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Abstract 

Wastewater treatment plants (WWTPs) serve as point-source inputs for a variety of nutrients 

often dominated by nitrogenous compounds as a result of anthropogenic influence. These 

effluents can 

impact biogeochemical cycles in freshwater estuaries, influencing microbial communities in both 

the water and sediment compartments. To assess the impact of point source nutrients, a transect 

of sediment and pore water samples were collected from 4 locations in the Little River Sub-

watershed including locations above and below the Little River Pollution Control Plant 

(LRPCP). Variation in chemistry and microbial community/gene expression revealed significant 

influences of the effluent discharge on the adjacent sediments. Phosphorus and sulfur showed 

high concentrations within plume sediments compared to the reference sediments while nitrate 

concentrations were low. Increased abundance of denitrifiers Dechloromonas, Dok59 and 

Thermomonas correlating with increased expression of nitrous-oxide reductase suggests a 

conversion of N2O to N2 within the LRPCP effluent sediments. This study provides valuable 

insight into the gene regulation of microbes involved in N metabolism (denitrification, 

nitrification, and nitrite reduction to ammonia) within the sediment compartment influenced by 

wastewater effluent. 

 

1.0 Introduction 

Anthropogenic influences on the global nitrogen cycle have created an imbalance to the natural 

processes by which nitrogen is cycled through the atmosphere, hydrosphere, lithosphere and 

even biosphere.  The extensive use of fertilizers in agricultural practises and human waste 

disposal has loaded our waterways with nitrogenous compounds affecting the overall ecosystem 

health and productivity. The microbial consortium within aquatic environments are left to deal 

with the stresses of enhanced nutrient loads, and largely govern the fate of nitrogen in the 

subsurface. Rivers and streams serve an important function in both lotic and lentic nitrogen 

cycling, by acting as conduits for the turnover of the various nitrogenous compounds. The 

bacteria in these environments provide substantial contributions to both energy flow and the 
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transformation of elemental nutrients such as nitrogen and phosphorous (Loick and Weisener, 

2014).  Their ability to adapt rapidly to changing environments through recombination events 

and induced mutations, alongside their ability to acquire or exchange genes via horizontal gene 

transfer (HGT) enables them to adapt readily in any environment (Pontes et al., 2007; Zeigler 

2003; Cohan 2001).  Within this context nutrient suspension in aquatic systems can have 

profound impacts on their general productivity. A broad range of microorganisms contribute to 

nitrogen cycling through a series of metabolic pathways. From a sediment compartment 

perspective, the denitrification pathway would involve a complete enzymatic reduction to N2, 

involving the genes nar/nap (NO3
- to NO2

-), nir (NO2
-  to NO), nor (NO to N2O) and nos (N2O to 

N2). Whereas complete denitrification results in the production of N2, incomplete reactions can 

result in the (unwanted) production of N2O (Sanford et al. 2012).  Other reactions control the 

degree of mineralized ammonification which can serve as a potential sediment sink for these 

nutrients. Indirect abiotic factors also include iron cycling bacteria which have been linked to the 

production of Fe(II)/Fe(III), which in turn reacts strongly with nitrite contributing to the 

production of N2O (Coby and Picardal, 2005; Cooper et al., 2003; Rakshit et al., 2008).  The 

overall regulation of the nosZ gene specifically, is perhaps most influential in controlling 

nitrogen emissions from the sediment compartment and its potential impact on atmospheric flux 

for nitrogen (Sanford et al. 2012).   

 

These mechanisms of nitrogen turnover are particularly important in areas that receive potential 

point-source impacts from legacy contamination and pollution control facilities (Devarajan et al., 

2015). Wastewater treatment plants (WWTP) for example can serve as potential point sources 

for the release of N and P and other emerging contaminants. Most WWTPs include primary 

(mechanical), secondary (biological), and tertiary (enhanced chemical and/or biological) 

treatment options that are intended to remove excess organic carbon (C), nitrogen (N) and 

phosphorus (P) loads prior to release to freshwater tributaries. The utilization of these measures 

restricts the release of excessive nutrients, which can negatively impact ecosystem water quality.  

In most cases WWTPs effluents try to meet the regulatory guidelines based off jurisdiction. 
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However, increased rainfall events often lead to controlled discharges of inadequately treated 

wastewater effluents which can impact both the sediment chemistry and microbial deportment 

(Fauvel et al., 2016).  Reduced forms of nitrogen (e.g. ammonia) and total phosphorus loads, 

along with other chemical compounds may continue to undergo bacterial cycling once released 

and incorporated into the sediment profile. This has the potential to form geochemical “hotspots” 

at the sediment-water interface which can influence the microbial community structure along 

downstream WWTP discharge routes (Palmer-Felgate et al. 2010; Drury et al. 2013). In many 

cases the sediment compartment remains a “black box” with respect to true microbial 

functionality within the context of emerging contaminants and controls of nitrogen and 

phosphorous. Gaining a complete functional understanding of the microbial metabolic activity in 

both pristine and contaminated watersheds is a necessary venture in monitoring current and 

future contaminants with respect to public health.  

 

The Detroit River is a fast flow corridor connecting Lake St. Clair and Lake Erie, flowing 

through both agricultural and densely urbanized regions. The Little River Pollution Control Plant 

(LRPCP), servicing the municipalities of both Windsor and Tecumseh, Ontario, is in the Little 

River (LR) sub-watershed and is impacted by both urban and recreational development (e.g., a 

golf course and marinas). Once dominated by agricultural land-use, the LR sub-watershed is now 

46.6% urban land cover (Bejankiwar, 2009). Opposite to the LR sub-watershed is Peche Island, 

situated centrally in the Detroit River.  The island is isolated from direct urban impact and 

represents a natural system, isolated from Little River by strong currents and is distal to the 

pollution control plant. Alternatively, the low flow conditions associated with Little River may 

be an important hydrological factor contributing to nutrient and contaminant gradients, as well as 

physical and chemical attributes related to WWTP discharge, thus impacting the microbial 

consortia (Fono et al., 2006; Drury et al., 2013). 

 

This location provides a unique opportunity to investigate the microbial cycling of nitrogen 

within the sediment compartment and microbial dynamics associated with a potential nutrient 
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point-source and a natural reference site within the same watershed. In this study, we investigate 

the influence of the LRPCP on microbial diversity and function in sediments along the LR 

corridor and Peche Island sediments.  The up- or downregulation of denitrifying genes within the 

LRPCP sediment compartment are investigated in addition to other genes involved in nitrogen 

metabolism. Further the study investigates whether the LRPCP adjacent sediments are behaving 

as a conservative sink for N mineralization (i.e. NH4) or a potential source for N2O or N2 

emissions. 

 

2.0 METHODS 

2.1 LR Sub-Watershed and LRPCP Geography 

The Little River Sub-Watershed - LRSW (64.9 km2) within the larger Essex Region Watershed - 

ERW (1681 km2) drains via Little River into the Detroit River in Windsor, Ontario, Canada. The 

LRSW is dominated by a primarily urbanized land use regime (46% as of 2011), a contrast to the 

approximately 75% agricultural use of the rest of the Essex Region Watershed (Essex Region 

Source Protection Area Annual Assessment, 2015). Flowing north through Windsor, the Little 

River Pollution Control Plant (LRPCP) was commissioned in 1966, and is situated on the eastern 

bank of Little River.  The LRPCP serves the eastern end of the City of Windsor (Pop. 210,000), 

as well as the neighboring Town of Tecumseh (Pop. 23 000).  With a capacity of 73 000 m3/day, 

the LRPCP produces some of the highest quality effluent in the province of Ontario (City of 

Windsor, 2017).  The LRPCP is located approximately 1 km upstream of the confluence of Little 

River and the Detroit River, where it empties into a marina and then the larger river system.  The 

LR canal is largely surrounded by residential housing lots, with agricultural lands located further 

upstream. 

 

2.2 In Situ Water and Sediment Sampling  

Sediment core samples were collected from the Little River Canal (LRC), through to the 

confluence with Detroit River and the designated reference site Peche Island. In total four 

locations were selected proximal and distal to the LRPCP (Fig. 1).  Two sampling sites near the 
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LRPCP were chosen, one at the effluent discharge point (EDP) and one approximately 600 m 

upstream (UDP) from the discharge point. A downstream discharge point (DDP) was selected 

approximately 600 m from the LRPCP where the LRC empties into the Detroit river. The fourth 

sample was collected at the reference site, from the Peche Island sediments (RPS), isolated from 

any direct WWTP influence. 

 

Sediment was collected using a gravity-assisted coring device, using 67 mm diameter core tubes.  

For both DNA and RNA sequencing, sediment was collected from the top 2 cm using sterilized 

scoopulas, placed into 5 mL cryotubes, and flash frozen in a liquid nitrogen filled vessel at -80°C 

(Molecular Dimensions CX-100 Dry Shipper). Once transported to the lab, samples were again 

stored at -80°C until nucleic acid extractions commenced. The remaining bulk sediment samples 

were collected in ziplock bags, transported back to the lab and stored in a 4°C fridge where 

porewater chemistry was analyzed within 24 hrs. Additionally, a multi-parameter probe was 

deployed at each sampling location to record water column chemical parameters (sulfur, pH, 

specific conductivity, magnesium, silicon, dissolved oxygen, salinity, temperature, strontium, 

phosphorus and nitrate). 

 

2.3 Pore water Chemistry  

Water chemistry analyses were performed at the Geochemistry-Metals Analysis Lab at the Great 

Lakes Institute for Environmental Research (GLIER) at the University of Windsor. 

Representative pore water samples were collected in triplicate from each core interface (e.g. 0 - 4 

cm range per core) using 0.2 µm sterile nylon syringe filters (ThermoScientific) to extract the 

pore water from the bulk sediment. Pore waters were extracted under N2 atmosphere in a 

confined glove box. Filtered water samples were diluted to a 1:5 ratio in ACS reagent grade 

nitric acid to a total volume of 10 mL and stored at 4 °C until analyzed for trace metals using 

inductively coupled plasma optical emission spectrometry (Perkin Elmer ICP-OES, and a 700 

series Agilent 720-ES ICP-OES system).  The ThermoScientific Orion AQ4000 Handheld 

spectrophotometer was used to measure total nitrate (AC2007), nitrite (AC2046) and 
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orthophosphate (AC2095) concentrations.  

 

2.4 DNA/RNA Extractions and 16s rRNA gene amplicon library construction 

DNA extractions were performed per the manufacturer's instructions of the MoBio PowerSoil 

DNA isolation kits, except for extracting 5 g of sediment, opposed to the 2 g specified in the 

manual. Four samples were extracted from UDP, EDP, and DDP cores, and three from RPS. 

Two stages of the PCR reactions (PCR1 and PCR2) were conducted prior to pooling samples for 

sequencing. PCR1 amplified the V5-V6 region of the 16S rRNA gene using an established 

primer pair (Table 1), followed by purification, barcoding via PCR2, gel extraction, and quality 

control measurements following previous protocols (DiLoreto et al., 2016). Pooled samples were 

diluted to 50-60 ng/µL and sequenced using the Ion Torrent Personal Genome Machine (Life 

Technologies) at the GLIER Environmental Genomics Facility. 

 

Total RNA extractions were performed using the MoBio Powersoil Total RNA Isolation Kits per 

slightly modified protocols.  Initial sediment quantity for extraction was increased to 5 g for 

improved RNA yield.  All reagents and samples were kept on ice throughout extraction to 

maintain RNA integrity and minimize degradation throughout the extraction.  Quality and 

concentrations were analyzed on an Agilent 2100 Bioanalyzer, with screening for samples with a 

minimum concentration of 100 ng/µL, and quality score of RIN (RNA integrity) # of 7.5.  

Samples of sufficient quality and concentration were sent in duplicate to Genome Quebec 

Innovation Center at McGill University in Montreal, Quebec, Canada.  There, samples were 

sequenced on the Illumina HiSeq 2000 Nextgen sequencer following rRNA-depletion by a Ribo-

Zero rRNA removal kit.   

 

2.5 Bioinformatics for 16S Amplicon Sequencing 

Bioinformatics for amplicon sequencing datasets for quality filtering, OTU picking, and 

taxonomy assignment were performed using the Quantitative Insights into Microbial Ecology 

(MacQIIME V. 1.9.1) bioinformatics pipeline (Caporaso et al., 2010). A minimum quality score 
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of Q=20 and basepair cutoff of 100 bp was selected for quality assurance. De novo OTU picking 

was performed to cluster sequences at a 97% similarity threshold into their representative OTUs 

using the UCLUST algorithm (Edgar 2010). Chimera check was performed using the Chimera 

Slayer tool (Haas et al., 2011). Taxonomy was assigned to the clustered OTUs using the RDP 

classifier at 90% similarity against the default GreenGenes database. OTUs were averaged 

within sampling site replicates and expressed as a percent (%) relative abundance. Within the 

PAST (PAleontological STatistics; V2.17) program, the Diversity Indices (α) Test was 

conducted using OTU numbers for all sample sites with Bootstrap N of 9999 (Hammer et al., 

2001). Then, Shannon H and Chao 1 Diversity Indices, which characterize species diversity, 

evenness and richness, were selected to conduct Univariate One-way ANOVA and Tukey's post-

hoc tests to determine any significant differences (p < 0.05) across the sampled sites. Bray-Curtis 

dissimilarity was used for the principal coordinate analysis (PCoA) of the top 100 taxa, and the 

canonical correspondence analysis (CCA) incorporating the measured environmental parameters 

with these top 100 taxa.  Similarity Percentages (SIMPER) assessed dissimilarity between taxa 

observed at each sample site, and one-way PERMANOVA analyses to determine if the bacterial 

community composition was significantly different between all sites.  

 

2.6 Bioinformatics for RNAseq (Metatranscriptomics) 

Raw paired-end RNAseq files were uploaded to the MG-RAST (MetaGenome Rapid Annotation 

Substem Technology, v3.1) server at the Argonne National Library 

(http://metagenomics.anl.gov/) (Meyer et al., 2008).  Quality control, alignment and annotations 

are performed in this automated pipeline, for not only RNAseq datasets, but also metagenomic 

and targeted amplicon studies.  The Phred score was set to Q=30 to remove any low-quality 

reads, and sequence similarity thresholds set to 60% for functional assignments within MG-

RAST.  Annotation assignments for metabolic functions was performed using the KO (KEGG 

Orthology) database, and visualizations performed using the KEGG mapper.  Exported 

functional annotations were averaged between replicate samples (n=2) and normalized to the 

rpoB (DNA-directed RNA Polymerase) gene to allow comparisons between both sample sites. 
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3.0 RESULTS & DISCUSSION 

3.1 Pore water Chemistry 

Pore water chemistry was collected from the sediment water interface (0-4 cm) from each 

respective core. In each case, significant variation both within the plume and reference 

environments was observed for the nutrients measured. Samples were analyzed for sulfur (SO4
-2) 

and dissolved nutrients (∑NO3
- and ∑PO4

-3), which served as biochemical markers for the two 

sediment extremes (plume vs. reference sediments). Sulfur concentrations measured from the 

sediment water interface varied along the Little River transect.  Sulfate concentration in pore 

water collected from (UDP) location were 12 µg/L compared to 14 .7 µg/L and 17.3 µg/L at the 

effluent discharge (EDP) and the downstream discharge points (DDP) respectively. In this case 

sulfur concentrations increased in the sediments downstream away from the plume. The Peche 

Island (RPS) site had the lowest S concentration at only 5.8 µg/L.  In contrast, PO4
-3 

concentrations shown were significantly higher (Tukey’s post-hoc test, p < 0.005) at EDP 

measuring 553 µg/L compared to UDP, DDP and RPS measurements from 241 µg/L, 253 µg/L 

and 274 µg/L, respectively. This observation is perhaps not surprising since historically the 

LRPCP has experienced fluctuating P loads within its wastewater effluent (92-95% removal 

efficiency from 2010 to 2015) (City of Windsor, 2015).  The oscillating P load in the effluent 

would likely result in elevated backgrounds of P in the adjacent sediments compared to distal 

upstream and downstream locations. Interestingly, average NO3
- concentrations were 

significantly lower (Tukey’s post-hoc test, p < 0.05) in the EDP sediments at 12.5 µg/L 

compared to UDP, DDP and RPS concentrations of 18 µg/L, 22 µg/L and 22.5 µg/L, 

respectively. The depression of nitrate in the sampled sediment pore water within the effluent 

discharge zone may possibly suggest a high nitrate turnover as opposed to low background 

concentrations. The difference in available nitrate within the different sediment compartments 

may reflect significant community shifts between microbial nutrient cyclers and the sediments’ 

capacity to act as either a conservable sink or source. This will be further discussed in the 

following sections relating observed taxa with functional gene expression. 
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3.2 Watershed Microbial Taxonomy & Diversity 

3.2.1 16S rRNA gene Amplicon Sequencing Statistics 

The amplified V5-V6 region of the bacterial 16S rRNA gene was targeted and processed on 

samples collected from the 4 sites (UDP, EDP, DDP and RPS).  After post-processing (filtering, 

demultiplexing and trimming) the data averaged 67 418 reads per sample.  Approximately 8400 

OTUs were generated with 97% cut-off using QIIME. To understand the impact of LRPCP 

effluent on microbial diversity a Tukey’s pairwise test was conducted using Shannon H and 

Chao 1 diversity indices as inputs. Shannon index results showed significant difference between 

UDP and RPS samples (p < 0.05). However, Chao 1 showed that the RPS samples were 

significantly different from DDP, EDP and UDP (p < 0.05, p < 0.01, and p < 0.01, respectively).  

In this study, species diversity (evenness and abundance) in the EDP sediments was higher 

compared to the RPS sediments. Alternatively, other studies have shown that wastewater effluent 

or acute contaminant pressures can lower both abundance and diversity of benthic bacterial 

communities in urban rivers (Ager et al., 2010; Drury, et al. 2013). Some have suggested that 

rivers chronically exposed to contaminants recover, often to a high species level diversity 

through the proliferation of more tolerant species (Sun et al., 2013). In some cases, positive 

correlations have been identified between the nutrient concentrations and increased bacterial 

numbers within wastewater effluent and benthic sediments (Garnier, 1991; Gucker, et al., 2006). 

Perhaps, it was not surprising, that in this study the microbial composition within EDP showed a 

highly diverse community compared to the RPS location, since it is receiving potentially higher 

loads of nutrients and perhaps other contaminants encouraging diversity of specialists.  To 

further understand the variation among and between sites, a Principal Coordinates Analysis 

(PCoA) was performed using the 100 abundant OTUs among all sites. PCoA 1 and 2 explained 

68% of the variation (Fig. 2). PCoA plots revealed that the variation among sites was minimal, 

while there was evident variation between sites (Fig. 2).  

 

3.2.2 Environmental parameters and Microbial Community Composition Relationships 
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The sediment microbiome was then analyzed to begin to interpret the effect of the wastewater 

effluent on its structure and function.  The resulting taxonomy showed that the top ten phyla 

were dominated by Proteobacteria, Bacteroidetes, Verrucomicrobia, Acidobacteria, Chlorobi, 

Actinobacteria, Planctomycetes, Spirochaetes, Firmicutes and Chloroflexi (Fig. 3).  There was no 

significant difference in the abundance of Proteobacteria across sites, which was the most 

dominant ubiquitous bacterial group, detected in all samples. However, at the genus level, the 

denitrifying bacteria, Dechloromonas (β-Proteobacteria), showed 10-fold higher abundance at 

EDP compared to RPS (Fig. 4). This was an interesting observation since Dechloromonas is 

known to oxidize organohalides in the presence of nitrate as well as degrade benzene and other 

polycyclic aromatic hydrocarbons (Meckenstock & Muttaki, 2011; Chakraborty & Picardal, 

2013). Given the historically high hydrocarbon and organics input into Little River, this could 

potentially explain the low concentrations of nitrate measured in the pore water of EDP. Other 

genera identified in EDP include Thermomonas species (γ-Proteobacteria) and Dok59 species 

(β-Proteobacteria). The relative abundances of these organisms were significantly higher 

compared to the RPS location. These heterotrophs are also responsible for denitrification process 

in sediments and play an important role in removing soluble nitrate and nitrite from the 

wastewater environments (Ginige, et al., 2005). Leptothrix (β-Proteobacteria) was also detected 

at EDP, a genus capable of oxidizing both iron and manganese in aquatic environments 

(Emerson & Weiss, 2004), and are often associated with WWTP environments.  

 

The phylum Verrucomicrobia is a freshwater bacterium (Lemke, et al., 2009), responsible for 

fixing nitrogen (Khadem, et al., 2010), oxidizing methane (Dunfield, et al., 2007), and is linked 

to the degradation of a range of polysaccharides (Janssen et al., 1997; Sangwan et al., 2004; 

Wertz et al., 2011). EDP showed decreased abundance of Verrucomicrobia compared to RPS. 

Specifically, Chthoniobacter (Verrucomicrobia), an organism known for metabolizing pyruvate, 

sugars, and sugar polymers in aerobic environments, was found in highest abundance at RPS 

(Wertz, et al., 2011). The suppression of Chthoniobacter at EDP could be attributed to its 

inability to grow with nitrate as an electron acceptor and its sensitivity to elevated nutrient loads 
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and oxygen depletion (Sangwan, et al., 2004). Geobacter (δ-Proteobacteria), a diverse 

heterotrophic degrader and metal cycler associated with natural wetlands (Straub, 2011; Lovley, 

et al., 1993) was more abundant at RPS than EDP.  Its niche in nitrogen cycling may be 

attributing to its observed suppression at EDP. In summary, the relative abundances of 

Chthoniobacter and Geobacter were statistically lower at the plume, suggesting that these 

species may be sensitive to the effluent chemistry and sediment condition.  

 

To correlate geochemical conditions and the microbial community compositions within the 

sampling sites, a canonical correspondence analysis (CCA) was conducted. The CCA included 

12 different environmental parameters measured in situ at the time of sampling and included the 

top 100 abundant OTUs (Fig. 5). Turbidity and dissolved oxygen were correlated positively with 

RPS, while salinity and specific conductivity were negatively correlated. EDP showed a strong 

correlation with temperature, sulfur and phosphorus, while pH and nitrate were negatively 

correlated. Each component of CCA was assessed using Eigen and p values. Thus, CCA1 was 

statistically significant with an eigenvalue of 0.7936 and p value of 0.002 and CCA2 was lower 

with an eigenvalue of 0.2085 and p value of 0.014, both at 999 permutations. SIMPER analysis 

was performed to confirm existing correlations between the environmental parameters and 

bacterial community compositions. The SIMPER analysis showed dissimilarity between EDP, 

DDP and RPS ranged from 70-77%. This result confirms that variations in microbial community 

structure across the sites are in part controlled by spatial proximity to the LRPCP.  To correlate 

observed taxa to nutrient-specific biogeochemical function within the sediment, 

metatranscriptomics analyses were used to reveal in situ microbial gene expression between each 

of the chosen sediment sites. For these analyses, EDP and RPS were chosen based on the 

observed chemical and taxa dissimilarity, representing two local environmental extremes with 

respect to anthropogenic influence from the Little River Pollution Control Plant. 

 

3.3 Microbial Gene Expression 

3.3.1 RNAseq Statistics & Functional Assignments 
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Peche Island (RPS) metatranscriptome datasets had an averaged post QC sequence count of 17 

717 046, mean sequence lengths of 117 basepairs, and 673 079 annotated identified functional 

categories, with the effluent discharge point (EDP) containing 11 231 974, 117 basepairs, 481 

721, and 379 143, respectively. For functional interpretation, gene hits were normalized to the 

number of hits of the DNA-directed RNA polymerase beta subunit (rpoB). This was done by 

dividing the number of hits of a given gene by the number of hits of the conserved rpoB gene, 

yielding the presented abundance percentage values. Observed abundances of key functional 

genes involved in prokaryotic nitrogen, methane, and sulfur cycling pathways were correlated 

and shown in Figure 6. 

 

3.3.2 Nitrogen Metabolism 

In many cases, bacterial-mediated transformations can alter the bioavailability of nitrogen 

species, potentially enhancing or limiting the potential for nutrient-driven eutrophication and 

anoxia of the water column. Thus, the question is asked are the sediments serving as a potential 

sink or source for nutrient resuspension (e.g. ammonia or nitrate). Investigations into active 

transcripts associated with nitrogen metabolism are key to understanding site-specific nutrient 

dynamics and ecosystem health. Nitrogen transcripts associated with RPS and EDP constituted 

1.5% and 2.5% of their respective transcriptomes. In this case nitrate reduction, particularly 

dominated via the denitrification pathway, was observed and was highly expressed at the EDP 

site (91.1% of the nitrogen metabolism annotated transcripts). Denitrification within EDP 

sediments followed a stepwise conversion of NO3
- to N2 by a series of N-reductases including 

periplasmic nitrate reductase (napA), nitrite reductase (nir), nitric oxide reductase (nor), and 

finally nitrous-oxide reductase (nosZ). Transcripts for all four enzymes showed significantly 

higher abundance at the EDP vs. RPS sediments (napA: p < 0.001, nir: p < 0.005, nor: p < 0.005, 

nos: p < 0.005) inferring a higher sediment nitrate reduction potential (Fig. 7). This pathway can 

buffer the effects of anthropogenic N2O inputs by liberating nitrogen from the sediments as N2 

(Papaspyrou et al., 2014).  However, the increase in nosZ expression in the EDP sediments is 

significant suggesting that an active pool of N2O exists. In addition to the expression of nor (NO 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

14 
 

to N2O), two competing reactions could be providing additional nitrous oxide inputs within the 

EDP sediment. The abundance of Leptothrix in the EDP sediment indirectly suggests that an 

active ferrous iron pool may be available. The presence of Fe (II) will control abiotic production 

of N2O enhancing its availability for increased expression of the nosZ pathway (Rakshit et al. 

2008; Sandford et al. 2012). Other mechanistic contributors for the N2O pool within the EDP 

sediment may also be derived from methanogenic activity in this carbon rich environment (Kits 

et al. 2015). Methanotrophs have the capability of producing N2O directly from available NO2
- 

and NO3
-  as a sole source of nitrogen (Hoefman et al. 2014).  

 

In general, the rapid consumption of nitrate by denitrifying bacteria within the EDP sediments is 

also reflected in the observed low nitrate concentrations in the pore water at this location (12.5 

µg/L) compared to the other sampling areas (18 µg/L, 22.5 µg/L, and 22.3 µg/L for the EDP, 

DDP, and RPS respectively). Elevated gene expression of cysteine and methionine metabolism 

(metH, metK, and ahcY) was also observed and is likely linked to the dominant denitrification, 

sulfur and methanogenic activity within the EDP sediments. The first enzymatic step of 

denitrification (nitrate to nitrite) within the EDP sediment is driven by periplasmic nitrate 

reductase (nap: 64.6% abundance) in contrast to a membrane-bound nitrate reductase (nar: 

0.18% abundance). This finding was also surprising, as nar is generally favored over nap in 

anaerobic settings. However, nap has been found to be preferentially expressed in relatively low 

nitrate, oxygen-depleted environments, such as those characterized by typical WWTP effluent 

(Dong et al., 2009; Potter et al., 1999). Thus, the lower pore water nitrate concentration at EDP 

may be driving nap expression via denitrifying bacteria such as Dechloromonas, providing a 

selective advantage to this genus that can harness N-scavenging pathways for energy 

conservation. Denitrifying Dechloromonas, Dok59, and Thermomonas constitute the dominant 

bacterial genera detected at EDP, and therefore could be benefiting from this enzymatic trade off 

(Coates et al., 2001; Ginige et al., 2005; Li et al., 2016; Mergaert et al., 2003).  

 

Although not dominant, genes were also identified that were involved in dissimilatory nitrate 
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reduction to ammonium (DNRA). This ammonia-generating pathway, showed relatively low 

abundance within the EDP sediments (0.99% abundance for nrfC and 1.26% abundance for 

nrfD) suggesting a limited capacity for nitrogen mineralization. Nitrogen fixation transcripts also 

showed low expression, therefore N2 generated through denitrification was not being cycled back 

to ammonia.  These observations further confirmed that sediments proximal to the LRPCP were 

not a site of bioavailable N-replenishment. In contrast within the RPS sediments, DNRA and N-

fixation transcripts were also in low abundance. However, nitrification transcripts, specifically 

those involved in ammonia-oxidation, showed increased abundance compared to EDP and may 

be more reflective of a healthy wetland ecosystem. Ammonia monooxygenase (amo) and 

hydroxylamine oxidoreductase (hao) genes contribute to the conversion from ammonium to 

nitrate and had abundance values of 47% and 4.5%, respectively, in the RPS sediments, 

compared to 22.5% and 1.7% in the EDP sediments. Higher expression of amo in the RPS 

sediment was likely due to comparably higher dissolved oxygen in the Detroit River setting, 

therefore favoring ammonia-oxidation.  However, amoB was still active in the EDP sediments 

possibly reflecting small pools of available DO. Even in this case, the presence of oxygen would 

not entirely limit denitrification, as simultaneous O2 and NO3
- use has recently been observed in 

sediments (Marchant et al., 2017). The co-expression of ammonia, nitrogen and sulfur pathways 

in these sediment locations is likely reflective of discrete redox environments at or below the 

sediment-water interface. The EDP sediments exhibit high sulfate concentrations and the 

potential for dissolved sulfide species in the absence of oxygen, based on high dsrAB expression. 

Depending on the situation, this could have an inhibitory effect on both aerobic and anaerobic 

ammonia oxidation, and in some cases, may be responsible for reducing the potential for 

nitrification in the EDP sediments (Joye et al., 1995; Martens-Habbena et al., 2009). The 

suppression of anammox gene transcripts (hzo and hzs) and lack of representative genera (Van 

Niftrik and Jetten, 2013) observed in EDP sediments suggests that there is likely an inhibitory 

process, possibly competition between ongoing methanogenic activity or sulfur reduction (Jin et 

al., 2013). Additionally, potential BOD and P loads to the EDP sediments from the effluent may 

also act as inhibiting factors for the anammox process.  However, beyond direct microbial 
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competition, there could simply be toxic inhibition resulting from alcohols, phenols and even 

antibiotics present in the LRPCP sediment (Jin et al., 2012).  

 

4.0 CONCLUSIONS 

The effluent from the Little River Pollution Control Plant (LRPCP) has a significant influence on 

sediments within its discharge location. Differences in chemistry and biological function were 

clearly observed comparing both the Peche Island reference location and LRPCP sediments. This 

included significant changes in sediment microbial diversity, dominated by active denitrification 

metabolism in the LRPCP discharge location.  The dominance of denitrification vs. nitrification 

pathways within the EDP sediment suggest that this point source environment is not behaving as 

a net source or sink for ammonia but rather a conduit for N2 gas release. Highly expressed nosZ 

compared to other denitrification genes indicates a sizeable pool of N2O available for release into 

the water column or for reduction to N2. Aside from a direct denitrification pathway contributing 

to the N2O flux, observed syntrophic and cooperative metabolism from Fe-cyclers and methane 

and ammonia oxidizers are actively involved. This study has shown the advantage of 

implementing a multi-gene approach to enhance the understanding of the overall microbial 

metabolism in anthropogenic impacted sediments.  Future studies will directly correlate nitrogen 

speciation with this gene expression to identify possible gene biomarkers indicative of 

wastewater treatment effluents, or other anthropogenic inputs. 
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FIGURE LEGENDS 
 
 
Fig. 1. Location of the Little River Pollution Control Plant, Peche Island, and the sampling sites 
(DDP = Downstream Discharge Point, RPS = Reference Peche Island Site, EDP = Effluent 
Discharge Point, UDP = Upstream Discharge Point).  
 
Fig. 2. Principal Coordinates Analysis (PCoA) of microbial data. Ellipses represent sample 
groupings of each sampled sites (DDP = Downstream Discharge Point (4 samples), RPS = 
Reference Peche Island Site (3 samples), EDP = Effluent Discharge Point (4 samples), UDP = 
Upstream Discharge Point (4 samples)).  
 
Fig. 3. Relative abundance of the top ten microbial phylum OTUs across the Little River and 
Peche Island Sites (DDP = Downstream Discharge Point, RPS = Reference Peche Island Site, 
EDP = Effluent Discharge Point, UDP = Upstream Discharge Point).  
 
Fig. 4. The 7 genera showing differences among sediment samples within Little River and Peche 
Island sites. Different letters above the error bars represent significant differences assessed using 
Tukey’s post hoc multiple comparisons (DDP = Downstream Discharge Point, RPS = Reference 
Peche Island Site, EDP = Effluent Discharge Point, UDP = Upstream Discharge Point).  
 
Fig. 5. Canonical Correspondence Analysis (CCA) of microbial and geochemical data. Ellipses 
represent sample groupings of each site (DDP = Downstream Discharge Point, RPS = Reference 
Peche Island Site, EDP = Effluent Discharge Point, UDP = Upstream Discharge Point). 
 
Fig. 6. Averaged gene expression relative to rpoB for both the reference site and the WWTS 
plume. Genes are categorized per their dominant metabolic pathway associations. nap 
(periplasmic nitrate reductase), nir (nitrite reductase), nor (nitric oxide reductase), nos (nitrous-
oxide reductase), amo (ammonia monooxygenase), hao (hydroxylamine oxidase), nrf (nitrate 
reductase in DNRA), hzo (hydrazine oxidase), hzs (hydrazine hydrolase), mcr (methyl-coenzyme 
M reductase), mrt (tetrahydromethanopterin S-methyltransferase), met (sulfate 
adenylyltransferase), apr (adenylylsulfate reductase), dsr (dissimilatory sulfite reductase), cysC 
(adenylylsulfate kinase), cysH (phosphoadenosine phosphosulfate reductase), cysJ (sulfite 
reductase (NADPH)), suox (sulfite oxidase).  
 
Fig. 7. Expression (%) of genes relating to the denitrification and nitrification pathways at both 
RPS (green) and EDP (blue).  All expression is normalized to the rpoB gene. 
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Table 1: 16S rRNA gene target primers used in PCR cycle. Lower-case areas are the linker zones of the 

primers. XXXX are representative of barcodes 10-12 base pairs in length, P1 and A are the Ion torrent 

sequencing primers.  

 

 
Primer 
Set  Primer Sequence (5'-3') 

PCR1  
Bacterial 
16S UniA+V5F acctgcctgccgATTAGATACCCNGGTAG 

 V5/V6 UniB+V6R acgccaccgagcCGACAGCCATGCANCACCT 
    
    
PCR2  P1+UniB CCTCTCTATGGGCAGTCGGTGATacgccaccgagc 

  A+Barcode+UniA 
CCATCTCATCCCTGCGTGTCTCCGACTCAGXXXXX 
XXGATacctgcctgccg 
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HIGHLIGHTS 

● expression of nosZ is influential in the wastewater treatment effluent sediments 

● low nitrate indicates high nitrogen turnover in the sediments 

● effluent impacted sediments appear to be significantly affected by nutrient loads 
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