, Toor et al. 2013). Indirect evidence
from isotope fractionation studies indicates that incor-

poration of OSPM-derived naphthenic acids is different

from uptake routes observed in the laboratory with
commercially available naphthenic acids, and only a

minor fraction of OSPM-derived naphthenic acids is

microbially metabolized (Videla et al. 2009). Further
indirect evidence of limited degradation comes from

observations of the persistence of naphthenic acids in

OSPM wetlands that received only a single input of fresh
tailings material at the time of their construction (Han et

al. 2009).

Another ubiquitous stressor in OSPM wetlands is

elevated salinity (reflected in conductivity of up to 3000
lS/cm), deriving from dissolution of ancient marine

shale deposits during mining and disturbance of parent

soils. Depending on the specifics of the extraction
process, conductivity may be further elevated by the

addition of sodium hydroxide, a caustic surfactant,

during oil sands extraction and the subsequent use of

coagulants (e.g., sulfuric acid, lime, gypsum, alum) to

speed up flocculation of tailings (MacKinnon et al. 2001,
Matthews et al. 2002). Biological effects ascribed to

salinity could be mediated through disrupted balance

among major ions (in particular mono- and divalent
cations) and the elevated concentration of specific ions,

rather than increased conductivity (total ionic content)

per se. Salinity has negative effects on macroinvertebrate
survival (e.g., Evans and Frick 2002, Hassell et al. 2006,

Silver et al. 2009), alters community composition

(Cuffney et al. 2010), and causes changes in food web
structure (Van Meter et al. 2011). Macrophyte biomass

can also be reduced by salinity (e.g., Twilley and Barko

1990, Merino et al. 2010), although levels at which these

effects were reported generally exceeded those reported
in the present study. Therefore, negative effects were

speculated to result from ionic imbalance rather than

merely from elevated salt concentrations (Rooney and
Bayley 2011). Effects of salts could be additive to those

of naphthenic acids (endpoint: phytoplankton commu-

nity structure [Hayes 2005]); the addition of salts (1 g/L)
slightly increased larval mortality of fathead minnows

exposed to naphthenic acids, but this effect depended on

water hardness (A. J. Farwell, V. Nero, M. Mackinnon,
and D. G. Dixon, unpublished manuscript). Furthermore,

salinity stress may be exacerbated by water evaporation

from wetlands during dry periods, which commonly

occur during the summer in this region.
Population-level effects of these stressors propagate

throughout the food web, leading to lower invertebrate

and macrophyte biomasses observed in the OSPM
wetlands. Furthermore, individual effects of toxicants

can be exacerbated by the presence of other stressors

(Lemly 1993, Gentes et al. 2006). The latter study, plus

that of Harms et al. (2010), demonstrated that during

TABLE 2. Size of major carbon compartments in OSPM and reference wetlands, with and without organic matter (‘‘peat’’)
supplementation (mean 6 SD).

Carbon compartment OSPM no peat Ref. no peat
OSPM/
Ref. (%) OSPM peat Ref. peat

OSPM/
Ref. (%)

Submerged plant biomass (g dry
mass /m2)

13.4 6 10.2 48.1 6 19.4 27.9 1.9 6 2.8 48.9 6 22.4 3.8

Emergent macrophytes (g dry
mass/m2)

183.8 6 98.8 230.8 6 152.2 79.6 167.3 303.0 6 233.2 55.2

WMZ/allochthonous biomass (g
dry mass/m2)

121.1 6 141.6 144.7 6 90.9 83.7 149.6 130.6 6 26.6 114.5

Benthos biomass (mg dry mass/
sweep)

36.0 6 52.4 299.3 6 247.1 12.0 223.8 6 158.0 282.3 79.3

Planktonic pred. biomass (mg dry
mass/sweep)

1.0 6 1.5 15.2 6 19.2 6.3 0.6 6 0.1 0.0 na

Emergence of Chironomidae (lg
dry mass/trap)

4.7 6 6.4 1.5 6 0.3 315.0 6.4 6 3.7 1.5 6 0.5 432.7

Bacterial biomass (lg C/L) 3.9 6 1.6 4.2 6 2.6 92.6 3.9 6 2.5 1.3 6 0.2 293.5
Bacterial production
(lg C�L�1�h�1)

0.1 6 0.1 0.6 6 0.3 11.6 0.3 6 0.2 1.2 6 1.1 26.1

Organic matter in detritus (%) 12.1 6 6.4 6.5 6 2.2 187.9 13.6 15.0 6 0.3 90.7
NPP (g�m�3�d�1) 8.0 6 3.7 �0.1 6 5.3 na 7.7 6 5.6 10.6 6 2.0 72.8
CH4 (lg�m�2�d�1) 35.2 6 46 42.4 6 35.9 82.9 2.7 6 2.1 67.6 6 58.3 3.9
CO2 (lg�m�2�d�1) 25.1 6 20.1 15.3 6 9.6 164.2 17.1 6 7.8 24.7 6 13.9 69.4
Naphthenic acids (mg/L) 25.8 6 0.4 2.0 1287.5 28.5 6 3.5 4.1 6 5.8 693.9
DOC (mg/L) 61.6 6 10.8 23.4 6 4.5 263.1 66.5 6 11.0 35.7 6 11.5 186.5

Notes: Key to abbreviations: WMZ, wet-meadow zone; NPP, net primary production; DOC, dissolved organic carbon; na, no
comparison was possible.
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ideal weather conditions, reclaimed wetlands can sup-

port healthy populations of aerially insectivorous birds,

and survival of OSPM-exposed Tree Swallows (Tachy-

cineta bicolor) is similar to that in reference wetlands,

although growth may be affected. However, during a

nesting season subject to harsher weather (cold with

greater spring precipitation, limiting aerial insect activity

and hence adult foraging success), Tree Swallow nestling

survival in OSPM wetlands was markedly lower than in

their reference counterparts (Gentes et al. 2006). Such

nonlinearity is also possible at the ecosystem level, and

could be partially responsible for the high variability

observed in the present study.

Macrophytes

Submerged macrophyte biomass was consistently

lower in OSPM wetlands than in their counterpart

reference wetlands. Biomass of emergent and wet-

meadow zone plants in older OSPM wetlands ap-

proached more closely (although nonsignificantly) that

in the reference wetlands; however, many of the plants in

OSPM wetlands were nonnative and, for the wet-

meadow zone, primarily nonobligate wetland plants,

e.g., Sonchus spp., Melilotus spp., Lotus corniculatus L.

(M. C. Roy, personal communication). Another study

demonstrated that submerged macrophyte assemblages

in OSPM wetlands were different from those observed in

natural oligosaline reference wetlands, possibly due to

ionic imbalance in the former (Rooney and Bayley

2011), such as a prevalence of sulfate and sodium ions as

opposed to divalent cations. This indicates that OSPM

wetlands seem to be functionally different in this respect

from both freshwater and oligosaline natural wetlands.

Also, recent work has shown that emergent plants

(Typha sp.) in OSPM wetlands had lower growth rates

compared to those in wetlands constructed with non-

OSPM water and sediments, leading to lower stand-level

carbon assimilation (Mollard et al. 2012), which, in

combination with lower macrophyte standing stocks,

supports the present findings that use of OSPM in

reclamation may be suboptimal. Aquatic plants are an

essential component of aquatic ecosystems because they

increase structural complexity of the underwater envi-

ronment and support high diversity and biomass of

periphyton and phytophilous invertebrates (e.g., Diehl

and Kornijów 1997, Wetzel 2001). Submerged aquatic

plants also play a critical role in terms of major wetland

processes such as primary production, wave attenuation,

sediment stabilization and oxygenation, and carbon

sequestration (e.g., Carpenter and Lodge 1986, Barko

and James 1997). Therefore, significant effects of OSPM

on this compartment are likely to have cascading effects

on the entire wetland ecosystem.

Macroconsumers

Although it was not possible to fully describe

ecosystem topology and derive second-order measures

of carbon flow (e.g., Baird et al. 1991), due to incomplete

and temporally heterogeneous flow data (different

compartments not sampled simultaneously), several

significant trends could be observed from the available

information. As the highest trophic level in these fishless

wetlands, macroinvertebrates deserve special attention

as integrators of energy flows from the preceding trophic

levels. Wetlands with OSPM tended to have lower mean

invertebrate biomass than reference wetlands. The range

of variability in invertebrate abundance of OSPM

wetlands overlapped with the lower range of the

reference wetlands, indicating that the potential for

development of invertebrate biomass comparable to

reference sites exists, but it is not realized in most OSPM

wetlands. Young OSPM wetlands were not capable of

supporting benthic predator biomass to the same extent

as reference wetlands. Furthermore, the lower richness

of macroinvertebrate predators in OSPM wetlands is

likely to result in reduced diversity of energy flows and

an overall topological structure that could be less

resilient to perturbations (Vinebrooke et al. 2003,

Dunne et al. 2005). In addition to direct effects of

OSPM, macroinvertebrates could be further limited by

low macrophyte cover and biomass, because aquatic

plants have positive effects on the abundance of most

invertebrate taxa (e.g., Cyr and Downing 1988, Barr

2009). In contrast, emerging insect biomass was not

significantly different between reference and oil-sands-

affected wetlands, due to a predominance of emerging

chironomids, which are abundant in OSPM wetlands

(Bendell-Young 2000, Leonhardt 2003, Kennedy 2012).

Microbial biomass and production

Microbial production was lower in OSPM wetlands

than in reference wetlands, which was previously shown

to correlate with increased salinity (Daly 2007). Young

OSPM wetlands tended to have lower planktonic

microbial biomass than reference wetlands, but this

relationship was reversed in the older oil sands wetlands

although microbial production remained low. Microbial

production : biomass ratios were consistently higher in

the reference wetlands, primarily due to greater produc-

tion. Although higher P:B ratios are expected in young

wetlands and are a possible indication of ecosystem

immaturity (Odum 1969), in our study this trend may be

indicative of different types of bacterial communities in

OSPM wetlands (e.g., Hadwin et al. 2006) and the

overall stress to the system. Similarly, in some marine

upwelling systems, high P:B ratios were linked to high

temporal heterogeneity of nutrient inputs (Baird et al.

1991).

Insights from stable isotope ratios and stoichiometry

Lower isotopic niche width was observed in OSPM

wetlands in the summer. This could be caused by a low

diversity of basal resources, as was previously shown for

fragmented ecosystems (Layman et al. 2007b). However,

in the autumn, the difference between OSPM and

reference wetlands observed in the summer was no
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longer significant, likely reflecting community homoge-

nization and a decrease in diversity with decreasing

temperature. This observation differs from previously

reported food web area analyses (Elshayeb 2006,

Elshayeb et al. 2009), possibly because the latter

compared three groups of sites with low, medium, and

high naphthenic acid concentrations, and used a

different method to quantify food web area. The greater

C:N ratios observed in OSPM wetlands relative to

reference wetlands may be indicative of nitrogen

limitation, possibly due to the presence of greater

concentrations of recalcitrant organic carbon resulting

from higher concentrations of hydrocarbons and lower

macrophyte primary production.

It was impossible to determine whether OSPM-

derived carbon contributed to aquatic food webs,

because d13C values of emergent macrophytes and

bitumen overlapped (based on data in Daly [2007])

and d15N values were very variable, likely a result of

NH4
þ enrichment (Farwell et al. 2009), and could not be

used to narrow down the sources. However, we

speculate that a significant contribution of OSPM

carbon is unlikely due to the highly refractory nature

of OSPM-derived organic compounds (C:N ratios of

;110:1).

Effects of peat–mineral mix supplementation

Peat amendment did not have a significant effect on

the performance of reclaimed OSPM wetlands, although

previous studies demonstrated that it can have positive

effects on emergent plant diversity and abundance

(Cooper 2004). Effects of peat addition can be

multidirectional, reflecting complex interaction of water

quality changes, alteration of substrate structural

complexity, and addition of a potential nutrient subsidy

for heterotrophic metabolism. Direct effects on water

quality are manifested by lower dissolved oxygen levels

due to organic matter oxidation and lower pH resulting

from leaching of humic substances. Peat provides a

resource base for heterotrophic production in systems

where phytoplankton production is insufficient to

sustain autotrophic food webs (Steinberg 2003). How-

ever, after initial consumption of easily metabolizable

compounds, the remaining organic matter consists of a

higher proportion of material recalcitrant to microbial

degradation (Wetzel 2001). Humic substances in high

concentrations can inhibit phytoplankton production

and aquatic plant colonization and growth (Steinberg

2003). Macroinvertebrates are usually negatively affect-

ed by humic acids (cf. Steinberg 2003), through direct

toxicity as well as by reducing the abundance of

macrophytes. However, in many systems, a significant

proportion of benthic production is supported by

allochthonous organic matter (e.g., Smock and Roeding

1986) containing lower concentrations of humic acids.

Indirect effects of peat amendment may be more

complex. For example, metal and organic contaminant

bioavailability and toxicity are reduced in the presence

of humic compounds and with greater DOC concentra-

tions in general (Welsh et al. 1996, Doig and Liber

2006), although bioavailability of other contaminants,

including naphtha compounds, may increase (reviewed

in Haitzer et al. 1998).

Based on the available data, it was not clear whether

peat–mineral mix supplementation could expedite colo-

nization and autotrophic production of OSPM wet-

lands. It is necessary to directly compare the role of in

situ primary production and organic matter derived

from peat–mineral amendments in the metabolism of

constructed wetlands. One possible approach is to study
14C concentrations, which will be lower in peat deposits

before the atomic bomb than in more recently formed

deposits (Hedges et al. 1986, Stern et al. 2007), and

could therefore discriminate peat-derived carbon, be-

cause wetlands in this area were estimated to be at least

1890 years old (Trites and Bayley 2009). Alternatively,

in situ labeling and compartment modeling could be

used to resolve the relative importance of the various

carbon sources (Oakes et al. 2010).

Conclusions

We conclude that OSPM wetlands are not function-

ally similar to the reference wetlands constructed

without the use of OSPM over the time span considered.

There is insufficient evidence to judge whether peat–

mineral amendments can mitigate the effects of OSPM.

Organic matter accumulation remains an important

unknown in assessment of the reclamation potential of

oil sands wetlands, with implications for landscape-scale

carbon storage and sequestration potential and for

ensuring appropriate proportional representation of

wetlands in the reclaimed landscape. Until functional

similarity of OSPM wetlands can be demonstrated,

prognosis of wetland reclamation will have a high degree

of uncertainty in terms of ensuring long-term viability of

reclaimed wetlands and maintenance of carbon balance

and biodiversity.
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SUPPLEMENTAL MATERIAL

Appendix

Tables presenting information about study wetlands and ANOVA results for the effects of OSPM and age/peat, and figures
demonstrating separation of wetlands based on family richness of benthic invertebrates, effects of peat on major carbon
compartments, and effects of OSPM on stoichiometric ratios of algae, bacteria, and seston (Ecological Archives A023-054-A1).
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APPENDIX A. Tables presenting information about (Table A1) study wetlands and (Table A2) ANOVA results for the
effects of OSPM and age/peat, and figures demonstrating (Fig. A1) separation of wetlands based on family richness of
benthic invertebrates, (Fig. A2) effects of peat on major carbon compartments, and (Fig. A3) effects of OSPM on
stoichiometric ratios of algae, bacteria, and seston.

TABLE A1. Information about study wetlands and sampling information (sampled for (1) submerged macrophytes; (2)
DOC; (3) biofilm; (4) Naphthenic acids; (5) Bacterial biomass and production; (6) invertebrates; (7) aquatic-terrestiral
flux/ invertebrate emergence; (8) detritus; (9) gas fluxes; (10) stable isotopes). MFT - mature fine tailings.

Wetland class Wetland name Year created Organic
matter

OSPM Test Pond 9 1992 Low OM Proces

OSPM Mike’s Pond 1997 Low OM

OSPM SWSS Berm 1979 Peat-mineral amended

OSPM Seepage Control Pond 1978 Low OM

OSPM Natural Wetland 1987 Peat-mineral amended Pro

OSPM 4 m CT 1999 Peat-mineral amended and non-amended

OSPM Jan’s Pond 1999 Low OM

OSPM Demo Pond 1993 Low OM

OSPM Test Pond 5 1989 Low OM

OSPM Test Pond 3 1989 Low OM
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OSPM Test Pond 7 1989 Low OM

Table A1 (cont-d)

 Wetland class

Wetland name Year created Organic
matter

Reference South Beaver natural, unknown Low OM

Reference South West Sands natural, unknown High OM

Reference Muskeg natural, unknown High OM

Reference High Sulphate 1985 High OM

Reference Golden Pond 2001 High OM

Reference Shallow Wetland 1992 Low OM

Reference Pond 5 2002 Low OM

Reference Waste Area 11 1993 Low OM

Reference Peat Pond 2000 High OM

Reference Bill's Lake 1997 Low OM

Reference CNRL 2004 Low OM

Reference North West Interception Ditch 1970 Low OM

Reference South Bison natural, unknown High OM

Reference Test Pond 1 1989 Low OM
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Reference Barge Marsh 1978 Low OM

Reference Beaver Creek Reservoir 1975 High OM

 

TABLE A2. Two-way ANOVA tables for the effects of OSPM and age and OSPM and peat on major wetland
compartments. Non-parametric equivalents (Mann-Whitney test) are presented for several compartments, which had
unsatisfactory fit to ANOVA assumptions even after data transformation. Significant effects are highlighted in green.
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FIG. A1. Family richness of benthic invertebrates as a function of wetland age (sweep samples). OSPM-affected
wetlands initially had significantly fewer taxa than reference wetlands (p < 0.05). Asterisks represent wetlands that
continue to receive OSPM. The arrow represents the approximate age where richness of OSPM-affected wetlands
reaches an asymptote (reproduced with permission after Leonhardt, 2003).

a)
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FIG. A2. Major carbon compartments in peat-unamended (a) and peat-amended (b) OSPM wetlands expressed as a
percentage of the corresponding compartments in reference wetlands of comparable organic matter content. The size
and color of each box corresponds to the relative difference in each compartment (same as Fig. 1). 1 OSPM-to-
reference comparison only; 2 negative NPP in reference possibly due to macrophyte decomposition; 3 no planktonic
predators in OM-supplemented reference wetlands; B - biomass, DOC - dissolved organic carbon, NPP -Net Primary
Production, P - production.
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FIG. A3. Stoichiometric ratios of algae, bacteria, and seston from OSPM and reference wetlands (mean ± SE).
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